hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
f541eb26b2033e101c36daab0dca97226f59f8287af56fe02863817c329dbaba | """Prime ideals in number fields. """
from sympy.polys.polytools import Poly
from sympy.polys.domains.finitefield import FF
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.integerring import ZZ
from sympy.polys.matrices.domainmatrix import DomainMatrix
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polyutils import IntegerPowerable
from sympy.utilities.decorator import public
from .basis import round_two, nilradical_mod_p
from .exceptions import StructureError
from .modules import ModuleEndomorphism, find_min_poly
from .utilities import coeff_search, supplement_a_subspace
def _check_formal_conditions_for_maximal_order(submodule):
r"""
Several functions in this module accept an argument which is to be a
:py:class:`~.Submodule` representing the maximal order in a number field,
such as returned by the :py:func:`~sympy.polys.numberfields.basis.round_two`
algorithm.
We do not attempt to check that the given ``Submodule`` actually represents
a maximal order, but we do check a basic set of formal conditions that the
``Submodule`` must satisfy, at a minimum. The purpose is to catch an
obviously ill-formed argument.
"""
prefix = 'The submodule representing the maximal order should '
cond = None
if not submodule.is_power_basis_submodule():
cond = 'be a direct submodule of a power basis.'
elif not submodule.starts_with_unity():
cond = 'have 1 as its first generator.'
elif not submodule.is_sq_maxrank_HNF():
cond = 'have square matrix, of maximal rank, in Hermite Normal Form.'
if cond is not None:
raise StructureError(prefix + cond)
class PrimeIdeal(IntegerPowerable):
r"""
A prime ideal in a ring of algebraic integers.
"""
def __init__(self, ZK, p, alpha, f, e=None):
"""
Parameters
==========
ZK : :py:class:`~.Submodule`
The maximal order where this ideal lives.
p : int
The rational prime this ideal divides.
alpha : :py:class:`~.PowerBasisElement`
Such that the ideal is equal to ``p*ZK + alpha*ZK``.
f : int
The inertia degree.
e : int, ``None``, optional
The ramification index, if already known. If ``None``, we will
compute it here.
"""
_check_formal_conditions_for_maximal_order(ZK)
self.ZK = ZK
self.p = p
self.alpha = alpha
self.f = f
self._test_factor = None
self.e = e if e is not None else self.valuation(p * ZK)
def __str__(self):
if self.is_inert:
return f'({self.p})'
return f'({self.p}, {self.alpha.as_expr()})'
@property
def is_inert(self):
"""
Say whether the rational prime we divide is inert, i.e. stays prime in
our ring of integers.
"""
return self.f == self.ZK.n
def repr(self, field_gen=None, just_gens=False):
"""
Print a representation of this prime ideal.
Examples
========
>>> from sympy import cyclotomic_poly, QQ
>>> from sympy.abc import x, zeta
>>> T = cyclotomic_poly(7, x)
>>> K = QQ.algebraic_field((T, zeta))
>>> P = K.primes_above(11)
>>> print(P[0].repr())
[ (11, x**3 + 5*x**2 + 4*x - 1) e=1, f=3 ]
>>> print(P[0].repr(field_gen=zeta))
[ (11, zeta**3 + 5*zeta**2 + 4*zeta - 1) e=1, f=3 ]
>>> print(P[0].repr(field_gen=zeta, just_gens=True))
(11, zeta**3 + 5*zeta**2 + 4*zeta - 1)
Parameters
==========
field_gen : :py:class:`~.Symbol`, ``None``, optional (default=None)
The symbol to use for the generator of the field. This will appear
in our representation of ``self.alpha``. If ``None``, we use the
variable of the defining polynomial of ``self.ZK``.
just_gens : bool, optional (default=False)
If ``True``, just print the "(p, alpha)" part, showing "just the
generators" of the prime ideal. Otherwise, print a string of the
form "[ (p, alpha) e=..., f=... ]", giving the ramification index
and inertia degree, along with the generators.
"""
field_gen = field_gen or self.ZK.parent.T.gen
p, alpha, e, f = self.p, self.alpha, self.e, self.f
alpha_rep = str(alpha.numerator(x=field_gen).as_expr())
if alpha.denom > 1:
alpha_rep = f'({alpha_rep})/{alpha.denom}'
gens = f'({p}, {alpha_rep})'
if just_gens:
return gens
return f'[ {gens} e={e}, f={f} ]'
def __repr__(self):
return self.repr()
def as_submodule(self):
r"""
Represent this prime ideal as a :py:class:`~.Submodule`.
Explanation
===========
The :py:class:`~.PrimeIdeal` class serves to bundle information about
a prime ideal, such as its inertia degree, ramification index, and
two-generator representation, as well as to offer helpful methods like
:py:meth:`~.PrimeIdeal.valuation` and
:py:meth:`~.PrimeIdeal.test_factor`.
However, in order to be added and multiplied by other ideals or
rational numbers, it must first be converted into a
:py:class:`~.Submodule`, which is a class that supports these
operations.
In many cases, the user need not perform this conversion deliberately,
since it is automatically performed by the arithmetic operator methods
:py:meth:`~.PrimeIdeal.__add__` and :py:meth:`~.PrimeIdeal.__mul__`.
Raising a :py:class:`~.PrimeIdeal` to a non-negative integer power is
also supported.
Examples
========
>>> from sympy import Poly, cyclotomic_poly, prime_decomp
>>> T = Poly(cyclotomic_poly(7))
>>> P0 = prime_decomp(7, T)[0]
>>> print(P0**6 == 7*P0.ZK)
True
Note that, on both sides of the equation above, we had a
:py:class:`~.Submodule`. In the next equation we recall that adding
ideals yields their GCD. This time, we need a deliberate conversion
to :py:class:`~.Submodule` on the right:
>>> print(P0 + 7*P0.ZK == P0.as_submodule())
True
Returns
=======
:py:class:`~.Submodule`
Will be equal to ``self.p * self.ZK + self.alpha * self.ZK``.
See Also
========
__add__
__mul__
"""
M = self.p * self.ZK + self.alpha * self.ZK
# Pre-set expensive boolean properties whose value we already know:
M._starts_with_unity = False
M._is_sq_maxrank_HNF = True
return M
def __eq__(self, other):
if isinstance(other, PrimeIdeal):
return self.as_submodule() == other.as_submodule()
return NotImplemented
def __add__(self, other):
"""
Convert to a :py:class:`~.Submodule` and add to another
:py:class:`~.Submodule`.
See Also
========
as_submodule
"""
return self.as_submodule() + other
__radd__ = __add__
def __mul__(self, other):
"""
Convert to a :py:class:`~.Submodule` and multiply by another
:py:class:`~.Submodule` or a rational number.
See Also
========
as_submodule
"""
return self.as_submodule() * other
__rmul__ = __mul__
def _zeroth_power(self):
return self.ZK
def _first_power(self):
return self
def test_factor(self):
r"""
Compute a test factor for this prime ideal.
Explanation
===========
Write $\mathfrak{p}$ for this prime ideal, $p$ for the rational prime
it divides. Then, for computing $\mathfrak{p}$-adic valuations it is
useful to have a number $\beta \in \mathbb{Z}_K$ such that
$p/\mathfrak{p} = p \mathbb{Z}_K + \beta \mathbb{Z}_K$.
Essentially, this is the same as the number $\Psi$ (or the "reagent")
from Kummer's 1847 paper (*Ueber die Zerlegung...*, Crelle vol. 35) in
which ideal divisors were invented.
"""
if self._test_factor is None:
self._test_factor = _compute_test_factor(self.p, [self.alpha], self.ZK)
return self._test_factor
def valuation(self, I):
r"""
Compute the $\mathfrak{p}$-adic valuation of integral ideal I at this
prime ideal.
Parameters
==========
I : :py:class:`~.Submodule`
See Also
========
prime_valuation
"""
return prime_valuation(I, self)
def reduce_element(self, elt):
"""
Reduce a :py:class:`~.PowerBasisElement` to a "small representative"
modulo this prime ideal.
Parameters
==========
elt : :py:class:`~.PowerBasisElement`
The element to be reduced.
Returns
=======
:py:class:`~.PowerBasisElement`
The reduced element.
See Also
========
reduce_ANP
reduce_alg_num
.Submodule.reduce_element
"""
return self.as_submodule().reduce_element(elt)
def reduce_ANP(self, a):
"""
Reduce an :py:class:`~.ANP` to a "small representative" modulo this
prime ideal.
Parameters
==========
elt : :py:class:`~.ANP`
The element to be reduced.
Returns
=======
:py:class:`~.ANP`
The reduced element.
See Also
========
reduce_element
reduce_alg_num
.Submodule.reduce_element
"""
elt = self.ZK.parent.element_from_ANP(a)
red = self.reduce_element(elt)
return red.to_ANP()
def reduce_alg_num(self, a):
"""
Reduce an :py:class:`~.AlgebraicNumber` to a "small representative"
modulo this prime ideal.
Parameters
==========
elt : :py:class:`~.AlgebraicNumber`
The element to be reduced.
Returns
=======
:py:class:`~.AlgebraicNumber`
The reduced element.
See Also
========
reduce_element
reduce_ANP
.Submodule.reduce_element
"""
elt = self.ZK.parent.element_from_alg_num(a)
red = self.reduce_element(elt)
return a.field_element(list(reversed(red.QQ_col.flat())))
def _compute_test_factor(p, gens, ZK):
r"""
Compute the test factor for a :py:class:`~.PrimeIdeal` $\mathfrak{p}$.
Parameters
==========
p : int
The rational prime $\mathfrak{p}$ divides
gens : list of :py:class:`PowerBasisElement`
A complete set of generators for $\mathfrak{p}$ over *ZK*, EXCEPT that
an element equivalent to rational *p* can and should be omitted (since
it has no effect except to waste time).
ZK : :py:class:`~.Submodule`
The maximal order where the prime ideal $\mathfrak{p}$ lives.
Returns
=======
:py:class:`~.PowerBasisElement`
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Proposition 4.8.15.)
"""
_check_formal_conditions_for_maximal_order(ZK)
E = ZK.endomorphism_ring()
matrices = [E.inner_endomorphism(g).matrix(modulus=p) for g in gens]
B = DomainMatrix.zeros((0, ZK.n), FF(p)).vstack(*matrices)
# A nonzero element of the nullspace of B will represent a
# lin comb over the omegas which (i) is not a multiple of p
# (since it is nonzero over FF(p)), while (ii) is such that
# its product with each g in gens _is_ a multiple of p (since
# B represents multiplication by these generators). Theory
# predicts that such an element must exist, so nullspace should
# be non-trivial.
x = B.nullspace()[0, :].transpose()
beta = ZK.parent(ZK.matrix * x, denom=ZK.denom)
return beta
@public
def prime_valuation(I, P):
r"""
Compute the *P*-adic valuation for an integral ideal *I*.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.numberfields import prime_valuation
>>> K = QQ.cyclotomic_field(5)
>>> P = K.primes_above(5)
>>> ZK = K.maximal_order()
>>> print(prime_valuation(25*ZK, P[0]))
8
Parameters
==========
I : :py:class:`~.Submodule`
An integral ideal whose valuation is desired.
P : :py:class:`~.PrimeIdeal`
The prime at which to compute the valuation.
Returns
=======
int
See Also
========
.PrimeIdeal.valuation
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 4.8.17.)
"""
p, ZK = P.p, P.ZK
n, W, d = ZK.n, ZK.matrix, ZK.denom
A = W.convert_to(QQ).inv() * I.matrix * d / I.denom
# Although A must have integer entries, given that I is an integral ideal,
# as a DomainMatrix it will still be over QQ, so we convert back:
A = A.convert_to(ZZ)
D = A.det()
if D % p != 0:
return 0
beta = P.test_factor()
f = d ** n // W.det()
need_complete_test = (f % p == 0)
v = 0
while True:
# Entering the loop, the cols of A represent lin combs of omegas.
# Turn them into lin combs of thetas:
A = W * A
# And then one column at a time...
for j in range(n):
c = ZK.parent(A[:, j], denom=d)
c *= beta
# ...turn back into lin combs of omegas, after multiplying by beta:
c = ZK.represent(c).flat()
for i in range(n):
A[i, j] = c[i]
if A[n - 1, n - 1].element % p != 0:
break
A = A / p
# As noted above, domain converts to QQ even when division goes evenly.
# So must convert back, even when we don't "need_complete_test".
if need_complete_test:
# In this case, having a non-integer entry is actually just our
# halting condition.
try:
A = A.convert_to(ZZ)
except CoercionFailed:
break
else:
# In this case theory says we should not have any non-integer entries.
A = A.convert_to(ZZ)
v += 1
return v
def _two_elt_rep(gens, ZK, p, f=None, Np=None):
r"""
Given a set of *ZK*-generators of a prime ideal, compute a set of just two
*ZK*-generators for the same ideal, one of which is *p* itself.
Parameters
==========
gens : list of :py:class:`PowerBasisElement`
Generators for the prime ideal over *ZK*, the ring of integers of the
field $K$.
ZK : :py:class:`~.Submodule`
The maximal order in $K$.
p : int
The rational prime divided by the prime ideal.
f : int, optional
The inertia degree of the prime ideal, if known.
Np : int, optional
The norm $p^f$ of the prime ideal, if known.
NOTE: There is no reason to supply both *f* and *Np*. Either one will
save us from having to compute the norm *Np* ourselves. If both are known,
*Np* is preferred since it saves one exponentiation.
Returns
=======
:py:class:`~.PowerBasisElement` representing a single algebraic integer
alpha such that the prime ideal is equal to ``p*ZK + alpha*ZK``.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 4.7.10.)
"""
_check_formal_conditions_for_maximal_order(ZK)
pb = ZK.parent
T = pb.T
# Detect the special cases in which either (a) all generators are multiples
# of p, or (b) there are no generators (so `all` is vacuously true):
if all((g % p).equiv(0) for g in gens):
return pb.zero()
if Np is None:
if f is not None:
Np = p**f
else:
Np = abs(pb.submodule_from_gens(gens).matrix.det())
omega = ZK.basis_element_pullbacks()
beta = [p*om for om in omega[1:]] # note: we omit omega[0] == 1
beta += gens
search = coeff_search(len(beta), 1)
for c in search:
alpha = sum(ci*betai for ci, betai in zip(c, beta))
# Note: It may be tempting to reduce alpha mod p here, to try to work
# with smaller numbers, but must not do that, as it can result in an
# infinite loop! E.g. try factoring 2 in Q(sqrt(-7)).
n = alpha.norm(T) // Np
if n % p != 0:
# Now can reduce alpha mod p.
return alpha % p
def _prime_decomp_easy_case(p, ZK):
r"""
Compute the decomposition of rational prime *p* in the ring of integers
*ZK* (given as a :py:class:`~.Submodule`), in the "easy case", i.e. the
case where *p* does not divide the index of $\theta$ in *ZK*, where
$\theta$ is the generator of the ``PowerBasis`` of which *ZK* is a
``Submodule``.
"""
T = ZK.parent.T
T_bar = Poly(T, modulus=p)
lc, fl = T_bar.factor_list()
if len(fl) == 1 and fl[0][1] == 1:
return [PrimeIdeal(ZK, p, ZK.parent.zero(), ZK.n, 1)]
return [PrimeIdeal(ZK, p,
ZK.parent.element_from_poly(Poly(t, domain=ZZ)),
t.degree(), e)
for t, e in fl]
def _prime_decomp_compute_kernel(I, p, ZK):
r"""
Parameters
==========
I : :py:class:`~.Module`
An ideal of ``ZK/pZK``.
p : int
The rational prime being factored.
ZK : :py:class:`~.Submodule`
The maximal order.
Returns
=======
Pair ``(N, G)``, where:
``N`` is a :py:class:`~.Module` representing the kernel of the map
``a |--> a**p - a`` on ``(O/pO)/I``, guaranteed to be a module with
unity.
``G`` is a :py:class:`~.Module` representing a basis for the separable
algebra ``A = O/I`` (see Cohen).
"""
W = I.matrix
n, r = W.shape
# Want to take the Fp-basis given by the columns of I, adjoin (1, 0, ..., 0)
# (which we know is not already in there since I is a basis for a prime ideal)
# and then supplement this with additional columns to make an invertible n x n
# matrix. This will then represent a full basis for ZK, whose first r columns
# are pullbacks of the basis for I.
if r == 0:
B = W.eye(n, ZZ)
else:
B = W.hstack(W.eye(n, ZZ)[:, 0])
if B.shape[1] < n:
B = supplement_a_subspace(B.convert_to(FF(p))).convert_to(ZZ)
G = ZK.submodule_from_matrix(B)
# Must compute G's multiplication table _before_ discarding the first r
# columns. (See Step 9 in Alg 6.2.9 in Cohen, where the betas are actually
# needed in order to represent each product of gammas. However, once we've
# found the representations, then we can ignore the betas.)
G.compute_mult_tab()
G = G.discard_before(r)
phi = ModuleEndomorphism(G, lambda x: x**p - x)
N = phi.kernel(modulus=p)
assert N.starts_with_unity()
return N, G
def _prime_decomp_maximal_ideal(I, p, ZK):
r"""
We have reached the case where we have a maximal (hence prime) ideal *I*,
which we know because the quotient ``O/I`` is a field.
Parameters
==========
I : :py:class:`~.Module`
An ideal of ``O/pO``.
p : int
The rational prime being factored.
ZK : :py:class:`~.Submodule`
The maximal order.
Returns
=======
:py:class:`~.PrimeIdeal` instance representing this prime
"""
m, n = I.matrix.shape
f = m - n
G = ZK.matrix * I.matrix
gens = [ZK.parent(G[:, j], denom=ZK.denom) for j in range(G.shape[1])]
alpha = _two_elt_rep(gens, ZK, p, f=f)
return PrimeIdeal(ZK, p, alpha, f)
def _prime_decomp_split_ideal(I, p, N, G, ZK):
r"""
Perform the step in the prime decomposition algorithm where we have determined
the the quotient ``ZK/I`` is _not_ a field, and we want to perform a non-trivial
factorization of *I* by locating an idempotent element of ``ZK/I``.
"""
assert I.parent == ZK and G.parent is ZK and N.parent is G
# Since ZK/I is not a field, the kernel computed in the previous step contains
# more than just the prime field Fp, and our basis N for the nullspace therefore
# contains at least a second column (which represents an element outside Fp).
# Let alpha be such an element:
alpha = N(1).to_parent()
assert alpha.module is G
alpha_powers = []
m = find_min_poly(alpha, FF(p), powers=alpha_powers)
# TODO (future work):
# We don't actually need full factorization, so might use a faster method
# to just break off a single non-constant factor m1?
lc, fl = m.factor_list()
m1 = fl[0][0]
m2 = m.quo(m1)
U, V, g = m1.gcdex(m2)
# Sanity check: theory says m is squarefree, so m1, m2 should be coprime:
assert g == 1
E = list(reversed(Poly(U * m1, domain=ZZ).rep.rep))
eps1 = sum(E[i]*alpha_powers[i] for i in range(len(E)))
eps2 = 1 - eps1
idemps = [eps1, eps2]
factors = []
for eps in idemps:
e = eps.to_parent()
assert e.module is ZK
D = I.matrix.convert_to(FF(p)).hstack(*[
(e * om).column(domain=FF(p)) for om in ZK.basis_elements()
])
W = D.columnspace().convert_to(ZZ)
H = ZK.submodule_from_matrix(W)
factors.append(H)
return factors
@public
def prime_decomp(p, T=None, ZK=None, dK=None, radical=None):
r"""
Compute the decomposition of rational prime *p* in a number field.
Explanation
===========
Ordinarily this should be accessed through the
:py:meth:`~.AlgebraicField.primes_above` method of an
:py:class:`~.AlgebraicField`.
Examples
========
>>> from sympy import Poly, QQ
>>> from sympy.abc import x, theta
>>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
>>> K = QQ.algebraic_field((T, theta))
>>> print(K.primes_above(2))
[[ (2, x**2 + 1) e=1, f=1 ], [ (2, (x**2 + 3*x + 2)/2) e=1, f=1 ],
[ (2, (3*x**2 + 3*x)/2) e=1, f=1 ]]
Parameters
==========
p : int
The rational prime whose decomposition is desired.
T : :py:class:`~.Poly`, optional
Monic irreducible polynomial defining the number field $K$ in which to
factor. NOTE: at least one of *T* or *ZK* must be provided.
ZK : :py:class:`~.Submodule`, optional
The maximal order for $K$, if already known.
NOTE: at least one of *T* or *ZK* must be provided.
dK : int, optional
The discriminant of the field $K$, if already known.
radical : :py:class:`~.Submodule`, optional
The nilradical mod *p* in the integers of $K$, if already known.
Returns
=======
List of :py:class:`~.PrimeIdeal` instances.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 6.2.9.)
"""
if T is None and ZK is None:
raise ValueError('At least one of T or ZK must be provided.')
if ZK is not None:
_check_formal_conditions_for_maximal_order(ZK)
if T is None:
T = ZK.parent.T
radicals = {}
if dK is None or ZK is None:
ZK, dK = round_two(T, radicals=radicals)
dT = T.discriminant()
f_squared = dT // dK
if f_squared % p != 0:
return _prime_decomp_easy_case(p, ZK)
radical = radical or radicals.get(p) or nilradical_mod_p(ZK, p)
stack = [radical]
primes = []
while stack:
I = stack.pop()
N, G = _prime_decomp_compute_kernel(I, p, ZK)
if N.n == 1:
P = _prime_decomp_maximal_ideal(I, p, ZK)
primes.append(P)
else:
I1, I2 = _prime_decomp_split_ideal(I, p, N, G, ZK)
stack.extend([I1, I2])
return primes
|
a4aebd32d11be4172b49653d13d8eda55c46844711fb95c1f3fa9ab69b241559 | r"""Modules in number fields.
The classes defined here allow us to work with finitely generated, free
modules, whose generators are algebraic numbers.
There is an abstract base class called :py:class:`~.Module`, which has two
concrete subclasses, :py:class:`~.PowerBasis` and :py:class:`~.Submodule`.
Every module is defined by its basis, or set of generators:
* For a :py:class:`~.PowerBasis`, the generators are the first $n$ powers
(starting with the zeroth) of an algebraic integer $\theta$ of degree $n$.
The :py:class:`~.PowerBasis` is constructed by passing either the minimal
polynomial of $\theta$, or an :py:class:`~.AlgebraicField` having $\theta$
as its primitive element.
* For a :py:class:`~.Submodule`, the generators are a set of
$\mathbb{Q}$-linear combinations of the generators of another module. That
other module is then the "parent" of the :py:class:`~.Submodule`. The
coefficients of the $\mathbb{Q}$-linear combinations may be given by an
integer matrix, and a positive integer denominator. Each column of the matrix
defines a generator.
>>> from sympy.polys import Poly, cyclotomic_poly, ZZ
>>> from sympy.abc import x
>>> from sympy.polys.matrices import DomainMatrix, DM
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5, x))
>>> A = PowerBasis(T)
>>> print(A)
PowerBasis(x**4 + x**3 + x**2 + x + 1)
>>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3)
>>> print(B)
Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3
>>> print(B.parent)
PowerBasis(x**4 + x**3 + x**2 + x + 1)
Thus, every module is either a :py:class:`~.PowerBasis`,
or a :py:class:`~.Submodule`, some ancestor of which is a
:py:class:`~.PowerBasis`. (If ``S`` is a :py:class:`~.Submodule`, then its
ancestors are ``S.parent``, ``S.parent.parent``, and so on).
The :py:class:`~.ModuleElement` class represents a linear combination of the
generators of any module. Critically, the coefficients of this linear
combination are not restricted to be integers, but may be any rational
numbers. This is necessary so that any and all algebraic integers be
representable, starting from the power basis in a primitive element $\theta$
for the number field in question. For example, in a quadratic field
$\mathbb{Q}(\sqrt{d})$ where $d \equiv 1 \mod{4}$, a denominator of $2$ is
needed.
A :py:class:`~.ModuleElement` can be constructed from an integer column vector
and a denominator:
>>> U = Poly(x**2 - 5)
>>> M = PowerBasis(U)
>>> e = M(DM([[1], [1]], ZZ), denom=2)
>>> print(e)
[1, 1]/2
>>> print(e.module)
PowerBasis(x**2 - 5)
The :py:class:`~.PowerBasisElement` class is a subclass of
:py:class:`~.ModuleElement` that represents elements of a
:py:class:`~.PowerBasis`, and adds functionality pertinent to elements
represented directly over powers of the primitive element $\theta$.
Arithmetic with module elements
===============================
While a :py:class:`~.ModuleElement` represents a linear combination over the
generators of a particular module, recall that every module is either a
:py:class:`~.PowerBasis` or a descendant (along a chain of
:py:class:`~.Submodule` objects) thereof, so that in fact every
:py:class:`~.ModuleElement` represents an algebraic number in some field
$\mathbb{Q}(\theta)$, where $\theta$ is the defining element of some
:py:class:`~.PowerBasis`. It thus makes sense to talk about the number field
to which a given :py:class:`~.ModuleElement` belongs.
This means that any two :py:class:`~.ModuleElement` instances can be added,
subtracted, multiplied, or divided, provided they belong to the same number
field. Similarly, since $\mathbb{Q}$ is a subfield of every number field,
any :py:class:`~.ModuleElement` may be added, multiplied, etc. by any
rational number.
>>> from sympy import QQ
>>> from sympy.polys.numberfields.modules import to_col
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
>>> e = A(to_col([0, 2, 0, 0]), denom=3)
>>> f = A(to_col([0, 0, 0, 7]), denom=5)
>>> g = C(to_col([1, 1, 1, 1]))
>>> e + f
[0, 10, 0, 21]/15
>>> e - f
[0, 10, 0, -21]/15
>>> e - g
[-9, -7, -9, -9]/3
>>> e + QQ(7, 10)
[21, 20, 0, 0]/30
>>> e * f
[-14, -14, -14, -14]/15
>>> e ** 2
[0, 0, 4, 0]/9
>>> f // g
[7, 7, 7, 7]/15
>>> f * QQ(2, 3)
[0, 0, 0, 14]/15
However, care must be taken with arithmetic operations on
:py:class:`~.ModuleElement`, because the module $C$ to which the result will
belong will be the nearest common ancestor (NCA) of the modules $A$, $B$ to
which the two operands belong, and $C$ may be different from either or both
of $A$ and $B$.
>>> A = PowerBasis(T)
>>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
>>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
>>> print((B(0) * C(0)).module == A)
True
Before the arithmetic operation is performed, copies of the two operands are
automatically converted into elements of the NCA (the operands themselves are
not modified). This upward conversion along an ancestor chain is easy: it just
requires the successive multiplication by the defining matrix of each
:py:class:`~.Submodule`.
Conversely, downward conversion, i.e. representing a given
:py:class:`~.ModuleElement` in a submodule, is also supported -- namely by
the :py:meth:`~sympy.polys.numberfields.modules.Submodule.represent` method
-- but is not guaranteed to succeed in general, since the given element may
not belong to the submodule. The main circumstance in which this issue tends
to arise is with multiplication, since modules, while closed under addition,
need not be closed under multiplication.
Multiplication
--------------
Generally speaking, a module need not be closed under multiplication, i.e. need
not form a ring. However, many of the modules we work with in the context of
number fields are in fact rings, and our classes do support multiplication.
Specifically, any :py:class:`~.Module` can attempt to compute its own
multiplication table, but this does not happen unless an attempt is made to
multiply two :py:class:`~.ModuleElement` instances belonging to it.
>>> A = PowerBasis(T)
>>> print(A._mult_tab is None)
True
>>> a = A(0)*A(1)
>>> print(A._mult_tab is None)
False
Every :py:class:`~.PowerBasis` is, by its nature, closed under multiplication,
so instances of :py:class:`~.PowerBasis` can always successfully compute their
multiplication table.
When a :py:class:`~.Submodule` attempts to compute its multiplication table,
it converts each of its own generators into elements of its parent module,
multiplies them there, in every possible pairing, and then tries to
represent the results in itself, i.e. as $\mathbb{Z}$-linear combinations
over its own generators. This will succeed if and only if the submodule is
in fact closed under multiplication.
Module Homomorphisms
====================
Many important number theoretic algorithms require the calculation of the
kernel of one or more module homomorphisms. Accordingly we have several
lightweight classes, :py:class:`~.ModuleHomomorphism`,
:py:class:`~.ModuleEndomorphism`, :py:class:`~.InnerEndomorphism`, and
:py:class:`~.EndomorphismRing`, which provide the minimal necessary machinery
to support this.
"""
from sympy.core.numbers import igcd, ilcm
from sympy.core.symbol import Dummy
from sympy.polys.polyclasses import ANP
from sympy.polys.polytools import Poly
from sympy.polys.densetools import dup_clear_denoms
from sympy.polys.domains.algebraicfield import AlgebraicField
from sympy.polys.domains.finitefield import FF
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.integerring import ZZ
from sympy.polys.matrices.domainmatrix import DomainMatrix
from sympy.polys.matrices.exceptions import DMBadInputError
from sympy.polys.matrices.normalforms import hermite_normal_form
from sympy.polys.polyerrors import CoercionFailed, UnificationFailed
from sympy.polys.polyutils import IntegerPowerable
from .exceptions import ClosureFailure, MissingUnityError, StructureError
from .utilities import AlgIntPowers, is_rat, get_num_denom
def to_col(coeffs):
r"""Transform a list of integer coefficients into a column vector."""
return DomainMatrix([[ZZ(c) for c in coeffs]], (1, len(coeffs)), ZZ).transpose()
class Module:
"""
Generic finitely-generated module.
This is an abstract base class, and should not be instantiated directly.
The two concrete subclasses are :py:class:`~.PowerBasis` and
:py:class:`~.Submodule`.
Every :py:class:`~.Submodule` is derived from another module, referenced
by its ``parent`` attribute. If ``S`` is a submodule, then we refer to
``S.parent``, ``S.parent.parent``, and so on, as the "ancestors" of
``S``. Thus, every :py:class:`~.Module` is either a
:py:class:`~.PowerBasis` or a :py:class:`~.Submodule`, some ancestor of
which is a :py:class:`~.PowerBasis`.
"""
@property
def n(self):
"""The number of generators of this module."""
raise NotImplementedError
def mult_tab(self):
"""
Get the multiplication table for this module (if closed under mult).
Explanation
===========
Computes a dictionary ``M`` of dictionaries of lists, representing the
upper triangular half of the multiplication table.
In other words, if ``0 <= i <= j < self.n``, then ``M[i][j]`` is the
list ``c`` of coefficients such that
``g[i] * g[j] == sum(c[k]*g[k], k in range(self.n))``,
where ``g`` is the list of generators of this module.
If ``j < i`` then ``M[i][j]`` is undefined.
Examples
========
>>> from sympy.polys import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> print(A.mult_tab()) # doctest: +SKIP
{0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]},
1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]},
2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]},
3: {3: [0, 1, 0, 0]}}
Returns
=======
dict of dict of lists
Raises
======
ClosureFailure
If the module is not closed under multiplication.
"""
raise NotImplementedError
@property
def parent(self):
"""
The parent module, if any, for this module.
Explanation
===========
For a :py:class:`~.Submodule` this is its ``parent`` attribute; for a
:py:class:`~.PowerBasis` this is ``None``.
Returns
=======
:py:class:`~.Module`, ``None``
See Also
========
Module
"""
return None
def represent(self, elt):
r"""
Represent a module element as an integer-linear combination over the
generators of this module.
Explanation
===========
In our system, to "represent" always means to write a
:py:class:`~.ModuleElement` as a :ref:`ZZ`-linear combination over the
generators of the present :py:class:`~.Module`. Furthermore, the
incoming :py:class:`~.ModuleElement` must belong to an ancestor of
the present :py:class:`~.Module` (or to the present
:py:class:`~.Module` itself).
The most common application is to represent a
:py:class:`~.ModuleElement` in a :py:class:`~.Submodule`. For example,
this is involved in computing multiplication tables.
On the other hand, representing in a :py:class:`~.PowerBasis` is an
odd case, and one which tends not to arise in practice, except for
example when using a :py:class:`~.ModuleEndomorphism` on a
:py:class:`~.PowerBasis`.
In such a case, (1) the incoming :py:class:`~.ModuleElement` must
belong to the :py:class:`~.PowerBasis` itself (since the latter has no
proper ancestors) and (2) it is "representable" iff it belongs to
$\mathbb{Z}[\theta]$ (although generally a
:py:class:`~.PowerBasisElement` may represent any element of
$\mathbb{Q}(\theta)$, i.e. any algebraic number).
Examples
========
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis, to_col
>>> from sympy.abc import zeta
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> a = A(to_col([2, 4, 6, 8]))
The :py:class:`~.ModuleElement` ``a`` has all even coefficients.
If we represent ``a`` in the submodule ``B = 2*A``, the coefficients in
the column vector will be halved:
>>> B = A.submodule_from_gens([2*A(i) for i in range(4)])
>>> b = B.represent(a)
>>> print(b.transpose()) # doctest: +SKIP
DomainMatrix([[1, 2, 3, 4]], (1, 4), ZZ)
However, the element of ``B`` so defined still represents the same
algebraic number:
>>> print(a.poly(zeta).as_expr())
8*zeta**3 + 6*zeta**2 + 4*zeta + 2
>>> print(B(b).over_power_basis().poly(zeta).as_expr())
8*zeta**3 + 6*zeta**2 + 4*zeta + 2
Parameters
==========
elt : :py:class:`~.ModuleElement`
The module element to be represented. Must belong to some ancestor
module of this module (including this module itself).
Returns
=======
:py:class:`~.DomainMatrix` over :ref:`ZZ`
This will be a column vector, representing the coefficients of a
linear combination of this module's generators, which equals the
given element.
Raises
======
ClosureFailure
If the given element cannot be represented as a :ref:`ZZ`-linear
combination over this module.
See Also
========
.Submodule.represent
.PowerBasis.represent
"""
raise NotImplementedError
def ancestors(self, include_self=False):
"""
Return the list of ancestor modules of this module, from the
foundational :py:class:`~.PowerBasis` downward, optionally including
``self``.
See Also
========
Module
"""
c = self.parent
a = [] if c is None else c.ancestors(include_self=True)
if include_self:
a.append(self)
return a
def power_basis_ancestor(self):
"""
Return the :py:class:`~.PowerBasis` that is an ancestor of this module.
See Also
========
Module
"""
if isinstance(self, PowerBasis):
return self
c = self.parent
if c is not None:
return c.power_basis_ancestor()
return None
def nearest_common_ancestor(self, other):
"""
Locate the nearest common ancestor of this module and another.
Returns
=======
:py:class:`~.Module`, ``None``
See Also
========
Module
"""
sA = self.ancestors(include_self=True)
oA = other.ancestors(include_self=True)
nca = None
for sa, oa in zip(sA, oA):
if sa == oa:
nca = sa
else:
break
return nca
@property
def number_field(self):
r"""
Return the associated :py:class:`~.AlgebraicField`, if any.
Explanation
===========
A :py:class:`~.PowerBasis` can be constructed on a :py:class:`~.Poly`
$f$ or on an :py:class:`~.AlgebraicField` $K$. In the latter case, the
:py:class:`~.PowerBasis` and all its descendant modules will return $K$
as their ``.number_field`` property, while in the former case they will
all return ``None``.
Returns
=======
:py:class:`~.AlgebraicField`, ``None``
"""
return self.power_basis_ancestor().number_field
def is_compat_col(self, col):
"""Say whether *col* is a suitable column vector for this module."""
return isinstance(col, DomainMatrix) and col.shape == (self.n, 1) and col.domain.is_ZZ
def __call__(self, spec, denom=1):
r"""
Generate a :py:class:`~.ModuleElement` belonging to this module.
Examples
========
>>> from sympy.polys import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis, to_col
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> e = A(to_col([1, 2, 3, 4]), denom=3)
>>> print(e) # doctest: +SKIP
[1, 2, 3, 4]/3
>>> f = A(2)
>>> print(f) # doctest: +SKIP
[0, 0, 1, 0]
Parameters
==========
spec : :py:class:`~.DomainMatrix`, int
Specifies the numerators of the coefficients of the
:py:class:`~.ModuleElement`. Can be either a column vector over
:ref:`ZZ`, whose length must equal the number $n$ of generators of
this module, or else an integer ``j``, $0 \leq j < n$, which is a
shorthand for column $j$ of $I_n$, the $n \times n$ identity
matrix.
denom : int, optional (default=1)
Denominator for the coefficients of the
:py:class:`~.ModuleElement`.
Returns
=======
:py:class:`~.ModuleElement`
The coefficients are the entries of the *spec* vector, divided by
*denom*.
"""
if isinstance(spec, int) and 0 <= spec < self.n:
spec = DomainMatrix.eye(self.n, ZZ)[:, spec].to_dense()
if not self.is_compat_col(spec):
raise ValueError('Compatible column vector required.')
return make_mod_elt(self, spec, denom=denom)
def starts_with_unity(self):
"""Say whether the module's first generator equals unity."""
raise NotImplementedError
def basis_elements(self):
"""
Get list of :py:class:`~.ModuleElement` being the generators of this
module.
"""
return [self(j) for j in range(self.n)]
def zero(self):
"""Return a :py:class:`~.ModuleElement` representing zero."""
return self(0) * 0
def one(self):
"""
Return a :py:class:`~.ModuleElement` representing unity,
and belonging to the first ancestor of this module (including
itself) that starts with unity.
"""
return self.element_from_rational(1)
def element_from_rational(self, a):
"""
Return a :py:class:`~.ModuleElement` representing a rational number.
Explanation
===========
The returned :py:class:`~.ModuleElement` will belong to the first
module on this module's ancestor chain (including this module
itself) that starts with unity.
Examples
========
>>> from sympy.polys import Poly, cyclotomic_poly, QQ
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> a = A.element_from_rational(QQ(2, 3))
>>> print(a) # doctest: +SKIP
[2, 0, 0, 0]/3
Parameters
==========
a : int, :ref:`ZZ`, :ref:`QQ`
Returns
=======
:py:class:`~.ModuleElement`
"""
raise NotImplementedError
def submodule_from_gens(self, gens, hnf=True, hnf_modulus=None):
"""
Form the submodule generated by a list of :py:class:`~.ModuleElement`
belonging to this module.
Examples
========
>>> from sympy.polys import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> gens = [A(0), 2*A(1), 3*A(2), 4*A(3)//5]
>>> B = A.submodule_from_gens(gens)
>>> print(B) # doctest: +SKIP
Submodule[[5, 0, 0, 0], [0, 10, 0, 0], [0, 0, 15, 0], [0, 0, 0, 4]]/5
Parameters
==========
gens : list of :py:class:`~.ModuleElement` belonging to this module.
hnf : boolean, optional (default=True)
If True, we will reduce the matrix into Hermite Normal Form before
forming the :py:class:`~.Submodule`.
hnf_modulus : int, None, optional (default=None)
Modulus for use in the HNF reduction algorithm. See
:py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`.
Returns
=======
:py:class:`~.Submodule`
See Also
========
submodule_from_matrix
"""
if not all(g.module == self for g in gens):
raise ValueError('Generators must belong to this module.')
n = len(gens)
if n == 0:
raise ValueError('Need at least one generator.')
m = gens[0].n
d = gens[0].denom if n == 1 else ilcm(*[g.denom for g in gens])
B = DomainMatrix.zeros((m, 0), ZZ).hstack(*[(d // g.denom) * g.col for g in gens])
if hnf:
B = hermite_normal_form(B, D=hnf_modulus)
return self.submodule_from_matrix(B, denom=d)
def submodule_from_matrix(self, B, denom=1):
"""
Form the submodule generated by the elements of this module indicated
by the columns of a matrix, with an optional denominator.
Examples
========
>>> from sympy.polys import Poly, cyclotomic_poly, ZZ
>>> from sympy.polys.matrices import DM
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> B = A.submodule_from_matrix(DM([
... [0, 10, 0, 0],
... [0, 0, 7, 0],
... ], ZZ).transpose(), denom=15)
>>> print(B) # doctest: +SKIP
Submodule[[0, 10, 0, 0], [0, 0, 7, 0]]/15
Parameters
==========
B : :py:class:`~.DomainMatrix` over :ref:`ZZ`
Each column gives the numerators of the coefficients of one
generator of the submodule. Thus, the number of rows of *B* must
equal the number of generators of the present module.
denom : int, optional (default=1)
Common denominator for all generators of the submodule.
Returns
=======
:py:class:`~.Submodule`
Raises
======
ValueError
If the given matrix *B* is not over :ref:`ZZ` or its number of rows
does not equal the number of generators of the present module.
See Also
========
submodule_from_gens
"""
m, n = B.shape
if not B.domain.is_ZZ:
raise ValueError('Matrix must be over ZZ.')
if not m == self.n:
raise ValueError('Matrix row count must match base module.')
return Submodule(self, B, denom=denom)
def whole_submodule(self):
"""
Return a submodule equal to this entire module.
Explanation
===========
This is useful when you have a :py:class:`~.PowerBasis` and want to
turn it into a :py:class:`~.Submodule` (in order to use methods
belonging to the latter).
"""
B = DomainMatrix.eye(self.n, ZZ)
return self.submodule_from_matrix(B)
def endomorphism_ring(self):
"""Form the :py:class:`~.EndomorphismRing` for this module."""
return EndomorphismRing(self)
class PowerBasis(Module):
"""The module generated by the powers of an algebraic integer."""
def __init__(self, T):
"""
Parameters
==========
T : :py:class:`~.Poly`, :py:class:`~.AlgebraicField`
Either (1) the monic, irreducible, univariate polynomial over
:ref:`ZZ`, a root of which is the generator of the power basis,
or (2) an :py:class:`~.AlgebraicField` whose primitive element
is the generator of the power basis.
"""
K = None
if isinstance(T, AlgebraicField):
K, T = T, T.ext.minpoly_of_element()
# Sometimes incoming Polys are formally over QQ, although all their
# coeffs are integral. We want them to be formally over ZZ.
T = T.set_domain(ZZ)
self.K = K
self.T = T
self._n = T.degree()
self._mult_tab = None
@property
def number_field(self):
return self.K
def __repr__(self):
return f'PowerBasis({self.T.as_expr()})'
def __eq__(self, other):
if isinstance(other, PowerBasis):
return self.T == other.T
return NotImplemented
@property
def n(self):
return self._n
def mult_tab(self):
if self._mult_tab is None:
self.compute_mult_tab()
return self._mult_tab
def compute_mult_tab(self):
theta_pow = AlgIntPowers(self.T)
M = {}
n = self.n
for u in range(n):
M[u] = {}
for v in range(u, n):
M[u][v] = theta_pow[u + v]
self._mult_tab = M
def represent(self, elt):
r"""
Represent a module element as an integer-linear combination over the
generators of this module.
See Also
========
.Module.represent
.Submodule.represent
"""
if elt.module == self and elt.denom == 1:
return elt.column()
else:
raise ClosureFailure('Element not representable in ZZ[theta].')
def starts_with_unity(self):
return True
def element_from_rational(self, a):
return self(0) * a
def element_from_poly(self, f):
"""
Produce an element of this module, representing *f* after reduction mod
our defining minimal polynomial.
Parameters
==========
f : :py:class:`~.Poly` over :ref:`ZZ` in same var as our defining poly.
Returns
=======
:py:class:`~.PowerBasisElement`
"""
n, k = self.n, f.degree()
if k >= n:
f = f % self.T
if f == 0:
return self.zero()
d, c = dup_clear_denoms(f.rep.rep, QQ, convert=True)
c = list(reversed(c))
ell = len(c)
z = [ZZ(0)] * (n - ell)
col = to_col(c + z)
return self(col, denom=d)
def _element_from_rep_and_mod(self, rep, mod):
"""
Produce a PowerBasisElement representing a given algebraic number.
Parameters
==========
rep : list of coeffs
Represents the number as polynomial in the primitive element of the
field.
mod : list of coeffs
Represents the minimal polynomial of the primitive element of the
field.
Returns
=======
:py:class:`~.PowerBasisElement`
"""
if mod != self.T.rep.rep:
raise UnificationFailed('Element does not appear to be in the same field.')
return self.element_from_poly(Poly(rep, self.T.gen))
def element_from_ANP(self, a):
"""Convert an ANP into a PowerBasisElement. """
return self._element_from_rep_and_mod(a.rep, a.mod)
def element_from_alg_num(self, a):
"""Convert an AlgebraicNumber into a PowerBasisElement. """
return self._element_from_rep_and_mod(a.rep.rep, a.minpoly.rep.rep)
class Submodule(Module, IntegerPowerable):
"""A submodule of another module."""
def __init__(self, parent, matrix, denom=1, mult_tab=None):
"""
Parameters
==========
parent : :py:class:`~.Module`
The module from which this one is derived.
matrix : :py:class:`~.DomainMatrix` over :ref:`ZZ`
The matrix whose columns define this submodule's generators as
linear combinations over the parent's generators.
denom : int, optional (default=1)
Denominator for the coefficients given by the matrix.
mult_tab : dict, ``None``, optional
If already known, the multiplication table for this module may be
supplied.
"""
self._parent = parent
self._matrix = matrix
self._denom = denom
self._mult_tab = mult_tab
self._n = matrix.shape[1]
self._QQ_matrix = None
self._starts_with_unity = None
self._is_sq_maxrank_HNF = None
def __repr__(self):
r = 'Submodule' + repr(self.matrix.transpose().to_Matrix().tolist())
if self.denom > 1:
r += f'/{self.denom}'
return r
def reduced(self):
"""
Produce a reduced version of this submodule.
Explanation
===========
In the reduced version, it is guaranteed that 1 is the only positive
integer dividing both the submodule's denominator, and every entry in
the submodule's matrix.
Returns
=======
:py:class:`~.Submodule`
"""
if self.denom == 1:
return self
g = igcd(self.denom, *self.coeffs)
if g == 1:
return self
return type(self)(self.parent, (self.matrix / g).convert_to(ZZ), denom=self.denom // g, mult_tab=self._mult_tab)
def discard_before(self, r):
"""
Produce a new module by discarding all generators before a given
index *r*.
"""
W = self.matrix[:, r:]
s = self.n - r
M = None
mt = self._mult_tab
if mt is not None:
M = {}
for u in range(s):
M[u] = {}
for v in range(u, s):
M[u][v] = mt[r + u][r + v][r:]
return Submodule(self.parent, W, denom=self.denom, mult_tab=M)
@property
def n(self):
return self._n
def mult_tab(self):
if self._mult_tab is None:
self.compute_mult_tab()
return self._mult_tab
def compute_mult_tab(self):
gens = self.basis_element_pullbacks()
M = {}
n = self.n
for u in range(n):
M[u] = {}
for v in range(u, n):
M[u][v] = self.represent(gens[u] * gens[v]).flat()
self._mult_tab = M
@property
def parent(self):
return self._parent
@property
def matrix(self):
return self._matrix
@property
def coeffs(self):
return self.matrix.flat()
@property
def denom(self):
return self._denom
@property
def QQ_matrix(self):
"""
:py:class:`~.DomainMatrix` over :ref:`QQ`, equal to
``self.matrix / self.denom``, and guaranteed to be dense.
Explanation
===========
Depending on how it is formed, a :py:class:`~.DomainMatrix` may have
an internal representation that is sparse or dense. We guarantee a
dense representation here, so that tests for equivalence of submodules
always come out as expected.
Examples
========
>>> from sympy.polys import Poly, cyclotomic_poly, ZZ
>>> from sympy.abc import x
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> T = Poly(cyclotomic_poly(5, x))
>>> A = PowerBasis(T)
>>> B = A.submodule_from_matrix(3*DomainMatrix.eye(4, ZZ), denom=6)
>>> C = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2)
>>> print(B.QQ_matrix == C.QQ_matrix)
True
Returns
=======
:py:class:`~.DomainMatrix` over :ref:`QQ`
"""
if self._QQ_matrix is None:
self._QQ_matrix = (self.matrix / self.denom).to_dense()
return self._QQ_matrix
def starts_with_unity(self):
if self._starts_with_unity is None:
self._starts_with_unity = self(0).equiv(1)
return self._starts_with_unity
def is_sq_maxrank_HNF(self):
if self._is_sq_maxrank_HNF is None:
self._is_sq_maxrank_HNF = is_sq_maxrank_HNF(self._matrix)
return self._is_sq_maxrank_HNF
def is_power_basis_submodule(self):
return isinstance(self.parent, PowerBasis)
def element_from_rational(self, a):
if self.starts_with_unity():
return self(0) * a
else:
return self.parent.element_from_rational(a)
def basis_element_pullbacks(self):
"""
Return list of this submodule's basis elements as elements of the
submodule's parent module.
"""
return [e.to_parent() for e in self.basis_elements()]
def represent(self, elt):
"""
Represent a module element as an integer-linear combination over the
generators of this module.
See Also
========
.Module.represent
.PowerBasis.represent
"""
if elt.module == self:
return elt.column()
elif elt.module == self.parent:
try:
# The given element should be a ZZ-linear combination over our
# basis vectors; however, due to the presence of denominators,
# we need to solve over QQ.
A = self.QQ_matrix
b = elt.QQ_col
x = A._solve(b)[0].transpose()
x = x.convert_to(ZZ)
except DMBadInputError:
raise ClosureFailure('Element outside QQ-span of this basis.')
except CoercionFailed:
raise ClosureFailure('Element in QQ-span but not ZZ-span of this basis.')
return x
elif isinstance(self.parent, Submodule):
coeffs_in_parent = self.parent.represent(elt)
parent_element = self.parent(coeffs_in_parent)
return self.represent(parent_element)
else:
raise ClosureFailure('Element outside ancestor chain of this module.')
def is_compat_submodule(self, other):
return isinstance(other, Submodule) and other.parent == self.parent
def __eq__(self, other):
if self.is_compat_submodule(other):
return other.QQ_matrix == self.QQ_matrix
return NotImplemented
def add(self, other, hnf=True, hnf_modulus=None):
"""
Add this :py:class:`~.Submodule` to another.
Explanation
===========
This represents the module generated by the union of the two modules'
sets of generators.
Parameters
==========
other : :py:class:`~.Submodule`
hnf : boolean, optional (default=True)
If ``True``, reduce the matrix of the combined module to its
Hermite Normal Form.
hnf_modulus : :ref:`ZZ`, None, optional
If a positive integer is provided, use this as modulus in the
HNF reduction. See
:py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`.
Returns
=======
:py:class:`~.Submodule`
"""
d, e = self.denom, other.denom
m = ilcm(d, e)
a, b = m // d, m // e
B = (a * self.matrix).hstack(b * other.matrix)
if hnf:
B = hermite_normal_form(B, D=hnf_modulus)
return self.parent.submodule_from_matrix(B, denom=m)
def __add__(self, other):
if self.is_compat_submodule(other):
return self.add(other)
return NotImplemented
__radd__ = __add__
def mul(self, other, hnf=True, hnf_modulus=None):
"""
Multiply this :py:class:`~.Submodule` by a rational number, a
:py:class:`~.ModuleElement`, or another :py:class:`~.Submodule`.
Explanation
===========
To multiply by a rational number or :py:class:`~.ModuleElement` means
to form the submodule whose generators are the products of this
quantity with all the generators of the present submodule.
To multiply by another :py:class:`~.Submodule` means to form the
submodule whose generators are all the products of one generator from
the one submodule, and one generator from the other.
Parameters
==========
other : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.ModuleElement`, :py:class:`~.Submodule`
hnf : boolean, optional (default=True)
If ``True``, reduce the matrix of the product module to its
Hermite Normal Form.
hnf_modulus : :ref:`ZZ`, None, optional
If a positive integer is provided, use this as modulus in the
HNF reduction. See
:py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`.
Returns
=======
:py:class:`~.Submodule`
"""
if is_rat(other):
a, b = get_num_denom(other)
if a == b == 1:
return self
else:
return Submodule(self.parent,
self.matrix * a, denom=self.denom * b,
mult_tab=None).reduced()
elif isinstance(other, ModuleElement) and other.module == self.parent:
# The submodule is multiplied by an element of the parent module.
# We presume this means we want a new submodule of the parent module.
gens = [other * e for e in self.basis_element_pullbacks()]
return self.parent.submodule_from_gens(gens, hnf=hnf, hnf_modulus=hnf_modulus)
elif self.is_compat_submodule(other):
# This case usually means you're multiplying ideals, and want another
# ideal, i.e. another submodule of the same parent module.
alphas, betas = self.basis_element_pullbacks(), other.basis_element_pullbacks()
gens = [a * b for a in alphas for b in betas]
return self.parent.submodule_from_gens(gens, hnf=hnf, hnf_modulus=hnf_modulus)
return NotImplemented
def __mul__(self, other):
return self.mul(other)
__rmul__ = __mul__
def _first_power(self):
return self
def reduce_element(self, elt):
r"""
If this submodule $B$ has defining matrix $W$ in square, maximal-rank
Hermite normal form, then, given an element $x$ of the parent module
$A$, we produce an element $y \in A$ such that $x - y \in B$, and the
$i$th coordinate of $y$ satisfies $0 \leq y_i < w_{i,i}$. This
representative $y$ is unique, in the sense that every element of
the coset $x + B$ reduces to it under this procedure.
Explanation
===========
In the special case where $A$ is a power basis for a number field $K$,
and $B$ is a submodule representing an ideal $I$, this operation
represents one of a few important ways of reducing an element of $K$
modulo $I$ to obtain a "small" representative. See [Cohen00]_ Section
1.4.3.
Examples
========
>>> from sympy import QQ, Poly, symbols
>>> t = symbols('t')
>>> k = QQ.alg_field_from_poly(Poly(t**3 + t**2 - 2*t + 8))
>>> Zk = k.maximal_order()
>>> A = Zk.parent
>>> B = (A(2) - 3*A(0))*Zk
>>> B.reduce_element(A(2))
[3, 0, 0]
Parameters
==========
elt : :py:class:`~.ModuleElement`
An element of this submodule's parent module.
Returns
=======
elt : :py:class:`~.ModuleElement`
An element of this submodule's parent module.
Raises
======
NotImplementedError
If the given :py:class:`~.ModuleElement` does not belong to this
submodule's parent module.
StructureError
If this submodule's defining matrix is not in square, maximal-rank
Hermite normal form.
References
==========
.. [Cohen00] Cohen, H. *Advanced Topics in Computational Number
Theory.*
"""
if not elt.module == self.parent:
raise NotImplementedError
if not self.is_sq_maxrank_HNF():
msg = "Reduction not implemented unless matrix square max-rank HNF"
raise StructureError(msg)
B = self.basis_element_pullbacks()
a = elt
for i in range(self.n - 1, -1, -1):
b = B[i]
q = a.coeffs[i]*b.denom // (b.coeffs[i]*a.denom)
a -= q*b
return a
def is_sq_maxrank_HNF(dm):
r"""
Say whether a :py:class:`~.DomainMatrix` is in that special case of Hermite
Normal Form, in which the matrix is also square and of maximal rank.
Explanation
===========
We commonly work with :py:class:`~.Submodule` instances whose matrix is in
this form, and it can be useful to be able to check that this condition is
satisfied.
For example this is the case with the :py:class:`~.Submodule` ``ZK``
returned by :py:func:`~sympy.polys.numberfields.basis.round_two`, which
represents the maximal order in a number field, and with ideals formed
therefrom, such as ``2 * ZK``.
"""
if dm.domain.is_ZZ and dm.is_square and dm.is_upper:
n = dm.shape[0]
for i in range(n):
d = dm[i, i].element
if d <= 0:
return False
for j in range(i + 1, n):
if not (0 <= dm[i, j].element < d):
return False
return True
return False
def make_mod_elt(module, col, denom=1):
r"""
Factory function which builds a :py:class:`~.ModuleElement`, but ensures
that it is a :py:class:`~.PowerBasisElement` if the module is a
:py:class:`~.PowerBasis`.
"""
if isinstance(module, PowerBasis):
return PowerBasisElement(module, col, denom=denom)
else:
return ModuleElement(module, col, denom=denom)
class ModuleElement(IntegerPowerable):
r"""
Represents an element of a :py:class:`~.Module`.
NOTE: Should not be constructed directly. Use the
:py:meth:`~.Module.__call__` method or the :py:func:`make_mod_elt()`
factory function instead.
"""
def __init__(self, module, col, denom=1):
"""
Parameters
==========
module : :py:class:`~.Module`
The module to which this element belongs.
col : :py:class:`~.DomainMatrix` over :ref:`ZZ`
Column vector giving the numerators of the coefficients of this
element.
denom : int, optional (default=1)
Denominator for the coefficients of this element.
"""
self.module = module
self.col = col
self.denom = denom
self._QQ_col = None
def __repr__(self):
r = str([int(c) for c in self.col.flat()])
if self.denom > 1:
r += f'/{self.denom}'
return r
def reduced(self):
"""
Produce a reduced version of this ModuleElement, i.e. one in which the
gcd of the denominator together with all numerator coefficients is 1.
"""
if self.denom == 1:
return self
g = igcd(self.denom, *self.coeffs)
if g == 1:
return self
return type(self)(self.module,
(self.col / g).convert_to(ZZ),
denom=self.denom // g)
def reduced_mod_p(self, p):
"""
Produce a version of this :py:class:`~.ModuleElement` in which all
numerator coefficients have been reduced mod *p*.
"""
return make_mod_elt(self.module,
self.col.convert_to(FF(p)).convert_to(ZZ),
denom=self.denom)
@classmethod
def from_int_list(cls, module, coeffs, denom=1):
"""
Make a :py:class:`~.ModuleElement` from a list of ints (instead of a
column vector).
"""
col = to_col(coeffs)
return cls(module, col, denom=denom)
@property
def n(self):
"""The length of this element's column."""
return self.module.n
def __len__(self):
return self.n
def column(self, domain=None):
"""
Get a copy of this element's column, optionally converting to a domain.
"""
return self.col.convert_to(domain)
@property
def coeffs(self):
return self.col.flat()
@property
def QQ_col(self):
"""
:py:class:`~.DomainMatrix` over :ref:`QQ`, equal to
``self.col / self.denom``, and guaranteed to be dense.
See Also
========
.Submodule.QQ_matrix
"""
if self._QQ_col is None:
self._QQ_col = (self.col / self.denom).to_dense()
return self._QQ_col
def to_parent(self):
"""
Transform into a :py:class:`~.ModuleElement` belonging to the parent of
this element's module.
"""
if not isinstance(self.module, Submodule):
raise ValueError('Not an element of a Submodule.')
return make_mod_elt(
self.module.parent, self.module.matrix * self.col,
denom=self.module.denom * self.denom)
def to_ancestor(self, anc):
"""
Transform into a :py:class:`~.ModuleElement` belonging to a given
ancestor of this element's module.
Parameters
==========
anc : :py:class:`~.Module`
"""
if anc == self.module:
return self
else:
return self.to_parent().to_ancestor(anc)
def over_power_basis(self):
"""
Transform into a :py:class:`~.PowerBasisElement` over our
:py:class:`~.PowerBasis` ancestor.
"""
e = self
while not isinstance(e.module, PowerBasis):
e = e.to_parent()
return e
def is_compat(self, other):
"""
Test whether other is another :py:class:`~.ModuleElement` with same
module.
"""
return isinstance(other, ModuleElement) and other.module == self.module
def unify(self, other):
"""
Try to make a compatible pair of :py:class:`~.ModuleElement`, one
equivalent to this one, and one equivalent to the other.
Explanation
===========
We search for the nearest common ancestor module for the pair of
elements, and represent each one there.
Returns
=======
Pair ``(e1, e2)``
Each ``ei`` is a :py:class:`~.ModuleElement`, they belong to the
same :py:class:`~.Module`, ``e1`` is equivalent to ``self``, and
``e2`` is equivalent to ``other``.
Raises
======
UnificationFailed
If ``self`` and ``other`` have no common ancestor module.
"""
if self.module == other.module:
return self, other
nca = self.module.nearest_common_ancestor(other.module)
if nca is not None:
return self.to_ancestor(nca), other.to_ancestor(nca)
raise UnificationFailed(f"Cannot unify {self} with {other}")
def __eq__(self, other):
if self.is_compat(other):
return self.QQ_col == other.QQ_col
return NotImplemented
def equiv(self, other):
"""
A :py:class:`~.ModuleElement` may test as equivalent to a rational
number or another :py:class:`~.ModuleElement`, if they represent the
same algebraic number.
Explanation
===========
This method is intended to check equivalence only in those cases in
which it is easy to test; namely, when *other* is either a
:py:class:`~.ModuleElement` that can be unified with this one (i.e. one
which shares a common :py:class:`~.PowerBasis` ancestor), or else a
rational number (which is easy because every :py:class:`~.PowerBasis`
represents every rational number).
Parameters
==========
other : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.ModuleElement`
Returns
=======
bool
Raises
======
UnificationFailed
If ``self`` and ``other`` do not share a common
:py:class:`~.PowerBasis` ancestor.
"""
if self == other:
return True
elif isinstance(other, ModuleElement):
a, b = self.unify(other)
return a == b
elif is_rat(other):
if isinstance(self, PowerBasisElement):
return self == self.module(0) * other
else:
return self.over_power_basis().equiv(other)
return False
def __add__(self, other):
"""
A :py:class:`~.ModuleElement` can be added to a rational number, or to
another :py:class:`~.ModuleElement`.
Explanation
===========
When the other summand is a rational number, it will be converted into
a :py:class:`~.ModuleElement` (belonging to the first ancestor of this
module that starts with unity).
In all cases, the sum belongs to the nearest common ancestor (NCA) of
the modules of the two summands. If the NCA does not exist, we return
``NotImplemented``.
"""
if self.is_compat(other):
d, e = self.denom, other.denom
m = ilcm(d, e)
u, v = m // d, m // e
col = to_col([u * a + v * b for a, b in zip(self.coeffs, other.coeffs)])
return type(self)(self.module, col, denom=m).reduced()
elif isinstance(other, ModuleElement):
try:
a, b = self.unify(other)
except UnificationFailed:
return NotImplemented
return a + b
elif is_rat(other):
return self + self.module.element_from_rational(other)
return NotImplemented
__radd__ = __add__
def __neg__(self):
return self * -1
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
def __mul__(self, other):
"""
A :py:class:`~.ModuleElement` can be multiplied by a rational number,
or by another :py:class:`~.ModuleElement`.
Explanation
===========
When the multiplier is a rational number, the product is computed by
operating directly on the coefficients of this
:py:class:`~.ModuleElement`.
When the multiplier is another :py:class:`~.ModuleElement`, the product
will belong to the nearest common ancestor (NCA) of the modules of the
two operands, and that NCA must have a multiplication table. If the NCA
does not exist, we return ``NotImplemented``. If the NCA does not have
a mult. table, ``ClosureFailure`` will be raised.
"""
if self.is_compat(other):
M = self.module.mult_tab()
A, B = self.col.flat(), other.col.flat()
n = self.n
C = [0] * n
for u in range(n):
for v in range(u, n):
c = A[u] * B[v]
if v > u:
c += A[v] * B[u]
if c != 0:
R = M[u][v]
for k in range(n):
C[k] += c * R[k]
d = self.denom * other.denom
return self.from_int_list(self.module, C, denom=d)
elif isinstance(other, ModuleElement):
try:
a, b = self.unify(other)
except UnificationFailed:
return NotImplemented
return a * b
elif is_rat(other):
a, b = get_num_denom(other)
if a == b == 1:
return self
else:
return make_mod_elt(self.module,
self.col * a, denom=self.denom * b).reduced()
return NotImplemented
__rmul__ = __mul__
def _zeroth_power(self):
return self.module.one()
def _first_power(self):
return self
def __floordiv__(self, a):
if is_rat(a):
a = QQ(a)
return self * (1/a)
elif isinstance(a, ModuleElement):
return self * (1//a)
return NotImplemented
def __rfloordiv__(self, a):
return a // self.over_power_basis()
def __mod__(self, m):
r"""
Reduce this :py:class:`~.ModuleElement` mod a :py:class:`~.Submodule`.
Parameters
==========
m : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.Submodule`
If a :py:class:`~.Submodule`, reduce ``self`` relative to this.
If an integer or rational, reduce relative to the
:py:class:`~.Submodule` that is our own module times this constant.
See Also
========
.Submodule.reduce_element
"""
if is_rat(m):
m = m * self.module.whole_submodule()
if isinstance(m, Submodule) and m.parent == self.module:
return m.reduce_element(self)
return NotImplemented
class PowerBasisElement(ModuleElement):
r"""
Subclass for :py:class:`~.ModuleElement` instances whose module is a
:py:class:`~.PowerBasis`.
"""
@property
def T(self):
"""Access the defining polynomial of the :py:class:`~.PowerBasis`."""
return self.module.T
def numerator(self, x=None):
"""Obtain the numerator as a polynomial over :ref:`ZZ`."""
x = x or self.T.gen
return Poly(reversed(self.coeffs), x, domain=ZZ)
def poly(self, x=None):
"""Obtain the number as a polynomial over :ref:`QQ`."""
return self.numerator(x=x) // self.denom
@property
def is_rational(self):
"""Say whether this element represents a rational number."""
return self.col[1:, :].is_zero_matrix
@property
def generator(self):
"""
Return a :py:class:`~.Symbol` to be used when expressing this element
as a polynomial.
If we have an associated :py:class:`~.AlgebraicField` whose primitive
element has an alias symbol, we use that. Otherwise we use the variable
of the minimal polynomial defining the power basis to which we belong.
"""
K = self.module.number_field
return K.ext.alias if K and K.ext.is_aliased else self.T.gen
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.poly(x or self.generator).as_expr()
def norm(self, T=None):
"""Compute the norm of this number."""
T = T or self.T
x = T.gen
A = self.numerator(x=x)
return T.resultant(A) // self.denom ** self.n
def inverse(self):
f = self.poly()
f_inv = f.invert(self.T)
return self.module.element_from_poly(f_inv)
def __rfloordiv__(self, a):
return self.inverse() * a
def _negative_power(self, e, modulo=None):
return self.inverse() ** abs(e)
def to_ANP(self):
"""Convert to an equivalent :py:class:`~.ANP`. """
return ANP(list(reversed(self.QQ_col.flat())), QQ.map(self.T.rep.rep), QQ)
def to_alg_num(self):
"""
Try to convert to an equivalent :py:class:`~.AlgebraicNumber`.
Explanation
===========
In general, the conversion from an :py:class:`~.AlgebraicNumber` to a
:py:class:`~.PowerBasisElement` throws away information, because an
:py:class:`~.AlgebraicNumber` specifies a complex embedding, while a
:py:class:`~.PowerBasisElement` does not. However, in some cases it is
possible to convert a :py:class:`~.PowerBasisElement` back into an
:py:class:`~.AlgebraicNumber`, namely when the associated
:py:class:`~.PowerBasis` has a reference to an
:py:class:`~.AlgebraicField`.
Returns
=======
:py:class:`~.AlgebraicNumber`
Raises
======
StructureError
If the :py:class:`~.PowerBasis` to which this element belongs does
not have an associated :py:class:`~.AlgebraicField`.
"""
K = self.module.number_field
if K:
return K.to_alg_num(self.to_ANP())
raise StructureError("No associated AlgebraicField")
class ModuleHomomorphism:
r"""A homomorphism from one module to another."""
def __init__(self, domain, codomain, mapping):
r"""
Parameters
==========
domain : :py:class:`~.Module`
The domain of the mapping.
codomain : :py:class:`~.Module`
The codomain of the mapping.
mapping : callable
An arbitrary callable is accepted, but should be chosen so as
to represent an actual module homomorphism. In particular, should
accept elements of *domain* and return elements of *codomain*.
Examples
========
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis, ModuleHomomorphism
>>> T = Poly(cyclotomic_poly(5))
>>> A = PowerBasis(T)
>>> B = A.submodule_from_gens([2*A(j) for j in range(4)])
>>> phi = ModuleHomomorphism(A, B, lambda x: 6*x)
>>> print(phi.matrix()) # doctest: +SKIP
DomainMatrix([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], (4, 4), ZZ)
"""
self.domain = domain
self.codomain = codomain
self.mapping = mapping
def matrix(self, modulus=None):
r"""
Compute the matrix of this homomorphism.
Parameters
==========
modulus : int, optional
A positive prime number $p$ if the matrix should be reduced mod
$p$.
Returns
=======
:py:class:`~.DomainMatrix`
The matrix is over :ref:`ZZ`, or else over :ref:`GF(p)` if a
modulus was given.
"""
basis = self.domain.basis_elements()
cols = [self.codomain.represent(self.mapping(elt)) for elt in basis]
if not cols:
return DomainMatrix.zeros((self.codomain.n, 0), ZZ).to_dense()
M = cols[0].hstack(*cols[1:])
if modulus:
M = M.convert_to(FF(modulus))
return M
def kernel(self, modulus=None):
r"""
Compute a Submodule representing the kernel of this homomorphism.
Parameters
==========
modulus : int, optional
A positive prime number $p$ if the kernel should be computed mod
$p$.
Returns
=======
:py:class:`~.Submodule`
This submodule's generators span the kernel of this
homomorphism over :ref:`ZZ`, or else over :ref:`GF(p)` if a
modulus was given.
"""
M = self.matrix(modulus=modulus)
if modulus is None:
M = M.convert_to(QQ)
# Note: Even when working over a finite field, what we want here is
# the pullback into the integers, so in this case the conversion to ZZ
# below is appropriate. When working over ZZ, the kernel should be a
# ZZ-submodule, so, while the conversion to QQ above was required in
# order for the nullspace calculation to work, conversion back to ZZ
# afterward should always work.
# TODO:
# Watch <https://github.com/sympy/sympy/issues/21834>, which calls
# for fraction-free algorithms. If this is implemented, we can skip
# the conversion to `QQ` above.
K = M.nullspace().convert_to(ZZ).transpose()
return self.domain.submodule_from_matrix(K)
class ModuleEndomorphism(ModuleHomomorphism):
r"""A homomorphism from one module to itself."""
def __init__(self, domain, mapping):
r"""
Parameters
==========
domain : :py:class:`~.Module`
The common domain and codomain of the mapping.
mapping : callable
An arbitrary callable is accepted, but should be chosen so as
to represent an actual module endomorphism. In particular, should
accept and return elements of *domain*.
"""
super().__init__(domain, domain, mapping)
class InnerEndomorphism(ModuleEndomorphism):
r"""
An inner endomorphism on a module, i.e. the endomorphism corresponding to
multiplication by a fixed element.
"""
def __init__(self, domain, multiplier):
r"""
Parameters
==========
domain : :py:class:`~.Module`
The domain and codomain of the endomorphism.
multiplier : :py:class:`~.ModuleElement`
The element $a$ defining the mapping as $x \mapsto a x$.
"""
super().__init__(domain, lambda x: multiplier * x)
self.multiplier = multiplier
class EndomorphismRing:
r"""The ring of endomorphisms on a module."""
def __init__(self, domain):
"""
Parameters
==========
domain : :py:class:`~.Module`
The domain and codomain of the endomorphisms.
"""
self.domain = domain
def inner_endomorphism(self, multiplier):
r"""
Form an inner endomorphism belonging to this endomorphism ring.
Parameters
==========
multiplier : :py:class:`~.ModuleElement`
Element $a$ defining the inner endomorphism $x \mapsto a x$.
Returns
=======
:py:class:`~.InnerEndomorphism`
"""
return InnerEndomorphism(self.domain, multiplier)
def represent(self, element):
r"""
Represent an element of this endomorphism ring, as a single column
vector.
Explanation
===========
Let $M$ be a module, and $E$ its ring of endomorphisms. Let $N$ be
another module, and consider a homomorphism $\varphi: N \rightarrow E$.
In the event that $\varphi$ is to be represented by a matrix $A$, each
column of $A$ must represent an element of $E$. This is possible when
the elements of $E$ are themselves representable as matrices, by
stacking the columns of such a matrix into a single column.
This method supports calculating such matrices $A$, by representing
an element of this endomorphism ring first as a matrix, and then
stacking that matrix's columns into a single column.
Examples
========
Note that in these examples we print matrix transposes, to make their
columns easier to inspect.
>>> from sympy import Poly, cyclotomic_poly
>>> from sympy.polys.numberfields.modules import PowerBasis
>>> from sympy.polys.numberfields.modules import ModuleHomomorphism
>>> T = Poly(cyclotomic_poly(5))
>>> M = PowerBasis(T)
>>> E = M.endomorphism_ring()
Let $\zeta$ be a primitive 5th root of unity, a generator of our field,
and consider the inner endomorphism $\tau$ on the ring of integers,
induced by $\zeta$:
>>> zeta = M(1)
>>> tau = E.inner_endomorphism(zeta)
>>> tau.matrix().transpose() # doctest: +SKIP
DomainMatrix(
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [-1, -1, -1, -1]],
(4, 4), ZZ)
The matrix representation of $\tau$ is as expected. The first column
shows that multiplying by $\zeta$ carries $1$ to $\zeta$, the second
column that it carries $\zeta$ to $\zeta^2$, and so forth.
The ``represent`` method of the endomorphism ring ``E`` stacks these
into a single column:
>>> E.represent(tau).transpose() # doctest: +SKIP
DomainMatrix(
[[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]],
(1, 16), ZZ)
This is useful when we want to consider a homomorphism $\varphi$ having
``E`` as codomain:
>>> phi = ModuleHomomorphism(M, E, lambda x: E.inner_endomorphism(x))
and we want to compute the matrix of such a homomorphism:
>>> phi.matrix().transpose() # doctest: +SKIP
DomainMatrix(
[[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1],
[0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 0, 0, 0],
[0, 0, 0, 1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 1, 0, 0]],
(4, 16), ZZ)
Note that the stacked matrix of $\tau$ occurs as the second column in
this example. This is because $\zeta$ is the second basis element of
``M``, and $\varphi(\zeta) = \tau$.
Parameters
==========
element : :py:class:`~.ModuleEndomorphism` belonging to this ring.
Returns
=======
:py:class:`~.DomainMatrix`
Column vector equalling the vertical stacking of all the columns
of the matrix that represents the given *element* as a mapping.
"""
if isinstance(element, ModuleEndomorphism) and element.domain == self.domain:
M = element.matrix()
# Transform the matrix into a single column, which should reproduce
# the original columns, one after another.
m, n = M.shape
if n == 0:
return M
return M[:, 0].vstack(*[M[:, j] for j in range(1, n)])
raise NotImplementedError
def find_min_poly(alpha, domain, x=None, powers=None):
r"""
Find a polynomial of least degree (not necessarily irreducible) satisfied
by an element of a finitely-generated ring with unity.
Examples
========
For the $n$th cyclotomic field, $n$ an odd prime, consider the quadratic
equation whose roots are the two periods of length $(n-1)/2$. Article 356
of Gauss tells us that we should get $x^2 + x - (n-1)/4$ or
$x^2 + x + (n+1)/4$ according to whether $n$ is 1 or 3 mod 4, respectively.
>>> from sympy import Poly, cyclotomic_poly, primitive_root, QQ
>>> from sympy.abc import x
>>> from sympy.polys.numberfields.modules import PowerBasis, find_min_poly
>>> n = 13
>>> g = primitive_root(n)
>>> C = PowerBasis(Poly(cyclotomic_poly(n, x)))
>>> ee = [g**(2*k+1) % n for k in range((n-1)//2)]
>>> eta = sum(C(e) for e in ee)
>>> print(find_min_poly(eta, QQ, x=x).as_expr())
x**2 + x - 3
>>> n = 19
>>> g = primitive_root(n)
>>> C = PowerBasis(Poly(cyclotomic_poly(n, x)))
>>> ee = [g**(2*k+2) % n for k in range((n-1)//2)]
>>> eta = sum(C(e) for e in ee)
>>> print(find_min_poly(eta, QQ, x=x).as_expr())
x**2 + x + 5
Parameters
==========
alpha : :py:class:`~.ModuleElement`
The element whose min poly is to be found, and whose module has
multiplication and starts with unity.
domain : :py:class:`~.Domain`
The desired domain of the polynomial.
x : :py:class:`~.Symbol`, optional
The desired variable for the polynomial.
powers : list, optional
If desired, pass an empty list. The powers of *alpha* (as
:py:class:`~.ModuleElement` instances) from the zeroth up to the degree
of the min poly will be recorded here, as we compute them.
Returns
=======
:py:class:`~.Poly`, ``None``
The minimal polynomial for alpha, or ``None`` if no polynomial could be
found over the desired domain.
Raises
======
MissingUnityError
If the module to which alpha belongs does not start with unity.
ClosureFailure
If the module to which alpha belongs is not closed under
multiplication.
"""
R = alpha.module
if not R.starts_with_unity():
raise MissingUnityError("alpha must belong to finitely generated ring with unity.")
if powers is None:
powers = []
one = R(0)
powers.append(one)
powers_matrix = one.column(domain=domain)
ak = alpha
m = None
for k in range(1, R.n + 1):
powers.append(ak)
ak_col = ak.column(domain=domain)
try:
X = powers_matrix._solve(ak_col)[0]
except DMBadInputError:
# This means alpha^k still isn't in the domain-span of the lower powers.
powers_matrix = powers_matrix.hstack(ak_col)
ak *= alpha
else:
# alpha^k is in the domain-span of the lower powers, so we have found a
# minimal-degree poly for alpha.
coeffs = [1] + [-c for c in reversed(X.to_list_flat())]
x = x or Dummy('x')
if domain.is_FF:
m = Poly(coeffs, x, modulus=domain.mod)
else:
m = Poly(coeffs, x, domain=domain)
break
return m
|
6005024471be6e5935aca9b7027ae48227a53c08a10a21a3b5d6573f23a9e1a2 | '''Functions returning normal forms of matrices'''
from collections import defaultdict
from .domainmatrix import DomainMatrix
from .exceptions import DMDomainError, DMShapeError
from sympy.ntheory.modular import symmetric_residue
from sympy.polys.domains import QQ, ZZ
# TODO (future work):
# There are faster algorithms for Smith and Hermite normal forms, which
# we should implement. See e.g. the Kannan-Bachem algorithm:
# <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix>
def smith_normal_form(m):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import smith_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(smith_normal_form(m).to_Matrix())
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
'''
invs = invariant_factors(m)
smf = DomainMatrix.diag(invs, m.domain, m.shape)
return smf
def add_columns(m, i, j, a, b, c, d):
# replace m[:, i] by a*m[:, i] + b*m[:, j]
# and m[:, j] by c*m[:, i] + d*m[:, j]
for k in range(len(m)):
e = m[k][i]
m[k][i] = a*e + b*m[k][j]
m[k][j] = c*e + d*m[k][j]
def invariant_factors(m):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
[2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
domain = m.domain
if not domain.is_PID:
msg = "The matrix entries must be over a principal ideal domain"
raise ValueError(msg)
if 0 in m.shape:
return ()
rows, cols = shape = m.shape
m = list(m.to_dense().rep)
def add_rows(m, i, j, a, b, c, d):
# replace m[i, :] by a*m[i, :] + b*m[j, :]
# and m[j, :] by c*m[i, :] + d*m[j, :]
for k in range(cols):
e = m[i][k]
m[i][k] = a*e + b*m[j][k]
m[j][k] = c*e + d*m[j][k]
def clear_column(m):
# make m[1:, 0] zero by row and column operations
if m[0][0] == 0:
return m # pragma: nocover
pivot = m[0][0]
for j in range(1, rows):
if m[j][0] == 0:
continue
d, r = domain.div(m[j][0], pivot)
if r == 0:
add_rows(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[j][0])
d_0 = domain.div(m[j][0], g)[0]
d_j = domain.div(pivot, g)[0]
add_rows(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
def clear_row(m):
# make m[0, 1:] zero by row and column operations
if m[0][0] == 0:
return m # pragma: nocover
pivot = m[0][0]
for j in range(1, cols):
if m[0][j] == 0:
continue
d, r = domain.div(m[0][j], pivot)
if r == 0:
add_columns(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[0][j])
d_0 = domain.div(m[0][j], g)[0]
d_j = domain.div(pivot, g)[0]
add_columns(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
# permute the rows and columns until m[0,0] is non-zero if possible
ind = [i for i in range(rows) if m[i][0] != 0]
if ind and ind[0] != 0:
m[0], m[ind[0]] = m[ind[0]], m[0]
else:
ind = [j for j in range(cols) if m[0][j] != 0]
if ind and ind[0] != 0:
for row in m:
row[0], row[ind[0]] = row[ind[0]], row[0]
# make the first row and column except m[0,0] zero
while (any(m[0][i] != 0 for i in range(1,cols)) or
any(m[i][0] != 0 for i in range(1,rows))):
m = clear_column(m)
m = clear_row(m)
if 1 in shape:
invs = ()
else:
lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain)
invs = invariant_factors(lower_right)
if m[0][0]:
result = [m[0][0]]
result.extend(invs)
# in case m[0] doesn't divide the invariants of the rest of the matrix
for i in range(len(result)-1):
if result[i] and domain.div(result[i+1], result[i])[1] != 0:
g = domain.gcd(result[i+1], result[i])
result[i+1] = domain.div(result[i], g)[0]*result[i+1]
result[i] = g
else:
break
else:
result = invs + (m[0][0],)
return tuple(result)
def _gcdex(a, b):
r"""
This supports the functions that compute Hermite Normal Form.
Explanation
===========
Let x, y be the coefficients returned by the extended Euclidean
Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF,
it is critical that x, y not only satisfy the condition of being small
in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that
y == 0 when a | b.
"""
x, y, g = ZZ.gcdex(a, b)
if a != 0 and b % a == 0:
y = 0
x = -1 if a < 0 else 1
return x, y, g
def _hermite_normal_form(A):
r"""
Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`.
Parameters
==========
A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 2.4.5.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
# We work one row at a time, starting from the bottom row, and working our
# way up.
m, n = A.shape
A = A.to_dense().rep.copy()
# Our goal is to put pivot entries in the rightmost columns.
# Invariant: Before processing each row, k should be the index of the
# leftmost column in which we have so far put a pivot.
k = n
for i in range(m - 1, -1, -1):
if k == 0:
# This case can arise when n < m and we've already found n pivots.
# We don't need to consider any more rows, because this is already
# the maximum possible number of pivots.
break
k -= 1
# k now points to the column in which we want to put a pivot.
# We want zeros in all entries to the left of the pivot column.
for j in range(k - 1, -1, -1):
if A[i][j] != 0:
# Replace cols j, k by lin combs of these cols such that, in row i,
# col j has 0, while col k has the gcd of their row i entries. Note
# that this ensures a nonzero entry in col k.
u, v, d = _gcdex(A[i][k], A[i][j])
r, s = A[i][k] // d, A[i][j] // d
add_columns(A, k, j, u, v, -s, r)
b = A[i][k]
# Do not want the pivot entry to be negative.
if b < 0:
add_columns(A, k, k, -1, 0, -1, 0)
b = -b
# The pivot entry will be 0 iff the row was 0 from the pivot col all the
# way to the left. In this case, we are still working on the same pivot
# col for the next row. Therefore:
if b == 0:
k += 1
# If the pivot entry is nonzero, then we want to reduce all entries to its
# right in the sense of the division algorithm, i.e. make them all remainders
# w.r.t. the pivot as divisor.
else:
for j in range(k + 1, n):
q = A[i][j] // b
add_columns(A, j, k, 1, -q, 0, 1)
# Finally, the HNF consists of those columns of A in which we succeeded in making
# a nonzero pivot.
return DomainMatrix.from_rep(A)[:, k:]
def _hermite_normal_form_modulo_D(A, D):
r"""
Perform the mod *D* Hermite Normal Form reduction algorithm on
:py:class:`~.DomainMatrix` *A*.
Explanation
===========
If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form
$W$, and if *D* is any positive integer known in advance to be a multiple
of $\det(W)$, then the HNF of *A* can be computed by an algorithm that
works mod *D* in order to prevent coefficient explosion.
Parameters
==========
A : :py:class:`~.DomainMatrix` over :ref:`ZZ`
$m \times n$ matrix, having rank $m$.
D : :ref:`ZZ`
Positive integer, known to be a multiple of the determinant of the
HNF of *A*.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`, or
if *D* is given but is not in :ref:`ZZ`.
DMShapeError
If the matrix has more rows than columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 2.4.8.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
if not ZZ.of_type(D) or D < 1:
raise DMDomainError('Modulus D must be positive element of domain ZZ.')
def add_columns_mod_R(m, R, i, j, a, b, c, d):
# replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R
# and m[:, j] by (c*m[:, i] + d*m[:, j]) % R
for k in range(len(m)):
e = m[k][i]
m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R)
m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R)
W = defaultdict(dict)
m, n = A.shape
if n < m:
raise DMShapeError('Matrix must have at least as many columns as rows.')
A = A.to_dense().rep.copy()
k = n
R = D
for i in range(m - 1, -1, -1):
k -= 1
for j in range(k - 1, -1, -1):
if A[i][j] != 0:
u, v, d = _gcdex(A[i][k], A[i][j])
r, s = A[i][k] // d, A[i][j] // d
add_columns_mod_R(A, R, k, j, u, v, -s, r)
b = A[i][k]
if b == 0:
A[i][k] = b = R
u, v, d = _gcdex(b, R)
for ii in range(m):
W[ii][i] = u*A[ii][k] % R
if W[i][i] == 0:
W[i][i] = R
for j in range(i + 1, m):
q = W[i][j] // W[i][i]
add_columns(W, j, i, 1, -q, 0, 1)
R //= d
return DomainMatrix(W, (m, m), ZZ).to_dense()
def hermite_normal_form(A, *, D=None, check_rank=False):
r"""
Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over
:ref:`ZZ`.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import hermite_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(hermite_normal_form(m).to_Matrix())
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
Parameters
==========
A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`.
D : :ref:`ZZ`, optional
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
being any multiple of $\det(W)$ may be provided. In this case, if *A*
also has rank $m$, then we may use an alternative algorithm that works
mod *D* in order to prevent coefficient explosion.
check_rank : boolean, optional (default=False)
The basic assumption is that, if you pass a value for *D*, then
you already believe that *A* has rank $m$, so we do not waste time
checking it for you. If you do want this to be checked (and the
ordinary, non-modulo *D* algorithm to be used if the check fails), then
set *check_rank* to ``True``.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`, or
if *D* is given but is not in :ref:`ZZ`.
DMShapeError
If the mod *D* algorithm is used but the matrix has more rows than
columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithms 2.4.5 and 2.4.8.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]):
return _hermite_normal_form_modulo_D(A, D)
else:
return _hermite_normal_form(A)
|
1d59e181b5d2708190f5aacea1fe1378cb08abb124f0e281d5885ba870656d5a | from sympy import QQ, ZZ
from sympy.abc import x, theta
from sympy.core.mul import prod
from sympy.ntheory import factorint
from sympy.ntheory.residue_ntheory import n_order
from sympy.polys import Poly, cyclotomic_poly
from sympy.polys.matrices import DomainMatrix
from sympy.polys.numberfields.basis import round_two
from sympy.polys.numberfields.exceptions import StructureError
from sympy.polys.numberfields.modules import PowerBasis, to_col
from sympy.polys.numberfields.primes import (
prime_decomp, _two_elt_rep,
_check_formal_conditions_for_maximal_order,
)
from sympy.testing.pytest import raises
def test_check_formal_conditions_for_maximal_order():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1])
# Is a direct submodule of a power basis, but lacks 1 as first generator:
raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(B))
# Is not a direct submodule of a power basis:
raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(C))
# Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF:
raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(D))
def test_two_elt_rep():
ell = 7
T = Poly(cyclotomic_poly(ell))
ZK, dK = round_two(T)
for p in [29, 13, 11, 5]:
P = prime_decomp(p, T)
for Pi in P:
# We have Pi in two-element representation, and, because we are
# looking at a cyclotomic field, this was computed by the "easy"
# method that just factors T mod p. We will now convert this to
# a set of Z-generators, then convert that back into a two-element
# rep. The latter need not be identical to the two-elt rep we
# already have, but it must have the same HNF.
H = p*ZK + Pi.alpha*ZK
gens = H.basis_element_pullbacks()
# Note: we could supply f = Pi.f, but prefer to test behavior without it.
b = _two_elt_rep(gens, ZK, p)
if b != Pi.alpha:
H2 = p*ZK + b*ZK
assert H2 == H
def test_valuation_at_prime_ideal():
p = 7
T = Poly(cyclotomic_poly(p))
ZK, dK = round_two(T)
P = prime_decomp(p, T, dK=dK, ZK=ZK)
assert len(P) == 1
P0 = P[0]
v = P0.valuation(p*ZK)
assert v == P0.e
# Test easy 0 case:
assert P0.valuation(5*ZK) == 0
def test_decomp_1():
# All prime decompositions in cyclotomic fields are in the "easy case,"
# since the index is unity.
# Here we check the ramified prime.
T = Poly(cyclotomic_poly(7))
raises(ValueError, lambda: prime_decomp(7))
P = prime_decomp(7, T)
assert len(P) == 1
P0 = P[0]
assert P0.e == 6
assert P0.f == 1
# Test powers:
assert P0**0 == P0.ZK
assert P0**1 == P0
assert P0**6 == 7 * P0.ZK
def test_decomp_2():
# More easy cyclotomic cases, but here we check unramified primes.
ell = 7
T = Poly(cyclotomic_poly(ell))
for p in [29, 13, 11, 5]:
f_exp = n_order(p, ell)
g_exp = (ell - 1) // f_exp
P = prime_decomp(p, T)
assert len(P) == g_exp
for Pi in P:
assert Pi.e == 1
assert Pi.f == f_exp
def test_decomp_3():
T = Poly(x ** 2 - 35)
rad = {}
ZK, dK = round_two(T, radicals=rad)
# 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the
# rational primes 2, 5, 7 should be the square of a prime ideal.
for p in [2, 5, 7]:
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
assert len(P) == 1
assert P[0].e == 2
assert P[0]**2 == p*ZK
def test_decomp_4():
T = Poly(x ** 2 - 21)
rad = {}
ZK, dK = round_two(T, radicals=rad)
# 21 is 1 mod 4, so field disc is 3*7, and theory says the
# rational primes 3, 7 should be the square of a prime ideal.
for p in [3, 7]:
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
assert len(P) == 1
assert P[0].e == 2
assert P[0]**2 == p*ZK
def test_decomp_5():
# Here is our first test of the "hard case" of prime decomposition.
# We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and
# we consider the factorization of the rational prime 2, which divides
# the index.
# Theory says the form of p's factorization depends on the residue of
# d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8.
for d in [-7, -3]:
T = Poly(x ** 2 - d)
rad = {}
ZK, dK = round_two(T, radicals=rad)
p = 2
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
if d % 8 == 1:
assert len(P) == 2
assert all(P[i].e == 1 and P[i].f == 1 for i in range(2))
assert prod(Pi**Pi.e for Pi in P) == p * ZK
else:
assert d % 8 == 5
assert len(P) == 1
assert P[0].e == 1
assert P[0].f == 2
assert P[0].as_submodule() == p * ZK
def test_decomp_6():
# Another case where 2 divides the index. This is Dedekind's example of
# an essential discriminant divisor. (See Cohen, Excercise 6.10.)
T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
rad = {}
ZK, dK = round_two(T, radicals=rad)
p = 2
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
assert len(P) == 3
assert all(Pi.e == Pi.f == 1 for Pi in P)
assert prod(Pi**Pi.e for Pi in P) == p*ZK
def test_decomp_7():
# Try working through an AlgebraicField
T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
K = QQ.alg_field_from_poly(T)
p = 2
P = K.primes_above(p)
ZK = K.maximal_order()
assert len(P) == 3
assert all(Pi.e == Pi.f == 1 for Pi in P)
assert prod(Pi**Pi.e for Pi in P) == p*ZK
def test_decomp_8():
# This time we consider various cubics, and try factoring all primes
# dividing the index.
cases = (
x ** 3 + 3 * x ** 2 - 4 * x + 4,
x ** 3 + 3 * x ** 2 + 3 * x - 3,
x ** 3 + 5 * x ** 2 - x + 3,
x ** 3 + 5 * x ** 2 - 5 * x - 5,
x ** 3 + 3 * x ** 2 + 5,
x ** 3 + 6 * x ** 2 + 3 * x - 1,
x ** 3 + 6 * x ** 2 + 4,
x ** 3 + 7 * x ** 2 + 7 * x - 7,
x ** 3 + 7 * x ** 2 - x + 5,
x ** 3 + 7 * x ** 2 - 5 * x + 5,
x ** 3 + 4 * x ** 2 - 3 * x + 7,
x ** 3 + 8 * x ** 2 + 5 * x - 1,
x ** 3 + 8 * x ** 2 - 2 * x + 6,
x ** 3 + 6 * x ** 2 - 3 * x + 8,
x ** 3 + 9 * x ** 2 + 6 * x - 8,
x ** 3 + 15 * x ** 2 - 9 * x + 13,
)
def display(T, p, radical, P, I, J):
"""Useful for inspection, when running test manually."""
print('=' * 20)
print(T, p, radical)
for Pi in P:
print(f' ({Pi!r})')
print("I: ", I)
print("J: ", J)
print(f'Equal: {I == J}')
inspect = False
for g in cases:
T = Poly(g)
rad = {}
ZK, dK = round_two(T, radicals=rad)
dT = T.discriminant()
f_squared = dT // dK
F = factorint(f_squared)
for p in F:
radical = rad.get(p)
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical)
I = prod(Pi**Pi.e for Pi in P)
J = p * ZK
if inspect:
display(T, p, radical, P, I, J)
assert I == J
def test_PrimeIdeal_eq():
# `==` should fail on objects of different types, so even a completely
# inert PrimeIdeal should test unequal to the rational prime it divides.
T = Poly(cyclotomic_poly(7))
P0 = prime_decomp(5, T)[0]
assert P0.f == 6
assert P0.as_submodule() == 5 * P0.ZK
assert P0 != 5
def test_PrimeIdeal_add():
T = Poly(cyclotomic_poly(7))
P0 = prime_decomp(7, T)[0]
# Adding ideals computes their GCD, so adding the ramified prime dividing
# 7 to 7 itself should reproduce this prime (as a submodule).
assert P0 + 7 * P0.ZK == P0.as_submodule()
def test_str():
# Without alias:
k = QQ.alg_field_from_poly(Poly(x**2 + 7))
frp = k.primes_above(2)[0]
assert str(frp) == '(2, 3*_x/2 + 1/2)'
frp = k.primes_above(3)[0]
assert str(frp) == '(3)'
# With alias:
k = QQ.alg_field_from_poly(Poly(x ** 2 + 7), alias='alpha')
frp = k.primes_above(2)[0]
assert str(frp) == '(2, 3*alpha/2 + 1/2)'
frp = k.primes_above(3)[0]
assert str(frp) == '(3)'
def test_repr():
T = Poly(x**2 + 7)
ZK, dK = round_two(T)
P = prime_decomp(2, T, dK=dK, ZK=ZK)
assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
assert P[0].repr(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
assert P[0].repr(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)'
def test_PrimeIdeal_reduce():
k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
Zk = k.maximal_order()
P = k.primes_above(2)
frp = P[2]
# reduce_element
a = Zk.parent(to_col([23, 20, 11]), denom=6)
a_bar_expected = Zk.parent(to_col([11, 5, 2]), denom=6)
a_bar = frp.reduce_element(a)
assert a_bar == a_bar_expected
# reduce_ANP
a = k([QQ(11, 6), QQ(20, 6), QQ(23, 6)])
a_bar_expected = k([QQ(2, 6), QQ(5, 6), QQ(11, 6)])
a_bar = frp.reduce_ANP(a)
assert a_bar == a_bar_expected
# reduce_alg_num
a = k.to_alg_num(a)
a_bar_expected = k.to_alg_num(a_bar_expected)
a_bar = frp.reduce_alg_num(a)
assert a_bar == a_bar_expected
def test_issue_23402():
k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
P = k.primes_above(3)
assert P[0].alpha.equiv(0)
|
194e35eba8ff84c941db6b96c7122357f38df11b32be968decbcb778af3f9bc6 | from sympy.abc import x, zeta
from sympy.polys import Poly, cyclotomic_poly
from sympy.polys.domains import FF, QQ, ZZ
from sympy.polys.matrices import DomainMatrix, DM
from sympy.polys.numberfields.exceptions import (
ClosureFailure, MissingUnityError, StructureError
)
from sympy.polys.numberfields.modules import (
Module, ModuleElement, ModuleEndomorphism, PowerBasis, PowerBasisElement,
find_min_poly, is_sq_maxrank_HNF, make_mod_elt, to_col,
)
from sympy.polys.numberfields.utilities import is_int
from sympy.polys.polyerrors import UnificationFailed
from sympy.testing.pytest import raises
def test_to_col():
c = [1, 2, 3, 4]
m = to_col(c)
assert m.domain.is_ZZ
assert m.shape == (4, 1)
assert m.flat() == c
def test_Module_NotImplemented():
M = Module()
raises(NotImplementedError, lambda: M.n)
raises(NotImplementedError, lambda: M.mult_tab())
raises(NotImplementedError, lambda: M.represent(None))
raises(NotImplementedError, lambda: M.starts_with_unity())
raises(NotImplementedError, lambda: M.element_from_rational(QQ(2, 3)))
def test_Module_ancestors():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
assert C.ancestors(include_self=True) == [A, B, C]
assert D.ancestors(include_self=True) == [A, B, D]
assert C.power_basis_ancestor() == A
assert C.nearest_common_ancestor(D) == B
M = Module()
assert M.power_basis_ancestor() is None
def test_Module_compat_col():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
col = to_col([1, 2, 3, 4])
row = col.transpose()
assert A.is_compat_col(col) is True
assert A.is_compat_col(row) is False
assert A.is_compat_col(1) is False
assert A.is_compat_col(DomainMatrix.eye(3, ZZ)[:, 0]) is False
assert A.is_compat_col(DomainMatrix.eye(4, QQ)[:, 0]) is False
assert A.is_compat_col(DomainMatrix.eye(4, ZZ)[:, 0]) is True
def test_Module_call():
T = Poly(cyclotomic_poly(5, x))
B = PowerBasis(T)
assert B(0).col.flat() == [1, 0, 0, 0]
assert B(1).col.flat() == [0, 1, 0, 0]
col = DomainMatrix.eye(4, ZZ)[:, 2]
assert B(col).col == col
raises(ValueError, lambda: B(-1))
def test_Module_starts_with_unity():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
assert A.starts_with_unity() is True
assert B.starts_with_unity() is False
def test_Module_basis_elements():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
basis = B.basis_elements()
bp = B.basis_element_pullbacks()
for i, (e, p) in enumerate(zip(basis, bp)):
c = [0] * 4
assert e.module == B
assert p.module == A
c[i] = 1
assert e == B(to_col(c))
c[i] = 2
assert p == A(to_col(c))
def test_Module_zero():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
assert A.zero().col.flat() == [0, 0, 0, 0]
assert A.zero().module == A
assert B.zero().col.flat() == [0, 0, 0, 0]
assert B.zero().module == B
def test_Module_one():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
assert A.one().col.flat() == [1, 0, 0, 0]
assert A.one().module == A
assert B.one().col.flat() == [1, 0, 0, 0]
assert B.one().module == A
def test_Module_element_from_rational():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
rA = A.element_from_rational(QQ(22, 7))
rB = B.element_from_rational(QQ(22, 7))
assert rA.coeffs == [22, 0, 0, 0]
assert rA.denom == 7
assert rA.module == A
assert rB.coeffs == [22, 0, 0, 0]
assert rB.denom == 7
assert rB.module == A
def test_Module_submodule_from_gens():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
gens = [2*A(0), 2*A(1), 6*A(0), 6*A(1)]
B = A.submodule_from_gens(gens)
# Because the 3rd and 4th generators do not add anything new, we expect
# the cols of the matrix of B to just reproduce the first two gens:
M = gens[0].column().hstack(gens[1].column())
assert B.matrix == M
# At least one generator must be provided:
raises(ValueError, lambda: A.submodule_from_gens([]))
# All generators must belong to A:
raises(ValueError, lambda: A.submodule_from_gens([3*A(0), B(0)]))
def test_Module_submodule_from_matrix():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
e = B(to_col([1, 2, 3, 4]))
f = e.to_parent()
assert f.col.flat() == [2, 4, 6, 8]
# Matrix must be over ZZ:
raises(ValueError, lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ)))
# Number of rows of matrix must equal number of generators of module A:
raises(ValueError, lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ)))
def test_Module_whole_submodule():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.whole_submodule()
e = B(to_col([1, 2, 3, 4]))
f = e.to_parent()
assert f.col.flat() == [1, 2, 3, 4]
e0, e1, e2, e3 = B(0), B(1), B(2), B(3)
assert e2 * e3 == e0
assert e3 ** 2 == e1
def test_PowerBasis_repr():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
assert repr(A) == 'PowerBasis(x**4 + x**3 + x**2 + x + 1)'
def test_PowerBasis_eq():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = PowerBasis(T)
assert A == B
def test_PowerBasis_mult_tab():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
M = A.mult_tab()
exp = {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]},
1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]},
2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]},
3: {3: [0, 1, 0, 0]}}
# We get the table we expect:
assert M == exp
# And all entries are of expected type:
assert all(is_int(c) for u in M for v in M[u] for c in M[u][v])
def test_PowerBasis_represent():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
col = to_col([1, 2, 3, 4])
a = A(col)
assert A.represent(a) == col
b = A(col, denom=2)
raises(ClosureFailure, lambda: A.represent(b))
def test_PowerBasis_element_from_poly():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
f = Poly(1 + 2*x)
g = Poly(x**4)
h = Poly(0, x)
assert A.element_from_poly(f).coeffs == [1, 2, 0, 0]
assert A.element_from_poly(g).coeffs == [-1, -1, -1, -1]
assert A.element_from_poly(h).coeffs == [0, 0, 0, 0]
def test_PowerBasis_element__conversions():
k = QQ.cyclotomic_field(5)
L = QQ.cyclotomic_field(7)
B = PowerBasis(k)
# ANP --> PowerBasisElement
a = k([QQ(1, 2), QQ(1, 3), 5, 7])
e = B.element_from_ANP(a)
assert e.coeffs == [42, 30, 2, 3]
assert e.denom == 6
# PowerBasisElement --> ANP
assert e.to_ANP() == a
# Cannot convert ANP from different field
d = L([QQ(1, 2), QQ(1, 3), 5, 7])
raises(UnificationFailed, lambda: B.element_from_ANP(d))
# AlgebraicNumber --> PowerBasisElement
alpha = k.to_alg_num(a)
eps = B.element_from_alg_num(alpha)
assert eps.coeffs == [42, 30, 2, 3]
assert eps.denom == 6
# PowerBasisElement --> AlgebraicNumber
assert eps.to_alg_num() == alpha
# Cannot convert AlgebraicNumber from different field
delta = L.to_alg_num(d)
raises(UnificationFailed, lambda: B.element_from_alg_num(delta))
# When we don't know the field:
C = PowerBasis(k.ext.minpoly)
# Can convert from AlgebraicNumber:
eps = C.element_from_alg_num(alpha)
assert eps.coeffs == [42, 30, 2, 3]
assert eps.denom == 6
# But can't convert back:
raises(StructureError, lambda: eps.to_alg_num())
def test_Submodule_repr():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3)
assert repr(B) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3'
def test_Submodule_reduced():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
D = C.reduced()
assert D.denom == 1 and D == C == B
def test_Submodule_discard_before():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
B.compute_mult_tab()
C = B.discard_before(2)
assert C.parent == B.parent
assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF()
assert C.matrix == B.matrix[:, 2:]
assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}}
def test_Submodule_QQ_matrix():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
assert C.QQ_matrix == B.QQ_matrix
def test_Submodule_represent():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
a0 = A(to_col([6, 12, 18, 24]))
a1 = A(to_col([2, 4, 6, 8]))
a2 = A(to_col([1, 3, 5, 7]))
b1 = B.represent(a1)
assert b1.flat() == [1, 2, 3, 4]
c0 = C.represent(a0)
assert c0.flat() == [1, 2, 3, 4]
Y = A.submodule_from_matrix(DomainMatrix([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
], (3, 4), ZZ).transpose())
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
z0 = Z(to_col([1, 2, 3, 4, 5, 6]))
raises(ClosureFailure, lambda: Y.represent(A(3)))
raises(ClosureFailure, lambda: B.represent(a2))
raises(ClosureFailure, lambda: B.represent(z0))
def test_Submodule_is_compat_submodule():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
assert B.is_compat_submodule(C) is True
assert B.is_compat_submodule(A) is False
assert B.is_compat_submodule(D) is False
def test_Submodule_eq():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
assert C == B
def test_Submodule_add():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(DomainMatrix([
[4, 0, 0, 0],
[0, 4, 0, 0],
], (2, 4), ZZ).transpose(), denom=6)
C = A.submodule_from_matrix(DomainMatrix([
[0, 10, 0, 0],
[0, 0, 7, 0],
], (2, 4), ZZ).transpose(), denom=15)
D = A.submodule_from_matrix(DomainMatrix([
[20, 0, 0, 0],
[ 0, 20, 0, 0],
[ 0, 0, 14, 0],
], (3, 4), ZZ).transpose(), denom=30)
assert B + C == D
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
Y = Z.submodule_from_gens([Z(0), Z(1)])
raises(TypeError, lambda: B + Y)
def test_Submodule_mul():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
C = A.submodule_from_matrix(DomainMatrix([
[0, 10, 0, 0],
[0, 0, 7, 0],
], (2, 4), ZZ).transpose(), denom=15)
C1 = A.submodule_from_matrix(DomainMatrix([
[0, 20, 0, 0],
[0, 0, 14, 0],
], (2, 4), ZZ).transpose(), denom=3)
C2 = A.submodule_from_matrix(DomainMatrix([
[0, 0, 10, 0],
[0, 0, 0, 7],
], (2, 4), ZZ).transpose(), denom=15)
C3_unred = A.submodule_from_matrix(DomainMatrix([
[0, 0, 100, 0],
[0, 0, 0, 70],
[0, 0, 0, 70],
[-49, -49, -49, -49]
], (4, 4), ZZ).transpose(), denom=225)
C3 = A.submodule_from_matrix(DomainMatrix([
[4900, 4900, 0, 0],
[4410, 4410, 10, 0],
[2107, 2107, 7, 7]
], (3, 4), ZZ).transpose(), denom=225)
assert C * 1 == C
assert C ** 1 == C
assert C * 10 == C1
assert C * A(1) == C2
assert C.mul(C, hnf=False) == C3_unred
assert C * C == C3
assert C ** 2 == C3
def test_Submodule_reduce_element():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.whole_submodule()
b = B(to_col([90, 84, 80, 75]), denom=120)
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2)
b_bar_expected = B(to_col([30, 24, 20, 15]), denom=120)
b_bar = C.reduce_element(b)
assert b_bar == b_bar_expected
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=4)
b_bar_expected = B(to_col([0, 24, 20, 15]), denom=120)
b_bar = C.reduce_element(b)
assert b_bar == b_bar_expected
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=8)
b_bar_expected = B(to_col([0, 9, 5, 0]), denom=120)
b_bar = C.reduce_element(b)
assert b_bar == b_bar_expected
a = A(to_col([1, 2, 3, 4]))
raises(NotImplementedError, lambda: C.reduce_element(a))
C = B.submodule_from_matrix(DomainMatrix([
[5, 4, 3, 2],
[0, 8, 7, 6],
[0, 0,11,12],
[0, 0, 0, 1]
], (4, 4), ZZ).transpose())
raises(StructureError, lambda: C.reduce_element(b))
def test_is_HNF():
M = DM([
[3, 2, 1],
[0, 2, 1],
[0, 0, 1]
], ZZ)
M1 = DM([
[3, 2, 1],
[0, -2, 1],
[0, 0, 1]
], ZZ)
M2 = DM([
[3, 2, 3],
[0, 2, 1],
[0, 0, 1]
], ZZ)
assert is_sq_maxrank_HNF(M) is True
assert is_sq_maxrank_HNF(M1) is False
assert is_sq_maxrank_HNF(M2) is False
def test_make_mod_elt():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
col = to_col([1, 2, 3, 4])
eA = make_mod_elt(A, col)
eB = make_mod_elt(B, col)
assert isinstance(eA, PowerBasisElement)
assert not isinstance(eB, PowerBasisElement)
def test_ModuleElement_repr():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 2, 3, 4]), denom=2)
assert repr(e) == '[1, 2, 3, 4]/2'
def test_ModuleElement_reduced():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([2, 4, 6, 8]), denom=2)
f = e.reduced()
assert f.denom == 1 and f == e
def test_ModuleElement_reduced_mod_p():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([20, 40, 60, 80]))
f = e.reduced_mod_p(7)
assert f.coeffs == [-1, -2, -3, 3]
def test_ModuleElement_from_int_list():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
c = [1, 2, 3, 4]
assert ModuleElement.from_int_list(A, c).coeffs == c
def test_ModuleElement_len():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(0)
assert len(e) == 4
def test_ModuleElement_column():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(0)
col1 = e.column()
assert col1 == e.col and col1 is not e.col
col2 = e.column(domain=FF(5))
assert col2.domain.is_FF
def test_ModuleElement_QQ_col():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 2, 3, 4]), denom=1)
f = A(to_col([3, 6, 9, 12]), denom=3)
assert e.QQ_col == f.QQ_col
def test_ModuleElement_to_ancestors():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
eD = D(0)
eC = eD.to_parent()
eB = eD.to_ancestor(B)
eA = eD.over_power_basis()
assert eC.module is C and eC.coeffs == [5, 0, 0, 0]
assert eB.module is B and eB.coeffs == [15, 0, 0, 0]
assert eA.module is A and eA.coeffs == [30, 0, 0, 0]
a = A(0)
raises(ValueError, lambda: a.to_parent())
def test_ModuleElement_compatibility():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
assert C(0).is_compat(C(1)) is True
assert C(0).is_compat(D(0)) is False
u, v = C(0).unify(D(0))
assert u.module is B and v.module is B
assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0)
u, v = C(0).unify(C(1))
assert u == C(0) and v == C(1)
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
raises(UnificationFailed, lambda: C(0).unify(Z(1)))
def test_ModuleElement_eq():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 2, 3, 4]), denom=1)
f = A(to_col([3, 6, 9, 12]), denom=3)
assert e == f
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
assert e != Z(0)
assert e != 3.14
def test_ModuleElement_equiv():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 2, 3, 4]), denom=1)
f = A(to_col([3, 6, 9, 12]), denom=3)
assert e.equiv(f)
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
g = C(to_col([1, 2, 3, 4]), denom=1)
h = A(to_col([3, 6, 9, 12]), denom=1)
assert g.equiv(h)
assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7))
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
raises(UnificationFailed, lambda: e.equiv(Z(0)))
assert e.equiv(3.14) is False
def test_ModuleElement_add():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
e = A(to_col([1, 2, 3, 4]), denom=6)
f = A(to_col([5, 6, 7, 8]), denom=10)
g = C(to_col([1, 1, 1, 1]), denom=2)
assert e + f == A(to_col([10, 14, 18, 22]), denom=15)
assert e - f == A(to_col([-5, -4, -3, -2]), denom=15)
assert e + g == A(to_col([10, 11, 12, 13]), denom=6)
assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30)
assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10)
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
raises(TypeError, lambda: e + Z(0))
raises(TypeError, lambda: e + 3.14)
def test_ModuleElement_mul():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
e = A(to_col([0, 2, 0, 0]), denom=3)
f = A(to_col([0, 0, 0, 7]), denom=5)
g = C(to_col([0, 0, 0, 1]), denom=2)
h = A(to_col([0, 0, 3, 1]), denom=7)
assert e * f == A(to_col([-14, -14, -14, -14]), denom=15)
assert e * g == A(to_col([-1, -1, -1, -1]))
assert e * h == A(to_col([-2, -2, -2, 4]), denom=21)
assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5)
assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7))
assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9)
U = Poly(cyclotomic_poly(7, x))
Z = PowerBasis(U)
raises(TypeError, lambda: e * Z(0))
raises(TypeError, lambda: e * 3.14)
raises(TypeError, lambda: e // 3.14)
raises(ZeroDivisionError, lambda: e // 0)
def test_ModuleElement_div():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
e = A(to_col([0, 2, 0, 0]), denom=3)
f = A(to_col([0, 0, 0, 7]), denom=5)
g = C(to_col([1, 1, 1, 1]))
assert e // f == 10*A(3)//21
assert e // g == -2*A(2)//9
assert 3 // g == -A(1)
def test_ModuleElement_pow():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
e = A(to_col([0, 2, 0, 0]), denom=3)
g = C(to_col([0, 0, 0, 1]), denom=2)
assert e ** 3 == A(to_col([0, 0, 0, 8]), denom=27)
assert g ** 2 == C(to_col([0, 3, 0, 0]), denom=4)
assert e ** 0 == A(to_col([1, 0, 0, 0]))
assert g ** 0 == A(to_col([1, 0, 0, 0]))
assert e ** 1 == e
assert g ** 1 == g
def test_ModuleElement_mod():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 15, 8, 0]), denom=2)
assert e % 7 == A(to_col([1, 1, 8, 0]), denom=2)
assert e % QQ(1, 2) == A.zero()
assert e % QQ(1, 3) == A(to_col([1, 1, 0, 0]), denom=6)
B = A.submodule_from_gens([A(0), 5*A(1), 3*A(2), A(3)])
assert e % B == A(to_col([1, 5, 2, 0]), denom=2)
C = B.whole_submodule()
raises(TypeError, lambda: e % C)
def test_PowerBasisElement_polys():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 15, 8, 0]), denom=2)
assert e.numerator(x=zeta) == Poly(8 * zeta ** 2 + 15 * zeta + 1, domain=ZZ)
assert e.poly(x=zeta) == Poly(4 * zeta ** 2 + QQ(15, 2) * zeta + QQ(1, 2), domain=QQ)
def test_PowerBasisElement_norm():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
lam = A(to_col([1, -1, 0, 0]))
assert lam.norm() == 5
def test_PowerBasisElement_inverse():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
e = A(to_col([1, 1, 1, 1]))
assert 2 // e == -2*A(1)
assert e ** -3 == -A(3)
def test_ModuleHomomorphism_matrix():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
phi = ModuleEndomorphism(A, lambda a: a ** 2)
M = phi.matrix()
assert M == DomainMatrix([
[1, 0, -1, 0],
[0, 0, -1, 1],
[0, 1, -1, 0],
[0, 0, -1, 0]
], (4, 4), ZZ)
def test_ModuleHomomorphism_kernel():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
phi = ModuleEndomorphism(A, lambda a: a ** 5)
N = phi.kernel()
assert N.n == 3
def test_EndomorphismRing_represent():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
R = A.endomorphism_ring()
phi = R.inner_endomorphism(A(1))
col = R.represent(phi)
assert col.transpose() == DomainMatrix([
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]
], (1, 16), ZZ)
B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ))
S = B.endomorphism_ring()
psi = S.inner_endomorphism(A(1))
col = S.represent(psi)
assert col == DomainMatrix([], (0, 0), ZZ)
raises(NotImplementedError, lambda: R.represent(3.14))
def test_find_min_poly():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
powers = []
m = find_min_poly(A(1), QQ, x=x, powers=powers)
assert m == Poly(T, domain=QQ)
assert len(powers) == 5
# powers list need not be passed
m = find_min_poly(A(1), QQ, x=x)
assert m == Poly(T, domain=QQ)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
raises(MissingUnityError, lambda: find_min_poly(B(1), QQ))
|
ff80a6dc42711e1dd3130176efcb81ed6419c1e15616cc778f4cdcd806458032 | from sympy.testing.pytest import raises
from sympy.core.symbol import Symbol
from sympy.polys.matrices.normalforms import (
invariant_factors, smith_normal_form,
hermite_normal_form, _hermite_normal_form, _hermite_normal_form_modulo_D)
from sympy.polys.domains import ZZ, QQ
from sympy.polys.matrices import DomainMatrix, DM
from sympy.polys.matrices.exceptions import DMDomainError, DMShapeError
def test_smith_normal():
m = DM([[12, 6, 4, 8], [3, 9, 6, 12], [2, 16, 14, 28], [20, 10, 10, 20]], ZZ)
smf = DM([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]], ZZ)
assert smith_normal_form(m).to_dense() == smf
x = Symbol('x')
m = DM([[x-1, 1, -1],
[ 0, x, -1],
[ 0, -1, x]], QQ[x])
dx = m.domain.gens[0]
assert invariant_factors(m) == (1, dx-1, dx**2-1)
zr = DomainMatrix([], (0, 2), ZZ)
zc = DomainMatrix([[], []], (2, 0), ZZ)
assert smith_normal_form(zr).to_dense() == zr
assert smith_normal_form(zc).to_dense() == zc
assert smith_normal_form(DM([[2, 4]], ZZ)).to_dense() == DM([[2, 0]], ZZ)
assert smith_normal_form(DM([[0, -2]], ZZ)).to_dense() == DM([[-2, 0]], ZZ)
assert smith_normal_form(DM([[0], [-2]], ZZ)).to_dense() == DM([[-2], [0]], ZZ)
m = DM([[3, 0, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0]], ZZ)
snf = DM([[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 0, 0]], ZZ)
assert smith_normal_form(m).to_dense() == snf
raises(ValueError, lambda: smith_normal_form(DM([[1]], ZZ[x])))
def test_hermite_normal():
m = DM([[2, 7, 17, 29, 41], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]], ZZ)
hnf = DM([[1, 0, 0], [0, 2, 1], [0, 0, 1]], ZZ)
assert hermite_normal_form(m) == hnf
assert hermite_normal_form(m, D=ZZ(2)) == hnf
assert hermite_normal_form(m, D=ZZ(2), check_rank=True) == hnf
m = m.transpose()
hnf = DM([[37, 0, 19], [222, -6, 113], [48, 0, 25], [0, 2, 1], [0, 0, 1]], ZZ)
assert hermite_normal_form(m) == hnf
raises(DMShapeError, lambda: _hermite_normal_form_modulo_D(m, ZZ(96)))
raises(DMDomainError, lambda: _hermite_normal_form_modulo_D(m, QQ(96)))
m = DM([[8, 28, 68, 116, 164], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]], ZZ)
hnf = DM([[4, 0, 0], [0, 2, 1], [0, 0, 1]], ZZ)
assert hermite_normal_form(m) == hnf
assert hermite_normal_form(m, D=ZZ(8)) == hnf
assert hermite_normal_form(m, D=ZZ(8), check_rank=True) == hnf
m = DM([[10, 8, 6, 30, 2], [45, 36, 27, 18, 9], [5, 4, 3, 2, 1]], ZZ)
hnf = DM([[26, 2], [0, 9], [0, 1]], ZZ)
assert hermite_normal_form(m) == hnf
m = DM([[2, 7], [0, 0], [0, 0]], ZZ)
hnf = DM([[1], [0], [0]], ZZ)
assert hermite_normal_form(m) == hnf
m = DM([[-2, 1], [0, 1]], ZZ)
hnf = DM([[2, 1], [0, 1]], ZZ)
assert hermite_normal_form(m) == hnf
m = DomainMatrix([[QQ(1)]], (1, 1), QQ)
raises(DMDomainError, lambda: hermite_normal_form(m))
raises(DMDomainError, lambda: _hermite_normal_form(m))
raises(DMDomainError, lambda: _hermite_normal_form_modulo_D(m, ZZ(1)))
|
95c4fcc3b9a7e94119f13fb17c0e13a86e0cb7b271634d281e1396ec9b4741f6 | from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.parsing.ast_parser import parse_expr
from sympy.testing.pytest import raises
from sympy.core.sympify import SympifyError
import warnings
def test_parse_expr():
a, b = symbols('a, b')
# tests issue_16393
assert parse_expr('a + b', {}) == a + b
raises(SympifyError, lambda: parse_expr('a + ', {}))
# tests Transform.visit_Constant
assert parse_expr('1 + 2', {}) == S(3)
assert parse_expr('1 + 2.0', {}) == S(3.0)
# tests Transform.visit_Name
assert parse_expr('Rational(1, 2)', {}) == S(1)/2
assert parse_expr('a', {'a': a}) == a
# tests issue_23092
with warnings.catch_warnings():
warnings.simplefilter('error')
assert parse_expr('6 * 7', {}) == S(42)
|
67393297d360f766286a87317ee118668ca92fe4c139150bbae66e3402357441 | # -*- coding: utf-8 -*-
import sys
import builtins
import types
from sympy.assumptions import Q
from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq
from sympy.functions import exp, factorial, factorial2, sin, Min, Max
from sympy.logic import And
from sympy.series import Limit
from sympy.testing.pytest import raises, skip
from sympy.parsing.sympy_parser import (
parse_expr, standard_transformations, rationalize, TokenError,
split_symbols, implicit_multiplication, convert_equals_signs,
convert_xor, function_exponentiation, lambda_notation, auto_symbol,
repeated_decimals, implicit_multiplication_application,
auto_number, factorial_notation, implicit_application,
_transformation, T
)
def test_sympy_parser():
x = Symbol('x')
inputs = {
'2*x': 2 * x,
'3.00': Float(3),
'22/7': Rational(22, 7),
'2+3j': 2 + 3*I,
'exp(x)': exp(x),
'x!': factorial(x),
'x!!': factorial2(x),
'(x + 1)! - 1': factorial(x + 1) - 1,
'3.[3]': Rational(10, 3),
'.0[3]': Rational(1, 30),
'3.2[3]': Rational(97, 30),
'1.3[12]': Rational(433, 330),
'1 + 3.[3]': Rational(13, 3),
'1 + .0[3]': Rational(31, 30),
'1 + 3.2[3]': Rational(127, 30),
'.[0011]': Rational(1, 909),
'0.1[00102] + 1': Rational(366697, 333330),
'1.[0191]': Rational(10190, 9999),
'10!': 3628800,
'-(2)': -Integer(2),
'[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)],
'Symbol("x").free_symbols': x.free_symbols,
"S('S(3).n(n=3)')": 3.00,
'factorint(12, visual=True)': Mul(
Pow(2, 2, evaluate=False),
Pow(3, 1, evaluate=False),
evaluate=False),
'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'),
'Q.even(x)': Q.even(x),
}
for text, result in inputs.items():
assert parse_expr(text) == result
raises(TypeError, lambda:
parse_expr('x', standard_transformations))
raises(TypeError, lambda:
parse_expr('x', transformations=lambda x,y: 1))
raises(TypeError, lambda:
parse_expr('x', transformations=(lambda x,y: 1,)))
raises(TypeError, lambda: parse_expr('x', transformations=((),)))
raises(TypeError, lambda: parse_expr('x', {}, [], []))
raises(TypeError, lambda: parse_expr('x', [], [], {}))
raises(TypeError, lambda: parse_expr('x', [], [], {}))
def test_rationalize():
inputs = {
'0.123': Rational(123, 1000)
}
transformations = standard_transformations + (rationalize,)
for text, result in inputs.items():
assert parse_expr(text, transformations=transformations) == result
def test_factorial_fail():
inputs = ['x!!!', 'x!!!!', '(!)']
for text in inputs:
try:
parse_expr(text)
assert False
except TokenError:
assert True
def test_repeated_fail():
inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]',
'0.1[[1]]', '0x1.1[1]']
# All are valid Python, so only raise TypeError for invalid indexing
for text in inputs:
raises(TypeError, lambda: parse_expr(text))
inputs = ['0.1[', '0.1[1', '0.1[]']
for text in inputs:
raises((TokenError, SyntaxError), lambda: parse_expr(text))
def test_repeated_dot_only():
assert parse_expr('.[1]') == Rational(1, 9)
assert parse_expr('1 + .[1]') == Rational(10, 9)
def test_local_dict():
local_dict = {
'my_function': lambda x: x + 2
}
inputs = {
'my_function(2)': Integer(4)
}
for text, result in inputs.items():
assert parse_expr(text, local_dict=local_dict) == result
def test_local_dict_split_implmult():
t = standard_transformations + (split_symbols, implicit_multiplication,)
w = Symbol('w', real=True)
y = Symbol('y')
assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w
def test_local_dict_symbol_to_fcn():
x = Symbol('x')
d = {'foo': Function('bar')}
assert parse_expr('foo(x)', local_dict=d) == d['foo'](x)
d = {'foo': Symbol('baz')}
raises(TypeError, lambda: parse_expr('foo(x)', local_dict=d))
def test_global_dict():
global_dict = {
'Symbol': Symbol
}
inputs = {
'Q & S': And(Symbol('Q'), Symbol('S'))
}
for text, result in inputs.items():
assert parse_expr(text, global_dict=global_dict) == result
def test_no_globals():
# Replicate creating the default global_dict:
default_globals = {}
exec('from sympy import *', default_globals)
builtins_dict = vars(builtins)
for name, obj in builtins_dict.items():
if isinstance(obj, types.BuiltinFunctionType):
default_globals[name] = obj
default_globals['max'] = Max
default_globals['min'] = Min
# Need to include Symbol or parse_expr will not work:
default_globals.pop('Symbol')
global_dict = {'Symbol':Symbol}
for name in default_globals:
obj = parse_expr(name, global_dict=global_dict)
assert obj == Symbol(name)
def test_issue_2515():
raises(TokenError, lambda: parse_expr('(()'))
raises(TokenError, lambda: parse_expr('"""'))
def test_issue_7663():
x = Symbol('x')
e = '2*(x+1)'
assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False)
assert parse_expr(e, evaluate=0).equals(2*(x+1))
def test_recursive_evaluate_false_10560():
inputs = {
'4*-3' : '4*-3',
'-4*3' : '(-4)*3',
"-2*x*y": '(-2)*x*y',
"x*-4*x": "x*(-4)*x"
}
for text, result in inputs.items():
assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False)
def test_function_evaluate_false():
inputs = [
'Abs(0)', 'im(0)', 're(0)', 'sign(0)', 'arg(0)', 'conjugate(0)',
'acos(0)', 'acot(0)', 'acsc(0)', 'asec(0)', 'asin(0)', 'atan(0)',
'acosh(0)', 'acoth(0)', 'acsch(0)', 'asech(0)', 'asinh(0)', 'atanh(0)',
'cos(0)', 'cot(0)', 'csc(0)', 'sec(0)', 'sin(0)', 'tan(0)',
'cosh(0)', 'coth(0)', 'csch(0)', 'sech(0)', 'sinh(0)', 'tanh(0)',
'exp(0)', 'log(0)', 'sqrt(0)',
]
for case in inputs:
expr = parse_expr(case, evaluate=False)
assert case == str(expr) != str(expr.doit())
assert str(parse_expr('ln(0)', evaluate=False)) == 'log(0)'
assert str(parse_expr('cbrt(0)', evaluate=False)) == '0**(1/3)'
def test_issue_10773():
inputs = {
'-10/5': '(-10)/5',
'-10/-5' : '(-10)/(-5)',
}
for text, result in inputs.items():
assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False)
def test_split_symbols():
transformations = standard_transformations + \
(split_symbols, implicit_multiplication,)
x = Symbol('x')
y = Symbol('y')
xy = Symbol('xy')
assert parse_expr("xy") == xy
assert parse_expr("xy", transformations=transformations) == x*y
def test_split_symbols_function():
transformations = standard_transformations + \
(split_symbols, implicit_multiplication,)
x = Symbol('x')
y = Symbol('y')
a = Symbol('a')
f = Function('f')
assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1)
assert parse_expr("af(x+1)", transformations=transformations,
local_dict={'f':f}) == a*f(x+1)
def test_functional_exponent():
t = standard_transformations + (convert_xor, function_exponentiation)
x = Symbol('x')
y = Symbol('y')
a = Symbol('a')
yfcn = Function('y')
assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2
assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y
assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y
assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x))
assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x))
def test_match_parentheses_implicit_multiplication():
transformations = standard_transformations + \
(implicit_multiplication,)
raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations))
def test_convert_equals_signs():
transformations = standard_transformations + \
(convert_equals_signs, )
x = Symbol('x')
y = Symbol('y')
assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x)
assert parse_expr("y = x", transformations=transformations) == Eq(y, x)
assert parse_expr("(2*y = x) = False",
transformations=transformations) == Eq(Eq(2*y, x), False)
def test_parse_function_issue_3539():
x = Symbol('x')
f = Function('f')
assert parse_expr('f(x)') == f(x)
def test_split_symbols_numeric():
transformations = (
standard_transformations +
(implicit_multiplication_application,))
n = Symbol('n')
expr1 = parse_expr('2**n * 3**n')
expr2 = parse_expr('2**n3**n', transformations=transformations)
assert expr1 == expr2 == 2**n*3**n
expr1 = parse_expr('n12n34', transformations=transformations)
assert expr1 == n*12*n*34
def test_unicode_names():
assert parse_expr('α') == Symbol('α')
def test_python3_features():
# Make sure the tokenizer can handle Python 3-only features
if sys.version_info < (3, 8):
skip("test_python3_features requires Python 3.8 or newer")
assert parse_expr("123_456") == 123456
assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495)
assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333)
assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99)
assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990)
assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000)
def test_issue_19501():
x = Symbol('x')
eq = parse_expr('E**x(1+x)', local_dict={'x': x}, transformations=(
standard_transformations +
(implicit_multiplication_application,)))
assert eq.free_symbols == {x}
def test_parsing_definitions():
from sympy.abc import x
assert len(_transformation) == 12 # if this changes, extend below
assert _transformation[0] == lambda_notation
assert _transformation[1] == auto_symbol
assert _transformation[2] == repeated_decimals
assert _transformation[3] == auto_number
assert _transformation[4] == factorial_notation
assert _transformation[5] == implicit_multiplication_application
assert _transformation[6] == convert_xor
assert _transformation[7] == implicit_application
assert _transformation[8] == implicit_multiplication
assert _transformation[9] == convert_equals_signs
assert _transformation[10] == function_exponentiation
assert _transformation[11] == rationalize
assert T[:5] == T[0,1,2,3,4] == standard_transformations
t = _transformation
assert T[-1, 0] == (t[len(t) - 1], t[0])
assert T[:5, 8] == standard_transformations + (t[8],)
assert parse_expr('0.3x^2', transformations='all') == 3*x**2/10
assert parse_expr('sin 3x', transformations='implicit') == sin(3*x)
def test_builtins():
cases = [
('abs(x)', 'Abs(x)'),
('max(x, y)', 'Max(x, y)'),
('min(x, y)', 'Min(x, y)'),
('pow(x, y)', 'Pow(x, y)'),
]
for built_in_func_call, sympy_func_call in cases:
assert parse_expr(built_in_func_call) == parse_expr(sympy_func_call)
assert str(parse_expr('pow(38, -1, 97)')) == '23'
def test_issue_22822():
raises(ValueError, lambda: parse_expr('x', {'': 1}))
data = {'some_parameter': None}
assert parse_expr('some_parameter is None', data) is True
|
e758c86d42a9a38ca4b04117df6537cf4322d80a7b9759ccdf62b2a1b2d071b1 | from sympy.testing.pytest import raises, XFAIL
from sympy.external import import_module
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.numbers import (E, oo)
from sympy.core.power import Pow
from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality)
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.complexes import (Abs, conjugate)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import (ceiling, floor)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan)
from sympy.integrals.integrals import Integral
from sympy.series.limits import Limit
from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge
from sympy.physics.quantum.state import Bra, Ket
from sympy.abc import x, y, z, a, b, c, t, k, n
antlr4 = import_module("antlr4")
# disable tests if antlr4-python*-runtime is not present
if not antlr4:
disabled = True
theta = Symbol('theta')
f = Function('f')
# shorthand definitions
def _Add(a, b):
return Add(a, b, evaluate=False)
def _Mul(a, b):
return Mul(a, b, evaluate=False)
def _Pow(a, b):
return Pow(a, b, evaluate=False)
def _Sqrt(a):
return sqrt(a, evaluate=False)
def _Conjugate(a):
return conjugate(a, evaluate=False)
def _Abs(a):
return Abs(a, evaluate=False)
def _factorial(a):
return factorial(a, evaluate=False)
def _exp(a):
return exp(a, evaluate=False)
def _log(a, b):
return log(a, b, evaluate=False)
def _binomial(n, k):
return binomial(n, k, evaluate=False)
def test_import():
from sympy.parsing.latex._build_latex_antlr import (
build_parser,
check_antlr_version,
dir_latex_antlr
)
# XXX: It would be better to come up with a test for these...
del build_parser, check_antlr_version, dir_latex_antlr
# These LaTeX strings should parse to the corresponding SymPy expression
GOOD_PAIRS = [
(r"0", 0),
(r"1", 1),
(r"-3.14", -3.14),
(r"(-7.13)(1.5)", _Mul(-7.13, 1.5)),
(r"x", x),
(r"2x", 2*x),
(r"x^2", x**2),
(r"x^\frac{1}{2}", _Pow(x, _Pow(2, -1))),
(r"x^{3 + 1}", x**_Add(3, 1)),
(r"-c", -c),
(r"a \cdot b", a * b),
(r"a / b", a / b),
(r"a \div b", a / b),
(r"a + b", a + b),
(r"a + b - a", _Add(a+b, -a)),
(r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
(r"(x + y) z", _Mul(_Add(x, y), z)),
(r"\left(x + y\right) z", _Mul(_Add(x, y), z)),
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
(r"\left[x + y\right] z", _Mul(_Add(x, y), z)),
(r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)),
(r"1+1", _Add(1, 1)),
(r"0+1", _Add(0, 1)),
(r"1*2", _Mul(1, 2)),
(r"0*1", _Mul(0, 1)),
(r"1 \times 2 ", _Mul(1, 2)),
(r"x = y", Eq(x, y)),
(r"x \neq y", Ne(x, y)),
(r"x < y", Lt(x, y)),
(r"x > y", Gt(x, y)),
(r"x \leq y", Le(x, y)),
(r"x \geq y", Ge(x, y)),
(r"x \le y", Le(x, y)),
(r"x \ge y", Ge(x, y)),
(r"\lfloor x \rfloor", floor(x)),
(r"\lceil x \rceil", ceiling(x)),
(r"\langle x |", Bra('x')),
(r"| x \rangle", Ket('x')),
(r"\sin \theta", sin(theta)),
(r"\sin(\theta)", sin(theta)),
(r"\sin^{-1} a", asin(a)),
(r"\sin a \cos b", _Mul(sin(a), cos(b))),
(r"\sin \cos \theta", sin(cos(theta))),
(r"\sin(\cos \theta)", sin(cos(theta))),
(r"\frac{a}{b}", a / b),
(r"\dfrac{a}{b}", a / b),
(r"\tfrac{a}{b}", a / b),
(r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
(r"\frac{7}{3}", _Mul(7, _Pow(3, -1))),
(r"(\csc x)(\sec y)", csc(x)*sec(y)),
(r"\lim_{x \to 3} a", Limit(a, x, 3)),
(r"\lim_{x \rightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')),
(r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')),
(r"\infty", oo),
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)),
(r"\frac{d}{dx} x", Derivative(x, x)),
(r"\frac{d}{dt} x", Derivative(x, t)),
(r"f(x)", f(x)),
(r"f(x, y)", f(x, y)),
(r"f(x, y, z)", f(x, y, z)),
(r"\frac{d f(x)}{dx}", Derivative(f(x), x)),
(r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)),
(r"x \neq y", Unequality(x, y)),
(r"|x|", _Abs(x)),
(r"||x||", _Abs(Abs(x))),
(r"|x||y|", _Abs(x)*_Abs(y)),
(r"||x||y||", _Abs(_Abs(x)*_Abs(y))),
(r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)),
(r"\int x dx", Integral(x, x)),
(r"\int x d\theta", Integral(x, theta)),
(r"\int (x^2 - y)dx", Integral(x**2 - y, x)),
(r"\int x + a dx", Integral(_Add(x, a), x)),
(r"\int da", Integral(1, a)),
(r"\int_0^7 dx", Integral(1, (x, 0, 7))),
(r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))),
(r"\int_a^b x dx", Integral(x, (x, a, b))),
(r"\int^b_a x dx", Integral(x, (x, a, b))),
(r"\int_{a}^b x dx", Integral(x, (x, a, b))),
(r"\int^{b}_a x dx", Integral(x, (x, a, b))),
(r"\int_{a}^{b} x dx", Integral(x, (x, a, b))),
(r"\int^{b}_{a} x dx", Integral(x, (x, a, b))),
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
(r"\int (x+a)", Integral(_Add(x, a), x)),
(r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)),
(r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)),
(r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)),
(r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)),
(r"\int \frac{1}{a} + \frac{1}{b} dx",
Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)),
(r"\int \frac{3 \cdot d\theta}{\theta}",
Integral(3*_Pow(theta, -1), theta)),
(r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)),
(r"x_0", Symbol('x_{0}')),
(r"x_{1}", Symbol('x_{1}')),
(r"x_a", Symbol('x_{a}')),
(r"x_{b}", Symbol('x_{b}')),
(r"h_\theta", Symbol('h_{theta}')),
(r"h_{\theta}", Symbol('h_{theta}')),
(r"h_{\theta}(x_0, x_1)",
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))),
(r"x!", _factorial(x)),
(r"100!", _factorial(100)),
(r"\theta!", _factorial(theta)),
(r"(x + 1)!", _factorial(_Add(x, 1))),
(r"(x!)!", _factorial(_factorial(x))),
(r"x!!!", _factorial(_factorial(_factorial(x)))),
(r"5!7!", _Mul(_factorial(5), _factorial(7))),
(r"\sqrt{x}", sqrt(x)),
(r"\sqrt{x + b}", sqrt(_Add(x, b))),
(r"\sqrt[3]{\sin x}", root(sin(x), 3)),
(r"\sqrt[y]{\sin x}", root(sin(x), y)),
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)),
(r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))),
(r"\overline{z}", _Conjugate(z)),
(r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))),
(r"\overline{x + y}", _Conjugate(_Add(x, y))),
(r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)),
(r"x < y", StrictLessThan(x, y)),
(r"x \leq y", LessThan(x, y)),
(r"x > y", StrictGreaterThan(x, y)),
(r"x \geq y", GreaterThan(x, y)),
(r"\mathit{x}", Symbol('x')),
(r"\mathit{test}", Symbol('test')),
(r"\mathit{TEST}", Symbol('TEST')),
(r"\mathit{HELLO world}", Symbol('HELLO world')),
(r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
(r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
(r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
(r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
(r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))),
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}",
Sum(_Pow(_factorial(n), -1), (n, 0, oo))),
(r"\prod_{a = b}^{c} x", Product(x, (a, b, c))),
(r"\prod_{a = b}^c x", Product(x, (a, b, c))),
(r"\prod^{c}_{a = b} x", Product(x, (a, b, c))),
(r"\prod^c_{a = b} x", Product(x, (a, b, c))),
(r"\exp x", _exp(x)),
(r"\exp(x)", _exp(x)),
(r"\ln x", _log(x, E)),
(r"\ln xy", _log(x*y, E)),
(r"\log x", _log(x, 10)),
(r"\log xy", _log(x*y, 10)),
(r"\log_{2} x", _log(x, 2)),
(r"\log_{a} x", _log(x, a)),
(r"\log_{11} x", _log(x, 11)),
(r"\log_{a^2} x", _log(x, _Pow(a, 2))),
(r"[x]", x),
(r"[a + b]", _Add(a, b)),
(r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)),
(r"\binom{n}{k}", _binomial(n, k)),
(r"\tbinom{n}{k}", _binomial(n, k)),
(r"\dbinom{n}{k}", _binomial(n, k)),
(r"\binom{n}{0}", _binomial(n, 0)),
(r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))),
(r"a \, b", _Mul(a, b)),
(r"a \thinspace b", _Mul(a, b)),
(r"a \: b", _Mul(a, b)),
(r"a \medspace b", _Mul(a, b)),
(r"a \; b", _Mul(a, b)),
(r"a \thickspace b", _Mul(a, b)),
(r"a \quad b", _Mul(a, b)),
(r"a \qquad b", _Mul(a, b)),
(r"a \! b", _Mul(a, b)),
(r"a \negthinspace b", _Mul(a, b)),
(r"a \negmedspace b", _Mul(a, b)),
(r"a \negthickspace b", _Mul(a, b)),
(r"\int x \, dx", Integral(x, x)),
(r"\log_2 x", _log(x, 2)),
(r"\log_a x", _log(x, a)),
(r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))),
]
def test_parseable():
from sympy.parsing.latex import parse_latex
for latex_str, sympy_expr in GOOD_PAIRS:
assert parse_latex(latex_str) == sympy_expr, latex_str
# These bad LaTeX strings should raise a LaTeXParsingError when parsed
BAD_STRINGS = [
r"(",
r")",
r"\frac{d}{dx}",
r"(\frac{d}{dx})",
r"\sqrt{}",
r"\sqrt",
r"\overline{}",
r"\overline",
r"{",
r"}",
r"\mathit{x + y}",
r"\mathit{21}",
r"\frac{2}{}",
r"\frac{}{2}",
r"\int",
r"!",
r"!0",
r"_",
r"^",
r"|",
r"||x|",
r"()",
r"((((((((((((((((()))))))))))))))))",
r"-",
r"\frac{d}{dx} + \frac{d}{dt}",
r"f(x,,y)",
r"f(x,y,",
r"\sin^x",
r"\cos^2",
r"@",
r"#",
r"$",
r"%",
r"&",
r"*",
r"" "\\",
r"~",
r"\frac{(2 + x}{1 - x)}",
]
def test_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
# At time of migration from latex2sympy, should fail but doesn't
FAILING_BAD_STRINGS = [
r"\cos 1 \cos",
r"f(,",
r"f()",
r"a \div \div b",
r"a \cdot \cdot b",
r"a // b",
r"a +",
r"1.1.1",
r"1 +",
r"a / b /",
]
@XFAIL
def test_failing_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in FAILING_BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
|
3fd815ba1cfe80492f6386a64130120a3d97d2d2b994b926245af30e66dc677d | from sympy import sin, Function, symbols, Dummy, Lambda, cos
from sympy.parsing.mathematica import parse_mathematica, MathematicaParser
from sympy.core.sympify import sympify
from sympy.abc import n, w, x, y, z
from sympy.testing.pytest import raises
def test_mathematica():
d = {
'- 6x': '-6*x',
'Sin[x]^2': 'sin(x)**2',
'2(x-1)': '2*(x-1)',
'3y+8': '3*y+8',
'ArcSin[2x+9(4-x)^2]/x': 'asin(2*x+9*(4-x)**2)/x',
'x+y': 'x+y',
'355/113': '355/113',
'2.718281828': '2.718281828',
'Sin[12]': 'sin(12)',
'Exp[Log[4]]': 'exp(log(4))',
'(x+1)(x+3)': '(x+1)*(x+3)',
'Cos[ArcCos[3.6]]': 'cos(acos(3.6))',
'Cos[x]==Sin[y]': 'Eq(cos(x), sin(y))',
'2*Sin[x+y]': '2*sin(x+y)',
'Sin[x]+Cos[y]': 'sin(x)+cos(y)',
'Sin[Cos[x]]': 'sin(cos(x))',
'2*Sqrt[x+y]': '2*sqrt(x+y)', # Test case from the issue 4259
'+Sqrt[2]': 'sqrt(2)',
'-Sqrt[2]': '-sqrt(2)',
'-1/Sqrt[2]': '-1/sqrt(2)',
'-(1/Sqrt[3])': '-(1/sqrt(3))',
'1/(2*Sqrt[5])': '1/(2*sqrt(5))',
'Mod[5,3]': 'Mod(5,3)',
'-Mod[5,3]': '-Mod(5,3)',
'(x+1)y': '(x+1)*y',
'x(y+1)': 'x*(y+1)',
'Sin[x]Cos[y]': 'sin(x)*cos(y)',
'Sin[x]^2Cos[y]^2': 'sin(x)**2*cos(y)**2',
'Cos[x]^2(1 - Cos[y]^2)': 'cos(x)**2*(1-cos(y)**2)',
'x y': 'x*y',
'x y': 'x*y',
'2 x': '2*x',
'x 8': 'x*8',
'2 8': '2*8',
'4.x': '4.*x',
'4. 3': '4.*3',
'4. 3.': '4.*3.',
'1 2 3': '1*2*3',
' - 2 * Sqrt[ 2 3 * ( 1 + 5 ) ] ': '-2*sqrt(2*3*(1+5))',
'Log[2,4]': 'log(4,2)',
'Log[Log[2,4],4]': 'log(4,log(4,2))',
'Exp[Sqrt[2]^2Log[2, 8]]': 'exp(sqrt(2)**2*log(8,2))',
'ArcSin[Cos[0]]': 'asin(cos(0))',
'Log2[16]': 'log(16,2)',
'Max[1,-2,3,-4]': 'Max(1,-2,3,-4)',
'Min[1,-2,3]': 'Min(1,-2,3)',
'Exp[I Pi/2]': 'exp(I*pi/2)',
'ArcTan[x,y]': 'atan2(y,x)',
'Pochhammer[x,y]': 'rf(x,y)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[5]': 'airyaiprime(5)',
'AiryBi[x]': 'airybi(x)',
'AiryBiPrime[7]': 'airybiprime(7)',
'LogIntegral[4]': ' li(4)',
'PrimePi[7]': 'primepi(7)',
'Prime[5]': 'prime(5)',
'PrimeQ[5]': 'isprime(5)'
}
for e in d:
assert parse_mathematica(e) == sympify(d[e])
# The parsed form of this expression should not evaluate the Lambda object:
assert parse_mathematica("Sin[#]^2 + Cos[#]^2 &[x]") == sin(x)**2 + cos(x)**2
d1, d2, d3 = symbols("d1:4", cls=Dummy)
assert parse_mathematica("Sin[#] + Cos[#3] &").dummy_eq(Lambda((d1, d2, d3), sin(d1) + cos(d3)))
assert parse_mathematica("Sin[#^2] &").dummy_eq(Lambda(d1, sin(d1**2)))
assert parse_mathematica("Function[x, x^3]") == Lambda(x, x**3)
assert parse_mathematica("Function[{x, y}, x^2 + y^2]") == Lambda((x, y), x**2 + y**2)
def test_parser_mathematica_tokenizer():
parser = MathematicaParser()
chain = lambda expr: parser._from_tokens_to_fullformlist(parser._from_mathematica_to_tokens(expr))
# Basic patterns
assert chain("x") == "x"
assert chain("42") == "42"
assert chain(".2") == ".2"
assert chain("+x") == "x"
assert chain("-1") == "-1"
assert chain("- 3") == "-3"
assert chain("+Sin[x]") == ["Sin", "x"]
assert chain("-Sin[x]") == ["Times", "-1", ["Sin", "x"]]
assert chain("x(a+1)") == ["Times", "x", ["Plus", "a", "1"]]
assert chain("(x)") == "x"
assert chain("(+x)") == "x"
assert chain("-a") == ["Times", "-1", "a"]
assert chain("(-x)") == ["Times", "-1", "x"]
assert chain("(x + y)") == ["Plus", "x", "y"]
assert chain("3 + 4") == ["Plus", "3", "4"]
assert chain("a - 3") == ["Plus", "a", "-3"]
assert chain("a - b") == ["Plus", "a", ["Times", "-1", "b"]]
assert chain("7 * 8") == ["Times", "7", "8"]
assert chain("a + b*c") == ["Plus", "a", ["Times", "b", "c"]]
assert chain("a + b* c* d + 2 * e") == ["Plus", "a", ["Times", "b", "c", "d"], ["Times", "2", "e"]]
assert chain("a / b") == ["Times", "a", ["Power", "b", "-1"]]
# Missing asterisk (*) patterns:
assert chain("x y") == ["Times", "x", "y"]
assert chain("3 4") == ["Times", "3", "4"]
assert chain("a[b] c") == ["Times", ["a", "b"], "c"]
assert chain("(x) (y)") == ["Times", "x", "y"]
assert chain("3 (a)") == ["Times", "3", "a"]
assert chain("(a) b") == ["Times", "a", "b"]
assert chain("4.2") == "4.2"
assert chain("4 2") == ["Times", "4", "2"]
assert chain("4 2") == ["Times", "4", "2"]
assert chain("3 . 4") == ["Dot", "3", "4"]
assert chain("4. 2") == ["Times", "4.", "2"]
assert chain("x.y") == ["Dot", "x", "y"]
assert chain("4.y") == ["Times", "4.", "y"]
assert chain("4 .y") == ["Dot", "4", "y"]
assert chain("x.4") == ["Times", "x", ".4"]
assert chain("x0.3") == ["Times", "x0", ".3"]
assert chain("x. 4") == ["Dot", "x", "4"]
# Comments
assert chain("a (* +b *) + c") == ["Plus", "a", "c"]
assert chain("a (* + b *) + (**)c (* +d *) + e") == ["Plus", "a", "c", "e"]
assert chain("""a + (*
+ b
*) c + (* d
*) e
""") == ["Plus", "a", "c", "e"]
# Operators couples + and -, * and / are mutually associative:
# (i.e. expression gets flattened when mixing these operators)
assert chain("a*b/c") == ["Times", "a", "b", ["Power", "c", "-1"]]
assert chain("a/b*c") == ["Times", "a", ["Power", "b", "-1"], "c"]
assert chain("a+b-c") == ["Plus", "a", "b", ["Times", "-1", "c"]]
assert chain("a-b+c") == ["Plus", "a", ["Times", "-1", "b"], "c"]
assert chain("-a + b -c ") == ["Plus", ["Times", "-1", "a"], "b", ["Times", "-1", "c"]]
assert chain("a/b/c*d") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"], "d"]
assert chain("a/b/c") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"]]
assert chain("a-b-c") == ["Plus", "a", ["Times", "-1", "b"], ["Times", "-1", "c"]]
assert chain("1/a") == ["Times", "1", ["Power", "a", "-1"]]
assert chain("1/a/b") == ["Times", "1", ["Power", "a", "-1"], ["Power", "b", "-1"]]
assert chain("-1/a*b") == ["Times", "-1", ["Power", "a", "-1"], "b"]
# Enclosures of various kinds, i.e. ( ) [ ] [[ ]] { }
assert chain("(a + b) + c") == ["Plus", ["Plus", "a", "b"], "c"]
assert chain(" a + (b + c) + d ") == ["Plus", "a", ["Plus", "b", "c"], "d"]
assert chain("a * (b + c)") == ["Times", "a", ["Plus", "b", "c"]]
assert chain("a b (c d)") == ["Times", "a", "b", ["Times", "c", "d"]]
assert chain("{a, b, 2, c}") == ["List", "a", "b", "2", "c"]
assert chain("{a, {b, c}}") == ["List", "a", ["List", "b", "c"]]
assert chain("{{a}}") == ["List", ["List", "a"]]
assert chain("a[b, c]") == ["a", "b", "c"]
assert chain("a[[b, c]]") == ["Part", "a", "b", "c"]
assert chain("a[b[c]]") == ["a", ["b", "c"]]
assert chain("a[[b, c[[d, {e,f}]]]]") == ["Part", "a", "b", ["Part", "c", "d", ["List", "e", "f"]]]
assert chain("a[b[[c,d]]]") == ["a", ["Part", "b", "c", "d"]]
assert chain("a[[b[c]]]") == ["Part", "a", ["b", "c"]]
assert chain("a[[b[[c]]]]") == ["Part", "a", ["Part", "b", "c"]]
assert chain("a[[b[c[[d]]]]]") == ["Part", "a", ["b", ["Part", "c", "d"]]]
assert chain("a[b[[c[d]]]]") == ["a", ["Part", "b", ["c", "d"]]]
assert chain("x[[a+1, b+2, c+3]]") == ["Part", "x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
assert chain("x[a+1, b+2, c+3]") == ["x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
assert chain("{a+1, b+2, c+3}") == ["List", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
# Flat operator:
assert chain("a*b*c*d*e") == ["Times", "a", "b", "c", "d", "e"]
assert chain("a +b + c+ d+e") == ["Plus", "a", "b", "c", "d", "e"]
# Right priority operator:
assert chain("a^b") == ["Power", "a", "b"]
assert chain("a^b^c") == ["Power", "a", ["Power", "b", "c"]]
assert chain("a^b^c^d") == ["Power", "a", ["Power", "b", ["Power", "c", "d"]]]
# Left priority operator:
assert chain("a/.b") == ["ReplaceAll", "a", "b"]
assert chain("a/.b/.c/.d") == ["ReplaceAll", ["ReplaceAll", ["ReplaceAll", "a", "b"], "c"], "d"]
assert chain("a//b") == ["a", "b"]
assert chain("a//b//c") == [["a", "b"], "c"]
assert chain("a//b//c//d") == [[["a", "b"], "c"], "d"]
# Compound expressions
assert chain("a;b") == ["CompoundExpression", "a", "b"]
assert chain("a;") == ["CompoundExpression", "a", "Null"]
assert chain("a;b;") == ["CompoundExpression", "a", "b", "Null"]
assert chain("a[b;c]") == ["a", ["CompoundExpression", "b", "c"]]
assert chain("a[b,c;d,e]") == ["a", "b", ["CompoundExpression", "c", "d"], "e"]
assert chain("a[b,c;,d]") == ["a", "b", ["CompoundExpression", "c", "Null"], "d"]
# New lines
assert chain("a\nb\n") == ["CompoundExpression", "a", "b"]
assert chain("a\n\nb\n (c \nd) \n") == ["CompoundExpression", "a", "b", ["Times", "c", "d"]]
assert chain("\na; b\nc") == ["CompoundExpression", "a", "b", "c"]
assert chain("a + \nb\n") == ["Plus", "a", "b"]
assert chain("a\nb; c; d\n e; (f \n g); h + \n i") == ["CompoundExpression", "a", "b", "c", "d", "e", ["Times", "f", "g"], ["Plus", "h", "i"]]
assert chain("\n{\na\nb; c; d\n e (f \n g); h + \n i\n\n}\n") == ["List", ["CompoundExpression", ["Times", "a", "b"], "c", ["Times", "d", "e", ["Times", "f", "g"]], ["Plus", "h", "i"]]]
# Patterns
assert chain("y_") == ["Pattern", "y", ["Blank"]]
assert chain("y_.") == ["Optional", ["Pattern", "y", ["Blank"]]]
assert chain("y__") == ["Pattern", "y", ["BlankSequence"]]
assert chain("y___") == ["Pattern", "y", ["BlankNullSequence"]]
assert chain("a[b_.,c_]") == ["a", ["Optional", ["Pattern", "b", ["Blank"]]], ["Pattern", "c", ["Blank"]]]
assert chain("b_. c") == ["Times", ["Optional", ["Pattern", "b", ["Blank"]]], "c"]
# Slots for lambda functions
assert chain("#") == ["Slot", "1"]
assert chain("#3") == ["Slot", "3"]
assert chain("#n") == ["Slot", "n"]
assert chain("##") == ["SlotSequence", "1"]
assert chain("##a") == ["SlotSequence", "a"]
# Lambda functions
assert chain("x&") == ["Function", "x"]
assert chain("#&") == ["Function", ["Slot", "1"]]
assert chain("#+3&") == ["Function", ["Plus", ["Slot", "1"], "3"]]
assert chain("#1 + #2&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]]
assert chain("# + #&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "1"]]]
assert chain("#&[x]") == [["Function", ["Slot", "1"]], "x"]
assert chain("#1 + #2 & [x, y]") == [["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]], "x", "y"]
assert chain("#1^2#2^3&") == ["Function", ["Times", ["Power", ["Slot", "1"], "2"], ["Power", ["Slot", "2"], "3"]]]
# Strings inside Mathematica expressions:
assert chain('"abc"') == ["_Str", "abc"]
assert chain('"a\\"b"') == ["_Str", 'a"b']
# This expression does not make sense mathematically, it's just testing the parser:
assert chain('x + "abc" ^ 3') == ["Plus", "x", ["Power", ["_Str", "abc"], "3"]]
assert chain('"a (* b *) c"') == ["_Str", "a (* b *) c"]
assert chain('"a" (* b *) ') == ["_Str", "a"]
assert chain('"a [ b] "') == ["_Str", "a [ b] "]
raises(SyntaxError, lambda: chain('"'))
raises(SyntaxError, lambda: chain('"\\"'))
raises(SyntaxError, lambda: chain('"abc'))
raises(SyntaxError, lambda: chain('"abc\\"def'))
# Invalid expressions:
raises(SyntaxError, lambda: chain("(,"))
raises(SyntaxError, lambda: chain("()"))
raises(SyntaxError, lambda: chain("a (* b"))
def test_parser_mathematica_exp_alt():
parser = MathematicaParser()
convert_chain2 = lambda expr: parser._from_fullformlist_to_fullformsympy(parser._from_fullform_to_fullformlist(expr))
convert_chain3 = lambda expr: parser._from_fullformsympy_to_sympy(convert_chain2(expr))
Sin, Times, Plus, Power = symbols("Sin Times Plus Power", cls=Function)
full_form1 = "Sin[Times[x, y]]"
full_form2 = "Plus[Times[x, y], z]"
full_form3 = "Sin[Times[x, Plus[y, z], Power[w, n]]]]"
assert parser._from_fullform_to_fullformlist(full_form1) == ["Sin", ["Times", "x", "y"]]
assert parser._from_fullform_to_fullformlist(full_form2) == ["Plus", ["Times", "x", "y"], "z"]
assert parser._from_fullform_to_fullformlist(full_form3) == ["Sin", ["Times", "x", ["Plus", "y", "z"], ["Power", "w", "n"]]]
assert convert_chain2(full_form1) == Sin(Times(x, y))
assert convert_chain2(full_form2) == Plus(Times(x, y), z)
assert convert_chain2(full_form3) == Sin(Times(x, Plus(y, z), Power(w, n)))
assert convert_chain3(full_form1) == sin(x*y)
assert convert_chain3(full_form2) == x*y + z
assert convert_chain3(full_form3) == sin(x*(y + z)*w**n)
|
6caaabfa4fc4bc61aef626be0d7610f45eabbe1f7a79f2463e04bfc2a395b7f0 | # Ported from latex2sympy by @augustt198
# https://github.com/augustt198/latex2sympy
# See license in LICENSE.txt
import sympy
from sympy.external import import_module
from sympy.printing.str import StrPrinter
from sympy.physics.quantum.state import Bra, Ket
from .errors import LaTeXParsingError
LaTeXParser = LaTeXLexer = MathErrorListener = None
try:
LaTeXParser = import_module('sympy.parsing.latex._antlr.latexparser',
import_kwargs={'fromlist': ['LaTeXParser']}).LaTeXParser
LaTeXLexer = import_module('sympy.parsing.latex._antlr.latexlexer',
import_kwargs={'fromlist': ['LaTeXLexer']}).LaTeXLexer
except Exception:
pass
ErrorListener = import_module('antlr4.error.ErrorListener',
warn_not_installed=True,
import_kwargs={'fromlist': ['ErrorListener']}
)
if ErrorListener:
class MathErrorListener(ErrorListener.ErrorListener): # type: ignore
def __init__(self, src):
super(ErrorListener.ErrorListener, self).__init__()
self.src = src
def syntaxError(self, recog, symbol, line, col, msg, e):
fmt = "%s\n%s\n%s"
marker = "~" * col + "^"
if msg.startswith("missing"):
err = fmt % (msg, self.src, marker)
elif msg.startswith("no viable"):
err = fmt % ("I expected something else here", self.src, marker)
elif msg.startswith("mismatched"):
names = LaTeXParser.literalNames
expected = [
names[i] for i in e.getExpectedTokens() if i < len(names)
]
if len(expected) < 10:
expected = " ".join(expected)
err = (fmt % ("I expected one of these: " + expected, self.src,
marker))
else:
err = (fmt % ("I expected something else here", self.src,
marker))
else:
err = fmt % ("I don't understand this", self.src, marker)
raise LaTeXParsingError(err)
def parse_latex(sympy):
antlr4 = import_module('antlr4', warn_not_installed=True)
if None in [antlr4, MathErrorListener]:
raise ImportError("LaTeX parsing requires the antlr4 Python package,"
" provided by pip (antlr4-python2-runtime or"
" antlr4-python3-runtime) or"
" conda (antlr-python-runtime)")
matherror = MathErrorListener(sympy)
stream = antlr4.InputStream(sympy)
lex = LaTeXLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = antlr4.CommonTokenStream(lex)
parser = LaTeXParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
relation = parser.math().relation()
expr = convert_relation(relation)
return expr
def convert_relation(rel):
if rel.expr():
return convert_expr(rel.expr())
lh = convert_relation(rel.relation(0))
rh = convert_relation(rel.relation(1))
if rel.LT():
return sympy.StrictLessThan(lh, rh)
elif rel.LTE():
return sympy.LessThan(lh, rh)
elif rel.GT():
return sympy.StrictGreaterThan(lh, rh)
elif rel.GTE():
return sympy.GreaterThan(lh, rh)
elif rel.EQUAL():
return sympy.Eq(lh, rh)
elif rel.NEQ():
return sympy.Ne(lh, rh)
def convert_expr(expr):
return convert_add(expr.additive())
def convert_add(add):
if add.ADD():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
return sympy.Add(lh, rh, evaluate=False)
elif add.SUB():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
return sympy.Add(lh, sympy.Mul(-1, rh, evaluate=False),
evaluate=False)
else:
return convert_mp(add.mp())
def convert_mp(mp):
if hasattr(mp, 'mp'):
mp_left = mp.mp(0)
mp_right = mp.mp(1)
else:
mp_left = mp.mp_nofunc(0)
mp_right = mp.mp_nofunc(1)
if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
return sympy.Mul(lh, rh, evaluate=False)
elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
else:
if hasattr(mp, 'unary'):
return convert_unary(mp.unary())
else:
return convert_unary(mp.unary_nofunc())
def convert_unary(unary):
if hasattr(unary, 'unary'):
nested_unary = unary.unary()
else:
nested_unary = unary.unary_nofunc()
if hasattr(unary, 'postfix_nofunc'):
first = unary.postfix()
tail = unary.postfix_nofunc()
postfix = [first] + tail
else:
postfix = unary.postfix()
if unary.ADD():
return convert_unary(nested_unary)
elif unary.SUB():
numabs = convert_unary(nested_unary)
# Use Integer(-n) instead of Mul(-1, n)
return -numabs
elif postfix:
return convert_postfix_list(postfix)
def convert_postfix_list(arr, i=0):
if i >= len(arr):
raise LaTeXParsingError("Index out of bounds")
res = convert_postfix(arr[i])
if isinstance(res, sympy.Expr):
if i == len(arr) - 1:
return res # nothing to multiply by
else:
if i > 0:
left = convert_postfix(arr[i - 1])
right = convert_postfix(arr[i + 1])
if isinstance(left, sympy.Expr) and isinstance(
right, sympy.Expr):
left_syms = convert_postfix(arr[i - 1]).atoms(sympy.Symbol)
right_syms = convert_postfix(arr[i + 1]).atoms(
sympy.Symbol)
# if the left and right sides contain no variables and the
# symbol in between is 'x', treat as multiplication.
if not (left_syms or right_syms) and str(res) == 'x':
return convert_postfix_list(arr, i + 1)
# multiply by next
return sympy.Mul(
res, convert_postfix_list(arr, i + 1), evaluate=False)
else: # must be derivative
wrt = res[0]
if i == len(arr) - 1:
raise LaTeXParsingError("Expected expression for derivative")
else:
expr = convert_postfix_list(arr, i + 1)
return sympy.Derivative(expr, wrt)
def do_subs(expr, at):
if at.expr():
at_expr = convert_expr(at.expr())
syms = at_expr.atoms(sympy.Symbol)
if len(syms) == 0:
return expr
elif len(syms) > 0:
sym = next(iter(syms))
return expr.subs(sym, at_expr)
elif at.equality():
lh = convert_expr(at.equality().expr(0))
rh = convert_expr(at.equality().expr(1))
return expr.subs(lh, rh)
def convert_postfix(postfix):
if hasattr(postfix, 'exp'):
exp_nested = postfix.exp()
else:
exp_nested = postfix.exp_nofunc()
exp = convert_exp(exp_nested)
for op in postfix.postfix_op():
if op.BANG():
if isinstance(exp, list):
raise LaTeXParsingError("Cannot apply postfix to derivative")
exp = sympy.factorial(exp, evaluate=False)
elif op.eval_at():
ev = op.eval_at()
at_b = None
at_a = None
if ev.eval_at_sup():
at_b = do_subs(exp, ev.eval_at_sup())
if ev.eval_at_sub():
at_a = do_subs(exp, ev.eval_at_sub())
if at_b is not None and at_a is not None:
exp = sympy.Add(at_b, -1 * at_a, evaluate=False)
elif at_b is not None:
exp = at_b
elif at_a is not None:
exp = at_a
return exp
def convert_exp(exp):
if hasattr(exp, 'exp'):
exp_nested = exp.exp()
else:
exp_nested = exp.exp_nofunc()
if exp_nested:
base = convert_exp(exp_nested)
if isinstance(base, list):
raise LaTeXParsingError("Cannot raise derivative to power")
if exp.atom():
exponent = convert_atom(exp.atom())
elif exp.expr():
exponent = convert_expr(exp.expr())
return sympy.Pow(base, exponent, evaluate=False)
else:
if hasattr(exp, 'comp'):
return convert_comp(exp.comp())
else:
return convert_comp(exp.comp_nofunc())
def convert_comp(comp):
if comp.group():
return convert_expr(comp.group().expr())
elif comp.abs_group():
return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
elif comp.atom():
return convert_atom(comp.atom())
elif comp.floor():
return convert_floor(comp.floor())
elif comp.ceil():
return convert_ceil(comp.ceil())
elif comp.func():
return convert_func(comp.func())
def convert_atom(atom):
if atom.LETTER():
subscriptName = ''
if atom.subexpr():
subscript = None
if atom.subexpr().expr(): # subscript is expr
subscript = convert_expr(atom.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(atom.subexpr().atom())
subscriptName = '_{' + StrPrinter().doprint(subscript) + '}'
return sympy.Symbol(atom.LETTER().getText() + subscriptName)
elif atom.SYMBOL():
s = atom.SYMBOL().getText()[1:]
if s == "infty":
return sympy.oo
else:
if atom.subexpr():
subscript = None
if atom.subexpr().expr(): # subscript is expr
subscript = convert_expr(atom.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(atom.subexpr().atom())
subscriptName = StrPrinter().doprint(subscript)
s += '_{' + subscriptName + '}'
return sympy.Symbol(s)
elif atom.NUMBER():
s = atom.NUMBER().getText().replace(",", "")
return sympy.Number(s)
elif atom.DIFFERENTIAL():
var = get_differential_var(atom.DIFFERENTIAL())
return sympy.Symbol('d' + var.name)
elif atom.mathit():
text = rule2text(atom.mathit().mathit_text())
return sympy.Symbol(text)
elif atom.frac():
return convert_frac(atom.frac())
elif atom.binom():
return convert_binom(atom.binom())
elif atom.bra():
val = convert_expr(atom.bra().expr())
return Bra(val)
elif atom.ket():
val = convert_expr(atom.ket().expr())
return Ket(val)
def rule2text(ctx):
stream = ctx.start.getInputStream()
# starting index of starting token
startIdx = ctx.start.start
# stopping index of stopping token
stopIdx = ctx.stop.stop
return stream.getText(startIdx, stopIdx)
def convert_frac(frac):
diff_op = False
partial_op = False
lower_itv = frac.lower.getSourceInterval()
lower_itv_len = lower_itv[1] - lower_itv[0] + 1
if (frac.lower.start == frac.lower.stop
and frac.lower.start.type == LaTeXLexer.DIFFERENTIAL):
wrt = get_differential_var_str(frac.lower.start.text)
diff_op = True
elif (lower_itv_len == 2 and frac.lower.start.type == LaTeXLexer.SYMBOL
and frac.lower.start.text == '\\partial'
and (frac.lower.stop.type == LaTeXLexer.LETTER
or frac.lower.stop.type == LaTeXLexer.SYMBOL)):
partial_op = True
wrt = frac.lower.stop.text
if frac.lower.stop.type == LaTeXLexer.SYMBOL:
wrt = wrt[1:]
if diff_op or partial_op:
wrt = sympy.Symbol(wrt)
if (diff_op and frac.upper.start == frac.upper.stop
and frac.upper.start.type == LaTeXLexer.LETTER
and frac.upper.start.text == 'd'):
return [wrt]
elif (partial_op and frac.upper.start == frac.upper.stop
and frac.upper.start.type == LaTeXLexer.SYMBOL
and frac.upper.start.text == '\\partial'):
return [wrt]
upper_text = rule2text(frac.upper)
expr_top = None
if diff_op and upper_text.startswith('d'):
expr_top = parse_latex(upper_text[1:])
elif partial_op and frac.upper.start.text == '\\partial':
expr_top = parse_latex(upper_text[len('\\partial'):])
if expr_top:
return sympy.Derivative(expr_top, wrt)
expr_top = convert_expr(frac.upper)
expr_bot = convert_expr(frac.lower)
inverse_denom = sympy.Pow(expr_bot, -1, evaluate=False)
if expr_top == 1:
return inverse_denom
else:
return sympy.Mul(expr_top, inverse_denom, evaluate=False)
def convert_binom(binom):
expr_n = convert_expr(binom.n)
expr_k = convert_expr(binom.k)
return sympy.binomial(expr_n, expr_k, evaluate=False)
def convert_floor(floor):
val = convert_expr(floor.val)
return sympy.floor(val, evaluate=False)
def convert_ceil(ceil):
val = convert_expr(ceil.val)
return sympy.ceiling(val, evaluate=False)
def convert_func(func):
if func.func_normal():
if func.L_PAREN(): # function called with parenthesis
arg = convert_func_arg(func.func_arg())
else:
arg = convert_func_arg(func.func_arg_noparens())
name = func.func_normal().start.text[1:]
# change arc<trig> -> a<trig>
if name in [
"arcsin", "arccos", "arctan", "arccsc", "arcsec", "arccot"
]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if name in ["arsinh", "arcosh", "artanh"]:
name = "a" + name[2:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if name == "exp":
expr = sympy.exp(arg, evaluate=False)
if (name == "log" or name == "ln"):
if func.subexpr():
if func.subexpr().expr():
base = convert_expr(func.subexpr().expr())
else:
base = convert_atom(func.subexpr().atom())
elif name == "log":
base = 10
elif name == "ln":
base = sympy.E
expr = sympy.log(arg, base, evaluate=False)
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if name in [
"sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh",
"tanh"
]:
if func_pow == -1:
name = "a" + name
should_pow = False
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.LETTER() or func.SYMBOL():
if func.LETTER():
fname = func.LETTER().getText()
elif func.SYMBOL():
fname = func.SYMBOL().getText()[1:]
fname = str(fname) # can't be unicode
if func.subexpr():
subscript = None
if func.subexpr().expr(): # subscript is expr
subscript = convert_expr(func.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(func.subexpr().atom())
subscriptName = StrPrinter().doprint(subscript)
fname += '_{' + subscriptName + '}'
input_args = func.args()
output_args = []
while input_args.args(): # handle multiple arguments to function
output_args.append(convert_expr(input_args.expr()))
input_args = input_args.args()
output_args.append(convert_expr(input_args.expr()))
return sympy.Function(fname)(*output_args)
elif func.FUNC_INT():
return handle_integral(func)
elif func.FUNC_SQRT():
expr = convert_expr(func.base)
if func.root:
r = convert_expr(func.root)
return sympy.root(expr, r, evaluate=False)
else:
return sympy.sqrt(expr, evaluate=False)
elif func.FUNC_OVERLINE():
expr = convert_expr(func.base)
return sympy.conjugate(expr, evaluate=False)
elif func.FUNC_SUM():
return handle_sum_or_prod(func, "summation")
elif func.FUNC_PROD():
return handle_sum_or_prod(func, "product")
elif func.FUNC_LIM():
return handle_limit(func)
def convert_func_arg(arg):
if hasattr(arg, 'expr'):
return convert_expr(arg.expr())
else:
return convert_mp(arg.mp_nofunc())
def handle_integral(func):
if func.additive():
integrand = convert_add(func.additive())
elif func.frac():
integrand = convert_frac(func.frac())
else:
integrand = 1
int_var = None
if func.DIFFERENTIAL():
int_var = get_differential_var(func.DIFFERENTIAL())
else:
for sym in integrand.atoms(sympy.Symbol):
s = str(sym)
if len(s) > 1 and s[0] == 'd':
if s[1] == '\\':
int_var = sympy.Symbol(s[2:])
else:
int_var = sympy.Symbol(s[1:])
int_sym = sym
if int_var:
integrand = integrand.subs(int_sym, 1)
else:
# Assume dx by default
int_var = sympy.Symbol('x')
if func.subexpr():
if func.subexpr().atom():
lower = convert_atom(func.subexpr().atom())
else:
lower = convert_expr(func.subexpr().expr())
if func.supexpr().atom():
upper = convert_atom(func.supexpr().atom())
else:
upper = convert_expr(func.supexpr().expr())
return sympy.Integral(integrand, (int_var, lower, upper))
else:
return sympy.Integral(integrand, int_var)
def handle_sum_or_prod(func, name):
val = convert_mp(func.mp())
iter_var = convert_expr(func.subeq().equality().expr(0))
start = convert_expr(func.subeq().equality().expr(1))
if func.supexpr().expr(): # ^{expr}
end = convert_expr(func.supexpr().expr())
else: # ^atom
end = convert_atom(func.supexpr().atom())
if name == "summation":
return sympy.Sum(val, (iter_var, start, end))
elif name == "product":
return sympy.Product(val, (iter_var, start, end))
def handle_limit(func):
sub = func.limit_sub()
if sub.LETTER():
var = sympy.Symbol(sub.LETTER().getText())
elif sub.SYMBOL():
var = sympy.Symbol(sub.SYMBOL().getText()[1:])
else:
var = sympy.Symbol('x')
if sub.SUB():
direction = "-"
else:
direction = "+"
approaching = convert_expr(sub.expr())
content = convert_mp(func.mp())
return sympy.Limit(content, var, approaching, direction)
def get_differential_var(d):
text = get_differential_var_str(d.getText())
return sympy.Symbol(text)
def get_differential_var_str(text):
for i in range(1, len(text)):
c = text[i]
if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
idx = i
break
text = text[idx:]
if text[0] == "\\":
text = text[1:]
return text
|
7fb2474bd313054eea41b8445da3a7f441833964af5b78a4fb53ef7236b9f38d |
# encoding: utf-8
# *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND ***
#
# Generated from ../LaTeX.g4, derived from latex2sympy
# latex2sympy is licensed under the MIT license
# https://github.com/augustt198/latex2sympy/blob/master/LICENSE.txt
#
# Generated with antlr4
# antlr4 is licensed under the BSD-3-Clause License
# https://github.com/antlr/antlr4/blob/master/LICENSE.txt
from __future__ import print_function
from antlr4 import *
from io import StringIO
import sys
def serializedATN():
with StringIO() as buf:
buf.write(u"\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2")
buf.write(u"Z\u03a9\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4")
buf.write(u"\7\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r")
buf.write(u"\t\r\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22")
buf.write(u"\4\23\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4")
buf.write(u"\30\t\30\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35")
buf.write(u"\t\35\4\36\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4")
buf.write(u"$\t$\4%\t%\4&\t&\4\'\t\'\4(\t(\4)\t)\4*\t*\4+\t+\4,\t")
buf.write(u",\4-\t-\4.\t.\4/\t/\4\60\t\60\4\61\t\61\4\62\t\62\4\63")
buf.write(u"\t\63\4\64\t\64\4\65\t\65\4\66\t\66\4\67\t\67\48\t8\4")
buf.write(u"9\t9\4:\t:\4;\t;\4<\t<\4=\t=\4>\t>\4?\t?\4@\t@\4A\tA")
buf.write(u"\4B\tB\4C\tC\4D\tD\4E\tE\4F\tF\4G\tG\4H\tH\4I\tI\4J\t")
buf.write(u"J\4K\tK\4L\tL\4M\tM\4N\tN\4O\tO\4P\tP\4Q\tQ\4R\tR\4S")
buf.write(u"\tS\4T\tT\4U\tU\4V\tV\4W\tW\4X\tX\4Y\tY\4Z\tZ\4[\t[\3")
buf.write(u"\2\3\2\3\3\6\3\u00bb\n\3\r\3\16\3\u00bc\3\3\3\3\3\4\3")
buf.write(u"\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\3\4\5\4\u00cd")
buf.write(u"\n\4\3\4\3\4\3\5\3\5\3\5\3\5\3\5\3\5\3\5\3\5\3\5\3\5")
buf.write(u"\3\5\5\5\u00dc\n\5\3\5\3\5\3\6\3\6\3\6\3\6\3\6\3\6\3")
buf.write(u"\6\3\6\3\6\3\6\3\6\3\6\3\6\5\6\u00ed\n\6\3\6\3\6\3\7")
buf.write(u"\3\7\3\7\3\7\3\7\3\7\3\7\3\7\3\b\3\b\3\b\3\b\3\b\3\b")
buf.write(u"\3\b\3\b\3\b\3\t\3\t\3\t\3\t\3\t\3\t\3\t\3\t\3\t\3\t")
buf.write(u"\3\t\3\t\3\t\3\t\3\t\5\t\u0111\n\t\3\t\3\t\3\n\3\n\3")
buf.write(u"\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3\n\3")
buf.write(u"\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13\3\13")
buf.write(u"\3\13\3\13\3\13\3\13\3\13\3\13\3\f\3\f\3\f\3\f\3\f\3")
buf.write(u"\f\3\f\3\f\3\r\3\r\3\r\3\r\3\r\3\r\3\r\3\r\3\r\3\16\3")
buf.write(u"\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16")
buf.write(u"\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3")
buf.write(u"\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16")
buf.write(u"\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\3")
buf.write(u"\16\3\16\3\16\3\16\3\16\3\16\3\16\3\16\5\16\u0179\n\16")
buf.write(u"\3\16\3\16\3\17\3\17\3\20\3\20\3\21\3\21\3\22\3\22\3")
buf.write(u"\23\3\23\3\24\3\24\3\25\3\25\3\26\3\26\3\27\3\27\3\27")
buf.write(u"\3\30\3\30\3\30\3\31\3\31\3\32\3\32\3\33\3\33\3\34\3")
buf.write(u"\34\3\34\3\34\3\34\3\34\3\34\3\34\3\35\3\35\3\35\3\35")
buf.write(u"\3\35\3\35\3\35\3\36\3\36\3\36\3\36\3\36\3\36\3\36\3")
buf.write(u"\36\3\37\3\37\3\37\3\37\3\37\3\37\3\37\3\37\3 \3 \3 ")
buf.write(u"\3 \3 \3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3")
buf.write(u"!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!")
buf.write(u"\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3")
buf.write(u"!\3!\3!\3!\3!\5!\u01f4\n!\3\"\3\"\3\"\3\"\3\"\3\"\3\"")
buf.write(u"\3\"\3\"\3\"\3\"\3\"\3\"\3\"\3\"\5\"\u0205\n\"\3#\3#")
buf.write(u"\3#\3#\3#\3$\3$\3$\3$\3$\3$\3%\3%\3%\3%\3%\3&\3&\3&\3")
buf.write(u"&\3&\3\'\3\'\3\'\3\'\3(\3(\3(\3(\3(\3)\3)\3)\3)\3)\3")
buf.write(u"*\3*\3*\3*\3*\3+\3+\3+\3+\3+\3,\3,\3,\3,\3,\3-\3-\3-")
buf.write(u"\3-\3-\3.\3.\3.\3.\3.\3.\3.\3.\3/\3/\3/\3/\3/\3/\3/\3")
buf.write(u"/\3\60\3\60\3\60\3\60\3\60\3\60\3\60\3\60\3\61\3\61\3")
buf.write(u"\61\3\61\3\61\3\61\3\61\3\61\3\62\3\62\3\62\3\62\3\62")
buf.write(u"\3\62\3\62\3\62\3\63\3\63\3\63\3\63\3\63\3\63\3\63\3")
buf.write(u"\63\3\64\3\64\3\64\3\64\3\64\3\64\3\65\3\65\3\65\3\65")
buf.write(u"\3\65\3\65\3\66\3\66\3\66\3\66\3\66\3\66\3\67\3\67\3")
buf.write(u"\67\3\67\3\67\3\67\3\67\3\67\38\38\38\38\38\38\38\38")
buf.write(u"\39\39\39\39\39\39\39\39\3:\3:\3:\3:\3:\3:\3:\3:\3;\3")
buf.write(u";\3;\3;\3;\3;\3;\3;\3<\3<\3<\3<\3<\3<\3<\3=\3=\3=\3=")
buf.write(u"\3=\3=\3=\3>\3>\3>\3>\3>\3>\3?\3?\3?\3?\3?\3?\3?\3?\3")
buf.write(u"?\3?\3@\3@\3@\3@\3@\3@\3@\3A\3A\3A\3A\3A\3A\3B\3B\3B")
buf.write(u"\3B\3B\3C\3C\3C\3C\3C\3C\3C\3C\3C\3C\3C\3C\3C\3C\3C\3")
buf.write(u"C\3C\5C\u02e9\nC\3D\3D\3D\3D\3D\3D\3D\3E\3E\3E\3E\3E")
buf.write(u"\3E\3E\3E\3F\3F\3F\3F\3F\3F\3F\3F\3G\3G\3G\3G\3G\3G\3")
buf.write(u"G\3G\3H\3H\3I\3I\3J\3J\3K\3K\3L\3L\7L\u0314\nL\fL\16")
buf.write(u"L\u0317\13L\3L\3L\3L\6L\u031c\nL\rL\16L\u031d\5L\u0320")
buf.write(u"\nL\3M\3M\3N\3N\3O\6O\u0327\nO\rO\16O\u0328\3O\3O\3O")
buf.write(u"\3O\3O\7O\u0330\nO\fO\16O\u0333\13O\3O\7O\u0336\nO\f")
buf.write(u"O\16O\u0339\13O\3O\3O\3O\3O\3O\7O\u0340\nO\fO\16O\u0343")
buf.write(u"\13O\3O\3O\6O\u0347\nO\rO\16O\u0348\5O\u034b\nO\3P\3")
buf.write(u"P\7P\u034f\nP\fP\16P\u0352\13P\5P\u0354\nP\3P\3P\3P\7")
buf.write(u"P\u0359\nP\fP\16P\u035c\13P\3P\5P\u035f\nP\5P\u0361\n")
buf.write(u"P\3Q\3Q\3Q\3Q\3Q\3R\3R\3S\3S\3S\3S\3S\3S\3S\3S\3S\5S")
buf.write(u"\u0373\nS\3T\3T\3T\3T\3T\3T\3U\3U\3U\3U\3U\3U\3U\3U\3")
buf.write(u"U\3U\3V\3V\3W\3W\3W\3W\3W\3W\3W\3W\3W\5W\u0390\nW\3X")
buf.write(u"\3X\3X\3X\3X\3X\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Y\3Z\3Z\3")
buf.write(u"[\3[\6[\u03a6\n[\r[\16[\u03a7\5\u0315\u0350\u035a\2\\")
buf.write(u"\3\3\5\4\7\5\t\6\13\7\r\b\17\t\21\n\23\13\25\f\27\r\31")
buf.write(u"\16\33\17\35\20\37\21!\22#\23%\24\'\25)\26+\27-\30/\31")
buf.write(u"\61\32\63\33\65\34\67\359\36;\37= ?!A\"C#E$G%I&K\'M(")
buf.write(u"O)Q*S+U,W-Y.[/]\60_\61a\62c\63e\64g\65i\66k\67m8o9q:")
buf.write(u"s;u<w=y>{?}@\177A\u0081B\u0083C\u0085D\u0087E\u0089F")
buf.write(u"\u008bG\u008dH\u008fI\u0091J\u0093K\u0095\2\u0097L\u0099")
buf.write(u"M\u009b\2\u009dN\u009fO\u00a1P\u00a3Q\u00a5R\u00a7S\u00a9")
buf.write(u"T\u00abU\u00adV\u00afW\u00b1X\u00b3Y\u00b5Z\3\2\5\5\2")
buf.write(u"\13\f\17\17\"\"\4\2C\\c|\3\2\62;\2\u03d3\2\3\3\2\2\2")
buf.write(u"\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2\2\r")
buf.write(u"\3\2\2\2\2\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2\2\2\25")
buf.write(u"\3\2\2\2\2\27\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2\2\35")
buf.write(u"\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2\2#\3\2\2\2\2%\3\2\2")
buf.write(u"\2\2\'\3\2\2\2\2)\3\2\2\2\2+\3\2\2\2\2-\3\2\2\2\2/\3")
buf.write(u"\2\2\2\2\61\3\2\2\2\2\63\3\2\2\2\2\65\3\2\2\2\2\67\3")
buf.write(u"\2\2\2\29\3\2\2\2\2;\3\2\2\2\2=\3\2\2\2\2?\3\2\2\2\2")
buf.write(u"A\3\2\2\2\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2\2\2I\3\2\2\2")
buf.write(u"\2K\3\2\2\2\2M\3\2\2\2\2O\3\2\2\2\2Q\3\2\2\2\2S\3\2\2")
buf.write(u"\2\2U\3\2\2\2\2W\3\2\2\2\2Y\3\2\2\2\2[\3\2\2\2\2]\3\2")
buf.write(u"\2\2\2_\3\2\2\2\2a\3\2\2\2\2c\3\2\2\2\2e\3\2\2\2\2g\3")
buf.write(u"\2\2\2\2i\3\2\2\2\2k\3\2\2\2\2m\3\2\2\2\2o\3\2\2\2\2")
buf.write(u"q\3\2\2\2\2s\3\2\2\2\2u\3\2\2\2\2w\3\2\2\2\2y\3\2\2\2")
buf.write(u"\2{\3\2\2\2\2}\3\2\2\2\2\177\3\2\2\2\2\u0081\3\2\2\2")
buf.write(u"\2\u0083\3\2\2\2\2\u0085\3\2\2\2\2\u0087\3\2\2\2\2\u0089")
buf.write(u"\3\2\2\2\2\u008b\3\2\2\2\2\u008d\3\2\2\2\2\u008f\3\2")
buf.write(u"\2\2\2\u0091\3\2\2\2\2\u0093\3\2\2\2\2\u0097\3\2\2\2")
buf.write(u"\2\u0099\3\2\2\2\2\u009d\3\2\2\2\2\u009f\3\2\2\2\2\u00a1")
buf.write(u"\3\2\2\2\2\u00a3\3\2\2\2\2\u00a5\3\2\2\2\2\u00a7\3\2")
buf.write(u"\2\2\2\u00a9\3\2\2\2\2\u00ab\3\2\2\2\2\u00ad\3\2\2\2")
buf.write(u"\2\u00af\3\2\2\2\2\u00b1\3\2\2\2\2\u00b3\3\2\2\2\2\u00b5")
buf.write(u"\3\2\2\2\3\u00b7\3\2\2\2\5\u00ba\3\2\2\2\7\u00cc\3\2")
buf.write(u"\2\2\t\u00db\3\2\2\2\13\u00ec\3\2\2\2\r\u00f0\3\2\2\2")
buf.write(u"\17\u00f8\3\2\2\2\21\u0110\3\2\2\2\23\u0114\3\2\2\2\25")
buf.write(u"\u0123\3\2\2\2\27\u0134\3\2\2\2\31\u013c\3\2\2\2\33\u0178")
buf.write(u"\3\2\2\2\35\u017c\3\2\2\2\37\u017e\3\2\2\2!\u0180\3\2")
buf.write(u"\2\2#\u0182\3\2\2\2%\u0184\3\2\2\2\'\u0186\3\2\2\2)\u0188")
buf.write(u"\3\2\2\2+\u018a\3\2\2\2-\u018c\3\2\2\2/\u018f\3\2\2\2")
buf.write(u"\61\u0192\3\2\2\2\63\u0194\3\2\2\2\65\u0196\3\2\2\2\67")
buf.write(u"\u0198\3\2\2\29\u01a0\3\2\2\2;\u01a7\3\2\2\2=\u01af\3")
buf.write(u"\2\2\2?\u01b7\3\2\2\2A\u01f3\3\2\2\2C\u0204\3\2\2\2E")
buf.write(u"\u0206\3\2\2\2G\u020b\3\2\2\2I\u0211\3\2\2\2K\u0216\3")
buf.write(u"\2\2\2M\u021b\3\2\2\2O\u021f\3\2\2\2Q\u0224\3\2\2\2S")
buf.write(u"\u0229\3\2\2\2U\u022e\3\2\2\2W\u0233\3\2\2\2Y\u0238\3")
buf.write(u"\2\2\2[\u023d\3\2\2\2]\u0245\3\2\2\2_\u024d\3\2\2\2a")
buf.write(u"\u0255\3\2\2\2c\u025d\3\2\2\2e\u0265\3\2\2\2g\u026d\3")
buf.write(u"\2\2\2i\u0273\3\2\2\2k\u0279\3\2\2\2m\u027f\3\2\2\2o")
buf.write(u"\u0287\3\2\2\2q\u028f\3\2\2\2s\u0297\3\2\2\2u\u029f\3")
buf.write(u"\2\2\2w\u02a7\3\2\2\2y\u02ae\3\2\2\2{\u02b5\3\2\2\2}")
buf.write(u"\u02bb\3\2\2\2\177\u02c5\3\2\2\2\u0081\u02cc\3\2\2\2")
buf.write(u"\u0083\u02d2\3\2\2\2\u0085\u02e8\3\2\2\2\u0087\u02ea")
buf.write(u"\3\2\2\2\u0089\u02f1\3\2\2\2\u008b\u02f9\3\2\2\2\u008d")
buf.write(u"\u0301\3\2\2\2\u008f\u0309\3\2\2\2\u0091\u030b\3\2\2")
buf.write(u"\2\u0093\u030d\3\2\2\2\u0095\u030f\3\2\2\2\u0097\u0311")
buf.write(u"\3\2\2\2\u0099\u0321\3\2\2\2\u009b\u0323\3\2\2\2\u009d")
buf.write(u"\u034a\3\2\2\2\u009f\u0360\3\2\2\2\u00a1\u0362\3\2\2")
buf.write(u"\2\u00a3\u0367\3\2\2\2\u00a5\u0372\3\2\2\2\u00a7\u0374")
buf.write(u"\3\2\2\2\u00a9\u037a\3\2\2\2\u00ab\u0384\3\2\2\2\u00ad")
buf.write(u"\u038f\3\2\2\2\u00af\u0391\3\2\2\2\u00b1\u0397\3\2\2")
buf.write(u"\2\u00b3\u03a1\3\2\2\2\u00b5\u03a3\3\2\2\2\u00b7\u00b8")
buf.write(u"\7.\2\2\u00b8\4\3\2\2\2\u00b9\u00bb\t\2\2\2\u00ba\u00b9")
buf.write(u"\3\2\2\2\u00bb\u00bc\3\2\2\2\u00bc\u00ba\3\2\2\2\u00bc")
buf.write(u"\u00bd\3\2\2\2\u00bd\u00be\3\2\2\2\u00be\u00bf\b\3\2")
buf.write(u"\2\u00bf\6\3\2\2\2\u00c0\u00c1\7^\2\2\u00c1\u00cd\7.")
buf.write(u"\2\2\u00c2\u00c3\7^\2\2\u00c3\u00c4\7v\2\2\u00c4\u00c5")
buf.write(u"\7j\2\2\u00c5\u00c6\7k\2\2\u00c6\u00c7\7p\2\2\u00c7\u00c8")
buf.write(u"\7u\2\2\u00c8\u00c9\7r\2\2\u00c9\u00ca\7c\2\2\u00ca\u00cb")
buf.write(u"\7e\2\2\u00cb\u00cd\7g\2\2\u00cc\u00c0\3\2\2\2\u00cc")
buf.write(u"\u00c2\3\2\2\2\u00cd\u00ce\3\2\2\2\u00ce\u00cf\b\4\2")
buf.write(u"\2\u00cf\b\3\2\2\2\u00d0\u00d1\7^\2\2\u00d1\u00dc\7<")
buf.write(u"\2\2\u00d2\u00d3\7^\2\2\u00d3\u00d4\7o\2\2\u00d4\u00d5")
buf.write(u"\7g\2\2\u00d5\u00d6\7f\2\2\u00d6\u00d7\7u\2\2\u00d7\u00d8")
buf.write(u"\7r\2\2\u00d8\u00d9\7c\2\2\u00d9\u00da\7e\2\2\u00da\u00dc")
buf.write(u"\7g\2\2\u00db\u00d0\3\2\2\2\u00db\u00d2\3\2\2\2\u00dc")
buf.write(u"\u00dd\3\2\2\2\u00dd\u00de\b\5\2\2\u00de\n\3\2\2\2\u00df")
buf.write(u"\u00e0\7^\2\2\u00e0\u00ed\7=\2\2\u00e1\u00e2\7^\2\2\u00e2")
buf.write(u"\u00e3\7v\2\2\u00e3\u00e4\7j\2\2\u00e4\u00e5\7k\2\2\u00e5")
buf.write(u"\u00e6\7e\2\2\u00e6\u00e7\7m\2\2\u00e7\u00e8\7u\2\2\u00e8")
buf.write(u"\u00e9\7r\2\2\u00e9\u00ea\7c\2\2\u00ea\u00eb\7e\2\2\u00eb")
buf.write(u"\u00ed\7g\2\2\u00ec\u00df\3\2\2\2\u00ec\u00e1\3\2\2\2")
buf.write(u"\u00ed\u00ee\3\2\2\2\u00ee\u00ef\b\6\2\2\u00ef\f\3\2")
buf.write(u"\2\2\u00f0\u00f1\7^\2\2\u00f1\u00f2\7s\2\2\u00f2\u00f3")
buf.write(u"\7w\2\2\u00f3\u00f4\7c\2\2\u00f4\u00f5\7f\2\2\u00f5\u00f6")
buf.write(u"\3\2\2\2\u00f6\u00f7\b\7\2\2\u00f7\16\3\2\2\2\u00f8\u00f9")
buf.write(u"\7^\2\2\u00f9\u00fa\7s\2\2\u00fa\u00fb\7s\2\2\u00fb\u00fc")
buf.write(u"\7w\2\2\u00fc\u00fd\7c\2\2\u00fd\u00fe\7f\2\2\u00fe\u00ff")
buf.write(u"\3\2\2\2\u00ff\u0100\b\b\2\2\u0100\20\3\2\2\2\u0101\u0102")
buf.write(u"\7^\2\2\u0102\u0111\7#\2\2\u0103\u0104\7^\2\2\u0104\u0105")
buf.write(u"\7p\2\2\u0105\u0106\7g\2\2\u0106\u0107\7i\2\2\u0107\u0108")
buf.write(u"\7v\2\2\u0108\u0109\7j\2\2\u0109\u010a\7k\2\2\u010a\u010b")
buf.write(u"\7p\2\2\u010b\u010c\7u\2\2\u010c\u010d\7r\2\2\u010d\u010e")
buf.write(u"\7c\2\2\u010e\u010f\7e\2\2\u010f\u0111\7g\2\2\u0110\u0101")
buf.write(u"\3\2\2\2\u0110\u0103\3\2\2\2\u0111\u0112\3\2\2\2\u0112")
buf.write(u"\u0113\b\t\2\2\u0113\22\3\2\2\2\u0114\u0115\7^\2\2\u0115")
buf.write(u"\u0116\7p\2\2\u0116\u0117\7g\2\2\u0117\u0118\7i\2\2\u0118")
buf.write(u"\u0119\7o\2\2\u0119\u011a\7g\2\2\u011a\u011b\7f\2\2\u011b")
buf.write(u"\u011c\7u\2\2\u011c\u011d\7r\2\2\u011d\u011e\7c\2\2\u011e")
buf.write(u"\u011f\7e\2\2\u011f\u0120\7g\2\2\u0120\u0121\3\2\2\2")
buf.write(u"\u0121\u0122\b\n\2\2\u0122\24\3\2\2\2\u0123\u0124\7^")
buf.write(u"\2\2\u0124\u0125\7p\2\2\u0125\u0126\7g\2\2\u0126\u0127")
buf.write(u"\7i\2\2\u0127\u0128\7v\2\2\u0128\u0129\7j\2\2\u0129\u012a")
buf.write(u"\7k\2\2\u012a\u012b\7e\2\2\u012b\u012c\7m\2\2\u012c\u012d")
buf.write(u"\7u\2\2\u012d\u012e\7r\2\2\u012e\u012f\7c\2\2\u012f\u0130")
buf.write(u"\7e\2\2\u0130\u0131\7g\2\2\u0131\u0132\3\2\2\2\u0132")
buf.write(u"\u0133\b\13\2\2\u0133\26\3\2\2\2\u0134\u0135\7^\2\2\u0135")
buf.write(u"\u0136\7n\2\2\u0136\u0137\7g\2\2\u0137\u0138\7h\2\2\u0138")
buf.write(u"\u0139\7v\2\2\u0139\u013a\3\2\2\2\u013a\u013b\b\f\2\2")
buf.write(u"\u013b\30\3\2\2\2\u013c\u013d\7^\2\2\u013d\u013e\7t\2")
buf.write(u"\2\u013e\u013f\7k\2\2\u013f\u0140\7i\2\2\u0140\u0141")
buf.write(u"\7j\2\2\u0141\u0142\7v\2\2\u0142\u0143\3\2\2\2\u0143")
buf.write(u"\u0144\b\r\2\2\u0144\32\3\2\2\2\u0145\u0146\7^\2\2\u0146")
buf.write(u"\u0147\7x\2\2\u0147\u0148\7t\2\2\u0148\u0149\7w\2\2\u0149")
buf.write(u"\u014a\7n\2\2\u014a\u0179\7g\2\2\u014b\u014c\7^\2\2\u014c")
buf.write(u"\u014d\7x\2\2\u014d\u014e\7e\2\2\u014e\u014f\7g\2\2\u014f")
buf.write(u"\u0150\7p\2\2\u0150\u0151\7v\2\2\u0151\u0152\7g\2\2\u0152")
buf.write(u"\u0179\7t\2\2\u0153\u0154\7^\2\2\u0154\u0155\7x\2\2\u0155")
buf.write(u"\u0156\7d\2\2\u0156\u0157\7q\2\2\u0157\u0179\7z\2\2\u0158")
buf.write(u"\u0159\7^\2\2\u0159\u015a\7x\2\2\u015a\u015b\7u\2\2\u015b")
buf.write(u"\u015c\7m\2\2\u015c\u015d\7k\2\2\u015d\u0179\7r\2\2\u015e")
buf.write(u"\u015f\7^\2\2\u015f\u0160\7x\2\2\u0160\u0161\7u\2\2\u0161")
buf.write(u"\u0162\7r\2\2\u0162\u0163\7c\2\2\u0163\u0164\7e\2\2\u0164")
buf.write(u"\u0179\7g\2\2\u0165\u0166\7^\2\2\u0166\u0167\7j\2\2\u0167")
buf.write(u"\u0168\7h\2\2\u0168\u0169\7k\2\2\u0169\u0179\7n\2\2\u016a")
buf.write(u"\u016b\7^\2\2\u016b\u0179\7,\2\2\u016c\u016d\7^\2\2\u016d")
buf.write(u"\u0179\7/\2\2\u016e\u016f\7^\2\2\u016f\u0179\7\60\2\2")
buf.write(u"\u0170\u0171\7^\2\2\u0171\u0179\7\61\2\2\u0172\u0173")
buf.write(u"\7^\2\2\u0173\u0179\7$\2\2\u0174\u0175\7^\2\2\u0175\u0179")
buf.write(u"\7*\2\2\u0176\u0177\7^\2\2\u0177\u0179\7?\2\2\u0178\u0145")
buf.write(u"\3\2\2\2\u0178\u014b\3\2\2\2\u0178\u0153\3\2\2\2\u0178")
buf.write(u"\u0158\3\2\2\2\u0178\u015e\3\2\2\2\u0178\u0165\3\2\2")
buf.write(u"\2\u0178\u016a\3\2\2\2\u0178\u016c\3\2\2\2\u0178\u016e")
buf.write(u"\3\2\2\2\u0178\u0170\3\2\2\2\u0178\u0172\3\2\2\2\u0178")
buf.write(u"\u0174\3\2\2\2\u0178\u0176\3\2\2\2\u0179\u017a\3\2\2")
buf.write(u"\2\u017a\u017b\b\16\2\2\u017b\34\3\2\2\2\u017c\u017d")
buf.write(u"\7-\2\2\u017d\36\3\2\2\2\u017e\u017f\7/\2\2\u017f \3")
buf.write(u"\2\2\2\u0180\u0181\7,\2\2\u0181\"\3\2\2\2\u0182\u0183")
buf.write(u"\7\61\2\2\u0183$\3\2\2\2\u0184\u0185\7*\2\2\u0185&\3")
buf.write(u"\2\2\2\u0186\u0187\7+\2\2\u0187(\3\2\2\2\u0188\u0189")
buf.write(u"\7}\2\2\u0189*\3\2\2\2\u018a\u018b\7\177\2\2\u018b,\3")
buf.write(u"\2\2\2\u018c\u018d\7^\2\2\u018d\u018e\7}\2\2\u018e.\3")
buf.write(u"\2\2\2\u018f\u0190\7^\2\2\u0190\u0191\7\177\2\2\u0191")
buf.write(u"\60\3\2\2\2\u0192\u0193\7]\2\2\u0193\62\3\2\2\2\u0194")
buf.write(u"\u0195\7_\2\2\u0195\64\3\2\2\2\u0196\u0197\7~\2\2\u0197")
buf.write(u"\66\3\2\2\2\u0198\u0199\7^\2\2\u0199\u019a\7t\2\2\u019a")
buf.write(u"\u019b\7k\2\2\u019b\u019c\7i\2\2\u019c\u019d\7j\2\2\u019d")
buf.write(u"\u019e\7v\2\2\u019e\u019f\7~\2\2\u019f8\3\2\2\2\u01a0")
buf.write(u"\u01a1\7^\2\2\u01a1\u01a2\7n\2\2\u01a2\u01a3\7g\2\2\u01a3")
buf.write(u"\u01a4\7h\2\2\u01a4\u01a5\7v\2\2\u01a5\u01a6\7~\2\2\u01a6")
buf.write(u":\3\2\2\2\u01a7\u01a8\7^\2\2\u01a8\u01a9\7n\2\2\u01a9")
buf.write(u"\u01aa\7c\2\2\u01aa\u01ab\7p\2\2\u01ab\u01ac\7i\2\2\u01ac")
buf.write(u"\u01ad\7n\2\2\u01ad\u01ae\7g\2\2\u01ae<\3\2\2\2\u01af")
buf.write(u"\u01b0\7^\2\2\u01b0\u01b1\7t\2\2\u01b1\u01b2\7c\2\2\u01b2")
buf.write(u"\u01b3\7p\2\2\u01b3\u01b4\7i\2\2\u01b4\u01b5\7n\2\2\u01b5")
buf.write(u"\u01b6\7g\2\2\u01b6>\3\2\2\2\u01b7\u01b8\7^\2\2\u01b8")
buf.write(u"\u01b9\7n\2\2\u01b9\u01ba\7k\2\2\u01ba\u01bb\7o\2\2\u01bb")
buf.write(u"@\3\2\2\2\u01bc\u01bd\7^\2\2\u01bd\u01be\7v\2\2\u01be")
buf.write(u"\u01f4\7q\2\2\u01bf\u01c0\7^\2\2\u01c0\u01c1\7t\2\2\u01c1")
buf.write(u"\u01c2\7k\2\2\u01c2\u01c3\7i\2\2\u01c3\u01c4\7j\2\2\u01c4")
buf.write(u"\u01c5\7v\2\2\u01c5\u01c6\7c\2\2\u01c6\u01c7\7t\2\2\u01c7")
buf.write(u"\u01c8\7t\2\2\u01c8\u01c9\7q\2\2\u01c9\u01f4\7y\2\2\u01ca")
buf.write(u"\u01cb\7^\2\2\u01cb\u01cc\7T\2\2\u01cc\u01cd\7k\2\2\u01cd")
buf.write(u"\u01ce\7i\2\2\u01ce\u01cf\7j\2\2\u01cf\u01d0\7v\2\2\u01d0")
buf.write(u"\u01d1\7c\2\2\u01d1\u01d2\7t\2\2\u01d2\u01d3\7t\2\2\u01d3")
buf.write(u"\u01d4\7q\2\2\u01d4\u01f4\7y\2\2\u01d5\u01d6\7^\2\2\u01d6")
buf.write(u"\u01d7\7n\2\2\u01d7\u01d8\7q\2\2\u01d8\u01d9\7p\2\2\u01d9")
buf.write(u"\u01da\7i\2\2\u01da\u01db\7t\2\2\u01db\u01dc\7k\2\2\u01dc")
buf.write(u"\u01dd\7i\2\2\u01dd\u01de\7j\2\2\u01de\u01df\7v\2\2\u01df")
buf.write(u"\u01e0\7c\2\2\u01e0\u01e1\7t\2\2\u01e1\u01e2\7t\2\2\u01e2")
buf.write(u"\u01e3\7q\2\2\u01e3\u01f4\7y\2\2\u01e4\u01e5\7^\2\2\u01e5")
buf.write(u"\u01e6\7N\2\2\u01e6\u01e7\7q\2\2\u01e7\u01e8\7p\2\2\u01e8")
buf.write(u"\u01e9\7i\2\2\u01e9\u01ea\7t\2\2\u01ea\u01eb\7k\2\2\u01eb")
buf.write(u"\u01ec\7i\2\2\u01ec\u01ed\7j\2\2\u01ed\u01ee\7v\2\2\u01ee")
buf.write(u"\u01ef\7c\2\2\u01ef\u01f0\7t\2\2\u01f0\u01f1\7t\2\2\u01f1")
buf.write(u"\u01f2\7q\2\2\u01f2\u01f4\7y\2\2\u01f3\u01bc\3\2\2\2")
buf.write(u"\u01f3\u01bf\3\2\2\2\u01f3\u01ca\3\2\2\2\u01f3\u01d5")
buf.write(u"\3\2\2\2\u01f3\u01e4\3\2\2\2\u01f4B\3\2\2\2\u01f5\u01f6")
buf.write(u"\7^\2\2\u01f6\u01f7\7k\2\2\u01f7\u01f8\7p\2\2\u01f8\u0205")
buf.write(u"\7v\2\2\u01f9\u01fa\7^\2\2\u01fa\u01fb\7k\2\2\u01fb\u01fc")
buf.write(u"\7p\2\2\u01fc\u01fd\7v\2\2\u01fd\u01fe\7^\2\2\u01fe\u01ff")
buf.write(u"\7n\2\2\u01ff\u0200\7k\2\2\u0200\u0201\7o\2\2\u0201\u0202")
buf.write(u"\7k\2\2\u0202\u0203\7v\2\2\u0203\u0205\7u\2\2\u0204\u01f5")
buf.write(u"\3\2\2\2\u0204\u01f9\3\2\2\2\u0205D\3\2\2\2\u0206\u0207")
buf.write(u"\7^\2\2\u0207\u0208\7u\2\2\u0208\u0209\7w\2\2\u0209\u020a")
buf.write(u"\7o\2\2\u020aF\3\2\2\2\u020b\u020c\7^\2\2\u020c\u020d")
buf.write(u"\7r\2\2\u020d\u020e\7t\2\2\u020e\u020f\7q\2\2\u020f\u0210")
buf.write(u"\7f\2\2\u0210H\3\2\2\2\u0211\u0212\7^\2\2\u0212\u0213")
buf.write(u"\7g\2\2\u0213\u0214\7z\2\2\u0214\u0215\7r\2\2\u0215J")
buf.write(u"\3\2\2\2\u0216\u0217\7^\2\2\u0217\u0218\7n\2\2\u0218")
buf.write(u"\u0219\7q\2\2\u0219\u021a\7i\2\2\u021aL\3\2\2\2\u021b")
buf.write(u"\u021c\7^\2\2\u021c\u021d\7n\2\2\u021d\u021e\7p\2\2\u021e")
buf.write(u"N\3\2\2\2\u021f\u0220\7^\2\2\u0220\u0221\7u\2\2\u0221")
buf.write(u"\u0222\7k\2\2\u0222\u0223\7p\2\2\u0223P\3\2\2\2\u0224")
buf.write(u"\u0225\7^\2\2\u0225\u0226\7e\2\2\u0226\u0227\7q\2\2\u0227")
buf.write(u"\u0228\7u\2\2\u0228R\3\2\2\2\u0229\u022a\7^\2\2\u022a")
buf.write(u"\u022b\7v\2\2\u022b\u022c\7c\2\2\u022c\u022d\7p\2\2\u022d")
buf.write(u"T\3\2\2\2\u022e\u022f\7^\2\2\u022f\u0230\7e\2\2\u0230")
buf.write(u"\u0231\7u\2\2\u0231\u0232\7e\2\2\u0232V\3\2\2\2\u0233")
buf.write(u"\u0234\7^\2\2\u0234\u0235\7u\2\2\u0235\u0236\7g\2\2\u0236")
buf.write(u"\u0237\7e\2\2\u0237X\3\2\2\2\u0238\u0239\7^\2\2\u0239")
buf.write(u"\u023a\7e\2\2\u023a\u023b\7q\2\2\u023b\u023c\7v\2\2\u023c")
buf.write(u"Z\3\2\2\2\u023d\u023e\7^\2\2\u023e\u023f\7c\2\2\u023f")
buf.write(u"\u0240\7t\2\2\u0240\u0241\7e\2\2\u0241\u0242\7u\2\2\u0242")
buf.write(u"\u0243\7k\2\2\u0243\u0244\7p\2\2\u0244\\\3\2\2\2\u0245")
buf.write(u"\u0246\7^\2\2\u0246\u0247\7c\2\2\u0247\u0248\7t\2\2\u0248")
buf.write(u"\u0249\7e\2\2\u0249\u024a\7e\2\2\u024a\u024b\7q\2\2\u024b")
buf.write(u"\u024c\7u\2\2\u024c^\3\2\2\2\u024d\u024e\7^\2\2\u024e")
buf.write(u"\u024f\7c\2\2\u024f\u0250\7t\2\2\u0250\u0251\7e\2\2\u0251")
buf.write(u"\u0252\7v\2\2\u0252\u0253\7c\2\2\u0253\u0254\7p\2\2\u0254")
buf.write(u"`\3\2\2\2\u0255\u0256\7^\2\2\u0256\u0257\7c\2\2\u0257")
buf.write(u"\u0258\7t\2\2\u0258\u0259\7e\2\2\u0259\u025a\7e\2\2\u025a")
buf.write(u"\u025b\7u\2\2\u025b\u025c\7e\2\2\u025cb\3\2\2\2\u025d")
buf.write(u"\u025e\7^\2\2\u025e\u025f\7c\2\2\u025f\u0260\7t\2\2\u0260")
buf.write(u"\u0261\7e\2\2\u0261\u0262\7u\2\2\u0262\u0263\7g\2\2\u0263")
buf.write(u"\u0264\7e\2\2\u0264d\3\2\2\2\u0265\u0266\7^\2\2\u0266")
buf.write(u"\u0267\7c\2\2\u0267\u0268\7t\2\2\u0268\u0269\7e\2\2\u0269")
buf.write(u"\u026a\7e\2\2\u026a\u026b\7q\2\2\u026b\u026c\7v\2\2\u026c")
buf.write(u"f\3\2\2\2\u026d\u026e\7^\2\2\u026e\u026f\7u\2\2\u026f")
buf.write(u"\u0270\7k\2\2\u0270\u0271\7p\2\2\u0271\u0272\7j\2\2\u0272")
buf.write(u"h\3\2\2\2\u0273\u0274\7^\2\2\u0274\u0275\7e\2\2\u0275")
buf.write(u"\u0276\7q\2\2\u0276\u0277\7u\2\2\u0277\u0278\7j\2\2\u0278")
buf.write(u"j\3\2\2\2\u0279\u027a\7^\2\2\u027a\u027b\7v\2\2\u027b")
buf.write(u"\u027c\7c\2\2\u027c\u027d\7p\2\2\u027d\u027e\7j\2\2\u027e")
buf.write(u"l\3\2\2\2\u027f\u0280\7^\2\2\u0280\u0281\7c\2\2\u0281")
buf.write(u"\u0282\7t\2\2\u0282\u0283\7u\2\2\u0283\u0284\7k\2\2\u0284")
buf.write(u"\u0285\7p\2\2\u0285\u0286\7j\2\2\u0286n\3\2\2\2\u0287")
buf.write(u"\u0288\7^\2\2\u0288\u0289\7c\2\2\u0289\u028a\7t\2\2\u028a")
buf.write(u"\u028b\7e\2\2\u028b\u028c\7q\2\2\u028c\u028d\7u\2\2\u028d")
buf.write(u"\u028e\7j\2\2\u028ep\3\2\2\2\u028f\u0290\7^\2\2\u0290")
buf.write(u"\u0291\7c\2\2\u0291\u0292\7t\2\2\u0292\u0293\7v\2\2\u0293")
buf.write(u"\u0294\7c\2\2\u0294\u0295\7p\2\2\u0295\u0296\7j\2\2\u0296")
buf.write(u"r\3\2\2\2\u0297\u0298\7^\2\2\u0298\u0299\7n\2\2\u0299")
buf.write(u"\u029a\7h\2\2\u029a\u029b\7n\2\2\u029b\u029c\7q\2\2\u029c")
buf.write(u"\u029d\7q\2\2\u029d\u029e\7t\2\2\u029et\3\2\2\2\u029f")
buf.write(u"\u02a0\7^\2\2\u02a0\u02a1\7t\2\2\u02a1\u02a2\7h\2\2\u02a2")
buf.write(u"\u02a3\7n\2\2\u02a3\u02a4\7q\2\2\u02a4\u02a5\7q\2\2\u02a5")
buf.write(u"\u02a6\7t\2\2\u02a6v\3\2\2\2\u02a7\u02a8\7^\2\2\u02a8")
buf.write(u"\u02a9\7n\2\2\u02a9\u02aa\7e\2\2\u02aa\u02ab\7g\2\2\u02ab")
buf.write(u"\u02ac\7k\2\2\u02ac\u02ad\7n\2\2\u02adx\3\2\2\2\u02ae")
buf.write(u"\u02af\7^\2\2\u02af\u02b0\7t\2\2\u02b0\u02b1\7e\2\2\u02b1")
buf.write(u"\u02b2\7g\2\2\u02b2\u02b3\7k\2\2\u02b3\u02b4\7n\2\2\u02b4")
buf.write(u"z\3\2\2\2\u02b5\u02b6\7^\2\2\u02b6\u02b7\7u\2\2\u02b7")
buf.write(u"\u02b8\7s\2\2\u02b8\u02b9\7t\2\2\u02b9\u02ba\7v\2\2\u02ba")
buf.write(u"|\3\2\2\2\u02bb\u02bc\7^\2\2\u02bc\u02bd\7q\2\2\u02bd")
buf.write(u"\u02be\7x\2\2\u02be\u02bf\7g\2\2\u02bf\u02c0\7t\2\2\u02c0")
buf.write(u"\u02c1\7n\2\2\u02c1\u02c2\7k\2\2\u02c2\u02c3\7p\2\2\u02c3")
buf.write(u"\u02c4\7g\2\2\u02c4~\3\2\2\2\u02c5\u02c6\7^\2\2\u02c6")
buf.write(u"\u02c7\7v\2\2\u02c7\u02c8\7k\2\2\u02c8\u02c9\7o\2\2\u02c9")
buf.write(u"\u02ca\7g\2\2\u02ca\u02cb\7u\2\2\u02cb\u0080\3\2\2\2")
buf.write(u"\u02cc\u02cd\7^\2\2\u02cd\u02ce\7e\2\2\u02ce\u02cf\7")
buf.write(u"f\2\2\u02cf\u02d0\7q\2\2\u02d0\u02d1\7v\2\2\u02d1\u0082")
buf.write(u"\3\2\2\2\u02d2\u02d3\7^\2\2\u02d3\u02d4\7f\2\2\u02d4")
buf.write(u"\u02d5\7k\2\2\u02d5\u02d6\7x\2\2\u02d6\u0084\3\2\2\2")
buf.write(u"\u02d7\u02d8\7^\2\2\u02d8\u02d9\7h\2\2\u02d9\u02da\7")
buf.write(u"t\2\2\u02da\u02db\7c\2\2\u02db\u02e9\7e\2\2\u02dc\u02dd")
buf.write(u"\7^\2\2\u02dd\u02de\7f\2\2\u02de\u02df\7h\2\2\u02df\u02e0")
buf.write(u"\7t\2\2\u02e0\u02e1\7c\2\2\u02e1\u02e9\7e\2\2\u02e2\u02e3")
buf.write(u"\7^\2\2\u02e3\u02e4\7v\2\2\u02e4\u02e5\7h\2\2\u02e5\u02e6")
buf.write(u"\7t\2\2\u02e6\u02e7\7c\2\2\u02e7\u02e9\7e\2\2\u02e8\u02d7")
buf.write(u"\3\2\2\2\u02e8\u02dc\3\2\2\2\u02e8\u02e2\3\2\2\2\u02e9")
buf.write(u"\u0086\3\2\2\2\u02ea\u02eb\7^\2\2\u02eb\u02ec\7d\2\2")
buf.write(u"\u02ec\u02ed\7k\2\2\u02ed\u02ee\7p\2\2\u02ee\u02ef\7")
buf.write(u"q\2\2\u02ef\u02f0\7o\2\2\u02f0\u0088\3\2\2\2\u02f1\u02f2")
buf.write(u"\7^\2\2\u02f2\u02f3\7f\2\2\u02f3\u02f4\7d\2\2\u02f4\u02f5")
buf.write(u"\7k\2\2\u02f5\u02f6\7p\2\2\u02f6\u02f7\7q\2\2\u02f7\u02f8")
buf.write(u"\7o\2\2\u02f8\u008a\3\2\2\2\u02f9\u02fa\7^\2\2\u02fa")
buf.write(u"\u02fb\7v\2\2\u02fb\u02fc\7d\2\2\u02fc\u02fd\7k\2\2\u02fd")
buf.write(u"\u02fe\7p\2\2\u02fe\u02ff\7q\2\2\u02ff\u0300\7o\2\2\u0300")
buf.write(u"\u008c\3\2\2\2\u0301\u0302\7^\2\2\u0302\u0303\7o\2\2")
buf.write(u"\u0303\u0304\7c\2\2\u0304\u0305\7v\2\2\u0305\u0306\7")
buf.write(u"j\2\2\u0306\u0307\7k\2\2\u0307\u0308\7v\2\2\u0308\u008e")
buf.write(u"\3\2\2\2\u0309\u030a\7a\2\2\u030a\u0090\3\2\2\2\u030b")
buf.write(u"\u030c\7`\2\2\u030c\u0092\3\2\2\2\u030d\u030e\7<\2\2")
buf.write(u"\u030e\u0094\3\2\2\2\u030f\u0310\t\2\2\2\u0310\u0096")
buf.write(u"\3\2\2\2\u0311\u0315\7f\2\2\u0312\u0314\5\u0095K\2\u0313")
buf.write(u"\u0312\3\2\2\2\u0314\u0317\3\2\2\2\u0315\u0316\3\2\2")
buf.write(u"\2\u0315\u0313\3\2\2\2\u0316\u031f\3\2\2\2\u0317\u0315")
buf.write(u"\3\2\2\2\u0318\u0320\t\3\2\2\u0319\u031b\7^\2\2\u031a")
buf.write(u"\u031c\t\3\2\2\u031b\u031a\3\2\2\2\u031c\u031d\3\2\2")
buf.write(u"\2\u031d\u031b\3\2\2\2\u031d\u031e\3\2\2\2\u031e\u0320")
buf.write(u"\3\2\2\2\u031f\u0318\3\2\2\2\u031f\u0319\3\2\2\2\u0320")
buf.write(u"\u0098\3\2\2\2\u0321\u0322\t\3\2\2\u0322\u009a\3\2\2")
buf.write(u"\2\u0323\u0324\t\4\2\2\u0324\u009c\3\2\2\2\u0325\u0327")
buf.write(u"\5\u009bN\2\u0326\u0325\3\2\2\2\u0327\u0328\3\2\2\2\u0328")
buf.write(u"\u0326\3\2\2\2\u0328\u0329\3\2\2\2\u0329\u0331\3\2\2")
buf.write(u"\2\u032a\u032b\7.\2\2\u032b\u032c\5\u009bN\2\u032c\u032d")
buf.write(u"\5\u009bN\2\u032d\u032e\5\u009bN\2\u032e\u0330\3\2\2")
buf.write(u"\2\u032f\u032a\3\2\2\2\u0330\u0333\3\2\2\2\u0331\u032f")
buf.write(u"\3\2\2\2\u0331\u0332\3\2\2\2\u0332\u034b\3\2\2\2\u0333")
buf.write(u"\u0331\3\2\2\2\u0334\u0336\5\u009bN\2\u0335\u0334\3\2")
buf.write(u"\2\2\u0336\u0339\3\2\2\2\u0337\u0335\3\2\2\2\u0337\u0338")
buf.write(u"\3\2\2\2\u0338\u0341\3\2\2\2\u0339\u0337\3\2\2\2\u033a")
buf.write(u"\u033b\7.\2\2\u033b\u033c\5\u009bN\2\u033c\u033d\5\u009b")
buf.write(u"N\2\u033d\u033e\5\u009bN\2\u033e\u0340\3\2\2\2\u033f")
buf.write(u"\u033a\3\2\2\2\u0340\u0343\3\2\2\2\u0341\u033f\3\2\2")
buf.write(u"\2\u0341\u0342\3\2\2\2\u0342\u0344\3\2\2\2\u0343\u0341")
buf.write(u"\3\2\2\2\u0344\u0346\7\60\2\2\u0345\u0347\5\u009bN\2")
buf.write(u"\u0346\u0345\3\2\2\2\u0347\u0348\3\2\2\2\u0348\u0346")
buf.write(u"\3\2\2\2\u0348\u0349\3\2\2\2\u0349\u034b\3\2\2\2\u034a")
buf.write(u"\u0326\3\2\2\2\u034a\u0337\3\2\2\2\u034b\u009e\3\2\2")
buf.write(u"\2\u034c\u0350\7(\2\2\u034d\u034f\5\u0095K\2\u034e\u034d")
buf.write(u"\3\2\2\2\u034f\u0352\3\2\2\2\u0350\u0351\3\2\2\2\u0350")
buf.write(u"\u034e\3\2\2\2\u0351\u0354\3\2\2\2\u0352\u0350\3\2\2")
buf.write(u"\2\u0353\u034c\3\2\2\2\u0353\u0354\3\2\2\2\u0354\u0355")
buf.write(u"\3\2\2\2\u0355\u0361\7?\2\2\u0356\u035e\7?\2\2\u0357")
buf.write(u"\u0359\5\u0095K\2\u0358\u0357\3\2\2\2\u0359\u035c\3\2")
buf.write(u"\2\2\u035a\u035b\3\2\2\2\u035a\u0358\3\2\2\2\u035b\u035d")
buf.write(u"\3\2\2\2\u035c\u035a\3\2\2\2\u035d\u035f\7(\2\2\u035e")
buf.write(u"\u035a\3\2\2\2\u035e\u035f\3\2\2\2\u035f\u0361\3\2\2")
buf.write(u"\2\u0360\u0353\3\2\2\2\u0360\u0356\3\2\2\2\u0361\u00a0")
buf.write(u"\3\2\2\2\u0362\u0363\7^\2\2\u0363\u0364\7p\2\2\u0364")
buf.write(u"\u0365\7g\2\2\u0365\u0366\7s\2\2\u0366\u00a2\3\2\2\2")
buf.write(u"\u0367\u0368\7>\2\2\u0368\u00a4\3\2\2\2\u0369\u036a\7")
buf.write(u"^\2\2\u036a\u036b\7n\2\2\u036b\u036c\7g\2\2\u036c\u0373")
buf.write(u"\7s\2\2\u036d\u036e\7^\2\2\u036e\u036f\7n\2\2\u036f\u0373")
buf.write(u"\7g\2\2\u0370\u0373\5\u00a7T\2\u0371\u0373\5\u00a9U\2")
buf.write(u"\u0372\u0369\3\2\2\2\u0372\u036d\3\2\2\2\u0372\u0370")
buf.write(u"\3\2\2\2\u0372\u0371\3\2\2\2\u0373\u00a6\3\2\2\2\u0374")
buf.write(u"\u0375\7^\2\2\u0375\u0376\7n\2\2\u0376\u0377\7g\2\2\u0377")
buf.write(u"\u0378\7s\2\2\u0378\u0379\7s\2\2\u0379\u00a8\3\2\2\2")
buf.write(u"\u037a\u037b\7^\2\2\u037b\u037c\7n\2\2\u037c\u037d\7")
buf.write(u"g\2\2\u037d\u037e\7s\2\2\u037e\u037f\7u\2\2\u037f\u0380")
buf.write(u"\7n\2\2\u0380\u0381\7c\2\2\u0381\u0382\7p\2\2\u0382\u0383")
buf.write(u"\7v\2\2\u0383\u00aa\3\2\2\2\u0384\u0385\7@\2\2\u0385")
buf.write(u"\u00ac\3\2\2\2\u0386\u0387\7^\2\2\u0387\u0388\7i\2\2")
buf.write(u"\u0388\u0389\7g\2\2\u0389\u0390\7s\2\2\u038a\u038b\7")
buf.write(u"^\2\2\u038b\u038c\7i\2\2\u038c\u0390\7g\2\2\u038d\u0390")
buf.write(u"\5\u00afX\2\u038e\u0390\5\u00b1Y\2\u038f\u0386\3\2\2")
buf.write(u"\2\u038f\u038a\3\2\2\2\u038f\u038d\3\2\2\2\u038f\u038e")
buf.write(u"\3\2\2\2\u0390\u00ae\3\2\2\2\u0391\u0392\7^\2\2\u0392")
buf.write(u"\u0393\7i\2\2\u0393\u0394\7g\2\2\u0394\u0395\7s\2\2\u0395")
buf.write(u"\u0396\7s\2\2\u0396\u00b0\3\2\2\2\u0397\u0398\7^\2\2")
buf.write(u"\u0398\u0399\7i\2\2\u0399\u039a\7g\2\2\u039a\u039b\7")
buf.write(u"s\2\2\u039b\u039c\7u\2\2\u039c\u039d\7n\2\2\u039d\u039e")
buf.write(u"\7c\2\2\u039e\u039f\7p\2\2\u039f\u03a0\7v\2\2\u03a0\u00b2")
buf.write(u"\3\2\2\2\u03a1\u03a2\7#\2\2\u03a2\u00b4\3\2\2\2\u03a3")
buf.write(u"\u03a5\7^\2\2\u03a4\u03a6\t\3\2\2\u03a5\u03a4\3\2\2\2")
buf.write(u"\u03a6\u03a7\3\2\2\2\u03a7\u03a5\3\2\2\2\u03a7\u03a8")
buf.write(u"\3\2\2\2\u03a8\u00b6\3\2\2\2\35\2\u00bc\u00cc\u00db\u00ec")
buf.write(u"\u0110\u0178\u01f3\u0204\u02e8\u0315\u031d\u031f\u0328")
buf.write(u"\u0331\u0337\u0341\u0348\u034a\u0350\u0353\u035a\u035e")
buf.write(u"\u0360\u0372\u038f\u03a7\3\b\2\2")
return buf.getvalue()
class LaTeXLexer(Lexer):
atn = ATNDeserializer().deserialize(serializedATN())
decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ]
T__0 = 1
WS = 2
THINSPACE = 3
MEDSPACE = 4
THICKSPACE = 5
QUAD = 6
QQUAD = 7
NEGTHINSPACE = 8
NEGMEDSPACE = 9
NEGTHICKSPACE = 10
CMD_LEFT = 11
CMD_RIGHT = 12
IGNORE = 13
ADD = 14
SUB = 15
MUL = 16
DIV = 17
L_PAREN = 18
R_PAREN = 19
L_BRACE = 20
R_BRACE = 21
L_BRACE_LITERAL = 22
R_BRACE_LITERAL = 23
L_BRACKET = 24
R_BRACKET = 25
BAR = 26
R_BAR = 27
L_BAR = 28
L_ANGLE = 29
R_ANGLE = 30
FUNC_LIM = 31
LIM_APPROACH_SYM = 32
FUNC_INT = 33
FUNC_SUM = 34
FUNC_PROD = 35
FUNC_EXP = 36
FUNC_LOG = 37
FUNC_LN = 38
FUNC_SIN = 39
FUNC_COS = 40
FUNC_TAN = 41
FUNC_CSC = 42
FUNC_SEC = 43
FUNC_COT = 44
FUNC_ARCSIN = 45
FUNC_ARCCOS = 46
FUNC_ARCTAN = 47
FUNC_ARCCSC = 48
FUNC_ARCSEC = 49
FUNC_ARCCOT = 50
FUNC_SINH = 51
FUNC_COSH = 52
FUNC_TANH = 53
FUNC_ARSINH = 54
FUNC_ARCOSH = 55
FUNC_ARTANH = 56
L_FLOOR = 57
R_FLOOR = 58
L_CEIL = 59
R_CEIL = 60
FUNC_SQRT = 61
FUNC_OVERLINE = 62
CMD_TIMES = 63
CMD_CDOT = 64
CMD_DIV = 65
CMD_FRAC = 66
CMD_BINOM = 67
CMD_DBINOM = 68
CMD_TBINOM = 69
CMD_MATHIT = 70
UNDERSCORE = 71
CARET = 72
COLON = 73
DIFFERENTIAL = 74
LETTER = 75
NUMBER = 76
EQUAL = 77
NEQ = 78
LT = 79
LTE = 80
LTE_Q = 81
LTE_S = 82
GT = 83
GTE = 84
GTE_Q = 85
GTE_S = 86
BANG = 87
SYMBOL = 88
channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ]
modeNames = [ u"DEFAULT_MODE" ]
literalNames = [ u"<INVALID>",
u"','", u"'\\quad'", u"'\\qquad'", u"'\\negmedspace'", u"'\\negthickspace'",
u"'\\left'", u"'\\right'", u"'+'", u"'-'", u"'*'", u"'/'", u"'('",
u"')'", u"'{'", u"'}'", u"'\\{'", u"'\\}'", u"'['", u"']'",
u"'|'", u"'\\right|'", u"'\\left|'", u"'\\langle'", u"'\\rangle'",
u"'\\lim'", u"'\\sum'", u"'\\prod'", u"'\\exp'", u"'\\log'",
u"'\\ln'", u"'\\sin'", u"'\\cos'", u"'\\tan'", u"'\\csc'", u"'\\sec'",
u"'\\cot'", u"'\\arcsin'", u"'\\arccos'", u"'\\arctan'", u"'\\arccsc'",
u"'\\arcsec'", u"'\\arccot'", u"'\\sinh'", u"'\\cosh'", u"'\\tanh'",
u"'\\arsinh'", u"'\\arcosh'", u"'\\artanh'", u"'\\lfloor'",
u"'\\rfloor'", u"'\\lceil'", u"'\\rceil'", u"'\\sqrt'", u"'\\overline'",
u"'\\times'", u"'\\cdot'", u"'\\div'", u"'\\binom'", u"'\\dbinom'",
u"'\\tbinom'", u"'\\mathit'", u"'_'", u"'^'", u"':'", u"'\\neq'",
u"'<'", u"'\\leqq'", u"'\\leqslant'", u"'>'", u"'\\geqq'", u"'\\geqslant'",
u"'!'" ]
symbolicNames = [ u"<INVALID>",
u"WS", u"THINSPACE", u"MEDSPACE", u"THICKSPACE", u"QUAD", u"QQUAD",
u"NEGTHINSPACE", u"NEGMEDSPACE", u"NEGTHICKSPACE", u"CMD_LEFT",
u"CMD_RIGHT", u"IGNORE", u"ADD", u"SUB", u"MUL", u"DIV", u"L_PAREN",
u"R_PAREN", u"L_BRACE", u"R_BRACE", u"L_BRACE_LITERAL", u"R_BRACE_LITERAL",
u"L_BRACKET", u"R_BRACKET", u"BAR", u"R_BAR", u"L_BAR", u"L_ANGLE",
u"R_ANGLE", u"FUNC_LIM", u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM",
u"FUNC_PROD", u"FUNC_EXP", u"FUNC_LOG", u"FUNC_LN", u"FUNC_SIN",
u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC", u"FUNC_COT",
u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN", u"FUNC_ARCCSC",
u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH", u"FUNC_COSH",
u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH", u"FUNC_ARTANH",
u"L_FLOOR", u"R_FLOOR", u"L_CEIL", u"R_CEIL", u"FUNC_SQRT",
u"FUNC_OVERLINE", u"CMD_TIMES", u"CMD_CDOT", u"CMD_DIV", u"CMD_FRAC",
u"CMD_BINOM", u"CMD_DBINOM", u"CMD_TBINOM", u"CMD_MATHIT", u"UNDERSCORE",
u"CARET", u"COLON", u"DIFFERENTIAL", u"LETTER", u"NUMBER", u"EQUAL",
u"NEQ", u"LT", u"LTE", u"LTE_Q", u"LTE_S", u"GT", u"GTE", u"GTE_Q",
u"GTE_S", u"BANG", u"SYMBOL" ]
ruleNames = [ u"T__0", u"WS", u"THINSPACE", u"MEDSPACE", u"THICKSPACE",
u"QUAD", u"QQUAD", u"NEGTHINSPACE", u"NEGMEDSPACE", u"NEGTHICKSPACE",
u"CMD_LEFT", u"CMD_RIGHT", u"IGNORE", u"ADD", u"SUB",
u"MUL", u"DIV", u"L_PAREN", u"R_PAREN", u"L_BRACE", u"R_BRACE",
u"L_BRACE_LITERAL", u"R_BRACE_LITERAL", u"L_BRACKET",
u"R_BRACKET", u"BAR", u"R_BAR", u"L_BAR", u"L_ANGLE",
u"R_ANGLE", u"FUNC_LIM", u"LIM_APPROACH_SYM", u"FUNC_INT",
u"FUNC_SUM", u"FUNC_PROD", u"FUNC_EXP", u"FUNC_LOG", u"FUNC_LN",
u"FUNC_SIN", u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC",
u"FUNC_COT", u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN",
u"FUNC_ARCCSC", u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH",
u"FUNC_COSH", u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH",
u"FUNC_ARTANH", u"L_FLOOR", u"R_FLOOR", u"L_CEIL", u"R_CEIL",
u"FUNC_SQRT", u"FUNC_OVERLINE", u"CMD_TIMES", u"CMD_CDOT",
u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM", u"CMD_DBINOM",
u"CMD_TBINOM", u"CMD_MATHIT", u"UNDERSCORE", u"CARET",
u"COLON", u"WS_CHAR", u"DIFFERENTIAL", u"LETTER", u"DIGIT",
u"NUMBER", u"EQUAL", u"NEQ", u"LT", u"LTE", u"LTE_Q",
u"LTE_S", u"GT", u"GTE", u"GTE_Q", u"GTE_S", u"BANG",
u"SYMBOL" ]
grammarFileName = u"LaTeX.g4"
def __init__(self, input=None, output=sys.stdout):
super(LaTeXLexer, self).__init__(input, output=output)
self.checkVersion("4.7.2")
self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache())
self._actions = None
self._predicates = None
|
3204246433c066e93a8f44602dcfd35a928be890ecdddbe4171cd5861e4a4860 |
# encoding: utf-8
# *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND ***
#
# Generated from ../LaTeX.g4, derived from latex2sympy
# latex2sympy is licensed under the MIT license
# https://github.com/augustt198/latex2sympy/blob/master/LICENSE.txt
#
# Generated with antlr4
# antlr4 is licensed under the BSD-3-Clause License
# https://github.com/antlr/antlr4/blob/master/LICENSE.txt
from __future__ import print_function
from antlr4 import *
from io import StringIO
import sys
def serializedATN():
with StringIO() as buf:
buf.write(u"\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3")
buf.write(u"Z\u01d3\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t")
buf.write(u"\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r")
buf.write(u"\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4")
buf.write(u"\23\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30")
buf.write(u"\t\30\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35\t")
buf.write(u"\35\4\36\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4$")
buf.write(u"\t$\4%\t%\4&\t&\4\'\t\'\4(\t(\4)\t)\3\2\3\2\3\3\3\3\3")
buf.write(u"\3\3\3\3\3\3\3\7\3[\n\3\f\3\16\3^\13\3\3\4\3\4\3\4\3")
buf.write(u"\4\3\5\3\5\3\6\3\6\3\6\3\6\3\6\3\6\7\6l\n\6\f\6\16\6")
buf.write(u"o\13\6\3\7\3\7\3\7\3\7\3\7\3\7\7\7w\n\7\f\7\16\7z\13")
buf.write(u"\7\3\b\3\b\3\b\3\b\3\b\3\b\7\b\u0082\n\b\f\b\16\b\u0085")
buf.write(u"\13\b\3\t\3\t\3\t\6\t\u008a\n\t\r\t\16\t\u008b\5\t\u008e")
buf.write(u"\n\t\3\n\3\n\3\n\3\n\7\n\u0094\n\n\f\n\16\n\u0097\13")
buf.write(u"\n\5\n\u0099\n\n\3\13\3\13\7\13\u009d\n\13\f\13\16\13")
buf.write(u"\u00a0\13\13\3\f\3\f\7\f\u00a4\n\f\f\f\16\f\u00a7\13")
buf.write(u"\f\3\r\3\r\5\r\u00ab\n\r\3\16\3\16\3\16\3\16\3\16\3\16")
buf.write(u"\5\16\u00b3\n\16\3\17\3\17\3\17\3\17\5\17\u00b9\n\17")
buf.write(u"\3\17\3\17\3\20\3\20\3\20\3\20\5\20\u00c1\n\20\3\20\3")
buf.write(u"\20\3\21\3\21\3\21\3\21\3\21\3\21\3\21\3\21\3\21\3\21")
buf.write(u"\5\21\u00cf\n\21\3\21\5\21\u00d2\n\21\7\21\u00d4\n\21")
buf.write(u"\f\21\16\21\u00d7\13\21\3\22\3\22\3\22\3\22\3\22\3\22")
buf.write(u"\3\22\3\22\3\22\3\22\5\22\u00e3\n\22\3\22\5\22\u00e6")
buf.write(u"\n\22\7\22\u00e8\n\22\f\22\16\22\u00eb\13\22\3\23\3\23")
buf.write(u"\3\23\3\23\3\23\3\23\5\23\u00f3\n\23\3\24\3\24\3\24\3")
buf.write(u"\24\3\24\5\24\u00fa\n\24\3\25\3\25\3\25\3\25\3\25\3\25")
buf.write(u"\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3\25\3\25\5")
buf.write(u"\25\u010c\n\25\3\26\3\26\3\26\3\26\3\27\3\27\5\27\u0114")
buf.write(u"\n\27\3\27\3\27\3\27\3\27\3\27\3\27\3\27\5\27\u011d\n")
buf.write(u"\27\3\30\3\30\3\30\3\30\3\31\3\31\3\31\3\31\3\32\3\32")
buf.write(u"\3\32\3\32\3\32\3\33\7\33\u012d\n\33\f\33\16\33\u0130")
buf.write(u"\13\33\3\34\3\34\3\34\3\34\3\34\3\34\3\34\3\34\3\35\3")
buf.write(u"\35\3\35\3\35\3\35\3\35\3\35\3\35\3\36\3\36\3\36\3\36")
buf.write(u"\3\37\3\37\3\37\3\37\3 \3 \3!\3!\5!\u014e\n!\3!\5!\u0151")
buf.write(u"\n!\3!\5!\u0154\n!\3!\5!\u0157\n!\5!\u0159\n!\3!\3!\3")
buf.write(u"!\3!\3!\5!\u0160\n!\3!\3!\5!\u0164\n!\3!\3!\3!\3!\3!")
buf.write(u"\3!\3!\3!\3!\3!\3!\5!\u0171\n!\3!\5!\u0174\n!\3!\3!\3")
buf.write(u"!\5!\u0179\n!\3!\3!\3!\3!\3!\5!\u0180\n!\3!\3!\3!\3!")
buf.write(u"\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\3!\5!\u0192\n!\3!\3")
buf.write(u"!\3!\3!\3!\3!\5!\u019a\n!\3\"\3\"\3\"\3\"\3\"\5\"\u01a1")
buf.write(u"\n\"\3#\3#\3#\3#\3#\3#\3#\3#\3#\5#\u01ac\n#\3#\3#\3$")
buf.write(u"\3$\3$\3$\3$\5$\u01b5\n$\3%\3%\3&\3&\3&\3&\3&\3&\5&\u01bf")
buf.write(u"\n&\3\'\3\'\3\'\3\'\3\'\3\'\5\'\u01c7\n\'\3(\3(\3(\3")
buf.write(u"(\3(\3)\3)\3)\3)\3)\3)\2\b\4\n\f\16 \"*\2\4\6\b\n\f\16")
buf.write(u"\20\22\24\26\30\32\34\36 \"$&(*,.\60\62\64\668:<>@BD")
buf.write(u"FHJLNP\2\13\4\2ORUV\3\2\20\21\5\2\22\23ACKK\4\2MMZZ\3")
buf.write(u"\2\34\35\4\2\34\34\36\36\3\2EG\3\2&:\3\2$%\2\u01ed\2")
buf.write(u"R\3\2\2\2\4T\3\2\2\2\6_\3\2\2\2\bc\3\2\2\2\ne\3\2\2\2")
buf.write(u"\fp\3\2\2\2\16{\3\2\2\2\20\u008d\3\2\2\2\22\u0098\3\2")
buf.write(u"\2\2\24\u009a\3\2\2\2\26\u00a1\3\2\2\2\30\u00aa\3\2\2")
buf.write(u"\2\32\u00ac\3\2\2\2\34\u00b4\3\2\2\2\36\u00bc\3\2\2\2")
buf.write(u" \u00c4\3\2\2\2\"\u00d8\3\2\2\2$\u00f2\3\2\2\2&\u00f9")
buf.write(u"\3\2\2\2(\u010b\3\2\2\2*\u010d\3\2\2\2,\u011c\3\2\2\2")
buf.write(u".\u011e\3\2\2\2\60\u0122\3\2\2\2\62\u0126\3\2\2\2\64")
buf.write(u"\u012e\3\2\2\2\66\u0131\3\2\2\28\u0139\3\2\2\2:\u0141")
buf.write(u"\3\2\2\2<\u0145\3\2\2\2>\u0149\3\2\2\2@\u0199\3\2\2\2")
buf.write(u"B\u01a0\3\2\2\2D\u01a2\3\2\2\2F\u01b4\3\2\2\2H\u01b6")
buf.write(u"\3\2\2\2J\u01b8\3\2\2\2L\u01c0\3\2\2\2N\u01c8\3\2\2\2")
buf.write(u"P\u01cd\3\2\2\2RS\5\4\3\2S\3\3\2\2\2TU\b\3\1\2UV\5\b")
buf.write(u"\5\2V\\\3\2\2\2WX\f\4\2\2XY\t\2\2\2Y[\5\4\3\5ZW\3\2\2")
buf.write(u"\2[^\3\2\2\2\\Z\3\2\2\2\\]\3\2\2\2]\5\3\2\2\2^\\\3\2")
buf.write(u"\2\2_`\5\b\5\2`a\7O\2\2ab\5\b\5\2b\7\3\2\2\2cd\5\n\6")
buf.write(u"\2d\t\3\2\2\2ef\b\6\1\2fg\5\f\7\2gm\3\2\2\2hi\f\4\2\2")
buf.write(u"ij\t\3\2\2jl\5\n\6\5kh\3\2\2\2lo\3\2\2\2mk\3\2\2\2mn")
buf.write(u"\3\2\2\2n\13\3\2\2\2om\3\2\2\2pq\b\7\1\2qr\5\20\t\2r")
buf.write(u"x\3\2\2\2st\f\4\2\2tu\t\4\2\2uw\5\f\7\5vs\3\2\2\2wz\3")
buf.write(u"\2\2\2xv\3\2\2\2xy\3\2\2\2y\r\3\2\2\2zx\3\2\2\2{|\b\b")
buf.write(u"\1\2|}\5\22\n\2}\u0083\3\2\2\2~\177\f\4\2\2\177\u0080")
buf.write(u"\t\4\2\2\u0080\u0082\5\16\b\5\u0081~\3\2\2\2\u0082\u0085")
buf.write(u"\3\2\2\2\u0083\u0081\3\2\2\2\u0083\u0084\3\2\2\2\u0084")
buf.write(u"\17\3\2\2\2\u0085\u0083\3\2\2\2\u0086\u0087\t\3\2\2\u0087")
buf.write(u"\u008e\5\20\t\2\u0088\u008a\5\24\13\2\u0089\u0088\3\2")
buf.write(u"\2\2\u008a\u008b\3\2\2\2\u008b\u0089\3\2\2\2\u008b\u008c")
buf.write(u"\3\2\2\2\u008c\u008e\3\2\2\2\u008d\u0086\3\2\2\2\u008d")
buf.write(u"\u0089\3\2\2\2\u008e\21\3\2\2\2\u008f\u0090\t\3\2\2\u0090")
buf.write(u"\u0099\5\22\n\2\u0091\u0095\5\24\13\2\u0092\u0094\5\26")
buf.write(u"\f\2\u0093\u0092\3\2\2\2\u0094\u0097\3\2\2\2\u0095\u0093")
buf.write(u"\3\2\2\2\u0095\u0096\3\2\2\2\u0096\u0099\3\2\2\2\u0097")
buf.write(u"\u0095\3\2\2\2\u0098\u008f\3\2\2\2\u0098\u0091\3\2\2")
buf.write(u"\2\u0099\23\3\2\2\2\u009a\u009e\5 \21\2\u009b\u009d\5")
buf.write(u"\30\r\2\u009c\u009b\3\2\2\2\u009d\u00a0\3\2\2\2\u009e")
buf.write(u"\u009c\3\2\2\2\u009e\u009f\3\2\2\2\u009f\25\3\2\2\2\u00a0")
buf.write(u"\u009e\3\2\2\2\u00a1\u00a5\5\"\22\2\u00a2\u00a4\5\30")
buf.write(u"\r\2\u00a3\u00a2\3\2\2\2\u00a4\u00a7\3\2\2\2\u00a5\u00a3")
buf.write(u"\3\2\2\2\u00a5\u00a6\3\2\2\2\u00a6\27\3\2\2\2\u00a7\u00a5")
buf.write(u"\3\2\2\2\u00a8\u00ab\7Y\2\2\u00a9\u00ab\5\32\16\2\u00aa")
buf.write(u"\u00a8\3\2\2\2\u00aa\u00a9\3\2\2\2\u00ab\31\3\2\2\2\u00ac")
buf.write(u"\u00b2\7\34\2\2\u00ad\u00b3\5\36\20\2\u00ae\u00b3\5\34")
buf.write(u"\17\2\u00af\u00b0\5\36\20\2\u00b0\u00b1\5\34\17\2\u00b1")
buf.write(u"\u00b3\3\2\2\2\u00b2\u00ad\3\2\2\2\u00b2\u00ae\3\2\2")
buf.write(u"\2\u00b2\u00af\3\2\2\2\u00b3\33\3\2\2\2\u00b4\u00b5\7")
buf.write(u"I\2\2\u00b5\u00b8\7\26\2\2\u00b6\u00b9\5\b\5\2\u00b7")
buf.write(u"\u00b9\5\6\4\2\u00b8\u00b6\3\2\2\2\u00b8\u00b7\3\2\2")
buf.write(u"\2\u00b9\u00ba\3\2\2\2\u00ba\u00bb\7\27\2\2\u00bb\35")
buf.write(u"\3\2\2\2\u00bc\u00bd\7J\2\2\u00bd\u00c0\7\26\2\2\u00be")
buf.write(u"\u00c1\5\b\5\2\u00bf\u00c1\5\6\4\2\u00c0\u00be\3\2\2")
buf.write(u"\2\u00c0\u00bf\3\2\2\2\u00c1\u00c2\3\2\2\2\u00c2\u00c3")
buf.write(u"\7\27\2\2\u00c3\37\3\2\2\2\u00c4\u00c5\b\21\1\2\u00c5")
buf.write(u"\u00c6\5$\23\2\u00c6\u00d5\3\2\2\2\u00c7\u00c8\f\4\2")
buf.write(u"\2\u00c8\u00ce\7J\2\2\u00c9\u00cf\5,\27\2\u00ca\u00cb")
buf.write(u"\7\26\2\2\u00cb\u00cc\5\b\5\2\u00cc\u00cd\7\27\2\2\u00cd")
buf.write(u"\u00cf\3\2\2\2\u00ce\u00c9\3\2\2\2\u00ce\u00ca\3\2\2")
buf.write(u"\2\u00cf\u00d1\3\2\2\2\u00d0\u00d2\5J&\2\u00d1\u00d0")
buf.write(u"\3\2\2\2\u00d1\u00d2\3\2\2\2\u00d2\u00d4\3\2\2\2\u00d3")
buf.write(u"\u00c7\3\2\2\2\u00d4\u00d7\3\2\2\2\u00d5\u00d3\3\2\2")
buf.write(u"\2\u00d5\u00d6\3\2\2\2\u00d6!\3\2\2\2\u00d7\u00d5\3\2")
buf.write(u"\2\2\u00d8\u00d9\b\22\1\2\u00d9\u00da\5&\24\2\u00da\u00e9")
buf.write(u"\3\2\2\2\u00db\u00dc\f\4\2\2\u00dc\u00e2\7J\2\2\u00dd")
buf.write(u"\u00e3\5,\27\2\u00de\u00df\7\26\2\2\u00df\u00e0\5\b\5")
buf.write(u"\2\u00e0\u00e1\7\27\2\2\u00e1\u00e3\3\2\2\2\u00e2\u00dd")
buf.write(u"\3\2\2\2\u00e2\u00de\3\2\2\2\u00e3\u00e5\3\2\2\2\u00e4")
buf.write(u"\u00e6\5J&\2\u00e5\u00e4\3\2\2\2\u00e5\u00e6\3\2\2\2")
buf.write(u"\u00e6\u00e8\3\2\2\2\u00e7\u00db\3\2\2\2\u00e8\u00eb")
buf.write(u"\3\2\2\2\u00e9\u00e7\3\2\2\2\u00e9\u00ea\3\2\2\2\u00ea")
buf.write(u"#\3\2\2\2\u00eb\u00e9\3\2\2\2\u00ec\u00f3\5(\25\2\u00ed")
buf.write(u"\u00f3\5*\26\2\u00ee\u00f3\5@!\2\u00ef\u00f3\5,\27\2")
buf.write(u"\u00f0\u00f3\5:\36\2\u00f1\u00f3\5<\37\2\u00f2\u00ec")
buf.write(u"\3\2\2\2\u00f2\u00ed\3\2\2\2\u00f2\u00ee\3\2\2\2\u00f2")
buf.write(u"\u00ef\3\2\2\2\u00f2\u00f0\3\2\2\2\u00f2\u00f1\3\2\2")
buf.write(u"\2\u00f3%\3\2\2\2\u00f4\u00fa\5(\25\2\u00f5\u00fa\5*")
buf.write(u"\26\2\u00f6\u00fa\5,\27\2\u00f7\u00fa\5:\36\2\u00f8\u00fa")
buf.write(u"\5<\37\2\u00f9\u00f4\3\2\2\2\u00f9\u00f5\3\2\2\2\u00f9")
buf.write(u"\u00f6\3\2\2\2\u00f9\u00f7\3\2\2\2\u00f9\u00f8\3\2\2")
buf.write(u"\2\u00fa\'\3\2\2\2\u00fb\u00fc\7\24\2\2\u00fc\u00fd\5")
buf.write(u"\b\5\2\u00fd\u00fe\7\25\2\2\u00fe\u010c\3\2\2\2\u00ff")
buf.write(u"\u0100\7\32\2\2\u0100\u0101\5\b\5\2\u0101\u0102\7\33")
buf.write(u"\2\2\u0102\u010c\3\2\2\2\u0103\u0104\7\26\2\2\u0104\u0105")
buf.write(u"\5\b\5\2\u0105\u0106\7\27\2\2\u0106\u010c\3\2\2\2\u0107")
buf.write(u"\u0108\7\30\2\2\u0108\u0109\5\b\5\2\u0109\u010a\7\31")
buf.write(u"\2\2\u010a\u010c\3\2\2\2\u010b\u00fb\3\2\2\2\u010b\u00ff")
buf.write(u"\3\2\2\2\u010b\u0103\3\2\2\2\u010b\u0107\3\2\2\2\u010c")
buf.write(u")\3\2\2\2\u010d\u010e\7\34\2\2\u010e\u010f\5\b\5\2\u010f")
buf.write(u"\u0110\7\34\2\2\u0110+\3\2\2\2\u0111\u0113\t\5\2\2\u0112")
buf.write(u"\u0114\5J&\2\u0113\u0112\3\2\2\2\u0113\u0114\3\2\2\2")
buf.write(u"\u0114\u011d\3\2\2\2\u0115\u011d\7N\2\2\u0116\u011d\7")
buf.write(u"L\2\2\u0117\u011d\5\62\32\2\u0118\u011d\5\66\34\2\u0119")
buf.write(u"\u011d\58\35\2\u011a\u011d\5.\30\2\u011b\u011d\5\60\31")
buf.write(u"\2\u011c\u0111\3\2\2\2\u011c\u0115\3\2\2\2\u011c\u0116")
buf.write(u"\3\2\2\2\u011c\u0117\3\2\2\2\u011c\u0118\3\2\2\2\u011c")
buf.write(u"\u0119\3\2\2\2\u011c\u011a\3\2\2\2\u011c\u011b\3\2\2")
buf.write(u"\2\u011d-\3\2\2\2\u011e\u011f\7\37\2\2\u011f\u0120\5")
buf.write(u"\b\5\2\u0120\u0121\t\6\2\2\u0121/\3\2\2\2\u0122\u0123")
buf.write(u"\t\7\2\2\u0123\u0124\5\b\5\2\u0124\u0125\7 \2\2\u0125")
buf.write(u"\61\3\2\2\2\u0126\u0127\7H\2\2\u0127\u0128\7\26\2\2\u0128")
buf.write(u"\u0129\5\64\33\2\u0129\u012a\7\27\2\2\u012a\63\3\2\2")
buf.write(u"\2\u012b\u012d\7M\2\2\u012c\u012b\3\2\2\2\u012d\u0130")
buf.write(u"\3\2\2\2\u012e\u012c\3\2\2\2\u012e\u012f\3\2\2\2\u012f")
buf.write(u"\65\3\2\2\2\u0130\u012e\3\2\2\2\u0131\u0132\7D\2\2\u0132")
buf.write(u"\u0133\7\26\2\2\u0133\u0134\5\b\5\2\u0134\u0135\7\27")
buf.write(u"\2\2\u0135\u0136\7\26\2\2\u0136\u0137\5\b\5\2\u0137\u0138")
buf.write(u"\7\27\2\2\u0138\67\3\2\2\2\u0139\u013a\t\b\2\2\u013a")
buf.write(u"\u013b\7\26\2\2\u013b\u013c\5\b\5\2\u013c\u013d\7\27")
buf.write(u"\2\2\u013d\u013e\7\26\2\2\u013e\u013f\5\b\5\2\u013f\u0140")
buf.write(u"\7\27\2\2\u01409\3\2\2\2\u0141\u0142\7;\2\2\u0142\u0143")
buf.write(u"\5\b\5\2\u0143\u0144\7<\2\2\u0144;\3\2\2\2\u0145\u0146")
buf.write(u"\7=\2\2\u0146\u0147\5\b\5\2\u0147\u0148\7>\2\2\u0148")
buf.write(u"=\3\2\2\2\u0149\u014a\t\t\2\2\u014a?\3\2\2\2\u014b\u0158")
buf.write(u"\5> \2\u014c\u014e\5J&\2\u014d\u014c\3\2\2\2\u014d\u014e")
buf.write(u"\3\2\2\2\u014e\u0150\3\2\2\2\u014f\u0151\5L\'\2\u0150")
buf.write(u"\u014f\3\2\2\2\u0150\u0151\3\2\2\2\u0151\u0159\3\2\2")
buf.write(u"\2\u0152\u0154\5L\'\2\u0153\u0152\3\2\2\2\u0153\u0154")
buf.write(u"\3\2\2\2\u0154\u0156\3\2\2\2\u0155\u0157\5J&\2\u0156")
buf.write(u"\u0155\3\2\2\2\u0156\u0157\3\2\2\2\u0157\u0159\3\2\2")
buf.write(u"\2\u0158\u014d\3\2\2\2\u0158\u0153\3\2\2\2\u0159\u015f")
buf.write(u"\3\2\2\2\u015a\u015b\7\24\2\2\u015b\u015c\5F$\2\u015c")
buf.write(u"\u015d\7\25\2\2\u015d\u0160\3\2\2\2\u015e\u0160\5H%\2")
buf.write(u"\u015f\u015a\3\2\2\2\u015f\u015e\3\2\2\2\u0160\u019a")
buf.write(u"\3\2\2\2\u0161\u0163\t\5\2\2\u0162\u0164\5J&\2\u0163")
buf.write(u"\u0162\3\2\2\2\u0163\u0164\3\2\2\2\u0164\u0165\3\2\2")
buf.write(u"\2\u0165\u0166\7\24\2\2\u0166\u0167\5B\"\2\u0167\u0168")
buf.write(u"\7\25\2\2\u0168\u019a\3\2\2\2\u0169\u0170\7#\2\2\u016a")
buf.write(u"\u016b\5J&\2\u016b\u016c\5L\'\2\u016c\u0171\3\2\2\2\u016d")
buf.write(u"\u016e\5L\'\2\u016e\u016f\5J&\2\u016f\u0171\3\2\2\2\u0170")
buf.write(u"\u016a\3\2\2\2\u0170\u016d\3\2\2\2\u0170\u0171\3\2\2")
buf.write(u"\2\u0171\u0178\3\2\2\2\u0172\u0174\5\n\6\2\u0173\u0172")
buf.write(u"\3\2\2\2\u0173\u0174\3\2\2\2\u0174\u0175\3\2\2\2\u0175")
buf.write(u"\u0179\7L\2\2\u0176\u0179\5\66\34\2\u0177\u0179\5\n\6")
buf.write(u"\2\u0178\u0173\3\2\2\2\u0178\u0176\3\2\2\2\u0178\u0177")
buf.write(u"\3\2\2\2\u0179\u019a\3\2\2\2\u017a\u017f\7?\2\2\u017b")
buf.write(u"\u017c\7\32\2\2\u017c\u017d\5\b\5\2\u017d\u017e\7\33")
buf.write(u"\2\2\u017e\u0180\3\2\2\2\u017f\u017b\3\2\2\2\u017f\u0180")
buf.write(u"\3\2\2\2\u0180\u0181\3\2\2\2\u0181\u0182\7\26\2\2\u0182")
buf.write(u"\u0183\5\b\5\2\u0183\u0184\7\27\2\2\u0184\u019a\3\2\2")
buf.write(u"\2\u0185\u0186\7@\2\2\u0186\u0187\7\26\2\2\u0187\u0188")
buf.write(u"\5\b\5\2\u0188\u0189\7\27\2\2\u0189\u019a\3\2\2\2\u018a")
buf.write(u"\u0191\t\n\2\2\u018b\u018c\5N(\2\u018c\u018d\5L\'\2\u018d")
buf.write(u"\u0192\3\2\2\2\u018e\u018f\5L\'\2\u018f\u0190\5N(\2\u0190")
buf.write(u"\u0192\3\2\2\2\u0191\u018b\3\2\2\2\u0191\u018e\3\2\2")
buf.write(u"\2\u0192\u0193\3\2\2\2\u0193\u0194\5\f\7\2\u0194\u019a")
buf.write(u"\3\2\2\2\u0195\u0196\7!\2\2\u0196\u0197\5D#\2\u0197\u0198")
buf.write(u"\5\f\7\2\u0198\u019a\3\2\2\2\u0199\u014b\3\2\2\2\u0199")
buf.write(u"\u0161\3\2\2\2\u0199\u0169\3\2\2\2\u0199\u017a\3\2\2")
buf.write(u"\2\u0199\u0185\3\2\2\2\u0199\u018a\3\2\2\2\u0199\u0195")
buf.write(u"\3\2\2\2\u019aA\3\2\2\2\u019b\u019c\5\b\5\2\u019c\u019d")
buf.write(u"\7\3\2\2\u019d\u019e\5B\"\2\u019e\u01a1\3\2\2\2\u019f")
buf.write(u"\u01a1\5\b\5\2\u01a0\u019b\3\2\2\2\u01a0\u019f\3\2\2")
buf.write(u"\2\u01a1C\3\2\2\2\u01a2\u01a3\7I\2\2\u01a3\u01a4\7\26")
buf.write(u"\2\2\u01a4\u01a5\t\5\2\2\u01a5\u01a6\7\"\2\2\u01a6\u01ab")
buf.write(u"\5\b\5\2\u01a7\u01a8\7J\2\2\u01a8\u01a9\7\26\2\2\u01a9")
buf.write(u"\u01aa\t\3\2\2\u01aa\u01ac\7\27\2\2\u01ab\u01a7\3\2\2")
buf.write(u"\2\u01ab\u01ac\3\2\2\2\u01ac\u01ad\3\2\2\2\u01ad\u01ae")
buf.write(u"\7\27\2\2\u01aeE\3\2\2\2\u01af\u01b5\5\b\5\2\u01b0\u01b1")
buf.write(u"\5\b\5\2\u01b1\u01b2\7\3\2\2\u01b2\u01b3\5F$\2\u01b3")
buf.write(u"\u01b5\3\2\2\2\u01b4\u01af\3\2\2\2\u01b4\u01b0\3\2\2")
buf.write(u"\2\u01b5G\3\2\2\2\u01b6\u01b7\5\16\b\2\u01b7I\3\2\2\2")
buf.write(u"\u01b8\u01be\7I\2\2\u01b9\u01bf\5,\27\2\u01ba\u01bb\7")
buf.write(u"\26\2\2\u01bb\u01bc\5\b\5\2\u01bc\u01bd\7\27\2\2\u01bd")
buf.write(u"\u01bf\3\2\2\2\u01be\u01b9\3\2\2\2\u01be\u01ba\3\2\2")
buf.write(u"\2\u01bfK\3\2\2\2\u01c0\u01c6\7J\2\2\u01c1\u01c7\5,\27")
buf.write(u"\2\u01c2\u01c3\7\26\2\2\u01c3\u01c4\5\b\5\2\u01c4\u01c5")
buf.write(u"\7\27\2\2\u01c5\u01c7\3\2\2\2\u01c6\u01c1\3\2\2\2\u01c6")
buf.write(u"\u01c2\3\2\2\2\u01c7M\3\2\2\2\u01c8\u01c9\7I\2\2\u01c9")
buf.write(u"\u01ca\7\26\2\2\u01ca\u01cb\5\6\4\2\u01cb\u01cc\7\27")
buf.write(u"\2\2\u01ccO\3\2\2\2\u01cd\u01ce\7I\2\2\u01ce\u01cf\7")
buf.write(u"\26\2\2\u01cf\u01d0\5\6\4\2\u01d0\u01d1\7\27\2\2\u01d1")
buf.write(u"Q\3\2\2\2.\\mx\u0083\u008b\u008d\u0095\u0098\u009e\u00a5")
buf.write(u"\u00aa\u00b2\u00b8\u00c0\u00ce\u00d1\u00d5\u00e2\u00e5")
buf.write(u"\u00e9\u00f2\u00f9\u010b\u0113\u011c\u012e\u014d\u0150")
buf.write(u"\u0153\u0156\u0158\u015f\u0163\u0170\u0173\u0178\u017f")
buf.write(u"\u0191\u0199\u01a0\u01ab\u01b4\u01be\u01c6")
return buf.getvalue()
class LaTeXParser ( Parser ):
grammarFileName = "LaTeX.g4"
atn = ATNDeserializer().deserialize(serializedATN())
decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ]
sharedContextCache = PredictionContextCache()
literalNames = [ u"<INVALID>", u"','", u"<INVALID>", u"<INVALID>", u"<INVALID>",
u"<INVALID>", u"'\\quad'", u"'\\qquad'", u"<INVALID>",
u"'\\negmedspace'", u"'\\negthickspace'", u"'\\left'",
u"'\\right'", u"<INVALID>", u"'+'", u"'-'", u"'*'",
u"'/'", u"'('", u"')'", u"'{'", u"'}'", u"'\\{'", u"'\\}'",
u"'['", u"']'", u"'|'", u"'\\right|'", u"'\\left|'",
u"'\\langle'", u"'\\rangle'", u"'\\lim'", u"<INVALID>",
u"<INVALID>", u"'\\sum'", u"'\\prod'", u"'\\exp'",
u"'\\log'", u"'\\ln'", u"'\\sin'", u"'\\cos'", u"'\\tan'",
u"'\\csc'", u"'\\sec'", u"'\\cot'", u"'\\arcsin'",
u"'\\arccos'", u"'\\arctan'", u"'\\arccsc'", u"'\\arcsec'",
u"'\\arccot'", u"'\\sinh'", u"'\\cosh'", u"'\\tanh'",
u"'\\arsinh'", u"'\\arcosh'", u"'\\artanh'", u"'\\lfloor'",
u"'\\rfloor'", u"'\\lceil'", u"'\\rceil'", u"'\\sqrt'",
u"'\\overline'", u"'\\times'", u"'\\cdot'", u"'\\div'",
u"<INVALID>", u"'\\binom'", u"'\\dbinom'", u"'\\tbinom'",
u"'\\mathit'", u"'_'", u"'^'", u"':'", u"<INVALID>",
u"<INVALID>", u"<INVALID>", u"<INVALID>", u"'\\neq'",
u"'<'", u"<INVALID>", u"'\\leqq'", u"'\\leqslant'",
u"'>'", u"<INVALID>", u"'\\geqq'", u"'\\geqslant'",
u"'!'" ]
symbolicNames = [ u"<INVALID>", u"<INVALID>", u"WS", u"THINSPACE", u"MEDSPACE",
u"THICKSPACE", u"QUAD", u"QQUAD", u"NEGTHINSPACE",
u"NEGMEDSPACE", u"NEGTHICKSPACE", u"CMD_LEFT", u"CMD_RIGHT",
u"IGNORE", u"ADD", u"SUB", u"MUL", u"DIV", u"L_PAREN",
u"R_PAREN", u"L_BRACE", u"R_BRACE", u"L_BRACE_LITERAL",
u"R_BRACE_LITERAL", u"L_BRACKET", u"R_BRACKET", u"BAR",
u"R_BAR", u"L_BAR", u"L_ANGLE", u"R_ANGLE", u"FUNC_LIM",
u"LIM_APPROACH_SYM", u"FUNC_INT", u"FUNC_SUM", u"FUNC_PROD",
u"FUNC_EXP", u"FUNC_LOG", u"FUNC_LN", u"FUNC_SIN",
u"FUNC_COS", u"FUNC_TAN", u"FUNC_CSC", u"FUNC_SEC",
u"FUNC_COT", u"FUNC_ARCSIN", u"FUNC_ARCCOS", u"FUNC_ARCTAN",
u"FUNC_ARCCSC", u"FUNC_ARCSEC", u"FUNC_ARCCOT", u"FUNC_SINH",
u"FUNC_COSH", u"FUNC_TANH", u"FUNC_ARSINH", u"FUNC_ARCOSH",
u"FUNC_ARTANH", u"L_FLOOR", u"R_FLOOR", u"L_CEIL",
u"R_CEIL", u"FUNC_SQRT", u"FUNC_OVERLINE", u"CMD_TIMES",
u"CMD_CDOT", u"CMD_DIV", u"CMD_FRAC", u"CMD_BINOM",
u"CMD_DBINOM", u"CMD_TBINOM", u"CMD_MATHIT", u"UNDERSCORE",
u"CARET", u"COLON", u"DIFFERENTIAL", u"LETTER", u"NUMBER",
u"EQUAL", u"NEQ", u"LT", u"LTE", u"LTE_Q", u"LTE_S",
u"GT", u"GTE", u"GTE_Q", u"GTE_S", u"BANG", u"SYMBOL" ]
RULE_math = 0
RULE_relation = 1
RULE_equality = 2
RULE_expr = 3
RULE_additive = 4
RULE_mp = 5
RULE_mp_nofunc = 6
RULE_unary = 7
RULE_unary_nofunc = 8
RULE_postfix = 9
RULE_postfix_nofunc = 10
RULE_postfix_op = 11
RULE_eval_at = 12
RULE_eval_at_sub = 13
RULE_eval_at_sup = 14
RULE_exp = 15
RULE_exp_nofunc = 16
RULE_comp = 17
RULE_comp_nofunc = 18
RULE_group = 19
RULE_abs_group = 20
RULE_atom = 21
RULE_bra = 22
RULE_ket = 23
RULE_mathit = 24
RULE_mathit_text = 25
RULE_frac = 26
RULE_binom = 27
RULE_floor = 28
RULE_ceil = 29
RULE_func_normal = 30
RULE_func = 31
RULE_args = 32
RULE_limit_sub = 33
RULE_func_arg = 34
RULE_func_arg_noparens = 35
RULE_subexpr = 36
RULE_supexpr = 37
RULE_subeq = 38
RULE_supeq = 39
ruleNames = [ u"math", u"relation", u"equality", u"expr", u"additive",
u"mp", u"mp_nofunc", u"unary", u"unary_nofunc", u"postfix",
u"postfix_nofunc", u"postfix_op", u"eval_at", u"eval_at_sub",
u"eval_at_sup", u"exp", u"exp_nofunc", u"comp", u"comp_nofunc",
u"group", u"abs_group", u"atom", u"bra", u"ket", u"mathit",
u"mathit_text", u"frac", u"binom", u"floor", u"ceil",
u"func_normal", u"func", u"args", u"limit_sub", u"func_arg",
u"func_arg_noparens", u"subexpr", u"supexpr", u"subeq",
u"supeq" ]
EOF = Token.EOF
T__0=1
WS=2
THINSPACE=3
MEDSPACE=4
THICKSPACE=5
QUAD=6
QQUAD=7
NEGTHINSPACE=8
NEGMEDSPACE=9
NEGTHICKSPACE=10
CMD_LEFT=11
CMD_RIGHT=12
IGNORE=13
ADD=14
SUB=15
MUL=16
DIV=17
L_PAREN=18
R_PAREN=19
L_BRACE=20
R_BRACE=21
L_BRACE_LITERAL=22
R_BRACE_LITERAL=23
L_BRACKET=24
R_BRACKET=25
BAR=26
R_BAR=27
L_BAR=28
L_ANGLE=29
R_ANGLE=30
FUNC_LIM=31
LIM_APPROACH_SYM=32
FUNC_INT=33
FUNC_SUM=34
FUNC_PROD=35
FUNC_EXP=36
FUNC_LOG=37
FUNC_LN=38
FUNC_SIN=39
FUNC_COS=40
FUNC_TAN=41
FUNC_CSC=42
FUNC_SEC=43
FUNC_COT=44
FUNC_ARCSIN=45
FUNC_ARCCOS=46
FUNC_ARCTAN=47
FUNC_ARCCSC=48
FUNC_ARCSEC=49
FUNC_ARCCOT=50
FUNC_SINH=51
FUNC_COSH=52
FUNC_TANH=53
FUNC_ARSINH=54
FUNC_ARCOSH=55
FUNC_ARTANH=56
L_FLOOR=57
R_FLOOR=58
L_CEIL=59
R_CEIL=60
FUNC_SQRT=61
FUNC_OVERLINE=62
CMD_TIMES=63
CMD_CDOT=64
CMD_DIV=65
CMD_FRAC=66
CMD_BINOM=67
CMD_DBINOM=68
CMD_TBINOM=69
CMD_MATHIT=70
UNDERSCORE=71
CARET=72
COLON=73
DIFFERENTIAL=74
LETTER=75
NUMBER=76
EQUAL=77
NEQ=78
LT=79
LTE=80
LTE_Q=81
LTE_S=82
GT=83
GTE=84
GTE_Q=85
GTE_S=86
BANG=87
SYMBOL=88
def __init__(self, input, output=sys.stdout):
super(LaTeXParser, self).__init__(input, output=output)
self.checkVersion("4.7.2")
self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache)
self._predicates = None
class MathContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.MathContext, self).__init__(parent, invokingState)
self.parser = parser
def relation(self):
return self.getTypedRuleContext(LaTeXParser.RelationContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_math
def math(self):
localctx = LaTeXParser.MathContext(self, self._ctx, self.state)
self.enterRule(localctx, 0, self.RULE_math)
try:
self.enterOuterAlt(localctx, 1)
self.state = 80
self.relation(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class RelationContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.RelationContext, self).__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def relation(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.RelationContext)
else:
return self.getTypedRuleContext(LaTeXParser.RelationContext,i)
def EQUAL(self):
return self.getToken(LaTeXParser.EQUAL, 0)
def LT(self):
return self.getToken(LaTeXParser.LT, 0)
def LTE(self):
return self.getToken(LaTeXParser.LTE, 0)
def GT(self):
return self.getToken(LaTeXParser.GT, 0)
def GTE(self):
return self.getToken(LaTeXParser.GTE, 0)
def NEQ(self):
return self.getToken(LaTeXParser.NEQ, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_relation
def relation(self, _p=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.RelationContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 2
self.enterRecursionRule(localctx, 2, self.RULE_relation, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 83
self.expr()
self._ctx.stop = self._input.LT(-1)
self.state = 90
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,0,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.RelationContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_relation)
self.state = 85
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 86
_la = self._input.LA(1)
if not(((((_la - 77)) & ~0x3f) == 0 and ((1 << (_la - 77)) & ((1 << (LaTeXParser.EQUAL - 77)) | (1 << (LaTeXParser.NEQ - 77)) | (1 << (LaTeXParser.LT - 77)) | (1 << (LaTeXParser.LTE - 77)) | (1 << (LaTeXParser.GT - 77)) | (1 << (LaTeXParser.GTE - 77)))) != 0)):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 87
self.relation(3)
self.state = 92
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,0,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class EqualityContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.EqualityContext, self).__init__(parent, invokingState)
self.parser = parser
def expr(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def EQUAL(self):
return self.getToken(LaTeXParser.EQUAL, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_equality
def equality(self):
localctx = LaTeXParser.EqualityContext(self, self._ctx, self.state)
self.enterRule(localctx, 4, self.RULE_equality)
try:
self.enterOuterAlt(localctx, 1)
self.state = 93
self.expr()
self.state = 94
self.match(LaTeXParser.EQUAL)
self.state = 95
self.expr()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ExprContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.ExprContext, self).__init__(parent, invokingState)
self.parser = parser
def additive(self):
return self.getTypedRuleContext(LaTeXParser.AdditiveContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_expr
def expr(self):
localctx = LaTeXParser.ExprContext(self, self._ctx, self.state)
self.enterRule(localctx, 6, self.RULE_expr)
try:
self.enterOuterAlt(localctx, 1)
self.state = 97
self.additive(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class AdditiveContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.AdditiveContext, self).__init__(parent, invokingState)
self.parser = parser
def mp(self):
return self.getTypedRuleContext(LaTeXParser.MpContext,0)
def additive(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.AdditiveContext)
else:
return self.getTypedRuleContext(LaTeXParser.AdditiveContext,i)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_additive
def additive(self, _p=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.AdditiveContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 8
self.enterRecursionRule(localctx, 8, self.RULE_additive, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 100
self.mp(0)
self._ctx.stop = self._input.LT(-1)
self.state = 107
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,1,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.AdditiveContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_additive)
self.state = 102
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 103
_la = self._input.LA(1)
if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 104
self.additive(3)
self.state = 109
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,1,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class MpContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.MpContext, self).__init__(parent, invokingState)
self.parser = parser
def unary(self):
return self.getTypedRuleContext(LaTeXParser.UnaryContext,0)
def mp(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.MpContext)
else:
return self.getTypedRuleContext(LaTeXParser.MpContext,i)
def MUL(self):
return self.getToken(LaTeXParser.MUL, 0)
def CMD_TIMES(self):
return self.getToken(LaTeXParser.CMD_TIMES, 0)
def CMD_CDOT(self):
return self.getToken(LaTeXParser.CMD_CDOT, 0)
def DIV(self):
return self.getToken(LaTeXParser.DIV, 0)
def CMD_DIV(self):
return self.getToken(LaTeXParser.CMD_DIV, 0)
def COLON(self):
return self.getToken(LaTeXParser.COLON, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_mp
def mp(self, _p=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.MpContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 10
self.enterRecursionRule(localctx, 10, self.RULE_mp, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 111
self.unary()
self._ctx.stop = self._input.LT(-1)
self.state = 118
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,2,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.MpContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_mp)
self.state = 113
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 114
_la = self._input.LA(1)
if not(((((_la - 16)) & ~0x3f) == 0 and ((1 << (_la - 16)) & ((1 << (LaTeXParser.MUL - 16)) | (1 << (LaTeXParser.DIV - 16)) | (1 << (LaTeXParser.CMD_TIMES - 16)) | (1 << (LaTeXParser.CMD_CDOT - 16)) | (1 << (LaTeXParser.CMD_DIV - 16)) | (1 << (LaTeXParser.COLON - 16)))) != 0)):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 115
self.mp(3)
self.state = 120
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,2,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class Mp_nofuncContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Mp_nofuncContext, self).__init__(parent, invokingState)
self.parser = parser
def unary_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Unary_nofuncContext,0)
def mp_nofunc(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Mp_nofuncContext)
else:
return self.getTypedRuleContext(LaTeXParser.Mp_nofuncContext,i)
def MUL(self):
return self.getToken(LaTeXParser.MUL, 0)
def CMD_TIMES(self):
return self.getToken(LaTeXParser.CMD_TIMES, 0)
def CMD_CDOT(self):
return self.getToken(LaTeXParser.CMD_CDOT, 0)
def DIV(self):
return self.getToken(LaTeXParser.DIV, 0)
def CMD_DIV(self):
return self.getToken(LaTeXParser.CMD_DIV, 0)
def COLON(self):
return self.getToken(LaTeXParser.COLON, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_mp_nofunc
def mp_nofunc(self, _p=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.Mp_nofuncContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 12
self.enterRecursionRule(localctx, 12, self.RULE_mp_nofunc, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 122
self.unary_nofunc()
self._ctx.stop = self._input.LT(-1)
self.state = 129
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,3,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.Mp_nofuncContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_mp_nofunc)
self.state = 124
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 125
_la = self._input.LA(1)
if not(((((_la - 16)) & ~0x3f) == 0 and ((1 << (_la - 16)) & ((1 << (LaTeXParser.MUL - 16)) | (1 << (LaTeXParser.DIV - 16)) | (1 << (LaTeXParser.CMD_TIMES - 16)) | (1 << (LaTeXParser.CMD_CDOT - 16)) | (1 << (LaTeXParser.CMD_DIV - 16)) | (1 << (LaTeXParser.COLON - 16)))) != 0)):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 126
self.mp_nofunc(3)
self.state = 131
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,3,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class UnaryContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.UnaryContext, self).__init__(parent, invokingState)
self.parser = parser
def unary(self):
return self.getTypedRuleContext(LaTeXParser.UnaryContext,0)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def postfix(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.PostfixContext)
else:
return self.getTypedRuleContext(LaTeXParser.PostfixContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_unary
def unary(self):
localctx = LaTeXParser.UnaryContext(self, self._ctx, self.state)
self.enterRule(localctx, 14, self.RULE_unary)
self._la = 0 # Token type
try:
self.state = 139
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.ADD, LaTeXParser.SUB]:
self.enterOuterAlt(localctx, 1)
self.state = 132
_la = self._input.LA(1)
if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 133
self.unary()
pass
elif token in [LaTeXParser.L_PAREN, LaTeXParser.L_BRACE, LaTeXParser.L_BRACE_LITERAL, LaTeXParser.L_BRACKET, LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.FUNC_LIM, LaTeXParser.FUNC_INT, LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD, LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH, LaTeXParser.L_FLOOR, LaTeXParser.L_CEIL, LaTeXParser.FUNC_SQRT, LaTeXParser.FUNC_OVERLINE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
self.enterOuterAlt(localctx, 2)
self.state = 135
self._errHandler.sync(self)
_alt = 1
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt == 1:
self.state = 134
self.postfix()
else:
raise NoViableAltException(self)
self.state = 137
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,4,self._ctx)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Unary_nofuncContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Unary_nofuncContext, self).__init__(parent, invokingState)
self.parser = parser
def unary_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Unary_nofuncContext,0)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def postfix(self):
return self.getTypedRuleContext(LaTeXParser.PostfixContext,0)
def postfix_nofunc(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Postfix_nofuncContext)
else:
return self.getTypedRuleContext(LaTeXParser.Postfix_nofuncContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_unary_nofunc
def unary_nofunc(self):
localctx = LaTeXParser.Unary_nofuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 16, self.RULE_unary_nofunc)
self._la = 0 # Token type
try:
self.state = 150
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.ADD, LaTeXParser.SUB]:
self.enterOuterAlt(localctx, 1)
self.state = 141
_la = self._input.LA(1)
if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 142
self.unary_nofunc()
pass
elif token in [LaTeXParser.L_PAREN, LaTeXParser.L_BRACE, LaTeXParser.L_BRACE_LITERAL, LaTeXParser.L_BRACKET, LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.FUNC_LIM, LaTeXParser.FUNC_INT, LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD, LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH, LaTeXParser.L_FLOOR, LaTeXParser.L_CEIL, LaTeXParser.FUNC_SQRT, LaTeXParser.FUNC_OVERLINE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
self.enterOuterAlt(localctx, 2)
self.state = 143
self.postfix()
self.state = 147
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,6,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 144
self.postfix_nofunc()
self.state = 149
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,6,self._ctx)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class PostfixContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.PostfixContext, self).__init__(parent, invokingState)
self.parser = parser
def exp(self):
return self.getTypedRuleContext(LaTeXParser.ExpContext,0)
def postfix_op(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Postfix_opContext)
else:
return self.getTypedRuleContext(LaTeXParser.Postfix_opContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_postfix
def postfix(self):
localctx = LaTeXParser.PostfixContext(self, self._ctx, self.state)
self.enterRule(localctx, 18, self.RULE_postfix)
try:
self.enterOuterAlt(localctx, 1)
self.state = 152
self.exp(0)
self.state = 156
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,8,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 153
self.postfix_op()
self.state = 158
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,8,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Postfix_nofuncContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Postfix_nofuncContext, self).__init__(parent, invokingState)
self.parser = parser
def exp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Exp_nofuncContext,0)
def postfix_op(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Postfix_opContext)
else:
return self.getTypedRuleContext(LaTeXParser.Postfix_opContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_postfix_nofunc
def postfix_nofunc(self):
localctx = LaTeXParser.Postfix_nofuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 20, self.RULE_postfix_nofunc)
try:
self.enterOuterAlt(localctx, 1)
self.state = 159
self.exp_nofunc(0)
self.state = 163
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,9,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 160
self.postfix_op()
self.state = 165
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,9,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Postfix_opContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Postfix_opContext, self).__init__(parent, invokingState)
self.parser = parser
def BANG(self):
return self.getToken(LaTeXParser.BANG, 0)
def eval_at(self):
return self.getTypedRuleContext(LaTeXParser.Eval_atContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_postfix_op
def postfix_op(self):
localctx = LaTeXParser.Postfix_opContext(self, self._ctx, self.state)
self.enterRule(localctx, 22, self.RULE_postfix_op)
try:
self.state = 168
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.BANG]:
self.enterOuterAlt(localctx, 1)
self.state = 166
self.match(LaTeXParser.BANG)
pass
elif token in [LaTeXParser.BAR]:
self.enterOuterAlt(localctx, 2)
self.state = 167
self.eval_at()
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Eval_atContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Eval_atContext, self).__init__(parent, invokingState)
self.parser = parser
def BAR(self):
return self.getToken(LaTeXParser.BAR, 0)
def eval_at_sup(self):
return self.getTypedRuleContext(LaTeXParser.Eval_at_supContext,0)
def eval_at_sub(self):
return self.getTypedRuleContext(LaTeXParser.Eval_at_subContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_eval_at
def eval_at(self):
localctx = LaTeXParser.Eval_atContext(self, self._ctx, self.state)
self.enterRule(localctx, 24, self.RULE_eval_at)
try:
self.enterOuterAlt(localctx, 1)
self.state = 170
self.match(LaTeXParser.BAR)
self.state = 176
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,11,self._ctx)
if la_ == 1:
self.state = 171
self.eval_at_sup()
pass
elif la_ == 2:
self.state = 172
self.eval_at_sub()
pass
elif la_ == 3:
self.state = 173
self.eval_at_sup()
self.state = 174
self.eval_at_sub()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Eval_at_subContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Eval_at_subContext, self).__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_eval_at_sub
def eval_at_sub(self):
localctx = LaTeXParser.Eval_at_subContext(self, self._ctx, self.state)
self.enterRule(localctx, 26, self.RULE_eval_at_sub)
try:
self.enterOuterAlt(localctx, 1)
self.state = 178
self.match(LaTeXParser.UNDERSCORE)
self.state = 179
self.match(LaTeXParser.L_BRACE)
self.state = 182
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,12,self._ctx)
if la_ == 1:
self.state = 180
self.expr()
pass
elif la_ == 2:
self.state = 181
self.equality()
pass
self.state = 184
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Eval_at_supContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Eval_at_supContext, self).__init__(parent, invokingState)
self.parser = parser
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_eval_at_sup
def eval_at_sup(self):
localctx = LaTeXParser.Eval_at_supContext(self, self._ctx, self.state)
self.enterRule(localctx, 28, self.RULE_eval_at_sup)
try:
self.enterOuterAlt(localctx, 1)
self.state = 186
self.match(LaTeXParser.CARET)
self.state = 187
self.match(LaTeXParser.L_BRACE)
self.state = 190
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,13,self._ctx)
if la_ == 1:
self.state = 188
self.expr()
pass
elif la_ == 2:
self.state = 189
self.equality()
pass
self.state = 192
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ExpContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.ExpContext, self).__init__(parent, invokingState)
self.parser = parser
def comp(self):
return self.getTypedRuleContext(LaTeXParser.CompContext,0)
def exp(self):
return self.getTypedRuleContext(LaTeXParser.ExpContext,0)
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_exp
def exp(self, _p=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.ExpContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 30
self.enterRecursionRule(localctx, 30, self.RULE_exp, _p)
try:
self.enterOuterAlt(localctx, 1)
self.state = 195
self.comp()
self._ctx.stop = self._input.LT(-1)
self.state = 211
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,16,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.ExpContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_exp)
self.state = 197
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 198
self.match(LaTeXParser.CARET)
self.state = 204
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
self.state = 199
self.atom()
pass
elif token in [LaTeXParser.L_BRACE]:
self.state = 200
self.match(LaTeXParser.L_BRACE)
self.state = 201
self.expr()
self.state = 202
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
self.state = 207
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,15,self._ctx)
if la_ == 1:
self.state = 206
self.subexpr()
self.state = 213
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,16,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class Exp_nofuncContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Exp_nofuncContext, self).__init__(parent, invokingState)
self.parser = parser
def comp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Comp_nofuncContext,0)
def exp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Exp_nofuncContext,0)
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_exp_nofunc
def exp_nofunc(self, _p=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.Exp_nofuncContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 32
self.enterRecursionRule(localctx, 32, self.RULE_exp_nofunc, _p)
try:
self.enterOuterAlt(localctx, 1)
self.state = 215
self.comp_nofunc()
self._ctx.stop = self._input.LT(-1)
self.state = 231
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,19,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.Exp_nofuncContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_exp_nofunc)
self.state = 217
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 218
self.match(LaTeXParser.CARET)
self.state = 224
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
self.state = 219
self.atom()
pass
elif token in [LaTeXParser.L_BRACE]:
self.state = 220
self.match(LaTeXParser.L_BRACE)
self.state = 221
self.expr()
self.state = 222
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
self.state = 227
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,18,self._ctx)
if la_ == 1:
self.state = 226
self.subexpr()
self.state = 233
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,19,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class CompContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.CompContext, self).__init__(parent, invokingState)
self.parser = parser
def group(self):
return self.getTypedRuleContext(LaTeXParser.GroupContext,0)
def abs_group(self):
return self.getTypedRuleContext(LaTeXParser.Abs_groupContext,0)
def func(self):
return self.getTypedRuleContext(LaTeXParser.FuncContext,0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def floor(self):
return self.getTypedRuleContext(LaTeXParser.FloorContext,0)
def ceil(self):
return self.getTypedRuleContext(LaTeXParser.CeilContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_comp
def comp(self):
localctx = LaTeXParser.CompContext(self, self._ctx, self.state)
self.enterRule(localctx, 34, self.RULE_comp)
try:
self.state = 240
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,20,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 234
self.group()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 235
self.abs_group()
pass
elif la_ == 3:
self.enterOuterAlt(localctx, 3)
self.state = 236
self.func()
pass
elif la_ == 4:
self.enterOuterAlt(localctx, 4)
self.state = 237
self.atom()
pass
elif la_ == 5:
self.enterOuterAlt(localctx, 5)
self.state = 238
self.floor()
pass
elif la_ == 6:
self.enterOuterAlt(localctx, 6)
self.state = 239
self.ceil()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Comp_nofuncContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Comp_nofuncContext, self).__init__(parent, invokingState)
self.parser = parser
def group(self):
return self.getTypedRuleContext(LaTeXParser.GroupContext,0)
def abs_group(self):
return self.getTypedRuleContext(LaTeXParser.Abs_groupContext,0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def floor(self):
return self.getTypedRuleContext(LaTeXParser.FloorContext,0)
def ceil(self):
return self.getTypedRuleContext(LaTeXParser.CeilContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_comp_nofunc
def comp_nofunc(self):
localctx = LaTeXParser.Comp_nofuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 36, self.RULE_comp_nofunc)
try:
self.state = 247
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,21,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 242
self.group()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 243
self.abs_group()
pass
elif la_ == 3:
self.enterOuterAlt(localctx, 3)
self.state = 244
self.atom()
pass
elif la_ == 4:
self.enterOuterAlt(localctx, 4)
self.state = 245
self.floor()
pass
elif la_ == 5:
self.enterOuterAlt(localctx, 5)
self.state = 246
self.ceil()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class GroupContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.GroupContext, self).__init__(parent, invokingState)
self.parser = parser
def L_PAREN(self):
return self.getToken(LaTeXParser.L_PAREN, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_PAREN(self):
return self.getToken(LaTeXParser.R_PAREN, 0)
def L_BRACKET(self):
return self.getToken(LaTeXParser.L_BRACKET, 0)
def R_BRACKET(self):
return self.getToken(LaTeXParser.R_BRACKET, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def L_BRACE_LITERAL(self):
return self.getToken(LaTeXParser.L_BRACE_LITERAL, 0)
def R_BRACE_LITERAL(self):
return self.getToken(LaTeXParser.R_BRACE_LITERAL, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_group
def group(self):
localctx = LaTeXParser.GroupContext(self, self._ctx, self.state)
self.enterRule(localctx, 38, self.RULE_group)
try:
self.state = 265
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.L_PAREN]:
self.enterOuterAlt(localctx, 1)
self.state = 249
self.match(LaTeXParser.L_PAREN)
self.state = 250
self.expr()
self.state = 251
self.match(LaTeXParser.R_PAREN)
pass
elif token in [LaTeXParser.L_BRACKET]:
self.enterOuterAlt(localctx, 2)
self.state = 253
self.match(LaTeXParser.L_BRACKET)
self.state = 254
self.expr()
self.state = 255
self.match(LaTeXParser.R_BRACKET)
pass
elif token in [LaTeXParser.L_BRACE]:
self.enterOuterAlt(localctx, 3)
self.state = 257
self.match(LaTeXParser.L_BRACE)
self.state = 258
self.expr()
self.state = 259
self.match(LaTeXParser.R_BRACE)
pass
elif token in [LaTeXParser.L_BRACE_LITERAL]:
self.enterOuterAlt(localctx, 4)
self.state = 261
self.match(LaTeXParser.L_BRACE_LITERAL)
self.state = 262
self.expr()
self.state = 263
self.match(LaTeXParser.R_BRACE_LITERAL)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Abs_groupContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Abs_groupContext, self).__init__(parent, invokingState)
self.parser = parser
def BAR(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.BAR)
else:
return self.getToken(LaTeXParser.BAR, i)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_abs_group
def abs_group(self):
localctx = LaTeXParser.Abs_groupContext(self, self._ctx, self.state)
self.enterRule(localctx, 40, self.RULE_abs_group)
try:
self.enterOuterAlt(localctx, 1)
self.state = 267
self.match(LaTeXParser.BAR)
self.state = 268
self.expr()
self.state = 269
self.match(LaTeXParser.BAR)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class AtomContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.AtomContext, self).__init__(parent, invokingState)
self.parser = parser
def LETTER(self):
return self.getToken(LaTeXParser.LETTER, 0)
def SYMBOL(self):
return self.getToken(LaTeXParser.SYMBOL, 0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def NUMBER(self):
return self.getToken(LaTeXParser.NUMBER, 0)
def DIFFERENTIAL(self):
return self.getToken(LaTeXParser.DIFFERENTIAL, 0)
def mathit(self):
return self.getTypedRuleContext(LaTeXParser.MathitContext,0)
def frac(self):
return self.getTypedRuleContext(LaTeXParser.FracContext,0)
def binom(self):
return self.getTypedRuleContext(LaTeXParser.BinomContext,0)
def bra(self):
return self.getTypedRuleContext(LaTeXParser.BraContext,0)
def ket(self):
return self.getTypedRuleContext(LaTeXParser.KetContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_atom
def atom(self):
localctx = LaTeXParser.AtomContext(self, self._ctx, self.state)
self.enterRule(localctx, 42, self.RULE_atom)
self._la = 0 # Token type
try:
self.state = 282
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.LETTER, LaTeXParser.SYMBOL]:
self.enterOuterAlt(localctx, 1)
self.state = 271
_la = self._input.LA(1)
if not(_la==LaTeXParser.LETTER or _la==LaTeXParser.SYMBOL):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 273
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,23,self._ctx)
if la_ == 1:
self.state = 272
self.subexpr()
pass
elif token in [LaTeXParser.NUMBER]:
self.enterOuterAlt(localctx, 2)
self.state = 275
self.match(LaTeXParser.NUMBER)
pass
elif token in [LaTeXParser.DIFFERENTIAL]:
self.enterOuterAlt(localctx, 3)
self.state = 276
self.match(LaTeXParser.DIFFERENTIAL)
pass
elif token in [LaTeXParser.CMD_MATHIT]:
self.enterOuterAlt(localctx, 4)
self.state = 277
self.mathit()
pass
elif token in [LaTeXParser.CMD_FRAC]:
self.enterOuterAlt(localctx, 5)
self.state = 278
self.frac()
pass
elif token in [LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM]:
self.enterOuterAlt(localctx, 6)
self.state = 279
self.binom()
pass
elif token in [LaTeXParser.L_ANGLE]:
self.enterOuterAlt(localctx, 7)
self.state = 280
self.bra()
pass
elif token in [LaTeXParser.BAR, LaTeXParser.L_BAR]:
self.enterOuterAlt(localctx, 8)
self.state = 281
self.ket()
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class BraContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.BraContext, self).__init__(parent, invokingState)
self.parser = parser
def L_ANGLE(self):
return self.getToken(LaTeXParser.L_ANGLE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BAR(self):
return self.getToken(LaTeXParser.R_BAR, 0)
def BAR(self):
return self.getToken(LaTeXParser.BAR, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_bra
def bra(self):
localctx = LaTeXParser.BraContext(self, self._ctx, self.state)
self.enterRule(localctx, 44, self.RULE_bra)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 284
self.match(LaTeXParser.L_ANGLE)
self.state = 285
self.expr()
self.state = 286
_la = self._input.LA(1)
if not(_la==LaTeXParser.BAR or _la==LaTeXParser.R_BAR):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class KetContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.KetContext, self).__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_ANGLE(self):
return self.getToken(LaTeXParser.R_ANGLE, 0)
def L_BAR(self):
return self.getToken(LaTeXParser.L_BAR, 0)
def BAR(self):
return self.getToken(LaTeXParser.BAR, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_ket
def ket(self):
localctx = LaTeXParser.KetContext(self, self._ctx, self.state)
self.enterRule(localctx, 46, self.RULE_ket)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 288
_la = self._input.LA(1)
if not(_la==LaTeXParser.BAR or _la==LaTeXParser.L_BAR):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 289
self.expr()
self.state = 290
self.match(LaTeXParser.R_ANGLE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class MathitContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.MathitContext, self).__init__(parent, invokingState)
self.parser = parser
def CMD_MATHIT(self):
return self.getToken(LaTeXParser.CMD_MATHIT, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def mathit_text(self):
return self.getTypedRuleContext(LaTeXParser.Mathit_textContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_mathit
def mathit(self):
localctx = LaTeXParser.MathitContext(self, self._ctx, self.state)
self.enterRule(localctx, 48, self.RULE_mathit)
try:
self.enterOuterAlt(localctx, 1)
self.state = 292
self.match(LaTeXParser.CMD_MATHIT)
self.state = 293
self.match(LaTeXParser.L_BRACE)
self.state = 294
self.mathit_text()
self.state = 295
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Mathit_textContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Mathit_textContext, self).__init__(parent, invokingState)
self.parser = parser
def LETTER(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.LETTER)
else:
return self.getToken(LaTeXParser.LETTER, i)
def getRuleIndex(self):
return LaTeXParser.RULE_mathit_text
def mathit_text(self):
localctx = LaTeXParser.Mathit_textContext(self, self._ctx, self.state)
self.enterRule(localctx, 50, self.RULE_mathit_text)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 300
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==LaTeXParser.LETTER:
self.state = 297
self.match(LaTeXParser.LETTER)
self.state = 302
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FracContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.FracContext, self).__init__(parent, invokingState)
self.parser = parser
self.upper = None # ExprContext
self.lower = None # ExprContext
def CMD_FRAC(self):
return self.getToken(LaTeXParser.CMD_FRAC, 0)
def L_BRACE(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.L_BRACE)
else:
return self.getToken(LaTeXParser.L_BRACE, i)
def R_BRACE(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.R_BRACE)
else:
return self.getToken(LaTeXParser.R_BRACE, i)
def expr(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_frac
def frac(self):
localctx = LaTeXParser.FracContext(self, self._ctx, self.state)
self.enterRule(localctx, 52, self.RULE_frac)
try:
self.enterOuterAlt(localctx, 1)
self.state = 303
self.match(LaTeXParser.CMD_FRAC)
self.state = 304
self.match(LaTeXParser.L_BRACE)
self.state = 305
localctx.upper = self.expr()
self.state = 306
self.match(LaTeXParser.R_BRACE)
self.state = 307
self.match(LaTeXParser.L_BRACE)
self.state = 308
localctx.lower = self.expr()
self.state = 309
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class BinomContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.BinomContext, self).__init__(parent, invokingState)
self.parser = parser
self.n = None # ExprContext
self.k = None # ExprContext
def L_BRACE(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.L_BRACE)
else:
return self.getToken(LaTeXParser.L_BRACE, i)
def R_BRACE(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.R_BRACE)
else:
return self.getToken(LaTeXParser.R_BRACE, i)
def CMD_BINOM(self):
return self.getToken(LaTeXParser.CMD_BINOM, 0)
def CMD_DBINOM(self):
return self.getToken(LaTeXParser.CMD_DBINOM, 0)
def CMD_TBINOM(self):
return self.getToken(LaTeXParser.CMD_TBINOM, 0)
def expr(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_binom
def binom(self):
localctx = LaTeXParser.BinomContext(self, self._ctx, self.state)
self.enterRule(localctx, 54, self.RULE_binom)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 311
_la = self._input.LA(1)
if not(((((_la - 67)) & ~0x3f) == 0 and ((1 << (_la - 67)) & ((1 << (LaTeXParser.CMD_BINOM - 67)) | (1 << (LaTeXParser.CMD_DBINOM - 67)) | (1 << (LaTeXParser.CMD_TBINOM - 67)))) != 0)):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 312
self.match(LaTeXParser.L_BRACE)
self.state = 313
localctx.n = self.expr()
self.state = 314
self.match(LaTeXParser.R_BRACE)
self.state = 315
self.match(LaTeXParser.L_BRACE)
self.state = 316
localctx.k = self.expr()
self.state = 317
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FloorContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.FloorContext, self).__init__(parent, invokingState)
self.parser = parser
self.val = None # ExprContext
def L_FLOOR(self):
return self.getToken(LaTeXParser.L_FLOOR, 0)
def R_FLOOR(self):
return self.getToken(LaTeXParser.R_FLOOR, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_floor
def floor(self):
localctx = LaTeXParser.FloorContext(self, self._ctx, self.state)
self.enterRule(localctx, 56, self.RULE_floor)
try:
self.enterOuterAlt(localctx, 1)
self.state = 319
self.match(LaTeXParser.L_FLOOR)
self.state = 320
localctx.val = self.expr()
self.state = 321
self.match(LaTeXParser.R_FLOOR)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class CeilContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.CeilContext, self).__init__(parent, invokingState)
self.parser = parser
self.val = None # ExprContext
def L_CEIL(self):
return self.getToken(LaTeXParser.L_CEIL, 0)
def R_CEIL(self):
return self.getToken(LaTeXParser.R_CEIL, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_ceil
def ceil(self):
localctx = LaTeXParser.CeilContext(self, self._ctx, self.state)
self.enterRule(localctx, 58, self.RULE_ceil)
try:
self.enterOuterAlt(localctx, 1)
self.state = 323
self.match(LaTeXParser.L_CEIL)
self.state = 324
localctx.val = self.expr()
self.state = 325
self.match(LaTeXParser.R_CEIL)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Func_normalContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Func_normalContext, self).__init__(parent, invokingState)
self.parser = parser
def FUNC_EXP(self):
return self.getToken(LaTeXParser.FUNC_EXP, 0)
def FUNC_LOG(self):
return self.getToken(LaTeXParser.FUNC_LOG, 0)
def FUNC_LN(self):
return self.getToken(LaTeXParser.FUNC_LN, 0)
def FUNC_SIN(self):
return self.getToken(LaTeXParser.FUNC_SIN, 0)
def FUNC_COS(self):
return self.getToken(LaTeXParser.FUNC_COS, 0)
def FUNC_TAN(self):
return self.getToken(LaTeXParser.FUNC_TAN, 0)
def FUNC_CSC(self):
return self.getToken(LaTeXParser.FUNC_CSC, 0)
def FUNC_SEC(self):
return self.getToken(LaTeXParser.FUNC_SEC, 0)
def FUNC_COT(self):
return self.getToken(LaTeXParser.FUNC_COT, 0)
def FUNC_ARCSIN(self):
return self.getToken(LaTeXParser.FUNC_ARCSIN, 0)
def FUNC_ARCCOS(self):
return self.getToken(LaTeXParser.FUNC_ARCCOS, 0)
def FUNC_ARCTAN(self):
return self.getToken(LaTeXParser.FUNC_ARCTAN, 0)
def FUNC_ARCCSC(self):
return self.getToken(LaTeXParser.FUNC_ARCCSC, 0)
def FUNC_ARCSEC(self):
return self.getToken(LaTeXParser.FUNC_ARCSEC, 0)
def FUNC_ARCCOT(self):
return self.getToken(LaTeXParser.FUNC_ARCCOT, 0)
def FUNC_SINH(self):
return self.getToken(LaTeXParser.FUNC_SINH, 0)
def FUNC_COSH(self):
return self.getToken(LaTeXParser.FUNC_COSH, 0)
def FUNC_TANH(self):
return self.getToken(LaTeXParser.FUNC_TANH, 0)
def FUNC_ARSINH(self):
return self.getToken(LaTeXParser.FUNC_ARSINH, 0)
def FUNC_ARCOSH(self):
return self.getToken(LaTeXParser.FUNC_ARCOSH, 0)
def FUNC_ARTANH(self):
return self.getToken(LaTeXParser.FUNC_ARTANH, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_func_normal
def func_normal(self):
localctx = LaTeXParser.Func_normalContext(self, self._ctx, self.state)
self.enterRule(localctx, 60, self.RULE_func_normal)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 327
_la = self._input.LA(1)
if not((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << LaTeXParser.FUNC_EXP) | (1 << LaTeXParser.FUNC_LOG) | (1 << LaTeXParser.FUNC_LN) | (1 << LaTeXParser.FUNC_SIN) | (1 << LaTeXParser.FUNC_COS) | (1 << LaTeXParser.FUNC_TAN) | (1 << LaTeXParser.FUNC_CSC) | (1 << LaTeXParser.FUNC_SEC) | (1 << LaTeXParser.FUNC_COT) | (1 << LaTeXParser.FUNC_ARCSIN) | (1 << LaTeXParser.FUNC_ARCCOS) | (1 << LaTeXParser.FUNC_ARCTAN) | (1 << LaTeXParser.FUNC_ARCCSC) | (1 << LaTeXParser.FUNC_ARCSEC) | (1 << LaTeXParser.FUNC_ARCCOT) | (1 << LaTeXParser.FUNC_SINH) | (1 << LaTeXParser.FUNC_COSH) | (1 << LaTeXParser.FUNC_TANH) | (1 << LaTeXParser.FUNC_ARSINH) | (1 << LaTeXParser.FUNC_ARCOSH) | (1 << LaTeXParser.FUNC_ARTANH))) != 0)):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FuncContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.FuncContext, self).__init__(parent, invokingState)
self.parser = parser
self.root = None # ExprContext
self.base = None # ExprContext
def func_normal(self):
return self.getTypedRuleContext(LaTeXParser.Func_normalContext,0)
def L_PAREN(self):
return self.getToken(LaTeXParser.L_PAREN, 0)
def func_arg(self):
return self.getTypedRuleContext(LaTeXParser.Func_argContext,0)
def R_PAREN(self):
return self.getToken(LaTeXParser.R_PAREN, 0)
def func_arg_noparens(self):
return self.getTypedRuleContext(LaTeXParser.Func_arg_noparensContext,0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def supexpr(self):
return self.getTypedRuleContext(LaTeXParser.SupexprContext,0)
def args(self):
return self.getTypedRuleContext(LaTeXParser.ArgsContext,0)
def LETTER(self):
return self.getToken(LaTeXParser.LETTER, 0)
def SYMBOL(self):
return self.getToken(LaTeXParser.SYMBOL, 0)
def FUNC_INT(self):
return self.getToken(LaTeXParser.FUNC_INT, 0)
def DIFFERENTIAL(self):
return self.getToken(LaTeXParser.DIFFERENTIAL, 0)
def frac(self):
return self.getTypedRuleContext(LaTeXParser.FracContext,0)
def additive(self):
return self.getTypedRuleContext(LaTeXParser.AdditiveContext,0)
def FUNC_SQRT(self):
return self.getToken(LaTeXParser.FUNC_SQRT, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def expr(self, i=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def L_BRACKET(self):
return self.getToken(LaTeXParser.L_BRACKET, 0)
def R_BRACKET(self):
return self.getToken(LaTeXParser.R_BRACKET, 0)
def FUNC_OVERLINE(self):
return self.getToken(LaTeXParser.FUNC_OVERLINE, 0)
def mp(self):
return self.getTypedRuleContext(LaTeXParser.MpContext,0)
def FUNC_SUM(self):
return self.getToken(LaTeXParser.FUNC_SUM, 0)
def FUNC_PROD(self):
return self.getToken(LaTeXParser.FUNC_PROD, 0)
def subeq(self):
return self.getTypedRuleContext(LaTeXParser.SubeqContext,0)
def FUNC_LIM(self):
return self.getToken(LaTeXParser.FUNC_LIM, 0)
def limit_sub(self):
return self.getTypedRuleContext(LaTeXParser.Limit_subContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_func
def func(self):
localctx = LaTeXParser.FuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 62, self.RULE_func)
self._la = 0 # Token type
try:
self.state = 407
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH]:
self.enterOuterAlt(localctx, 1)
self.state = 329
self.func_normal()
self.state = 342
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,30,self._ctx)
if la_ == 1:
self.state = 331
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.UNDERSCORE:
self.state = 330
self.subexpr()
self.state = 334
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.CARET:
self.state = 333
self.supexpr()
pass
elif la_ == 2:
self.state = 337
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.CARET:
self.state = 336
self.supexpr()
self.state = 340
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.UNDERSCORE:
self.state = 339
self.subexpr()
pass
self.state = 349
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,31,self._ctx)
if la_ == 1:
self.state = 344
self.match(LaTeXParser.L_PAREN)
self.state = 345
self.func_arg()
self.state = 346
self.match(LaTeXParser.R_PAREN)
pass
elif la_ == 2:
self.state = 348
self.func_arg_noparens()
pass
pass
elif token in [LaTeXParser.LETTER, LaTeXParser.SYMBOL]:
self.enterOuterAlt(localctx, 2)
self.state = 351
_la = self._input.LA(1)
if not(_la==LaTeXParser.LETTER or _la==LaTeXParser.SYMBOL):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 353
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.UNDERSCORE:
self.state = 352
self.subexpr()
self.state = 355
self.match(LaTeXParser.L_PAREN)
self.state = 356
self.args()
self.state = 357
self.match(LaTeXParser.R_PAREN)
pass
elif token in [LaTeXParser.FUNC_INT]:
self.enterOuterAlt(localctx, 3)
self.state = 359
self.match(LaTeXParser.FUNC_INT)
self.state = 366
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.UNDERSCORE]:
self.state = 360
self.subexpr()
self.state = 361
self.supexpr()
pass
elif token in [LaTeXParser.CARET]:
self.state = 363
self.supexpr()
self.state = 364
self.subexpr()
pass
elif token in [LaTeXParser.ADD, LaTeXParser.SUB, LaTeXParser.L_PAREN, LaTeXParser.L_BRACE, LaTeXParser.L_BRACE_LITERAL, LaTeXParser.L_BRACKET, LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.FUNC_LIM, LaTeXParser.FUNC_INT, LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD, LaTeXParser.FUNC_EXP, LaTeXParser.FUNC_LOG, LaTeXParser.FUNC_LN, LaTeXParser.FUNC_SIN, LaTeXParser.FUNC_COS, LaTeXParser.FUNC_TAN, LaTeXParser.FUNC_CSC, LaTeXParser.FUNC_SEC, LaTeXParser.FUNC_COT, LaTeXParser.FUNC_ARCSIN, LaTeXParser.FUNC_ARCCOS, LaTeXParser.FUNC_ARCTAN, LaTeXParser.FUNC_ARCCSC, LaTeXParser.FUNC_ARCSEC, LaTeXParser.FUNC_ARCCOT, LaTeXParser.FUNC_SINH, LaTeXParser.FUNC_COSH, LaTeXParser.FUNC_TANH, LaTeXParser.FUNC_ARSINH, LaTeXParser.FUNC_ARCOSH, LaTeXParser.FUNC_ARTANH, LaTeXParser.L_FLOOR, LaTeXParser.L_CEIL, LaTeXParser.FUNC_SQRT, LaTeXParser.FUNC_OVERLINE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
pass
else:
pass
self.state = 374
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,35,self._ctx)
if la_ == 1:
self.state = 369
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,34,self._ctx)
if la_ == 1:
self.state = 368
self.additive(0)
self.state = 371
self.match(LaTeXParser.DIFFERENTIAL)
pass
elif la_ == 2:
self.state = 372
self.frac()
pass
elif la_ == 3:
self.state = 373
self.additive(0)
pass
pass
elif token in [LaTeXParser.FUNC_SQRT]:
self.enterOuterAlt(localctx, 4)
self.state = 376
self.match(LaTeXParser.FUNC_SQRT)
self.state = 381
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.L_BRACKET:
self.state = 377
self.match(LaTeXParser.L_BRACKET)
self.state = 378
localctx.root = self.expr()
self.state = 379
self.match(LaTeXParser.R_BRACKET)
self.state = 383
self.match(LaTeXParser.L_BRACE)
self.state = 384
localctx.base = self.expr()
self.state = 385
self.match(LaTeXParser.R_BRACE)
pass
elif token in [LaTeXParser.FUNC_OVERLINE]:
self.enterOuterAlt(localctx, 5)
self.state = 387
self.match(LaTeXParser.FUNC_OVERLINE)
self.state = 388
self.match(LaTeXParser.L_BRACE)
self.state = 389
localctx.base = self.expr()
self.state = 390
self.match(LaTeXParser.R_BRACE)
pass
elif token in [LaTeXParser.FUNC_SUM, LaTeXParser.FUNC_PROD]:
self.enterOuterAlt(localctx, 6)
self.state = 392
_la = self._input.LA(1)
if not(_la==LaTeXParser.FUNC_SUM or _la==LaTeXParser.FUNC_PROD):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 399
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.UNDERSCORE]:
self.state = 393
self.subeq()
self.state = 394
self.supexpr()
pass
elif token in [LaTeXParser.CARET]:
self.state = 396
self.supexpr()
self.state = 397
self.subeq()
pass
else:
raise NoViableAltException(self)
self.state = 401
self.mp(0)
pass
elif token in [LaTeXParser.FUNC_LIM]:
self.enterOuterAlt(localctx, 7)
self.state = 403
self.match(LaTeXParser.FUNC_LIM)
self.state = 404
self.limit_sub()
self.state = 405
self.mp(0)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ArgsContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.ArgsContext, self).__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def args(self):
return self.getTypedRuleContext(LaTeXParser.ArgsContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_args
def args(self):
localctx = LaTeXParser.ArgsContext(self, self._ctx, self.state)
self.enterRule(localctx, 64, self.RULE_args)
try:
self.state = 414
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,39,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 409
self.expr()
self.state = 410
self.match(LaTeXParser.T__0)
self.state = 411
self.args()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 413
self.expr()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Limit_subContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Limit_subContext, self).__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.L_BRACE)
else:
return self.getToken(LaTeXParser.L_BRACE, i)
def LIM_APPROACH_SYM(self):
return self.getToken(LaTeXParser.LIM_APPROACH_SYM, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self, i=None):
if i is None:
return self.getTokens(LaTeXParser.R_BRACE)
else:
return self.getToken(LaTeXParser.R_BRACE, i)
def LETTER(self):
return self.getToken(LaTeXParser.LETTER, 0)
def SYMBOL(self):
return self.getToken(LaTeXParser.SYMBOL, 0)
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_limit_sub
def limit_sub(self):
localctx = LaTeXParser.Limit_subContext(self, self._ctx, self.state)
self.enterRule(localctx, 66, self.RULE_limit_sub)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 416
self.match(LaTeXParser.UNDERSCORE)
self.state = 417
self.match(LaTeXParser.L_BRACE)
self.state = 418
_la = self._input.LA(1)
if not(_la==LaTeXParser.LETTER or _la==LaTeXParser.SYMBOL):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 419
self.match(LaTeXParser.LIM_APPROACH_SYM)
self.state = 420
self.expr()
self.state = 425
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==LaTeXParser.CARET:
self.state = 421
self.match(LaTeXParser.CARET)
self.state = 422
self.match(LaTeXParser.L_BRACE)
self.state = 423
_la = self._input.LA(1)
if not(_la==LaTeXParser.ADD or _la==LaTeXParser.SUB):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 424
self.match(LaTeXParser.R_BRACE)
self.state = 427
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Func_argContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Func_argContext, self).__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def func_arg(self):
return self.getTypedRuleContext(LaTeXParser.Func_argContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_func_arg
def func_arg(self):
localctx = LaTeXParser.Func_argContext(self, self._ctx, self.state)
self.enterRule(localctx, 68, self.RULE_func_arg)
try:
self.state = 434
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,41,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 429
self.expr()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 430
self.expr()
self.state = 431
self.match(LaTeXParser.T__0)
self.state = 432
self.func_arg()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Func_arg_noparensContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.Func_arg_noparensContext, self).__init__(parent, invokingState)
self.parser = parser
def mp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Mp_nofuncContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_func_arg_noparens
def func_arg_noparens(self):
localctx = LaTeXParser.Func_arg_noparensContext(self, self._ctx, self.state)
self.enterRule(localctx, 70, self.RULE_func_arg_noparens)
try:
self.enterOuterAlt(localctx, 1)
self.state = 436
self.mp_nofunc(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SubexprContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.SubexprContext, self).__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_subexpr
def subexpr(self):
localctx = LaTeXParser.SubexprContext(self, self._ctx, self.state)
self.enterRule(localctx, 72, self.RULE_subexpr)
try:
self.enterOuterAlt(localctx, 1)
self.state = 438
self.match(LaTeXParser.UNDERSCORE)
self.state = 444
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
self.state = 439
self.atom()
pass
elif token in [LaTeXParser.L_BRACE]:
self.state = 440
self.match(LaTeXParser.L_BRACE)
self.state = 441
self.expr()
self.state = 442
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SupexprContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.SupexprContext, self).__init__(parent, invokingState)
self.parser = parser
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_supexpr
def supexpr(self):
localctx = LaTeXParser.SupexprContext(self, self._ctx, self.state)
self.enterRule(localctx, 74, self.RULE_supexpr)
try:
self.enterOuterAlt(localctx, 1)
self.state = 446
self.match(LaTeXParser.CARET)
self.state = 452
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [LaTeXParser.BAR, LaTeXParser.L_BAR, LaTeXParser.L_ANGLE, LaTeXParser.CMD_FRAC, LaTeXParser.CMD_BINOM, LaTeXParser.CMD_DBINOM, LaTeXParser.CMD_TBINOM, LaTeXParser.CMD_MATHIT, LaTeXParser.DIFFERENTIAL, LaTeXParser.LETTER, LaTeXParser.NUMBER, LaTeXParser.SYMBOL]:
self.state = 447
self.atom()
pass
elif token in [LaTeXParser.L_BRACE]:
self.state = 448
self.match(LaTeXParser.L_BRACE)
self.state = 449
self.expr()
self.state = 450
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SubeqContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.SubeqContext, self).__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_subeq
def subeq(self):
localctx = LaTeXParser.SubeqContext(self, self._ctx, self.state)
self.enterRule(localctx, 76, self.RULE_subeq)
try:
self.enterOuterAlt(localctx, 1)
self.state = 454
self.match(LaTeXParser.UNDERSCORE)
self.state = 455
self.match(LaTeXParser.L_BRACE)
self.state = 456
self.equality()
self.state = 457
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SupeqContext(ParserRuleContext):
def __init__(self, parser, parent=None, invokingState=-1):
super(LaTeXParser.SupeqContext, self).__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_supeq
def supeq(self):
localctx = LaTeXParser.SupeqContext(self, self._ctx, self.state)
self.enterRule(localctx, 78, self.RULE_supeq)
try:
self.enterOuterAlt(localctx, 1)
self.state = 459
self.match(LaTeXParser.UNDERSCORE)
self.state = 460
self.match(LaTeXParser.L_BRACE)
self.state = 461
self.equality()
self.state = 462
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
def sempred(self, localctx, ruleIndex, predIndex):
if self._predicates == None:
self._predicates = dict()
self._predicates[1] = self.relation_sempred
self._predicates[4] = self.additive_sempred
self._predicates[5] = self.mp_sempred
self._predicates[6] = self.mp_nofunc_sempred
self._predicates[15] = self.exp_sempred
self._predicates[16] = self.exp_nofunc_sempred
pred = self._predicates.get(ruleIndex, None)
if pred is None:
raise Exception("No predicate with index:" + str(ruleIndex))
else:
return pred(localctx, predIndex)
def relation_sempred(self, localctx, predIndex):
if predIndex == 0:
return self.precpred(self._ctx, 2)
def additive_sempred(self, localctx, predIndex):
if predIndex == 1:
return self.precpred(self._ctx, 2)
def mp_sempred(self, localctx, predIndex):
if predIndex == 2:
return self.precpred(self._ctx, 2)
def mp_nofunc_sempred(self, localctx, predIndex):
if predIndex == 3:
return self.precpred(self._ctx, 2)
def exp_sempred(self, localctx, predIndex):
if predIndex == 4:
return self.precpred(self._ctx, 2)
def exp_nofunc_sempred(self, localctx, predIndex):
if predIndex == 5:
return self.precpred(self._ctx, 2)
|
250bc57e9e77316f1c261c4493236fb0c9a1843ec5567700923b86317bb91689 | from sympy.testing.pytest import warns_deprecated_sympy
from sympy.core.symbol import Symbol
from sympy.polys.polytools import Poly
from sympy.matrices import Matrix
from sympy.matrices.normalforms import (
invariant_factors,
smith_normal_form,
hermite_normal_form,
)
from sympy.polys.domains import ZZ, QQ
from sympy.core.numbers import Integer
def test_smith_normal():
m = Matrix([[12,6,4,8],[3,9,6,12],[2,16,14,28],[20,10,10,20]])
smf = Matrix([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]])
assert smith_normal_form(m) == smf
x = Symbol('x')
with warns_deprecated_sympy():
m = Matrix([[Poly(x-1), Poly(1, x),Poly(-1,x)],
[0, Poly(x), Poly(-1,x)],
[Poly(0,x),Poly(-1,x),Poly(x)]])
invs = 1, x - 1, x**2 - 1
assert invariant_factors(m, domain=QQ[x]) == invs
m = Matrix([[2, 4]])
smf = Matrix([[2, 0]])
assert smith_normal_form(m) == smf
def test_smith_normal_deprecated():
from sympy.polys.solvers import RawMatrix as Matrix
with warns_deprecated_sympy():
m = Matrix([[12, 6, 4,8],[3,9,6,12],[2,16,14,28],[20,10,10,20]])
setattr(m, 'ring', ZZ)
with warns_deprecated_sympy():
smf = Matrix([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]])
assert smith_normal_form(m) == smf
x = Symbol('x')
with warns_deprecated_sympy():
m = Matrix([[Poly(x-1), Poly(1, x),Poly(-1,x)],
[0, Poly(x), Poly(-1,x)],
[Poly(0,x),Poly(-1,x),Poly(x)]])
setattr(m, 'ring', QQ[x])
invs = (Poly(1, x, domain='QQ'), Poly(x - 1, domain='QQ'), Poly(x**2 - 1, domain='QQ'))
assert invariant_factors(m) == invs
with warns_deprecated_sympy():
m = Matrix([[2, 4]])
setattr(m, 'ring', ZZ)
with warns_deprecated_sympy():
smf = Matrix([[2, 0]])
assert smith_normal_form(m) == smf
def test_hermite_normal():
m = Matrix([[2, 7, 17, 29, 41], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]])
hnf = Matrix([[1, 0, 0], [0, 2, 1], [0, 0, 1]])
assert hermite_normal_form(m) == hnf
tr_hnf = Matrix([[37, 0, 19], [222, -6, 113], [48, 0, 25], [0, 2, 1], [0, 0, 1]])
assert hermite_normal_form(m.transpose()) == tr_hnf
m = Matrix([[8, 28, 68, 116, 164], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]])
hnf = Matrix([[4, 0, 0], [0, 2, 1], [0, 0, 1]])
assert hermite_normal_form(m) == hnf
assert hermite_normal_form(m, D=8) == hnf
assert hermite_normal_form(m, D=ZZ(8)) == hnf
assert hermite_normal_form(m, D=Integer(8)) == hnf
m = Matrix([[10, 8, 6, 30, 2], [45, 36, 27, 18, 9], [5, 4, 3, 2, 1]])
hnf = Matrix([[26, 2], [0, 9], [0, 1]])
assert hermite_normal_form(m) == hnf
m = Matrix([[2, 7], [0, 0], [0, 0]])
hnf = Matrix([[1], [0], [0]])
assert hermite_normal_form(m) == hnf
def test_issue_23410():
A = Matrix([[1, 12], [0, 8], [0, 5]])
H = Matrix([[1, 0], [0, 8], [0, 5]])
assert hermite_normal_form(A) == H
|
c2d7564ec662096b089e0ef618b0849dd3c5802d011a42ca37c39f0eb521e284 | from sympy.assumptions.ask import ask, Q
from sympy.assumptions.refine import handlers_dict
from sympy.core import Basic, sympify, S
from sympy.core.mul import mul, Mul
from sympy.core.numbers import Number, Integer
from sympy.core.symbol import Dummy
from sympy.functions import adjoint
from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
do_one, new)
from sympy.matrices.common import ShapeError, NonInvertibleMatrixError
from sympy.matrices.matrices import MatrixBase
from .inverse import Inverse
from .matexpr import MatrixExpr
from .matpow import MatPow
from .transpose import transpose
from .permutation import PermutationMatrix
from .special import ZeroMatrix, Identity, GenericIdentity, OneMatrix
# XXX: MatMul should perhaps not subclass directly from Mul
class MatMul(MatrixExpr, Mul):
"""
A product of matrix expressions
Examples
========
>>> from sympy import MatMul, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatMul(A, B, C)
A*B*C
"""
is_MatMul = True
identity = GenericIdentity()
def __new__(cls, *args, evaluate=False, check=True, _sympify=True):
if not args:
return cls.identity
# This must be removed aggressively in the constructor to avoid
# TypeErrors from GenericIdentity().shape
args = list(filter(lambda i: cls.identity != i, args))
if _sympify:
args = list(map(sympify, args))
obj = Basic.__new__(cls, *args)
factor, matrices = obj.as_coeff_matrices()
if check:
validate(*matrices)
if not matrices:
# Should it be
#
# return Basic.__neq__(cls, factor, GenericIdentity()) ?
return factor
if evaluate:
return cls._evaluate(obj)
return obj
@classmethod
def _evaluate(cls, expr):
return canonicalize(expr)
@property
def shape(self):
matrices = [arg for arg in self.args if arg.is_Matrix]
return (matrices[0].rows, matrices[-1].cols)
def _entry(self, i, j, expand=True, **kwargs):
# Avoid cyclic imports
from sympy.concrete.summations import Sum
from sympy.matrices.immutable import ImmutableMatrix
coeff, matrices = self.as_coeff_matrices()
if len(matrices) == 1: # situation like 2*X, matmul is just X
return coeff * matrices[0][i, j]
indices = [None]*(len(matrices) + 1)
ind_ranges = [None]*(len(matrices) - 1)
indices[0] = i
indices[-1] = j
def f():
counter = 1
while True:
yield Dummy("i_%i" % counter)
counter += 1
dummy_generator = kwargs.get("dummy_generator", f())
for i in range(1, len(matrices)):
indices[i] = next(dummy_generator)
for i, arg in enumerate(matrices[:-1]):
ind_ranges[i] = arg.shape[1] - 1
matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
expr_in_sum = Mul.fromiter(matrices)
if any(v.has(ImmutableMatrix) for v in matrices):
expand = True
result = coeff*Sum(
expr_in_sum,
*zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
)
# Don't waste time in result.doit() if the sum bounds are symbolic
if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
expand = False
return result.doit() if expand else result
def as_coeff_matrices(self):
scalars = [x for x in self.args if not x.is_Matrix]
matrices = [x for x in self.args if x.is_Matrix]
coeff = Mul(*scalars)
if coeff.is_commutative is False:
raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
return coeff, matrices
def as_coeff_mmul(self):
coeff, matrices = self.as_coeff_matrices()
return coeff, MatMul(*matrices)
def expand(self, **kwargs):
expanded = super(MatMul, self).expand(**kwargs)
return self._evaluate(expanded)
def _eval_transpose(self):
"""Transposition of matrix multiplication.
Notes
=====
The following rules are applied.
Transposition for matrix multiplied with another matrix:
`\\left(A B\\right)^{T} = B^{T} A^{T}`
Transposition for matrix multiplied with scalar:
`\\left(c A\\right)^{T} = c A^{T}`
References
==========
.. [1] https://en.wikipedia.org/wiki/Transpose
"""
coeff, matrices = self.as_coeff_matrices()
return MatMul(
coeff, *[transpose(arg) for arg in matrices[::-1]]).doit()
def _eval_adjoint(self):
return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
def _eval_trace(self):
factor, mmul = self.as_coeff_mmul()
if factor != 1:
from .trace import trace
return factor * trace(mmul.doit())
else:
raise NotImplementedError("Can't simplify any further")
def _eval_determinant(self):
from sympy.matrices.expressions.determinant import Determinant
factor, matrices = self.as_coeff_matrices()
square_matrices = only_squares(*matrices)
return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
def _eval_inverse(self):
try:
return MatMul(*[
arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
for arg in self.args[::-1]]).doit()
except ShapeError:
return Inverse(self)
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
# treat scalar*MatrixSymbol or scalar*MatPow separately
expr = canonicalize(MatMul(*args))
return expr
# Needed for partial compatibility with Mul
def args_cnc(self, **kwargs):
coeff_c = [x for x in self.args if x.is_commutative]
coeff_nc = [x for x in self.args if not x.is_commutative]
return [coeff_c, coeff_nc]
def _eval_derivative_matrix_lines(self, x):
from .transpose import Transpose
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
lines = []
for ind in with_x_ind:
left_args = self.args[:ind]
right_args = self.args[ind+1:]
if right_args:
right_mat = MatMul.fromiter(right_args)
else:
right_mat = Identity(self.shape[1])
if left_args:
left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
else:
left_rev = Identity(self.shape[0])
d = self.args[ind]._eval_derivative_matrix_lines(x)
for i in d:
i.append_first(left_rev)
i.append_second(right_mat)
lines.append(i)
return lines
mul.register_handlerclass((Mul, MatMul), MatMul)
def validate(*matrices):
""" Checks for valid shapes for args of MatMul """
for i in range(len(matrices)-1):
A, B = matrices[i:i+2]
if A.cols != B.rows:
raise ShapeError("Matrices %s and %s are not aligned"%(A, B))
# Rules
def newmul(*args):
if args[0] == 1:
args = args[1:]
return new(MatMul, *args)
def any_zeros(mul):
if any(arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
for arg in mul.args):
matrices = [arg for arg in mul.args if arg.is_Matrix]
return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
return mul
def merge_explicit(matmul):
""" Merge explicit MatrixBase arguments
>>> from sympy import MatrixSymbol, Matrix, MatMul, pprint
>>> from sympy.matrices.expressions.matmul import merge_explicit
>>> A = MatrixSymbol('A', 2, 2)
>>> B = Matrix([[1, 1], [1, 1]])
>>> C = Matrix([[1, 2], [3, 4]])
>>> X = MatMul(A, B, C)
>>> pprint(X)
[1 1] [1 2]
A*[ ]*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[4 6]
A*[ ]
[4 6]
>>> X = MatMul(B, A, C)
>>> pprint(X)
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
>>> pprint(merge_explicit(X))
[1 1] [1 2]
[ ]*A*[ ]
[1 1] [3 4]
"""
if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
return matmul
newargs = []
last = matmul.args[0]
for arg in matmul.args[1:]:
if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
last = last * arg
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
def remove_ids(mul):
""" Remove Identities from a MatMul
This is a modified version of sympy.strategies.rm_id.
This is necesssary because MatMul may contain both MatrixExprs and Exprs
as args.
See Also
========
sympy.strategies.rm_id
"""
# Separate Exprs from MatrixExprs in args
factor, mmul = mul.as_coeff_mmul()
# Apply standard rm_id for MatMuls
result = rm_id(lambda x: x.is_Identity is True)(mmul)
if result != mmul:
return newmul(factor, *result.args) # Recombine and return
else:
return mul
def factor_in_front(mul):
factor, matrices = mul.as_coeff_matrices()
if factor != 1:
return newmul(factor, *matrices)
return mul
def combine_powers(mul):
r"""Combine consecutive powers with the same base into one, e.g.
$$A \times A^2 \Rightarrow A^3$$
This also cancels out the possible matrix inverses using the
knowledgebase of :class:`~.Inverse`, e.g.,
$$ Y \times X \times X^{-1} \Rightarrow Y $$
"""
factor, args = mul.as_coeff_matrices()
new_args = [args[0]]
for i in range(1, len(args)):
A = new_args[-1]
B = args[i]
if isinstance(B, Inverse) and isinstance(B.arg, MatMul):
Bargs = B.arg.args
l = len(Bargs)
if list(Bargs) == new_args[-l:]:
new_args = new_args[:-l] + [Identity(B.shape[0])]
continue
if isinstance(A, Inverse) and isinstance(A.arg, MatMul):
Aargs = A.arg.args
l = len(Aargs)
if list(Aargs) == args[i:i+l]:
identity = Identity(A.shape[0])
new_args[-1] = identity
for j in range(i, i+l):
args[j] = identity
continue
if A.is_square == False or B.is_square == False:
new_args.append(B)
continue
if isinstance(A, MatPow):
A_base, A_exp = A.args
else:
A_base, A_exp = A, S.One
if isinstance(B, MatPow):
B_base, B_exp = B.args
else:
B_base, B_exp = B, S.One
if A_base == B_base:
new_exp = A_exp + B_exp
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
continue
elif not isinstance(B_base, MatrixBase):
try:
B_base_inv = B_base.inverse()
except NonInvertibleMatrixError:
B_base_inv = None
if B_base_inv is not None and A_base == B_base_inv:
new_exp = A_exp - B_exp
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
continue
new_args.append(B)
return newmul(factor, *new_args)
def combine_permutations(mul):
"""Refine products of permutation matrices as the products of cycles.
"""
args = mul.args
l = len(args)
if l < 2:
return mul
result = [args[0]]
for i in range(1, l):
A = result[-1]
B = args[i]
if isinstance(A, PermutationMatrix) and \
isinstance(B, PermutationMatrix):
cycle_1 = A.args[0]
cycle_2 = B.args[0]
result[-1] = PermutationMatrix(cycle_1 * cycle_2)
else:
result.append(B)
return MatMul(*result)
def combine_one_matrices(mul):
"""
Combine products of OneMatrix
e.g. OneMatrix(2, 3) * OneMatrix(3, 4) -> 3 * OneMatrix(2, 4)
"""
factor, args = mul.as_coeff_matrices()
new_args = [args[0]]
for B in args[1:]:
A = new_args[-1]
if not isinstance(A, OneMatrix) or not isinstance(B, OneMatrix):
new_args.append(B)
continue
new_args.pop()
new_args.append(OneMatrix(A.shape[0], B.shape[1]))
factor *= A.shape[1]
return newmul(factor, *new_args)
def distribute_monom(mul):
"""
Simplify MatMul expressions but distributing
rational term to MatMul.
e.g. 2*(A+B) -> 2*A + 2*B
"""
args = mul.args
if len(args) == 2:
from .matadd import MatAdd
if args[0].is_MatAdd and args[1].is_Rational:
return MatAdd(*[MatMul(mat, args[1]).doit() for mat in args[0].args])
if args[1].is_MatAdd and args[0].is_Rational:
return MatAdd(*[MatMul(args[0], mat).doit() for mat in args[1].args])
return mul
rules = (
distribute_monom, any_zeros, remove_ids, combine_one_matrices, combine_powers, unpack, rm_id(lambda x: x == 1),
merge_explicit, factor_in_front, flatten, combine_permutations)
canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
def only_squares(*matrices):
"""factor matrices only if they are square"""
if matrices[0].rows != matrices[-1].cols:
raise RuntimeError("Invalid matrices being multiplied")
out = []
start = 0
for i, M in enumerate(matrices):
if M.cols == matrices[start].rows:
out.append(MatMul(*matrices[start:i+1]).doit())
start = i+1
return out
def refine_MatMul(expr, assumptions):
"""
>>> from sympy import MatrixSymbol, Q, assuming, refine
>>> X = MatrixSymbol('X', 2, 2)
>>> expr = X * X.T
>>> print(expr)
X*X.T
>>> with assuming(Q.orthogonal(X)):
... print(refine(expr))
I
"""
newargs = []
exprargs = []
for args in expr.args:
if args.is_Matrix:
exprargs.append(args)
else:
newargs.append(args)
last = exprargs[0]
for arg in exprargs[1:]:
if arg == last.T and ask(Q.orthogonal(arg), assumptions):
last = Identity(arg.shape[0])
elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
last = Identity(arg.shape[0])
else:
newargs.append(last)
last = arg
newargs.append(last)
return MatMul(*newargs)
handlers_dict['MatMul'] = refine_MatMul
|
1bf9da82f09a494cf0df9209113ad4d2cf6644493e776511c72938f34b753e81 | from functools import reduce
import operator
from sympy.core import Basic, sympify
from sympy.core.add import add, Add, _could_extract_minus_sign
from sympy.core.sorting import default_sort_key
from sympy.functions import adjoint
from sympy.matrices.common import ShapeError
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.expressions.transpose import transpose
from sympy.strategies import (rm_id, unpack, flatten, sort, condition,
exhaust, do_one, glom)
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.special import ZeroMatrix, GenericZeroMatrix
from sympy.utilities import sift
# XXX: MatAdd should perhaps not subclass directly from Add
class MatAdd(MatrixExpr, Add):
"""A Sum of Matrix Expressions
MatAdd inherits from and operates like SymPy Add
Examples
========
>>> from sympy import MatAdd, MatrixSymbol
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> C = MatrixSymbol('C', 5, 5)
>>> MatAdd(A, B, C)
A + B + C
"""
is_MatAdd = True
identity = GenericZeroMatrix()
def __new__(cls, *args, evaluate=False, check=False, _sympify=True):
if not args:
return cls.identity
# This must be removed aggressively in the constructor to avoid
# TypeErrors from GenericZeroMatrix().shape
args = list(filter(lambda i: cls.identity != i, args))
if _sympify:
args = list(map(sympify, args))
obj = Basic.__new__(cls, *args)
if check:
if not any(isinstance(i, MatrixExpr) for i in args):
return Add.fromiter(args)
validate(*args)
if evaluate:
obj = cls._evaluate(obj)
return obj
@classmethod
def _evaluate(cls, expr):
args = expr.args
if not any(isinstance(i, MatrixExpr) for i in args):
return Add(*args, evaluate=True)
return canonicalize(expr)
@property
def shape(self):
return self.args[0].shape
def could_extract_minus_sign(self):
return _could_extract_minus_sign(self)
def expand(self, **kwargs):
expanded = super(MatAdd, self).expand(**kwargs)
return self._evaluate(expanded)
def _entry(self, i, j, **kwargs):
return Add(*[arg._entry(i, j, **kwargs) for arg in self.args])
def _eval_transpose(self):
return MatAdd(*[transpose(arg) for arg in self.args]).doit()
def _eval_adjoint(self):
return MatAdd(*[adjoint(arg) for arg in self.args]).doit()
def _eval_trace(self):
from .trace import trace
return Add(*[trace(arg) for arg in self.args]).doit()
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
return canonicalize(MatAdd(*args))
def _eval_derivative_matrix_lines(self, x):
add_lines = [arg._eval_derivative_matrix_lines(x) for arg in self.args]
return [j for i in add_lines for j in i]
add.register_handlerclass((Add, MatAdd), MatAdd)
def validate(*args):
if not all(arg.is_Matrix for arg in args):
raise TypeError("Mix of Matrix and Scalar symbols")
A = args[0]
for B in args[1:]:
if A.shape != B.shape:
raise ShapeError("Matrices %s and %s are not aligned"%(A, B))
factor_of = lambda arg: arg.as_coeff_mmul()[0]
matrix_of = lambda arg: unpack(arg.as_coeff_mmul()[1])
def combine(cnt, mat):
if cnt == 1:
return mat
else:
return cnt * mat
def merge_explicit(matadd):
""" Merge explicit MatrixBase arguments
Examples
========
>>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint
>>> from sympy.matrices.expressions.matadd import merge_explicit
>>> A = MatrixSymbol('A', 2, 2)
>>> B = eye(2)
>>> C = Matrix([[1, 2], [3, 4]])
>>> X = MatAdd(A, B, C)
>>> pprint(X)
[1 0] [1 2]
A + [ ] + [ ]
[0 1] [3 4]
>>> pprint(merge_explicit(X))
[2 2]
A + [ ]
[3 5]
"""
groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase))
if len(groups[True]) > 1:
return MatAdd(*(groups[False] + [reduce(operator.add, groups[True])]))
else:
return matadd
rules = (rm_id(lambda x: x == 0 or isinstance(x, ZeroMatrix)),
unpack,
flatten,
glom(matrix_of, factor_of, combine),
merge_explicit,
sort(default_sort_key))
canonicalize = exhaust(condition(lambda x: isinstance(x, MatAdd),
do_one(*rules)))
|
cdc5c4f8a67becac19bcc83b9252da8e930e0765b64eb9f0f5cd2e6ef52df615 | from sympy.concrete.summations import Sum
from sympy.core.exprtools import gcd_terms
from sympy.core.function import (diff, expand)
from sympy.core.relational import Eq
from sympy.core.symbol import (Dummy, Symbol, Str)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import zeros
from sympy.polys.polytools import factor
from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
Function)
from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
from sympy.simplify import simplify
from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
MatPow, Matrix, MatrixExpr, MatrixSymbol, ShapeError,
SparseMatrix, Transpose, Adjoint, NonSquareMatrixError, MatrixSet)
from sympy.matrices.expressions.determinant import Determinant, det
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.matrices.expressions.special import ZeroMatrix, Identity
from sympy.testing.pytest import raises, XFAIL
n, m, l, k, p = symbols('n m l k p', integer=True)
x = symbols('x')
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
w = MatrixSymbol('w', n, 1)
def test_matrix_symbol_creation():
assert MatrixSymbol('A', 2, 2)
assert MatrixSymbol('A', 0, 0)
raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))
n = symbols('n')
assert MatrixSymbol('A', n, n)
n = symbols('n', integer=False)
raises(ValueError, lambda: MatrixSymbol('A', n, n))
n = symbols('n', negative=True)
raises(ValueError, lambda: MatrixSymbol('A', n, n))
def test_matexpr_properties():
assert A.shape == (n, m)
assert (A*B).shape == (n, l)
raises(ShapeError, lambda: B*A)
assert A[0, 1].indices == (0, 1)
assert A[0, 0].symbol == A
assert A[0, 0].symbol.name == 'A'
def test_matexpr():
assert (x*A).shape == A.shape
assert (x*A).__class__ == MatMul
assert 2*A - A - A == ZeroMatrix(*A.shape)
assert (A*B).shape == (n, l)
def test_matexpr_subs():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', m, l)
assert A.subs(n, m).shape == (m, m)
assert (A*B).subs(B, C) == A*C
assert (A*B).subs(l, n).is_square
W = MatrixSymbol("W", 3, 3)
X = MatrixSymbol("X", 2, 2)
Y = MatrixSymbol("Y", 1, 2)
Z = MatrixSymbol("Z", n, 2)
# no restrictions on Symbol replacement
assert X.subs(X, Y) == Y
# it might be better to just change the name
y = Str('y')
assert X.subs(Str("X"), y).args == (y, 2, 2)
# it's ok to introduce a wider matrix
assert X[1, 1].subs(X, W) == W[1, 1]
# but for a given MatrixExpression, only change
# name if indexing on the new shape is valid.
# Here, X is 2,2; Y is 1,2 and Y[1, 1] is out
# of range so an error is raised
raises(IndexError, lambda: X[1, 1].subs(X, Y))
# here, [0, 1] is in range so the subs succeeds
assert X[0, 1].subs(X, Y) == Y[0, 1]
# and here the size of n will accept any index
# in the first position
assert W[2, 1].subs(W, Z) == Z[2, 1]
# but not in the second position
raises(IndexError, lambda: W[2, 2].subs(W, Z))
# any matrix should raise if invalid
raises(IndexError, lambda: W[2, 2].subs(W, zeros(2)))
A = SparseMatrix([[1, 2], [3, 4]])
B = Matrix([[1, 2], [3, 4]])
C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)
assert (C*D).subs({C: A, D: B}) == MatMul(A, B)
def test_addition():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', n, m)
assert isinstance(A + B, MatAdd)
assert (A + B).shape == A.shape
assert isinstance(A - A + 2*B, MatMul)
raises(ShapeError, lambda: A + B.T)
raises(TypeError, lambda: A + 1)
raises(TypeError, lambda: 5 + A)
raises(TypeError, lambda: 5 - A)
assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
with raises(TypeError):
ZeroMatrix(n,m) + S.Zero
def test_multiplication():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
assert (2*A*B).shape == (n, l)
assert (A*0*B) == ZeroMatrix(n, l)
raises(ShapeError, lambda: B*A)
assert (2*A).shape == A.shape
assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
assert C * Identity(n) * C.I == Identity(n)
assert B/2 == S.Half*B
raises(NotImplementedError, lambda: 2/B)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert Identity(n) * (A + B) == A + B
assert A**2*A == A**3
assert A**2*(A.I)**3 == A.I
assert A**3*(A.I)**2 == A
def test_MatPow():
A = MatrixSymbol('A', n, n)
AA = MatPow(A, 2)
assert AA.exp == 2
assert AA.base == A
assert (A**n).exp == n
assert A**0 == Identity(n)
assert A**1 == A
assert A**2 == AA
assert A**-1 == Inverse(A)
assert (A**-1)**-1 == A
assert (A**2)**3 == A**6
assert A**S.Half == sqrt(A)
assert A**Rational(1, 3) == cbrt(A)
raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)
def test_MatrixSymbol():
n, m, t = symbols('n,m,t')
X = MatrixSymbol('X', n, m)
assert X.shape == (n, m)
raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
assert X.doit() == X
def test_dense_conversion():
X = MatrixSymbol('X', 2, 2)
assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
def test_free_symbols():
assert (C*D).free_symbols == {C, D}
def test_zero_matmul():
assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
def test_matadd_simplify():
A = MatrixSymbol('A', 1, 1)
assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
MatAdd(A, Matrix([[1]]))
def test_matmul_simplify():
A = MatrixSymbol('A', 1, 1)
assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
MatMul(A, Matrix([[1]]))
def test_invariants():
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
X = MatrixSymbol('X', n, n)
objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
MatPow(X, 0)]
for obj in objs:
assert obj == obj.__class__(*obj.args)
def test_matexpr_indexing():
A = MatrixSymbol('A', n, m)
A[1, 2]
A[l, k]
A[l + 1, k + 1]
A = MatrixSymbol('A', 2, 1)
for i in range(-2, 2):
for j in range(-1, 1):
A[i, j]
def test_single_indexing():
A = MatrixSymbol('A', 2, 3)
assert A[1] == A[0, 1]
assert A[int(1)] == A[0, 1]
assert A[3] == A[1, 0]
assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
raises(IndexError, lambda: A[6])
raises(IndexError, lambda: A[n])
B = MatrixSymbol('B', n, m)
raises(IndexError, lambda: B[1])
B = MatrixSymbol('B', n, 3)
assert B[3] == B[1, 0]
def test_MatrixElement_commutative():
assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
def test_MatrixSymbol_determinant():
A = MatrixSymbol('A', 4, 4)
assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
B = MatrixSymbol('B', 4, 4)
assert Determinant(A + B).doit() == det(A + B) == (A + B).det()
def test_MatrixElement_diff():
assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
def test_MatrixElement_doit():
u = MatrixSymbol('u', 2, 1)
v = ImmutableMatrix([3, 5])
assert u[0, 0].subs(u, v).doit() == v[0, 0]
def test_identity_powers():
M = Identity(n)
assert MatPow(M, 3).doit() == M**3
assert M**n == M
assert MatPow(M, 0).doit() == M**2
assert M**-2 == M
assert MatPow(M, -2).doit() == M**0
N = Identity(3)
assert MatPow(N, 2).doit() == N**n
assert MatPow(N, 3).doit() == N
assert MatPow(N, -2).doit() == N**4
assert MatPow(N, 2).doit() == N**0
def test_Zero_power():
z1 = ZeroMatrix(n, n)
assert z1**4 == z1
raises(ValueError, lambda:z1**-2)
assert z1**0 == Identity(n)
assert MatPow(z1, 2).doit() == z1**2
raises(ValueError, lambda:MatPow(z1, -2).doit())
z2 = ZeroMatrix(3, 3)
assert MatPow(z2, 4).doit() == z2**4
raises(ValueError, lambda:z2**-3)
assert z2**3 == MatPow(z2, 3).doit()
assert z2**0 == Identity(3)
raises(ValueError, lambda:MatPow(z2, -1).doit())
def test_matrixelement_diff():
dexpr = diff((D*w)[k,0], w[p,0])
assert w[k, p].diff(w[k, p]) == 1
assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
_i_1 = Dummy("_i_1")
assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
assert dexpr.doit() == D[k, p]
def test_MatrixElement_with_values():
x, y, z, w = symbols("x y z w")
M = Matrix([[x, y], [z, w]])
i, j = symbols("i, j")
Mij = M[i, j]
assert isinstance(Mij, MatrixElement)
Ms = SparseMatrix([[2, 3], [4, 5]])
msij = Ms[i, j]
assert isinstance(msij, MatrixElement)
for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
A = MatrixSymbol("A", 2, 2)
assert A[0, 0].subs(A, M) == x
assert A[i, j].subs(A, M) == M[i, j]
assert M[i, j].subs(M, A) == A[i, j]
assert isinstance(M[3*i - 2, j], MatrixElement)
assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
assert isinstance(M[i, 0], MatrixElement)
assert M[i, 0].subs(i, 0) == M[0, 0]
assert M[0, i].subs(i, 1) == M[0, 1]
assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
raises(ValueError, lambda: M[i, 2])
raises(ValueError, lambda: M[i, -1])
raises(ValueError, lambda: M[2, i])
raises(ValueError, lambda: M[-1, i])
def test_inv():
B = MatrixSymbol('B', 3, 3)
assert B.inv() == B**-1
# https://github.com/sympy/sympy/issues/19162
X = MatrixSymbol('X', 1, 1).as_explicit()
assert X.inv() == Matrix([[1/X[0, 0]]])
X = MatrixSymbol('X', 2, 2).as_explicit()
detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
invX = Matrix([[ X[1, 1], -X[0, 1]],
[-X[1, 0], X[0, 0]]]) / detX
assert X.inv() == invX
@XFAIL
def test_factor_expand():
A = MatrixSymbol("A", n, n)
B = MatrixSymbol("B", n, n)
expr1 = (A + B)*(C + D)
expr2 = A*C + B*C + A*D + B*D
assert expr1 != expr2
assert expand(expr1) == expr2
assert factor(expr2) == expr1
expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
I = Identity(n)
# Ideally we get the first, but we at least don't want a wrong answer
assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
def test_issue_2749():
A = MatrixSymbol("A", 5, 2)
assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
[(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
def test_issue_2750():
x = MatrixSymbol('x', 1, 1)
assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
def test_issue_7842():
A = MatrixSymbol('A', 3, 1)
B = MatrixSymbol('B', 2, 1)
assert Eq(A, B) == False
assert Eq(A[1,0], B[1, 0]).func is Eq
A = ZeroMatrix(2, 3)
B = ZeroMatrix(2, 3)
assert Eq(A, B) == True
def test_issue_21195():
t = symbols('t')
x = Function('x')(t)
dx = x.diff(t)
exp1 = cos(x) + cos(x)*dx
exp2 = sin(x) + tan(x)*(dx.diff(t))
exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
A = Matrix([[exp1], [exp2], [exp3]])
B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
assert A.diff(x) == B
def test_MatMul_postprocessor():
z = zeros(2)
z1 = ZeroMatrix(2, 2)
assert Mul(0, z) == Mul(z, 0) in [z, z1]
M = Matrix([[1, 2], [3, 4]])
Mx = Matrix([[x, 2*x], [3*x, 4*x]])
assert Mul(x, M) == Mul(M, x) == Mx
A = MatrixSymbol("A", 2, 2)
assert Mul(A, M) == MatMul(A, M)
assert Mul(M, A) == MatMul(M, A)
# Scalars should be absorbed into constant matrices
a = Mul(x, M, A)
b = Mul(M, x, A)
c = Mul(M, A, x)
assert a == b == c == MatMul(Mx, A)
a = Mul(x, A, M)
b = Mul(A, x, M)
c = Mul(A, M, x)
assert a == b == c == MatMul(A, Mx)
assert Mul(M, M) == M**2
assert Mul(A, M, M) == MatMul(A, M**2)
assert Mul(M, M, A) == MatMul(M**2, A)
assert Mul(M, A, M) == MatMul(M, A, M)
assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
@XFAIL
def test_MatAdd_postprocessor_xfail():
# This is difficult to get working because of the way that Add processes
# its args.
z = zeros(2)
assert Add(z, S.NaN) == Add(S.NaN, z)
def test_MatAdd_postprocessor():
# Some of these are nonsensical, but we do not raise errors for Add
# because that breaks algorithms that want to replace matrices with dummy
# symbols.
z = zeros(2)
assert Add(0, z) == Add(z, 0) == z
a = Add(S.Infinity, z)
assert a == Add(z, S.Infinity)
assert isinstance(a, Add)
assert a.args == (S.Infinity, z)
a = Add(S.ComplexInfinity, z)
assert a == Add(z, S.ComplexInfinity)
assert isinstance(a, Add)
assert a.args == (S.ComplexInfinity, z)
a = Add(z, S.NaN)
# assert a == Add(S.NaN, z) # See the XFAIL above
assert isinstance(a, Add)
assert a.args == (S.NaN, z)
M = Matrix([[1, 2], [3, 4]])
a = Add(x, M)
assert a == Add(M, x)
assert isinstance(a, Add)
assert a.args == (x, M)
A = MatrixSymbol("A", 2, 2)
assert Add(A, M) == Add(M, A) == A + M
# Scalars should be absorbed into constant matrices (producing an error)
a = Add(x, M, A)
assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
assert isinstance(a, Add)
assert a.args == (x, A + M)
assert Add(M, M) == 2*M
assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
a = Add(A, x, M, M, x)
assert isinstance(a, Add)
assert a.args == (2*x, A + 2*M)
def test_simplify_matrix_expressions():
# Various simplification functions
assert type(gcd_terms(C*D + D*C)) == MatAdd
a = gcd_terms(2*C*D + 4*D*C)
assert type(a) == MatAdd
assert a.args == (2*C*D, 4*D*C)
def test_exp():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
expr1 = exp(A)*exp(B)
expr2 = exp(B)*exp(A)
assert expr1 != expr2
assert expr1 - expr2 != 0
assert not isinstance(expr1, exp)
assert not isinstance(expr2, exp)
def test_invalid_args():
raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
def test_matrixsymbol_from_symbol():
# The label should be preserved during doit and subs
A_label = Symbol('A', complex=True)
A = MatrixSymbol(A_label, 2, 2)
A_1 = A.doit()
A_2 = A.subs(2, 3)
assert A_1.args == A.args
assert A_2.args[0] == A.args[0]
def test_as_explicit():
Z = MatrixSymbol('Z', 2, 3)
assert Z.as_explicit() == ImmutableMatrix([
[Z[0, 0], Z[0, 1], Z[0, 2]],
[Z[1, 0], Z[1, 1], Z[1, 2]],
])
raises(ValueError, lambda: A.as_explicit())
def test_MatrixSet():
M = MatrixSet(2, 2, set=S.Reals)
assert M.shape == (2, 2)
assert M.set == S.Reals
X = Matrix([[1, 2], [3, 4]])
assert X in M
X = ZeroMatrix(2, 2)
assert X in M
raises(TypeError, lambda: A in M)
raises(TypeError, lambda: 1 in M)
M = MatrixSet(n, m, set=S.Reals)
assert A in M
raises(TypeError, lambda: C in M)
raises(TypeError, lambda: X in M)
M = MatrixSet(2, 2, set={1, 2, 3})
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[1, 2]])
assert (X in M) == S.false
assert (Y in M) == S.false
raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
def test_matrixsymbol_solving():
A = MatrixSymbol('A', 2, 2)
B = MatrixSymbol('B', 2, 2)
Z = ZeroMatrix(2, 2)
assert -(-A + B) - A + B == Z
assert (-(-A + B) - A + B).simplify() == Z
assert (-(-A + B) - A + B).expand() == Z
assert (-(-A + B) - A + B - Z).simplify() == Z
assert (-(-A + B) - A + B - Z).expand() == Z
assert (A*(A + B) + B*(A.T + B.T)).expand() == A**2 + A*B + B*A.T + B*B.T
|
d02d0043201cc51055f616a0c0ece9188a76dd8401db2c51d85795abbb4c818f | #!/usr/bin/env python
"""Distutils based setup script for SymPy.
This uses Distutils (https://python.org/sigs/distutils-sig/) the standard
python mechanism for installing packages. Optionally, you can use
Setuptools (https://setuptools.readthedocs.io/en/latest/)
to automatically handle dependencies. For the easiest installation
just type the command (you'll probably need root privileges for that):
python setup.py install
This will install the library in the default location. For instructions on
how to customize the install procedure read the output of:
python setup.py --help install
In addition, there are some other commands:
python setup.py clean -> will clean all trash (*.pyc and stuff)
python setup.py test -> will run the complete test suite
python setup.py bench -> will run the complete benchmark suite
python setup.py audit -> will run pyflakes checker on source code
To get a full list of available commands, read the output of:
python setup.py --help-commands
Or, if all else fails, feel free to write to the sympy list at
[email protected] and ask for help.
"""
import sys
import os
import shutil
import glob
import subprocess
from distutils.command.sdist import sdist
min_mpmath_version = '0.19'
# This directory
dir_setup = os.path.dirname(os.path.realpath(__file__))
extra_kwargs = {}
try:
from setuptools import setup, Command
extra_kwargs['zip_safe'] = False
extra_kwargs['entry_points'] = {
'console_scripts': [
'isympy = isympy:main',
]
}
except ImportError:
from distutils.core import setup, Command
extra_kwargs['scripts'] = ['bin/isympy']
# handle mpmath deps in the hard way:
from sympy.external.importtools import version_tuple
try:
import mpmath
if version_tuple(mpmath.__version__) < version_tuple(min_mpmath_version):
raise ImportError
except ImportError:
print("Please install the mpmath package with a version >= %s"
% min_mpmath_version)
sys.exit(-1)
if sys.version_info < (3, 8):
print("SymPy requires Python 3.8 or newer. Python %d.%d detected"
% sys.version_info[:2])
sys.exit(-1)
# Check that this list is uptodate against the result of the command:
# python bin/generate_module_list.py
modules = [
'sympy.algebras',
'sympy.assumptions',
'sympy.assumptions.handlers',
'sympy.assumptions.predicates',
'sympy.assumptions.relation',
'sympy.benchmarks',
'sympy.calculus',
'sympy.categories',
'sympy.codegen',
'sympy.combinatorics',
'sympy.concrete',
'sympy.core',
'sympy.core.benchmarks',
'sympy.crypto',
'sympy.diffgeom',
'sympy.discrete',
'sympy.external',
'sympy.functions',
'sympy.functions.combinatorial',
'sympy.functions.elementary',
'sympy.functions.elementary.benchmarks',
'sympy.functions.special',
'sympy.functions.special.benchmarks',
'sympy.geometry',
'sympy.holonomic',
'sympy.integrals',
'sympy.integrals.benchmarks',
'sympy.integrals.rubi',
'sympy.integrals.rubi.parsetools',
'sympy.integrals.rubi.rubi_tests',
'sympy.integrals.rubi.rules',
'sympy.interactive',
'sympy.liealgebras',
'sympy.logic',
'sympy.logic.algorithms',
'sympy.logic.utilities',
'sympy.matrices',
'sympy.matrices.benchmarks',
'sympy.matrices.expressions',
'sympy.multipledispatch',
'sympy.ntheory',
'sympy.parsing',
'sympy.parsing.autolev',
'sympy.parsing.autolev._antlr',
'sympy.parsing.c',
'sympy.parsing.fortran',
'sympy.parsing.latex',
'sympy.parsing.latex._antlr',
'sympy.physics',
'sympy.physics.continuum_mechanics',
'sympy.physics.control',
'sympy.physics.hep',
'sympy.physics.mechanics',
'sympy.physics.optics',
'sympy.physics.quantum',
'sympy.physics.units',
'sympy.physics.units.definitions',
'sympy.physics.units.systems',
'sympy.physics.vector',
'sympy.plotting',
'sympy.plotting.intervalmath',
'sympy.plotting.pygletplot',
'sympy.polys',
'sympy.polys.agca',
'sympy.polys.benchmarks',
'sympy.polys.domains',
'sympy.polys.matrices',
'sympy.polys.numberfields',
'sympy.printing',
'sympy.printing.pretty',
'sympy.sandbox',
'sympy.series',
'sympy.series.benchmarks',
'sympy.sets',
'sympy.sets.handlers',
'sympy.simplify',
'sympy.solvers',
'sympy.solvers.benchmarks',
'sympy.solvers.diophantine',
'sympy.solvers.ode',
'sympy.stats',
'sympy.stats.sampling',
'sympy.strategies',
'sympy.strategies.branch',
'sympy.tensor',
'sympy.tensor.array',
'sympy.tensor.array.expressions',
'sympy.testing',
'sympy.unify',
'sympy.utilities',
'sympy.utilities._compilation',
'sympy.utilities.mathml',
'sympy.vector',
]
class audit(Command):
"""Audits SymPy's source code for following issues:
- Names which are used but not defined or used before they are defined.
- Names which are redefined without having been used.
"""
description = "Audit SymPy source with PyFlakes"
user_options = []
def initialize_options(self):
self.all = None
def finalize_options(self):
pass
def run(self):
try:
import pyflakes.scripts.pyflakes as flakes
except ImportError:
print("In order to run the audit, you need to have PyFlakes installed.")
sys.exit(-1)
dirs = (os.path.join(*d) for d in (m.split('.') for m in modules))
warns = 0
for dir in dirs:
for filename in os.listdir(dir):
if filename.endswith('.py') and filename != '__init__.py':
warns += flakes.checkPath(os.path.join(dir, filename))
if warns > 0:
print("Audit finished with total %d warnings" % warns)
class clean(Command):
"""Cleans *.pyc and debian trashs, so you should get the same copy as
is in the VCS.
"""
description = "remove build files"
user_options = [("all", "a", "the same")]
def initialize_options(self):
self.all = None
def finalize_options(self):
pass
def run(self):
curr_dir = os.getcwd()
for root, dirs, files in os.walk(dir_setup):
for file in files:
if file.endswith('.pyc') and os.path.isfile:
os.remove(os.path.join(root, file))
os.chdir(dir_setup)
names = ["python-build-stamp-2.4", "MANIFEST", "build",
"dist", "doc/_build", "sample.tex"]
for f in names:
if os.path.isfile(f):
os.remove(f)
elif os.path.isdir(f):
shutil.rmtree(f)
for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules",
"physics", "vector", "*.pdf")):
if os.path.isfile(name):
os.remove(name)
os.chdir(curr_dir)
class test_sympy(Command):
"""Runs all tests under the sympy/ folder
"""
description = "run all tests and doctests; also see bin/test and bin/doctest"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
def run(self):
from sympy.testing import runtests
runtests.run_all_tests()
class run_benchmarks(Command):
"""Runs all SymPy benchmarks"""
description = "run all benchmarks"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
# we use py.test like architecture:
#
# o collector -- collects benchmarks
# o runner -- executes benchmarks
# o presenter -- displays benchmarks results
#
# this is done in sympy.utilities.benchmarking on top of py.test
def run(self):
from sympy.utilities import benchmarking
benchmarking.main(['sympy'])
class antlr(Command):
"""Generate code with antlr4"""
description = "generate parser code from antlr grammars"
user_options = [] # distutils complains if this is not here.
def __init__(self, *args):
self.args = args[0] # so we can pass it to other classes
Command.__init__(self, *args)
def initialize_options(self): # distutils wants this
pass
def finalize_options(self): # this too
pass
def run(self):
from sympy.parsing.latex._build_latex_antlr import build_parser as build_latex_parser
if not build_latex_parser():
sys.exit(-1)
from sympy.parsing.autolev._build_autolev_antlr import build_parser as build_autolev_parser
if not build_autolev_parser():
sys.exit(-1)
class sdist_sympy(sdist):
def run(self):
# Fetch git commit hash and write down to commit_hash.txt before
# shipped in tarball.
commit_hash = None
commit_hash_filepath = 'doc/commit_hash.txt'
try:
commit_hash = \
subprocess.check_output(['git', 'rev-parse', 'HEAD'])
commit_hash = commit_hash.decode('ascii')
commit_hash = commit_hash.rstrip()
print('Commit hash found : {}.'.format(commit_hash))
print('Writing it to {}.'.format(commit_hash_filepath))
except:
pass
if commit_hash:
with open(commit_hash_filepath, 'w') as f:
f.write(commit_hash)
super(sdist_sympy, self).run()
try:
os.remove(commit_hash_filepath)
print(
'Successfully removed temporary file {}.'
.format(commit_hash_filepath))
except OSError as e:
print("Error deleting %s - %s." % (e.filename, e.strerror))
# Check that this list is uptodate against the result of the command:
# python bin/generate_test_list.py
tests = [
'sympy.algebras.tests',
'sympy.assumptions.tests',
'sympy.calculus.tests',
'sympy.categories.tests',
'sympy.codegen.tests',
'sympy.combinatorics.tests',
'sympy.concrete.tests',
'sympy.core.tests',
'sympy.crypto.tests',
'sympy.diffgeom.tests',
'sympy.discrete.tests',
'sympy.external.tests',
'sympy.functions.combinatorial.tests',
'sympy.functions.elementary.tests',
'sympy.functions.special.tests',
'sympy.geometry.tests',
'sympy.holonomic.tests',
'sympy.integrals.rubi.parsetools.tests',
'sympy.integrals.rubi.rubi_tests.tests',
'sympy.integrals.rubi.tests',
'sympy.integrals.tests',
'sympy.interactive.tests',
'sympy.liealgebras.tests',
'sympy.logic.tests',
'sympy.matrices.expressions.tests',
'sympy.matrices.tests',
'sympy.multipledispatch.tests',
'sympy.ntheory.tests',
'sympy.parsing.tests',
'sympy.physics.continuum_mechanics.tests',
'sympy.physics.control.tests',
'sympy.physics.hep.tests',
'sympy.physics.mechanics.tests',
'sympy.physics.optics.tests',
'sympy.physics.quantum.tests',
'sympy.physics.tests',
'sympy.physics.units.tests',
'sympy.physics.vector.tests',
'sympy.plotting.intervalmath.tests',
'sympy.plotting.pygletplot.tests',
'sympy.plotting.tests',
'sympy.polys.agca.tests',
'sympy.polys.domains.tests',
'sympy.polys.matrices.tests',
'sympy.polys.numberfields.tests',
'sympy.polys.tests',
'sympy.printing.pretty.tests',
'sympy.printing.tests',
'sympy.sandbox.tests',
'sympy.series.tests',
'sympy.sets.tests',
'sympy.simplify.tests',
'sympy.solvers.diophantine.tests',
'sympy.solvers.ode.tests',
'sympy.solvers.tests',
'sympy.stats.sampling.tests',
'sympy.stats.tests',
'sympy.strategies.branch.tests',
'sympy.strategies.tests',
'sympy.tensor.array.expressions.tests',
'sympy.tensor.array.tests',
'sympy.tensor.tests',
'sympy.testing.tests',
'sympy.unify.tests',
'sympy.utilities._compilation.tests',
'sympy.utilities.tests',
'sympy.vector.tests',
]
with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f:
# Defines __version__
exec(f.read())
if __name__ == '__main__':
setup(name='sympy',
version=__version__,
description='Computer algebra system (CAS) in Python',
author='SymPy development team',
author_email='[email protected]',
license='BSD',
keywords="Math CAS",
url='https://sympy.org',
project_urls={
'Source': 'https://github.com/sympy/sympy',
},
py_modules=['isympy'],
packages=['sympy'] + modules + tests,
ext_modules=[],
package_data={
'sympy.utilities.mathml': ['data/*.xsl'],
'sympy.logic.benchmarks': ['input/*.cnf'],
'sympy.parsing.autolev': [
'*.g4', 'test-examples/*.al', 'test-examples/*.py',
'test-examples/pydy-example-repo/*.al',
'test-examples/pydy-example-repo/*.py',
'test-examples/README.txt',
],
'sympy.parsing.latex': ['*.txt', '*.g4'],
'sympy.integrals.rubi.parsetools': ['header.py.txt'],
'sympy.plotting.tests': ['test_region_*.png'],
'sympy': ['py.typed']
},
data_files=[('share/man/man1', ['doc/man/isympy.1'])],
cmdclass={'test': test_sympy,
'bench': run_benchmarks,
'clean': clean,
'audit': audit,
'antlr': antlr,
'sdist': sdist_sympy,
},
python_requires='>=3.8',
classifiers=[
'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Physics',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Programming Language :: Python :: 3 :: Only',
'Programming Language :: Python :: Implementation :: CPython',
'Programming Language :: Python :: Implementation :: PyPy',
],
install_requires=[
'mpmath>=%s' % min_mpmath_version,
],
**extra_kwargs
)
|
8be627a3d2102343d2d9953c4792b545a4988d0e7751c6c67841231e6853b4b4 | #!/usr/bin/env python
"""
Run tests for specific packages that use optional dependencies.
The optional dependencies need to be installed before running this.
"""
# Add the local sympy to sys.path (needed for CI)
from get_sympy import path_hack
path_hack()
class TestsFailedError(Exception):
pass
test_list = [
# numpy
'*numpy*',
'sympy/core/',
'sympy/matrices/',
'sympy/physics/quantum/',
'sympy/utilities/tests/test_lambdify.py',
'sympy/physics/control/',
# scipy
'*scipy*',
# matplotlib
'sympy/plotting/',
# llvmlite
'*llvm*',
# aesara
'*aesara*',
# jax
'*jax*',
# gmpy
'sympy/polys',
# gmpy, numpy, scipy, autowrap, matplotlib
'sympy/external',
# autowrap
'*autowrap*',
# ipython
'*ipython*',
# antlr, lfortran, clang
'sympy/parsing/',
# matchpy
'*rubi*',
# codegen
'sympy/codegen/',
'sympy/utilities/tests/test_codegen',
'sympy/utilities/_compilation/tests/test_compilation',
'sympy/external/tests/test_codegen.py',
# cloudpickle
'pickling',
# pycosat
'sympy/logic',
'sympy/assumptions',
#stats
'sympy/stats',
]
blacklist = [
'sympy/physics/quantum/tests/test_circuitplot.py',
]
doctest_list = [
# numpy
'sympy/matrices/',
'sympy/utilities/lambdify.py',
# scipy
'*scipy*',
# matplotlib
'sympy/plotting/',
# llvmlite
'*llvm*',
# aesara
'*aesara*',
# gmpy
'sympy/polys',
# autowrap
'*autowrap*',
# ipython
'*ipython*',
# antlr, lfortran, clang
'sympy/parsing/',
# matchpy
'*rubi*',
# codegen
'sympy/codegen/',
# pycosat
'sympy/logic',
'sympy/assumptions',
#stats
'sympy/stats',
]
print('Testing optional dependencies')
from sympy import test, doctest
tests_passed = test(*test_list, blacklist=blacklist, force_colors=True)
doctests_passed = doctest(*doctest_list, force_colors=True)
if not tests_passed and not doctests_passed:
raise TestsFailedError('Tests and doctests failed')
elif not tests_passed:
raise TestsFailedError('Doctests passed but tests failed')
elif not doctests_passed:
raise TestsFailedError('Tests passed but doctests failed')
|
c4dd4c9a025ff219095642a11587860e773a5161a63f67c8d22d04eacb34704c | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
A tool to generate AUTHORS. We started tracking authors before moving to git,
so we have to do some manual rearrangement of the git history authors in order
to get the order in AUTHORS. bin/mailmap_check.py should be run before
committing the results.
See here for instructions on using this script:
https://github.com/sympy/sympy/wiki/Development-workflow#update-mailmap
"""
from __future__ import unicode_literals
from __future__ import print_function
import sys
import os
from pathlib import Path
from subprocess import run, PIPE
from collections import OrderedDict, defaultdict
from argparse import ArgumentParser
if sys.version_info < (3, 8):
sys.exit("This script requires Python 3.8 or newer")
def sympy_dir():
return Path(__file__).resolve().parent.parent
# put sympy on the path
sys.path.insert(0, str(sympy_dir()))
import sympy
from sympy.utilities.misc import filldedent
from sympy.external.importtools import version_tuple
def main(*args):
parser = ArgumentParser(description='Update the .mailmap file')
parser.add_argument('--skip-last-commit', action='store_true',
help=filldedent("""
Do not check metadata from the most recent commit. This is used
when the script runs in CI to ignore the merge commit that is
implicitly created by github."""))
parser.add_argument('--update-authors', action='store_true',
help=filldedent("""
Also updates the AUTHORS file. DO NOT use this option as part of a
pull request. The AUTHORS file will be updated later at the time a
new version of SymPy is released."""))
args = parser.parse_args(args)
if not check_git_version():
return 1
# find who git knows ahout
try:
git_people = get_authors_from_git()
if args.skip_last_commit:
git_people_skip = get_authors_from_git(skip_last=True)
else:
git_people_skip = git_people
except AssertionError as msg:
print(red(msg))
return 1
lines_mailmap = read_lines(mailmap_path())
def key(line):
# return lower case first address on line or
# raise an error if not an entry
if '#' in line:
line = line.split('#')[0]
L, R = line.count("<"), line.count(">")
assert L == R and L in (1, 2)
return line.split(">", 1)[0].split("<")[1].lower()
who = OrderedDict()
for i, line in enumerate(lines_mailmap):
try:
who.setdefault(key(line), []).append(line)
except AssertionError:
who[i] = [line]
problems = False
missing = False
ambiguous = False
dups = defaultdict(list)
#
# Here we use the git people with the most recent commit skipped. This
# means we don't need to add .mailmap entries for the temporary merge
# commit created in CI on a PR.
#
for person in git_people_skip:
email = key(person)
dups[email].append(person)
if email not in who:
print(red("This author is not included in the .mailmap file:"))
print(person)
missing = True
elif not any(p.startswith(person) for p in who[email]):
print(red("Ambiguous names in .mailmap"))
print(red("This email address appears for multiple entries:"))
print('Person:', person)
print('Mailmap entries:')
for line in who[email]:
print(line)
ambiguous = True
if missing:
print(red(filldedent("""
The .mailmap file needs to be updated because there are commits with
unrecognised author/email metadata.
""")))
problems = True
if ambiguous:
print(red(filldedent("""
Lines should be added to .mailmap to indicate the correct name and
email aliases for all commits.
""")))
problems = True
for email, commitauthors in dups.items():
if len(commitauthors) > 2:
print(red(filldedent("""
The following commits are recorded with different metadata but the
same/ambiguous email address. The .mailmap file will need to be
updated.""")))
for author in commitauthors:
print(author)
problems = True
lines_mailmap_sorted = sort_lines_mailmap(lines_mailmap)
write_lines(mailmap_path(), lines_mailmap_sorted)
if lines_mailmap_sorted != lines_mailmap:
problems = True
print(red("The mailmap file was reordered"))
# Check if changes to AUTHORS file are also needed
#
# Here we don't skip the last commit. We need authors from the most recent
# commit if the AUTHORS file was updated.
lines_authors = make_authors_file_lines(git_people)
old_lines_authors = read_lines(authors_path())
for person in old_lines_authors[8:]:
if person not in git_people:
print(red("This author is in the AUTHORS file but not .mailmap:"))
print(person)
problems = True
if problems:
print(red(filldedent("""
For instructions on updating the .mailmap file see:
https://github.com/sympy/sympy/wiki/Development-workflow#add-your-name-and-email-address-to-the-mailmap-file""",
break_on_hyphens=False, break_long_words=False)))
else:
print(green("No changes needed in .mailmap"))
# Actually update the AUTHORS file (if --update-authors was passed)
authors_changed = update_authors_file(lines_authors, old_lines_authors, args.update_authors)
return int(problems) + int(authors_changed)
def update_authors_file(lines, old_lines, update_yesno):
if old_lines == lines:
print(green('No changes needed in AUTHORS.'))
return 0
# Actually write changes to the file?
if update_yesno:
write_lines(authors_path(), lines)
print(red("Changes were made in the authors file"))
# check for new additions
new_authors = []
for i in sorted(set(lines) - set(old_lines)):
try:
author_name(i)
new_authors.append(i)
except AssertionError:
continue
if new_authors:
if update_yesno:
print(yellow("The following authors were added to AUTHORS."))
else:
print(green(filldedent("""
The following authors will be added to the AUTHORS file at the
time of the next SymPy release.""")))
print()
for i in sorted(new_authors, key=lambda x: x.lower()):
print('\t%s' % i)
if new_authors and update_yesno:
return 1
else:
return 0
def check_git_version():
# check git version
minimal = '1.8.4.2'
git_ver = run(['git', '--version'], stdout=PIPE, encoding='utf-8').stdout[12:]
if version_tuple(git_ver) < version_tuple(minimal):
print(yellow("Please use a git version >= %s" % minimal))
return False
else:
return True
def authors_path():
return sympy_dir() / 'AUTHORS'
def mailmap_path():
return sympy_dir() / '.mailmap'
def red(text):
return "\033[31m%s\033[0m" % text
def yellow(text):
return "\033[33m%s\033[0m" % text
def green(text):
return "\033[32m%s\033[0m" % text
def author_name(line):
assert line.count("<") == line.count(">") == 1
assert line.endswith(">")
return line.split("<", 1)[0].strip()
def get_authors_from_git(skip_last=False):
git_command = ["git", "log", "--topo-order", "--reverse", "--format=%aN <%aE>"]
if skip_last:
# Skip the most recent commit. Used to ignore the merge commit created
# when this script runs in CI. We use HEAD^2 rather than HEAD^1 to
# select the parent commit that is part of the PR rather than the
# parent commit that was the previous tip of master.
git_command.append("HEAD^2")
git_people = run(git_command, stdout=PIPE, encoding='utf-8').stdout.strip().split("\n")
# remove duplicates, keeping the original order
git_people = list(OrderedDict.fromkeys(git_people))
# Do the few changes necessary in order to reproduce AUTHORS:
def move(l, i1, i2, who):
x = l.pop(i1)
# this will fail if the .mailmap is not right
assert who == author_name(x), \
'%s was not found at line %i' % (who, i1)
l.insert(i2, x)
move(git_people, 2, 0, 'Ondřej Čertík')
move(git_people, 42, 1, 'Fabian Pedregosa')
move(git_people, 22, 2, 'Jurjen N.E. Bos')
git_people.insert(4, "*Marc-Etienne M.Leveille <[email protected]>")
move(git_people, 10, 5, 'Brian Jorgensen')
git_people.insert(11, "*Ulrich Hecht <[email protected]>")
# this will fail if the .mailmap is not right
assert 'Kirill Smelkov' == author_name(git_people.pop(12)
), 'Kirill Smelkov was not found at line 12'
move(git_people, 12, 32, 'Sebastian Krämer')
move(git_people, 227, 35, 'Case Van Horsen')
git_people.insert(43, "*Dan <[email protected]>")
move(git_people, 57, 59, 'Aaron Meurer')
move(git_people, 58, 57, 'Andrew Docherty')
move(git_people, 67, 66, 'Chris Smith')
move(git_people, 79, 76, 'Kevin Goodsell')
git_people.insert(84, "*Chu-Ching Huang <[email protected]>")
move(git_people, 93, 92, 'James Pearson')
# this will fail if the .mailmap is not right
assert 'Sergey B Kirpichev' == author_name(git_people.pop(226)
), 'Sergey B Kirpichev was not found at line 226.'
index = git_people.index(
"azure-pipelines[bot] " +
"<azure-pipelines[bot]@users.noreply.github.com>")
git_people.pop(index)
index = git_people.index(
"whitesource-bolt-for-github[bot] " +
"<whitesource-bolt-for-github[bot]@users.noreply.github.com>")
git_people.pop(index)
return git_people
def make_authors_file_lines(git_people):
# define new lines for the file
header = filldedent("""
All people who contributed to SymPy by sending at least a patch or
more (in the order of the date of their first contribution), except
those who explicitly didn't want to be mentioned. People with a * next
to their names are not found in the metadata of the git history. This
file is generated automatically by running `./bin/authors_update.py`.
""").lstrip()
header_extra = f"There are a total of {len(git_people)} authors."""
lines = header.splitlines()
lines.append('')
lines.append(header_extra)
lines.append('')
lines.extend(git_people)
return lines
def sort_lines_mailmap(lines):
for n, line in enumerate(lines):
if not line.startswith('#'):
header_end = n
break
header = lines[:header_end]
mailmap_lines = lines[header_end:]
return header + sorted(mailmap_lines)
def read_lines(path):
with open(path, 'r', encoding='utf-8') as fin:
return [line.strip() for line in fin.readlines()]
def write_lines(path, lines):
with open(path, 'w', encoding='utf-8') as fout:
fout.write('\n'.join(lines))
fout.write('\n')
if __name__ == "__main__":
import sys
sys.exit(main(*sys.argv[1:]))
|
bb96ce39018588416201d0a2574692da60f98a2eddf279a99d975057e4ea1125 | #!/usr/bin/env python
DESCRIPTION = """
Runs all the examples for testing purposes and reports successes and failures
to stderr. An example is marked successful if the running thread does not
throw an exception, for threaded examples, such as plotting, one needs to
check the stderr messages as well.
"""
EPILOG = """
Example Usage:
When no examples fail:
$ ./all.py > out
SUCCESSFUL:
- beginner.basic
[...]
NO FAILED EXAMPLES
$
When examples fail:
$ ./all.py -w > out
Traceback (most recent call last):
File "./all.py", line 111, in run_examples
[...]
SUCCESSFUL:
- beginner.basic
[...]
FAILED:
- intermediate.mplot2D
[...]
$
Obviously, we want to achieve the first result.
"""
import optparse
import os
import sys
import traceback
# add local sympy to the module path
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..")
sympy_dir = os.path.normpath(sympy_dir)
sys.path.insert(0, sympy_dir)
import sympy
TERMINAL_EXAMPLES = [
"beginner.basic",
"beginner.differentiation",
"beginner.expansion",
"beginner.functions",
"beginner.limits_examples",
"beginner.precision",
"beginner.print_pretty",
"beginner.series",
"beginner.substitution",
"intermediate.coupled_cluster",
"intermediate.differential_equations",
"intermediate.infinite_1d_box",
"intermediate.partial_differential_eqs",
"intermediate.trees",
"intermediate.vandermonde",
"advanced.curvilinear_coordinates",
"advanced.dense_coding_example",
"advanced.fem",
"advanced.gibbs_phenomenon",
"advanced.grover_example",
"advanced.hydrogen",
"advanced.pidigits",
"advanced.qft",
"advanced.relativity",
]
WINDOWED_EXAMPLES = [
"beginner.plotting_nice_plot",
"intermediate.mplot2d",
"intermediate.mplot3d",
"intermediate.print_gtk",
"advanced.autowrap_integrators",
"advanced.autowrap_ufuncify",
"advanced.pyglet_plotting",
]
EXAMPLE_DIR = os.path.dirname(__file__)
def load_example_module(example):
"""Loads modules based upon the given package name"""
from importlib import import_module
exmod = os.path.split(EXAMPLE_DIR)[1]
modname = exmod + '.' + example
return import_module(modname)
def run_examples(*, windowed=False, quiet=False, summary=True):
"""Run all examples in the list of modules.
Returns a boolean value indicating whether all the examples were
successful.
"""
successes = []
failures = []
examples = TERMINAL_EXAMPLES
if windowed:
examples += WINDOWED_EXAMPLES
if quiet:
from sympy.testing.runtests import PyTestReporter
reporter = PyTestReporter()
reporter.write("Testing Examples\n")
reporter.write("-" * reporter.terminal_width)
else:
reporter = None
for example in examples:
if run_example(example, reporter=reporter):
successes.append(example)
else:
failures.append(example)
if summary:
show_summary(successes, failures, reporter=reporter)
return len(failures) == 0
def run_example(example, *, reporter=None):
"""Run a specific example.
Returns a boolean value indicating whether the example was successful.
"""
if reporter:
reporter.write(example)
else:
print("=" * 79)
print("Running: ", example)
try:
mod = load_example_module(example)
if reporter:
suppress_output(mod.main)
reporter.write("[PASS]", "Green", align="right")
else:
mod.main()
return True
except KeyboardInterrupt as e:
raise e
except:
if reporter:
reporter.write("[FAIL]", "Red", align="right")
traceback.print_exc()
return False
class DummyFile:
def write(self, x):
pass
def suppress_output(fn):
"""Suppresses the output of fn on sys.stdout."""
save_stdout = sys.stdout
try:
sys.stdout = DummyFile()
fn()
finally:
sys.stdout = save_stdout
def show_summary(successes, failures, *, reporter=None):
"""Shows a summary detailing which examples were successful and which failed."""
if reporter:
reporter.write("-" * reporter.terminal_width)
if failures:
reporter.write("FAILED:\n", "Red")
for example in failures:
reporter.write(" %s\n" % example)
else:
reporter.write("ALL EXAMPLES PASSED\n", "Green")
else:
if successes:
print("SUCCESSFUL: ", file=sys.stderr)
for example in successes:
print(" -", example, file=sys.stderr)
else:
print("NO SUCCESSFUL EXAMPLES", file=sys.stderr)
if failures:
print("FAILED: ", file=sys.stderr)
for example in failures:
print(" -", example, file=sys.stderr)
else:
print("NO FAILED EXAMPLES", file=sys.stderr)
def main(*args, **kws):
"""Main script runner"""
parser = optparse.OptionParser()
parser.add_option('-w', '--windowed', action="store_true", dest="windowed",
help="also run examples requiring windowed environment")
parser.add_option('-q', '--quiet', action="store_true", dest="quiet",
help="runs examples in 'quiet mode' suppressing example output and \
showing simple status messages.")
parser.add_option('--no-summary', action="store_true", dest="no_summary",
help="hides the summary at the end of testing the examples")
(options, _) = parser.parse_args()
return 0 if run_examples(windowed=options.windowed, quiet=options.quiet,
summary=not options.no_summary) else 1
if __name__ == "__main__":
sys.exit(main(*sys.argv[1:]))
|
b1523e1190d69073c0e1ba2b7ecf9af8176cfd5650e4d12536629b6961740a33 | #!/usr/bin/env python
"""
This script creates logos of different formats from the source "sympy.svg"
Requirements:
rsvg-convert - for converting to *.png format
(librsvg2-bin deb package)
imagemagick - for converting to *.ico favicon format
"""
from argparse import ArgumentParser
import xml.dom.minidom
import os.path
import logging
import subprocess
import sys
from platform import system
default_source_dir = os.path.join(os.path.dirname(__file__), "src", "logo")
default_output_dir = os.path.join(os.path.dirname(__file__), "_build", "logo")
default_source_svg = "sympy.svg"
# those are the options for resizing versions without tail or text
svg_sizes = {}
svg_sizes['notail'] = {
"prefix":"notail", "dx":-70, "dy":-20, "size":690,
"title":"SymPy Logo, with no tail"}
svg_sizes['notail-notext'] = {
"prefix":"notailtext", "dx":-70, "dy":60, "size":690,
"title":"SymPy Logo, with no tail, no text"}
svg_sizes['notext'] = {
"prefix":"notext", "dx":-7, "dy":90, "size":750,
"title":"SymPy Logo, with no text"}
# The list of identifiers of various versions
versions = ['notail', 'notail-notext', 'notext']
parser = ArgumentParser(usage="%(prog)s [options ...]")
parser.add_argument("--source-dir", type=str, dest="source_dir",
help="Directory of the source *.svg file [default: %(default)s]",
default=default_source_dir)
parser.add_argument("--source-svg", type=str, dest="source_svg",
help="File name of the source *.svg file [default: %(default)s]",
default=default_source_svg)
parser.add_argument("--svg", action="store_true", dest="generate_svg",
help="Generate *.svg versions without tails " \
"and without text 'SymPy' [default: %(default)s]",
default=False)
parser.add_argument("--png", action="store_true", dest="generate_png",
help="Generate *.png versions [default: %(default)s]",
default=False)
parser.add_argument("--ico", action="store_true", dest="generate_ico",
help="Generate *.ico versions [default: %(default)s]",
default=False)
parser.add_argument("--clear", action="store_true", dest="clear",
help="Remove temporary files [default: %(default)s]",
default=False)
parser.add_argument("-a", "--all", action="store_true", dest="generate_all",
help="Shorthand for '--svg --png --ico --clear' options " \
"[default: %(default)s]",
default=True)
parser.add_argument("-s", "--sizes", type=str, dest="sizes",
help="Sizes of png pictures [default: %(default)s]",
default="160,500")
parser.add_argument("--icon-sizes", type=str, dest="icon_sizes",
help="Sizes of icons embedded in favicon file [default: %(default)s]",
default="16,32,48,64")
parser.add_argument("--output-dir", type=str, dest="output_dir",
help="Output dir [default: %(default)s]",
default=default_output_dir)
parser.add_argument("-d", "--debug", action="store_true", dest="debug",
help="Print debug log [default: %(default)s]",
default=False)
def main():
options, args = parser.parse_known_args()
if options.debug:
logging.basicConfig(level=logging.DEBUG)
fn_source = os.path.join(options.source_dir, options.source_svg)
if options.generate_svg or options.generate_all:
generate_notail_notext_versions(fn_source, options.output_dir)
if options.generate_png or options.generate_all:
sizes = options.sizes.split(",")
sizes = [int(s) for s in sizes]
convert_to_png(fn_source, options.output_dir, sizes)
if options.generate_ico or options.generate_all:
sizes = options.icon_sizes.split(",")
sizes = [int(s) for s in sizes]
convert_to_ico(fn_source, options.output_dir, sizes)
def generate_notail_notext_versions(fn_source, output_dir):
for ver in versions:
properties = svg_sizes[ver]
doc = load_svg(fn_source)
(notail, notext) = versionkey_to_boolean_tuple(ver)
g_tail = searchElementById(doc, "SnakeTail", "g")
if notail:
g_tail.setAttribute("display", "none")
g_text = searchElementById(doc, "SymPy_text", "g")
if notext:
g_text.setAttribute("display", "none")
g_logo = searchElementById(doc, "SympyLogo", "g")
dx = properties["dx"]
dy = properties["dy"]
transform = "translate(%d,%d)" % (dx, dy)
g_logo.setAttribute("transform", transform)
svg = searchElementById(doc, "svg_SympyLogo", "svg")
newsize = properties["size"]
svg.setAttribute("width", "%d" % newsize)
svg.setAttribute("height", "%d" % newsize)
title = svg.getElementsByTagName("title")[0]
title.firstChild.data = properties["title"]
desc = svg.getElementsByTagName("desc")[0]
desc.appendChild(
doc.createTextNode(
"\n\nThis file is generated from %s !" % fn_source))
fn_out = get_svg_filename_from_versionkey(fn_source, ver)
fn_out = os.path.join(output_dir, fn_out)
save_svg(fn_out, doc)
def convert_to_png(fn_source, output_dir, sizes):
svgs = list(versions)
svgs.insert(0, '')
cmd = "rsvg-convert"
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
p.communicate()
if p.returncode == 127:
logging.error(
"%s: command not found. Install librsvg" % cmd)
sys.exit(p.returncode)
for ver in svgs:
if ver == '':
fn_svg = fn_source
if system()[0:3].lower() == "win":
os.chdir(default_source_dir)
else:
fn_svg = get_svg_filename_from_versionkey(fn_source, ver)
fn_svg = os.path.join(output_dir, fn_svg)
if system()[0:3].lower() == "win":
os.chdir(default_output_dir)
basename = os.path.basename(fn_svg)
name, ext = os.path.splitext(basename)
for size in sizes:
if system()[0:3].lower() == "win":
fn_out = "%s-%dpx.png" % (name, size)
fn_out = os.path.join(os.pardir, os.pardir, "_build", "logo", fn_out)
name_c = "%s.svg" % (name)
cmd = "rsvg-convert %s -f png -h %d -w %d > %s" % (name_c,
size, size,
fn_out)
else:
fn_out = "%s-%dpx.png" % (name, size)
fn_out = os.path.join(output_dir, fn_out)
cmd = "rsvg-convert %s -f png -o %s -h %d -w %d" % (fn_svg,
fn_out,
size, size)
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
p.communicate()
if p.returncode != 0:
logging.error("Return code is not 0: Command: %s" % cmd)
logging.error("return code: %s" % p.returncode)
sys.exit(p.returncode)
else:
logging.debug("command: %s" % cmd)
logging.debug("return code: %s" % p.returncode)
def convert_to_ico(fn_source, output_dir, sizes):
# firstly prepare *.png files, which will be embedded
# into the *.ico files.
convert_to_png(fn_source, output_dir, sizes)
svgs = list(versions)
svgs.insert(0, '')
if system()[0:3].lower() == "win":
cmd = "magick"
else:
cmd = "convert"
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
p.communicate()
if p.returncode == 127:
logging.error("%s: command not found. Install imagemagick" % cmd)
sys.exit(p.returncode)
if system()[0:3].lower() == "win":
os.chdir(default_output_dir)
for ver in svgs:
if ver == '':
fn_svg = fn_source
else:
fn_svg = get_svg_filename_from_versionkey(fn_source, ver)
fn_svg = os.path.join(output_dir, fn_svg)
basename = os.path.basename(fn_svg)
name, ext = os.path.splitext(basename)
# calculate the list of *.png files
pngs = []
for size in sizes:
fn_png= "%s-%dpx.png" % (name, size)
if system()[0:3].lower() != "win":
fn_png = os.path.join(output_dir, fn_png)
pngs.append(fn_png)
# convert them to *.ico
fn_out = "%s-favicon.ico" % name
if system()[0:3].lower() != "win":
fn_out = os.path.join(output_dir, fn_out)
cmd = "{} {} {}".format(cmd, " ".join(pngs), fn_out)
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
p.communicate()
if p.returncode != 0:
logging.error("Return code is not 0: Command: %s" % cmd)
logging.error("return code: %s" % p.returncode)
sys.exit(p.returncode)
else:
logging.debug("command: %s" % cmd)
logging.debug("return code: %s" % p.returncode)
def versionkey_to_boolean_tuple(ver):
notail = False
notext = False
vers = ver.split("-")
notail = 'notail' in vers
notext = 'notext' in vers
return (notail, notext)
def get_svg_filename_from_versionkey(fn_source, ver):
basename = os.path.basename(fn_source)
if ver == '':
return basename
name, ext = os.path.splitext(basename)
prefix = svg_sizes[ver]["prefix"]
fn_out = "{}-{}.svg".format(name, prefix)
return fn_out
def searchElementById(node, Id, tagname):
"""
Search element by id in all the children and descendants of node.
id is lower case, not ID which is usually used for getElementById
"""
nodes = node.getElementsByTagName(tagname)
for node in nodes:
an = node.getAttributeNode('id')
if an and an.nodeValue == Id:
return node
def load_svg(fn):
doc = xml.dom.minidom.parse(fn)
return doc
def save_svg(fn, doc):
with open(fn, "wb") as f:
xmlstr = doc.toxml("utf-8")
f.write(xmlstr)
logging.info(" File saved: %s" % fn)
main()
|
3145d702be8d1c29506bd3a64f8f2c36892da2dd4c8d7714f8cf166d12826569 | #!/usr/bin/env python3
import json
import subprocess
import sys
from os.path import join, splitext, basename
from contextlib import contextmanager
from tempfile import TemporaryDirectory
from zipfile import ZipFile
from shutil import copytree
def main(sympy_doc_git, doc_html_zip, version, dev_version, push=None):
"""Run this as ./update_docs.py SYMPY_DOC_GIT DOC_HTML_ZIP VERSION [--push]
!!!!!!!!!!!!!!!!!
NOTE: This is intended to be run as part of the release script.
NOTE: This script will automatically push to the sympy_doc repo.
!!!!!!!!!!!!!!!!!
Args
====
SYMPY_DOC_GIT: Path to the sympy_doc repo.
DOC_HTML_ZIP: Path to the zip of the built html docs.
VERSION: Version string of the release (e.g. "1.6")
DEV_VERSION: Version string of the development version (e.g. "1.7.dev")
--push (optional): Push the results (Warning this pushes direct to github)
This script automates the "release docs" step described in the README of the
sympy/sympy_doc repo:
https://github.com/sympy/sympy_doc#release-docs
"""
if push is None:
push = False
elif push == "--push":
push = True
else:
raise ValueError("Invalid arguments")
update_docs(sympy_doc_git, doc_html_zip, version, dev_version, push)
def update_docs(sympy_doc_git, doc_html_zip, version, dev_version, push):
# We started with a clean tree so restore it on error
with git_rollback_on_error(sympy_doc_git, branch='gh-pages') as run:
# Delete docs for the last version
run('git', 'rm', '-rf', 'latest')
# Extract new docs in replacement
extract_docs(sympy_doc_git, doc_html_zip)
# Commit new docs
run('git', 'add', 'latest')
run('git', 'commit', '-m', 'Add sympy %s docs' % version)
# Update versions.json
with open(join(sympy_doc_git, 'versions.json'), 'w') as f:
json.dump({'latest': version, 'dev': dev_version}, f)
run('git', 'diff')
run('git', 'add', 'versions.json')
run('git', 'commit', '-m', 'Update versions.json')
if push:
run('git', 'push')
else:
print('Results are committed but not pushed')
@contextmanager
def git_rollback_on_error(gitroot_path, branch='master'):
def run(*cmdline, **kwargs):
"""Run subprocess with cwd in sympy_doc"""
print()
print('Running: $ ' + ' '.join(cmdline))
print()
return subprocess.run(cmdline, cwd=gitroot_path, check=True, **kwargs)
unclean_msg = "The git repo should be completely clean before running this"
try:
run('git', 'diff', '--exit-code') # Error if tree is unclean
except subprocess.CalledProcessError:
raise ValueError(unclean_msg)
if run('git', 'clean', '-n', stdout=subprocess.PIPE).stdout:
raise ValueError(unclean_msg)
run('git', 'checkout', branch)
run('git', 'pull')
bsha_start = run('git', 'rev-parse', 'HEAD', stdout=subprocess.PIPE).stdout
sha_start = bsha_start.strip().decode('ascii')
try:
yield run
except Exception as e:
run('git', 'reset', '--hard', sha_start)
raise e from None
def extract_docs(sympy_doc_git, doc_html_zip):
subdirname = splitext(basename(doc_html_zip))[0]
with TemporaryDirectory() as tempdir:
print()
print('Extracting docs to ' + tempdir)
print()
ZipFile(doc_html_zip).extractall(tempdir)
print()
print('Copying to sympy_doc/latest')
print()
srcpath = join(tempdir, subdirname)
dstpath = join(sympy_doc_git, 'latest')
copytree(srcpath, dstpath)
if __name__ == "__main__":
main(*sys.argv[1:])
|
dd678be91edc94efc2cee8fa0979ec204903cff612bfaccf72926bb373d14008 | #!/usr/bin/env python3
from os.path import join, basename, normpath
from subprocess import check_call
def main(version, prevversion, outdir):
check_version(version, outdir)
run_stage(['bin/mailmap_check.py', '--update-authors'])
run_stage(['mkdir', '-p', outdir])
build_release_files('bdist_wheel', 'sympy-%s-py3-none-any.whl', outdir, version)
build_release_files('sdist', 'sympy-%s.tar.gz', outdir, version)
run_stage(['release/compare_tar_against_git.py', join(outdir, 'sympy-%s.tar.gz' % (version,)), '.'])
run_stage(['release/build_docs.py', version, outdir])
run_stage(['release/sha256.py', version, outdir])
run_stage(['release/authors.py', version, prevversion, outdir])
def green(text):
return "\033[32m%s\033[0m" % text
def red(text):
return "\033[31m%s\033[0m" % text
def print_header(color, *msgs):
newlines = '\n'
vline = '-' * 80
print(color(newlines + vline))
for msg in msgs:
print(color(msg))
print(color(vline + newlines))
def run_stage(cmd):
cmdline = ' $ %s' % (' '.join(cmd),)
print_header(green, 'running:', cmdline)
try:
check_call(cmd)
except Exception as e:
print_header(red, 'failed:', cmdline)
raise e from None
else:
print_header(green, 'completed:', cmdline)
def build_release_files(cmd, fname, outdir, version):
fname = fname % (version,)
run_stage(['python', 'setup.py', '-q', cmd])
src = join('dist', fname)
dst = join(outdir, fname)
run_stage(['mv', src, dst])
def check_version(version, outdir):
from sympy.release import __version__ as checked_out_version
if version != checked_out_version:
msg = "version %s does not match checkout %s"
raise AssertionError(msg % (version, checked_out_version))
if basename(normpath(outdir)) != 'release-%s' % (version,):
msg = "version %s does not match output directory %s"
raise AssertionError(msg % (version, outdir))
if __name__ == "__main__":
import sys
main(*sys.argv[1:])
|
cb6e5d3a4fa7feb5835c5cb611e2d3db31c468e3ec11ef66f8d000c72119d774 | #!/usr/bin/env python3
from subprocess import check_output
import sys
import os.path
def main(tarname, gitroot):
"""Run this as ./compare_tar_against_git.py TARFILE GITROOT
Args
====
TARFILE: Path to the built sdist (sympy-xx.tar.gz)
GITROOT: Path ro root of git (dir containing .git)
"""
compare_tar_against_git(tarname, gitroot)
## TARBALL WHITELISTS
# If a file does not end up in the tarball that should, add it to setup.py if
# it is Python, or MANIFEST.in if it is not. (There is a command at the top
# of setup.py to gather all the things that should be there).
# TODO: Also check that this whitelist isn't growing out of date from files
# removed from git.
# Files that are in git that should not be in the tarball
git_whitelist = {
# Git specific dotfiles
'.gitattributes',
'.gitignore',
'.mailmap',
# Travis and CI
'.travis.yml',
'.github/workflows/runtests.yml',
'.github/workflows/ci-sage.yml',
'.github/workflows/comment-on-pr.yml',
'.github/workflows/release.yml',
'.github/workflows/docs-preview.yml',
'.ci/durations.json',
'.ci/generate_durations_log.sh',
'.ci/parse_durations_log.py',
'.ci/blacklisted.json',
'.ci/README.rst',
'.circleci/config.yml',
'.github/FUNDING.yml',
'.editorconfig',
'.coveragerc',
'CODEOWNERS',
'asv.conf.actions.json',
'asv.conf.travis.json',
'coveragerc_travis',
'codecov.yml',
'pytest.ini',
'MANIFEST.in',
'banner.svg',
# Code of conduct
'CODE_OF_CONDUCT.md',
# Pull request template
'PULL_REQUEST_TEMPLATE.md',
# Contributing guide
'CONTRIBUTING.md',
# Nothing from bin/ should be shipped unless we intend to install it. Most
# of this stuff is for development anyway. To run the tests from the
# tarball, use setup.py test, or import sympy and run sympy.test() or
# sympy.doctest().
'bin/adapt_paths.py',
'bin/ask_update.py',
'bin/authors_update.py',
'bin/build_doc.sh',
'bin/coverage_doctest.py',
'bin/coverage_report.py',
'bin/deploy_doc.sh',
'bin/diagnose_imports',
'bin/doctest',
'bin/generate_module_list.py',
'bin/generate_test_list.py',
'bin/get_sympy.py',
'bin/mailmap_update.py',
'bin/py.bench',
'bin/strip_whitespace',
'bin/sympy_time.py',
'bin/sympy_time_cache.py',
'bin/test',
'bin/test_external_imports.py',
'bin/test_executable.py',
'bin/test_import',
'bin/test_import.py',
'bin/test_isolated',
'bin/test_py2_import.py',
'bin/test_setup.py',
'bin/test_submodule_imports.py',
'bin/test_travis.sh',
'bin/test_optional_dependencies.py',
'bin/test_sphinx.sh',
'bin/mailmap_check.py',
'bin/test_symengine.py',
'bin/test_tensorflow.py',
'bin/test_pyodide.mjs',
# The notebooks are not ready for shipping yet. They need to be cleaned
# up, and preferably doctested. See also
# https://github.com/sympy/sympy/issues/6039.
'examples/advanced/identitysearch_example.ipynb',
'examples/beginner/plot_advanced.ipynb',
'examples/beginner/plot_colors.ipynb',
'examples/beginner/plot_discont.ipynb',
'examples/beginner/plot_gallery.ipynb',
'examples/beginner/plot_intro.ipynb',
'examples/intermediate/limit_examples_advanced.ipynb',
'examples/intermediate/schwarzschild.ipynb',
'examples/notebooks/density.ipynb',
'examples/notebooks/fidelity.ipynb',
'examples/notebooks/fresnel_integrals.ipynb',
'examples/notebooks/qubits.ipynb',
'examples/notebooks/sho1d_example.ipynb',
'examples/notebooks/spin.ipynb',
'examples/notebooks/trace.ipynb',
'examples/notebooks/Bezout_Dixon_resultant.ipynb',
'examples/notebooks/IntegrationOverPolytopes.ipynb',
'examples/notebooks/Macaulay_resultant.ipynb',
'examples/notebooks/Sylvester_resultant.ipynb',
'examples/notebooks/README.txt',
# This stuff :)
'release/.gitignore',
'release/README.md',
'release/compare_tar_against_git.py',
'release/update_docs.py',
'release/build_docs.py',
'release/github_release.py',
'release/helpers.py',
'release/releasecheck.py',
'release/sha256.py',
'release/authors.py',
'release/ci_release_script.sh',
# This is just a distribute version of setup.py. Used mainly for setup.py
# develop, which we don't care about in the release tarball
'setupegg.py',
# pytest stuff
'conftest.py',
# Encrypted deploy key for deploying dev docs to GitHub
'github_deploy_key.enc',
}
# Files that should be in the tarball should not be in git
tarball_whitelist = {
# Generated by setup.py. Contains metadata for PyPI.
"PKG-INFO",
# Generated by setuptools. More metadata.
'setup.cfg',
'sympy.egg-info/PKG-INFO',
'sympy.egg-info/SOURCES.txt',
'sympy.egg-info/dependency_links.txt',
'sympy.egg-info/requires.txt',
'sympy.egg-info/top_level.txt',
'sympy.egg-info/not-zip-safe',
'sympy.egg-info/entry_points.txt',
# Not sure where this is generated from...
'doc/commit_hash.txt',
}
def blue(text):
return "\033[34m%s\033[0m" % text
def red(text):
return "\033[31m%s\033[0m" % text
def run(*cmdline, cwd=None):
"""
Run command in subprocess and get lines of output
"""
return check_output(cmdline, encoding='utf-8', cwd=cwd).splitlines()
def full_path_split(path):
"""
Function to do a full split on a path.
"""
# Based on https://stackoverflow.com/a/13505966/161801
rest, tail = os.path.split(path)
if not rest or rest == os.path.sep:
return (tail,)
return full_path_split(rest) + (tail,)
def compare_tar_against_git(tarname, gitroot):
"""
Compare the contents of the tarball against git ls-files
See the bottom of the file for the whitelists.
"""
git_lsfiles = set(i.strip() for i in run('git', 'ls-files', cwd=gitroot))
tar_output_orig = set(run('tar', 'tf', tarname))
tar_output = set()
for file in tar_output_orig:
# The tar files are like sympy-0.7.3/sympy/__init__.py, and the git
# files are like sympy/__init__.py.
split_path = full_path_split(file)
if split_path[-1]:
# Exclude directories, as git ls-files does not include them
tar_output.add(os.path.join(*split_path[1:]))
# print tar_output
# print git_lsfiles
fail = False
print()
print(blue("Files in the tarball from git that should not be there:"))
print()
for line in sorted(tar_output.intersection(git_whitelist)):
fail = True
print(line)
print()
print(blue("Files in git but not in the tarball:"))
print()
for line in sorted(git_lsfiles - tar_output - git_whitelist):
fail = True
print(line)
print()
print(blue("Files in the tarball but not in git:"))
print()
for line in sorted(tar_output - git_lsfiles - tarball_whitelist):
fail = True
print(line)
print()
if fail:
sys.exit(red("Non-whitelisted files found or not found in the tarball"))
if __name__ == "__main__":
main(*sys.argv[1:])
|
3351160974ecaeab96af2843d195868d696d6fd6588e6cebce84fb2a89b3e44e | __version__ = "1.12.dev"
|
6536826d843f093d06dcd03bd678ee31020eb1b55fa8a2960991ed18eb5149e6 | #
# SymPy documentation build configuration file, created by
# sphinx-quickstart.py on Sat Mar 22 19:34:32 2008.
#
# This file is execfile()d with the current directory set to its containing dir.
#
# The contents of this file are pickled, so don't put values in the namespace
# that aren't pickleable (module imports are okay, they're removed automatically).
#
# All configuration values have a default value; values that are commented out
# serve to show the default value.
import sys
import inspect
import os
import subprocess
from datetime import datetime
# Make sure we import sympy from git
sys.path.insert(0, os.path.abspath('../..'))
import sympy
# If your extensions are in another directory, add it here.
sys.path = ['ext'] + sys.path
# General configuration
# ---------------------
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.addons.*') or your custom ones.
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.linkcode',
'sphinx_math_dollar', 'sphinx.ext.mathjax', 'numpydoc',
'sphinx_reredirects', 'sphinx_copybutton',
'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive',
'myst_parser', 'convert-svg-to-pdf', 'sphinx.ext.intersphinx'
]
# Add redirects here. This should be done whenever a page that is in the
# existing release docs is moved somewhere else so that the URLs don't break.
# The format is
# "page/path/without/extension": "../relative_path_with.html"
# Note that the html path is relative to the redirected page. Always test the
# redirect manually (they aren't tested automatically). See
# https://documatt.gitlab.io/sphinx-reredirects/usage.html
redirects = {
"guides/getting_started/install": "../../install.html",
"documentation-style-guide": "contributing/documentation-style-guide.html",
"gotchas": "explanation/gotchas.html",
"special_topics/classification": "../explanation/classification.html",
"special_topics/finite_diff_derivatives": "../explanation/finite_diff_derivatives.html",
"special_topics/intro": "../explanation/index.html",
"special_topics/index": "../explanation/index.html",
"modules/index": "../reference/index.html",
"modules/physics/index": "../../reference/public/physics/index.html",
"guides/contributing/index": "../../contributing/index.html",
"guides/contributing/dev-setup": "../../contributing/dev-setup.html",
"guides/contributing/dependencies": "../../contributing/dependencies.html",
"guides/contributing/build-docs": "../../contributing/build-docs.html",
"guides/contributing/debug": "../../contributing/debug.html",
"guides/contributing/docstring": "../../contributing/docstring.html",
"guides/documentation-style-guide": "../../contributing/contributing/documentation-style-guide.html",
"guides/make-a-contribution": "../../contributing/make-a-contribution.html",
"guides/contributing/deprecations": "../../contributing/deprecations.html",
"tutorial/preliminaries": "../tutorials/intro-tutorial/preliminaries.html",
"tutorial/intro": "../tutorials/intro-tutorial/intro.html",
"tutorial/gotchas": "../tutorials/intro-tutorial/gotchas.html",
"tutorial/features": "../tutorials/intro-tutorial/features.html",
"tutorial/next": "../tutorials/intro-tutorial/next.html",
"tutorial/basic_operations": "../tutorials/intro-tutorial/basic_operations.html",
"tutorial/printing": "../tutorials/intro-tutorial/printing.html",
"tutorial/simplification": "../tutorials/intro-tutorial/simplification.html",
"tutorial/calculus": "../tutorials/intro-tutorial/calculus.html",
"tutorial/solvers": "../tutorials/intro-tutorial/solvers.html",
"tutorial/matrices": "../tutorials/intro-tutorial/matrices.html",
"tutorial/manipulation": "../tutorials/intro-tutorial/manipulation.html",
}
html_baseurl = "https://docs.sympy.org/latest/"
# Configure Sphinx copybutton (see https://sphinx-copybutton.readthedocs.io/en/latest/use.html)
copybutton_prompt_text = r">>> |\.\.\. |\$ |In \[\d*\]: | {2,5}\.\.\.: | {5,8}: "
copybutton_prompt_is_regexp = True
# Use this to use pngmath instead
#extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.pngmath', ]
# Enable warnings for all bad cross references. These are turned into errors
# with the -W flag in the Makefile.
nitpicky = True
nitpick_ignore = [
('py:class', 'sympy.logic.boolalg.Boolean')
]
# To stop docstrings inheritance.
autodoc_inherit_docstrings = False
# See https://www.sympy.org/sphinx-math-dollar/
mathjax3_config = {
"tex": {
"inlineMath": [['\\(', '\\)']],
"displayMath": [["\\[", "\\]"]],
}
}
# Myst configuration (for .md files). See
# https://myst-parser.readthedocs.io/en/latest/syntax/optional.html
myst_enable_extensions = ["dollarmath", "linkify"]
myst_heading_anchors = 2
# myst_update_mathjax = False
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
suppress_warnings = ['ref.citation', 'ref.footnote']
# General substitutions.
project = 'SymPy'
copyright = '{} SymPy Development Team'.format(datetime.utcnow().year)
# The default replacements for |version| and |release|, also used in various
# other places throughout the built documents.
#
# The short X.Y version.
version = sympy.__version__
# The full version, including alpha/beta/rc tags.
release = version
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
today_fmt = '%B %d, %Y'
# List of documents that shouldn't be included in the build.
#unused_docs = []
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
sys.path.append(os.path.abspath("./_pygments"))
pygments_style = 'styles.SphinxHighContrastStyle'
pygments_dark_style = 'styles.NativeHighContrastStyle'
# Don't show the source code hyperlinks when using matplotlib plot directive.
plot_html_show_source_link = False
# Options for HTML output
# -----------------------
# The style sheet to use for HTML and HTML Help pages. A file of that name
# must exist either in Sphinx' static/ path, or in one of the custom paths
# given in html_static_path.
# html_style = 'default.css'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
html_last_updated_fmt = '%b %d, %Y'
# was classic
# html_theme = "classic"
html_theme = "furo"
# Adjust the sidebar so that the entire sidebar is scrollable
html_sidebars = {
"**": [
"sidebar/scroll-start.html",
"sidebar/brand.html",
"sidebar/search.html",
"sidebar/navigation.html",
"sidebar/versions.html",
"sidebar/scroll-end.html",
],
}
common_theme_variables = {
# Main "SymPy green" colors. Many things uses these colors.
"color-brand-primary": "#52833A",
"color-brand-content": "#307748",
# The left sidebar.
"color-sidebar-background": "#3B5526",
"color-sidebar-background-border": "var(--color-background-primary)",
"color-sidebar-link-text": "#FFFFFF",
"color-sidebar-brand-text": "var(--color-sidebar-link-text--top-level)",
"color-sidebar-link-text--top-level": "#FFFFFF",
"color-sidebar-item-background--hover": "var(--color-brand-primary)",
"color-sidebar-item-expander-background--hover": "var(--color-brand-primary)",
"color-link-underline--hover": "var(--color-link)",
"color-api-keyword": "#000000bd",
"color-api-name": "var(--color-brand-content)",
"color-api-pre-name": "var(--color-brand-content)",
"api-font-size": "var(--font-size--normal)",
"color-foreground-secondary": "#53555B",
# TODO: Add the other types of admonitions here if anyone uses them.
"color-admonition-title-background--seealso": "#CCCCCC",
"color-admonition-title--seealso": "black",
"color-admonition-title-background--note": "#CCCCCC",
"color-admonition-title--note": "black",
"color-admonition-title-background--warning": "var(--color-problematic)",
"color-admonition-title--warning": "white",
"admonition-font-size": "var(--font-size--normal)",
"admonition-title-font-size": "var(--font-size--normal)",
# Note: this doesn't work. If we want to change this, we have to set
# it as the .highlight background in custom.css.
"color-code-background": "hsl(80deg 100% 95%)",
"code-font-size": "var(--font-size--small)",
"font-stack--monospace": 'DejaVu Sans Mono,"SFMono-Regular",Menlo,Consolas,Monaco,Liberation Mono,Lucida Console,monospace;'
}
html_theme_options = {
"light_css_variables": common_theme_variables,
# The dark variables automatically inherit values from the light variables
"dark_css_variables": {
**common_theme_variables,
"color-brand-primary": "#33CB33",
"color-brand-content": "#1DBD1D",
"color-api-keyword": "#FFFFFFbd",
"color-api-overall": "#FFFFFF90",
"color-api-paren": "#FFFFFF90",
"color-sidebar-item-background--hover": "#52833A",
"color-sidebar-item-expander-background--hover": "#52833A",
# This is the color of the text in the right sidebar
"color-foreground-secondary": "#9DA1AC",
"color-admonition-title-background--seealso": "#555555",
"color-admonition-title-background--note": "#555555",
"color-problematic": "#B30000",
},
# See https://pradyunsg.me/furo/customisation/footer/
"footer_icons": [
{
"name": "GitHub",
"url": "https://github.com/sympy/sympy",
"html": """
<svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 16 16">
<path fill-rule="evenodd" d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.013 8.013 0 0 0 16 8c0-4.42-3.58-8-8-8z"></path>
</svg>
""",
"class": "",
},
],
}
# Add a header for PR preview builds. See the Circle CI configuration.
if os.environ.get("CIRCLECI") == "true":
PR_NUMBER = os.environ.get('CIRCLE_PR_NUMBER')
SHA1 = os.environ.get('CIRCLE_SHA1')
html_theme_options['announcement'] = f"""This is a preview build from
SymPy pull request <a href="https://github.com/sympy/sympy/pull/{PR_NUMBER}">
#{PR_NUMBER}</a>. It was built against <a
href="https://github.com/sympy/sympy/pull/{PR_NUMBER}/commits/{SHA1}">{SHA1[:7]}</a>.
If you aren't looking for a PR preview, go to <a
href="https://docs.sympy.org/">the main SymPy documentation</a>. """
# custom.css contains changes that aren't possible with the above because they
# aren't specified in the Furo theme as CSS variables
html_css_files = ['custom.css']
# html_js_files = []
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Content template for the index page.
#html_index = ''
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_use_modindex = True
html_domain_indices = ['py-modindex']
# If true, the reST sources are included in the HTML build as _sources/<name>.
# html_copy_source = True
# Output file base name for HTML help builder.
htmlhelp_basename = 'SymPydoc'
language = 'en'
# Options for LaTeX output
# ------------------------
# The paper size ('letter' or 'a4').
#latex_paper_size = 'letter'
# The font size ('10pt', '11pt' or '12pt').
#latex_font_size = '10pt'
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, document class [howto/manual], toctree_only).
# toctree_only is set to True so that the start file document itself is not included in the
# output, only the documents referenced by it via TOC trees. The extra stuff in the master
# document is intended to show up in the HTML, but doesn't really belong in the LaTeX output.
latex_documents = [('index', 'sympy-%s.tex' % release, 'SymPy Documentation',
'SymPy Development Team', 'manual', True)]
# Additional stuff for the LaTeX preamble.
# Tweaked to work with XeTeX.
latex_elements = {
'babel': '',
'fontenc': r'''
% Define version of \LaTeX that is usable in math mode
\let\OldLaTeX\LaTeX
\renewcommand{\LaTeX}{\text{\OldLaTeX}}
\usepackage{bm}
\usepackage{amssymb}
\usepackage{fontspec}
\usepackage[english]{babel}
\defaultfontfeatures{Mapping=tex-text}
\setmainfont{DejaVu Serif}
\setsansfont{DejaVu Sans}
\setmonofont{DejaVu Sans Mono}
''',
'fontpkg': '',
'inputenc': '',
'utf8extra': '',
'preamble': r'''
'''
}
# SymPy logo on title page
html_logo = '_static/sympylogo.png'
latex_logo = '_static/sympylogo_big.png'
html_favicon = '../_build/logo/sympy-notailtext-favicon.ico'
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# Show page numbers next to internal references
latex_show_pagerefs = True
# We use False otherwise the module index gets generated twice.
latex_use_modindex = False
default_role = 'math'
pngmath_divpng_args = ['-gamma 1.5', '-D 110']
# Note, this is ignored by the mathjax extension
# Any \newcommand should be defined in the file
pngmath_latex_preamble = '\\usepackage{amsmath}\n' \
'\\usepackage{bm}\n' \
'\\usepackage{amsfonts}\n' \
'\\usepackage{amssymb}\n' \
'\\setlength{\\parindent}{0pt}\n'
texinfo_documents = [
(master_doc, 'sympy', 'SymPy Documentation', 'SymPy Development Team',
'SymPy', 'Computer algebra system (CAS) in Python', 'Programming', 1),
]
# Use svg for graphviz
graphviz_output_format = 'svg'
# Enable links to other packages
intersphinx_mapping = {
'matplotlib': ('https://matplotlib.org/stable/', None)
}
# Require :external: to reference intersphinx. Prevents accidentally linking
# to something from matplotlib.
intersphinx_disabled_reftypes = ['*']
# Requried for linkcode extension.
# Get commit hash from the external file.
commit_hash_filepath = '../commit_hash.txt'
commit_hash = None
if os.path.isfile(commit_hash_filepath):
with open(commit_hash_filepath) as f:
commit_hash = f.readline()
# Get commit hash from the external file.
if not commit_hash:
try:
commit_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD'])
commit_hash = commit_hash.decode('ascii')
commit_hash = commit_hash.rstrip()
except:
import warnings
warnings.warn(
"Failed to get the git commit hash as the command " \
"'git rev-parse HEAD' is not working. The commit hash will be " \
"assumed as the SymPy master, but the lines may be misleading " \
"or nonexistent as it is not the correct branch the doc is " \
"built with. Check your installation of 'git' if you want to " \
"resolve this warning.")
commit_hash = 'master'
fork = 'sympy'
blobpath = \
"https://github.com/{}/sympy/blob/{}/sympy/".format(fork, commit_hash)
def linkcode_resolve(domain, info):
"""Determine the URL corresponding to Python object."""
if domain != 'py':
return
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return
# strip decorators, which would resolve to the source of the decorator
# possibly an upstream bug in getsourcefile, bpo-1764286
try:
unwrap = inspect.unwrap
except AttributeError:
pass
else:
obj = unwrap(obj)
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
return
try:
source, lineno = inspect.getsourcelines(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1)
else:
linespec = ""
fn = os.path.relpath(fn, start=os.path.dirname(sympy.__file__))
return blobpath + fn + linespec
|
ee0d543e6bcd66184f291491ea12ea7f4d6071fae60e576b76beaa06cf3ecfda | from __future__ import annotations
"""
Converts SVG images to PDF using chrome in case the builder does not
support SVG images natively (e.g. LaTeX).
"""
from sphinx.transforms.post_transforms.images import ImageConverter
from sphinx.util import logging
import os
import platform
from typing import Any # NOQA
from sphinx.application import Sphinx # NOQA
logger = logging.getLogger(__name__)
class Converter(ImageConverter):
conversion_rules = [
('image/svg+xml', 'application/pdf'),
]
def is_available(self) -> bool:
"""Confirms if converter is available or not."""
return True
def chrome_command(self) -> str | None:
if platform.win32_ver()[0]:
if os.system("where chrome") == 0:
return "chrome"
path = os.path.join(os.environ["PROGRAMW6432"], "Google\\Chrome\\Application\\chrome.exe")
if os.path.exists(path):
return f'"{path}"'
return None
if os.system("chrome --version") == 0:
return "chrome"
if platform.mac_ver()[0]:
return "'/Applications/Google Chrome.app/Contents/MacOS/Google Chrome'"
elif platform.libc_ver()[0]:
return "google-chrome"
return None
def chromium_command(self) -> str | None:
if platform.win32_ver()[0]:
if os.system("where chromium") == 0:
return "chromium"
path = os.path.join(os.environ["PROGRAMW6432"], "Chromium\\Application\\chrome.exe")
if os.path.exists(path):
return f'"{path}"'
return None
if os.system("chromium --version") == 0:
return "chromium"
if platform.mac_ver()[0]:
path = "/Applications/Chromium.app/Contents/MacOS/Chromium"
if os.path.exists(path):
return path
elif platform.libc_ver()[0]:
if os.system("chromium-browser --version") == 0:
return "chromium-browser"
return None
def command_runner(self, chrome: str | None, _to: str, temp_name: str) -> int:
if not chrome:
return 1
command = f'{chrome} --headless --disable-gpu --disable-software-rasterizer --print-to-pdf={_to} {temp_name}'
logger.error(command)
return os.system(command)
def convert(self, _from: str, _to: str) -> bool:
"""Converts the image from SVG to PDF using chrome."""
with open(_from, 'r') as f:
svg = f.read()
HTML = "<html><head><style>body {margin: 0; }</style><script>function init() {const element = document.querySelector('svg');const positionInfo = element.getBoundingClientRect();const height = positionInfo.height;const width = positionInfo.width;const style = document.createElement('style');style.innerHTML = `@page {margin: 0; size: ${width}px ${height}px}`;document.head.appendChild(style); }window.onload = init;</script></head><body>%s</body></html>" % (svg)
temp_name = f'{_from}.html'
with open(temp_name, 'w') as f:
f.write(HTML)
chromium = self.chromium_command()
code = self.command_runner(chromium, _to, temp_name)
if code != 0:
chrome = self.chrome_command()
code = self.command_runner(chrome, _to, temp_name)
if code != 0:
logger.error('Fail to convert svg to pdf. Make sure Chromium or Chrome is installed.')
exit(1)
return True
def setup(app: Sphinx) -> dict[str, Any]:
app.add_post_transform(Converter)
return {
'version': 'builtin',
'parallel_read_safe': True,
'parallel_write_safe': True,
}
|
1c6b826de46191c5ede71eec7c38d07094edbf6209e60a76c838a9ea4aaebf6b | """
Extract reference documentation from the NumPy source tree.
"""
import inspect
import textwrap
import re
import pydoc
from collections.abc import Mapping
import sys
class Reader:
"""
A line-based string reader.
"""
def __init__(self, data):
"""
Parameters
----------
data : str
String with lines separated by '\n'.
"""
if isinstance(data, list):
self._str = data
else:
self._str = data.split('\n') # store string as list of lines
self.reset()
def __getitem__(self, n):
return self._str[n]
def reset(self):
self._l = 0 # current line nr
def read(self):
if not self.eof():
out = self[self._l]
self._l += 1
return out
else:
return ''
def seek_next_non_empty_line(self):
for l in self[self._l:]:
if l.strip():
break
else:
self._l += 1
def eof(self):
return self._l >= len(self._str)
def read_to_condition(self, condition_func):
start = self._l
for line in self[start:]:
if condition_func(line):
return self[start:self._l]
self._l += 1
if self.eof():
return self[start:self._l + 1]
return []
def read_to_next_empty_line(self):
self.seek_next_non_empty_line()
def is_empty(line):
return not line.strip()
return self.read_to_condition(is_empty)
def read_to_next_unindented_line(self):
def is_unindented(line):
return (line.strip() and (len(line.lstrip()) == len(line)))
return self.read_to_condition(is_unindented)
def peek(self, n=0):
if self._l + n < len(self._str):
return self[self._l + n]
else:
return ''
def is_empty(self):
return not ''.join(self._str).strip()
class NumpyDocString(Mapping):
def __init__(self, docstring, config={}):
docstring = textwrap.dedent(docstring).split('\n')
self._doc = Reader(docstring)
self._parsed_data = {
'Signature': '',
'Summary': [''],
'Extended Summary': [],
'Parameters': [],
'Returns': [],
'Yields': [],
'Raises': [],
'Warns': [],
'Other Parameters': [],
'Attributes': [],
'Methods': [],
'See Also': [],
# 'Notes': [],
'Warnings': [],
'References': '',
# 'Examples': '',
'index': {}
}
self._other_keys = []
self._parse()
def __getitem__(self, key):
return self._parsed_data[key]
def __setitem__(self, key, val):
if key not in self._parsed_data:
self._other_keys.append(key)
self._parsed_data[key] = val
def __iter__(self):
return iter(self._parsed_data)
def __len__(self):
return len(self._parsed_data)
def _is_at_section(self):
self._doc.seek_next_non_empty_line()
if self._doc.eof():
return False
l1 = self._doc.peek().strip() # e.g. Parameters
if l1.startswith('.. index::'):
return True
l2 = self._doc.peek(1).strip() # ---------- or ==========
return l2.startswith('-'*len(l1)) or l2.startswith('='*len(l1))
def _strip(self, doc):
i = 0
j = 0
for i, line in enumerate(doc):
if line.strip():
break
for j, line in enumerate(doc[::-1]):
if line.strip():
break
return doc[i:len(doc) - j]
def _read_to_next_section(self):
section = self._doc.read_to_next_empty_line()
while not self._is_at_section() and not self._doc.eof():
if not self._doc.peek(-1).strip(): # previous line was empty
section += ['']
section += self._doc.read_to_next_empty_line()
return section
def _read_sections(self):
while not self._doc.eof():
data = self._read_to_next_section()
name = data[0].strip()
if name.startswith('..'): # index section
yield name, data[1:]
elif len(data) < 2:
yield StopIteration
else:
yield name, self._strip(data[2:])
def _parse_param_list(self, content):
r = Reader(content)
params = []
while not r.eof():
header = r.read().strip()
if ' : ' in header:
arg_name, arg_type = header.split(' : ')[:2]
else:
arg_name, arg_type = header, ''
desc = r.read_to_next_unindented_line()
desc = dedent_lines(desc)
params.append((arg_name, arg_type, desc))
return params
_name_rgx = re.compile(r"^\s*(:(?P<role>\w+):`(?P<name>[a-zA-Z0-9_.-]+)`|"
r" (?P<name2>[a-zA-Z0-9_.-]+))\s*", re.X)
def _parse_see_also(self, content):
"""
func_name : Descriptive text
continued text
another_func_name : Descriptive text
func_name1, func_name2, :meth:`func_name`, func_name3
"""
items = []
def parse_item_name(text):
"""Match ':role:`name`' or 'name'"""
m = self._name_rgx.match(text)
if m:
g = m.groups()
if g[1] is None:
return g[3], None
else:
return g[2], g[1]
raise ValueError("%s is not an item name" % text)
def push_item(name, rest):
if not name:
return
name, role = parse_item_name(name)
if '.' not in name:
name = '~.' + name
items.append((name, list(rest), role))
del rest[:]
current_func = None
rest = []
for line in content:
if not line.strip():
continue
m = self._name_rgx.match(line)
if m and line[m.end():].strip().startswith(':'):
push_item(current_func, rest)
current_func, line = line[:m.end()], line[m.end():]
rest = [line.split(':', 1)[1].strip()]
if not rest[0]:
rest = []
elif not line.startswith(' '):
push_item(current_func, rest)
current_func = None
if ',' in line:
for func in line.split(','):
if func.strip():
push_item(func, [])
elif line.strip():
current_func = line
elif current_func is not None:
rest.append(line.strip())
push_item(current_func, rest)
return items
def _parse_index(self, section, content):
"""
.. index: default
:refguide: something, else, and more
"""
def strip_each_in(lst):
return [s.strip() for s in lst]
out = {}
section = section.split('::')
if len(section) > 1:
out['default'] = strip_each_in(section[1].split(','))[0]
for line in content:
line = line.split(':')
if len(line) > 2:
out[line[1]] = strip_each_in(line[2].split(','))
return out
def _parse_summary(self):
"""Grab signature (if given) and summary"""
if self._is_at_section():
return
# If several signatures present, take the last one
while True:
summary = self._doc.read_to_next_empty_line()
summary_str = " ".join([s.strip() for s in summary]).strip()
if re.compile(r'^([\w., ]+=)?\s*[\w\.]+\(.*\)$').match(summary_str):
self['Signature'] = summary_str
if not self._is_at_section():
continue
break
if summary is not None:
self['Summary'] = summary
if not self._is_at_section():
self['Extended Summary'] = self._read_to_next_section()
def _parse(self):
self._doc.reset()
self._parse_summary()
sections = list(self._read_sections())
section_names = {section for section, content in sections}
has_returns = 'Returns' in section_names
has_yields = 'Yields' in section_names
# We could do more tests, but we are not. Arbitrarily.
if has_returns and has_yields:
msg = 'Docstring contains both a Returns and Yields section.'
raise ValueError(msg)
for (section, content) in sections:
if not section.startswith('..'):
section = (s.capitalize() for s in section.split(' '))
section = ' '.join(section)
if section in ('Parameters', 'Returns', 'Yields', 'Raises',
'Warns', 'Other Parameters', 'Attributes',
'Methods'):
self[section] = self._parse_param_list(content)
elif section.startswith('.. index::'):
self['index'] = self._parse_index(section, content)
elif section == 'See Also':
self['See Also'] = self._parse_see_also(content)
else:
self[section] = content
# string conversion routines
def _str_header(self, name, symbol='-'):
return [name, len(name)*symbol]
def _str_indent(self, doc, indent=4):
out = []
for line in doc:
out += [' '*indent + line]
return out
def _str_signature(self):
if self['Signature']:
return [self['Signature'].replace('*', r'\*')] + ['']
else:
return ['']
def _str_summary(self):
if self['Summary']:
return self['Summary'] + ['']
else:
return []
def _str_extended_summary(self):
if self['Extended Summary']:
return self['Extended Summary'] + ['']
else:
return []
def _str_param_list(self, name):
out = []
if self[name]:
out += self._str_header(name)
for param, param_type, desc in self[name]:
if param_type:
out += ['{} : {}'.format(param, param_type)]
else:
out += [param]
out += self._str_indent(desc)
out += ['']
return out
def _str_section(self, name):
out = []
if self[name]:
out += self._str_header(name)
out += self[name]
out += ['']
return out
def _str_see_also(self, func_role):
if not self['See Also']:
return []
out = []
out += self._str_header("See Also")
last_had_desc = True
for func, desc, role in self['See Also']:
if role:
link = ':{}:`{}`'.format(role, func)
elif func_role:
link = ':{}:`{}`'.format(func_role, func)
else:
link = "`%s`_" % func
if desc or last_had_desc:
out += ['']
out += [link]
else:
out[-1] += ", %s" % link
if desc:
out += self._str_indent([' '.join(desc)])
last_had_desc = True
else:
last_had_desc = False
out += ['']
return out
def _str_index(self):
idx = self['index']
out = []
out += ['.. index:: %s' % idx.get('default', '')]
for section, references in idx.items():
if section == 'default':
continue
out += [' :{}: {}'.format(section, ', '.join(references))]
return out
def __str__(self, func_role=''):
out = []
out += self._str_signature()
out += self._str_summary()
out += self._str_extended_summary()
for param_list in ('Parameters', 'Returns', 'Yields',
'Other Parameters', 'Raises', 'Warns'):
out += self._str_param_list(param_list)
out += self._str_section('Warnings')
out += self._str_see_also(func_role)
for s in ('Notes', 'References', 'Examples'):
out += self._str_section(s)
for param_list in ('Attributes', 'Methods'):
out += self._str_param_list(param_list)
out += self._str_index()
return '\n'.join(out)
def indent(str, indent=4):
indent_str = ' '*indent
if str is None:
return indent_str
lines = str.split('\n')
return '\n'.join(indent_str + l for l in lines)
def dedent_lines(lines):
"""Deindent a list of lines maximally"""
return textwrap.dedent("\n".join(lines)).split("\n")
def header(text, style='-'):
return text + '\n' + style*len(text) + '\n'
class FunctionDoc(NumpyDocString):
def __init__(self, func, role='func', doc=None, config={}):
self._f = func
self._role = role # e.g. "func" or "meth"
if doc is None:
if func is None:
raise ValueError("No function or docstring given")
doc = inspect.getdoc(func) or ''
NumpyDocString.__init__(self, doc)
if not self['Signature'] and func is not None:
func, func_name = self.get_func()
try:
# try to read signature
argspec = str(inspect.signature(func))
argspec = argspec.replace('*', r'\*')
signature = '{}{}'.format(func_name, argspec)
except TypeError as e:
signature = '%s()' % func_name
self['Signature'] = signature
def get_func(self):
func_name = getattr(self._f, '__name__', self.__class__.__name__)
if inspect.isclass(self._f):
func = getattr(self._f, '__call__', self._f.__init__)
else:
func = self._f
return func, func_name
def __str__(self):
out = ''
func, func_name = self.get_func()
signature = self['Signature'].replace('*', r'\*')
roles = {'func': 'function',
'meth': 'method'}
if self._role:
if self._role not in roles:
print("Warning: invalid role %s" % self._role)
out += '.. {}:: {}\n \n\n'.format(roles.get(self._role, ''),
func_name)
out += super().__str__(func_role=self._role)
return out
class ClassDoc(NumpyDocString):
extra_public_methods = ['__call__']
def __init__(self, cls, doc=None, modulename='', func_doc=FunctionDoc,
config={}):
if not inspect.isclass(cls) and cls is not None:
raise ValueError("Expected a class or None, but got %r" % cls)
self._cls = cls
self.show_inherited_members = config.get(
'show_inherited_class_members', True)
if modulename and not modulename.endswith('.'):
modulename += '.'
self._mod = modulename
if doc is None:
if cls is None:
raise ValueError("No class or documentation string given")
doc = pydoc.getdoc(cls)
NumpyDocString.__init__(self, doc)
if config.get('show_class_members', True):
def splitlines_x(s):
if not s:
return []
else:
return s.splitlines()
for field, items in [('Methods', self.methods),
('Attributes', self.properties)]:
if not self[field]:
doc_list = []
for name in sorted(items):
clsname = getattr(self._cls, name, None)
if clsname is not None:
doc_item = pydoc.getdoc(clsname)
doc_list.append((name, '', splitlines_x(doc_item)))
self[field] = doc_list
@property
def methods(self):
if self._cls is None:
return []
return [name for name, func in inspect.getmembers(self._cls)
if ((not name.startswith('_')
or name in self.extra_public_methods)
and callable(func))]
@property
def properties(self):
if self._cls is None:
return []
return [name for name, func in inspect.getmembers(self._cls)
if not name.startswith('_') and func is None]
|
e3314d996e8686ed6fbe0cbe5bb0fd8690f75bca2eebc581c6517f96ff4b890f | import random
import itertools
from typing import (Sequence as tSequence, Union as tUnion, List as tList,
Tuple as tTuple, Set as tSet)
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import (Function, Lambda)
from sympy.core.mul import Mul
from sympy.core.numbers import (Integer, Rational, igcd, oo, pi)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.gamma_functions import gamma
from sympy.logic.boolalg import (And, Not, Or)
from sympy.matrices.common import NonSquareMatrixError
from sympy.matrices.dense import (Matrix, eye, ones, zeros)
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import Identity
from sympy.matrices.immutable import ImmutableMatrix
from sympy.sets.conditionset import ConditionSet
from sympy.sets.contains import Contains
from sympy.sets.fancysets import Range
from sympy.sets.sets import (FiniteSet, Intersection, Interval, Set, Union)
from sympy.solvers.solveset import linsolve
from sympy.tensor.indexed import (Indexed, IndexedBase)
from sympy.core.relational import Relational
from sympy.logic.boolalg import Boolean
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import strongly_connected_components
from sympy.stats.joint_rv import JointDistribution
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import (RandomIndexedSymbol, random_symbols, RandomSymbol,
_symbol_converter, _value_check, pspace, given,
dependent, is_random, sample_iter, Distribution,
Density)
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.stats.frv_types import Bernoulli, BernoulliDistribution, FiniteRV
from sympy.stats.drv_types import Poisson, PoissonDistribution
from sympy.stats.crv_types import Normal, NormalDistribution, Gamma, GammaDistribution
from sympy.core.sympify import _sympify, sympify
EmptySet = S.EmptySet
__all__ = [
'StochasticProcess',
'DiscreteTimeStochasticProcess',
'DiscreteMarkovChain',
'TransitionMatrixOf',
'StochasticStateSpaceOf',
'GeneratorMatrixOf',
'ContinuousMarkovChain',
'BernoulliProcess',
'PoissonProcess',
'WienerProcess',
'GammaProcess'
]
@is_random.register(Indexed)
def _(x):
return is_random(x.base)
@is_random.register(RandomIndexedSymbol) # type: ignore
def _(x):
return True
def _set_converter(itr):
"""
Helper function for converting list/tuple/set to Set.
If parameter is not an instance of list/tuple/set then
no operation is performed.
Returns
=======
Set
The argument converted to Set.
Raises
======
TypeError
If the argument is not an instance of list/tuple/set.
"""
if isinstance(itr, (list, tuple, set)):
itr = FiniteSet(*itr)
if not isinstance(itr, Set):
raise TypeError("%s is not an instance of list/tuple/set."%(itr))
return itr
def _state_converter(itr: tSequence) -> tUnion[Tuple, Range]:
"""
Helper function for converting list/tuple/set/Range/Tuple/FiniteSet
to tuple/Range.
"""
itr_ret: tUnion[Tuple, Range]
if isinstance(itr, (Tuple, set, FiniteSet)):
itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr))
elif isinstance(itr, (list, tuple)):
# check if states are unique
if len(set(itr)) != len(itr):
raise ValueError('The state space must have unique elements.')
itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr))
elif isinstance(itr, Range):
# the only ordered set in SymPy I know of
# try to convert to tuple
try:
itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr))
except (TypeError, ValueError):
itr_ret = itr
else:
raise TypeError("%s is not an instance of list/tuple/set/Range/Tuple/FiniteSet." % (itr))
return itr_ret
def _sym_sympify(arg):
"""
Converts an arbitrary expression to a type that can be used inside SymPy.
As generally strings are unwise to use in the expressions,
it returns the Symbol of argument if the string type argument is passed.
Parameters
=========
arg: The parameter to be converted to be used in SymPy.
Returns
=======
The converted parameter.
"""
if isinstance(arg, str):
return Symbol(arg)
else:
return _sympify(arg)
def _matrix_checks(matrix):
if not isinstance(matrix, (Matrix, MatrixSymbol, ImmutableMatrix)):
raise TypeError("Transition probabilities either should "
"be a Matrix or a MatrixSymbol.")
if matrix.shape[0] != matrix.shape[1]:
raise NonSquareMatrixError("%s is not a square matrix"%(matrix))
if isinstance(matrix, Matrix):
matrix = ImmutableMatrix(matrix.tolist())
return matrix
class StochasticProcess(Basic):
"""
Base class for all the stochastic processes whether
discrete or continuous.
Parameters
==========
sym: Symbol or str
state_space: Set
The state space of the stochastic process, by default S.Reals.
For discrete sets it is zero indexed.
See Also
========
DiscreteTimeStochasticProcess
"""
index_set = S.Reals
def __new__(cls, sym, state_space=S.Reals, **kwargs):
sym = _symbol_converter(sym)
state_space = _set_converter(state_space)
return Basic.__new__(cls, sym, state_space)
@property
def symbol(self):
return self.args[0]
@property
def state_space(self) -> tUnion[FiniteSet, Range]:
if not isinstance(self.args[1], (FiniteSet, Range)):
assert isinstance(self.args[1], Tuple)
return FiniteSet(*self.args[1])
return self.args[1]
def _deprecation_warn_distribution(self):
sympy_deprecation_warning(
"""
Calling the distribution method with a RandomIndexedSymbol
argument, like X.distribution(X(t)) is deprecated. Instead, call
distribution() with the given timestamp, like
X.distribution(t)
""",
deprecated_since_version="1.7.1",
active_deprecations_target="deprecated-distribution-randomindexedsymbol",
stacklevel=4,
)
def distribution(self, key=None):
if key is None:
self._deprecation_warn_distribution()
return Distribution()
def density(self, x):
return Density()
def __call__(self, time):
"""
Overridden in ContinuousTimeStochasticProcess.
"""
raise NotImplementedError("Use [] for indexing discrete time stochastic process.")
def __getitem__(self, time):
"""
Overridden in DiscreteTimeStochasticProcess.
"""
raise NotImplementedError("Use () for indexing continuous time stochastic process.")
def probability(self, condition):
raise NotImplementedError()
def joint_distribution(self, *args):
"""
Computes the joint distribution of the random indexed variables.
Parameters
==========
args: iterable
The finite list of random indexed variables/the key of a stochastic
process whose joint distribution has to be computed.
Returns
=======
JointDistribution
The joint distribution of the list of random indexed variables.
An unevaluated object is returned if it is not possible to
compute the joint distribution.
Raises
======
ValueError: When the arguments passed are not of type RandomIndexSymbol
or Number.
"""
args = list(args)
for i, arg in enumerate(args):
if S(arg).is_Number:
if self.index_set.is_subset(S.Integers):
args[i] = self.__getitem__(arg)
else:
args[i] = self.__call__(arg)
elif not isinstance(arg, RandomIndexedSymbol):
raise ValueError("Expected a RandomIndexedSymbol or "
"key not %s"%(type(arg)))
if args[0].pspace.distribution == Distribution():
return JointDistribution(*args)
density = Lambda(tuple(args),
expr=Mul.fromiter(arg.pspace.process.density(arg) for arg in args))
return JointDistributionHandmade(density)
def expectation(self, condition, given_condition):
raise NotImplementedError("Abstract method for expectation queries.")
def sample(self):
raise NotImplementedError("Abstract method for sampling queries.")
class DiscreteTimeStochasticProcess(StochasticProcess):
"""
Base class for all discrete stochastic processes.
"""
def __getitem__(self, time):
"""
For indexing discrete time stochastic processes.
Returns
=======
RandomIndexedSymbol
"""
time = sympify(time)
if not time.is_symbol and time not in self.index_set:
raise IndexError("%s is not in the index set of %s"%(time, self.symbol))
idx_obj = Indexed(self.symbol, time)
pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time))
return RandomIndexedSymbol(idx_obj, pspace_obj)
class ContinuousTimeStochasticProcess(StochasticProcess):
"""
Base class for all continuous time stochastic process.
"""
def __call__(self, time):
"""
For indexing continuous time stochastic processes.
Returns
=======
RandomIndexedSymbol
"""
time = sympify(time)
if not time.is_symbol and time not in self.index_set:
raise IndexError("%s is not in the index set of %s"%(time, self.symbol))
func_obj = Function(self.symbol)(time)
pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time))
return RandomIndexedSymbol(func_obj, pspace_obj)
class TransitionMatrixOf(Boolean):
"""
Assumes that the matrix is the transition matrix
of the process.
"""
def __new__(cls, process, matrix):
if not isinstance(process, DiscreteMarkovChain):
raise ValueError("Currently only DiscreteMarkovChain "
"support TransitionMatrixOf.")
matrix = _matrix_checks(matrix)
return Basic.__new__(cls, process, matrix)
process = property(lambda self: self.args[0])
matrix = property(lambda self: self.args[1])
class GeneratorMatrixOf(TransitionMatrixOf):
"""
Assumes that the matrix is the generator matrix
of the process.
"""
def __new__(cls, process, matrix):
if not isinstance(process, ContinuousMarkovChain):
raise ValueError("Currently only ContinuousMarkovChain "
"support GeneratorMatrixOf.")
matrix = _matrix_checks(matrix)
return Basic.__new__(cls, process, matrix)
class StochasticStateSpaceOf(Boolean):
def __new__(cls, process, state_space):
if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)):
raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain "
"support StochasticStateSpaceOf.")
state_space = _state_converter(state_space)
if isinstance(state_space, Range):
ss_size = ceiling((state_space.stop - state_space.start) / state_space.step)
else:
ss_size = len(state_space)
state_index = Range(ss_size)
return Basic.__new__(cls, process, state_index)
process = property(lambda self: self.args[0])
state_index = property(lambda self: self.args[1])
class MarkovProcess(StochasticProcess):
"""
Contains methods that handle queries
common to Markov processes.
"""
@property
def number_of_states(self) -> tUnion[Integer, Symbol]:
"""
The number of states in the Markov Chain.
"""
return _sympify(self.args[2].shape[0]) # type: ignore
@property
def _state_index(self):
"""
Returns state index as Range.
"""
return self.args[1]
@classmethod
def _sanity_checks(cls, state_space, trans_probs):
# Try to never have None as state_space or trans_probs.
# This helps a lot if we get it done at the start.
if (state_space is None) and (trans_probs is None):
_n = Dummy('n', integer=True, nonnegative=True)
state_space = _state_converter(Range(_n))
trans_probs = _matrix_checks(MatrixSymbol('_T', _n, _n))
elif state_space is None:
trans_probs = _matrix_checks(trans_probs)
state_space = _state_converter(Range(trans_probs.shape[0]))
elif trans_probs is None:
state_space = _state_converter(state_space)
if isinstance(state_space, Range):
_n = ceiling((state_space.stop - state_space.start) / state_space.step)
else:
_n = len(state_space)
trans_probs = MatrixSymbol('_T', _n, _n)
else:
state_space = _state_converter(state_space)
trans_probs = _matrix_checks(trans_probs)
# Range object doesn't want to give a symbolic size
# so we do it ourselves.
if isinstance(state_space, Range):
ss_size = ceiling((state_space.stop - state_space.start) / state_space.step)
else:
ss_size = len(state_space)
if ss_size != trans_probs.shape[0]:
raise ValueError('The size of the state space and the number of '
'rows of the transition matrix must be the same.')
return state_space, trans_probs
def _extract_information(self, given_condition):
"""
Helper function to extract information, like,
transition matrix/generator matrix, state space, etc.
"""
if isinstance(self, DiscreteMarkovChain):
trans_probs = self.transition_probabilities
state_index = self._state_index
elif isinstance(self, ContinuousMarkovChain):
trans_probs = self.generator_matrix
state_index = self._state_index
if isinstance(given_condition, And):
gcs = given_condition.args
given_condition = S.true
for gc in gcs:
if isinstance(gc, TransitionMatrixOf):
trans_probs = gc.matrix
if isinstance(gc, StochasticStateSpaceOf):
state_index = gc.state_index
if isinstance(gc, Relational):
given_condition = given_condition & gc
if isinstance(given_condition, TransitionMatrixOf):
trans_probs = given_condition.matrix
given_condition = S.true
if isinstance(given_condition, StochasticStateSpaceOf):
state_index = given_condition.state_index
given_condition = S.true
return trans_probs, state_index, given_condition
def _check_trans_probs(self, trans_probs, row_sum=1):
"""
Helper function for checking the validity of transition
probabilities.
"""
if not isinstance(trans_probs, MatrixSymbol):
rows = trans_probs.tolist()
for row in rows:
if (sum(row) - row_sum) != 0:
raise ValueError("Values in a row must sum to %s. "
"If you are using Float or floats then please use Rational."%(row_sum))
def _work_out_state_index(self, state_index, given_condition, trans_probs):
"""
Helper function to extract state space if there
is a random symbol in the given condition.
"""
# if given condition is None, then there is no need to work out
# state_space from random variables
if given_condition != None:
rand_var = list(given_condition.atoms(RandomSymbol) -
given_condition.atoms(RandomIndexedSymbol))
if len(rand_var) == 1:
state_index = rand_var[0].pspace.set
# `not None` is `True`. So the old test fails for symbolic sizes.
# Need to build the statement differently.
sym_cond = not self.number_of_states.is_Integer
cond1 = not sym_cond and len(state_index) != trans_probs.shape[0]
if cond1:
raise ValueError("state space is not compatible with the transition probabilities.")
if not isinstance(trans_probs.shape[0], Symbol):
state_index = FiniteSet(*[i for i in range(trans_probs.shape[0])])
return state_index
@cacheit
def _preprocess(self, given_condition, evaluate):
"""
Helper function for pre-processing the information.
"""
is_insufficient = False
if not evaluate: # avoid pre-processing if the result is not to be evaluated
return (True, None, None, None)
# extracting transition matrix and state space
trans_probs, state_index, given_condition = self._extract_information(given_condition)
# given_condition does not have sufficient information
# for computations
if trans_probs is None or \
given_condition is None:
is_insufficient = True
else:
# checking transition probabilities
if isinstance(self, DiscreteMarkovChain):
self._check_trans_probs(trans_probs, row_sum=1)
elif isinstance(self, ContinuousMarkovChain):
self._check_trans_probs(trans_probs, row_sum=0)
# working out state space
state_index = self._work_out_state_index(state_index, given_condition, trans_probs)
return is_insufficient, trans_probs, state_index, given_condition
def replace_with_index(self, condition):
if isinstance(condition, Relational):
lhs, rhs = condition.lhs, condition.rhs
if not isinstance(lhs, RandomIndexedSymbol):
lhs, rhs = rhs, lhs
condition = type(condition)(self.index_of.get(lhs, lhs),
self.index_of.get(rhs, rhs))
return condition
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Handles probability queries for Markov process.
Parameters
==========
condition: Relational
given_condition: Relational/And
Returns
=======
Probability
If the information is not sufficient.
Expr
In all other cases.
Note
====
Any information passed at the time of query overrides
any information passed at the time of object creation like
transition probabilities, state space.
Pass the transition matrix using TransitionMatrixOf,
generator matrix using GeneratorMatrixOf and state space
using StochasticStateSpaceOf in given_condition using & or And.
"""
check, mat, state_index, new_given_condition = \
self._preprocess(given_condition, evaluate)
rv = list(condition.atoms(RandomIndexedSymbol))
symbolic = False
for sym in rv:
if sym.key.is_symbol:
symbolic = True
break
if check:
return Probability(condition, new_given_condition)
if isinstance(self, ContinuousMarkovChain):
trans_probs = self.transition_probabilities(mat)
elif isinstance(self, DiscreteMarkovChain):
trans_probs = mat
condition = self.replace_with_index(condition)
given_condition = self.replace_with_index(given_condition)
new_given_condition = self.replace_with_index(new_given_condition)
if isinstance(condition, Relational):
if isinstance(new_given_condition, And):
gcs = new_given_condition.args
else:
gcs = (new_given_condition, )
min_key_rv = list(new_given_condition.atoms(RandomIndexedSymbol))
if len(min_key_rv):
min_key_rv = min_key_rv[0]
for r in rv:
if min_key_rv.key.is_symbol or r.key.is_symbol:
continue
if min_key_rv.key > r.key:
return Probability(condition)
else:
min_key_rv = None
return Probability(condition)
if symbolic:
return self._symbolic_probability(condition, new_given_condition, rv, min_key_rv)
if len(rv) > 1:
rv[0] = condition.lhs
rv[1] = condition.rhs
if rv[0].key < rv[1].key:
rv[0], rv[1] = rv[1], rv[0]
if isinstance(condition, Gt):
condition = Lt(condition.lhs, condition.rhs)
elif isinstance(condition, Lt):
condition = Gt(condition.lhs, condition.rhs)
elif isinstance(condition, Ge):
condition = Le(condition.lhs, condition.rhs)
elif isinstance(condition, Le):
condition = Ge(condition.lhs, condition.rhs)
s = Rational(0, 1)
n = len(self.state_space)
if isinstance(condition, (Eq, Ne)):
for i in range(0, n):
s += self.probability(Eq(rv[0], i), Eq(rv[1], i)) * self.probability(Eq(rv[1], i), new_given_condition)
return s if isinstance(condition, Eq) else 1 - s
else:
upper = 0
greater = False
if isinstance(condition, (Ge, Lt)):
upper = 1
if isinstance(condition, (Ge, Gt)):
greater = True
for i in range(0, n):
if i <= n//2:
for j in range(0, i + upper):
s += self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition)
else:
s += self.probability(Eq(rv[0], i), new_given_condition)
for j in range(i + upper, n):
s -= self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition)
return s if greater else 1 - s
rv = rv[0]
states = condition.as_set()
prob, gstate = {}, None
for gc in gcs:
if gc.has(min_key_rv):
if gc.has(Probability):
p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \
else (gc.lhs, gc.rhs)
gr = gp.args[0]
gset = Intersection(gr.as_set(), state_index)
gstate = list(gset)[0]
prob[gset] = p
else:
_, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \
else (gc.rhs.key, gc.lhs)
if not all(k in self.index_set for k in (rv.key, min_key_rv.key)):
raise IndexError("The timestamps of the process are not in it's index set.")
states = Intersection(states, state_index) if not isinstance(self.number_of_states, Symbol) else states
for state in Union(states, FiniteSet(gstate)):
if not state.is_Integer or Ge(state, mat.shape[0]) is True:
raise IndexError("No information is available for (%s, %s) in "
"transition probabilities of shape, (%s, %s). "
"State space is zero indexed."
%(gstate, state, mat.shape[0], mat.shape[1]))
if prob:
gstates = Union(*prob.keys())
if len(gstates) == 1:
gstate = list(gstates)[0]
gprob = list(prob.values())[0]
prob[gstates] = gprob
elif len(gstates) == len(state_index) - 1:
gstate = list(state_index - gstates)[0]
gprob = S.One - sum(prob.values())
prob[state_index - gstates] = gprob
else:
raise ValueError("Conflicting information.")
else:
gprob = S.One
if min_key_rv == rv:
return sum([prob[FiniteSet(state)] for state in states])
if isinstance(self, ContinuousMarkovChain):
return gprob * sum([trans_probs(rv.key - min_key_rv.key).__getitem__((gstate, state))
for state in states])
if isinstance(self, DiscreteMarkovChain):
return gprob * sum([(trans_probs**(rv.key - min_key_rv.key)).__getitem__((gstate, state))
for state in states])
if isinstance(condition, Not):
expr = condition.args[0]
return S.One - self.probability(expr, given_condition, evaluate, **kwargs)
if isinstance(condition, And):
compute_later, state2cond, conds = [], dict(), condition.args
for expr in conds:
if isinstance(expr, Relational):
ris = list(expr.atoms(RandomIndexedSymbol))[0]
if state2cond.get(ris, None) is None:
state2cond[ris] = S.true
state2cond[ris] &= expr
else:
compute_later.append(expr)
ris = []
for ri in state2cond:
ris.append(ri)
cset = Intersection(state2cond[ri].as_set(), state_index)
if len(cset) == 0:
return S.Zero
state2cond[ri] = cset.as_relational(ri)
sorted_ris = sorted(ris, key=lambda ri: ri.key)
prod = self.probability(state2cond[sorted_ris[0]], given_condition, evaluate, **kwargs)
for i in range(1, len(sorted_ris)):
ri, prev_ri = sorted_ris[i], sorted_ris[i-1]
if not isinstance(state2cond[ri], Eq):
raise ValueError("The process is in multiple states at %s, unable to determine the probability."%(ri))
mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat)
prod *= self.probability(state2cond[ri], state2cond[prev_ri]
& mat_of
& StochasticStateSpaceOf(self, state_index),
evaluate, **kwargs)
for expr in compute_later:
prod *= self.probability(expr, given_condition, evaluate, **kwargs)
return prod
if isinstance(condition, Or):
return sum([self.probability(expr, given_condition, evaluate, **kwargs)
for expr in condition.args])
raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been "
"implemented yet."%(condition, given_condition))
def _symbolic_probability(self, condition, new_given_condition, rv, min_key_rv):
#Function to calculate probability for queries with symbols
if isinstance(condition, Relational):
curr_state = new_given_condition.rhs if isinstance(new_given_condition.lhs, RandomIndexedSymbol) \
else new_given_condition.lhs
next_state = condition.rhs if isinstance(condition.lhs, RandomIndexedSymbol) \
else condition.lhs
if isinstance(condition, (Eq, Ne)):
if isinstance(self, DiscreteMarkovChain):
P = self.transition_probabilities**(rv[0].key - min_key_rv.key)
else:
P = exp(self.generator_matrix*(rv[0].key - min_key_rv.key))
prob = P[curr_state, next_state] if isinstance(condition, Eq) else 1 - P[curr_state, next_state]
return Piecewise((prob, rv[0].key > min_key_rv.key), (Probability(condition), True))
else:
upper = 1
greater = False
if isinstance(condition, (Ge, Lt)):
upper = 0
if isinstance(condition, (Ge, Gt)):
greater = True
k = Dummy('k')
condition = Eq(condition.lhs, k) if isinstance(condition.lhs, RandomIndexedSymbol)\
else Eq(condition.rhs, k)
total = Sum(self.probability(condition, new_given_condition), (k, next_state + upper, self.state_space._sup))
return Piecewise((total, rv[0].key > min_key_rv.key), (Probability(condition), True)) if greater\
else Piecewise((1 - total, rv[0].key > min_key_rv.key), (Probability(condition), True))
else:
return Probability(condition, new_given_condition)
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Handles expectation queries for markov process.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation
Unevaluated object if computations cannot be done due to
insufficient information.
Expr
In all other cases when the computations are successful.
Note
====
Any information passed at the time of query overrides
any information passed at the time of object creation like
transition probabilities, state space.
Pass the transition matrix using TransitionMatrixOf,
generator matrix using GeneratorMatrixOf and state space
using StochasticStateSpaceOf in given_condition using & or And.
"""
check, mat, state_index, condition = \
self._preprocess(condition, evaluate)
if check:
return Expectation(expr, condition)
rvs = random_symbols(expr)
if isinstance(expr, Expr) and isinstance(condition, Eq) \
and len(rvs) == 1:
# handle queries similar to E(f(X[i]), Eq(X[i-m], <some-state>))
condition=self.replace_with_index(condition)
state_index=self.replace_with_index(state_index)
rv = list(rvs)[0]
lhsg, rhsg = condition.lhs, condition.rhs
if not isinstance(lhsg, RandomIndexedSymbol):
lhsg, rhsg = (rhsg, lhsg)
if rhsg not in state_index:
raise ValueError("%s state is not in the state space."%(rhsg))
if rv.key < lhsg.key:
raise ValueError("Incorrect given condition is given, expectation "
"time %s < time %s"%(rv.key, rv.key))
mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat)
cond = condition & mat_of & \
StochasticStateSpaceOf(self, state_index)
func = lambda s: self.probability(Eq(rv, s), cond) * expr.subs(rv, self._state_index[s])
return sum([func(s) for s in state_index])
raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been "
"implemented yet."%(expr, condition))
class DiscreteMarkovChain(DiscreteTimeStochasticProcess, MarkovProcess):
"""
Represents a finite discrete time-homogeneous Markov chain.
This type of Markov Chain can be uniquely characterised by
its (ordered) state space and its one-step transition probability
matrix.
Parameters
==========
sym:
The name given to the Markov Chain
state_space:
Optional, by default, Range(n)
trans_probs:
Optional, by default, MatrixSymbol('_T', n, n)
Examples
========
>>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf, P, E
>>> from sympy import Matrix, MatrixSymbol, Eq, symbols
>>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> YS = DiscreteMarkovChain("Y")
>>> Y.state_space
{0, 1, 2}
>>> Y.transition_probabilities
Matrix([
[0.5, 0.2, 0.3],
[0.2, 0.5, 0.3],
[0.2, 0.3, 0.5]])
>>> TS = MatrixSymbol('T', 3, 3)
>>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS))
T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
Probabilities will be calculated based on indexes rather
than state names. For example, with the Sunny-Cloudy-Rainy
model with string state names:
>>> from sympy.core.symbol import Str
>>> Y = DiscreteMarkovChain("Y", [Str('Sunny'), Str('Cloudy'), Str('Rainy')], T)
>>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2)
0.36
This gives the same answer as the ``[0, 1, 2]`` state space.
Currently, there is no support for state names within probability
and expectation statements. Here is a work-around using ``Str``:
>>> P(Eq(Str('Rainy'), Y[3]), Eq(Y[1], Str('Cloudy'))).round(2)
0.36
Symbol state names can also be used:
>>> sunny, cloudy, rainy = symbols('Sunny, Cloudy, Rainy')
>>> Y = DiscreteMarkovChain("Y", [sunny, cloudy, rainy], T)
>>> P(Eq(Y[3], rainy), Eq(Y[1], cloudy)).round(2)
0.36
Expectations will be calculated as follows:
>>> E(Y[3], Eq(Y[1], cloudy))
0.38*Cloudy + 0.36*Rainy + 0.26*Sunny
Probability of expressions with multiple RandomIndexedSymbols
can also be calculated provided there is only 1 RandomIndexedSymbol
in the given condition. It is always better to use Rational instead
of floating point numbers for the probabilities in the
transition matrix to avoid errors.
>>> from sympy import Gt, Le, Rational
>>> T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> P(Eq(Y[3], Y[1]), Eq(Y[0], 0)).round(3)
0.409
>>> P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2)
0.36
>>> P(Le(Y[15], Y[10]), Eq(Y[8], 2)).round(7)
0.6963328
Symbolic probability queries are also supported
>>> a, b, c, d = symbols('a b c d')
>>> T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> query = P(Eq(Y[a], b), Eq(Y[c], d))
>>> query.subs({a:10, b:2, c:5, d:1}).round(4)
0.3096
>>> P(Eq(Y[10], 2), Eq(Y[5], 1)).evalf().round(4)
0.3096
>>> query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
>>> query_gt.subs({a:21, b:0, c:5, d:0}).evalf().round(5)
0.64705
>>> P(Gt(Y[21], 0), Eq(Y[5], 0)).round(5)
0.64705
There is limited support for arbitrarily sized states:
>>> n = symbols('n', nonnegative=True, integer=True)
>>> T = MatrixSymbol('T', n, n)
>>> Y = DiscreteMarkovChain("Y", trans_probs=T)
>>> Y.state_space
Range(0, n, 1)
>>> query = P(Eq(Y[a], b), Eq(Y[c], d))
>>> query.subs({a:10, b:2, c:5, d:1})
(T**5)[1, 2]
References
==========
.. [1] https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain
.. [2] https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
"""
index_set = S.Naturals0
def __new__(cls, sym, state_space=None, trans_probs=None):
sym = _symbol_converter(sym)
state_space, trans_probs = MarkovProcess._sanity_checks(state_space, trans_probs)
obj = Basic.__new__(cls, sym, state_space, trans_probs) # type: ignore
indices = dict()
if isinstance(obj.number_of_states, Integer):
for index, state in enumerate(obj._state_index):
indices[state] = index
obj.index_of = indices
return obj
@property
def transition_probabilities(self):
"""
Transition probabilities of discrete Markov chain,
either an instance of Matrix or MatrixSymbol.
"""
return self.args[2]
def communication_classes(self) -> tList[tTuple[tList[Basic], Boolean, Integer]]:
"""
Returns the list of communication classes that partition
the states of the markov chain.
A communication class is defined to be a set of states
such that every state in that set is reachable from
every other state in that set. Due to its properties
this forms a class in the mathematical sense.
Communication classes are also known as recurrence
classes.
Returns
=======
classes
The ``classes`` are a list of tuples. Each
tuple represents a single communication class
with its properties. The first element in the
tuple is the list of states in the class, the
second element is whether the class is recurrent
and the third element is the period of the
communication class.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0, 1, 0],
... [1, 0, 0],
... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', [1, 2, 3], T)
>>> classes = X.communication_classes()
>>> for states, is_recurrent, period in classes:
... states, is_recurrent, period
([1, 2], True, 2)
([3], False, 1)
From this we can see that states ``1`` and ``2``
communicate, are recurrent and have a period
of 2. We can also see state ``3`` is transient
with a period of 1.
Notes
=====
The algorithm used is of order ``O(n**2)`` where
``n`` is the number of states in the markov chain.
It uses Tarjan's algorithm to find the classes
themselves and then it uses a breadth-first search
algorithm to find each class's periodicity.
Most of the algorithm's components approach ``O(n)``
as the matrix becomes more and more sparse.
References
==========
.. [1] http://www.columbia.edu/~ww2040/4701Sum07/4701-06-Notes-MCII.pdf
.. [2] http://cecas.clemson.edu/~shierd/Shier/markov.pdf
.. [3] https://ujcontent.uj.ac.za/vital/access/services/Download/uj:7506/CONTENT1
.. [4] https://www.mathworks.com/help/econ/dtmc.classify.html
"""
n = self.number_of_states
T = self.transition_probabilities
if isinstance(T, MatrixSymbol):
raise NotImplementedError("Cannot perform the operation with a symbolic matrix.")
# begin Tarjan's algorithm
V = Range(n)
# don't use state names. Rather use state
# indexes since we use them for matrix
# indexing here and later onward
E = [(i, j) for i in V for j in V if T[i, j] != 0]
classes = strongly_connected_components((V, E))
# end Tarjan's algorithm
recurrence = []
periods = []
for class_ in classes:
# begin recurrent check (similar to self._check_trans_probs())
submatrix = T[class_, class_] # get the submatrix with those states
is_recurrent = S.true
rows = submatrix.tolist()
for row in rows:
if (sum(row) - 1) != 0:
is_recurrent = S.false
break
recurrence.append(is_recurrent)
# end recurrent check
# begin breadth-first search
non_tree_edge_values: tSet[int] = set()
visited = {class_[0]}
newly_visited = {class_[0]}
level = {class_[0]: 0}
current_level = 0
done = False # imitate a do-while loop
while not done: # runs at most len(class_) times
done = len(visited) == len(class_)
current_level += 1
# this loop and the while loop above run a combined len(class_) number of times.
# so this triple nested loop runs through each of the n states once.
for i in newly_visited:
# the loop below runs len(class_) number of times
# complexity is around about O(n * avg(len(class_)))
newly_visited = {j for j in class_ if T[i, j] != 0}
new_tree_edges = newly_visited.difference(visited)
for j in new_tree_edges:
level[j] = current_level
new_non_tree_edges = newly_visited.intersection(visited)
new_non_tree_edge_values = {level[i]-level[j]+1 for j in new_non_tree_edges}
non_tree_edge_values = non_tree_edge_values.union(new_non_tree_edge_values)
visited = visited.union(new_tree_edges)
# igcd needs at least 2 arguments
positive_ntev = {val_e for val_e in non_tree_edge_values if val_e > 0}
if len(positive_ntev) == 0:
periods.append(len(class_))
elif len(positive_ntev) == 1:
periods.append(positive_ntev.pop())
else:
periods.append(igcd(*positive_ntev))
# end breadth-first search
# convert back to the user's state names
classes = [[_sympify(self._state_index[i]) for i in class_] for class_ in classes]
return list(zip(classes, recurrence, map(Integer,periods)))
def fundamental_matrix(self):
"""
Each entry fundamental matrix can be interpreted as
the expected number of times the chains is in state j
if it started in state i.
References
==========
.. [1] https://lips.cs.princeton.edu/the-fundamental-matrix-of-a-finite-markov-chain/
"""
_, _, _, Q = self.decompose()
if Q.shape[0] > 0: # if non-ergodic
I = eye(Q.shape[0])
if (I - Q).det() == 0:
raise ValueError("The fundamental matrix doesn't exist.")
return (I - Q).inv().as_immutable()
else: # if ergodic
P = self.transition_probabilities
I = eye(P.shape[0])
w = self.fixed_row_vector()
W = Matrix([list(w) for i in range(0, P.shape[0])])
if (I - P + W).det() == 0:
raise ValueError("The fundamental matrix doesn't exist.")
return (I - P + W).inv().as_immutable()
def absorbing_probabilities(self):
"""
Computes the absorbing probabilities, i.e.
the ij-th entry of the matrix denotes the
probability of Markov chain being absorbed
in state j starting from state i.
"""
_, _, R, _ = self.decompose()
N = self.fundamental_matrix()
if R is None or N is None:
return None
return N*R
def absorbing_probabilites(self):
sympy_deprecation_warning(
"""
DiscreteMarkovChain.absorbing_probabilites() is deprecated. Use
absorbing_probabilities() instead (note the spelling difference).
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-absorbing_probabilites",
)
return self.absorbing_probabilities()
def is_regular(self):
tuples = self.communication_classes()
if len(tuples) == 0:
return S.false # not defined for a 0x0 matrix
classes, _, periods = list(zip(*tuples))
return And(len(classes) == 1, periods[0] == 1)
def is_ergodic(self):
tuples = self.communication_classes()
if len(tuples) == 0:
return S.false # not defined for a 0x0 matrix
classes, _, _ = list(zip(*tuples))
return S(len(classes) == 1)
def is_absorbing_state(self, state):
trans_probs = self.transition_probabilities
if isinstance(trans_probs, ImmutableMatrix) and \
state < trans_probs.shape[0]:
return S(trans_probs[state, state]) is S.One
def is_absorbing_chain(self):
states, A, B, C = self.decompose()
r = A.shape[0]
return And(r > 0, A == Identity(r).as_explicit())
def stationary_distribution(self, condition_set=False) -> tUnion[ImmutableMatrix, ConditionSet, Lambda]:
r"""
The stationary distribution is any row vector, p, that solves p = pP,
is row stochastic and each element in p must be nonnegative.
That means in matrix form: :math:`(P-I)^T p^T = 0` and
:math:`(1, \dots, 1) p = 1`
where ``P`` is the one-step transition matrix.
All time-homogeneous Markov Chains with a finite state space
have at least one stationary distribution. In addition, if
a finite time-homogeneous Markov Chain is irreducible, the
stationary distribution is unique.
Parameters
==========
condition_set : bool
If the chain has a symbolic size or transition matrix,
it will return a ``Lambda`` if ``False`` and return a
``ConditionSet`` if ``True``.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
An irreducible Markov Chain
>>> T = Matrix([[S(1)/2, S(1)/2, 0],
... [S(4)/5, S(1)/5, 0],
... [1, 0, 0]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> X.stationary_distribution()
Matrix([[8/13, 5/13, 0]])
A reducible Markov Chain
>>> T = Matrix([[S(1)/2, S(1)/2, 0],
... [S(4)/5, S(1)/5, 0],
... [0, 0, 1]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> X.stationary_distribution()
Matrix([[8/13 - 8*tau0/13, 5/13 - 5*tau0/13, tau0]])
>>> Y = DiscreteMarkovChain('Y')
>>> Y.stationary_distribution()
Lambda((wm, _T), Eq(wm*_T, wm))
>>> Y.stationary_distribution(condition_set=True)
ConditionSet(wm, Eq(wm*_T, wm))
References
==========
.. [1] https://www.probabilitycourse.com/chapter11/11_2_6_stationary_and_limiting_distributions.php
.. [2] https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf
See Also
========
sympy.stats.DiscreteMarkovChain.limiting_distribution
"""
trans_probs = self.transition_probabilities
n = self.number_of_states
if n == 0:
return ImmutableMatrix(Matrix([[]]))
# symbolic matrix version
if isinstance(trans_probs, MatrixSymbol):
wm = MatrixSymbol('wm', 1, n)
if condition_set:
return ConditionSet(wm, Eq(wm * trans_probs, wm))
else:
return Lambda((wm, trans_probs), Eq(wm * trans_probs, wm))
# numeric matrix version
a = Matrix(trans_probs - Identity(n)).T
a[0, 0:n] = ones(1, n) # type: ignore
b = zeros(n, 1)
b[0, 0] = 1
soln = list(linsolve((a, b)))[0]
return ImmutableMatrix([[sol for sol in soln]])
def fixed_row_vector(self):
"""
A wrapper for ``stationary_distribution()``.
"""
return self.stationary_distribution()
@property
def limiting_distribution(self):
"""
The fixed row vector is the limiting
distribution of a discrete Markov chain.
"""
return self.fixed_row_vector()
def decompose(self) -> tTuple[tList[Basic], ImmutableMatrix, ImmutableMatrix, ImmutableMatrix]:
"""
Decomposes the transition matrix into submatrices with
special properties.
The transition matrix can be decomposed into 4 submatrices:
- A - the submatrix from recurrent states to recurrent states.
- B - the submatrix from transient to recurrent states.
- C - the submatrix from transient to transient states.
- O - the submatrix of zeros for recurrent to transient states.
Returns
=======
states, A, B, C
``states`` - a list of state names with the first being
the recurrent states and the last being
the transient states in the order
of the row names of A and then the row names of C.
``A`` - the submatrix from recurrent states to recurrent states.
``B`` - the submatrix from transient to recurrent states.
``C`` - the submatrix from transient to transient states.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
One can decompose this chain for example:
>>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0],
... [S(2)/5, S(1)/5, S(2)/5, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, S(1)/2, S(1)/2, 0],
... [S(1)/2, 0, 0, 0, S(1)/2]])
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> states, A, B, C = X.decompose()
>>> states
[2, 0, 1, 3, 4]
>>> A # recurrent to recurrent
Matrix([[1]])
>>> B # transient to recurrent
Matrix([
[ 0],
[2/5],
[1/2],
[ 0]])
>>> C # transient to transient
Matrix([
[1/2, 1/2, 0, 0],
[2/5, 1/5, 0, 0],
[ 0, 0, 1/2, 0],
[1/2, 0, 0, 1/2]])
This means that state 2 is the only absorbing state
(since A is a 1x1 matrix). B is a 4x1 matrix since
the 4 remaining transient states all merge into reccurent
state 2. And C is the 4x4 matrix that shows how the
transient states 0, 1, 3, 4 all interact.
See Also
========
sympy.stats.DiscreteMarkovChain.communication_classes
sympy.stats.DiscreteMarkovChain.canonical_form
References
==========
.. [1] https://en.wikipedia.org/wiki/Absorbing_Markov_chain
.. [2] http://people.brandeis.edu/~igusa/Math56aS08/Math56a_S08_notes015.pdf
"""
trans_probs = self.transition_probabilities
classes = self.communication_classes()
r_states = []
t_states = []
for states, recurrent, period in classes:
if recurrent:
r_states += states
else:
t_states += states
states = r_states + t_states
indexes = [self.index_of[state] for state in states] # type: ignore
A = Matrix(len(r_states), len(r_states),
lambda i, j: trans_probs[indexes[i], indexes[j]])
B = Matrix(len(t_states), len(r_states),
lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[j]])
C = Matrix(len(t_states), len(t_states),
lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[len(r_states) + j]])
return states, A.as_immutable(), B.as_immutable(), C.as_immutable()
def canonical_form(self) -> tTuple[tList[Basic], ImmutableMatrix]:
"""
Reorders the one-step transition matrix
so that recurrent states appear first and transient
states appear last. Other representations include inserting
transient states first and recurrent states last.
Returns
=======
states, P_new
``states`` is the list that describes the order of the
new states in the matrix
so that the ith element in ``states`` is the state of the
ith row of A.
``P_new`` is the new transition matrix in canonical form.
Examples
========
>>> from sympy.stats import DiscreteMarkovChain
>>> from sympy import Matrix, S
You can convert your chain into canonical form:
>>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0],
... [S(2)/5, S(1)/5, S(2)/5, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, S(1)/2, S(1)/2, 0],
... [S(1)/2, 0, 0, 0, S(1)/2]])
>>> X = DiscreteMarkovChain('X', list(range(1, 6)), trans_probs=T)
>>> states, new_matrix = X.canonical_form()
>>> states
[3, 1, 2, 4, 5]
>>> new_matrix
Matrix([
[ 1, 0, 0, 0, 0],
[ 0, 1/2, 1/2, 0, 0],
[2/5, 2/5, 1/5, 0, 0],
[1/2, 0, 0, 1/2, 0],
[ 0, 1/2, 0, 0, 1/2]])
The new states are [3, 1, 2, 4, 5] and you can
create a new chain with this and its canonical
form will remain the same (since it is already
in canonical form).
>>> X = DiscreteMarkovChain('X', states, new_matrix)
>>> states, new_matrix = X.canonical_form()
>>> states
[3, 1, 2, 4, 5]
>>> new_matrix
Matrix([
[ 1, 0, 0, 0, 0],
[ 0, 1/2, 1/2, 0, 0],
[2/5, 2/5, 1/5, 0, 0],
[1/2, 0, 0, 1/2, 0],
[ 0, 1/2, 0, 0, 1/2]])
This is not limited to absorbing chains:
>>> T = Matrix([[0, 5, 5, 0, 0],
... [0, 0, 0, 10, 0],
... [5, 0, 5, 0, 0],
... [0, 10, 0, 0, 0],
... [0, 3, 0, 3, 4]])/10
>>> X = DiscreteMarkovChain('X', trans_probs=T)
>>> states, new_matrix = X.canonical_form()
>>> states
[1, 3, 0, 2, 4]
>>> new_matrix
Matrix([
[ 0, 1, 0, 0, 0],
[ 1, 0, 0, 0, 0],
[ 1/2, 0, 0, 1/2, 0],
[ 0, 0, 1/2, 1/2, 0],
[3/10, 3/10, 0, 0, 2/5]])
See Also
========
sympy.stats.DiscreteMarkovChain.communication_classes
sympy.stats.DiscreteMarkovChain.decompose
References
==========
.. [1] https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316887.app1
.. [2] http://www.columbia.edu/~ww2040/6711F12/lect1023big.pdf
"""
states, A, B, C = self.decompose()
O = zeros(A.shape[0], C.shape[1])
return states, BlockMatrix([[A, O], [B, C]]).as_explicit()
def sample(self):
"""
Returns
=======
sample: iterator object
iterator object containing the sample
"""
if not isinstance(self.transition_probabilities, (Matrix, ImmutableMatrix)):
raise ValueError("Transition Matrix must be provided for sampling")
Tlist = self.transition_probabilities.tolist()
samps = [random.choice(list(self.state_space))]
yield samps[0]
time = 1
densities = {}
for state in self.state_space:
states = list(self.state_space)
densities[state] = {states[i]: Tlist[state][i]
for i in range(len(states))}
while time < S.Infinity:
samps.append((next(sample_iter(FiniteRV("_", densities[samps[time - 1]])))))
yield samps[time]
time += 1
class ContinuousMarkovChain(ContinuousTimeStochasticProcess, MarkovProcess):
"""
Represents continuous time Markov chain.
Parameters
==========
sym : Symbol/str
state_space : Set
Optional, by default, S.Reals
gen_mat : Matrix/ImmutableMatrix/MatrixSymbol
Optional, by default, None
Examples
========
>>> from sympy.stats import ContinuousMarkovChain, P
>>> from sympy import Matrix, S, Eq, Gt
>>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G)
>>> C.limiting_distribution()
Matrix([[1/2, 1/2]])
>>> C.state_space
{0, 1}
>>> C.generator_matrix
Matrix([
[-1, 1],
[ 1, -1]])
Probability queries are supported
>>> P(Eq(C(1.96), 0), Eq(C(0.78), 1)).round(5)
0.45279
>>> P(Gt(C(1.7), 0), Eq(C(0.82), 1)).round(5)
0.58602
Probability of expressions with multiple RandomIndexedSymbols
can also be calculated provided there is only 1 RandomIndexedSymbol
in the given condition. It is always better to use Rational instead
of floating point numbers for the probabilities in the
generator matrix to avoid errors.
>>> from sympy import Gt, Le, Rational
>>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
>>> P(Eq(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5)
0.37933
>>> P(Gt(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5)
0.34211
>>> P(Le(C(1.57), C(3.14)), Eq(C(1.22), 1)).round(4)
0.7143
Symbolic probability queries are also supported
>>> from sympy import symbols
>>> a,b,c,d = symbols('a b c d')
>>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]])
>>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
>>> query = P(Eq(C(a), b), Eq(C(c), d))
>>> query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10)
0.4002723175
>>> P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
0.4002723175
>>> query_gt = P(Gt(C(a), b), Eq(C(c), d))
>>> query_gt.subs({a:43.2, b:0, c:3.29, d:2}).evalf().round(10)
0.6832579186
>>> P(Gt(C(43.2), 0), Eq(C(3.29), 2)).round(10)
0.6832579186
References
==========
.. [1] https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain
.. [2] http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf
"""
index_set = S.Reals
def __new__(cls, sym, state_space=None, gen_mat=None):
sym = _symbol_converter(sym)
state_space, gen_mat = MarkovProcess._sanity_checks(state_space, gen_mat)
obj = Basic.__new__(cls, sym, state_space, gen_mat)
indices = dict()
if isinstance(obj.number_of_states, Integer):
for index, state in enumerate(obj.state_space):
indices[state] = index
obj.index_of = indices
return obj
@property
def generator_matrix(self):
return self.args[2]
@cacheit
def transition_probabilities(self, gen_mat=None):
t = Dummy('t')
if isinstance(gen_mat, (Matrix, ImmutableMatrix)) and \
gen_mat.is_diagonalizable():
# for faster computation use diagonalized generator matrix
Q, D = gen_mat.diagonalize()
return Lambda(t, Q*exp(t*D)*Q.inv())
if gen_mat != None:
return Lambda(t, exp(t*gen_mat))
def limiting_distribution(self):
gen_mat = self.generator_matrix
if gen_mat is None:
return None
if isinstance(gen_mat, MatrixSymbol):
wm = MatrixSymbol('wm', 1, gen_mat.shape[0])
return Lambda((wm, gen_mat), Eq(wm*gen_mat, wm))
w = IndexedBase('w')
wi = [w[i] for i in range(gen_mat.shape[0])]
wm = Matrix([wi])
eqs = (wm*gen_mat).tolist()[0]
eqs.append(sum(wi) - 1)
soln = list(linsolve(eqs, wi))[0]
return ImmutableMatrix([[sol for sol in soln]])
class BernoulliProcess(DiscreteTimeStochasticProcess):
"""
The Bernoulli process consists of repeated
independent Bernoulli process trials with the same parameter `p`.
It's assumed that the probability `p` applies to every
trial and that the outcomes of each trial
are independent of all the rest. Therefore Bernoulli Processs
is Discrete State and Discrete Time Stochastic Process.
Parameters
==========
sym : Symbol/str
success : Integer/str
The event which is considered to be success. Default: 1.
failure: Integer/str
The event which is considered to be failure. Default: 0.
p : Real Number between 0 and 1
Represents the probability of getting success.
Examples
========
>>> from sympy.stats import BernoulliProcess, P, E
>>> from sympy import Eq, Gt
>>> B = BernoulliProcess("B", p=0.7, success=1, failure=0)
>>> B.state_space
{0, 1}
>>> (B.p).round(2)
0.70
>>> B.success
1
>>> B.failure
0
>>> X = B[1] + B[2] + B[3]
>>> P(Eq(X, 0)).round(2)
0.03
>>> P(Eq(X, 2)).round(2)
0.44
>>> P(Eq(X, 4)).round(2)
0
>>> P(Gt(X, 1)).round(2)
0.78
>>> P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2)
0.04
>>> B.joint_distribution(B[1], B[2])
JointDistributionHandmade(Lambda((B[1], B[2]), Piecewise((0.7, Eq(B[1], 1)),
(0.3, Eq(B[1], 0)), (0, True))*Piecewise((0.7, Eq(B[2], 1)), (0.3, Eq(B[2], 0)),
(0, True))))
>>> E(2*B[1] + B[2]).round(2)
2.10
>>> P(B[1] < 1).round(2)
0.30
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_process
.. [2] https://mathcs.clarku.edu/~djoyce/ma217/bernoulli.pdf
"""
index_set = S.Naturals0
def __new__(cls, sym, p, success=1, failure=0):
_value_check(p >= 0 and p <= 1, 'Value of p must be between 0 and 1.')
sym = _symbol_converter(sym)
p = _sympify(p)
success = _sym_sympify(success)
failure = _sym_sympify(failure)
return Basic.__new__(cls, sym, p, success, failure)
@property
def symbol(self):
return self.args[0]
@property
def p(self):
return self.args[1]
@property
def success(self):
return self.args[2]
@property
def failure(self):
return self.args[3]
@property
def state_space(self):
return _set_converter([self.success, self.failure])
def distribution(self, key=None):
if key is None:
self._deprecation_warn_distribution()
return BernoulliDistribution(self.p)
return BernoulliDistribution(self.p, self.success, self.failure)
def simple_rv(self, rv):
return Bernoulli(rv.name, p=self.p,
succ=self.success, fail=self.failure)
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Computes expectation.
Parameters
==========
expr : RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition : Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation of the RandomIndexedSymbol.
"""
return _SubstituteRV._expectation(expr, condition, evaluate, **kwargs)
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Computes probability.
Parameters
==========
condition : Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition : Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Probability of the condition.
"""
return _SubstituteRV._probability(condition, given_condition, evaluate, **kwargs)
def density(self, x):
return Piecewise((self.p, Eq(x, self.success)),
(1 - self.p, Eq(x, self.failure)),
(S.Zero, True))
class _SubstituteRV:
"""
Internal class to handle the queries of expectation and probability
by substitution.
"""
@staticmethod
def _rvindexed_subs(expr, condition=None):
"""
Substitutes the RandomIndexedSymbol with the RandomSymbol with
same name, distribution and probability as RandomIndexedSymbol.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
"""
rvs_expr = random_symbols(expr)
if len(rvs_expr) != 0:
swapdict_expr = {}
for rv in rvs_expr:
if isinstance(rv, RandomIndexedSymbol):
newrv = rv.pspace.process.simple_rv(rv) # substitute with equivalent simple rv
swapdict_expr[rv] = newrv
expr = expr.subs(swapdict_expr)
rvs_cond = random_symbols(condition)
if len(rvs_cond)!=0:
swapdict_cond = {}
for rv in rvs_cond:
if isinstance(rv, RandomIndexedSymbol):
newrv = rv.pspace.process.simple_rv(rv)
swapdict_cond[rv] = newrv
condition = condition.subs(swapdict_cond)
return expr, condition
@classmethod
def _expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Internal method for computing expectation of indexed RV.
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Logic
The given conditions under which computations should be done.
Returns
=======
Expectation of the RandomIndexedSymbol.
"""
new_expr, new_condition = self._rvindexed_subs(expr, condition)
if not is_random(new_expr):
return new_expr
new_pspace = pspace(new_expr)
if new_condition is not None:
new_expr = given(new_expr, new_condition)
if new_expr.is_Add: # As E is Linear
return Add(*[new_pspace.compute_expectation(
expr=arg, evaluate=evaluate, **kwargs)
for arg in new_expr.args])
return new_pspace.compute_expectation(
new_expr, evaluate=evaluate, **kwargs)
@classmethod
def _probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Internal method for computing probability of indexed RV
Parameters
==========
condition: Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition: Relational/And
The given conditions under which computations should be done.
Returns
=======
Probability of the condition.
"""
new_condition, new_givencondition = self._rvindexed_subs(condition, given_condition)
if isinstance(new_givencondition, RandomSymbol):
condrv = random_symbols(new_condition)
if len(condrv) == 1 and condrv[0] == new_givencondition:
return BernoulliDistribution(self._probability(new_condition), 0, 1)
if any(dependent(rv, new_givencondition) for rv in condrv):
return Probability(new_condition, new_givencondition)
else:
return self._probability(new_condition)
if new_givencondition is not None and \
not isinstance(new_givencondition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (new_givencondition))
if new_givencondition == False or new_condition == False:
return S.Zero
if new_condition == True:
return S.One
if not isinstance(new_condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (new_condition))
if new_givencondition is not None: # If there is a condition
# Recompute on new conditional expr
return self._probability(given(new_condition, new_givencondition, **kwargs), **kwargs)
result = pspace(new_condition).probability(new_condition, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def get_timerv_swaps(expr, condition):
"""
Finds the appropriate interval for each time stamp in expr by parsing
the given condition and returns intervals for each timestamp and
dictionary that maps variable time-stamped Random Indexed Symbol to its
corresponding Random Indexed variable with fixed time stamp.
Parameters
==========
expr: SymPy Expression
Expression containing Random Indexed Symbols with variable time stamps
condition: Relational/Boolean Expression
Expression containing time bounds of variable time stamps in expr
Examples
========
>>> from sympy.stats.stochastic_process_types import get_timerv_swaps, PoissonProcess
>>> from sympy import symbols, Contains, Interval
>>> x, t, d = symbols('x t d', positive=True)
>>> X = PoissonProcess("X", 3)
>>> get_timerv_swaps(x*X(t), Contains(t, Interval.Lopen(0, 1)))
([Interval.Lopen(0, 1)], {X(t): X(1)})
>>> get_timerv_swaps((X(t)**2 + X(d)**2), Contains(t, Interval.Lopen(0, 1))
... & Contains(d, Interval.Ropen(1, 4))) # doctest: +SKIP
([Interval.Ropen(1, 4), Interval.Lopen(0, 1)], {X(d): X(3), X(t): X(1)})
Returns
=======
intervals: list
List of Intervals/FiniteSet on which each time stamp is defined
rv_swap: dict
Dictionary mapping variable time Random Indexed Symbol to constant time
Random Indexed Variable
"""
if not isinstance(condition, (Relational, Boolean)):
raise ValueError("%s is not a relational or combination of relationals"
% (condition))
expr_syms = list(expr.atoms(RandomIndexedSymbol))
if isinstance(condition, (And, Or)):
given_cond_args = condition.args
else: # single condition
given_cond_args = (condition, )
rv_swap = {}
intervals = []
for expr_sym in expr_syms:
for arg in given_cond_args:
if arg.has(expr_sym.key) and isinstance(expr_sym.key, Symbol):
intv = _set_converter(arg.args[1])
diff_key = intv._sup - intv._inf
if diff_key == oo:
raise ValueError("%s should have finite bounds" % str(expr_sym.name))
elif diff_key == S.Zero: # has singleton set
diff_key = intv._sup
rv_swap[expr_sym] = expr_sym.subs({expr_sym.key: diff_key})
intervals.append(intv)
return intervals, rv_swap
class CountingProcess(ContinuousTimeStochasticProcess):
"""
This class handles the common methods of the Counting Processes
such as Poisson, Wiener and Gamma Processes
"""
index_set = _set_converter(Interval(0, oo))
@property
def symbol(self):
return self.args[0]
def expectation(self, expr, condition=None, evaluate=True, **kwargs):
"""
Computes expectation
Parameters
==========
expr: RandomIndexedSymbol, Relational, Logic
Condition for which expectation has to be computed. Must
contain a RandomIndexedSymbol of the process.
condition: Relational, Boolean
The given conditions under which computations should be done, i.e,
the intervals on which each variable time stamp in expr is defined
Returns
=======
Expectation of the given expr
"""
if condition is not None:
intervals, rv_swap = get_timerv_swaps(expr, condition)
# they are independent when they have non-overlapping intervals
if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet
for intv_comb in itertools.combinations(intervals, 2)):
if expr.is_Add:
return Add.fromiter(self.expectation(arg, condition)
for arg in expr.args)
expr = expr.subs(rv_swap)
else:
return Expectation(expr, condition)
return _SubstituteRV._expectation(expr, evaluate=evaluate, **kwargs)
def _solve_argwith_tworvs(self, arg):
if arg.args[0].key >= arg.args[1].key or isinstance(arg, Eq):
diff_key = abs(arg.args[0].key - arg.args[1].key)
rv = arg.args[0]
arg = arg.__class__(rv.pspace.process(diff_key), 0)
else:
diff_key = arg.args[1].key - arg.args[0].key
rv = arg.args[1]
arg = arg.__class__(rv.pspace.process(diff_key), 0)
return arg
def _solve_numerical(self, condition, given_condition=None):
if isinstance(condition, And):
args_list = list(condition.args)
else:
args_list = [condition]
if given_condition is not None:
if isinstance(given_condition, And):
args_list.extend(list(given_condition.args))
else:
args_list.extend([given_condition])
# sort the args based on timestamp to get the independent increments in
# each segment using all the condition args as well as given_condition args
args_list = sorted(args_list, key=lambda x: x.args[0].key)
result = []
cond_args = list(condition.args) if isinstance(condition, And) else [condition]
if args_list[0] in cond_args and not (is_random(args_list[0].args[0])
and is_random(args_list[0].args[1])):
result.append(_SubstituteRV._probability(args_list[0]))
if is_random(args_list[0].args[0]) and is_random(args_list[0].args[1]):
arg = self._solve_argwith_tworvs(args_list[0])
result.append(_SubstituteRV._probability(arg))
for i in range(len(args_list) - 1):
curr, nex = args_list[i], args_list[i + 1]
diff_key = nex.args[0].key - curr.args[0].key
working_set = curr.args[0].pspace.process.state_space
if curr.args[1] > nex.args[1]: #impossible condition so return 0
result.append(0)
break
if isinstance(curr, Eq):
working_set = Intersection(working_set, Interval.Lopen(curr.args[1], oo))
else:
working_set = Intersection(working_set, curr.as_set())
if isinstance(nex, Eq):
working_set = Intersection(working_set, Interval(-oo, nex.args[1]))
else:
working_set = Intersection(working_set, nex.as_set())
if working_set == EmptySet:
rv = Eq(curr.args[0].pspace.process(diff_key), 0)
result.append(_SubstituteRV._probability(rv))
else:
if working_set.is_finite_set:
if isinstance(curr, Eq) and isinstance(nex, Eq):
rv = Eq(curr.args[0].pspace.process(diff_key), len(working_set))
result.append(_SubstituteRV._probability(rv))
elif isinstance(curr, Eq) ^ isinstance(nex, Eq):
result.append(Add.fromiter(_SubstituteRV._probability(Eq(
curr.args[0].pspace.process(diff_key), x))
for x in range(len(working_set))))
else:
n = len(working_set)
result.append(Add.fromiter((n - x)*_SubstituteRV._probability(Eq(
curr.args[0].pspace.process(diff_key), x)) for x in range(n)))
else:
result.append(_SubstituteRV._probability(
curr.args[0].pspace.process(diff_key) <= working_set._sup - working_set._inf))
return Mul.fromiter(result)
def probability(self, condition, given_condition=None, evaluate=True, **kwargs):
"""
Computes probability.
Parameters
==========
condition: Relational
Condition for which probability has to be computed. Must
contain a RandomIndexedSymbol of the process.
given_condition: Relational, Boolean
The given conditions under which computations should be done, i.e,
the intervals on which each variable time stamp in expr is defined
Returns
=======
Probability of the condition
"""
check_numeric = True
if isinstance(condition, (And, Or)):
cond_args = condition.args
else:
cond_args = (condition, )
# check that condition args are numeric or not
if not all(arg.args[0].key.is_number for arg in cond_args):
check_numeric = False
if given_condition is not None:
check_given_numeric = True
if isinstance(given_condition, (And, Or)):
given_cond_args = given_condition.args
else:
given_cond_args = (given_condition, )
# check that given condition args are numeric or not
if given_condition.has(Contains):
check_given_numeric = False
# Handle numerical queries
if check_numeric and check_given_numeric:
res = []
if isinstance(condition, Or):
res.append(Add.fromiter(self._solve_numerical(arg, given_condition)
for arg in condition.args))
if isinstance(given_condition, Or):
res.append(Add.fromiter(self._solve_numerical(condition, arg)
for arg in given_condition.args))
if res:
return Add.fromiter(res)
return self._solve_numerical(condition, given_condition)
# No numeric queries, go by Contains?... then check that all the
# given condition are in form of `Contains`
if not all(arg.has(Contains) for arg in given_cond_args):
raise ValueError("If given condition is passed with `Contains`, then "
"please pass the evaluated condition with its corresponding information "
"in terms of intervals of each time stamp to be passed in given condition.")
intervals, rv_swap = get_timerv_swaps(condition, given_condition)
# they are independent when they have non-overlapping intervals
if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet
for intv_comb in itertools.combinations(intervals, 2)):
if isinstance(condition, And):
return Mul.fromiter(self.probability(arg, given_condition)
for arg in condition.args)
elif isinstance(condition, Or):
return Add.fromiter(self.probability(arg, given_condition)
for arg in condition.args)
condition = condition.subs(rv_swap)
else:
return Probability(condition, given_condition)
if check_numeric:
return self._solve_numerical(condition)
return _SubstituteRV._probability(condition, evaluate=evaluate, **kwargs)
class PoissonProcess(CountingProcess):
"""
The Poisson process is a counting process. It is usually used in scenarios
where we are counting the occurrences of certain events that appear
to happen at a certain rate, but completely at random.
Parameters
==========
sym : Symbol/str
lamda : Positive number
Rate of the process, ``lambda > 0``
Examples
========
>>> from sympy.stats import PoissonProcess, P, E
>>> from sympy import symbols, Eq, Ne, Contains, Interval
>>> X = PoissonProcess("X", lamda=3)
>>> X.state_space
Naturals0
>>> X.lamda
3
>>> t1, t2 = symbols('t1 t2', positive=True)
>>> P(X(t1) < 4)
(9*t1**3/2 + 9*t1**2/2 + 3*t1 + 1)*exp(-3*t1)
>>> P(Eq(X(t1), 2) | Ne(X(t1), 4), Contains(t1, Interval.Ropen(2, 4)))
1 - 36*exp(-6)
>>> P(Eq(X(t1), 2) & Eq(X(t2), 3), Contains(t1, Interval.Lopen(0, 2))
... & Contains(t2, Interval.Lopen(2, 4)))
648*exp(-12)
>>> E(X(t1))
3*t1
>>> E(X(t1)**2 + 2*X(t2), Contains(t1, Interval.Lopen(0, 1))
... & Contains(t2, Interval.Lopen(1, 2)))
18
>>> P(X(3) < 1, Eq(X(1), 0))
exp(-6)
>>> P(Eq(X(4), 3), Eq(X(2), 3))
exp(-6)
>>> P(X(2) <= 3, X(1) > 1)
5*exp(-3)
Merging two Poisson Processes
>>> Y = PoissonProcess("Y", lamda=4)
>>> Z = X + Y
>>> Z.lamda
7
Splitting a Poisson Process into two independent Poisson Processes
>>> N, M = Z.split(l1=2, l2=5)
>>> N.lamda, M.lamda
(2, 5)
References
==========
.. [1] https://www.probabilitycourse.com/chapter11/11_0_0_intro.php
.. [2] https://en.wikipedia.org/wiki/Poisson_point_process
"""
def __new__(cls, sym, lamda):
_value_check(lamda > 0, 'lamda should be a positive number.')
sym = _symbol_converter(sym)
lamda = _sympify(lamda)
return Basic.__new__(cls, sym, lamda)
@property
def lamda(self):
return self.args[1]
@property
def state_space(self):
return S.Naturals0
def distribution(self, key):
if isinstance(key, RandomIndexedSymbol):
self._deprecation_warn_distribution()
return PoissonDistribution(self.lamda*key.key)
return PoissonDistribution(self.lamda*key)
def density(self, x):
return (self.lamda*x.key)**x / factorial(x) * exp(-(self.lamda*x.key))
def simple_rv(self, rv):
return Poisson(rv.name, lamda=self.lamda*rv.key)
def __add__(self, other):
if not isinstance(other, PoissonProcess):
raise ValueError("Only instances of Poisson Process can be merged")
return PoissonProcess(Dummy(self.symbol.name + other.symbol.name),
self.lamda + other.lamda)
def split(self, l1, l2):
if _sympify(l1 + l2) != self.lamda:
raise ValueError("Sum of l1 and l2 should be %s" % str(self.lamda))
return PoissonProcess(Dummy("l1"), l1), PoissonProcess(Dummy("l2"), l2)
class WienerProcess(CountingProcess):
"""
The Wiener process is a real valued continuous-time stochastic process.
In physics it is used to study Brownian motion and it is often also called
Brownian motion due to its historical connection with physical process of the
same name originally observed by Scottish botanist Robert Brown.
Parameters
==========
sym : Symbol/str
Examples
========
>>> from sympy.stats import WienerProcess, P, E
>>> from sympy import symbols, Contains, Interval
>>> X = WienerProcess("X")
>>> X.state_space
Reals
>>> t1, t2 = symbols('t1 t2', positive=True)
>>> P(X(t1) < 7).simplify()
erf(7*sqrt(2)/(2*sqrt(t1)))/2 + 1/2
>>> P((X(t1) > 2) | (X(t1) < 4), Contains(t1, Interval.Ropen(2, 4))).simplify()
-erf(1)/2 + erf(2)/2 + 1
>>> E(X(t1))
0
>>> E(X(t1) + 2*X(t2), Contains(t1, Interval.Lopen(0, 1))
... & Contains(t2, Interval.Lopen(1, 2)))
0
References
==========
.. [1] https://www.probabilitycourse.com/chapter11/11_4_0_brownian_motion_wiener_process.php
.. [2] https://en.wikipedia.org/wiki/Wiener_process
"""
def __new__(cls, sym):
sym = _symbol_converter(sym)
return Basic.__new__(cls, sym)
@property
def state_space(self):
return S.Reals
def distribution(self, key):
if isinstance(key, RandomIndexedSymbol):
self._deprecation_warn_distribution()
return NormalDistribution(0, sqrt(key.key))
return NormalDistribution(0, sqrt(key))
def density(self, x):
return exp(-x**2/(2*x.key)) / (sqrt(2*pi)*sqrt(x.key))
def simple_rv(self, rv):
return Normal(rv.name, 0, sqrt(rv.key))
class GammaProcess(CountingProcess):
r"""
A Gamma process is a random process with independent gamma distributed
increments. It is a pure-jump increasing Levy process.
Parameters
==========
sym : Symbol/str
lamda : Positive number
Jump size of the process, ``lamda > 0``
gamma : Positive number
Rate of jump arrivals, `\gamma > 0`
Examples
========
>>> from sympy.stats import GammaProcess, E, P, variance
>>> from sympy import symbols, Contains, Interval, Not
>>> t, d, x, l, g = symbols('t d x l g', positive=True)
>>> X = GammaProcess("X", l, g)
>>> E(X(t))
g*t/l
>>> variance(X(t)).simplify()
g*t/l**2
>>> X = GammaProcess('X', 1, 2)
>>> P(X(t) < 1).simplify()
lowergamma(2*t, 1)/gamma(2*t)
>>> P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
... Contains(d, Interval.Lopen(7, 8))).simplify()
-4*exp(-3) + 472*exp(-8)/3 + 1
>>> E(X(2) + x*E(X(5)))
10*x + 4
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_process
"""
def __new__(cls, sym, lamda, gamma):
_value_check(lamda > 0, 'lamda should be a positive number')
_value_check(gamma > 0, 'gamma should be a positive number')
sym = _symbol_converter(sym)
gamma = _sympify(gamma)
lamda = _sympify(lamda)
return Basic.__new__(cls, sym, lamda, gamma)
@property
def lamda(self):
return self.args[1]
@property
def gamma(self):
return self.args[2]
@property
def state_space(self):
return _set_converter(Interval(0, oo))
def distribution(self, key):
if isinstance(key, RandomIndexedSymbol):
self._deprecation_warn_distribution()
return GammaDistribution(self.gamma*key.key, 1/self.lamda)
return GammaDistribution(self.gamma*key, 1/self.lamda)
def density(self, x):
k = self.gamma*x.key
theta = 1/self.lamda
return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
def simple_rv(self, rv):
return Gamma(rv.name, self.gamma*rv.key, 1/self.lamda)
|
1f920e1efd53cd0326f62645428d35b0758dd13703e6c584d5c6b6a6243cf686 | from math import prod
from sympy.core.basic import Basic
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.special.gamma_functions import multigamma
from sympy.core.sympify import sympify, _sympify
from sympy.matrices import (ImmutableMatrix, Inverse, Trace, Determinant,
MatrixSymbol, MatrixBase, Transpose, MatrixSet,
matrix2numpy)
from sympy.stats.rv import (_value_check, RandomMatrixSymbol, NamedArgsMixin, PSpace,
_symbol_converter, MatrixDomain, Distribution)
from sympy.external import import_module
################################################################################
#------------------------Matrix Probability Space------------------------------#
################################################################################
class MatrixPSpace(PSpace):
"""
Represents probability space for
Matrix Distributions.
"""
def __new__(cls, sym, distribution, dim_n, dim_m):
sym = _symbol_converter(sym)
dim_n, dim_m = _sympify(dim_n), _sympify(dim_m)
if not (dim_n.is_integer and dim_m.is_integer):
raise ValueError("Dimensions should be integers")
return Basic.__new__(cls, sym, distribution, dim_n, dim_m)
distribution = property(lambda self: self.args[1])
symbol = property(lambda self: self.args[0])
@property
def domain(self):
return MatrixDomain(self.symbol, self.distribution.set)
@property
def value(self):
return RandomMatrixSymbol(self.symbol, self.args[2], self.args[3], self)
@property
def values(self):
return {self.value}
def compute_density(self, expr, *args):
rms = expr.atoms(RandomMatrixSymbol)
if len(rms) > 1 or (not isinstance(expr, RandomMatrixSymbol)):
raise NotImplementedError("Currently, no algorithm has been "
"implemented to handle general expressions containing "
"multiple matrix distributions.")
return self.distribution.pdf(expr)
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomMatrixSymbol to realization value.
"""
return {self.value: self.distribution.sample(size, library=library, seed=seed)}
def rv(symbol, cls, args):
args = list(map(sympify, args))
dist = cls(*args)
dist.check(*args)
dim = dist.dimension
pspace = MatrixPSpace(symbol, dist, dim[0], dim[1])
return pspace.value
class SampleMatrixScipy:
"""Returns the sample from scipy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_scipy(dist, size, seed)
@classmethod
def _sample_scipy(cls, dist, size, seed):
"""Sample from SciPy."""
from scipy import stats as scipy_stats
import numpy
scipy_rv_map = {
'WishartDistribution': lambda dist, size, rand_state: scipy_stats.wishart.rvs(
df=int(dist.n), scale=matrix2numpy(dist.scale_matrix, float), size=size),
'MatrixNormalDistribution': lambda dist, size, rand_state: scipy_stats.matrix_normal.rvs(
mean=matrix2numpy(dist.location_matrix, float),
rowcov=matrix2numpy(dist.scale_matrix_1, float),
colcov=matrix2numpy(dist.scale_matrix_2, float), size=size, random_state=rand_state)
}
sample_shape = {
'WishartDistribution': lambda dist: dist.scale_matrix.shape,
'MatrixNormalDistribution' : lambda dist: dist.location_matrix.shape
}
dist_list = scipy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
samp = scipy_rv_map[dist.__class__.__name__](dist, prod(size), rand_state)
return samp.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleMatrixNumpy:
"""Returns the sample from numpy of the given distribution"""
### TODO: Add tests after adding matrix distributions in numpy_rv_map
def __new__(cls, dist, size, seed=None):
return cls._sample_numpy(dist, size, seed)
@classmethod
def _sample_numpy(cls, dist, size, seed):
"""Sample from NumPy."""
numpy_rv_map = {
}
sample_shape = {
}
dist_list = numpy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
samp = numpy_rv_map[dist.__class__.__name__](dist, prod(size), rand_state)
return samp.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleMatrixPymc:
"""Returns the sample from pymc of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_pymc(dist, size, seed)
@classmethod
def _sample_pymc(cls, dist, size, seed):
"""Sample from PyMC."""
try:
import pymc
except ImportError:
import pymc3 as pymc
pymc_rv_map = {
'MatrixNormalDistribution': lambda dist: pymc.MatrixNormal('X',
mu=matrix2numpy(dist.location_matrix, float),
rowcov=matrix2numpy(dist.scale_matrix_1, float),
colcov=matrix2numpy(dist.scale_matrix_2, float),
shape=dist.location_matrix.shape),
'WishartDistribution': lambda dist: pymc.WishartBartlett('X',
nu=int(dist.n), S=matrix2numpy(dist.scale_matrix, float))
}
sample_shape = {
'WishartDistribution': lambda dist: dist.scale_matrix.shape,
'MatrixNormalDistribution' : lambda dist: dist.location_matrix.shape
}
dist_list = pymc_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import logging
logging.getLogger("pymc").setLevel(logging.ERROR)
with pymc.Model():
pymc_rv_map[dist.__class__.__name__](dist)
samps = pymc.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)['X']
return samps.reshape(size + sample_shape[dist.__class__.__name__](dist))
_get_sample_class_matrixrv = {
'scipy': SampleMatrixScipy,
'pymc3': SampleMatrixPymc,
'pymc': SampleMatrixPymc,
'numpy': SampleMatrixNumpy
}
################################################################################
#-------------------------Matrix Distribution----------------------------------#
################################################################################
class MatrixDistribution(Distribution, NamedArgsMixin):
"""
Abstract class for Matrix Distribution.
"""
def __new__(cls, *args):
args = [ImmutableMatrix(arg) if isinstance(arg, list)
else _sympify(arg) for arg in args]
return Basic.__new__(cls, *args)
@staticmethod
def check(*args):
pass
def __call__(self, expr):
if isinstance(expr, list):
expr = ImmutableMatrix(expr)
return self.pdf(expr)
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
libraries = ['scipy', 'numpy', 'pymc3', 'pymc']
if library not in libraries:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if not import_module(library):
raise ValueError("Failed to import %s" % library)
samps = _get_sample_class_matrixrv[library](self, size, seed)
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self.__class__.__name__, library)
)
################################################################################
#------------------------Matrix Distribution Types-----------------------------#
################################################################################
#-------------------------------------------------------------------------------
# Matrix Gamma distribution ----------------------------------------------------
class MatrixGammaDistribution(MatrixDistribution):
_argnames = ('alpha', 'beta', 'scale_matrix')
@staticmethod
def check(alpha, beta, scale_matrix):
if not isinstance(scale_matrix, MatrixSymbol):
_value_check(scale_matrix.is_positive_definite, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix.is_square, "Should "
"be square matrix")
_value_check(alpha.is_positive, "Shape parameter should be positive.")
_value_check(beta.is_positive, "Scale parameter should be positive.")
@property
def set(self):
k = self.scale_matrix.shape[0]
return MatrixSet(k, k, S.Reals)
@property
def dimension(self):
return self.scale_matrix.shape
def pdf(self, x):
alpha, beta, scale_matrix = self.alpha, self.beta, self.scale_matrix
p = scale_matrix.shape[0]
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
sigma_inv_x = - Inverse(scale_matrix)*x / beta
term1 = exp(Trace(sigma_inv_x))/((beta**(p*alpha)) * multigamma(alpha, p))
term2 = (Determinant(scale_matrix))**(-alpha)
term3 = (Determinant(x))**(alpha - S(p + 1)/2)
return term1 * term2 * term3
def MatrixGamma(symbol, alpha, beta, scale_matrix):
"""
Creates a random variable with Matrix Gamma Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
alpha: Positive Real number
Shape Parameter
beta: Positive Real number
Scale Parameter
scale_matrix: Positive definite real square matrix
Scale Matrix
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import density, MatrixGamma
>>> from sympy import MatrixSymbol, symbols
>>> a, b = symbols('a b', positive=True)
>>> M = MatrixGamma('M', a, b, [[2, 1], [1, 2]])
>>> X = MatrixSymbol('X', 2, 2)
>>> density(M)(X).doit()
exp(Trace(Matrix([
[-2/3, 1/3],
[ 1/3, -2/3]])*X)/b)*Determinant(X)**(a - 3/2)/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2))
>>> density(M)([[1, 0], [0, 1]]).doit()
exp(-4/(3*b))/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_gamma_distribution
"""
if isinstance(scale_matrix, list):
scale_matrix = ImmutableMatrix(scale_matrix)
return rv(symbol, MatrixGammaDistribution, (alpha, beta, scale_matrix))
#-------------------------------------------------------------------------------
# Wishart Distribution ---------------------------------------------------------
class WishartDistribution(MatrixDistribution):
_argnames = ('n', 'scale_matrix')
@staticmethod
def check(n, scale_matrix):
if not isinstance(scale_matrix, MatrixSymbol):
_value_check(scale_matrix.is_positive_definite, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix.is_square, "Should "
"be square matrix")
_value_check(n.is_positive, "Shape parameter should be positive.")
@property
def set(self):
k = self.scale_matrix.shape[0]
return MatrixSet(k, k, S.Reals)
@property
def dimension(self):
return self.scale_matrix.shape
def pdf(self, x):
n, scale_matrix = self.n, self.scale_matrix
p = scale_matrix.shape[0]
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
sigma_inv_x = - Inverse(scale_matrix)*x / S(2)
term1 = exp(Trace(sigma_inv_x))/((2**(p*n/S(2))) * multigamma(n/S(2), p))
term2 = (Determinant(scale_matrix))**(-n/S(2))
term3 = (Determinant(x))**(S(n - p - 1)/2)
return term1 * term2 * term3
def Wishart(symbol, n, scale_matrix):
"""
Creates a random variable with Wishart Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
n: Positive Real number
Represents degrees of freedom
scale_matrix: Positive definite real square matrix
Scale Matrix
Returns
=======
RandomSymbol
Examples
========
>>> from sympy.stats import density, Wishart
>>> from sympy import MatrixSymbol, symbols
>>> n = symbols('n', positive=True)
>>> W = Wishart('W', n, [[2, 1], [1, 2]])
>>> X = MatrixSymbol('X', 2, 2)
>>> density(W)(X).doit()
exp(Trace(Matrix([
[-1/3, 1/6],
[ 1/6, -1/3]])*X))*Determinant(X)**(n/2 - 3/2)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))
>>> density(W)([[1, 0], [0, 1]]).doit()
exp(-2/3)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Wishart_distribution
"""
if isinstance(scale_matrix, list):
scale_matrix = ImmutableMatrix(scale_matrix)
return rv(symbol, WishartDistribution, (n, scale_matrix))
#-------------------------------------------------------------------------------
# Matrix Normal distribution ---------------------------------------------------
class MatrixNormalDistribution(MatrixDistribution):
_argnames = ('location_matrix', 'scale_matrix_1', 'scale_matrix_2')
@staticmethod
def check(location_matrix, scale_matrix_1, scale_matrix_2):
if not isinstance(scale_matrix_1, MatrixSymbol):
_value_check(scale_matrix_1.is_positive_definite, "The shape "
"matrix must be positive definite.")
if not isinstance(scale_matrix_2, MatrixSymbol):
_value_check(scale_matrix_2.is_positive_definite, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix_1.is_square, "Scale matrix 1 should be "
"be square matrix")
_value_check(scale_matrix_2.is_square, "Scale matrix 2 should be "
"be square matrix")
n = location_matrix.shape[0]
p = location_matrix.shape[1]
_value_check(scale_matrix_1.shape[0] == n, "Scale matrix 1 should be"
" of shape %s x %s"% (str(n), str(n)))
_value_check(scale_matrix_2.shape[0] == p, "Scale matrix 2 should be"
" of shape %s x %s"% (str(p), str(p)))
@property
def set(self):
n, p = self.location_matrix.shape
return MatrixSet(n, p, S.Reals)
@property
def dimension(self):
return self.location_matrix.shape
def pdf(self, x):
M, U, V = self.location_matrix, self.scale_matrix_1, self.scale_matrix_2
n, p = M.shape
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
term1 = Inverse(V)*Transpose(x - M)*Inverse(U)*(x - M)
num = exp(-Trace(term1)/S(2))
den = (2*pi)**(S(n*p)/2) * Determinant(U)**S(p)/2 * Determinant(V)**S(n)/2
return num/den
def MatrixNormal(symbol, location_matrix, scale_matrix_1, scale_matrix_2):
"""
Creates a random variable with Matrix Normal Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
location_matrix: Real ``n x p`` matrix
Represents degrees of freedom
scale_matrix_1: Positive definite matrix
Scale Matrix of shape ``n x n``
scale_matrix_2: Positive definite matrix
Scale Matrix of shape ``p x p``
Returns
=======
RandomSymbol
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.stats import density, MatrixNormal
>>> M = MatrixNormal('M', [[1, 2]], [1], [[1, 0], [0, 1]])
>>> X = MatrixSymbol('X', 1, 2)
>>> density(M)(X).doit()
2*exp(-Trace((Matrix([
[-1],
[-2]]) + X.T)*(Matrix([[-1, -2]]) + X))/2)/pi
>>> density(M)([[3, 4]]).doit()
2*exp(-4)/pi
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_normal_distribution
"""
if isinstance(location_matrix, list):
location_matrix = ImmutableMatrix(location_matrix)
if isinstance(scale_matrix_1, list):
scale_matrix_1 = ImmutableMatrix(scale_matrix_1)
if isinstance(scale_matrix_2, list):
scale_matrix_2 = ImmutableMatrix(scale_matrix_2)
args = (location_matrix, scale_matrix_1, scale_matrix_2)
return rv(symbol, MatrixNormalDistribution, args)
#-------------------------------------------------------------------------------
# Matrix Student's T distribution ---------------------------------------------------
class MatrixStudentTDistribution(MatrixDistribution):
_argnames = ('nu', 'location_matrix', 'scale_matrix_1', 'scale_matrix_2')
@staticmethod
def check(nu, location_matrix, scale_matrix_1, scale_matrix_2):
if not isinstance(scale_matrix_1, MatrixSymbol):
_value_check(scale_matrix_1.is_positive_definite != False, "The shape "
"matrix must be positive definite.")
if not isinstance(scale_matrix_2, MatrixSymbol):
_value_check(scale_matrix_2.is_positive_definite != False, "The shape "
"matrix must be positive definite.")
_value_check(scale_matrix_1.is_square != False, "Scale matrix 1 should be "
"be square matrix")
_value_check(scale_matrix_2.is_square != False, "Scale matrix 2 should be "
"be square matrix")
n = location_matrix.shape[0]
p = location_matrix.shape[1]
_value_check(scale_matrix_1.shape[0] == p, "Scale matrix 1 should be"
" of shape %s x %s" % (str(p), str(p)))
_value_check(scale_matrix_2.shape[0] == n, "Scale matrix 2 should be"
" of shape %s x %s" % (str(n), str(n)))
_value_check(nu.is_positive != False, "Degrees of freedom must be positive")
@property
def set(self):
n, p = self.location_matrix.shape
return MatrixSet(n, p, S.Reals)
@property
def dimension(self):
return self.location_matrix.shape
def pdf(self, x):
from sympy.matrices.dense import eye
if isinstance(x, list):
x = ImmutableMatrix(x)
if not isinstance(x, (MatrixBase, MatrixSymbol)):
raise ValueError("%s should be an isinstance of Matrix "
"or MatrixSymbol" % str(x))
nu, M, Omega, Sigma = self.nu, self.location_matrix, self.scale_matrix_1, self.scale_matrix_2
n, p = M.shape
K = multigamma((nu + n + p - 1)/2, p) * Determinant(Omega)**(-n/2) * Determinant(Sigma)**(-p/2) \
/ ((pi)**(n*p/2) * multigamma((nu + p - 1)/2, p))
return K * (Determinant(eye(n) + Inverse(Sigma)*(x - M)*Inverse(Omega)*Transpose(x - M))) \
**(-(nu + n + p -1)/2)
def MatrixStudentT(symbol, nu, location_matrix, scale_matrix_1, scale_matrix_2):
"""
Creates a random variable with Matrix Gamma Distribution.
The density of the said distribution can be found at [1].
Parameters
==========
nu: Positive Real number
degrees of freedom
location_matrix: Positive definite real square matrix
Location Matrix of shape ``n x p``
scale_matrix_1: Positive definite real square matrix
Scale Matrix of shape ``p x p``
scale_matrix_2: Positive definite real square matrix
Scale Matrix of shape ``n x n``
Returns
=======
RandomSymbol
Examples
========
>>> from sympy import MatrixSymbol,symbols
>>> from sympy.stats import density, MatrixStudentT
>>> v = symbols('v',positive=True)
>>> M = MatrixStudentT('M', v, [[1, 2]], [[1, 0], [0, 1]], [1])
>>> X = MatrixSymbol('X', 1, 2)
>>> density(M)(X)
gamma(v/2 + 1)*Determinant((Matrix([[-1, -2]]) + X)*(Matrix([
[-1],
[-2]]) + X.T) + Matrix([[1]]))**(-v/2 - 1)/(pi**1.0*gamma(v/2)*Determinant(Matrix([[1]]))**1.0*Determinant(Matrix([
[1, 0],
[0, 1]]))**0.5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_t-distribution
"""
if isinstance(location_matrix, list):
location_matrix = ImmutableMatrix(location_matrix)
if isinstance(scale_matrix_1, list):
scale_matrix_1 = ImmutableMatrix(scale_matrix_1)
if isinstance(scale_matrix_2, list):
scale_matrix_2 = ImmutableMatrix(scale_matrix_2)
args = (nu, location_matrix, scale_matrix_1, scale_matrix_2)
return rv(symbol, MatrixStudentTDistribution, args)
|
fb4c343b46e42cbf98a428e01fd2f6e8ead045e808149f3d4c88fa09ae22b898 | """
Main Random Variables Module
Defines abstract random variable type.
Contains interfaces for probability space object (PSpace) as well as standard
operators, P, E, sample, density, where, quantile
See Also
========
sympy.stats.crv
sympy.stats.frv
sympy.stats.rv_interface
"""
from functools import singledispatch
from math import prod
from typing import Tuple as tTuple
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import (Function, Lambda)
from sympy.core.logic import fuzzy_and
from sympy.core.mul import Mul
from sympy.core.relational import (Eq, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.logic.boolalg import (And, Or)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.tensor.indexed import Indexed
from sympy.utilities.lambdify import lambdify
from sympy.core.relational import Relational
from sympy.core.sympify import _sympify
from sympy.sets.sets import FiniteSet, ProductSet, Intersection
from sympy.solvers.solveset import solveset
from sympy.external import import_module
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import iterable
x = Symbol('x')
@singledispatch
def is_random(x):
return False
@is_random.register(Basic)
def _(x):
atoms = x.free_symbols
return any(is_random(i) for i in atoms)
class RandomDomain(Basic):
"""
Represents a set of variables and the values which they can take.
See Also
========
sympy.stats.crv.ContinuousDomain
sympy.stats.frv.FiniteDomain
"""
is_ProductDomain = False
is_Finite = False
is_Continuous = False
is_Discrete = False
def __new__(cls, symbols, *args):
symbols = FiniteSet(*symbols)
return Basic.__new__(cls, symbols, *args)
@property
def symbols(self):
return self.args[0]
@property
def set(self):
return self.args[1]
def __contains__(self, other):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SingleDomain(RandomDomain):
"""
A single variable and its domain.
See Also
========
sympy.stats.crv.SingleContinuousDomain
sympy.stats.frv.SingleFiniteDomain
"""
def __new__(cls, symbol, set):
assert symbol.is_Symbol
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
def __contains__(self, other):
if len(other) != 1:
return False
sym, val = tuple(other)[0]
return self.symbol == sym and val in self.set
class MatrixDomain(RandomDomain):
"""
A Random Matrix variable and its domain.
"""
def __new__(cls, symbol, set):
symbol, set = _symbol_converter(symbol), _sympify(set)
return Basic.__new__(cls, symbol, set)
@property
def symbol(self):
return self.args[0]
@property
def symbols(self):
return FiniteSet(self.symbol)
class ConditionalDomain(RandomDomain):
"""
A RandomDomain with an attached condition.
See Also
========
sympy.stats.crv.ConditionalContinuousDomain
sympy.stats.frv.ConditionalFiniteDomain
"""
def __new__(cls, fulldomain, condition):
condition = condition.xreplace({rs: rs.symbol
for rs in random_symbols(condition)})
return Basic.__new__(cls, fulldomain, condition)
@property
def symbols(self):
return self.fulldomain.symbols
@property
def fulldomain(self):
return self.args[0]
@property
def condition(self):
return self.args[1]
@property
def set(self):
raise NotImplementedError("Set of Conditional Domain not Implemented")
def as_boolean(self):
return And(self.fulldomain.as_boolean(), self.condition)
class PSpace(Basic):
"""
A Probability Space.
Explanation
===========
Probability Spaces encode processes that equal different values
probabilistically. These underly Random Symbols which occur in SymPy
expressions and contain the mechanics to evaluate statistical statements.
See Also
========
sympy.stats.crv.ContinuousPSpace
sympy.stats.frv.FinitePSpace
"""
is_Finite = None # type: bool
is_Continuous = None # type: bool
is_Discrete = None # type: bool
is_real = None # type: bool
@property
def domain(self):
return self.args[0]
@property
def density(self):
return self.args[1]
@property
def values(self):
return frozenset(RandomSymbol(sym, self) for sym in self.symbols)
@property
def symbols(self):
return self.domain.symbols
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self, size=(), library='scipy', seed=None):
raise NotImplementedError()
def probability(self, condition):
raise NotImplementedError()
def compute_expectation(self, expr):
raise NotImplementedError()
class SinglePSpace(PSpace):
"""
Represents the probabilities of a set of random events that can be
attributed to a single variable/symbol.
"""
def __new__(cls, s, distribution):
s = _symbol_converter(s)
return Basic.__new__(cls, s, distribution)
@property
def value(self):
return RandomSymbol(self.symbol, self)
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def pdf(self):
return self.distribution.pdf(self.symbol)
class RandomSymbol(Expr):
"""
Random Symbols represent ProbabilitySpaces in SymPy Expressions.
In principle they can take on any value that their symbol can take on
within the associated PSpace with probability determined by the PSpace
Density.
Explanation
===========
Random Symbols contain pspace and symbol properties.
The pspace property points to the represented Probability Space
The symbol is a standard SymPy Symbol that is used in that probability space
for example in defining a density.
You can form normal SymPy expressions using RandomSymbols and operate on
those expressions with the Functions
E - Expectation of a random expression
P - Probability of a condition
density - Probability Density of an expression
given - A new random expression (with new random symbols) given a condition
An object of the RandomSymbol type should almost never be created by the
user. They tend to be created instead by the PSpace class's value method.
Traditionally a user does not even do this but instead calls one of the
convenience functions Normal, Exponential, Coin, Die, FiniteRV, etc....
"""
def __new__(cls, symbol, pspace=None):
from sympy.stats.joint_rv import JointRandomSymbol
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
symbol = _symbol_converter(symbol)
if not isinstance(pspace, PSpace):
raise TypeError("pspace variable should be of type PSpace")
if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace):
cls = RandomSymbol
return Basic.__new__(cls, symbol, pspace)
is_finite = True
is_symbol = True
is_Atom = True
_diff_wrt = True
pspace = property(lambda self: self.args[1])
symbol = property(lambda self: self.args[0])
name = property(lambda self: self.symbol.name)
def _eval_is_positive(self):
return self.symbol.is_positive
def _eval_is_integer(self):
return self.symbol.is_integer
def _eval_is_real(self):
return self.symbol.is_real or self.pspace.is_real
@property
def is_commutative(self):
return self.symbol.is_commutative
@property
def free_symbols(self):
return {self}
class RandomIndexedSymbol(RandomSymbol):
def __new__(cls, idx_obj, pspace=None):
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
if not isinstance(idx_obj, (Indexed, Function)):
raise TypeError("An Function or Indexed object is expected not %s"%(idx_obj))
return Basic.__new__(cls, idx_obj, pspace)
symbol = property(lambda self: self.args[0])
name = property(lambda self: str(self.args[0]))
@property
def key(self):
if isinstance(self.symbol, Indexed):
return self.symbol.args[1]
elif isinstance(self.symbol, Function):
return self.symbol.args[0]
@property
def free_symbols(self):
if self.key.free_symbols:
free_syms = self.key.free_symbols
free_syms.add(self)
return free_syms
return {self}
@property
def pspace(self):
return self.args[1]
class RandomMatrixSymbol(RandomSymbol, MatrixSymbol): # type: ignore
def __new__(cls, symbol, n, m, pspace=None):
n, m = _sympify(n), _sympify(m)
symbol = _symbol_converter(symbol)
if pspace is None:
# Allow single arg, representing pspace == PSpace()
pspace = PSpace()
return Basic.__new__(cls, symbol, n, m, pspace)
symbol = property(lambda self: self.args[0])
pspace = property(lambda self: self.args[3])
class ProductPSpace(PSpace):
"""
Abstract class for representing probability spaces with multiple random
variables.
See Also
========
sympy.stats.rv.IndependentProductPSpace
sympy.stats.joint_rv.JointPSpace
"""
pass
class IndependentProductPSpace(ProductPSpace):
"""
A probability space resulting from the merger of two independent probability
spaces.
Often created using the function, pspace.
"""
def __new__(cls, *spaces):
rs_space_dict = {}
for space in spaces:
for value in space.values:
rs_space_dict[value] = space
symbols = FiniteSet(*[val.symbol for val in rs_space_dict.keys()])
# Overlapping symbols
from sympy.stats.joint_rv import MarginalDistribution
from sympy.stats.compound_rv import CompoundDistribution
if len(symbols) < sum(len(space.symbols) for space in spaces if not
isinstance(space.distribution, (
CompoundDistribution, MarginalDistribution))):
raise ValueError("Overlapping Random Variables")
if all(space.is_Finite for space in spaces):
from sympy.stats.frv import ProductFinitePSpace
cls = ProductFinitePSpace
obj = Basic.__new__(cls, *FiniteSet(*spaces))
return obj
@property
def pdf(self):
p = Mul(*[space.pdf for space in self.spaces])
return p.subs({rv: rv.symbol for rv in self.values})
@property
def rs_space_dict(self):
d = {}
for space in self.spaces:
for value in space.values:
d[value] = space
return d
@property
def symbols(self):
return FiniteSet(*[val.symbol for val in self.rs_space_dict.keys()])
@property
def spaces(self):
return FiniteSet(*self.args)
@property
def values(self):
return sumsets(space.values for space in self.spaces)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
rvs = rvs or self.values
rvs = frozenset(rvs)
for space in self.spaces:
expr = space.compute_expectation(expr, rvs & space.values, evaluate=False, **kwargs)
if evaluate and hasattr(expr, 'doit'):
return expr.doit(**kwargs)
return expr
@property
def domain(self):
return ProductDomain(*[space.domain for space in self.spaces])
@property
def density(self):
raise NotImplementedError("Density not available for ProductSpaces")
def sample(self, size=(), library='scipy', seed=None):
return {k: v for space in self.spaces
for k, v in space.sample(size=size, library=library, seed=seed).items()}
def probability(self, condition, **kwargs):
cond_inv = False
if isinstance(condition, Ne):
condition = Eq(condition.args[0], condition.args[1])
cond_inv = True
elif isinstance(condition, And): # they are independent
return Mul(*[self.probability(arg) for arg in condition.args])
elif isinstance(condition, Or): # they are independent
return Add(*[self.probability(arg) for arg in condition.args])
expr = condition.lhs - condition.rhs
rvs = random_symbols(expr)
dens = self.compute_density(expr)
if any(pspace(rv).is_Continuous for rv in rvs):
from sympy.stats.crv import SingleContinuousPSpace
from sympy.stats.crv_types import ContinuousDistributionHandmade
if expr in self.values:
# Marginalize all other random symbols out of the density
randomsymbols = tuple(set(self.values) - frozenset([expr]))
symbols = tuple(rs.symbol for rs in randomsymbols)
pdf = self.domain.integrate(self.pdf, symbols, **kwargs)
return Lambda(expr.symbol, pdf)
dens = ContinuousDistributionHandmade(dens)
z = Dummy('z', real=True)
space = SingleContinuousPSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
else:
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import DiscreteDistributionHandmade
dens = DiscreteDistributionHandmade(dens)
z = Dummy('z', integer=True)
space = SingleDiscretePSpace(z, dens)
result = space.probability(condition.__class__(space.value, 0))
return result if not cond_inv else S.One - result
def compute_density(self, expr, **kwargs):
rvs = random_symbols(expr)
if any(pspace(rv).is_Continuous for rv in rvs):
z = Dummy('z', real=True)
expr = self.compute_expectation(DiracDelta(expr - z),
**kwargs)
else:
z = Dummy('z', integer=True)
expr = self.compute_expectation(KroneckerDelta(expr, z),
**kwargs)
return Lambda(z, expr)
def compute_cdf(self, expr, **kwargs):
raise ValueError("CDF not well defined on multivariate expressions")
def conditional_space(self, condition, normalize=True, **kwargs):
rvs = random_symbols(condition)
condition = condition.xreplace({rv: rv.symbol for rv in self.values})
pspaces = [pspace(rv) for rv in rvs]
if any(ps.is_Continuous for ps in pspaces):
from sympy.stats.crv import (ConditionalContinuousDomain,
ContinuousPSpace)
space = ContinuousPSpace
domain = ConditionalContinuousDomain(self.domain, condition)
elif any(ps.is_Discrete for ps in pspaces):
from sympy.stats.drv import (ConditionalDiscreteDomain,
DiscretePSpace)
space = DiscretePSpace
domain = ConditionalDiscreteDomain(self.domain, condition)
elif all(ps.is_Finite for ps in pspaces):
from sympy.stats.frv import FinitePSpace
return FinitePSpace.conditional_space(self, condition)
if normalize:
replacement = {rv: Dummy(str(rv)) for rv in self.symbols}
norm = domain.compute_expectation(self.pdf, **kwargs)
pdf = self.pdf / norm.xreplace(replacement)
# XXX: Converting symbols from set to tuple. The order matters to
# Lambda though so we shouldn't be starting with a set here...
density = Lambda(tuple(domain.symbols), pdf)
return space(domain, density)
class ProductDomain(RandomDomain):
"""
A domain resulting from the merger of two independent domains.
See Also
========
sympy.stats.crv.ProductContinuousDomain
sympy.stats.frv.ProductFiniteDomain
"""
is_ProductDomain = True
def __new__(cls, *domains):
# Flatten any product of products
domains2 = []
for domain in domains:
if not domain.is_ProductDomain:
domains2.append(domain)
else:
domains2.extend(domain.domains)
domains2 = FiniteSet(*domains2)
if all(domain.is_Finite for domain in domains2):
from sympy.stats.frv import ProductFiniteDomain
cls = ProductFiniteDomain
if all(domain.is_Continuous for domain in domains2):
from sympy.stats.crv import ProductContinuousDomain
cls = ProductContinuousDomain
if all(domain.is_Discrete for domain in domains2):
from sympy.stats.drv import ProductDiscreteDomain
cls = ProductDiscreteDomain
return Basic.__new__(cls, *domains2)
@property
def sym_domain_dict(self):
return {symbol: domain for domain in self.domains
for symbol in domain.symbols}
@property
def symbols(self):
return FiniteSet(*[sym for domain in self.domains
for sym in domain.symbols])
@property
def domains(self):
return self.args
@property
def set(self):
return ProductSet(*(domain.set for domain in self.domains))
def __contains__(self, other):
# Split event into each subdomain
for domain in self.domains:
# Collect the parts of this event which associate to this domain
elem = frozenset([item for item in other
if sympify(domain.symbols.contains(item[0]))
is S.true])
# Test this sub-event
if elem not in domain:
return False
# All subevents passed
return True
def as_boolean(self):
return And(*[domain.as_boolean() for domain in self.domains])
def random_symbols(expr):
"""
Returns all RandomSymbols within a SymPy Expression.
"""
atoms = getattr(expr, 'atoms', None)
if atoms is not None:
comp = lambda rv: rv.symbol.name
l = list(atoms(RandomSymbol))
return sorted(l, key=comp)
else:
return []
def pspace(expr):
"""
Returns the underlying Probability Space of a random expression.
For internal use.
Examples
========
>>> from sympy.stats import pspace, Normal
>>> X = Normal('X', 0, 1)
>>> pspace(2*X + 1) == X.pspace
True
"""
expr = sympify(expr)
if isinstance(expr, RandomSymbol) and expr.pspace is not None:
return expr.pspace
if expr.has(RandomMatrixSymbol):
rm = list(expr.atoms(RandomMatrixSymbol))[0]
return rm.pspace
rvs = random_symbols(expr)
if not rvs:
raise ValueError("Expression containing Random Variable expected, not %s" % (expr))
# If only one space present
if all(rv.pspace == rvs[0].pspace for rv in rvs):
return rvs[0].pspace
from sympy.stats.compound_rv import CompoundPSpace
from sympy.stats.stochastic_process import StochasticPSpace
for rv in rvs:
if isinstance(rv.pspace, (CompoundPSpace, StochasticPSpace)):
return rv.pspace
# Otherwise make a product space
return IndependentProductPSpace(*[rv.pspace for rv in rvs])
def sumsets(sets):
"""
Union of sets
"""
return frozenset().union(*sets)
def rs_swap(a, b):
"""
Build a dictionary to swap RandomSymbols based on their underlying symbol.
i.e.
if ``X = ('x', pspace1)``
and ``Y = ('x', pspace2)``
then ``X`` and ``Y`` match and the key, value pair
``{X:Y}`` will appear in the result
Inputs: collections a and b of random variables which share common symbols
Output: dict mapping RVs in a to RVs in b
"""
d = {}
for rsa in a:
d[rsa] = [rsb for rsb in b if rsa.symbol == rsb.symbol][0]
return d
def given(expr, condition=None, **kwargs):
r""" Conditional Random Expression.
Explanation
===========
From a random expression and a condition on that expression creates a new
probability space from the condition and returns the same expression on that
conditional probability space.
Examples
========
>>> from sympy.stats import given, density, Die
>>> X = Die('X', 6)
>>> Y = given(X, X > 3)
>>> density(Y).dict
{4: 1/3, 5: 1/3, 6: 1/3}
Following convention, if the condition is a random symbol then that symbol
is considered fixed.
>>> from sympy.stats import Normal
>>> from sympy import pprint
>>> from sympy.abc import z
>>> X = Normal('X', 0, 1)
>>> Y = Normal('Y', 0, 1)
>>> pprint(density(X + Y, Y)(z), use_unicode=False)
2
-(-Y + z)
-----------
___ 2
\/ 2 *e
------------------
____
2*\/ pi
"""
if not is_random(condition) or pspace_independent(expr, condition):
return expr
if isinstance(condition, RandomSymbol):
condition = Eq(condition, condition.symbol)
condsymbols = random_symbols(condition)
if (isinstance(condition, Eq) and len(condsymbols) == 1 and
not isinstance(pspace(expr).domain, ConditionalDomain)):
rv = tuple(condsymbols)[0]
results = solveset(condition, rv)
if isinstance(results, Intersection) and S.Reals in results.args:
results = list(results.args[1])
sums = 0
for res in results:
temp = expr.subs(rv, res)
if temp == True:
return True
if temp != False:
# XXX: This seems nonsensical but preserves existing behaviour
# after the change that Relational is no longer a subclass of
# Expr. Here expr is sometimes Relational and sometimes Expr
# but we are trying to add them with +=. This needs to be
# fixed somehow.
if sums == 0 and isinstance(expr, Relational):
sums = expr.subs(rv, res)
else:
sums += expr.subs(rv, res)
if sums == 0:
return False
return sums
# Get full probability space of both the expression and the condition
fullspace = pspace(Tuple(expr, condition))
# Build new space given the condition
space = fullspace.conditional_space(condition, **kwargs)
# Dictionary to swap out RandomSymbols in expr with new RandomSymbols
# That point to the new conditional space
swapdict = rs_swap(fullspace.values, space.values)
# Swap random variables in the expression
expr = expr.xreplace(swapdict)
return expr
def expectation(expr, condition=None, numsamples=None, evaluate=True, **kwargs):
"""
Returns the expected value of a random expression.
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the expectation value
given : Expr containing RandomSymbols
A conditional expression. E(X, X>0) is expectation of X given X > 0
numsamples : int
Enables sampling and approximates the expectation with this many samples
evalf : Bool (defaults to True)
If sampling return a number rather than a complex expression
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import E, Die
>>> X = Die('X', 6)
>>> E(X)
7/2
>>> E(2*X + 1)
8
>>> E(X, X > 3) # Expectation of X given that it is above 3
5
"""
if not is_random(expr): # expr isn't random?
return expr
kwargs['numsamples'] = numsamples
from sympy.stats.symbolic_probability import Expectation
if evaluate:
return Expectation(expr, condition).doit(**kwargs)
return Expectation(expr, condition)
def probability(condition, given_condition=None, numsamples=None,
evaluate=True, **kwargs):
"""
Probability that a condition is true, optionally given a second condition.
Parameters
==========
condition : Combination of Relationals containing RandomSymbols
The condition of which you want to compute the probability
given_condition : Combination of Relationals containing RandomSymbols
A conditional expression. P(X > 1, X > 0) is expectation of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the probability with this many samples
evaluate : Bool (defaults to True)
In case of continuous systems return unevaluated integral
Examples
========
>>> from sympy.stats import P, Die
>>> from sympy import Eq
>>> X, Y = Die('X', 6), Die('Y', 6)
>>> P(X > 3)
1/2
>>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
1/4
>>> P(X > Y)
5/12
"""
kwargs['numsamples'] = numsamples
from sympy.stats.symbolic_probability import Probability
if evaluate:
return Probability(condition, given_condition).doit(**kwargs)
return Probability(condition, given_condition)
class Density(Basic):
expr = property(lambda self: self.args[0])
def __new__(cls, expr, condition = None):
expr = _sympify(expr)
if condition is None:
obj = Basic.__new__(cls, expr)
else:
condition = _sympify(condition)
obj = Basic.__new__(cls, expr, condition)
return obj
@property
def condition(self):
if len(self.args) > 1:
return self.args[1]
else:
return None
def doit(self, evaluate=True, **kwargs):
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.stats.joint_rv import JointPSpace
from sympy.stats.matrix_distributions import MatrixPSpace
from sympy.stats.compound_rv import CompoundPSpace
from sympy.stats.frv import SingleFiniteDistribution
expr, condition = self.expr, self.condition
if isinstance(expr, SingleFiniteDistribution):
return expr.dict
if condition is not None:
# Recompute on new conditional expr
expr = given(expr, condition, **kwargs)
if not random_symbols(expr):
return Lambda(x, DiracDelta(x - expr))
if isinstance(expr, RandomSymbol):
if isinstance(expr.pspace, (SinglePSpace, JointPSpace, MatrixPSpace)) and \
hasattr(expr.pspace, 'distribution'):
return expr.pspace.distribution
elif isinstance(expr.pspace, RandomMatrixPSpace):
return expr.pspace.model
if isinstance(pspace(expr), CompoundPSpace):
kwargs['compound_evaluate'] = evaluate
result = pspace(expr).compute_density(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def density(expr, condition=None, evaluate=True, numsamples=None, **kwargs):
"""
Probability density of a random expression, optionally given a second
condition.
Explanation
===========
This density will take on different forms for different types of
probability spaces. Discrete variables produce Dicts. Continuous
variables produce Lambdas.
Parameters
==========
expr : Expr containing RandomSymbols
The expression of which you want to compute the density value
condition : Relational containing RandomSymbols
A conditional expression. density(X > 1, X > 0) is density of X > 1
given X > 0
numsamples : int
Enables sampling and approximates the density with this many samples
Examples
========
>>> from sympy.stats import density, Die, Normal
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> D = Die('D', 6)
>>> X = Normal(x, 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> density(2*D).dict
{2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6}
>>> density(X)(x)
sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))
"""
if numsamples:
return sampling_density(expr, condition, numsamples=numsamples,
**kwargs)
return Density(expr, condition).doit(evaluate=evaluate, **kwargs)
def cdf(expr, condition=None, evaluate=True, **kwargs):
"""
Cumulative Distribution Function of a random expression.
optionally given a second condition.
Explanation
===========
This density will take on different forms for different types of
probability spaces.
Discrete variables produce Dicts.
Continuous variables produce Lambdas.
Examples
========
>>> from sympy.stats import density, Die, Normal, cdf
>>> D = Die('D', 6)
>>> X = Normal('X', 0, 1)
>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> cdf(D)
{1: 1/6, 2: 1/3, 3: 1/2, 4: 2/3, 5: 5/6, 6: 1}
>>> cdf(3*D, D > 2)
{9: 1/4, 12: 1/2, 15: 3/4, 18: 1}
>>> cdf(X)
Lambda(_z, erf(sqrt(2)*_z/2)/2 + 1/2)
"""
if condition is not None: # If there is a condition
# Recompute on new conditional expr
return cdf(given(expr, condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
result = pspace(expr).compute_cdf(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def characteristic_function(expr, condition=None, evaluate=True, **kwargs):
"""
Characteristic function of a random expression, optionally given a second condition.
Returns a Lambda.
Examples
========
>>> from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function
>>> X = Normal('X', 0, 1)
>>> characteristic_function(X)
Lambda(_t, exp(-_t**2/2))
>>> Y = DiscreteUniform('Y', [1, 2, 7])
>>> characteristic_function(Y)
Lambda(_t, exp(7*_t*I)/3 + exp(2*_t*I)/3 + exp(_t*I)/3)
>>> Z = Poisson('Z', 2)
>>> characteristic_function(Z)
Lambda(_t, exp(2*exp(_t*I) - 2))
"""
if condition is not None:
return characteristic_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_characteristic_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def moment_generating_function(expr, condition=None, evaluate=True, **kwargs):
if condition is not None:
return moment_generating_function(given(expr, condition, **kwargs), **kwargs)
result = pspace(expr).compute_moment_generating_function(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def where(condition, given_condition=None, **kwargs):
"""
Returns the domain where a condition is True.
Examples
========
>>> from sympy.stats import where, Die, Normal
>>> from sympy import And
>>> D1, D2 = Die('a', 6), Die('b', 6)
>>> a, b = D1.symbol, D2.symbol
>>> X = Normal('x', 0, 1)
>>> where(X**2<1)
Domain: (-1 < x) & (x < 1)
>>> where(X**2<1).set
Interval.open(-1, 1)
>>> where(And(D1<=D2, D2<3))
Domain: (Eq(a, 1) & Eq(b, 1)) | (Eq(a, 1) & Eq(b, 2)) | (Eq(a, 2) & Eq(b, 2))
"""
if given_condition is not None: # If there is a condition
# Recompute on new conditional expr
return where(given(condition, given_condition, **kwargs), **kwargs)
# Otherwise pass work off to the ProbabilitySpace
return pspace(condition).where(condition, **kwargs)
@doctest_depends_on(modules=('scipy',))
def sample(expr, condition=None, size=(), library='scipy',
numsamples=1, seed=None, **kwargs):
"""
A realization of the random expression.
Parameters
==========
expr : Expression of random variables
Expression from which sample is extracted
condition : Expr containing RandomSymbols
A conditional expression
size : int, tuple
Represents size of each sample in numsamples
library : str
- 'scipy' : Sample using scipy
- 'numpy' : Sample using numpy
- 'pymc' : Sample using PyMC
Choose any of the available options to sample from as string,
by default is 'scipy'
numsamples : int
Number of samples, each with size as ``size``.
.. deprecated:: 1.9
The ``numsamples`` parameter is deprecated and is only provided for
compatibility with v1.8. Use a list comprehension or an additional
dimension in ``size`` instead. See
:ref:`deprecated-sympy-stats-numsamples` for details.
seed :
An object to be used as seed by the given external library for sampling `expr`.
Following is the list of possible types of object for the supported libraries,
- 'scipy': int, numpy.random.RandomState, numpy.random.Generator
- 'numpy': int, numpy.random.RandomState, numpy.random.Generator
- 'pymc': int
Optional, by default None, in which case seed settings
related to the given library will be used.
No modifications to environment's global seed settings
are done by this argument.
Returns
=======
sample: float/list/numpy.ndarray
one sample or a collection of samples of the random expression.
- sample(X) returns float/numpy.float64/numpy.int64 object.
- sample(X, size=int/tuple) returns numpy.ndarray object.
Examples
========
>>> from sympy.stats import Die, sample, Normal, Geometric
>>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) # Finite Random Variable
>>> die_roll = sample(X + Y + Z)
>>> die_roll # doctest: +SKIP
3
>>> N = Normal('N', 3, 4) # Continuous Random Variable
>>> samp = sample(N)
>>> samp in N.pspace.domain.set
True
>>> samp = sample(N, N>0)
>>> samp > 0
True
>>> samp_list = sample(N, size=4)
>>> [sam in N.pspace.domain.set for sam in samp_list]
[True, True, True, True]
>>> sample(N, size = (2,3)) # doctest: +SKIP
array([[5.42519758, 6.40207856, 4.94991743],
[1.85819627, 6.83403519, 1.9412172 ]])
>>> G = Geometric('G', 0.5) # Discrete Random Variable
>>> samp_list = sample(G, size=3)
>>> samp_list # doctest: +SKIP
[1, 3, 2]
>>> [sam in G.pspace.domain.set for sam in samp_list]
[True, True, True]
>>> MN = Normal("MN", [3, 4], [[2, 1], [1, 2]]) # Joint Random Variable
>>> samp_list = sample(MN, size=4)
>>> samp_list # doctest: +SKIP
[array([2.85768055, 3.38954165]),
array([4.11163337, 4.3176591 ]),
array([0.79115232, 1.63232916]),
array([4.01747268, 3.96716083])]
>>> [tuple(sam) in MN.pspace.domain.set for sam in samp_list]
[True, True, True, True]
.. versionchanged:: 1.7.0
sample used to return an iterator containing the samples instead of value.
.. versionchanged:: 1.9.0
sample returns values or array of values instead of an iterator and numsamples is deprecated.
"""
iterator = sample_iter(expr, condition, size=size, library=library,
numsamples=numsamples, seed=seed)
if numsamples != 1:
sympy_deprecation_warning(
f"""
The numsamples parameter to sympy.stats.sample() is deprecated.
Either use a list comprehension, like
[sample(...) for i in range({numsamples})]
or add a dimension to size, like
sample(..., size={(numsamples,) + size})
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-sympy-stats-numsamples",
)
return [next(iterator) for i in range(numsamples)]
return next(iterator)
def quantile(expr, evaluate=True, **kwargs):
r"""
Return the :math:`p^{th}` order quantile of a probability distribution.
Explanation
===========
Quantile is defined as the value at which the probability of the random
variable is less than or equal to the given probability.
.. math::
Q(p) = \inf\{x \in (-\infty, \infty) : p \le F(x)\}
Examples
========
>>> from sympy.stats import quantile, Die, Exponential
>>> from sympy import Symbol, pprint
>>> p = Symbol("p")
>>> l = Symbol("lambda", positive=True)
>>> X = Exponential("x", l)
>>> quantile(X)(p)
-log(1 - p)/lambda
>>> D = Die("d", 6)
>>> pprint(quantile(D)(p), use_unicode=False)
/nan for Or(p > 1, p < 0)
|
| 1 for p <= 1/6
|
| 2 for p <= 1/3
|
< 3 for p <= 1/2
|
| 4 for p <= 2/3
|
| 5 for p <= 5/6
|
\ 6 for p <= 1
"""
result = pspace(expr).compute_quantile(expr, **kwargs)
if evaluate and hasattr(result, 'doit'):
return result.doit()
else:
return result
def sample_iter(expr, condition=None, size=(), library='scipy',
numsamples=S.Infinity, seed=None, **kwargs):
"""
Returns an iterator of realizations from the expression given a condition.
Parameters
==========
expr: Expr
Random expression to be realized
condition: Expr, optional
A conditional expression
size : int, tuple
Represents size of each sample in numsamples
numsamples: integer, optional
Length of the iterator (defaults to infinity)
seed :
An object to be used as seed by the given external library for sampling `expr`.
Following is the list of possible types of object for the supported libraries,
- 'scipy': int, numpy.random.RandomState, numpy.random.Generator
- 'numpy': int, numpy.random.RandomState, numpy.random.Generator
- 'pymc': int
Optional, by default None, in which case seed settings
related to the given library will be used.
No modifications to environment's global seed settings
are done by this argument.
Examples
========
>>> from sympy.stats import Normal, sample_iter
>>> X = Normal('X', 0, 1)
>>> expr = X*X + 3
>>> iterator = sample_iter(expr, numsamples=3) # doctest: +SKIP
>>> list(iterator) # doctest: +SKIP
[12, 4, 7]
Returns
=======
sample_iter: iterator object
iterator object containing the sample/samples of given expr
See Also
========
sample
sampling_P
sampling_E
"""
from sympy.stats.joint_rv import JointRandomSymbol
if not import_module(library):
raise ValueError("Failed to import %s" % library)
if condition is not None:
ps = pspace(Tuple(expr, condition))
else:
ps = pspace(expr)
rvs = list(ps.values)
if isinstance(expr, JointRandomSymbol):
expr = expr.subs({expr: RandomSymbol(expr.symbol, expr.pspace)})
else:
sub = {}
for arg in expr.args:
if isinstance(arg, JointRandomSymbol):
sub[arg] = RandomSymbol(arg.symbol, arg.pspace)
expr = expr.subs(sub)
def fn_subs(*args):
return expr.subs({rv: arg for rv, arg in zip(rvs, args)})
def given_fn_subs(*args):
if condition is not None:
return condition.subs({rv: arg for rv, arg in zip(rvs, args)})
return False
if library in ('pymc', 'pymc3'):
# Currently unable to lambdify in pymc
# TODO : Remove when lambdify accepts 'pymc' as module
fn = lambdify(rvs, expr, **kwargs)
else:
fn = lambdify(rvs, expr, modules=library, **kwargs)
if condition is not None:
given_fn = lambdify(rvs, condition, **kwargs)
def return_generator_infinite():
count = 0
_size = (1,)+((size,) if isinstance(size, int) else size)
while count < numsamples:
d = ps.sample(size=_size, library=library, seed=seed) # a dictionary that maps RVs to values
args = [d[rv][0] for rv in rvs]
if condition is not None: # Check that these values satisfy the condition
# TODO: Replace the try-except block with only given_fn(*args)
# once lambdify works with unevaluated SymPy objects.
try:
gd = given_fn(*args)
except (NameError, TypeError):
gd = given_fn_subs(*args)
if gd != True and gd != False:
raise ValueError(
"Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
continue
yield fn(*args)
count += 1
def return_generator_finite():
faulty = True
while faulty:
d = ps.sample(size=(numsamples,) + ((size,) if isinstance(size, int) else size),
library=library, seed=seed) # a dictionary that maps RVs to values
faulty = False
count = 0
while count < numsamples and not faulty:
args = [d[rv][count] for rv in rvs]
if condition is not None: # Check that these values satisfy the condition
# TODO: Replace the try-except block with only given_fn(*args)
# once lambdify works with unevaluated SymPy objects.
try:
gd = given_fn(*args)
except (NameError, TypeError):
gd = given_fn_subs(*args)
if gd != True and gd != False:
raise ValueError(
"Conditions must not contain free symbols")
if not gd: # If the values don't satisfy then try again
faulty = True
count += 1
count = 0
while count < numsamples:
args = [d[rv][count] for rv in rvs]
# TODO: Replace the try-except block with only fn(*args)
# once lambdify works with unevaluated SymPy objects.
try:
yield fn(*args)
except (NameError, TypeError):
yield fn_subs(*args)
count += 1
if numsamples is S.Infinity:
return return_generator_infinite()
return return_generator_finite()
def sample_iter_lambdify(expr, condition=None, size=(),
numsamples=S.Infinity, seed=None, **kwargs):
return sample_iter(expr, condition=condition, size=size,
numsamples=numsamples, seed=seed, **kwargs)
def sample_iter_subs(expr, condition=None, size=(),
numsamples=S.Infinity, seed=None, **kwargs):
return sample_iter(expr, condition=condition, size=size,
numsamples=numsamples, seed=seed, **kwargs)
def sampling_P(condition, given_condition=None, library='scipy', numsamples=1,
evalf=True, seed=None, **kwargs):
"""
Sampling version of P.
See Also
========
P
sampling_E
sampling_density
"""
count_true = 0
count_false = 0
samples = sample_iter(condition, given_condition, library=library,
numsamples=numsamples, seed=seed, **kwargs)
for sample in samples:
if sample:
count_true += 1
else:
count_false += 1
result = S(count_true) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_E(expr, given_condition=None, library='scipy', numsamples=1,
evalf=True, seed=None, **kwargs):
"""
Sampling version of E.
See Also
========
P
sampling_P
sampling_density
"""
samples = list(sample_iter(expr, given_condition, library=library,
numsamples=numsamples, seed=seed, **kwargs))
result = Add(*[samp for samp in samples]) / numsamples
if evalf:
return result.evalf()
else:
return result
def sampling_density(expr, given_condition=None, library='scipy',
numsamples=1, seed=None, **kwargs):
"""
Sampling version of density.
See Also
========
density
sampling_P
sampling_E
"""
results = {}
for result in sample_iter(expr, given_condition, library=library,
numsamples=numsamples, seed=seed, **kwargs):
results[result] = results.get(result, 0) + 1
return results
def dependent(a, b):
"""
Dependence of two random expressions.
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, dependent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> dependent(X, Y)
False
>>> dependent(2*X + Y, -Y)
True
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> dependent(X, Y)
True
See Also
========
independent
"""
if pspace_independent(a, b):
return False
z = Symbol('z', real=True)
# Dependent if density is unchanged when one is given information about
# the other
return (density(a, Eq(b, z)) != density(a) or
density(b, Eq(a, z)) != density(b))
def independent(a, b):
"""
Independence of two random expressions.
Two expressions are independent if knowledge of one does not change
computations on the other.
Examples
========
>>> from sympy.stats import Normal, independent, given
>>> from sympy import Tuple, Eq
>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> independent(X, Y)
True
>>> independent(2*X + Y, -Y)
False
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> independent(X, Y)
False
See Also
========
dependent
"""
return not dependent(a, b)
def pspace_independent(a, b):
"""
Tests for independence between a and b by checking if their PSpaces have
overlapping symbols. This is a sufficient but not necessary condition for
independence and is intended to be used internally.
Notes
=====
pspace_independent(a, b) implies independent(a, b)
independent(a, b) does not imply pspace_independent(a, b)
"""
a_symbols = set(pspace(b).symbols)
b_symbols = set(pspace(a).symbols)
if len(set(random_symbols(a)).intersection(random_symbols(b))) != 0:
return False
if len(a_symbols.intersection(b_symbols)) == 0:
return True
return None
def rv_subs(expr, symbols=None):
"""
Given a random expression replace all random variables with their symbols.
If symbols keyword is given restrict the swap to only the symbols listed.
"""
if symbols is None:
symbols = random_symbols(expr)
if not symbols:
return expr
swapdict = {rv: rv.symbol for rv in symbols}
return expr.subs(swapdict)
class NamedArgsMixin:
_argnames = () # type: tTuple[str, ...]
def __getattr__(self, attr):
try:
return self.args[self._argnames.index(attr)]
except ValueError:
raise AttributeError("'%s' object has no attribute '%s'" % (
type(self).__name__, attr))
class Distribution(Basic):
def sample(self, size=(), library='scipy', seed=None):
""" A random realization from the distribution """
module = import_module(library)
if library in {'scipy', 'numpy', 'pymc3', 'pymc'} and module is None:
raise ValueError("Failed to import %s" % library)
if library == 'scipy':
# scipy does not require map as it can handle using custom distributions.
# However, we will still use a map where we can.
# TODO: do this for drv.py and frv.py if necessary.
# TODO: add more distributions here if there are more
# See links below referring to sections beginning with "A common parametrization..."
# I will remove all these comments if everything is ok.
from sympy.stats.sampling.sample_scipy import do_sample_scipy
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
samps = do_sample_scipy(self, size, rand_state)
elif library == 'numpy':
from sympy.stats.sampling.sample_numpy import do_sample_numpy
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
_size = None if size == () else size
samps = do_sample_numpy(self, _size, rand_state)
elif library in ('pymc', 'pymc3'):
from sympy.stats.sampling.sample_pymc import do_sample_pymc
import logging
logging.getLogger("pymc").setLevel(logging.ERROR)
try:
import pymc
except ImportError:
import pymc3 as pymc
with pymc.Model():
if do_sample_pymc(self):
samps = pymc.sample(draws=prod(size), chains=1, compute_convergence_checks=False,
progressbar=False, random_seed=seed, return_inferencedata=False)[:]['X']
samps = samps.reshape(size)
else:
samps = None
else:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self, library))
def _value_check(condition, message):
"""
Raise a ValueError with message if condition is False, else
return True if all conditions were True, else False.
Examples
========
>>> from sympy.stats.rv import _value_check
>>> from sympy.abc import a, b, c
>>> from sympy import And, Dummy
>>> _value_check(2 < 3, '')
True
Here, the condition is not False, but it does not evaluate to True
so False is returned (but no error is raised). So checking if the
return value is True or False will tell you if all conditions were
evaluated.
>>> _value_check(a < b, '')
False
In this case the condition is False so an error is raised:
>>> r = Dummy(real=True)
>>> _value_check(r < r - 1, 'condition is not true')
Traceback (most recent call last):
...
ValueError: condition is not true
If no condition of many conditions must be False, they can be
checked by passing them as an iterable:
>>> _value_check((a < 0, b < 0, c < 0), '')
False
The iterable can be a generator, too:
>>> _value_check((i < 0 for i in (a, b, c)), '')
False
The following are equivalent to the above but do not pass
an iterable:
>>> all(_value_check(i < 0, '') for i in (a, b, c))
False
>>> _value_check(And(a < 0, b < 0, c < 0), '')
False
"""
if not iterable(condition):
condition = [condition]
truth = fuzzy_and(condition)
if truth == False:
raise ValueError(message)
return truth == True
def _symbol_converter(sym):
"""
Casts the parameter to Symbol if it is 'str'
otherwise no operation is performed on it.
Parameters
==========
sym
The parameter to be converted.
Returns
=======
Symbol
the parameter converted to Symbol.
Raises
======
TypeError
If the parameter is not an instance of both str and
Symbol.
Examples
========
>>> from sympy import Symbol
>>> from sympy.stats.rv import _symbol_converter
>>> s = _symbol_converter('s')
>>> isinstance(s, Symbol)
True
>>> _symbol_converter(1)
Traceback (most recent call last):
...
TypeError: 1 is neither a Symbol nor a string
>>> r = Symbol('r')
>>> isinstance(r, Symbol)
True
"""
if isinstance(sym, str):
sym = Symbol(sym)
if not isinstance(sym, Symbol):
raise TypeError("%s is neither a Symbol nor a string"%(sym))
return sym
def sample_stochastic_process(process):
"""
This function is used to sample from stochastic process.
Parameters
==========
process: StochasticProcess
Process used to extract the samples. It must be an instance of
StochasticProcess
Examples
========
>>> from sympy.stats import sample_stochastic_process, DiscreteMarkovChain
>>> from sympy import Matrix
>>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
>>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
>>> next(sample_stochastic_process(Y)) in Y.state_space
True
>>> next(sample_stochastic_process(Y)) # doctest: +SKIP
0
>>> next(sample_stochastic_process(Y)) # doctest: +SKIP
2
Returns
=======
sample: iterator object
iterator object containing the sample of given process
"""
from sympy.stats.stochastic_process_types import StochasticProcess
if not isinstance(process, StochasticProcess):
raise ValueError("Process must be an instance of Stochastic Process")
return process.sample()
|
0dc8b194ed8c978827c0c9999365537a088756af3c0e42dd425393439ed242d7 | """
Joint Random Variables Module
See Also
========
sympy.stats.rv
sympy.stats.frv
sympy.stats.crv
sympy.stats.drv
"""
from math import prod
from sympy.core.basic import Basic
from sympy.core.function import Lambda
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.sets.sets import ProductSet
from sympy.tensor.indexed import Indexed
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum, summation
from sympy.core.containers import Tuple
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import ImmutableMatrix, matrix2numpy, list2numpy
from sympy.stats.crv import SingleContinuousDistribution, SingleContinuousPSpace
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.rv import (ProductPSpace, NamedArgsMixin, Distribution,
ProductDomain, RandomSymbol, random_symbols,
SingleDomain, _symbol_converter)
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import filldedent
from sympy.external import import_module
# __all__ = ['marginal_distribution']
class JointPSpace(ProductPSpace):
"""
Represents a joint probability space. Represented using symbols for
each component and a distribution.
"""
def __new__(cls, sym, dist):
if isinstance(dist, SingleContinuousDistribution):
return SingleContinuousPSpace(sym, dist)
if isinstance(dist, SingleDiscreteDistribution):
return SingleDiscretePSpace(sym, dist)
sym = _symbol_converter(sym)
return Basic.__new__(cls, sym, dist)
@property
def set(self):
return self.domain.set
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def value(self):
return JointRandomSymbol(self.symbol, self)
@property
def component_count(self):
_set = self.distribution.set
if isinstance(_set, ProductSet):
return S(len(_set.args))
elif isinstance(_set, Product):
return _set.limits[0][-1]
return S.One
@property
def pdf(self):
sym = [Indexed(self.symbol, i) for i in range(self.component_count)]
return self.distribution(*sym)
@property
def domain(self):
rvs = random_symbols(self.distribution)
if not rvs:
return SingleDomain(self.symbol, self.distribution.set)
return ProductDomain(*[rv.pspace.domain for rv in rvs])
def component_domain(self, index):
return self.set.args[index]
def marginal_distribution(self, *indices):
count = self.component_count
if count.atoms(Symbol):
raise ValueError("Marginal distributions cannot be computed "
"for symbolic dimensions. It is a work under progress.")
orig = [Indexed(self.symbol, i) for i in range(count)]
all_syms = [Symbol(str(i)) for i in orig]
replace_dict = dict(zip(all_syms, orig))
sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices)
limits = [[i,] for i in all_syms if i not in sym]
index = 0
for i in range(count):
if i not in indices:
limits[index].append(self.distribution.set.args[i])
limits[index] = tuple(limits[index])
index += 1
if self.distribution.is_Continuous:
f = Lambda(sym, integrate(self.distribution(*all_syms), *limits))
elif self.distribution.is_Discrete:
f = Lambda(sym, summation(self.distribution(*all_syms), *limits))
return f.xreplace(replace_dict)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
syms = tuple(self.value[i] for i in range(self.component_count))
rvs = rvs or syms
if not any(i in rvs for i in syms):
return expr
expr = expr*self.pdf
for rv in rvs:
if isinstance(rv, Indexed):
expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])})
elif isinstance(rv, RandomSymbol):
expr = expr.xreplace({rv: rv.symbol})
if self.value in random_symbols(expr):
raise NotImplementedError(filldedent('''
Expectations of expression with unindexed joint random symbols
cannot be calculated yet.'''))
limits = tuple((Indexed(str(rv.base),rv.args[1]),
self.distribution.set.args[rv.args[1]]) for rv in syms)
return Integral(expr, *limits)
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {RandomSymbol(self.symbol, self): self.distribution.sample(size,
library=library, seed=seed)}
def probability(self, condition):
raise NotImplementedError()
class SampleJointScipy:
"""Returns the sample from scipy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_scipy(dist, size, seed)
@classmethod
def _sample_scipy(cls, dist, size, seed):
"""Sample from SciPy."""
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
from scipy import stats as scipy_stats
scipy_rv_map = {
'MultivariateNormalDistribution': lambda dist, size: scipy_stats.multivariate_normal.rvs(
mean=matrix2numpy(dist.mu).flatten(),
cov=matrix2numpy(dist.sigma), size=size, random_state=rand_state),
'MultivariateBetaDistribution': lambda dist, size: scipy_stats.dirichlet.rvs(
alpha=list2numpy(dist.alpha, float).flatten(), size=size, random_state=rand_state),
'MultinomialDistribution': lambda dist, size: scipy_stats.multinomial.rvs(
n=int(dist.n), p=list2numpy(dist.p, float).flatten(), size=size, random_state=rand_state)
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = scipy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
samples = scipy_rv_map[dist.__class__.__name__](dist, size)
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleJointNumpy:
"""Returns the sample from numpy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_numpy(dist, size, seed)
@classmethod
def _sample_numpy(cls, dist, size, seed):
"""Sample from NumPy."""
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
numpy_rv_map = {
'MultivariateNormalDistribution': lambda dist, size: rand_state.multivariate_normal(
mean=matrix2numpy(dist.mu, float).flatten(),
cov=matrix2numpy(dist.sigma, float), size=size),
'MultivariateBetaDistribution': lambda dist, size: rand_state.dirichlet(
alpha=list2numpy(dist.alpha, float).flatten(), size=size),
'MultinomialDistribution': lambda dist, size: rand_state.multinomial(
n=int(dist.n), pvals=list2numpy(dist.p, float).flatten(), size=size)
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = numpy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
samples = numpy_rv_map[dist.__class__.__name__](dist, prod(size))
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleJointPymc:
"""Returns the sample from pymc of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_pymc(dist, size, seed)
@classmethod
def _sample_pymc(cls, dist, size, seed):
"""Sample from PyMC."""
try:
import pymc
except ImportError:
import pymc3 as pymc
pymc_rv_map = {
'MultivariateNormalDistribution': lambda dist:
pymc.MvNormal('X', mu=matrix2numpy(dist.mu, float).flatten(),
cov=matrix2numpy(dist.sigma, float), shape=(1, dist.mu.shape[0])),
'MultivariateBetaDistribution': lambda dist:
pymc.Dirichlet('X', a=list2numpy(dist.alpha, float).flatten()),
'MultinomialDistribution': lambda dist:
pymc.Multinomial('X', n=int(dist.n),
p=list2numpy(dist.p, float).flatten(), shape=(1, len(dist.p)))
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = pymc_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import logging
logging.getLogger("pymc3").setLevel(logging.ERROR)
with pymc.Model():
pymc_rv_map[dist.__class__.__name__](dist)
samples = pymc.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)[:]['X']
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
_get_sample_class_jrv = {
'scipy': SampleJointScipy,
'pymc3': SampleJointPymc,
'pymc': SampleJointPymc,
'numpy': SampleJointNumpy
}
class JointDistribution(Distribution, NamedArgsMixin):
"""
Represented by the random variables part of the joint distribution.
Contains methods for PDF, CDF, sampling, marginal densities, etc.
"""
_argnames = ('pdf', )
def __new__(cls, *args):
args = list(map(sympify, args))
for i in range(len(args)):
if isinstance(args[i], list):
args[i] = ImmutableMatrix(args[i])
return Basic.__new__(cls, *args)
@property
def domain(self):
return ProductDomain(self.symbols)
@property
def pdf(self):
return self.density.args[1]
def cdf(self, other):
if not isinstance(other, dict):
raise ValueError("%s should be of type dict, got %s"%(other, type(other)))
rvs = other.keys()
_set = self.domain.set.sets
expr = self.pdf(tuple(i.args[0] for i in self.symbols))
for i in range(len(other)):
if rvs[i].is_Continuous:
density = Integral(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
elif rvs[i].is_Discrete:
density = Sum(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
return density
def sample(self, size=(), library='scipy', seed=None):
""" A random realization from the distribution """
libraries = ('scipy', 'numpy', 'pymc3', 'pymc')
if library not in libraries:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if not import_module(library):
raise ValueError("Failed to import %s" % library)
samps = _get_sample_class_jrv[library](self, size, seed=seed)
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self.__class__.__name__, library)
)
def __call__(self, *args):
return self.pdf(*args)
class JointRandomSymbol(RandomSymbol):
"""
Representation of random symbols with joint probability distributions
to allow indexing."
"""
def __getitem__(self, key):
if isinstance(self.pspace, JointPSpace):
if (self.pspace.component_count <= key) == True:
raise ValueError("Index keys for %s can only up to %s." %
(self.name, self.pspace.component_count - 1))
return Indexed(self, key)
class MarginalDistribution(Distribution):
"""
Represents the marginal distribution of a joint probability space.
Initialised using a probability distribution and random variables(or
their indexed components) which should be a part of the resultant
distribution.
"""
def __new__(cls, dist, *rvs):
if len(rvs) == 1 and iterable(rvs[0]):
rvs = tuple(rvs[0])
if not all(isinstance(rv, (Indexed, RandomSymbol)) for rv in rvs):
raise ValueError(filldedent('''Marginal distribution can be
intitialised only in terms of random variables or indexed random
variables'''))
rvs = Tuple.fromiter(rv for rv in rvs)
if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
return dist
return Basic.__new__(cls, dist, rvs)
def check(self):
pass
@property
def set(self):
rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)]
return ProductSet(*[rv.pspace.set for rv in rvs])
@property
def symbols(self):
rvs = self.args[1]
return {rv.pspace.symbol for rv in rvs}
def pdf(self, *x):
expr, rvs = self.args[0], self.args[1]
marginalise_out = [i for i in random_symbols(expr) if i not in rvs]
if isinstance(expr, JointDistribution):
count = len(expr.domain.args)
x = Dummy('x', real=True)
syms = tuple(Indexed(x, i) for i in count)
expr = expr.pdf(syms)
else:
syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs)
return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x)
def compute_pdf(self, expr, rvs):
for rv in rvs:
lpdf = 1
if isinstance(rv, RandomSymbol):
lpdf = rv.pspace.pdf
expr = self.marginalise_out(expr*lpdf, rv)
return expr
def marginalise_out(self, expr, rv):
from sympy.concrete.summations import Sum
if isinstance(rv, RandomSymbol):
dom = rv.pspace.set
elif isinstance(rv, Indexed):
dom = rv.base.component_domain(
rv.pspace.component_domain(rv.args[1]))
expr = expr.xreplace({rv: rv.pspace.symbol})
if rv.pspace.is_Continuous:
#TODO: Modify to support integration
#for all kinds of sets.
expr = Integral(expr, (rv.pspace.symbol, dom))
elif rv.pspace.is_Discrete:
#incorporate this into `Sum`/`summation`
if dom in (S.Integers, S.Naturals, S.Naturals0):
dom = (dom.inf, dom.sup)
expr = Sum(expr, (rv.pspace.symbol, dom))
return expr
def __call__(self, *args):
return self.pdf(*args)
|
7159f781927b29cabba3e958243633a77222c54ede0dfc367a7b3697dfdb1b5a | from sympy.ntheory import sieve, isprime
from sympy.core.numbers import mod_inverse
from sympy.core.power import integer_log
from sympy.utilities.misc import as_int
import random
rgen = random.Random()
#----------------------------------------------------------------------------#
# #
# Lenstra's Elliptic Curve Factorization #
# #
#----------------------------------------------------------------------------#
class Point:
"""Montgomery form of Points in an elliptic curve.
In this form, the addition and doubling of points
does not need any y-coordinate information thus
decreasing the number of operations.
Using Montgomery form we try to perform point addition
and doubling in least amount of multiplications.
The elliptic curve used here is of the form
(E : b*y**2*z = x**3 + a*x**2*z + x*z**2).
The a_24 parameter is equal to (a + 2)/4.
References
==========
.. [1] http://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf
"""
def __init__(self, x_cord, z_cord, a_24, mod):
"""
Initial parameters for the Point class.
Parameters
==========
x_cord : X coordinate of the Point
z_cord : Z coordinate of the Point
a_24 : Parameter of the elliptic curve in Montgomery form
mod : modulus
"""
self.x_cord = x_cord
self.z_cord = z_cord
self.a_24 = a_24
self.mod = mod
def __eq__(self, other):
"""Two points are equal if X/Z of both points are equal
"""
if self.a_24 != other.a_24 or self.mod != other.mod:
return False
return self.x_cord * mod_inverse(self.z_cord, self.mod) % self.mod ==\
other.x_cord * mod_inverse(other.z_cord, self.mod) % self.mod
def add(self, Q, diff):
"""
Add two points self and Q where diff = self - Q. Moreover the assumption
is self.x_cord*Q.x_cord*(self.x_cord - Q.x_cord) != 0. This algorithm
requires 6 multiplications. Here the difference between the points
is already known and using this algorithm speeds up the addition
by reducing the number of multiplication required. Also in the
mont_ladder algorithm is constructed in a way so that the difference
between intermediate points is always equal to the initial point.
So, we always know what the difference between the point is.
Parameters
==========
Q : point on the curve in Montgomery form
diff : self - Q
Examples
========
>>> from sympy.ntheory.ecm import Point
>>> p1 = Point(11, 16, 7, 29)
>>> p2 = Point(13, 10, 7, 29)
>>> p3 = p2.add(p1, p1)
>>> p3.x_cord
23
>>> p3.z_cord
17
"""
u = (self.x_cord - self.z_cord)*(Q.x_cord + Q.z_cord)
v = (self.x_cord + self.z_cord)*(Q.x_cord - Q.z_cord)
add, subt = u + v, u - v
x_cord = diff.z_cord * add * add % self.mod
z_cord = diff.x_cord * subt * subt % self.mod
return Point(x_cord, z_cord, self.a_24, self.mod)
def double(self):
"""
Doubles a point in an elliptic curve in Montgomery form.
This algorithm requires 5 multiplications.
Examples
========
>>> from sympy.ntheory.ecm import Point
>>> p1 = Point(11, 16, 7, 29)
>>> p2 = p1.double()
>>> p2.x_cord
13
>>> p2.z_cord
10
"""
u, v = self.x_cord + self.z_cord, self.x_cord - self.z_cord
u, v = u*u, v*v
diff = u - v
x_cord = u*v % self.mod
z_cord = diff*(v + self.a_24*diff) % self.mod
return Point(x_cord, z_cord, self.a_24, self.mod)
def mont_ladder(self, k):
"""
Scalar multiplication of a point in Montgomery form
using Montgomery Ladder Algorithm.
A total of 11 multiplications are required in each step of this
algorithm.
Parameters
==========
k : The positive integer multiplier
Examples
========
>>> from sympy.ntheory.ecm import Point
>>> p1 = Point(11, 16, 7, 29)
>>> p3 = p1.mont_ladder(3)
>>> p3.x_cord
23
>>> p3.z_cord
17
"""
Q = self
R = self.double()
for i in bin(k)[3:]:
if i == '1':
Q = R.add(Q, self)
R = R.double()
else:
R = Q.add(R, self)
Q = Q.double()
return Q
def _ecm_one_factor(n, B1=10000, B2=100000, max_curve=200):
"""Returns one factor of n using
Lenstra's 2 Stage Elliptic curve Factorization
with Suyama's Parameterization. Here Montgomery
arithmetic is used for fast computation of addition
and doubling of points in elliptic curve.
This ECM method considers elliptic curves in Montgomery
form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2) and involves
elliptic curve operations (mod N), where the elements in
Z are reduced (mod N). Since N is not a prime, E over FF(N)
is not really an elliptic curve but we can still do point additions
and doubling as if FF(N) was a field.
Stage 1 : The basic algorithm involves taking a random point (P) on an
elliptic curve in FF(N). The compute k*P using Montgomery ladder algorithm.
Let q be an unknown factor of N. Then the order of the curve E, |E(FF(q))|,
might be a smooth number that divides k. Then we have k = l * |E(FF(q))|
for some l. For any point belonging to the curve E, |E(FF(q))|*P = O,
hence k*P = l*|E(FF(q))|*P. Thus kP.z_cord = 0 (mod q), and the unknownn
factor of N (q) can be recovered by taking gcd(kP.z_cord, N).
Stage 2 : This is a continuation of Stage 1 if k*P != O. The idea utilize
the fact that even if kP != 0, the value of k might miss just one large
prime divisor of |E(FF(q))|. In this case we only need to compute the
scalar multiplication by p to get p*k*P = O. Here a second bound B2
restrict the size of possible values of p.
Parameters
==========
n : Number to be Factored
B1 : Stage 1 Bound
B2 : Stage 2 Bound
max_curve : Maximum number of curves generated
References
==========
.. [1] Carl Pomerance and Richard Crandall "Prime Numbers:
A Computational Perspective" (2nd Ed.), page 344
"""
n = as_int(n)
if B1 % 2 != 0 or B2 % 2 != 0:
raise ValueError("The Bounds should be an even integer")
sieve.extend(B2)
if isprime(n):
return n
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.polytools import gcd
curve = 0
D = int(sqrt(B2))
beta = [0]*(D + 1)
S = [0]*(D + 1)
k = 1
for p in sieve.primerange(1, B1 + 1):
k *= pow(p, integer_log(B1, p)[0])
while(curve <= max_curve):
curve += 1
#Suyama's Paramatrization
sigma = rgen.randint(6, n - 1)
u = (sigma*sigma - 5) % n
v = (4*sigma) % n
diff = v - u
u_3 = pow(u, 3, n)
try:
C = (pow(diff, 3, n)*(3*u + v)*mod_inverse(4*u_3*v, n) - 2) % n
except ValueError:
#If the mod_inverse(4*u_3*v, n) doesn't exist
return gcd(4*u_3*v, n)
a24 = (C + 2)*mod_inverse(4, n) % n
Q = Point(u_3, pow(v, 3, n), a24, n)
Q = Q.mont_ladder(k)
g = gcd(Q.z_cord, n)
#Stage 1 factor
if g != 1 and g != n:
return g
#Stage 1 failure. Q.z = 0, Try another curve
elif g == n:
continue
#Stage 2 - Improved Standard Continuation
S[1] = Q.double()
S[2] = S[1].double()
beta[1] = (S[1].x_cord*S[1].z_cord) % n
beta[2] = (S[2].x_cord*S[2].z_cord) % n
for d in range(3, D + 1):
S[d] = S[d - 1].add(S[1], S[d - 2])
beta[d] = (S[d].x_cord*S[d].z_cord) % n
g = 1
B = B1 - 1
T = Q.mont_ladder(B - 2*D)
R = Q.mont_ladder(B)
for r in range(B, B2, 2*D):
alpha = (R.x_cord*R.z_cord) % n
for q in sieve.primerange(r + 2, r + 2*D + 1):
delta = (q - r) // 2
f = (R.x_cord - S[d].x_cord)*(R.z_cord + S[d].z_cord) -\
alpha + beta[delta]
g = (g*f) % n
#Swap
T, R = R, R.add(S[D], T)
g = gcd(n, g)
#Stage 2 Factor found
if g != 1 and g != n:
return g
#ECM failed, Increase the bounds
raise ValueError("Increase the bounds")
def ecm(n, B1=10000, B2=100000, max_curve=200, seed=1234):
"""Performs factorization using Lenstra's Elliptic curve method.
This function repeatedly calls `ecm_one_factor` to compute the factors
of n. First all the small factors are taken out using trial division.
Then `ecm_one_factor` is used to compute one factor at a time.
Parameters
==========
n : Number to be Factored
B1 : Stage 1 Bound
B2 : Stage 2 Bound
max_curve : Maximum number of curves generated
seed : Initialize pseudorandom generator
Examples
========
>>> from sympy.ntheory import ecm
>>> ecm(25645121643901801)
{5394769, 4753701529}
>>> ecm(9804659461513846513)
{4641991, 2112166839943}
"""
_factors = set()
for prime in sieve.primerange(1, 100000):
if n % prime == 0:
_factors.add(prime)
while(n % prime == 0):
n //= prime
rgen.seed(seed)
while(n > 1):
try:
factor = _ecm_one_factor(n, B1, B2, max_curve)
except ValueError:
raise ValueError("Increase the bounds")
_factors.add(factor)
n //= factor
factors = set()
for factor in _factors:
if isprime(factor):
factors.add(factor)
continue
factors |= ecm(factor)
return factors
|
661673c9d5beb63f23f195e6316e7f9cd89a9d25f3edbb53fc26af5bf6eec705 | from __future__ import annotations
from sympy.core.function import Function
from sympy.core.numbers import igcd, igcdex, mod_inverse
from sympy.core.power import isqrt
from sympy.core.singleton import S
from sympy.polys import Poly
from sympy.polys.domains import ZZ
from sympy.polys.galoistools import gf_crt1, gf_crt2, linear_congruence
from .primetest import isprime
from .factor_ import factorint, trailing, totient, multiplicity
from sympy.utilities.misc import as_int
from sympy.core.random import _randint, randint
from itertools import cycle, product
def n_order(a, n):
"""Returns the order of ``a`` modulo ``n``.
The order of ``a`` modulo ``n`` is the smallest integer
``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.
Examples
========
>>> from sympy.ntheory import n_order
>>> n_order(3, 7)
6
>>> n_order(4, 7)
3
"""
from collections import defaultdict
a, n = as_int(a), as_int(n)
if igcd(a, n) != 1:
raise ValueError("The two numbers should be relatively prime")
factors = defaultdict(int)
f = factorint(n)
for px, kx in f.items():
if kx > 1:
factors[px] += kx - 1
fpx = factorint(px - 1)
for py, ky in fpx.items():
factors[py] += ky
group_order = 1
for px, kx in factors.items():
group_order *= px**kx
order = 1
if a > n:
a = a % n
for p, e in factors.items():
exponent = group_order
for f in range(e + 1):
if pow(a, exponent, n) != 1:
order *= p ** (e - f + 1)
break
exponent = exponent // p
return order
def _primitive_root_prime_iter(p):
"""
Generates the primitive roots for a prime ``p``
Examples
========
>>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter
>>> list(_primitive_root_prime_iter(19))
[2, 3, 10, 13, 14, 15]
References
==========
.. [1] W. Stein "Elementary Number Theory" (2011), page 44
"""
# it is assumed that p is an int
v = [(p - 1) // i for i in factorint(p - 1).keys()]
a = 2
while a < p:
for pw in v:
# a TypeError below may indicate that p was not an int
if pow(a, pw, p) == 1:
break
else:
yield a
a += 1
def primitive_root(p):
"""
Returns the smallest primitive root or None
Parameters
==========
p : positive integer
Examples
========
>>> from sympy.ntheory.residue_ntheory import primitive_root
>>> primitive_root(19)
2
References
==========
.. [1] W. Stein "Elementary Number Theory" (2011), page 44
.. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C
"""
p = as_int(p)
if p < 1:
raise ValueError('p is required to be positive')
if p <= 2:
return 1
f = factorint(p)
if len(f) > 2:
return None
if len(f) == 2:
if 2 not in f or f[2] > 1:
return None
# case p = 2*p1**k, p1 prime
for p1, e1 in f.items():
if p1 != 2:
break
i = 1
while i < p:
i += 2
if i % p1 == 0:
continue
if is_primitive_root(i, p):
return i
else:
if 2 in f:
if p == 4:
return 3
return None
p1, n = list(f.items())[0]
if n > 1:
# see Ref [2], page 81
g = primitive_root(p1)
if is_primitive_root(g, p1**2):
return g
else:
for i in range(2, g + p1 + 1):
if igcd(i, p) == 1 and is_primitive_root(i, p):
return i
return next(_primitive_root_prime_iter(p))
def is_primitive_root(a, p):
"""
Returns True if ``a`` is a primitive root of ``p``
``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and
totient(p) is the smallest positive number s.t.
a**totient(p) cong 1 mod(p)
Examples
========
>>> from sympy.ntheory import is_primitive_root, n_order, totient
>>> is_primitive_root(3, 10)
True
>>> is_primitive_root(9, 10)
False
>>> n_order(3, 10) == totient(10)
True
>>> n_order(9, 10) == totient(10)
False
"""
a, p = as_int(a), as_int(p)
if igcd(a, p) != 1:
raise ValueError("The two numbers should be relatively prime")
if a > p:
a = a % p
return n_order(a, p) == totient(p)
def _sqrt_mod_tonelli_shanks(a, p):
"""
Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)``
References
==========
.. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nt Ed., page 101
"""
s = trailing(p - 1)
t = p >> s
# find a non-quadratic residue
while 1:
d = randint(2, p - 1)
r = legendre_symbol(d, p)
if r == -1:
break
#assert legendre_symbol(d, p) == -1
A = pow(a, t, p)
D = pow(d, t, p)
m = 0
for i in range(s):
adm = A*pow(D, m, p) % p
adm = pow(adm, 2**(s - 1 - i), p)
if adm % p == p - 1:
m += 2**i
#assert A*pow(D, m, p) % p == 1
x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p
return x
def sqrt_mod(a, p, all_roots=False):
"""
Find a root of ``x**2 = a mod p``
Parameters
==========
a : integer
p : positive integer
all_roots : if True the list of roots is returned or None
Notes
=====
If there is no root it is returned None; else the returned root
is less or equal to ``p // 2``; in general is not the smallest one.
It is returned ``p // 2`` only if it is the only root.
Use ``all_roots`` only when it is expected that all the roots fit
in memory; otherwise use ``sqrt_mod_iter``.
Examples
========
>>> from sympy.ntheory import sqrt_mod
>>> sqrt_mod(11, 43)
21
>>> sqrt_mod(17, 32, True)
[7, 9, 23, 25]
"""
if all_roots:
return sorted(list(sqrt_mod_iter(a, p)))
try:
p = abs(as_int(p))
it = sqrt_mod_iter(a, p)
r = next(it)
if r > p // 2:
return p - r
elif r < p // 2:
return r
else:
try:
r = next(it)
if r > p // 2:
return p - r
except StopIteration:
pass
return r
except StopIteration:
return None
def _product(*iters):
"""
Cartesian product generator
Notes
=====
Unlike itertools.product, it works also with iterables which do not fit
in memory. See http://bugs.python.org/issue10109
Author: Fernando Sumudu
with small changes
"""
inf_iters = tuple(cycle(enumerate(it)) for it in iters)
num_iters = len(inf_iters)
cur_val = [None]*num_iters
first_v = True
while True:
i, p = 0, num_iters
while p and not i:
p -= 1
i, cur_val[p] = next(inf_iters[p])
if not p and not i:
if first_v:
first_v = False
else:
break
yield cur_val
def sqrt_mod_iter(a, p, domain=int):
"""
Iterate over solutions to ``x**2 = a mod p``
Parameters
==========
a : integer
p : positive integer
domain : integer domain, ``int``, ``ZZ`` or ``Integer``
Examples
========
>>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter
>>> list(sqrt_mod_iter(11, 43))
[21, 22]
"""
a, p = as_int(a), abs(as_int(p))
if isprime(p):
a = a % p
if a == 0:
res = _sqrt_mod1(a, p, 1)
else:
res = _sqrt_mod_prime_power(a, p, 1)
if res:
if domain is ZZ:
yield from res
else:
for x in res:
yield domain(x)
else:
f = factorint(p)
v = []
pv = []
for px, ex in f.items():
if a % px == 0:
rx = _sqrt_mod1(a, px, ex)
if not rx:
return
else:
rx = _sqrt_mod_prime_power(a, px, ex)
if not rx:
return
v.append(rx)
pv.append(px**ex)
mm, e, s = gf_crt1(pv, ZZ)
if domain is ZZ:
for vx in _product(*v):
r = gf_crt2(vx, pv, mm, e, s, ZZ)
yield r
else:
for vx in _product(*v):
r = gf_crt2(vx, pv, mm, e, s, ZZ)
yield domain(r)
def _sqrt_mod_prime_power(a, p, k):
"""
Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0``
Parameters
==========
a : integer
p : prime number
k : positive integer
Examples
========
>>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
>>> _sqrt_mod_prime_power(11, 43, 1)
[21, 22]
References
==========
.. [1] P. Hackman "Elementary Number Theory" (2009), page 160
.. [2] http://www.numbertheory.org/php/squareroot.html
.. [3] [Gathen99]_
"""
pk = p**k
a = a % pk
if k == 1:
if p == 2:
return [ZZ(a)]
if not (a % p < 2 or pow(a, (p - 1) // 2, p) == 1):
return None
if p % 4 == 3:
res = pow(a, (p + 1) // 4, p)
elif p % 8 == 5:
sign = pow(a, (p - 1) // 4, p)
if sign == 1:
res = pow(a, (p + 3) // 8, p)
else:
b = pow(4*a, (p - 5) // 8, p)
x = (2*a*b) % p
if pow(x, 2, p) == a:
res = x
else:
res = _sqrt_mod_tonelli_shanks(a, p)
# ``_sqrt_mod_tonelli_shanks(a, p)`` is not deterministic;
# sort to get always the same result
return sorted([ZZ(res), ZZ(p - res)])
if k > 1:
# see Ref.[2]
if p == 2:
if a % 8 != 1:
return None
if k <= 3:
s = set()
for i in range(0, pk, 4):
s.add(1 + i)
s.add(-1 + i)
return list(s)
# according to Ref.[2] for k > 2 there are two solutions
# (mod 2**k-1), that is four solutions (mod 2**k), which can be
# obtained from the roots of x**2 = 0 (mod 8)
rv = [ZZ(1), ZZ(3), ZZ(5), ZZ(7)]
# hensel lift them to solutions of x**2 = 0 (mod 2**k)
# if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1)
# then r + 2**(nx - 1) is a root mod 2**(nx+1)
n = 3
res = []
for r in rv:
nx = n
while nx < k:
r1 = (r**2 - a) >> nx
if r1 % 2:
r = r + (1 << (nx - 1))
#assert (r**2 - a)% (1 << (nx + 1)) == 0
nx += 1
if r not in res:
res.append(r)
x = r + (1 << (k - 1))
#assert (x**2 - a) % pk == 0
if x < (1 << nx) and x not in res:
if (x**2 - a) % pk == 0:
res.append(x)
return res
rv = _sqrt_mod_prime_power(a, p, 1)
if not rv:
return None
r = rv[0]
fr = r**2 - a
# hensel lifting with Newton iteration, see Ref.[3] chapter 9
# with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2
n = 1
px = p
while 1:
n1 = n
n1 *= 2
if n1 > k:
break
n = n1
px = px**2
frinv = igcdex(2*r, px)[0]
r = (r - fr*frinv) % px
fr = r**2 - a
if n < k:
px = p**k
frinv = igcdex(2*r, px)[0]
r = (r - fr*frinv) % px
return [r, px - r]
def _sqrt_mod1(a, p, n):
"""
Find solution to ``x**2 == a mod p**n`` when ``a % p == 0``
see http://www.numbertheory.org/php/squareroot.html
"""
pn = p**n
a = a % pn
if a == 0:
# case gcd(a, p**k) = p**n
m = n // 2
if n % 2 == 1:
pm1 = p**(m + 1)
def _iter0a():
i = 0
while i < pn:
yield i
i += pm1
return _iter0a()
else:
pm = p**m
def _iter0b():
i = 0
while i < pn:
yield i
i += pm
return _iter0b()
# case gcd(a, p**k) = p**r, r < n
f = factorint(a)
r = f[p]
if r % 2 == 1:
return None
m = r // 2
a1 = a >> r
if p == 2:
if n - r == 1:
pnm1 = 1 << (n - m + 1)
pm1 = 1 << (m + 1)
def _iter1():
k = 1 << (m + 2)
i = 1 << m
while i < pnm1:
j = i
while j < pn:
yield j
j += k
i += pm1
return _iter1()
if n - r == 2:
res = _sqrt_mod_prime_power(a1, p, n - r)
if res is None:
return None
pnm = 1 << (n - m)
def _iter2():
s = set()
for r in res:
i = 0
while i < pn:
x = (r << m) + i
if x not in s:
s.add(x)
yield x
i += pnm
return _iter2()
if n - r > 2:
res = _sqrt_mod_prime_power(a1, p, n - r)
if res is None:
return None
pnm1 = 1 << (n - m - 1)
def _iter3():
s = set()
for r in res:
i = 0
while i < pn:
x = ((r << m) + i) % pn
if x not in s:
s.add(x)
yield x
i += pnm1
return _iter3()
else:
m = r // 2
a1 = a // p**r
res1 = _sqrt_mod_prime_power(a1, p, n - r)
if res1 is None:
return None
pm = p**m
pnr = p**(n-r)
pnm = p**(n-m)
def _iter4():
s = set()
pm = p**m
for rx in res1:
i = 0
while i < pnm:
x = ((rx + i) % pn)
if x not in s:
s.add(x)
yield x*pm
i += pnr
return _iter4()
def is_quad_residue(a, p):
"""
Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,
i.e a % p in set([i**2 % p for i in range(p)]). If ``p`` is an odd
prime, an iterative method is used to make the determination:
>>> from sympy.ntheory import is_quad_residue
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
>>> [j for j in range(7) if is_quad_residue(j, 7)]
[0, 1, 2, 4]
See Also
========
legendre_symbol, jacobi_symbol
"""
a, p = as_int(a), as_int(p)
if p < 1:
raise ValueError('p must be > 0')
if a >= p or a < 0:
a = a % p
if a < 2 or p < 3:
return True
if not isprime(p):
if p % 2 and jacobi_symbol(a, p) == -1:
return False
r = sqrt_mod(a, p)
if r is None:
return False
else:
return True
return pow(a, (p - 1) // 2, p) == 1
def is_nthpow_residue(a, n, m):
"""
Returns True if ``x**n == a (mod m)`` has solutions.
References
==========
.. [1] P. Hackman "Elementary Number Theory" (2009), page 76
"""
a = a % m
a, n, m = as_int(a), as_int(n), as_int(m)
if m <= 0:
raise ValueError('m must be > 0')
if n < 0:
raise ValueError('n must be >= 0')
if n == 0:
if m == 1:
return False
return a == 1
if a == 0:
return True
if n == 1:
return True
if n == 2:
return is_quad_residue(a, m)
return _is_nthpow_residue_bign(a, n, m)
def _is_nthpow_residue_bign(a, n, m):
r"""Returns True if `x^n = a \pmod{n}` has solutions for `n > 2`."""
# assert n > 2
# assert a > 0 and m > 0
if primitive_root(m) is None or igcd(a, m) != 1:
# assert m >= 8
for prime, power in factorint(m).items():
if not _is_nthpow_residue_bign_prime_power(a, n, prime, power):
return False
return True
f = totient(m)
k = int(f // igcd(f, n))
return pow(a, k, int(m)) == 1
def _is_nthpow_residue_bign_prime_power(a, n, p, k):
r"""Returns True/False if a solution for `x^n = a \pmod{p^k}`
does/does not exist."""
# assert a > 0
# assert n > 2
# assert p is prime
# assert k > 0
if a % p:
if p != 2:
return _is_nthpow_residue_bign(a, n, pow(p, k))
if n & 1:
return True
c = trailing(n)
return a % pow(2, min(c + 2, k)) == 1
else:
a %= pow(p, k)
if not a:
return True
mu = multiplicity(p, a)
if mu % n:
return False
pm = pow(p, mu)
return _is_nthpow_residue_bign_prime_power(a//pm, n, p, k - mu)
def _nthroot_mod2(s, q, p):
f = factorint(q)
v = []
for b, e in f.items():
v.extend([b]*e)
for qx in v:
s = _nthroot_mod1(s, qx, p, False)
return s
def _nthroot_mod1(s, q, p, all_roots):
"""
Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1``
References
==========
.. [1] A. M. Johnston "A Generalized qth Root Algorithm"
"""
g = primitive_root(p)
if not isprime(q):
r = _nthroot_mod2(s, q, p)
else:
f = p - 1
assert (p - 1) % q == 0
# determine k
k = 0
while f % q == 0:
k += 1
f = f // q
# find z, x, r1
f1 = igcdex(-f, q)[0] % q
z = f*f1
x = (1 + z) // q
r1 = pow(s, x, p)
s1 = pow(s, f, p)
h = pow(g, f*q, p)
t = discrete_log(p, s1, h)
g2 = pow(g, z*t, p)
g3 = igcdex(g2, p)[0]
r = r1*g3 % p
#assert pow(r, q, p) == s
res = [r]
h = pow(g, (p - 1) // q, p)
#assert pow(h, q, p) == 1
hx = r
for i in range(q - 1):
hx = (hx*h) % p
res.append(hx)
if all_roots:
res.sort()
return res
return min(res)
def _help(m, prime_modulo_method, diff_method, expr_val):
"""
Helper function for _nthroot_mod_composite and polynomial_congruence.
Parameters
==========
m : positive integer
prime_modulo_method : function to calculate the root of the congruence
equation for the prime divisors of m
diff_method : function to calculate derivative of expression at any
given point
expr_val : function to calculate value of the expression at any
given point
"""
from sympy.ntheory.modular import crt
f = factorint(m)
dd = {}
for p, e in f.items():
tot_roots = set()
if e == 1:
tot_roots.update(prime_modulo_method(p))
else:
for root in prime_modulo_method(p):
diff = diff_method(root, p)
if diff != 0:
ppow = p
m_inv = mod_inverse(diff, p)
for j in range(1, e):
ppow *= p
root = (root - expr_val(root, ppow) * m_inv) % ppow
tot_roots.add(root)
else:
new_base = p
roots_in_base = {root}
while new_base < pow(p, e):
new_base *= p
new_roots = set()
for k in roots_in_base:
if expr_val(k, new_base)!= 0:
continue
while k not in new_roots:
new_roots.add(k)
k = (k + (new_base // p)) % new_base
roots_in_base = new_roots
tot_roots = tot_roots | roots_in_base
if tot_roots == set():
return []
dd[pow(p, e)] = tot_roots
a = []
m = []
for x, y in dd.items():
m.append(x)
a.append(list(y))
return sorted({crt(m, list(i))[0] for i in product(*a)})
def _nthroot_mod_composite(a, n, m):
"""
Find the solutions to ``x**n = a mod m`` when m is not prime.
"""
return _help(m,
lambda p: nthroot_mod(a, n, p, True),
lambda root, p: (pow(root, n - 1, p) * (n % p)) % p,
lambda root, p: (pow(root, n, p) - a) % p)
def nthroot_mod(a, n, p, all_roots=False):
"""
Find the solutions to ``x**n = a mod p``
Parameters
==========
a : integer
n : positive integer
p : positive integer
all_roots : if False returns the smallest root, else the list of roots
Examples
========
>>> from sympy.ntheory.residue_ntheory import nthroot_mod
>>> nthroot_mod(11, 4, 19)
8
>>> nthroot_mod(11, 4, 19, True)
[8, 11]
>>> nthroot_mod(68, 3, 109)
23
"""
a = a % p
a, n, p = as_int(a), as_int(n), as_int(p)
if n == 2:
return sqrt_mod(a, p, all_roots)
# see Hackman "Elementary Number Theory" (2009), page 76
if not isprime(p):
return _nthroot_mod_composite(a, n, p)
if a % p == 0:
return [0]
if not is_nthpow_residue(a, n, p):
return [] if all_roots else None
if (p - 1) % n == 0:
return _nthroot_mod1(a, n, p, all_roots)
# The roots of ``x**n - a = 0 (mod p)`` are roots of
# ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)``
pa = n
pb = p - 1
b = 1
if pa < pb:
a, pa, b, pb = b, pb, a, pa
while pb:
# x**pa - a = 0; x**pb - b = 0
# x**pa - a = x**(q*pb + r) - a = (x**pb)**q * x**r - a =
# b**q * x**r - a; x**r - c = 0; c = b**-q * a mod p
q, r = divmod(pa, pb)
c = pow(b, q, p)
c = igcdex(c, p)[0]
c = (c * a) % p
pa, pb = pb, r
a, b = b, c
if pa == 1:
if all_roots:
res = [a]
else:
res = a
elif pa == 2:
return sqrt_mod(a, p, all_roots)
else:
res = _nthroot_mod1(a, pa, p, all_roots)
return res
def quadratic_residues(p) -> list[int]:
"""
Returns the list of quadratic residues.
Examples
========
>>> from sympy.ntheory.residue_ntheory import quadratic_residues
>>> quadratic_residues(7)
[0, 1, 2, 4]
"""
p = as_int(p)
r = {pow(i, 2, p) for i in range(p // 2 + 1)}
return sorted(r)
def legendre_symbol(a, p):
r"""
Returns the Legendre symbol `(a / p)`.
For an integer ``a`` and an odd prime ``p``, the Legendre symbol is
defined as
.. math ::
\genfrac(){}{}{a}{p} = \begin{cases}
0 & \text{if } p \text{ divides } a\\
1 & \text{if } a \text{ is a quadratic residue modulo } p\\
-1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
\end{cases}
Parameters
==========
a : integer
p : odd prime
Examples
========
>>> from sympy.ntheory import legendre_symbol
>>> [legendre_symbol(i, 7) for i in range(7)]
[0, 1, 1, -1, 1, -1, -1]
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
See Also
========
is_quad_residue, jacobi_symbol
"""
a, p = as_int(a), as_int(p)
if not isprime(p) or p == 2:
raise ValueError("p should be an odd prime")
a = a % p
if not a:
return 0
if pow(a, (p - 1) // 2, p) == 1:
return 1
return -1
def jacobi_symbol(m, n):
r"""
Returns the Jacobi symbol `(m / n)`.
For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol
is defined as the product of the Legendre symbols corresponding to the
prime factors of ``n``:
.. math ::
\genfrac(){}{}{m}{n} =
\genfrac(){}{}{m}{p^{1}}^{\alpha_1}
\genfrac(){}{}{m}{p^{2}}^{\alpha_2}
...
\genfrac(){}{}{m}{p^{k}}^{\alpha_k}
\text{ where } n =
p_1^{\alpha_1}
p_2^{\alpha_2}
...
p_k^{\alpha_k}
Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1`
then ``m`` is a quadratic nonresidue modulo ``n``.
But, unlike the Legendre symbol, if the Jacobi symbol
`\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue
modulo ``n``.
Parameters
==========
m : integer
n : odd positive integer
Examples
========
>>> from sympy.ntheory import jacobi_symbol, legendre_symbol
>>> from sympy import S
>>> jacobi_symbol(45, 77)
-1
>>> jacobi_symbol(60, 121)
1
The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can
be demonstrated as follows:
>>> L = legendre_symbol
>>> S(45).factors()
{3: 2, 5: 1}
>>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
True
See Also
========
is_quad_residue, legendre_symbol
"""
m, n = as_int(m), as_int(n)
if n < 0 or not n % 2:
raise ValueError("n should be an odd positive integer")
if m < 0 or m > n:
m %= n
if not m:
return int(n == 1)
if n == 1 or m == 1:
return 1
if igcd(m, n) != 1:
return 0
j = 1
while m != 0:
while m % 2 == 0 and m > 0:
m >>= 1
if n % 8 in [3, 5]:
j = -j
m, n = n, m
if m % 4 == n % 4 == 3:
j = -j
m %= n
return j
class mobius(Function):
"""
Mobius function maps natural number to {-1, 0, 1}
It is defined as follows:
1) `1` if `n = 1`.
2) `0` if `n` has a squared prime factor.
3) `(-1)^k` if `n` is a square-free positive integer with `k`
number of prime factors.
It is an important multiplicative function in number theory
and combinatorics. It has applications in mathematical series,
algebraic number theory and also physics (Fermion operator has very
concrete realization with Mobius Function model).
Parameters
==========
n : positive integer
Examples
========
>>> from sympy.ntheory import mobius
>>> mobius(13*7)
1
>>> mobius(1)
1
>>> mobius(13*7*5)
-1
>>> mobius(13**2)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function
.. [2] Thomas Koshy "Elementary Number Theory with Applications"
"""
@classmethod
def eval(cls, n):
if n.is_integer:
if n.is_positive is not True:
raise ValueError("n should be a positive integer")
else:
raise TypeError("n should be an integer")
if n.is_prime:
return S.NegativeOne
elif n is S.One:
return S.One
elif n.is_Integer:
a = factorint(n)
if any(i > 1 for i in a.values()):
return S.Zero
return S.NegativeOne**len(a)
def _discrete_log_trial_mul(n, a, b, order=None):
"""
Trial multiplication algorithm for computing the discrete logarithm of
``a`` to the base ``b`` modulo ``n``.
The algorithm finds the discrete logarithm using exhaustive search. This
naive method is used as fallback algorithm of ``discrete_log`` when the
group order is very small.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul
>>> _discrete_log_trial_mul(41, 15, 7)
3
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n
x = 1
for i in range(order):
if x == a:
return i
x = x * b % n
raise ValueError("Log does not exist")
def _discrete_log_shanks_steps(n, a, b, order=None):
"""
Baby-step giant-step algorithm for computing the discrete logarithm of
``a`` to the base ``b`` modulo ``n``.
The algorithm is a time-memory trade-off of the method of exhaustive
search. It uses `O(sqrt(m))` memory, where `m` is the group order.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps
>>> _discrete_log_shanks_steps(41, 15, 7)
3
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n_order(b, n)
m = isqrt(order) + 1
T = {}
x = 1
for i in range(m):
T[x] = i
x = x * b % n
z = mod_inverse(b, n)
z = pow(z, m, n)
x = a
for i in range(m):
if x in T:
return i * m + T[x]
x = x * z % n
raise ValueError("Log does not exist")
def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None):
"""
Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to
the base ``b`` modulo ``n``.
It is a randomized algorithm with the same expected running time as
``_discrete_log_shanks_steps``, but requires a negligible amount of memory.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho
>>> _discrete_log_pollard_rho(227, 3**7, 3)
7
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
a %= n
b %= n
if order is None:
order = n_order(b, n)
randint = _randint(rseed)
for i in range(retries):
aa = randint(1, order - 1)
ba = randint(1, order - 1)
xa = pow(b, aa, n) * pow(a, ba, n) % n
c = xa % 3
if c == 0:
xb = a * xa % n
ab = aa
bb = (ba + 1) % order
elif c == 1:
xb = xa * xa % n
ab = (aa + aa) % order
bb = (ba + ba) % order
else:
xb = b * xa % n
ab = (aa + 1) % order
bb = ba
for j in range(order):
c = xa % 3
if c == 0:
xa = a * xa % n
ba = (ba + 1) % order
elif c == 1:
xa = xa * xa % n
aa = (aa + aa) % order
ba = (ba + ba) % order
else:
xa = b * xa % n
aa = (aa + 1) % order
c = xb % 3
if c == 0:
xb = a * xb % n
bb = (bb + 1) % order
elif c == 1:
xb = xb * xb % n
ab = (ab + ab) % order
bb = (bb + bb) % order
else:
xb = b * xb % n
ab = (ab + 1) % order
c = xb % 3
if c == 0:
xb = a * xb % n
bb = (bb + 1) % order
elif c == 1:
xb = xb * xb % n
ab = (ab + ab) % order
bb = (bb + bb) % order
else:
xb = b * xb % n
ab = (ab + 1) % order
if xa == xb:
r = (ba - bb) % order
try:
e = mod_inverse(r, order) * (ab - aa) % order
if (pow(b, e, n) - a) % n == 0:
return e
except ValueError:
pass
break
raise ValueError("Pollard's Rho failed to find logarithm")
def _discrete_log_pohlig_hellman(n, a, b, order=None):
"""
Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to
the base ``b`` modulo ``n``.
In order to compute the discrete logarithm, the algorithm takes advantage
of the factorization of the group order. It is more efficient when the
group order factors into many small primes.
Examples
========
>>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman
>>> _discrete_log_pohlig_hellman(251, 210, 71)
197
See Also
========
discrete_log
References
==========
.. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
from .modular import crt
a %= n
b %= n
if order is None:
order = n_order(b, n)
f = factorint(order)
l = [0] * len(f)
for i, (pi, ri) in enumerate(f.items()):
for j in range(ri):
gj = pow(b, l[i], n)
aj = pow(a * mod_inverse(gj, n), order // pi**(j + 1), n)
bj = pow(b, order // pi, n)
cj = discrete_log(n, aj, bj, pi, True)
l[i] += cj * pi**j
d, _ = crt([pi**ri for pi, ri in f.items()], l)
return d
def discrete_log(n, a, b, order=None, prime_order=None):
"""
Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``.
This is a recursive function to reduce the discrete logarithm problem in
cyclic groups of composite order to the problem in cyclic groups of prime
order.
It employs different algorithms depending on the problem (subgroup order
size, prime order or not):
* Trial multiplication
* Baby-step giant-step
* Pollard's Rho
* Pohlig-Hellman
Examples
========
>>> from sympy.ntheory import discrete_log
>>> discrete_log(41, 15, 7)
3
References
==========
.. [1] http://mathworld.wolfram.com/DiscreteLogarithm.html
.. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
Vanstone, S. A. (1997).
"""
n, a, b = as_int(n), as_int(a), as_int(b)
if order is None:
order = n_order(b, n)
if prime_order is None:
prime_order = isprime(order)
if order < 1000:
return _discrete_log_trial_mul(n, a, b, order)
elif prime_order:
if order < 1000000000000:
return _discrete_log_shanks_steps(n, a, b, order)
return _discrete_log_pollard_rho(n, a, b, order)
return _discrete_log_pohlig_hellman(n, a, b, order)
def quadratic_congruence(a, b, c, p):
"""
Find the solutions to ``a x**2 + b x + c = 0 mod p
a : integer
b : integer
c : integer
p : positive integer
"""
a = as_int(a)
b = as_int(b)
c = as_int(c)
p = as_int(p)
a = a % p
b = b % p
c = c % p
if a == 0:
return linear_congruence(b, -c, p)
if p == 2:
roots = []
if c % 2 == 0:
roots.append(0)
if (a + b + c) % 2 == 0:
roots.append(1)
return roots
if isprime(p):
inv_a = mod_inverse(a, p)
b *= inv_a
c *= inv_a
if b % 2 == 1:
b = b + p
d = ((b * b) // 4 - c) % p
y = sqrt_mod(d, p, all_roots=True)
res = set()
for i in y:
res.add((i - b // 2) % p)
return sorted(res)
y = sqrt_mod(b * b - 4 * a * c, 4 * a * p, all_roots=True)
res = set()
for i in y:
root = linear_congruence(2 * a, i - b, 4 * a * p)
for j in root:
res.add(j % p)
return sorted(res)
def _polynomial_congruence_prime(coefficients, p):
"""A helper function used by polynomial_congruence.
It returns the root of a polynomial modulo prime number
by naive search from [0, p).
Parameters
==========
coefficients : list of integers
p : prime number
"""
roots = []
rank = len(coefficients)
for i in range(0, p):
f_val = 0
for coeff in range(0,rank - 1):
f_val = (f_val + pow(i, int(rank - coeff - 1), p) * coefficients[coeff]) % p
f_val = f_val + coefficients[-1]
if f_val % p == 0:
roots.append(i)
return roots
def _diff_poly(root, coefficients, p):
"""A helper function used by polynomial_congruence.
It returns the derivative of the polynomial evaluated at the
root (mod p).
Parameters
==========
coefficients : list of integers
p : prime number
root : integer
"""
diff = 0
rank = len(coefficients)
for coeff in range(0, rank - 1):
if not coefficients[coeff]:
continue
diff = (diff + pow(root, rank - coeff - 2, p)*(rank - coeff - 1)*
coefficients[coeff]) % p
return diff % p
def _val_poly(root, coefficients, p):
"""A helper function used by polynomial_congruence.
It returns value of the polynomial at root (mod p).
Parameters
==========
coefficients : list of integers
p : prime number
root : integer
"""
rank = len(coefficients)
f_val = 0
for coeff in range(0, rank - 1):
f_val = (f_val + pow(root, rank - coeff - 1, p)*
coefficients[coeff]) % p
f_val = f_val + coefficients[-1]
return f_val % p
def _valid_expr(expr):
"""
return coefficients of expr if it is a univariate polynomial
with integer coefficients else raise a ValueError.
"""
if not expr.is_polynomial():
raise ValueError("The expression should be a polynomial")
polynomial = Poly(expr)
if not polynomial.is_univariate:
raise ValueError("The expression should be univariate")
if not polynomial.domain == ZZ:
raise ValueError("The expression should should have integer coefficients")
return polynomial.all_coeffs()
def polynomial_congruence(expr, m):
"""
Find the solutions to a polynomial congruence equation modulo m.
Parameters
==========
coefficients : Coefficients of the Polynomial
m : positive integer
Examples
========
>>> from sympy.ntheory import polynomial_congruence
>>> from sympy.abc import x
>>> expr = x**6 - 2*x**5 -35
>>> polynomial_congruence(expr, 6125)
[3257]
"""
coefficients = _valid_expr(expr)
coefficients = [num % m for num in coefficients]
rank = len(coefficients)
if rank == 3:
return quadratic_congruence(*coefficients, m)
if rank == 2:
return quadratic_congruence(0, *coefficients, m)
if coefficients[0] == 1 and 1 + coefficients[-1] == sum(coefficients):
return nthroot_mod(-coefficients[-1], rank - 1, m, True)
if isprime(m):
return _polynomial_congruence_prime(coefficients, m)
return _help(m,
lambda p: _polynomial_congruence_prime(coefficients, p),
lambda root, p: _diff_poly(root, coefficients, p),
lambda root, p: _val_poly(root, coefficients, p))
|
7c0dffa2f25c3eaaf04f66cf8e677871218f0f2546e8748cf683f4ec73f547fb | from functools import reduce
from math import prod
from sympy.core.numbers import igcdex, igcd
from sympy.ntheory.primetest import isprime
from sympy.polys.domains import ZZ
from sympy.polys.galoistools import gf_crt, gf_crt1, gf_crt2
from sympy.utilities.misc import as_int
def symmetric_residue(a, m):
"""Return the residual mod m such that it is within half of the modulus.
>>> from sympy.ntheory.modular import symmetric_residue
>>> symmetric_residue(1, 6)
1
>>> symmetric_residue(4, 6)
-2
"""
if a <= m // 2:
return a
return a - m
def crt(m, v, symmetric=False, check=True):
r"""Chinese Remainder Theorem.
The moduli in m are assumed to be pairwise coprime. The output
is then an integer f, such that f = v_i mod m_i for each pair out
of v and m. If ``symmetric`` is False a positive integer will be
returned, else \|f\| will be less than or equal to the LCM of the
moduli, and thus f may be negative.
If the moduli are not co-prime the correct result will be returned
if/when the test of the result is found to be incorrect. This result
will be None if there is no solution.
The keyword ``check`` can be set to False if it is known that the moduli
are coprime.
Examples
========
As an example consider a set of residues ``U = [49, 76, 65]``
and a set of moduli ``M = [99, 97, 95]``. Then we have::
>>> from sympy.ntheory.modular import crt
>>> crt([99, 97, 95], [49, 76, 65])
(639985, 912285)
This is the correct result because::
>>> [639985 % m for m in [99, 97, 95]]
[49, 76, 65]
If the moduli are not co-prime, you may receive an incorrect result
if you use ``check=False``:
>>> crt([12, 6, 17], [3, 4, 2], check=False)
(954, 1224)
>>> [954 % m for m in [12, 6, 17]]
[6, 0, 2]
>>> crt([12, 6, 17], [3, 4, 2]) is None
True
>>> crt([3, 6], [2, 5])
(5, 6)
Note: the order of gf_crt's arguments is reversed relative to crt,
and that solve_congruence takes residue, modulus pairs.
Programmer's note: rather than checking that all pairs of moduli share
no GCD (an O(n**2) test) and rather than factoring all moduli and seeing
that there is no factor in common, a check that the result gives the
indicated residuals is performed -- an O(n) operation.
See Also
========
solve_congruence
sympy.polys.galoistools.gf_crt : low level crt routine used by this routine
"""
if check:
m = list(map(as_int, m))
v = list(map(as_int, v))
result = gf_crt(v, m, ZZ)
mm = prod(m)
if check:
if not all(v % m == result % m for v, m in zip(v, m)):
result = solve_congruence(*list(zip(v, m)),
check=False, symmetric=symmetric)
if result is None:
return result
result, mm = result
if symmetric:
return symmetric_residue(result, mm), mm
return result, mm
def crt1(m):
"""First part of Chinese Remainder Theorem, for multiple application.
Examples
========
>>> from sympy.ntheory.modular import crt1
>>> crt1([18, 42, 6])
(4536, [252, 108, 756], [0, 2, 0])
"""
return gf_crt1(m, ZZ)
def crt2(m, v, mm, e, s, symmetric=False):
"""Second part of Chinese Remainder Theorem, for multiple application.
Examples
========
>>> from sympy.ntheory.modular import crt1, crt2
>>> mm, e, s = crt1([18, 42, 6])
>>> crt2([18, 42, 6], [0, 0, 0], mm, e, s)
(0, 4536)
"""
result = gf_crt2(v, m, mm, e, s, ZZ)
if symmetric:
return symmetric_residue(result, mm), mm
return result, mm
def solve_congruence(*remainder_modulus_pairs, **hint):
"""Compute the integer ``n`` that has the residual ``ai`` when it is
divided by ``mi`` where the ``ai`` and ``mi`` are given as pairs to
this function: ((a1, m1), (a2, m2), ...). If there is no solution,
return None. Otherwise return ``n`` and its modulus.
The ``mi`` values need not be co-prime. If it is known that the moduli are
not co-prime then the hint ``check`` can be set to False (default=True) and
the check for a quicker solution via crt() (valid when the moduli are
co-prime) will be skipped.
If the hint ``symmetric`` is True (default is False), the value of ``n``
will be within 1/2 of the modulus, possibly negative.
Examples
========
>>> from sympy.ntheory.modular import solve_congruence
What number is 2 mod 3, 3 mod 5 and 2 mod 7?
>>> solve_congruence((2, 3), (3, 5), (2, 7))
(23, 105)
>>> [23 % m for m in [3, 5, 7]]
[2, 3, 2]
If you prefer to work with all remainder in one list and
all moduli in another, send the arguments like this:
>>> solve_congruence(*zip((2, 3, 2), (3, 5, 7)))
(23, 105)
The moduli need not be co-prime; in this case there may or
may not be a solution:
>>> solve_congruence((2, 3), (4, 6)) is None
True
>>> solve_congruence((2, 3), (5, 6))
(5, 6)
The symmetric flag will make the result be within 1/2 of the modulus:
>>> solve_congruence((2, 3), (5, 6), symmetric=True)
(-1, 6)
See Also
========
crt : high level routine implementing the Chinese Remainder Theorem
"""
def combine(c1, c2):
"""Return the tuple (a, m) which satisfies the requirement
that n = a + i*m satisfy n = a1 + j*m1 and n = a2 = k*m2.
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_of_successive_substitution
"""
a1, m1 = c1
a2, m2 = c2
a, b, c = m1, a2 - a1, m2
g = reduce(igcd, [a, b, c])
a, b, c = [i//g for i in [a, b, c]]
if a != 1:
inv_a, _, g = igcdex(a, c)
if g != 1:
return None
b *= inv_a
a, m = a1 + m1*b, m1*c
return a, m
rm = remainder_modulus_pairs
symmetric = hint.get('symmetric', False)
if hint.get('check', True):
rm = [(as_int(r), as_int(m)) for r, m in rm]
# ignore redundant pairs but raise an error otherwise; also
# make sure that a unique set of bases is sent to gf_crt if
# they are all prime.
#
# The routine will work out less-trivial violations and
# return None, e.g. for the pairs (1,3) and (14,42) there
# is no answer because 14 mod 42 (having a gcd of 14) implies
# (14/2) mod (42/2), (14/7) mod (42/7) and (14/14) mod (42/14)
# which, being 0 mod 3, is inconsistent with 1 mod 3. But to
# preprocess the input beyond checking of another pair with 42
# or 3 as the modulus (for this example) is not necessary.
uniq = {}
for r, m in rm:
r %= m
if m in uniq:
if r != uniq[m]:
return None
continue
uniq[m] = r
rm = [(r, m) for m, r in uniq.items()]
del uniq
# if the moduli are co-prime, the crt will be significantly faster;
# checking all pairs for being co-prime gets to be slow but a prime
# test is a good trade-off
if all(isprime(m) for r, m in rm):
r, m = list(zip(*rm))
return crt(m, r, symmetric=symmetric, check=False)
rv = (0, 1)
for rmi in rm:
rv = combine(rv, rmi)
if rv is None:
break
n, m = rv
n = n % m
else:
if symmetric:
return symmetric_residue(n, m), m
return n, m
|
11dde6b69f32780554b6bfb22c881d5d6b60b4e2b1fb4bd58aef79559d81698f | """
Integer factorization
"""
from collections import defaultdict
from functools import reduce
import random
import math
from sympy.core import sympify
from sympy.core.containers import Dict
from sympy.core.evalf import bitcount
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.logic import fuzzy_and
from sympy.core.mul import Mul
from sympy.core.numbers import igcd, ilcm, Rational, Integer
from sympy.core.power import integer_nthroot, Pow, integer_log
from sympy.core.singleton import S
from sympy.external.gmpy import SYMPY_INTS
from .primetest import isprime
from .generate import sieve, primerange, nextprime
from .digits import digits
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import as_int, filldedent
from .ecm import _ecm_one_factor
# Note: This list should be updated whenever new Mersenne primes are found.
# Refer: https://www.mersenne.org/
MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,
25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933)
# compute more when needed for i in Mersenne prime exponents
PERFECT = [6] # 2**(i-1)*(2**i-1)
MERSENNES = [3] # 2**i - 1
def _ismersenneprime(n):
global MERSENNES
j = len(MERSENNES)
while n > MERSENNES[-1] and j < len(MERSENNE_PRIME_EXPONENTS):
# conservatively grow the list
MERSENNES.append(2**MERSENNE_PRIME_EXPONENTS[j] - 1)
j += 1
return n in MERSENNES
def _isperfect(n):
global PERFECT
if n % 2 == 0:
j = len(PERFECT)
while n > PERFECT[-1] and j < len(MERSENNE_PRIME_EXPONENTS):
# conservatively grow the list
t = 2**(MERSENNE_PRIME_EXPONENTS[j] - 1)
PERFECT.append(t*(2*t - 1))
j += 1
return n in PERFECT
small_trailing = [0] * 256
for j in range(1,8):
small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j))
def smoothness(n):
"""
Return the B-smooth and B-power smooth values of n.
The smoothness of n is the largest prime factor of n; the power-
smoothness is the largest divisor raised to its multiplicity.
Examples
========
>>> from sympy.ntheory.factor_ import smoothness
>>> smoothness(2**7*3**2)
(3, 128)
>>> smoothness(2**4*13)
(13, 16)
>>> smoothness(2)
(2, 2)
See Also
========
factorint, smoothness_p
"""
if n == 1:
return (1, 1) # not prime, but otherwise this causes headaches
facs = factorint(n)
return max(facs), max(m**facs[m] for m in facs)
def smoothness_p(n, m=-1, power=0, visual=None):
"""
Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...]
where:
1. p**M is the base-p divisor of n
2. sm(p + m) is the smoothness of p + m (m = -1 by default)
3. psm(p + m) is the power smoothness of p + m
The list is sorted according to smoothness (default) or by power smoothness
if power=1.
The smoothness of the numbers to the left (m = -1) or right (m = 1) of a
factor govern the results that are obtained from the p +/- 1 type factoring
methods.
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> smoothness_p(10431, m=1)
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
>>> smoothness_p(10431)
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
>>> smoothness_p(10431, power=1)
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
If visual=True then an annotated string will be returned:
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
This string can also be generated directly from a factorization dictionary
and vice versa:
>>> factorint(17*9)
{3: 2, 17: 1}
>>> smoothness_p(_)
'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16'
>>> smoothness_p(_)
{3: 2, 17: 1}
The table of the output logic is:
====== ====== ======= =======
| Visual
------ ----------------------
Input True False other
====== ====== ======= =======
dict str tuple str
str str tuple dict
tuple str tuple str
n str tuple tuple
mul str tuple tuple
====== ====== ======= =======
See Also
========
factorint, smoothness
"""
# visual must be True, False or other (stored as None)
if visual in (1, 0):
visual = bool(visual)
elif visual not in (True, False):
visual = None
if isinstance(n, str):
if visual:
return n
d = {}
for li in n.splitlines():
k, v = [int(i) for i in
li.split('has')[0].split('=')[1].split('**')]
d[k] = v
if visual is not True and visual is not False:
return d
return smoothness_p(d, visual=False)
elif not isinstance(n, tuple):
facs = factorint(n, visual=False)
if power:
k = -1
else:
k = 1
if isinstance(n, tuple):
rv = n
else:
rv = (m, sorted([(f,
tuple([M] + list(smoothness(f + m))))
for f, M in [i for i in facs.items()]],
key=lambda x: (x[1][k], x[0])))
if visual is False or (visual is not True) and (type(n) in [int, Mul]):
return rv
lines = []
for dat in rv[1]:
dat = flatten(dat)
dat.insert(2, m)
lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat))
return '\n'.join(lines)
def trailing(n):
"""Count the number of trailing zero digits in the binary
representation of n, i.e. determine the largest power of 2
that divides n.
Examples
========
>>> from sympy import trailing
>>> trailing(128)
7
>>> trailing(63)
0
"""
n = abs(int(n))
if not n:
return 0
low_byte = n & 0xff
if low_byte:
return small_trailing[low_byte]
# 2**m is quick for z up through 2**30
z = bitcount(n) - 1
if isinstance(z, SYMPY_INTS):
if n == 1 << z:
return z
if z < 300:
# fixed 8-byte reduction
t = 8
n >>= 8
while not n & 0xff:
n >>= 8
t += 8
return t + small_trailing[n & 0xff]
# binary reduction important when there might be a large
# number of trailing 0s
t = 0
p = 8
while not n & 1:
while not n & ((1 << p) - 1):
n >>= p
t += p
p *= 2
p //= 2
return t
def multiplicity(p, n):
"""
Find the greatest integer m such that p**m divides n.
Examples
========
>>> from sympy import multiplicity, Rational
>>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]]
[0, 1, 2, 3, 3]
>>> multiplicity(3, Rational(1, 9))
-2
Note: when checking for the multiplicity of a number in a
large factorial it is most efficient to send it as an unevaluated
factorial or to call ``multiplicity_in_factorial`` directly:
>>> from sympy.ntheory import multiplicity_in_factorial
>>> from sympy import factorial
>>> p = factorial(25)
>>> n = 2**100
>>> nfac = factorial(n, evaluate=False)
>>> multiplicity(p, nfac)
52818775009509558395695966887
>>> _ == multiplicity_in_factorial(p, n)
True
"""
try:
p, n = as_int(p), as_int(n)
except ValueError:
from sympy.functions.combinatorial.factorials import factorial
if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)):
p = Rational(p)
n = Rational(n)
if p.q == 1:
if n.p == 1:
return -multiplicity(p.p, n.q)
return multiplicity(p.p, n.p) - multiplicity(p.p, n.q)
elif p.p == 1:
return multiplicity(p.q, n.q)
else:
like = min(
multiplicity(p.p, n.p),
multiplicity(p.q, n.q))
cross = min(
multiplicity(p.q, n.p),
multiplicity(p.p, n.q))
return like - cross
elif (isinstance(p, (SYMPY_INTS, Integer)) and
isinstance(n, factorial) and
isinstance(n.args[0], Integer) and
n.args[0] >= 0):
return multiplicity_in_factorial(p, n.args[0])
raise ValueError('expecting ints or fractions, got %s and %s' % (p, n))
if n == 0:
raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n))
if p == 2:
return trailing(n)
if p < 2:
raise ValueError('p must be an integer, 2 or larger, but got %s' % p)
if p == n:
return 1
m = 0
n, rem = divmod(n, p)
while not rem:
m += 1
if m > 5:
# The multiplicity could be very large. Better
# to increment in powers of two
e = 2
while 1:
ppow = p**e
if ppow < n:
nnew, rem = divmod(n, ppow)
if not rem:
m += e
e *= 2
n = nnew
continue
return m + multiplicity(p, n)
n, rem = divmod(n, p)
return m
def multiplicity_in_factorial(p, n):
"""return the largest integer ``m`` such that ``p**m`` divides ``n!``
without calculating the factorial of ``n``.
Examples
========
>>> from sympy.ntheory import multiplicity_in_factorial
>>> from sympy import factorial
>>> multiplicity_in_factorial(2, 3)
1
An instructive use of this is to tell how many trailing zeros
a given factorial has. For example, there are 6 in 25!:
>>> factorial(25)
15511210043330985984000000
>>> multiplicity_in_factorial(10, 25)
6
For large factorials, it is much faster/feasible to use
this function rather than computing the actual factorial:
>>> multiplicity_in_factorial(factorial(25), 2**100)
52818775009509558395695966887
"""
p, n = as_int(p), as_int(n)
if p <= 0:
raise ValueError('expecting positive integer got %s' % p )
if n < 0:
raise ValueError('expecting non-negative integer got %s' % n )
factors = factorint(p)
# keep only the largest of a given multiplicity since those
# of a given multiplicity will be goverened by the behavior
# of the largest factor
test = defaultdict(int)
for k, v in factors.items():
test[v] = max(k, test[v])
keep = set(test.values())
# remove others from factors
for k in list(factors.keys()):
if k not in keep:
factors.pop(k)
mp = S.Infinity
for i in factors:
# multiplicity of i in n! is
mi = (n - (sum(digits(n, i)) - i))//(i - 1)
# multiplicity of p in n! depends on multiplicity
# of prime `i` in p, so we floor divide by factors[i]
# and keep it if smaller than the multiplicity of p
# seen so far
mp = min(mp, mi//factors[i])
return mp
def perfect_power(n, candidates=None, big=True, factor=True):
"""
Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a unique
perfect power with ``e > 1``, else ``False`` (e.g. 1 is not a
perfect power). A ValueError is raised if ``n`` is not Rational.
By default, the base is recursively decomposed and the exponents
collected so the largest possible ``e`` is sought. If ``big=False``
then the smallest possible ``e`` (thus prime) will be chosen.
If ``factor=True`` then simultaneous factorization of ``n`` is
attempted since finding a factor indicates the only possible root
for ``n``. This is True by default since only a few small factors will
be tested in the course of searching for the perfect power.
The use of ``candidates`` is primarily for internal use; if provided,
False will be returned if ``n`` cannot be written as a power with one
of the candidates as an exponent and factoring (beyond testing for
a factor of 2) will not be attempted.
Examples
========
>>> from sympy import perfect_power, Rational
>>> perfect_power(16)
(2, 4)
>>> perfect_power(16, big=False)
(4, 2)
Negative numbers can only have odd perfect powers:
>>> perfect_power(-4)
False
>>> perfect_power(-8)
(-2, 3)
Rationals are also recognized:
>>> perfect_power(Rational(1, 2)**3)
(1/2, 3)
>>> perfect_power(Rational(-3, 2)**3)
(-3/2, 3)
Notes
=====
To know whether an integer is a perfect power of 2 use
>>> is2pow = lambda n: bool(n and not n & (n - 1))
>>> [(i, is2pow(i)) for i in range(5)]
[(0, False), (1, True), (2, True), (3, False), (4, True)]
It is not necessary to provide ``candidates``. When provided
it will be assumed that they are ints. The first one that is
larger than the computed maximum possible exponent will signal
failure for the routine.
>>> perfect_power(3**8, [9])
False
>>> perfect_power(3**8, [2, 4, 8])
(3, 8)
>>> perfect_power(3**8, [4, 8], big=False)
(9, 4)
See Also
========
sympy.core.power.integer_nthroot
sympy.ntheory.primetest.is_square
"""
if isinstance(n, Rational) and not n.is_Integer:
p, q = n.as_numer_denom()
if p is S.One:
pp = perfect_power(q)
if pp:
pp = (n.func(1, pp[0]), pp[1])
else:
pp = perfect_power(p)
if pp:
num, e = pp
pq = perfect_power(q, [e])
if pq:
den, _ = pq
pp = n.func(num, den), e
return pp
n = as_int(n)
if n < 0:
pp = perfect_power(-n)
if pp:
b, e = pp
if e % 2:
return -b, e
return False
if n <= 3:
# no unique exponent for 0, 1
# 2 and 3 have exponents of 1
return False
logn = math.log(n, 2)
max_possible = int(logn) + 2 # only check values less than this
not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8
min_possible = 2 + not_square
if not candidates:
candidates = primerange(min_possible, max_possible)
else:
candidates = sorted([i for i in candidates
if min_possible <= i < max_possible])
if n%2 == 0:
e = trailing(n)
candidates = [i for i in candidates if e%i == 0]
if big:
candidates = reversed(candidates)
for e in candidates:
r, ok = integer_nthroot(n, e)
if ok:
return (r, e)
return False
def _factors():
rv = 2 + n % 2
while True:
yield rv
rv = nextprime(rv)
for fac, e in zip(_factors(), candidates):
# see if there is a factor present
if factor and n % fac == 0:
# find what the potential power is
if fac == 2:
e = trailing(n)
else:
e = multiplicity(fac, n)
# if it's a trivial power we are done
if e == 1:
return False
# maybe the e-th root of n is exact
r, exact = integer_nthroot(n, e)
if not exact:
# Having a factor, we know that e is the maximal
# possible value for a root of n.
# If n = fac**e*m can be written as a perfect
# power then see if m can be written as r**E where
# gcd(e, E) != 1 so n = (fac**(e//E)*r)**E
m = n//fac**e
rE = perfect_power(m, candidates=divisors(e, generator=True))
if not rE:
return False
else:
r, E = rE
r, e = fac**(e//E)*r, E
if not big:
e0 = primefactors(e)
if e0[0] != e:
r, e = r**(e//e0[0]), e0[0]
return r, e
# Weed out downright impossible candidates
if logn/e < 40:
b = 2.0**(logn/e)
if abs(int(b + 0.5) - b) > 0.01:
continue
# now see if the plausible e makes a perfect power
r, exact = integer_nthroot(n, e)
if exact:
if big:
m = perfect_power(r, big=big, factor=factor)
if m:
r, e = m[0], e*m[1]
return int(r), e
return False
def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None):
r"""
Use Pollard's rho method to try to extract a nontrivial factor
of ``n``. The returned factor may be a composite number. If no
factor is found, ``None`` is returned.
The algorithm generates pseudo-random values of x with a generator
function, replacing x with F(x). If F is not supplied then the
function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``.
Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be
supplied; the ``a`` will be ignored if F was supplied.
The sequence of numbers generated by such functions generally have a
a lead-up to some number and then loop around back to that number and
begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader
and loop look a bit like the Greek letter rho, and thus the name, 'rho'.
For a given function, very different leader-loop values can be obtained
so it is a good idea to allow for retries:
>>> from sympy.ntheory.generate import cycle_length
>>> n = 16843009
>>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n
>>> for s in range(5):
... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s)))
...
loop length = 2489; leader length = 42
loop length = 78; leader length = 120
loop length = 1482; leader length = 99
loop length = 1482; leader length = 285
loop length = 1482; leader length = 100
Here is an explicit example where there is a two element leadup to
a sequence of 3 numbers (11, 14, 4) that then repeat:
>>> x=2
>>> for i in range(9):
... x=(x**2+12)%17
... print(x)
...
16
13
11
14
4
11
14
4
11
>>> next(cycle_length(lambda x: (x**2+12)%17, 2))
(3, 2)
>>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True))
[16, 13, 11, 14, 4]
Instead of checking the differences of all generated values for a gcd
with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd,
2nd and 4th, 3rd and 6th until it has been detected that the loop has been
traversed. Loops may be many thousands of steps long before rho finds a
factor or reports failure. If ``max_steps`` is specified, the iteration
is cancelled with a failure after the specified number of steps.
Examples
========
>>> from sympy import pollard_rho
>>> n=16843009
>>> F=lambda x:(2048*pow(x,2,n) + 32767) % n
>>> pollard_rho(n, F=F)
257
Use the default setting with a bad value of ``a`` and no retries:
>>> pollard_rho(n, a=n-2, retries=0)
If retries is > 0 then perhaps the problem will correct itself when
new values are generated for a:
>>> pollard_rho(n, a=n-2, retries=1)
257
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 229-231
"""
n = int(n)
if n < 5:
raise ValueError('pollard_rho should receive n > 4')
prng = random.Random(seed + retries)
V = s
for i in range(retries + 1):
U = V
if not F:
F = lambda x: (pow(x, 2, n) + a) % n
j = 0
while 1:
if max_steps and (j > max_steps):
break
j += 1
U = F(U)
V = F(F(V)) # V is 2x further along than U
g = igcd(U - V, n)
if g == 1:
continue
if g == n:
break
return int(g)
V = prng.randint(0, n - 1)
a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2
F = None
return None
def pollard_pm1(n, B=10, a=2, retries=0, seed=1234):
"""
Use Pollard's p-1 method to try to extract a nontrivial factor
of ``n``. Either a divisor (perhaps composite) or ``None`` is returned.
The value of ``a`` is the base that is used in the test gcd(a**M - 1, n).
The default is 2. If ``retries`` > 0 then if no factor is found after the
first attempt, a new ``a`` will be generated randomly (using the ``seed``)
and the process repeated.
Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)).
A search is made for factors next to even numbers having a power smoothness
less than ``B``. Choosing a larger B increases the likelihood of finding a
larger factor but takes longer. Whether a factor of n is found or not
depends on ``a`` and the power smoothness of the even number just less than
the factor p (hence the name p - 1).
Although some discussion of what constitutes a good ``a`` some
descriptions are hard to interpret. At the modular.math site referenced
below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1
for every prime power divisor of N. But consider the following:
>>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1
>>> n=257*1009
>>> smoothness_p(n)
(-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
So we should (and can) find a root with B=16:
>>> pollard_pm1(n, B=16, a=3)
1009
If we attempt to increase B to 256 we find that it does not work:
>>> pollard_pm1(n, B=256)
>>>
But if the value of ``a`` is changed we find that only multiples of
257 work, e.g.:
>>> pollard_pm1(n, B=256, a=257)
1009
Checking different ``a`` values shows that all the ones that did not
work had a gcd value not equal to ``n`` but equal to one of the
factors:
>>> from sympy import ilcm, igcd, factorint, Pow
>>> M = 1
>>> for i in range(2, 256):
... M = ilcm(M, i)
...
>>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
... igcd(pow(a, M, n) - 1, n) != n])
{1009}
But does aM % d for every divisor of n give 1?
>>> aM = pow(255, M, n)
>>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args]
[(257**1, 1), (1009**1, 1)]
No, only one of them. So perhaps the principle is that a root will
be found for a given value of B provided that:
1) the power smoothness of the p - 1 value next to the root
does not exceed B
2) a**M % p != 1 for any of the divisors of n.
By trying more than one ``a`` it is possible that one of them
will yield a factor.
Examples
========
With the default smoothness bound, this number cannot be cracked:
>>> from sympy.ntheory import pollard_pm1
>>> pollard_pm1(21477639576571)
Increasing the smoothness bound helps:
>>> pollard_pm1(21477639576571, B=2000)
4410317
Looking at the smoothness of the factors of this number we find:
>>> from sympy.ntheory.factor_ import smoothness_p, factorint
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
The B and B-pow are the same for the p - 1 factorizations of the divisors
because those factorizations had a very large prime factor:
>>> factorint(4410317 - 1)
{2: 2, 617: 1, 1787: 1}
>>> factorint(4869863-1)
{2: 1, 2434931: 1}
Note that until B reaches the B-pow value of 1787, the number is not cracked;
>>> pollard_pm1(21477639576571, B=1786)
>>> pollard_pm1(21477639576571, B=1787)
4410317
The B value has to do with the factors of the number next to the divisor,
not the divisors themselves. A worst case scenario is that the number next
to the factor p has a large prime divisisor or is a perfect power. If these
conditions apply then the power-smoothness will be about p/2 or p. The more
realistic is that there will be a large prime factor next to p requiring
a B value on the order of p/2. Although primes may have been searched for
up to this level, the p/2 is a factor of p - 1, something that we do not
know. The modular.math reference below states that 15% of numbers in the
range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6
will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the
percentages are nearly reversed...but in that range the simple trial
division is quite fast.
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 236-238
.. [2] http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html
.. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf
"""
n = int(n)
if n < 4 or B < 3:
raise ValueError('pollard_pm1 should receive n > 3 and B > 2')
prng = random.Random(seed + B)
# computing a**lcm(1,2,3,..B) % n for B > 2
# it looks weird, but it's right: primes run [2, B]
# and the answer's not right until the loop is done.
for i in range(retries + 1):
aM = a
for p in sieve.primerange(2, B + 1):
e = int(math.log(B, p))
aM = pow(aM, pow(p, e), n)
g = igcd(aM - 1, n)
if 1 < g < n:
return int(g)
# get a new a:
# since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1'
# then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will
# give a zero, too, so we set the range as [2, n-2]. Some references
# say 'a' should be coprime to n, but either will detect factors.
a = prng.randint(2, n - 2)
def _trial(factors, n, candidates, verbose=False):
"""
Helper function for integer factorization. Trial factors ``n`
against all integers given in the sequence ``candidates``
and updates the dict ``factors`` in-place. Returns the reduced
value of ``n`` and a flag indicating whether any factors were found.
"""
if verbose:
factors0 = list(factors.keys())
nfactors = len(factors)
for d in candidates:
if n % d == 0:
m = multiplicity(d, n)
n //= d**m
factors[d] = m
if verbose:
for k in sorted(set(factors).difference(set(factors0))):
print(factor_msg % (k, factors[k]))
return int(n), len(factors) != nfactors
def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1,
verbose):
"""
Helper function for integer factorization. Checks if ``n``
is a prime or a perfect power, and in those cases updates
the factorization and raises ``StopIteration``.
"""
if verbose:
print('Check for termination')
# since we've already been factoring there is no need to do
# simultaneous factoring with the power check
p = perfect_power(n, factor=False)
if p is not False:
base, exp = p
if limitp1:
limit = limitp1 - 1
else:
limit = limitp1
facs = factorint(base, limit, use_trial, use_rho, use_pm1,
verbose=False)
for b, e in facs.items():
if verbose:
print(factor_msg % (b, e))
factors[b] = exp*e
raise StopIteration
if isprime(n):
factors[int(n)] = 1
raise StopIteration
if n == 1:
raise StopIteration
trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i"
trial_msg = "Trial division with primes [%i ... %i]"
rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i"
pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i"
ecm_msg = "Elliptic Curve with B1 bound %i, B2 bound %i, num_curves %i"
factor_msg = '\t%i ** %i'
fermat_msg = 'Close factors satisying Fermat condition found.'
complete_msg = 'Factorization is complete.'
def _factorint_small(factors, n, limit, fail_max):
"""
Return the value of n and either a 0 (indicating that factorization up
to the limit was complete) or else the next near-prime that would have
been tested.
Factoring stops if there are fail_max unsuccessful tests in a row.
If factors of n were found they will be in the factors dictionary as
{factor: multiplicity} and the returned value of n will have had those
factors removed. The factors dictionary is modified in-place.
"""
def done(n, d):
"""return n, d if the sqrt(n) was not reached yet, else
n, 0 indicating that factoring is done.
"""
if d*d <= n:
return n, d
return n, 0
d = 2
m = trailing(n)
if m:
factors[d] = m
n >>= m
d = 3
if limit < d:
if n > 1:
factors[n] = 1
return done(n, d)
# reduce
m = 0
while n % d == 0:
n //= d
m += 1
if m == 20:
mm = multiplicity(d, n)
m += mm
n //= d**mm
break
if m:
factors[d] = m
# when d*d exceeds maxx or n we are done; if limit**2 is greater
# than n then maxx is set to zero so the value of n will flag the finish
if limit*limit > n:
maxx = 0
else:
maxx = limit*limit
dd = maxx or n
d = 5
fails = 0
while fails < fail_max:
if d*d > dd:
break
# d = 6*i - 1
# reduce
m = 0
while n % d == 0:
n //= d
m += 1
if m == 20:
mm = multiplicity(d, n)
m += mm
n //= d**mm
break
if m:
factors[d] = m
dd = maxx or n
fails = 0
else:
fails += 1
d += 2
if d*d > dd:
break
# d = 6*i - 1
# reduce
m = 0
while n % d == 0:
n //= d
m += 1
if m == 20:
mm = multiplicity(d, n)
m += mm
n //= d**mm
break
if m:
factors[d] = m
dd = maxx or n
fails = 0
else:
fails += 1
# d = 6*(i + 1) - 1
d += 4
return done(n, d)
def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True,
use_ecm=True, verbose=False, visual=None, multiple=False):
r"""
Given a positive integer ``n``, ``factorint(n)`` returns a dict containing
the prime factors of ``n`` as keys and their respective multiplicities
as values. For example:
>>> from sympy.ntheory import factorint
>>> factorint(2000) # 2000 = (2**4) * (5**3)
{2: 4, 5: 3}
>>> factorint(65537) # This number is prime
{65537: 1}
For input less than 2, factorint behaves as follows:
- ``factorint(1)`` returns the empty factorization, ``{}``
- ``factorint(0)`` returns ``{0:1}``
- ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n``
Partial Factorization:
If ``limit`` (> 3) is specified, the search is stopped after performing
trial division up to (and including) the limit (or taking a
corresponding number of rho/p-1 steps). This is useful if one has
a large number and only is interested in finding small factors (if
any). Note that setting a limit does not prevent larger factors
from being found early; it simply means that the largest factor may
be composite. Since checking for perfect power is relatively cheap, it is
done regardless of the limit setting.
This number, for example, has two small factors and a huge
semi-prime factor that cannot be reduced easily:
>>> from sympy.ntheory import isprime
>>> a = 1407633717262338957430697921446883
>>> f = factorint(a, limit=10000)
>>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1}
True
>>> isprime(max(f))
False
This number has a small factor and a residual perfect power whose
base is greater than the limit:
>>> factorint(3*101**7, limit=5)
{3: 1, 101: 7}
List of Factors:
If ``multiple`` is set to ``True`` then a list containing the
prime factors including multiplicities is returned.
>>> factorint(24, multiple=True)
[2, 2, 2, 3]
Visual Factorization:
If ``visual`` is set to ``True``, then it will return a visual
factorization of the integer. For example:
>>> from sympy import pprint
>>> pprint(factorint(4200, visual=True))
3 1 2 1
2 *3 *5 *7
Note that this is achieved by using the evaluate=False flag in Mul
and Pow. If you do other manipulations with an expression where
evaluate=False, it may evaluate. Therefore, you should use the
visual option only for visualization, and use the normal dictionary
returned by visual=False if you want to perform operations on the
factors.
You can easily switch between the two forms by sending them back to
factorint:
>>> from sympy import Mul
>>> regular = factorint(1764); regular
{2: 2, 3: 2, 7: 2}
>>> pprint(factorint(regular))
2 2 2
2 *3 *7
>>> visual = factorint(1764, visual=True); pprint(visual)
2 2 2
2 *3 *7
>>> print(factorint(visual))
{2: 2, 3: 2, 7: 2}
If you want to send a number to be factored in a partially factored form
you can do so with a dictionary or unevaluated expression:
>>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
{2: 10, 3: 3}
>>> factorint(Mul(4, 12, evaluate=False))
{2: 4, 3: 1}
The table of the output logic is:
====== ====== ======= =======
Visual
------ ----------------------
Input True False other
====== ====== ======= =======
dict mul dict mul
n mul dict dict
mul mul dict dict
====== ====== ======= =======
Notes
=====
Algorithm:
The function switches between multiple algorithms. Trial division
quickly finds small factors (of the order 1-5 digits), and finds
all large factors if given enough time. The Pollard rho and p-1
algorithms are used to find large factors ahead of time; they
will often find factors of the order of 10 digits within a few
seconds:
>>> factors = factorint(12345678910111213141516)
>>> for base, exp in sorted(factors.items()):
... print('%s %s' % (base, exp))
...
2 2
2507191691 1
1231026625769 1
Any of these methods can optionally be disabled with the following
boolean parameters:
- ``use_trial``: Toggle use of trial division
- ``use_rho``: Toggle use of Pollard's rho method
- ``use_pm1``: Toggle use of Pollard's p-1 method
``factorint`` also periodically checks if the remaining part is
a prime number or a perfect power, and in those cases stops.
For unevaluated factorial, it uses Legendre's formula(theorem).
If ``verbose`` is set to ``True``, detailed progress is printed.
See Also
========
smoothness, smoothness_p, divisors
"""
if isinstance(n, Dict):
n = dict(n)
if multiple:
fac = factorint(n, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose, visual=False, multiple=False)
factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
for p in sorted(fac)), [])
return factorlist
factordict = {}
if visual and not isinstance(n, (Mul, dict)):
factordict = factorint(n, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose, visual=False)
elif isinstance(n, Mul):
factordict = {int(k): int(v) for k, v in
n.as_powers_dict().items()}
elif isinstance(n, dict):
factordict = n
if factordict and isinstance(n, (Mul, dict)):
# check it
for key in list(factordict.keys()):
if isprime(key):
continue
e = factordict.pop(key)
d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho,
use_pm1=use_pm1, verbose=verbose, visual=False)
for k, v in d.items():
if k in factordict:
factordict[k] += v*e
else:
factordict[k] = v*e
if visual or (type(n) is dict and
visual is not True and
visual is not False):
if factordict == {}:
return S.One
if -1 in factordict:
factordict.pop(-1)
args = [S.NegativeOne]
else:
args = []
args.extend([Pow(*i, evaluate=False)
for i in sorted(factordict.items())])
return Mul(*args, evaluate=False)
elif isinstance(n, (dict, Mul)):
return factordict
assert use_trial or use_rho or use_pm1 or use_ecm
from sympy.functions.combinatorial.factorials import factorial
if isinstance(n, factorial):
x = as_int(n.args[0])
if x >= 20:
factors = {}
m = 2 # to initialize the if condition below
for p in sieve.primerange(2, x + 1):
if m > 1:
m, q = 0, x // p
while q != 0:
m += q
q //= p
factors[p] = m
if factors and verbose:
for k in sorted(factors):
print(factor_msg % (k, factors[k]))
if verbose:
print(complete_msg)
return factors
else:
# if n < 20!, direct computation is faster
# since it uses a lookup table
n = n.func(x)
n = as_int(n)
if limit:
limit = int(limit)
use_ecm = False
# special cases
if n < 0:
factors = factorint(
-n, limit=limit, use_trial=use_trial, use_rho=use_rho,
use_pm1=use_pm1, verbose=verbose, visual=False)
factors[-1] = 1
return factors
if limit and limit < 2:
if n == 1:
return {}
return {n: 1}
elif n < 10:
# doing this we are assured of getting a limit > 2
# when we have to compute it later
return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1},
{2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n]
factors = {}
# do simplistic factorization
if verbose:
sn = str(n)
if len(sn) > 50:
print('Factoring %s' % sn[:5] + \
'..(%i other digits)..' % (len(sn) - 10) + sn[-5:])
else:
print('Factoring', n)
if use_trial:
# this is the preliminary factorization for small factors
small = 2**15
fail_max = 600
small = min(small, limit or small)
if verbose:
print(trial_int_msg % (2, small, fail_max))
n, next_p = _factorint_small(factors, n, small, fail_max)
else:
next_p = 2
if factors and verbose:
for k in sorted(factors):
print(factor_msg % (k, factors[k]))
if next_p == 0:
if n > 1:
factors[int(n)] = 1
if verbose:
print(complete_msg)
return factors
# continue with more advanced factorization methods
# first check if the simplistic run didn't finish
# because of the limit and check for a perfect
# power before exiting
try:
if limit and next_p > limit:
if verbose:
print('Exceeded limit:', limit)
_check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
verbose)
if n > 1:
factors[int(n)] = 1
return factors
else:
# Before quitting (or continuing on)...
# ...do a Fermat test since it's so easy and we need the
# square root anyway. Finding 2 factors is easy if they are
# "close enough." This is the big root equivalent of dividing by
# 2, 3, 5.
sqrt_n = integer_nthroot(n, 2)[0]
a = sqrt_n + 1
a2 = a**2
b2 = a2 - n
for i in range(3):
b, fermat = integer_nthroot(b2, 2)
if fermat:
break
b2 += 2*a + 1 # equiv to (a + 1)**2 - n
a += 1
if fermat:
if verbose:
print(fermat_msg)
if limit:
limit -= 1
for r in [a - b, a + b]:
facs = factorint(r, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose)
for k, v in facs.items():
factors[k] = factors.get(k, 0) + v
raise StopIteration
# ...see if factorization can be terminated
_check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
verbose)
except StopIteration:
if verbose:
print(complete_msg)
return factors
# these are the limits for trial division which will
# be attempted in parallel with pollard methods
low, high = next_p, 2*next_p
limit = limit or sqrt_n
# add 1 to make sure limit is reached in primerange calls
limit += 1
iteration = 0
while 1:
try:
high_ = high
if limit < high_:
high_ = limit
# Trial division
if use_trial:
if verbose:
print(trial_msg % (low, high_))
ps = sieve.primerange(low, high_)
n, found_trial = _trial(factors, n, ps, verbose)
if found_trial:
_check_termination(factors, n, limit, use_trial, use_rho,
use_pm1, verbose)
else:
found_trial = False
if high > limit:
if verbose:
print('Exceeded limit:', limit)
if n > 1:
factors[int(n)] = 1
raise StopIteration
# Only used advanced methods when no small factors were found
if not found_trial:
if (use_pm1 or use_rho):
high_root = max(int(math.log(high_**0.7)), low, 3)
# Pollard p-1
if use_pm1:
if verbose:
print(pm1_msg % (high_root, high_))
c = pollard_pm1(n, B=high_root, seed=high_)
if c:
# factor it and let _trial do the update
ps = factorint(c, limit=limit - 1,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
use_ecm=use_ecm,
verbose=verbose)
n, _ = _trial(factors, n, ps, verbose=False)
_check_termination(factors, n, limit, use_trial,
use_rho, use_pm1, verbose)
# Pollard rho
if use_rho:
max_steps = high_root
if verbose:
print(rho_msg % (1, max_steps, high_))
c = pollard_rho(n, retries=1, max_steps=max_steps,
seed=high_)
if c:
# factor it and let _trial do the update
ps = factorint(c, limit=limit - 1,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
use_ecm=use_ecm,
verbose=verbose)
n, _ = _trial(factors, n, ps, verbose=False)
_check_termination(factors, n, limit, use_trial,
use_rho, use_pm1, verbose)
except StopIteration:
if verbose:
print(complete_msg)
return factors
#Use subexponential algorithms if use_ecm
#Use pollard algorithms for finding small factors for 3 iterations
#if after small factors the number of digits of n is >= 20 then use ecm
iteration += 1
if use_ecm and iteration >= 3 and len(str(n)) >= 25:
break
low, high = high, high*2
B1 = 10000
B2 = 100*B1
num_curves = 50
while(1):
if verbose:
print(ecm_msg % (B1, B2, num_curves))
while(1):
try:
factor = _ecm_one_factor(n, B1, B2, num_curves)
ps = factorint(factor, limit=limit - 1,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
use_ecm=use_ecm,
verbose=verbose)
n, _ = _trial(factors, n, ps, verbose=False)
_check_termination(factors, n, limit, use_trial,
use_rho, use_pm1, verbose)
except ValueError:
break
except StopIteration:
if verbose:
print(complete_msg)
return factors
B1 *= 5
B2 = 100*B1
num_curves *= 4
def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True,
verbose=False, visual=None, multiple=False):
r"""
Given a Rational ``r``, ``factorrat(r)`` returns a dict containing
the prime factors of ``r`` as keys and their respective multiplicities
as values. For example:
>>> from sympy import factorrat, S
>>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2)
{2: 3, 3: -2}
>>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1)
{-1: 1, 3: -1, 7: -1, 47: -1}
Please see the docstring for ``factorint`` for detailed explanations
and examples of the following keywords:
- ``limit``: Integer limit up to which trial division is done
- ``use_trial``: Toggle use of trial division
- ``use_rho``: Toggle use of Pollard's rho method
- ``use_pm1``: Toggle use of Pollard's p-1 method
- ``verbose``: Toggle detailed printing of progress
- ``multiple``: Toggle returning a list of factors or dict
- ``visual``: Toggle product form of output
"""
if multiple:
fac = factorrat(rat, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose, visual=False, multiple=False)
factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
for p, _ in sorted(fac.items(),
key=lambda elem: elem[0]
if elem[1] > 0
else 1/elem[0])), [])
return factorlist
f = factorint(rat.p, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
f = defaultdict(int, f)
for p, e in factorint(rat.q, limit=limit,
use_trial=use_trial,
use_rho=use_rho,
use_pm1=use_pm1,
verbose=verbose).items():
f[p] += -e
if len(f) > 1 and 1 in f:
del f[1]
if not visual:
return dict(f)
else:
if -1 in f:
f.pop(-1)
args = [S.NegativeOne]
else:
args = []
args.extend([Pow(*i, evaluate=False)
for i in sorted(f.items())])
return Mul(*args, evaluate=False)
def primefactors(n, limit=None, verbose=False):
"""Return a sorted list of n's prime factors, ignoring multiplicity
and any composite factor that remains if the limit was set too low
for complete factorization. Unlike factorint(), primefactors() does
not return -1 or 0.
Examples
========
>>> from sympy.ntheory import primefactors, factorint, isprime
>>> primefactors(6)
[2, 3]
>>> primefactors(-5)
[5]
>>> sorted(factorint(123456).items())
[(2, 6), (3, 1), (643, 1)]
>>> primefactors(123456)
[2, 3, 643]
>>> sorted(factorint(10000000001, limit=200).items())
[(101, 1), (99009901, 1)]
>>> isprime(99009901)
False
>>> primefactors(10000000001, limit=300)
[101]
See Also
========
divisors
"""
n = int(n)
factors = sorted(factorint(n, limit=limit, verbose=verbose).keys())
s = [f for f in factors[:-1:] if f not in [-1, 0, 1]]
if factors and isprime(factors[-1]):
s += [factors[-1]]
return s
def _divisors(n, proper=False):
"""Helper function for divisors which generates the divisors."""
factordict = factorint(n)
ps = sorted(factordict.keys())
def rec_gen(n=0):
if n == len(ps):
yield 1
else:
pows = [1]
for j in range(factordict[ps[n]]):
pows.append(pows[-1] * ps[n])
for q in rec_gen(n + 1):
for p in pows:
yield p * q
if proper:
for p in rec_gen():
if p != n:
yield p
else:
yield from rec_gen()
def divisors(n, generator=False, proper=False):
r"""
Return all divisors of n sorted from 1..n by default.
If generator is ``True`` an unordered generator is returned.
The number of divisors of n can be quite large if there are many
prime factors (counting repeated factors). If only the number of
factors is desired use divisor_count(n).
Examples
========
>>> from sympy import divisors, divisor_count
>>> divisors(24)
[1, 2, 3, 4, 6, 8, 12, 24]
>>> divisor_count(24)
8
>>> list(divisors(120, generator=True))
[1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120]
Notes
=====
This is a slightly modified version of Tim Peters referenced at:
https://stackoverflow.com/questions/1010381/python-factorization
See Also
========
primefactors, factorint, divisor_count
"""
n = as_int(abs(n))
if isprime(n):
if proper:
return [1]
return [1, n]
if n == 1:
if proper:
return []
return [1]
if n == 0:
return []
rv = _divisors(n, proper)
if not generator:
return sorted(rv)
return rv
def divisor_count(n, modulus=1, proper=False):
"""
Return the number of divisors of ``n``. If ``modulus`` is not 1 then only
those that are divisible by ``modulus`` are counted. If ``proper`` is True
then the divisor of ``n`` will not be counted.
Examples
========
>>> from sympy import divisor_count
>>> divisor_count(6)
4
>>> divisor_count(6, 2)
2
>>> divisor_count(6, proper=True)
3
See Also
========
factorint, divisors, totient, proper_divisor_count
"""
if not modulus:
return 0
elif modulus != 1:
n, r = divmod(n, modulus)
if r:
return 0
if n == 0:
return 0
n = Mul(*[v + 1 for k, v in factorint(n).items() if k > 1])
if n and proper:
n -= 1
return n
def proper_divisors(n, generator=False):
"""
Return all divisors of n except n, sorted by default.
If generator is ``True`` an unordered generator is returned.
Examples
========
>>> from sympy import proper_divisors, proper_divisor_count
>>> proper_divisors(24)
[1, 2, 3, 4, 6, 8, 12]
>>> proper_divisor_count(24)
7
>>> list(proper_divisors(120, generator=True))
[1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60]
See Also
========
factorint, divisors, proper_divisor_count
"""
return divisors(n, generator=generator, proper=True)
def proper_divisor_count(n, modulus=1):
"""
Return the number of proper divisors of ``n``.
Examples
========
>>> from sympy import proper_divisor_count
>>> proper_divisor_count(6)
3
>>> proper_divisor_count(6, modulus=2)
1
See Also
========
divisors, proper_divisors, divisor_count
"""
return divisor_count(n, modulus=modulus, proper=True)
def _udivisors(n):
"""Helper function for udivisors which generates the unitary divisors."""
factorpows = [p**e for p, e in factorint(n).items()]
for i in range(2**len(factorpows)):
d, j, k = 1, i, 0
while j:
if (j & 1):
d *= factorpows[k]
j >>= 1
k += 1
yield d
def udivisors(n, generator=False):
r"""
Return all unitary divisors of n sorted from 1..n by default.
If generator is ``True`` an unordered generator is returned.
The number of unitary divisors of n can be quite large if there are many
prime factors. If only the number of unitary divisors is desired use
udivisor_count(n).
Examples
========
>>> from sympy.ntheory.factor_ import udivisors, udivisor_count
>>> udivisors(15)
[1, 3, 5, 15]
>>> udivisor_count(15)
4
>>> sorted(udivisors(120, generator=True))
[1, 3, 5, 8, 15, 24, 40, 120]
See Also
========
primefactors, factorint, divisors, divisor_count, udivisor_count
References
==========
.. [1] https://en.wikipedia.org/wiki/Unitary_divisor
.. [2] http://mathworld.wolfram.com/UnitaryDivisor.html
"""
n = as_int(abs(n))
if isprime(n):
return [1, n]
if n == 1:
return [1]
if n == 0:
return []
rv = _udivisors(n)
if not generator:
return sorted(rv)
return rv
def udivisor_count(n):
"""
Return the number of unitary divisors of ``n``.
Parameters
==========
n : integer
Examples
========
>>> from sympy.ntheory.factor_ import udivisor_count
>>> udivisor_count(120)
8
See Also
========
factorint, divisors, udivisors, divisor_count, totient
References
==========
.. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html
"""
if n == 0:
return 0
return 2**len([p for p in factorint(n) if p > 1])
def _antidivisors(n):
"""Helper function for antidivisors which generates the antidivisors."""
for d in _divisors(n):
y = 2*d
if n > y and n % y:
yield y
for d in _divisors(2*n-1):
if n > d >= 2 and n % d:
yield d
for d in _divisors(2*n+1):
if n > d >= 2 and n % d:
yield d
def antidivisors(n, generator=False):
r"""
Return all antidivisors of n sorted from 1..n by default.
Antidivisors [1]_ of n are numbers that do not divide n by the largest
possible margin. If generator is True an unordered generator is returned.
Examples
========
>>> from sympy.ntheory.factor_ import antidivisors
>>> antidivisors(24)
[7, 16]
>>> sorted(antidivisors(128, generator=True))
[3, 5, 15, 17, 51, 85]
See Also
========
primefactors, factorint, divisors, divisor_count, antidivisor_count
References
==========
.. [1] definition is described in https://oeis.org/A066272/a066272a.html
"""
n = as_int(abs(n))
if n <= 2:
return []
rv = _antidivisors(n)
if not generator:
return sorted(rv)
return rv
def antidivisor_count(n):
"""
Return the number of antidivisors [1]_ of ``n``.
Parameters
==========
n : integer
Examples
========
>>> from sympy.ntheory.factor_ import antidivisor_count
>>> antidivisor_count(13)
4
>>> antidivisor_count(27)
5
See Also
========
factorint, divisors, antidivisors, divisor_count, totient
References
==========
.. [1] formula from https://oeis.org/A066272
"""
n = as_int(abs(n))
if n <= 2:
return 0
return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \
divisor_count(n) - divisor_count(n, 2) - 5
class totient(Function):
r"""
Calculate the Euler totient function phi(n)
``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n
that are relatively prime to n.
Parameters
==========
n : integer
Examples
========
>>> from sympy.ntheory import totient
>>> totient(1)
1
>>> totient(25)
20
>>> totient(45) == totient(5)*totient(9)
True
See Also
========
divisor_count
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function
.. [2] http://mathworld.wolfram.com/TotientFunction.html
"""
@classmethod
def eval(cls, n):
if n.is_Integer:
if n < 1:
raise ValueError("n must be a positive integer")
factors = factorint(n)
return cls._from_factors(factors)
elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False):
raise ValueError("n must be a positive integer")
def _eval_is_integer(self):
return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive])
@classmethod
def _from_distinct_primes(self, *args):
"""Subroutine to compute totient from the list of assumed
distinct primes
Examples
========
>>> from sympy.ntheory.factor_ import totient
>>> totient._from_distinct_primes(5, 7)
24
"""
return reduce(lambda i, j: i * (j-1), args, 1)
@classmethod
def _from_factors(self, factors):
"""Subroutine to compute totient from already-computed factors
Examples
========
>>> from sympy.ntheory.factor_ import totient
>>> totient._from_factors({5: 2})
20
"""
t = 1
for p, k in factors.items():
t *= (p - 1) * p**(k - 1)
return t
class reduced_totient(Function):
r"""
Calculate the Carmichael reduced totient function lambda(n)
``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that
`k^m \equiv 1 \mod n` for all k relatively prime to n.
Examples
========
>>> from sympy.ntheory import reduced_totient
>>> reduced_totient(1)
1
>>> reduced_totient(8)
2
>>> reduced_totient(30)
4
See Also
========
totient
References
==========
.. [1] https://en.wikipedia.org/wiki/Carmichael_function
.. [2] http://mathworld.wolfram.com/CarmichaelFunction.html
"""
@classmethod
def eval(cls, n):
if n.is_Integer:
if n < 1:
raise ValueError("n must be a positive integer")
factors = factorint(n)
return cls._from_factors(factors)
@classmethod
def _from_factors(self, factors):
"""Subroutine to compute totient from already-computed factors
"""
t = 1
for p, k in factors.items():
if p == 2 and k > 2:
t = ilcm(t, 2**(k - 2))
else:
t = ilcm(t, (p - 1) * p**(k - 1))
return t
@classmethod
def _from_distinct_primes(self, *args):
"""Subroutine to compute totient from the list of assumed
distinct primes
"""
args = [p - 1 for p in args]
return ilcm(*args)
def _eval_is_integer(self):
return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive])
class divisor_sigma(Function):
r"""
Calculate the divisor function `\sigma_k(n)` for positive integer n
``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])``
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
\sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots
+ p_i^{m_ik}).
Parameters
==========
n : integer
k : integer, optional
power of divisors in the sum
for k = 0, 1:
``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)``
``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))``
Default for k is 1.
Examples
========
>>> from sympy.ntheory import divisor_sigma
>>> divisor_sigma(18, 0)
6
>>> divisor_sigma(39, 1)
56
>>> divisor_sigma(12, 2)
210
>>> divisor_sigma(37)
38
See Also
========
divisor_count, totient, divisors, factorint
References
==========
.. [1] https://en.wikipedia.org/wiki/Divisor_function
"""
@classmethod
def eval(cls, n, k=S.One):
k = sympify(k)
if n.is_prime:
return 1 + n**k
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
elif k.is_Integer:
k = int(k)
return Integer(math.prod(
(p**(k*(e + 1)) - 1)//(p**k - 1) if k != 0
else e + 1 for p, e in factorint(n).items()))
else:
return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0
else e + 1 for p, e in factorint(n).items()])
if n.is_integer: # symbolic case
args = []
for p, e in (_.as_base_exp() for _ in Mul.make_args(n)):
if p.is_prime and e.is_positive:
args.append((p**(k*(e + 1)) - 1)/(p**k - 1) if
k != 0 else e + 1)
else:
return
return Mul(*args)
def core(n, t=2):
r"""
Calculate core(n, t) = `core_t(n)` of a positive integer n
``core_2(n)`` is equal to the squarefree part of n
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}.
Parameters
==========
n : integer
t : integer
core(n, t) calculates the t-th power free part of n
``core(n, 2)`` is the squarefree part of ``n``
``core(n, 3)`` is the cubefree part of ``n``
Default for t is 2.
Examples
========
>>> from sympy.ntheory.factor_ import core
>>> core(24, 2)
6
>>> core(9424, 3)
1178
>>> core(379238)
379238
>>> core(15**11, 10)
15
See Also
========
factorint, sympy.solvers.diophantine.diophantine.square_factor
References
==========
.. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core
"""
n = as_int(n)
t = as_int(t)
if n <= 0:
raise ValueError("n must be a positive integer")
elif t <= 1:
raise ValueError("t must be >= 2")
else:
y = 1
for p, e in factorint(n).items():
y *= p**(e % t)
return y
class udivisor_sigma(Function):
r"""
Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n
``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])``
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
\sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}).
Parameters
==========
k : power of divisors in the sum
for k = 0, 1:
``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)``
``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))``
Default for k is 1.
Examples
========
>>> from sympy.ntheory.factor_ import udivisor_sigma
>>> udivisor_sigma(18, 0)
4
>>> udivisor_sigma(74, 1)
114
>>> udivisor_sigma(36, 3)
47450
>>> udivisor_sigma(111)
152
See Also
========
divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma,
factorint
References
==========
.. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html
"""
@classmethod
def eval(cls, n, k=S.One):
k = sympify(k)
if n.is_prime:
return 1 + n**k
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
else:
return Mul(*[1+p**(k*e) for p, e in factorint(n).items()])
class primenu(Function):
r"""
Calculate the number of distinct prime factors for a positive integer n.
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^k p_i^{m_i},
then ``primenu(n)`` or `\nu(n)` is:
.. math ::
\nu(n) = k.
Examples
========
>>> from sympy.ntheory.factor_ import primenu
>>> primenu(1)
0
>>> primenu(30)
3
See Also
========
factorint
References
==========
.. [1] http://mathworld.wolfram.com/PrimeFactor.html
"""
@classmethod
def eval(cls, n):
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
else:
return len(factorint(n).keys())
class primeomega(Function):
r"""
Calculate the number of prime factors counting multiplicities for a
positive integer n.
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^k p_i^{m_i},
then ``primeomega(n)`` or `\Omega(n)` is:
.. math ::
\Omega(n) = \sum_{i=1}^k m_i.
Examples
========
>>> from sympy.ntheory.factor_ import primeomega
>>> primeomega(1)
0
>>> primeomega(20)
3
See Also
========
factorint
References
==========
.. [1] http://mathworld.wolfram.com/PrimeFactor.html
"""
@classmethod
def eval(cls, n):
if n.is_Integer:
if n <= 0:
raise ValueError("n must be a positive integer")
else:
return sum(factorint(n).values())
def mersenne_prime_exponent(nth):
"""Returns the exponent ``i`` for the nth Mersenne prime (which
has the form `2^i - 1`).
Examples
========
>>> from sympy.ntheory.factor_ import mersenne_prime_exponent
>>> mersenne_prime_exponent(1)
2
>>> mersenne_prime_exponent(20)
4423
"""
n = as_int(nth)
if n < 1:
raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2")
if n > 51:
raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51")
return MERSENNE_PRIME_EXPONENTS[n - 1]
def is_perfect(n):
"""Returns True if ``n`` is a perfect number, else False.
A perfect number is equal to the sum of its positive, proper divisors.
Examples
========
>>> from sympy.ntheory.factor_ import is_perfect, divisors, divisor_sigma
>>> is_perfect(20)
False
>>> is_perfect(6)
True
>>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1])
True
References
==========
.. [1] http://mathworld.wolfram.com/PerfectNumber.html
.. [2] https://en.wikipedia.org/wiki/Perfect_number
"""
n = as_int(n)
if _isperfect(n):
return True
# all perfect numbers for Mersenne primes with exponents
# less than or equal to 43112609 are known
iknow = MERSENNE_PRIME_EXPONENTS.index(43112609)
if iknow <= len(PERFECT) - 1 and n <= PERFECT[iknow]:
# there may be gaps between this and larger known values
# so only conclude in the range for which all values
# are known
return False
if n%2 == 0:
last2 = n % 100
if last2 != 28 and last2 % 10 != 6:
return False
r, b = integer_nthroot(1 + 8*n, 2)
if not b:
return False
m, x = divmod(1 + r, 4)
if x:
return False
e, b = integer_log(m, 2)
if not b:
return False
else:
if n < 10**2000: # http://www.lirmm.fr/~ochem/opn/
return False
if n % 105 == 0: # not divis by 105
return False
if not any(n%m == r for m, r in [(12, 1), (468, 117), (324, 81)]):
return False
# there are many criteria that the factor structure of n
# must meet; since we will have to factor it to test the
# structure we will have the factors and can then check
# to see whether it is a perfect number or not. So we
# skip the structure checks and go straight to the final
# test below.
rv = divisor_sigma(n) - n
if rv == n:
if n%2 == 0:
raise ValueError(filldedent('''
This even number is perfect and is associated with a
Mersenne Prime, 2^%s - 1. It should be
added to SymPy.''' % (e + 1)))
else:
raise ValueError(filldedent('''In 1888, Sylvester stated: "
...a prolonged meditation on the subject has satisfied
me that the existence of any one such [odd perfect number]
-- its escape, so to say, from the complex web of conditions
which hem it in on all sides -- would be little short of a
miracle." I guess SymPy just found that miracle and it
factors like this: %s''' % factorint(n)))
def is_mersenne_prime(n):
"""Returns True if ``n`` is a Mersenne prime, else False.
A Mersenne prime is a prime number having the form `2^i - 1`.
Examples
========
>>> from sympy.ntheory.factor_ import is_mersenne_prime
>>> is_mersenne_prime(6)
False
>>> is_mersenne_prime(127)
True
References
==========
.. [1] http://mathworld.wolfram.com/MersennePrime.html
"""
n = as_int(n)
if _ismersenneprime(n):
return True
if not isprime(n):
return False
r, b = integer_log(n + 1, 2)
if not b:
return False
raise ValueError(filldedent('''
This Mersenne Prime, 2^%s - 1, should
be added to SymPy's known values.''' % r))
def abundance(n):
"""Returns the difference between the sum of the positive
proper divisors of a number and the number.
Examples
========
>>> from sympy.ntheory import abundance, is_perfect, is_abundant
>>> abundance(6)
0
>>> is_perfect(6)
True
>>> abundance(10)
-2
>>> is_abundant(10)
False
"""
return divisor_sigma(n, 1) - 2 * n
def is_abundant(n):
"""Returns True if ``n`` is an abundant number, else False.
A abundant number is smaller than the sum of its positive proper divisors.
Examples
========
>>> from sympy.ntheory.factor_ import is_abundant
>>> is_abundant(20)
True
>>> is_abundant(15)
False
References
==========
.. [1] http://mathworld.wolfram.com/AbundantNumber.html
"""
n = as_int(n)
if is_perfect(n):
return False
return n % 6 == 0 or bool(abundance(n) > 0)
def is_deficient(n):
"""Returns True if ``n`` is a deficient number, else False.
A deficient number is greater than the sum of its positive proper divisors.
Examples
========
>>> from sympy.ntheory.factor_ import is_deficient
>>> is_deficient(20)
False
>>> is_deficient(15)
True
References
==========
.. [1] http://mathworld.wolfram.com/DeficientNumber.html
"""
n = as_int(n)
if is_perfect(n):
return False
return bool(abundance(n) < 0)
def is_amicable(m, n):
"""Returns True if the numbers `m` and `n` are "amicable", else False.
Amicable numbers are two different numbers so related that the sum
of the proper divisors of each is equal to that of the other.
Examples
========
>>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma
>>> is_amicable(220, 284)
True
>>> divisor_sigma(220) == divisor_sigma(284)
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Amicable_numbers
"""
if m == n:
return False
a, b = map(lambda i: divisor_sigma(i), (m, n))
return a == b == (m + n)
def dra(n, b):
"""
Returns the additive digital root of a natural number ``n`` in base ``b``
which is a single digit value obtained by an iterative process of summing
digits, on each iteration using the result from the previous iteration to
compute a digit sum.
Examples
========
>>> from sympy.ntheory.factor_ import dra
>>> dra(3110, 12)
8
References
==========
.. [1] https://en.wikipedia.org/wiki/Digital_root
"""
num = abs(as_int(n))
b = as_int(b)
if b <= 1:
raise ValueError("Base should be an integer greater than 1")
if num == 0:
return 0
return (1 + (num - 1) % (b - 1))
def drm(n, b):
"""
Returns the multiplicative digital root of a natural number ``n`` in a given
base ``b`` which is a single digit value obtained by an iterative process of
multiplying digits, on each iteration using the result from the previous
iteration to compute the digit multiplication.
Examples
========
>>> from sympy.ntheory.factor_ import drm
>>> drm(9876, 10)
0
>>> drm(49, 10)
8
References
==========
.. [1] http://mathworld.wolfram.com/MultiplicativeDigitalRoot.html
"""
n = abs(as_int(n))
b = as_int(b)
if b <= 1:
raise ValueError("Base should be an integer greater than 1")
while n > b:
mul = 1
while n > 1:
n, r = divmod(n, b)
if r == 0:
return 0
mul *= r
n = mul
return n
|
7eee921718f600514a19456ebad9bcd0e5c07d4e1b6c30e1877c7b2e27484ad9 | from mpmath.libmp import (fzero, from_int, from_rational,
fone, fhalf, bitcount, to_int, to_str, mpf_mul, mpf_div, mpf_sub,
mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin)
from sympy.core.numbers import igcd
from .residue_ntheory import (_sqrt_mod_prime_power,
legendre_symbol, jacobi_symbol, is_quad_residue)
import math
def _pre():
maxn = 10**5
global _factor
global _totient
_factor = [0]*maxn
_totient = [1]*maxn
lim = int(maxn**0.5) + 5
for i in range(2, lim):
if _factor[i] == 0:
for j in range(i*i, maxn, i):
if _factor[j] == 0:
_factor[j] = i
for i in range(2, maxn):
if _factor[i] == 0:
_factor[i] = i
_totient[i] = i-1
continue
x = _factor[i]
y = i//x
if y % x == 0:
_totient[i] = _totient[y]*x
else:
_totient[i] = _totient[y]*(x - 1)
def _a(n, k, prec):
""" Compute the inner sum in HRR formula [1]_
References
==========
.. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf
"""
if k == 1:
return fone
k1 = k
e = 0
p = _factor[k]
while k1 % p == 0:
k1 //= p
e += 1
k2 = k//k1 # k2 = p^e
v = 1 - 24*n
pi = mpf_pi(prec)
if k1 == 1:
# k = p^e
if p == 2:
mod = 8*k
v = mod + v % mod
v = (v*pow(9, k - 1, mod)) % mod
m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
arg = mpf_div(mpf_mul(
from_int(4*m), pi, prec), from_int(mod), prec)
return mpf_mul(mpf_mul(
from_int((-1)**e*jacobi_symbol(m - 1, m)),
mpf_sqrt(from_int(k), prec), prec),
mpf_sin(arg, prec), prec)
if p == 3:
mod = 3*k
v = mod + v % mod
if e > 1:
v = (v*pow(64, k//3 - 1, mod)) % mod
m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
from_int(mod), prec)
return mpf_mul(mpf_mul(
from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)),
mpf_sqrt(from_int(k//3), prec), prec),
mpf_sin(arg, prec), prec)
v = k + v % k
if v % p == 0:
if e == 1:
return mpf_mul(
from_int(jacobi_symbol(3, k)),
mpf_sqrt(from_int(k), prec), prec)
return fzero
if not is_quad_residue(v, p):
return fzero
_phi = p**(e - 1)*(p - 1)
v = (v*pow(576, _phi - 1, k))
m = _sqrt_mod_prime_power(v, p, e)[0]
arg = mpf_div(
mpf_mul(from_int(4*m), pi, prec),
from_int(k), prec)
return mpf_mul(mpf_mul(
from_int(2*jacobi_symbol(3, k)),
mpf_sqrt(from_int(k), prec), prec),
mpf_cos(arg, prec), prec)
if p != 2 or e >= 3:
d1, d2 = igcd(k1, 24), igcd(k2, 24)
e = 24//(d1*d2)
n1 = ((d2*e*n + (k2**2 - 1)//d1)*
pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
n2 = ((d1*e*n + (k1**2 - 1)//d2)*
pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
if e == 2:
n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
return mpf_mul(mpf_mul(
from_int(-1),
_a(n1, k1, prec), prec),
_a(n2, k2, prec))
n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
def _d(n, j, prec, sq23pi, sqrt8):
"""
Compute the sinh term in the outer sum of the HRR formula.
The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
"""
j = from_int(j)
pi = mpf_pi(prec)
a = mpf_div(sq23pi, j, prec)
b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
c = mpf_sqrt(b, prec)
ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
D = mpf_div(
mpf_sqrt(j, prec),
mpf_mul(mpf_mul(sqrt8, b), pi), prec)
E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
return mpf_mul(D, E)
def npartitions(n, verbose=False):
"""
Calculate the partition function P(n), i.e. the number of ways that
n can be written as a sum of positive integers.
P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.
The correctness of this implementation has been tested through $10^{10}$.
Examples
========
>>> from sympy.ntheory import npartitions
>>> npartitions(25)
1958
References
==========
.. [1] http://mathworld.wolfram.com/PartitionFunctionP.html
"""
n = int(n)
if n < 0:
return 0
if n <= 5:
return [1, 1, 2, 3, 5, 7][n]
if '_factor' not in globals():
_pre()
# Estimate number of bits in p(n). This formula could be tidied
pbits = int((
math.pi*(2*n/3.)**0.5 -
math.log(4*n))/math.log(10) + 1) * \
math.log(10, 2)
prec = p = int(pbits*1.1 + 100)
s = fzero
M = max(6, int(0.24*n**0.5 + 4))
if M > 10**5:
raise ValueError("Input too big") # Corresponds to n > 1.7e11
sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
sqrt8 = mpf_sqrt(from_int(8), p)
for q in range(1, M):
a = _a(n, q, p)
d = _d(n, q, p, sq23pi, sqrt8)
s = mpf_add(s, mpf_mul(a, d), prec)
if verbose:
print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
# On average, the terms decrease rapidly in magnitude.
# Dynamically reducing the precision greatly improves
# performance.
p = bitcount(abs(to_int(d))) + 50
return int(to_int(mpf_add(s, fhalf, prec)))
__all__ = ['npartitions']
|
86a6c7ffcce2ef555311af87c8b7ea8b27e43a24eb852483532c8e2457d138d4 | from math import factorial as _factorial, log, prod
from itertools import chain, islice, product
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
_af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
_distribute_gens_by_base, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr,
_strip, _strip_af)
from sympy.core import Basic
from sympy.core.random import _randrange, randrange, choice
from sympy.core.symbol import Symbol
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.ntheory import primefactors, sieve
from sympy.ntheory.factor_ import (factorint, multiplicity)
from sympy.ntheory.primetest import isprime
from sympy.utilities.iterables import has_variety, is_sequence, uniq
rmul = Permutation.rmul_with_af
_af_new = Permutation._af_new
class PermutationGroup(Basic):
r"""The class defining a Permutation group.
Explanation
===========
``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group
generated by the list of permutations. This group can be supplied
to Polyhedron if one desires to decorate the elements to which the
indices of the permutation refer.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import Polyhedron
The permutations corresponding to motion of the front, right and
bottom face of a $2 \times 2$ Rubik's cube are defined:
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
These are passed as permutations to PermutationGroup:
>>> G = PermutationGroup(F, R, D)
>>> G.order()
3674160
The group can be supplied to a Polyhedron in order to track the
objects being moved. An example involving the $2 \times 2$ Rubik's cube is
given there, but here is a simple demonstration:
>>> a = Permutation(2, 1)
>>> b = Permutation(1, 0)
>>> G = PermutationGroup(a, b)
>>> P = Polyhedron(list('ABC'), pgroup=G)
>>> P.corners
(A, B, C)
>>> P.rotate(0) # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
Or one can make a permutation as a product of selected permutations
and apply them to an iterable directly:
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
See Also
========
sympy.combinatorics.polyhedron.Polyhedron,
sympy.combinatorics.permutations.Permutation
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] Seress, A.
"Permutation Group Algorithms"
.. [3] https://en.wikipedia.org/wiki/Schreier_vector
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray,
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random
Elements of a Finite Group"
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
.. [7] http://www.algorithmist.com/index.php/Union_Find
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
.. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group
.. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
.. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf
"""
is_group = True
def __new__(cls, *args, dups=True, **kwargs):
"""The default constructor. Accepts Cycle and Permutation forms.
Removes duplicates unless ``dups`` keyword is ``False``.
"""
if not args:
args = [Permutation()]
else:
args = list(args[0] if is_sequence(args[0]) else args)
if not args:
args = [Permutation()]
if any(isinstance(a, Cycle) for a in args):
args = [Permutation(a) for a in args]
if has_variety(a.size for a in args):
degree = kwargs.pop('degree', None)
if degree is None:
degree = max(a.size for a in args)
for i in range(len(args)):
if args[i].size != degree:
args[i] = Permutation(args[i], size=degree)
if dups:
args = list(uniq([_af_new(list(a)) for a in args]))
if len(args) > 1:
args = [g for g in args if not g.is_identity]
return Basic.__new__(cls, *args, **kwargs)
def __init__(self, *args, **kwargs):
self._generators = list(self.args)
self._order = None
self._center = []
self._is_abelian = None
self._is_transitive = None
self._is_sym = None
self._is_alt = None
self._is_primitive = None
self._is_nilpotent = None
self._is_solvable = None
self._is_trivial = None
self._transitivity_degree = None
self._max_div = None
self._is_perfect = None
self._is_cyclic = None
self._r = len(self._generators)
self._degree = self._generators[0].size
# these attributes are assigned after running schreier_sims
self._base = []
self._strong_gens = []
self._strong_gens_slp = []
self._basic_orbits = []
self._transversals = []
self._transversal_slp = []
# these attributes are assigned after running _random_pr_init
self._random_gens = []
# finite presentation of the group as an instance of `FpGroup`
self._fp_presentation = None
def __getitem__(self, i):
return self._generators[i]
def __contains__(self, i):
"""Return ``True`` if *i* is contained in PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
"""
if not isinstance(i, Permutation):
raise TypeError("A PermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return self.contains(i)
def __len__(self):
return len(self._generators)
def equals(self, other):
"""Return ``True`` if PermutationGroup generated by elements in the
group are same i.e they represent the same PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G.equals(H)
True
"""
if not isinstance(other, PermutationGroup):
return False
set_self_gens = set(self.generators)
set_other_gens = set(other.generators)
# before reaching the general case there are also certain
# optimisation and obvious cases requiring less or no actual
# computation.
if set_self_gens == set_other_gens:
return True
# in the most general case it will check that each generator of
# one group belongs to the other PermutationGroup and vice-versa
for gen1 in set_self_gens:
if not other.contains(gen1):
return False
for gen2 in set_other_gens:
if not self.contains(gen2):
return False
return True
def __mul__(self, other):
"""
Return the direct product of two permutation groups as a permutation
group.
Explanation
===========
This implementation realizes the direct product by shifting the index
set for the generators of the second group: so if we have ``G`` acting
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on
``n1 + n2`` points.
Examples
========
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(5)
>>> H = G*G
>>> H
PermutationGroup([
(9)(0 1 2 3 4),
(5 6 7 8 9)])
>>> H.order()
25
"""
if isinstance(other, Permutation):
return Coset(other, self, dir='+')
gens1 = [perm._array_form for perm in self.generators]
gens2 = [perm._array_form for perm in other.generators]
n1 = self._degree
n2 = other._degree
start = list(range(n1))
end = list(range(n1, n1 + n2))
for i in range(len(gens2)):
gens2[i] = [x + n1 for x in gens2[i]]
gens2 = [start + gen for gen in gens2]
gens1 = [gen + end for gen in gens1]
together = gens1 + gens2
gens = [_af_new(x) for x in together]
return PermutationGroup(gens)
def _random_pr_init(self, r, n, _random_prec_n=None):
r"""Initialize random generators for the product replacement algorithm.
Explanation
===========
The implementation uses a modification of the original product
replacement algorithm due to Leedham-Green, as described in [1],
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical
analysis of the original product replacement algorithm, and [4].
The product replacement algorithm is used for producing random,
uniformly distributed elements of a group `G` with a set of generators
`S`. For the initialization ``_random_pr_init``, a list ``R`` of
`\max\{r, |S|\}` group generators is created as the attribute
``G._random_gens``, repeating elements of `S` if necessary, and the
identity element of `G` is appended to ``R`` - we shall refer to this
last element as the accumulator. Then the function ``random_pr()``
is called ``n`` times, randomizing the list ``R`` while preserving
the generation of `G` by ``R``. The function ``random_pr()`` itself
takes two random elements ``g, h`` among all elements of ``R`` but
the accumulator and replaces ``g`` with a randomly chosen element
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied
by whatever ``g`` was replaced by. The new value of the accumulator is
then returned by ``random_pr()``.
The elements returned will eventually (for ``n`` large enough) become
uniformly distributed across `G` ([5]). For practical purposes however,
the values ``n = 50, r = 11`` are suggested in [1].
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute
self._random_gens
See Also
========
random_pr
"""
deg = self.degree
random_gens = [x._array_form for x in self.generators]
k = len(random_gens)
if k < r:
for i in range(k, r):
random_gens.append(random_gens[i - k])
acc = list(range(deg))
random_gens.append(acc)
self._random_gens = random_gens
# handle randomized input for testing purposes
if _random_prec_n is None:
for i in range(n):
self.random_pr()
else:
for i in range(n):
self.random_pr(_random_prec=_random_prec_n[i])
def _union_find_merge(self, first, second, ranks, parents, not_rep):
"""Merges two classes in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. The class merging process uses union by rank as an
optimization. ([7])
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, the list of class sizes, ``ranks``, and the list of
elements that are not representatives, ``not_rep``, are changed due to
class merging.
See Also
========
minimal_block, _union_find_rep
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep_first = self._union_find_rep(first, parents)
rep_second = self._union_find_rep(second, parents)
if rep_first != rep_second:
# union by rank
if ranks[rep_first] >= ranks[rep_second]:
new_1, new_2 = rep_first, rep_second
else:
new_1, new_2 = rep_second, rep_first
total_rank = ranks[new_1] + ranks[new_2]
if total_rank > self.max_div:
return -1
parents[new_2] = new_1
ranks[new_1] = total_rank
not_rep.append(new_2)
return 1
return 0
def _union_find_rep(self, num, parents):
"""Find representative of a class in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. After the representative of the class to which ``num``
belongs is found, path compression is performed as an optimization
([7]).
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, is altered due to path compression.
See Also
========
minimal_block, _union_find_merge
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep, parent = num, parents[num]
while parent != rep:
rep = parent
parent = parents[rep]
# path compression
temp, parent = num, parents[num]
while parent != rep:
parents[temp] = rep
temp = parent
parent = parents[temp]
return rep
@property
def base(self):
r"""Return a base from the Schreier-Sims algorithm.
Explanation
===========
For a permutation group `G`, a base is a sequence of points
`B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart
from the identity fixes all the points in `B`. The concepts of
a base and strong generating set and their applications are
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
An alternative way to think of `B` is that it gives the
indices of the stabilizer cosets that contain more than the
identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
>>> G.base
[0, 2]
See Also
========
strong_gens, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._base == []:
self.schreier_sims()
return self._base
def baseswap(self, base, strong_gens, pos, randomized=False,
transversals=None, basic_orbits=None, strong_gens_distr=None):
r"""Swap two consecutive base points in base and strong generating set.
Explanation
===========
If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this
function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`,
where `i` is given by ``pos``, and a strong generating set relative
to that base. The original base and strong generating set are not
modified.
The randomized version (default) is of Las Vegas type.
Parameters
==========
base, strong_gens
The base and strong generating set.
pos
The position at which swapping is performed.
randomized
A switch between randomized and deterministic version.
transversals
The transversals for the basic orbits, if known.
basic_orbits
The basic orbits, if known.
strong_gens_distr
The strong generators distributed by basic stabilizers, if known.
Returns
=======
(base, strong_gens)
``base`` is the new base, and ``strong_gens`` is a generating set
relative to it.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[(0 1 2 3), (3)(0 1), (1 3 2),
(2 3), (1 3)])
check that base, gens is a BSGS
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
See Also
========
schreier_sims
Notes
=====
The deterministic version of the algorithm is discussed in
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and
[2], p.98. It is of Las Vegas type.
Notice that [1] contains a mistake in the pseudocode and
discussion of BASESWAP: on line 3 of the pseudocode,
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the
discussion of the algorithm.
"""
# construct the basic orbits, generators for the stabilizer chain
# and transversal elements from whatever was provided
transversals, basic_orbits, strong_gens_distr = \
_handle_precomputed_bsgs(base, strong_gens, transversals,
basic_orbits, strong_gens_distr)
base_len = len(base)
degree = self.degree
# size of orbit of base[pos] under the stabilizer we seek to insert
# in the stabilizer chain at position pos + 1
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1]))
# initialize the wanted stabilizer by a subgroup
if pos + 2 > base_len - 1:
T = []
else:
T = strong_gens_distr[pos + 2][:]
# randomized version
if randomized is True:
stab_pos = PermutationGroup(strong_gens_distr[pos])
schreier_vector = stab_pos.schreier_vector(base[pos + 1])
# add random elements of the stabilizer until they generate it
while len(_orbit(degree, T, base[pos])) != size:
new = stab_pos.random_stab(base[pos + 1],
schreier_vector=schreier_vector)
T.append(new)
# deterministic version
else:
Gamma = set(basic_orbits[pos])
Gamma.remove(base[pos])
if base[pos + 1] in Gamma:
Gamma.remove(base[pos + 1])
# add elements of the stabilizer until they generate it by
# ruling out member of the basic orbit of base[pos] along the way
while len(_orbit(degree, T, base[pos])) != size:
gamma = next(iter(Gamma))
x = transversals[pos][gamma]
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1])
if temp not in basic_orbits[pos + 1]:
Gamma = Gamma - _orbit(degree, T, gamma)
else:
y = transversals[pos + 1][temp]
el = rmul(x, y)
if el(base[pos]) not in _orbit(degree, T, base[pos]):
T.append(el)
Gamma = Gamma - _orbit(degree, T, base[pos])
# build the new base and strong generating set
strong_gens_new_distr = strong_gens_distr[:]
strong_gens_new_distr[pos + 1] = T
base_new = base[:]
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos]
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr)
for gen in T:
if gen not in strong_gens_new:
strong_gens_new.append(gen)
return base_new, strong_gens_new
@property
def basic_orbits(self):
r"""
Return the basic orbits relative to a base and strong generating set.
Explanation
===========
If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and
`G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
See Also
========
base, strong_gens, basic_transversals, basic_stabilizers
"""
if self._basic_orbits == []:
self.schreier_sims()
return self._basic_orbits
@property
def basic_stabilizers(self):
r"""
Return a chain of stabilizers relative to a base and strong generating
set.
Explanation
===========
The ``i``-th basic stabilizer `G^{(i)}` relative to a base
`(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more
information, see [1], pp. 87-89.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
... print(g)
...
PermutationGroup([
(3)(0 1 2),
(1 2 3)])
PermutationGroup([
(1 2 3)])
See Also
========
base, strong_gens, basic_orbits, basic_transversals
"""
if self._transversals == []:
self.schreier_sims()
strong_gens = self._strong_gens
base = self._base
if not base: # e.g. if self is trivial
return []
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_stabilizers = []
for gens in strong_gens_distr:
basic_stabilizers.append(PermutationGroup(gens))
return basic_stabilizers
@property
def basic_transversals(self):
"""
Return basic transversals relative to a base and strong generating set.
Explanation
===========
The basic transversals are transversals of the basic orbits. They
are provided as a list of dictionaries, each dictionary having
keys - the elements of one of the basic orbits, and values - the
corresponding transversal elements. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.basic_transversals
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}]
See Also
========
strong_gens, base, basic_orbits, basic_stabilizers
"""
if self._transversals == []:
self.schreier_sims()
return self._transversals
def composition_series(self):
r"""
Return the composition series for a group as a list
of permutation groups.
Explanation
===========
The composition series for a group `G` is defined as a
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition
series is a subnormal series such that each factor group
`H(i+1) / H(i)` is simple.
A subnormal series is a composition series only if it is of
maximum length.
The algorithm works as follows:
Starting with the derived series the idea is to fill
the gap between `G = der[i]` and `H = der[i+1]` for each
`i` independently. Since, all subgroups of the abelian group
`G/H` are normal so, first step is to take the generators
`g` of `G` and add them to generators of `H` one by one.
The factor groups formed are not simple in general. Each
group is obtained from the previous one by adding one
generator `g`, if the previous group is denoted by `H`
then the next group `K` is generated by `g` and `H`.
The factor group `K/H` is cyclic and it's order is
`K.order()//G.order()`. The series is then extended between
`K` and `H` by groups generated by powers of `g` and `H`.
The series formed is then prepended to the already existing
series.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> S = SymmetricGroup(12)
>>> G = S.sylow_subgroup(2)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
>>> G = S.sylow_subgroup(3)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[243, 81, 27, 9, 3, 1]
>>> G = CyclicGroup(12)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[12, 6, 3, 1]
"""
der = self.derived_series()
if not all(g.is_identity for g in der[-1].generators):
raise NotImplementedError('Group should be solvable')
series = []
for i in range(len(der)-1):
H = der[i+1]
up_seg = []
for g in der[i].generators:
K = PermutationGroup([g] + H.generators)
order = K.order() // H.order()
down_seg = []
for p, e in factorint(order).items():
for _ in range(e):
down_seg.append(PermutationGroup([g] + H.generators))
g = g**p
up_seg = down_seg + up_seg
H = K
up_seg[0] = der[i]
series.extend(up_seg)
series.append(der[-1])
return series
def coset_transversal(self, H):
"""Return a transversal of the right cosets of self by its subgroup H
using the second method described in [1], Subsection 4.6.7
"""
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
if H.order() == 1:
return self._elements
self._schreier_sims(base=H.base) # make G.base an extension of H.base
base = self.base
base_ordering = _base_ordering(base, self.degree)
identity = Permutation(self.degree - 1)
transversals = self.basic_transversals[:]
# transversals is a list of dictionaries. Get rid of the keys
# so that it is a list of lists and sort each list in
# the increasing order of base[l]^x
for l, t in enumerate(transversals):
transversals[l] = sorted(t.values(),
key = lambda x: base_ordering[base[l]^x])
orbits = H.basic_orbits
h_stabs = H.basic_stabilizers
g_stabs = self.basic_stabilizers
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)]
# T^(l) should be a right transversal of H^(l) in G^(l) for
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l)
# contains all the elements of G^(l) so we might just as well
# start with l = len(h_stabs)-1
if len(g_stabs) > len(h_stabs):
T = g_stabs[len(h_stabs)]._elements
else:
T = [identity]
l = len(h_stabs)-1
t_len = len(T)
while l > -1:
T_next = []
for u in transversals[l]:
if u == identity:
continue
b = base_ordering[base[l]^u]
for t in T:
p = t*u
if all(base_ordering[h^p] >= b for h in orbits[l]):
T_next.append(p)
if t_len + len(T_next) == indices[l]:
break
if t_len + len(T_next) == indices[l]:
break
T += T_next
t_len += len(T_next)
l -= 1
T.remove(identity)
T = [identity] + T
return T
def _coset_representative(self, g, H):
"""Return the representative of Hg from the transversal that
would be computed by ``self.coset_transversal(H)``.
"""
if H.order() == 1:
return g
# The base of self must be an extension of H.base.
if not(self.base[:len(H.base)] == H.base):
self._schreier_sims(base=H.base)
orbits = H.basic_orbits[:]
h_transversals = [list(_.values()) for _ in H.basic_transversals]
transversals = [list(_.values()) for _ in self.basic_transversals]
base = self.base
base_ordering = _base_ordering(base, self.degree)
def step(l, x):
gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0]
i = [base[l]^h for h in h_transversals[l]].index(gamma)
x = h_transversals[l][i]*x
if l < len(orbits)-1:
for u in transversals[l]:
if base[l]^u == base[l]^x:
break
x = step(l+1, x*u**-1)*u
return x
return step(0, g)
def coset_table(self, H):
"""Return the standardised (right) coset table of self in H as
a list of lists.
"""
# Maybe this should be made to return an instance of CosetTable
# from fp_groups.py but the class would need to be changed first
# to be compatible with PermutationGroups
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
T = self.coset_transversal(H)
n = len(T)
A = list(chain.from_iterable((gen, gen**-1)
for gen in self.generators))
table = []
for i in range(n):
row = [self._coset_representative(T[i]*x, H) for x in A]
row = [T.index(r) for r in row]
table.append(row)
# standardize (this is the same as the algorithm used in coset_table)
# If CosetTable is made compatible with PermutationGroups, this
# should be replaced by table.standardize()
A = range(len(A))
gamma = 1
for alpha, a in product(range(n), A):
beta = table[alpha][a]
if beta >= gamma:
if beta > gamma:
for x in A:
z = table[gamma][x]
table[gamma][x] = table[beta][x]
table[beta][x] = z
for i in range(n):
if table[i][x] == beta:
table[i][x] = gamma
elif table[i][x] == gamma:
table[i][x] = beta
gamma += 1
if gamma >= n-1:
return table
def center(self):
r"""
Return the center of a permutation group.
Explanation
===========
The center for a group `G` is defined as
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`,
the set of elements of `G` that commute with all elements of `G`.
It is equal to the centralizer of `G` inside `G`, and is naturally a
subgroup of `G` ([9]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
See Also
========
centralizer
Notes
=====
This is a naive implementation that is a straightforward application
of ``.centralizer()``
"""
return self.centralizer(self)
def centralizer(self, other):
r"""
Return the centralizer of a group/set/element.
Explanation
===========
The centralizer of a set of permutations ``S`` inside
a group ``G`` is the set of elements of ``G`` that commute with all
elements of ``S``::
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10])
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of
the full symmetric group, we allow for ``S`` to have elements outside
``G``.
It is naturally a subgroup of ``G``; the centralizer of a permutation
group is equal to the centralizer of any set of generators for that
group, since any element commuting with the generators commutes with
any product of the generators.
Parameters
==========
other
a permutation group/list of permutations/single permutation
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is_subgroup(C)
True
See Also
========
subgroup_search
Notes
=====
The implementation is an application of ``.subgroup_search()`` with
tests using a specific base for the group ``G``.
"""
if hasattr(other, 'generators'):
if other.is_trivial or self.is_trivial:
return self
degree = self.degree
identity = _af_new(list(range(degree)))
orbits = other.orbits()
num_orbits = len(orbits)
orbits.sort(key=lambda x: -len(x))
long_base = []
orbit_reps = [None]*num_orbits
orbit_reps_indices = [None]*num_orbits
orbit_descr = [None]*degree
for i in range(num_orbits):
orbit = list(orbits[i])
orbit_reps[i] = orbit[0]
orbit_reps_indices[i] = len(long_base)
for point in orbit:
orbit_descr[point] = i
long_base = long_base + orbit
base, strong_gens = self.schreier_sims_incremental(base=long_base)
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
i = 0
for i in range(len(base)):
if strong_gens_distr[i] == [identity]:
break
base = base[:i]
base_len = i
for j in range(num_orbits):
if base[base_len - 1] in orbits[j]:
break
rel_orbits = orbits[: j + 1]
num_rel_orbits = len(rel_orbits)
transversals = [None]*num_rel_orbits
for j in range(num_rel_orbits):
rep = orbit_reps[j]
transversals[j] = dict(
other.orbit_transversal(rep, pairs=True))
trivial_test = lambda x: True
tests = [None]*base_len
for l in range(base_len):
if base[l] in orbit_reps:
tests[l] = trivial_test
else:
def test(computed_words, l=l):
g = computed_words[l]
rep_orb_index = orbit_descr[base[l]]
rep = orbit_reps[rep_orb_index]
im = g._array_form[base[l]]
im_rep = g._array_form[rep]
tr_el = transversals[rep_orb_index][base[l]]
# using the definition of transversal,
# base[l]^g = rep^(tr_el*g);
# if g belongs to the centralizer, then
# base[l]^g = (rep^g)^tr_el
return im == tr_el._array_form[im_rep]
tests[l] = test
def prop(g):
return [rmul(g, gen) for gen in other.generators] == \
[rmul(gen, g) for gen in other.generators]
return self.subgroup_search(prop, base=base,
strong_gens=strong_gens, tests=tests)
elif hasattr(other, '__getitem__'):
gens = list(other)
return self.centralizer(PermutationGroup(gens))
elif hasattr(other, 'array_form'):
return self.centralizer(PermutationGroup([other]))
def commutator(self, G, H):
"""
Return the commutator of two subgroups.
Explanation
===========
For a permutation group ``K`` and subgroups ``G``, ``H``, the
commutator of ``G`` and ``H`` is defined as the group generated
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
See Also
========
derived_subgroup
Notes
=====
The commutator of two subgroups `H, G` is equal to the normal closure
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h`
a generator of `H` and `g` a generator of `G` ([1], p.28)
"""
ggens = G.generators
hgens = H.generators
commutators = []
for ggen in ggens:
for hgen in hgens:
commutator = rmul(hgen, ggen, ~hgen, ~ggen)
if commutator not in commutators:
commutators.append(commutator)
res = self.normal_closure(commutators)
return res
def coset_factor(self, g, factor_index=False):
"""Return ``G``'s (self's) coset factorization of ``g``
Explanation
===========
If ``g`` is an element of ``G`` then it can be written as the product
of permutations drawn from the Schreier-Sims coset decomposition,
The permutations returned in ``f`` are those for which
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)``
and ``B = G.base``. f[i] is one of the permutations in
``self._basic_orbits[i]``.
If factor_index==True,
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]``
belongs to ``self._basic_orbits[i]``
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
Define g:
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
Confirm that it is an element of G:
>>> G.contains(g)
True
Thus, it can be written as a product of factors (up to
3) drawn from u. See below that a factor from u1 and u2
and the Identity permutation have been used:
>>> f = G.coset_factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True); f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
If g is not an element of G then [] is returned:
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
See Also
========
sympy.combinatorics.util._strip
"""
if isinstance(g, (Cycle, Permutation)):
g = g.list()
if len(g) != self._degree:
# this could either adjust the size or return [] immediately
# but we don't choose between the two and just signal a possible
# error
raise ValueError('g should be the same size as permutations of G')
I = list(range(self._degree))
basic_orbits = self.basic_orbits
transversals = self._transversals
factors = []
base = self.base
h = g
for i in range(len(base)):
beta = h[base[i]]
if beta == base[i]:
factors.append(beta)
continue
if beta not in basic_orbits[i]:
return []
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
factors.append(beta)
if h != I:
return []
if factor_index:
return factors
tr = self.basic_transversals
factors = [tr[i][factors[i]] for i in range(len(base))]
return factors
def generator_product(self, g, original=False):
r'''
Return a list of strong generators `[s1, \dots, sn]`
s.t `g = sn \times \dots \times s1`. If ``original=True``, make the
list contain only the original group generators
'''
product = []
if g.is_identity:
return []
if g in self.strong_gens:
if not original or g in self.generators:
return [g]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
return product
elif g**-1 in self.strong_gens:
g = g**-1
if not original or g in self.generators:
return [g**-1]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
l = len(product)
product = [product[l-i-1]**-1 for i in range(l)]
return product
f = self.coset_factor(g, True)
for i, j in enumerate(f):
slp = self._transversal_slp[i][j]
for s in slp:
if not original:
product.append(self.strong_gens[s])
else:
s = self.strong_gens[s]
product.extend(self.generator_product(s, original=True))
return product
def coset_rank(self, g):
"""rank using Schreier-Sims representation.
Explanation
===========
The coset rank of ``g`` is the ordering number in which
it appears in the lexicographic listing according to the
coset decomposition
The ordering is the same as in G.generate(method='coset').
If ``g`` does not belong to the group it returns None.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset_unrank(16)
(7)(2 4)(3 5)
See Also
========
coset_factor
"""
factors = self.coset_factor(g, True)
if not factors:
return None
rank = 0
b = 1
transversals = self._transversals
base = self._base
basic_orbits = self._basic_orbits
for i in range(len(base)):
k = factors[i]
j = basic_orbits[i].index(k)
rank += b*j
b = b*len(transversals[i])
return rank
def coset_unrank(self, rank, af=False):
"""unrank using Schreier-Sims representation
coset_unrank is the inverse operation of coset_rank
if 0 <= rank < order; otherwise it returns None.
"""
if rank < 0 or rank >= self.order():
return None
base = self.base
transversals = self.basic_transversals
basic_orbits = self.basic_orbits
m = len(base)
v = [0]*m
for i in range(m):
rank, c = divmod(rank, len(transversals[i]))
v[i] = basic_orbits[i][c]
a = [transversals[i][v[i]]._array_form for i in range(m)]
h = _af_rmuln(*a)
if af:
return h
else:
return _af_new(h)
@property
def degree(self):
"""Returns the size of the permutations in the group.
Explanation
===========
The number of permutations comprising the group is given by
``len(group)``; the number of permutations that can be generated
by the group is given by ``group.order()``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
See Also
========
order
"""
return self._degree
@property
def identity(self):
'''
Return the identity element of the permutation group.
'''
return _af_new(list(range(self.degree)))
@property
def elements(self):
"""Returns all the elements of the permutation group as a set
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p.elements
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
"""
return set(self._elements)
@property
def _elements(self):
"""Returns all the elements of the permutation group as a list
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p._elements
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
"""
return list(islice(self.generate(), None))
def derived_series(self):
r"""Return the derived series for the group.
Explanation
===========
The derived series for a group `G` is defined as
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`,
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some
`k\in\mathbb{N}`, the series terminates.
Returns
=======
A list of permutation groups containing the members of the derived
series in the order `G = G_0, G_1, G_2, \ldots`.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup, DihedralGroup)
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
See Also
========
derived_subgroup
"""
res = [self]
current = self
nxt = self.derived_subgroup()
while not current.is_subgroup(nxt):
res.append(nxt)
current = nxt
nxt = nxt.derived_subgroup()
return res
def derived_subgroup(self):
r"""Compute the derived subgroup.
Explanation
===========
The derived subgroup, or commutator subgroup is the subgroup generated
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is
equal to the normal closure of the set of commutators of the generators
([1], p.28, [11]).
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2, 4, 3])
>>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived_subgroup()
>>> list(C.generate(af=True))
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
See Also
========
derived_series
"""
r = self._r
gens = [p._array_form for p in self.generators]
set_commutators = set()
degree = self._degree
rng = list(range(degree))
for i in range(r):
for j in range(r):
p1 = gens[i]
p2 = gens[j]
c = list(range(degree))
for k in rng:
c[p2[p1[k]]] = p1[p2[k]]
ct = tuple(c)
if ct not in set_commutators:
set_commutators.add(ct)
cms = [_af_new(p) for p in set_commutators]
G2 = self.normal_closure(cms)
return G2
def generate(self, method="coset", af=False):
"""Return iterator to generate the elements of the group.
Explanation
===========
Iteration is done with one of these methods::
method='coset' using the Schreier-Sims coset representation
method='dimino' using the Dimino method
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import PermutationGroup
>>> from sympy.combinatorics.polyhedron import tetrahedron
The permutation group given in the tetrahedron object is also
true groups:
>>> G = tetrahedron.pgroup
>>> G.is_group
True
Also the group generated by the permutations in the tetrahedron
pgroup -- even the first two -- is a proper group:
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate())); J
PermutationGroup([
(0 1)(2 3),
(1 2 3),
(1 3 2),
(0 3 1),
(0 2 3),
(0 3)(1 2),
(0 1 3),
(3)(0 2 1),
(0 3 2),
(3)(0 1 2),
(0 2)(1 3)])
>>> _.is_group
True
"""
if method == "coset":
return self.generate_schreier_sims(af)
elif method == "dimino":
return self.generate_dimino(af)
else:
raise NotImplementedError('No generation defined for %s' % method)
def generate_dimino(self, af=False):
"""Yield group elements using Dimino's algorithm.
If ``af == True`` it yields the array form of the permutations.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
References
==========
.. [1] The Implementation of Various Algorithms for Permutation Groups in
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis
"""
idn = list(range(self.degree))
order = 0
element_list = [idn]
set_element_list = {tuple(idn)}
if af:
yield idn
else:
yield _af_new(idn)
gens = [p._array_form for p in self.generators]
for i in range(len(gens)):
# D elements of the subgroup G_i generated by gens[:i]
D = element_list[:]
N = [idn]
while N:
A = N
N = []
for a in A:
for g in gens[:i + 1]:
ag = _af_rmul(a, g)
if tuple(ag) not in set_element_list:
# produce G_i*g
for d in D:
order += 1
ap = _af_rmul(d, ag)
if af:
yield ap
else:
p = _af_new(ap)
yield p
element_list.append(ap)
set_element_list.add(tuple(ap))
N.append(ap)
self._order = len(element_list)
def generate_schreier_sims(self, af=False):
"""Yield group elements using the Schreier-Sims representation
in coset_rank order
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
"""
n = self._degree
u = self.basic_transversals
basic_orbits = self._basic_orbits
if len(u) == 0:
for x in self.generators:
if af:
yield x._array_form
else:
yield x
return
if len(u) == 1:
for i in basic_orbits[0]:
if af:
yield u[0][i]._array_form
else:
yield u[0][i]
return
u = list(reversed(u))
basic_orbits = basic_orbits[::-1]
# stg stack of group elements
stg = [list(range(n))]
posmax = [len(x) for x in u]
n1 = len(posmax) - 1
pos = [0]*n1
h = 0
while 1:
# backtrack when finished iterating over coset
if pos[h] >= posmax[h]:
if h == 0:
return
pos[h] = 0
h -= 1
stg.pop()
continue
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1])
pos[h] += 1
stg.append(p)
h += 1
if h == n1:
if af:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
yield p
else:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
p1 = _af_new(p)
yield p1
stg.pop()
h -= 1
@property
def generators(self):
"""Returns the generators of the group.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.generators
[(1 2), (2)(0 1)]
"""
return self._generators
def contains(self, g, strict=True):
"""Test if permutation ``g`` belong to self, ``G``.
Explanation
===========
If ``g`` is an element of ``G`` it can be written as a product
of factors drawn from the cosets of ``G``'s stabilizers. To see
if ``g`` is one of the actual generators defining the group use
``G.has(g)``.
If ``strict`` is not ``True``, ``g`` will be resized, if necessary,
to match the size of permutations in ``self``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0]) # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
If strict is False, a permutation will be resized, if
necessary:
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
To test if a given permutation is present in the group:
>>> elem in G.generators
False
>>> G.has(elem)
False
See Also
========
coset_factor, sympy.core.basic.Basic.has, __contains__
"""
if not isinstance(g, Permutation):
return False
if g.size != self.degree:
if strict:
return False
g = Permutation(g, size=self.degree)
if g in self.generators:
return True
return bool(self.coset_factor(g.array_form, True))
@property
def is_perfect(self):
"""Return ``True`` if the group is perfect.
A group is perfect if it equals to its derived subgroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)(4,5)
>>> b = Permutation(1,2,3,4,5)
>>> G = PermutationGroup([a, b])
>>> G.is_perfect
False
"""
if self._is_perfect is None:
self._is_perfect = self.equals(self.derived_subgroup())
return self._is_perfect
@property
def is_abelian(self):
"""Test if the group is Abelian.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_abelian
True
"""
if self._is_abelian is not None:
return self._is_abelian
self._is_abelian = True
gens = [p._array_form for p in self.generators]
for x in gens:
for y in gens:
if y <= x:
continue
if not _af_commutes_with(x, y):
self._is_abelian = False
return False
return True
def abelian_invariants(self):
"""
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
Explanation
===========
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
"""
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
def is_elementary(self, p):
"""Return ``True`` if the group is elementary abelian. An elementary
abelian group is a finite abelian group, where every nontrivial
element has order `p`, where `p` is a prime.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_elementary(2)
True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([3, 1, 2, 0])
>>> G = PermutationGroup([a, b])
>>> G.is_elementary(2)
True
>>> G.is_elementary(3)
False
"""
return self.is_abelian and all(g.order() == p for g in self.generators)
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False):
"""A naive test using the group order."""
if only_sym and only_alt:
raise ValueError(
"Both {} and {} cannot be set to True"
.format(only_sym, only_alt))
n = self.degree
sym_order = _factorial(n)
order = self.order()
if order == sym_order:
self._is_sym = True
self._is_alt = False
if only_alt:
return False
return True
elif 2*order == sym_order:
self._is_sym = False
self._is_alt = True
if only_sym:
return False
return True
return False
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None):
"""A test using monte-carlo algorithm.
Parameters
==========
eps : float, optional
The criterion for the incorrect ``False`` return.
perms : list[Permutation], optional
If explicitly given, it tests over the given candidats
for testing.
If ``None``, it randomly computes ``N_eps`` and chooses
``N_eps`` sample of the permutation from the group.
See Also
========
_check_cycles_alt_sym
"""
if perms is None:
n = self.degree
if n < 17:
c_n = 0.34
else:
c_n = 0.57
d_n = (c_n*log(2))/log(n)
N_eps = int(-log(eps)/d_n)
perms = (self.random_pr() for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
for perm in perms:
if _check_cycles_alt_sym(perm):
return True
return False
def is_alt_sym(self, eps=0.05, _random_prec=None):
r"""Monte Carlo test for the symmetric/alternating group for degrees
>= 8.
Explanation
===========
More specifically, it is one-sided Monte Carlo with the
answer True (i.e., G is symmetric/alternating) guaranteed to be
correct, and the answer False being incorrect with probability eps.
For degree < 8, the order of the group is checked so the test
is deterministic.
Notes
=====
The algorithm itself uses some nontrivial results from group theory and
number theory:
1) If a transitive group ``G`` of degree ``n`` contains an element
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the
symmetric or alternating group ([1], pp. 81-82)
2) The proportion of elements in the symmetric/alternating group having
the property described in 1) is approximately `\log(2)/\log(n)`
([1], p.82; [2], pp. 226-227).
The helper function ``_check_cycles_alt_sym`` is used to
go over the cycles in a permutation and look for ones satisfying 1).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
See Also
========
_check_cycles_alt_sym
"""
if _random_prec is not None:
N_eps = _random_prec['N_eps']
perms= (_random_prec[i] for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
if self._is_sym or self._is_alt:
return True
if self._is_sym is False and self._is_alt is False:
return False
n = self.degree
if n < 8:
return self._eval_is_alt_sym_naive()
elif self.is_transitive():
return self._eval_is_alt_sym_monte_carlo(eps=eps)
self._is_sym, self._is_alt = False, False
return False
@property
def is_nilpotent(self):
"""Test if the group is nilpotent.
Explanation
===========
A group `G` is nilpotent if it has a central series of finite length.
Alternatively, `G` is nilpotent if its lower central series terminates
with the trivial group. Every nilpotent group is also solvable
([1], p.29, [12]).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is_nilpotent
False
See Also
========
lower_central_series, is_solvable
"""
if self._is_nilpotent is None:
lcs = self.lower_central_series()
terminator = lcs[len(lcs) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
self._is_nilpotent = True
return True
else:
self._is_nilpotent = False
return False
else:
return self._is_nilpotent
def is_normal(self, gr, strict=True):
"""Test if ``G=self`` is a normal subgroup of ``gr``.
Explanation
===========
G is normal in gr if
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G
It is sufficient to check this for each g1 in gr.generators and
g2 in G.generators.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> G1.is_normal(G)
True
"""
if not self.is_subgroup(gr, strict=strict):
return False
d_self = self.degree
d_gr = gr.degree
if self.is_trivial and (d_self == d_gr or not strict):
return True
if self._is_abelian:
return True
new_self = self.copy()
if not strict and d_self != d_gr:
if d_self < d_gr:
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)])
else:
gr = PermGroup(gr.generators + [Permutation(d_self - 1)])
gens2 = [p._array_form for p in new_self.generators]
gens1 = [p._array_form for p in gr.generators]
for g1 in gens1:
for g2 in gens2:
p = _af_rmuln(g1, g2, _af_invert(g1))
if not new_self.coset_factor(p, True):
return False
return True
def is_primitive(self, randomized=True):
r"""Test if a group is primitive.
Explanation
===========
A permutation group ``G`` acting on a set ``S`` is called primitive if
``S`` contains no nontrivial block under the action of ``G``
(a block is nontrivial if its cardinality is more than ``1``).
Notes
=====
The algorithm is described in [1], p.83, and uses the function
minimal_block to search for blocks of the form `\{0, k\}` for ``k``
ranging over representatives for the orbits of `G_0`, the stabilizer of
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree
of the group, and will perform badly if `G_0` is small.
There are two implementations offered: one finds `G_0`
deterministically using the function ``stabilizer``, and the other
(default) produces random elements of `G_0` using ``random_stab``,
hoping that they generate a subgroup of `G_0` with not too many more
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed
by the ``randomized`` flag.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_primitive()
False
See Also
========
minimal_block, random_stab
"""
if self._is_primitive is not None:
return self._is_primitive
if self.is_transitive() is False:
return False
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for _ in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])):
self._is_primitive = False
return False
self._is_primitive = True
return True
def minimal_blocks(self, randomized=True):
'''
For a transitive group, return the list of all minimal
block systems. If a group is intransitive, return `False`.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> DihedralGroup(6).minimal_blocks()
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
>>> G = PermutationGroup(Permutation(1,2,5))
>>> G.minimal_blocks()
False
See Also
========
minimal_block, is_transitive, is_primitive
'''
def _number_blocks(blocks):
# number the blocks of a block system
# in order and return the number of
# blocks and the tuple with the
# reordering
n = len(blocks)
appeared = {}
m = 0
b = [None]*n
for i in range(n):
if blocks[i] not in appeared:
appeared[blocks[i]] = m
b[i] = m
m += 1
else:
b[i] = appeared[blocks[i]]
return tuple(b), m
if not self.is_transitive():
return False
blocks = []
num_blocks = []
rep_blocks = []
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0:
block = self.minimal_block([0, x])
num_block, _ = _number_blocks(block)
# a representative block (containing 0)
rep = {j for j in range(self.degree) if num_block[j] == 0}
# check if the system is minimal with
# respect to the already discovere ones
minimal = True
blocks_remove_mask = [False] * len(blocks)
for i, r in enumerate(rep_blocks):
if len(r) > len(rep) and rep.issubset(r):
# i-th block system is not minimal
blocks_remove_mask[i] = True
elif len(r) < len(rep) and r.issubset(rep):
# the system being checked is not minimal
minimal = False
break
# remove non-minimal representative blocks
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]]
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]]
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]]
if minimal and num_block not in num_blocks:
blocks.append(block)
num_blocks.append(num_block)
rep_blocks.append(rep)
return blocks
@property
def is_solvable(self):
"""Test if the group is solvable.
``G`` is solvable if its derived series terminates with the trivial
group ([1], p.29).
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
See Also
========
is_nilpotent, derived_series
"""
if self._is_solvable is None:
if self.order() % 2 != 0:
return True
ds = self.derived_series()
terminator = ds[len(ds) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
return True
else:
self._is_solvable = False
return False
else:
return self._is_solvable
def is_subgroup(self, G, strict=True):
"""Return ``True`` if all elements of ``self`` belong to ``G``.
If ``strict`` is ``False`` then if ``self``'s degree is smaller
than ``G``'s, the elements will be resized to have the same degree.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup
Testing is strict by default: the degree of each group must be the
same:
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
To ignore the size, set ``strict`` to ``False``:
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is_subgroup(G, 0)
False
"""
if isinstance(G, SymmetricPermutationGroup):
if self.degree != G.degree:
return False
return True
if not isinstance(G, PermutationGroup):
return False
if self == G or self.generators[0]==Permutation():
return True
if G.order() % self.order() != 0:
return False
if self.degree == G.degree or \
(self.degree < G.degree and not strict):
gens = self.generators
else:
return False
return all(G.contains(g, strict=strict) for g in gens)
@property
def is_polycyclic(self):
"""Return ``True`` if a group is polycyclic. A group is polycyclic if
it has a subnormal series with cyclic factors. For finite groups,
this is the same as if the group is solvable.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G = PermutationGroup([a, b])
>>> G.is_polycyclic
True
"""
return self.is_solvable
def is_transitive(self, strict=True):
"""Test if the group is transitive.
Explanation
===========
A group is transitive if it has a single orbit.
If ``strict`` is ``False`` the group is transitive if it has
a single orbit of length different from 1.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> G1.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
"""
if self._is_transitive: # strict or not, if True then True
return self._is_transitive
if strict:
if self._is_transitive is not None: # we only store strict=True
return self._is_transitive
ans = len(self.orbit(0)) == self.degree
self._is_transitive = ans
return ans
got_orb = False
for x in self.orbits():
if len(x) > 1:
if got_orb:
return False
got_orb = True
return got_orb
@property
def is_trivial(self):
"""Test if the group is the trivial group.
This is true if the group contains only the identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True
"""
if self._is_trivial is None:
self._is_trivial = len(self) == 1 and self[0].is_Identity
return self._is_trivial
def lower_central_series(self):
r"""Return the lower central series for the group.
The lower central series for a group `G` is the series
`G = G_0 > G_1 > G_2 > \ldots` where
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the
commutator of `G` and the previous term in `G1` ([1], p.29).
Returns
=======
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots`
Examples
========
>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
... DihedralGroup)
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True
See Also
========
commutator, derived_series
"""
res = [self]
current = self
nxt = self.commutator(self, current)
while not current.is_subgroup(nxt):
res.append(nxt)
current = nxt
nxt = self.commutator(self, current)
return res
@property
def max_div(self):
"""Maximum proper divisor of the degree of a permutation group.
Explanation
===========
Obviously, this is the degree divided by its minimal proper divisor
(larger than ``1``, if one exists). As it is guaranteed to be prime,
the ``sieve`` from ``sympy.ntheory`` is used.
This function is also used as an optimization tool for the functions
``minimal_block`` and ``_union_find_merge``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
See Also
========
minimal_block, _union_find_merge
"""
if self._max_div is not None:
return self._max_div
n = self.degree
if n == 1:
return 1
for x in sieve:
if n % x == 0:
d = n//x
self._max_div = d
return d
def minimal_block(self, points):
r"""For a transitive group, finds the block system generated by
``points``.
Explanation
===========
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S``
is called a block under the action of ``G`` if for all ``g`` in ``G``
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]).
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G``
partition the set ``S`` and this set of translates is known as a block
system. Moreover, we obviously have that all blocks in the partition
have the same size, hence the block size divides ``|S|`` ([1], p.23).
A ``G``-congruence is an equivalence relation ``~`` on the set ``S``
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``.
For a transitive group, the equivalence classes of a ``G``-congruence
and the blocks of a block system are the same thing ([1], p.23).
The algorithm below checks the group for transitivity, and then finds
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2),
..., (p_0,p_{k-1})`` which is the same as finding the maximal block
system (i.e., the one with minimum block size) such that
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83).
It is an implementation of Atkinson's algorithm, as suggested in [1],
and manipulates an equivalence relation on the set ``S`` using a
union-find data structure. The running time is just above
`O(|points||S|)`. ([1], pp. 83-87; [7]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
>>> D.minimal_block([0, 1])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
See Also
========
_union_find_rep, _union_find_merge, is_transitive, is_primitive
"""
if not self.is_transitive():
return False
n = self.degree
gens = self.generators
# initialize the list of equivalence class representatives
parents = list(range(n))
ranks = [1]*n
not_rep = []
k = len(points)
# the block size must divide the degree of the group
if k > self.max_div:
return [0]*n
for i in range(k - 1):
parents[points[i + 1]] = points[0]
not_rep.append(points[i + 1])
ranks[points[0]] = k
i = 0
len_not_rep = k - 1
while i < len_not_rep:
gamma = not_rep[i]
i += 1
for gen in gens:
# find has side effects: performs path compression on the list
# of representatives
delta = self._union_find_rep(gamma, parents)
# union has side effects: performs union by rank on the list
# of representatives
temp = self._union_find_merge(gen(gamma), gen(delta), ranks,
parents, not_rep)
if temp == -1:
return [0]*n
len_not_rep += temp
for i in range(n):
# force path compression to get the final state of the equivalence
# relation
self._union_find_rep(i, parents)
# rewrite result so that block representatives are minimal
new_reps = {}
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)]
def conjugacy_class(self, x):
r"""Return the conjugacy class of an element in the group.
Explanation
===========
The conjugacy class of an element ``g`` in a group ``G`` is the set of
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which
``g = xax^{-1}``
for some ``a`` in ``G``.
Note that conjugacy is an equivalence relation, and therefore that
conjugacy classes are partitions of ``G``. For a list of all the
conjugacy classes of the group, use the conjugacy_classes() method.
In a permutation group, each conjugacy class corresponds to a particular
`cycle structure': for example, in ``S_3``, the conjugacy classes are:
* the identity class, ``{()}``
* all transpositions, ``{(1 2), (1 3), (2 3)}``
* all 3-cycles, ``{(1 2 3), (1 3 2)}``
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> S3 = SymmetricGroup(3)
>>> S3.conjugacy_class(Permutation(0, 1, 2))
{(0 1 2), (0 2 1)}
Notes
=====
This procedure computes the conjugacy class directly by finding the
orbit of the element under conjugation in G. This algorithm is only
feasible for permutation groups of relatively small order, but is like
the orbit() function itself in that respect.
"""
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G.
# Groups '93 Galway/St Andrews; edited by Campbell, C. M.
new_class = {x}
last_iteration = new_class
while len(last_iteration) > 0:
this_iteration = set()
for y in last_iteration:
for s in self.generators:
conjugated = s * y * (~s)
if conjugated not in new_class:
this_iteration.add(conjugated)
new_class.update(last_iteration)
last_iteration = this_iteration
return new_class
def conjugacy_classes(self):
r"""Return the conjugacy classes of the group.
Explanation
===========
As described in the documentation for the .conjugacy_class() function,
conjugacy is an equivalence relation on a group G which partitions the
set of elements. This method returns a list of all these conjugacy
classes of G.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> SymmetricGroup(3).conjugacy_classes()
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}]
"""
identity = _af_new(list(range(self.degree)))
known_elements = {identity}
classes = [known_elements.copy()]
for x in self.generate():
if x not in known_elements:
new_class = self.conjugacy_class(x)
classes.append(new_class)
known_elements.update(new_class)
return classes
def normal_closure(self, other, k=10):
r"""Return the normal closure of a subgroup/set of permutations.
Explanation
===========
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G``
is defined as the intersection of all normal subgroups of ``G`` that
contain ``A`` ([1], p.14). Alternatively, it is the group generated by
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a
generator of the subgroup ``\left\langle S\right\rangle`` generated by
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``)
([1], p.73).
Parameters
==========
other
a subgroup/list of permutations/single permutation
k
an implementation-specific parameter that determines the number
of conjugates that are adjoined to ``other`` at once
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup, AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)
>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
See Also
========
commutator, derived_subgroup, random_pr
Notes
=====
The algorithm is described in [1], pp. 73-74; it makes use of the
generation of random elements for permutation groups by the product
replacement algorithm.
"""
if hasattr(other, 'generators'):
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in other.generators):
return other
Z = PermutationGroup(other.generators[:])
base, strong_gens = Z.schreier_sims_incremental()
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
self._random_pr_init(r=10, n=20)
_loop = True
while _loop:
Z._random_pr_init(r=10, n=10)
for _ in range(k):
g = self.random_pr()
h = Z.random_pr()
conj = h^g
res = _strip(conj, base, basic_orbits, basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
gens = Z.generators
gens.append(conj)
Z = PermutationGroup(gens)
strong_gens.append(conj)
temp_base, temp_strong_gens = \
Z.schreier_sims_incremental(base, strong_gens)
base, strong_gens = temp_base, temp_strong_gens
strong_gens_distr = \
_distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base,
strong_gens_distr)
_loop = False
for g in self.generators:
for h in Z.generators:
conj = h^g
res = _strip(conj, base, basic_orbits,
basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
_loop = True
break
if _loop:
break
return Z
elif hasattr(other, '__getitem__'):
return self.normal_closure(PermutationGroup(other))
elif hasattr(other, 'array_form'):
return self.normal_closure(PermutationGroup([other]))
def orbit(self, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit_transversal
"""
return _orbit(self.degree, self.generators, alpha, action)
def orbit_rep(self, alpha, beta, schreier_vector=None):
"""Return a group element which sends ``alpha`` to ``beta``.
Explanation
===========
If ``beta`` is not in the orbit of ``alpha``, the function returns
``False``. This implementation makes use of the schreier vector.
For a proof of correctness, see [1], p.80
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
(0 4 1 2 3)
See Also
========
schreier_vector
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if schreier_vector[beta] is None:
return False
k = schreier_vector[beta]
gens = [x._array_form for x in self.generators]
a = []
while k != -1:
a.append(gens[k])
beta = gens[k].index(beta) # beta = (~gens[k])(beta)
k = schreier_vector[beta]
if a:
return _af_new(_af_rmuln(*a))
else:
return _af_new(list(range(self._degree)))
def orbit_transversal(self, alpha, pairs=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
For a permutation group `G`, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
See Also
========
orbit
"""
return _orbit_transversal(self._degree, self.generators, alpha, pairs)
def orbits(self, rep=False):
"""Return the orbits of ``self``, ordered according to lowest element
in each orbit.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>>> G = PermutationGroup([a, b])
>>> G.orbits()
[{0, 2, 3, 4, 6}, {1, 5}]
"""
return _orbits(self._degree, self._generators)
def order(self):
"""Return the order of the group: the number of permutations that
can be generated from elements of the group.
The number of permutations comprising the group is given by
``len(group)``; the length of each permutation in the group is
given by ``group.size``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.order()
6
See Also
========
degree
"""
if self._order is not None:
return self._order
if self._is_sym:
n = self._degree
self._order = factorial(n)
return self._order
if self._is_alt:
n = self._degree
self._order = factorial(n)/2
return self._order
m = prod([len(x) for x in self.basic_transversals])
self._order = m
return m
def index(self, H):
"""
Returns the index of a permutation group.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)
>>> b =Permutation(3)
>>> G = PermutationGroup([a])
>>> H = PermutationGroup([b])
>>> G.index(H)
3
"""
if H.is_subgroup(self):
return self.order()//H.order()
@property
def is_symmetric(self):
"""Return ``True`` if the group is symmetric.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> g = SymmetricGroup(5)
>>> g.is_symmetric
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3))
>>> g.is_symmetric
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_sym = self._is_sym
if _is_sym is not None:
return _is_sym
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if any(g.is_odd for g in self.generators):
self._is_sym, self._is_alt = True, False
return True
self._is_sym, self._is_alt = False, True
return False
return self._eval_is_alt_sym_naive(only_sym=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_sym=True)
@property
def is_alternating(self):
"""Return ``True`` if the group is alternating.
Examples
========
>>> from sympy.combinatorics import AlternatingGroup
>>> g = AlternatingGroup(5)
>>> g.is_alternating
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3, 4))
>>> g.is_alternating
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_alt = self._is_alt
if _is_alt is not None:
return _is_alt
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if all(g.is_even for g in self.generators):
self._is_sym, self._is_alt = False, True
return True
self._is_sym, self._is_alt = True, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
@classmethod
def _distinct_primes_lemma(cls, primes):
"""Subroutine to test if there is only one cyclic group for the
order."""
primes = sorted(primes)
l = len(primes)
for i in range(l):
for j in range(i+1, l):
if primes[j] % primes[i] == 1:
return None
return True
@property
def is_cyclic(self):
r"""
Return ``True`` if the group is Cyclic.
Examples
========
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> G = AbelianGroup(3, 4)
>>> G.is_cyclic
True
>>> G = AbelianGroup(4, 4)
>>> G.is_cyclic
False
Notes
=====
If the order of a group $n$ can be factored into the distinct
primes $p_1, p_2, \dots , p_s$ and if
.. math::
\forall i, j \in \{1, 2, \dots, s \}:
p_i \not \equiv 1 \pmod {p_j}
holds true, there is only one group of the order $n$ which
is a cyclic group [1]_. This is a generalization of the lemma
that the group of order $15, 35, \dots$ are cyclic.
And also, these additional lemmas can be used to test if a
group is cyclic if the order of the group is already found.
- If the group is abelian and the order of the group is
square-free, the group is cyclic.
- If the order of the group is less than $6$ and is not $4$, the
group is cyclic.
- If the order of the group is prime, the group is cyclic.
References
==========
.. [1] 1978: John S. Rose: A Course on Group Theory,
Introduction to Finite Group Theory: 1.4
"""
if self._is_cyclic is not None:
return self._is_cyclic
if len(self.generators) == 1:
self._is_cyclic = True
self._is_abelian = True
return True
if self._is_abelian is False:
self._is_cyclic = False
return False
order = self.order()
if order < 6:
self._is_abelian = True
if order != 4:
self._is_cyclic = True
return True
factors = factorint(order)
if all(v == 1 for v in factors.values()):
if self._is_abelian:
self._is_cyclic = True
return True
primes = list(factors.keys())
if PermutationGroup._distinct_primes_lemma(primes) is True:
self._is_cyclic = True
self._is_abelian = True
return True
for p in factors:
pgens = []
for g in self.generators:
pgens.append(g**p)
if self.index(self.subgroup(pgens)) != p:
self._is_cyclic = False
return False
self._is_cyclic = True
self._is_abelian = True
return True
def pointwise_stabilizer(self, points, incremental=True):
r"""Return the pointwise stabilizer for a set of points.
Explanation
===========
For a permutation group `G` and a set of points
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of
`p_1, p_2, \ldots, p_k` is defined as
`G_{p_1,\ldots, p_k} =
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20).
It is a subgroup of `G`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(7)
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
See Also
========
stabilizer, schreier_sims_incremental
Notes
=====
When incremental == True,
rather than the obvious implementation using successive calls to
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm
to obtain a base with starting segment - the given points.
"""
if incremental:
base, strong_gens = self.schreier_sims_incremental(base=points)
stab_gens = []
degree = self.degree
for gen in strong_gens:
if [gen(point) for point in points] == points:
stab_gens.append(gen)
if not stab_gens:
stab_gens = _af_new(list(range(degree)))
return PermutationGroup(stab_gens)
else:
gens = self._generators
degree = self.degree
for x in points:
gens = _stabilizer(degree, gens, x)
return PermutationGroup(gens)
def make_perm(self, n, seed=None):
"""
Multiply ``n`` randomly selected permutations from
pgroup together, starting with the identity
permutation. If ``n`` is a list of integers, those
integers will be used to select the permutations and they
will be applied in L to R order: make_perm((A, B, C)) will
give CBA(I) where I is the identity permutation.
``seed`` is used to set the seed for the random selection
of permutations from pgroup. If this is a list of integers,
the corresponding permutations from pgroup will be selected
in the order give. This is mainly used for testing purposes.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make_perm(1, [0])
(0 1)(2 3)
>>> G.make_perm(3, [0, 1, 0])
(0 2 3 1)
>>> G.make_perm([0, 1, 0])
(0 2 3 1)
See Also
========
random
"""
if is_sequence(n):
if seed is not None:
raise ValueError('If n is a sequence, seed should be None')
n, seed = len(n), n
else:
try:
n = int(n)
except TypeError:
raise ValueError('n must be an integer or a sequence.')
randomrange = _randrange(seed)
# start with the identity permutation
result = Permutation(list(range(self.degree)))
m = len(self)
for _ in range(n):
p = self[randomrange(m)]
result = rmul(result, p)
return result
def random(self, af=False):
"""Return a random group element
"""
rank = randrange(self.order())
return self.coset_unrank(rank, af)
def random_pr(self, gen_count=11, iterations=50, _random_prec=None):
"""Return a random group element using product replacement.
Explanation
===========
For the details of the product replacement algorithm, see
``_random_pr_init`` In ``random_pr`` the actual 'product replacement'
is performed. Notice that if the attribute ``_random_gens``
is empty, it needs to be initialized by ``_random_pr_init``.
See Also
========
_random_pr_init
"""
if self._random_gens == []:
self._random_pr_init(gen_count, iterations)
random_gens = self._random_gens
r = len(random_gens) - 1
# handle randomized input for testing purposes
if _random_prec is None:
s = randrange(r)
t = randrange(r - 1)
if t == s:
t = r - 1
x = choice([1, 2])
e = choice([-1, 1])
else:
s = _random_prec['s']
t = _random_prec['t']
if t == s:
t = r - 1
x = _random_prec['x']
e = _random_prec['e']
if x == 1:
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e))
random_gens[r] = _af_rmul(random_gens[r], random_gens[s])
else:
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s])
random_gens[r] = _af_rmul(random_gens[s], random_gens[r])
return _af_new(random_gens[r])
def random_stab(self, alpha, schreier_vector=None, _random_prec=None):
"""Random element from the stabilizer of ``alpha``.
The schreier vector for ``alpha`` is an optional argument used
for speeding up repeated calls. The algorithm is described in [1], p.81
See Also
========
random_pr, orbit_rep
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if _random_prec is None:
rand = self.random_pr()
else:
rand = _random_prec['rand']
beta = rand(alpha)
h = self.orbit_rep(alpha, beta, schreier_vector)
return rmul(~h, rand)
def schreier_sims(self):
"""Schreier-Sims algorithm.
Explanation
===========
It computes the generators of the chain of stabilizers
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1`
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`,
and the corresponding ``s`` cosets.
An element of the group can be written as the product
`h_1*..*h_s`.
We use the incremental Schreier-Sims algorithm.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_transversals
[{0: (2)(0 1), 1: (2), 2: (1 2)},
{0: (2), 2: (0 2)}]
"""
if self._transversals:
return
self._schreier_sims()
return
def _schreier_sims(self, base=None):
schreier = self.schreier_sims_incremental(base=base, slp_dict=True)
base, strong_gens = schreier[:2]
self._base = base
self._strong_gens = strong_gens
self._strong_gens_slp = schreier[2]
if not base:
self._transversals = []
self._basic_orbits = []
return
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\
strong_gens_distr, slp=True)
# rewrite the indices stored in slps in terms of strong_gens
for i, slp in enumerate(slps):
gens = strong_gens_distr[i]
for k in slp:
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]]
self._transversals = transversals
self._basic_orbits = [sorted(x) for x in basic_orbits]
self._transversal_slp = slps
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
if base is None:
base = []
if gens is None:
gens = self.generators[:]
degree = self.degree
id_af = list(range(degree))
# handle the trivial group
if len(gens) == 1 and gens[0].is_Identity:
if slp_dict:
return base, gens, {gens[0]: [gens[0]]}
return base, gens
# prevent side effects
_base, _gens = base[:], gens[:]
# remove the identity as a generator
_gens = [x for x in _gens if not x.is_Identity]
# make sure no generator fixes all base points
for gen in _gens:
if all(x == gen._array_form[x] for x in _base):
for new in id_af:
if gen._array_form[new] != new:
break
else:
assert None # can this ever happen?
_base.append(new)
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
strong_gens_slp = []
# initialize the basic stabilizers, basic orbits and basic transversals
orbs = {}
transversals = {}
slps = {}
base_len = len(_base)
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
_base[i], pairs=True, af=True, slp=True)
transversals[i] = dict(transversals[i])
orbs[i] = list(transversals[i].keys())
# main loop: amend the stabilizer chain until we have generators
# for all stabilizers
i = base_len - 1
while i >= 0:
# this flag is used to continue with the main loop from inside
# a nested loop
continue_i = False
# test the generators for being a strong generating set
db = {}
for beta, u_beta in list(transversals[i].items()):
for j, gen in enumerate(strong_gens_distr[i]):
gb = gen._array_form[beta]
u1 = transversals[i][gb]
g1 = _af_rmul(gen._array_form, u_beta)
slp = [(i, g) for g in slps[i][beta]]
slp = [(i, j)] + slp
if g1 != u1:
# test if the schreier generator is in the i+1-th
# would-be basic stabilizer
y = True
try:
u1_inv = db[gb]
except KeyError:
u1_inv = db[gb] = _af_invert(u1)
schreier_gen = _af_rmul(u1_inv, g1)
u1_inv_slp = slps[i][gb][:]
u1_inv_slp.reverse()
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
slp = u1_inv_slp + slp
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
if j <= base_len:
# new strong generator h at level j
y = False
elif h:
# h fixes all base points
y = False
moved = 0
while h[moved] == moved:
moved += 1
_base.append(moved)
base_len += 1
strong_gens_distr.append([])
if y is False:
# if a new strong generator is found, update the
# data structures and start over
h = _af_new(h)
strong_gens_slp.append((h, slp))
for l in range(i + 1, j):
strong_gens_distr[l].append(h)
transversals[l], slps[l] =\
_orbit_transversal(degree, strong_gens_distr[l],
_base[l], pairs=True, af=True, slp=True)
transversals[l] = dict(transversals[l])
orbs[l] = list(transversals[l].keys())
i = j - 1
# continue main loop using the flag
continue_i = True
if continue_i is True:
break
if continue_i is True:
break
if continue_i is True:
continue
i -= 1
strong_gens = _gens[:]
if slp_dict:
# create the list of the strong generators strong_gens and
# rewrite the indices of strong_gens_slp in terms of the
# elements of strong_gens
for k, slp in strong_gens_slp:
strong_gens.append(k)
for i in range(len(slp)):
s = slp[i]
if isinstance(s[1], tuple):
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
else:
slp[i] = strong_gens_distr[s[0]][s[1]]
strong_gens_slp = dict(strong_gens_slp)
# add the original generators
for g in _gens:
strong_gens_slp[g] = [g]
return (_base, strong_gens, strong_gens_slp)
strong_gens.extend([k for k, _ in strong_gens_slp])
return _base, strong_gens
def schreier_sims_random(self, base=None, gens=None, consec_succ=10,
_random_prec=None):
r"""Randomized Schreier-Sims algorithm.
Explanation
===========
The randomized Schreier-Sims algorithm takes the sequence ``base``
and the generating set ``gens``, and extends ``base`` to a base, and
``gens`` to a strong generating set relative to that base with
probability of a wrong answer at most `2^{-consec\_succ}`,
provided the random generators are sufficiently random.
Parameters
==========
base
The sequence to be extended to a base.
gens
The generating set to be extended to a strong generating set.
consec_succ
The parameter defining the probability of a wrong answer.
_random_prec
An internal parameter used for testing purposes.
Returns
=======
(base, strong_gens)
``base`` is the base and ``strong_gens`` is the strong generating
set relative to it.
Examples
========
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(5)
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP
True
Notes
=====
The algorithm is described in detail in [1], pp. 97-98. It extends
the orbits ``orbs`` and the permutation groups ``stabs`` to
basic orbits and basic stabilizers for the base and strong generating
set produced in the end.
The idea of the extension process
is to "sift" random group elements through the stabilizer chain
and amend the stabilizers/orbits along the way when a sift
is not successful.
The helper function ``_strip`` is used to attempt
to decompose a random group element according to the current
state of the stabilizer chain and report whether the element was
fully decomposed (successful sift) or not (unsuccessful sift). In
the latter case, the level at which the sift failed is reported and
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly.
The halting condition is for ``consec_succ`` consecutive successful
sifts to pass. This makes sure that the current ``base`` and ``gens``
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`.
See Also
========
schreier_sims
"""
if base is None:
base = []
if gens is None:
gens = self.generators
base_len = len(base)
n = self.degree
# make sure no generator fixes all base points
for gen in gens:
if all(gen(x) == x for x in base):
new = 0
while gen._array_form[new] == new:
new += 1
base.append(new)
base_len += 1
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(base, gens)
# initialize the basic stabilizers, basic transversals and basic orbits
transversals = {}
orbs = {}
for i in range(base_len):
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i],
base[i], pairs=True))
orbs[i] = list(transversals[i].keys())
# initialize the number of consecutive elements sifted
c = 0
# start sifting random elements while the number of consecutive sifts
# is less than consec_succ
while c < consec_succ:
if _random_prec is None:
g = self.random_pr()
else:
g = _random_prec['g'].pop()
h, j = _strip(g, base, orbs, transversals)
y = True
# determine whether a new base point is needed
if j <= base_len:
y = False
elif not h.is_Identity:
y = False
moved = 0
while h(moved) == moved:
moved += 1
base.append(moved)
base_len += 1
strong_gens_distr.append([])
# if the element doesn't sift, amend the strong generators and
# associated stabilizers and orbits
if y is False:
for l in range(1, j):
strong_gens_distr[l].append(h)
transversals[l] = dict(_orbit_transversal(n,
strong_gens_distr[l], base[l], pairs=True))
orbs[l] = list(transversals[l].keys())
c = 0
else:
c += 1
# build the strong generating set
strong_gens = strong_gens_distr[0][:]
for gen in strong_gens_distr[1]:
if gen not in strong_gens:
strong_gens.append(gen)
return base, strong_gens
def schreier_vector(self, alpha):
"""Computes the schreier vector for ``alpha``.
Explanation
===========
The Schreier vector efficiently stores information
about the orbit of ``alpha``. It can later be used to quickly obtain
elements of the group that send ``alpha`` to a particular element
in the orbit. Notice that the Schreier vector depends on the order
in which the group generators are listed. For a definition, see [3].
Since list indices start from zero, we adopt the convention to use
"None" instead of 0 to signify that an element does not belong
to the orbit.
For the algorithm and its correctness, see [2], pp.78-80.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_vector(0)
[-1, None, 0, 1, None, 1, 0]
See Also
========
orbit
"""
n = self.degree
v = [None]*n
v[alpha] = -1
orb = [alpha]
used = [False]*n
used[alpha] = True
gens = self.generators
r = len(gens)
for b in orb:
for i in range(r):
temp = gens[i]._array_form[b]
if used[temp] is False:
orb.append(temp)
used[temp] = True
v[temp] = i
return v
def stabilizer(self, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([
(5)(0 4)(1 3)])
See Also
========
orbit
"""
return PermGroup(_stabilizer(self._degree, self._generators, alpha))
@property
def strong_gens(self):
r"""Return a strong generating set from the Schreier-Sims algorithm.
Explanation
===========
A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group
`G` is a strong generating set relative to the sequence of points
(referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for
`1 \leq i \leq k` we have that the intersection of the pointwise
stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and
strong generating set and their applications are discussed in depth
in [1], pp. 87-89 and [2], pp. 55-57.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> D.strong_gens
[(0 1 2 3), (0 3)(1 2), (1 3)]
>>> D.base
[0, 1]
See Also
========
base, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._strong_gens == []:
self.schreier_sims()
return self._strong_gens
def subgroup(self, gens):
"""
Return the subgroup generated by `gens` which is a list of
elements of the group
"""
if not all(g in self for g in gens):
raise ValueError("The group does not contain the supplied generators")
G = PermutationGroup(gens)
return G
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None,
init_subgroup=None):
"""Find the subgroup of all elements satisfying the property ``prop``.
Explanation
===========
This is done by a depth-first search with respect to base images that
uses several tests to prune the search tree.
Parameters
==========
prop
The property to be used. Has to be callable on group elements
and always return ``True`` or ``False``. It is assumed that
all group elements satisfying ``prop`` indeed form a subgroup.
base
A base for the supergroup.
strong_gens
A strong generating set for the supergroup.
tests
A list of callables of length equal to the length of ``base``.
These are used to rule out group elements by partial base images,
so that ``tests[l](g)`` returns False if the element ``g`` is known
not to satisfy prop base on where g sends the first ``l + 1`` base
points.
init_subgroup
if a subgroup of the sought group is
known in advance, it can be passed to the function as this
parameter.
Returns
=======
res
The subgroup of all elements satisfying ``prop``. The generating
set for this group is guaranteed to be a strong generating set
relative to the base ``base``.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> prop_even = lambda x: x.is_even
>>> base, strong_gens = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
>>> G.is_subgroup(AlternatingGroup(7))
True
>>> _verify_bsgs(G, base, G.generators)
True
Notes
=====
This function is extremely lengthy and complicated and will require
some careful attention. The implementation is described in
[1], pp. 114-117, and the comments for the code here follow the lines
of the pseudocode in the book for clarity.
The complexity is exponential in general, since the search process by
itself visits all members of the supergroup. However, there are a lot
of tests which are used to prune the search tree, and users can define
their own tests via the ``tests`` parameter, so in practice, and for
some computations, it's not terrible.
A crucial part in the procedure is the frequent base change performed
(this is line 11 in the pseudocode) in order to obtain a new basic
stabilizer. The book mentiones that this can be done by using
``.baseswap(...)``, however the current implementation uses a more
straightforward way to find the next basic stabilizer - calling the
function ``.stabilizer(...)`` on the previous basic stabilizer.
"""
# initialize BSGS and basic group properties
def get_reps(orbits):
# get the minimal element in the base ordering
return [min(orbit, key = lambda x: base_ordering[x]) \
for orbit in orbits]
def update_nu(l):
temp_index = len(basic_orbits[l]) + 1 -\
len(res_basic_orbits_init_base[l])
# this corresponds to the element larger than all points
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
if base is None:
base, strong_gens = self.schreier_sims_incremental()
base_len = len(base)
degree = self.degree
identity = _af_new(list(range(degree)))
base_ordering = _base_ordering(base, degree)
# add an element larger than all points
base_ordering.append(degree)
# add an element smaller than all points
base_ordering.append(-1)
# compute BSGS-related structures
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals = _orbits_transversals_from_bsgs(base,
strong_gens_distr)
# handle subgroup initialization and tests
if init_subgroup is None:
init_subgroup = PermutationGroup([identity])
if tests is None:
trivial_test = lambda x: True
tests = []
for i in range(base_len):
tests.append(trivial_test)
# line 1: more initializations.
res = init_subgroup
f = base_len - 1
l = base_len - 1
# line 2: set the base for K to the base for G
res_base = base[:]
# line 3: compute BSGS and related structures for K
res_base, res_strong_gens = res.schreier_sims_incremental(
base=res_base)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_generators = res.generators
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\
for i in range(base_len)]
# initialize orbit representatives
orbit_reps = [None]*base_len
# line 4: orbit representatives for f-th basic stabilizer of K
orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(orbits)
# line 5: remove the base point from the representatives to avoid
# getting the identity element as a generator for K
orbit_reps[f].remove(base[f])
# line 6: more initializations
c = [0]*base_len
u = [identity]*base_len
sorted_orbits = [None]*base_len
for i in range(base_len):
sorted_orbits[i] = basic_orbits[i][:]
sorted_orbits[i].sort(key=lambda point: base_ordering[point])
# line 7: initializations
mu = [None]*base_len
nu = [None]*base_len
# this corresponds to the element smaller than all points
mu[l] = degree + 1
update_nu(l)
# initialize computed words
computed_words = [identity]*base_len
# line 8: main loop
while True:
# apply all the tests
while l < base_len - 1 and \
computed_words[l](base[l]) in orbit_reps[l] and \
base_ordering[mu[l]] < \
base_ordering[computed_words[l](base[l])] < \
base_ordering[nu[l]] and \
tests[l](computed_words):
# line 11: change the (partial) base of K
new_point = computed_words[l](base[l])
res_base[l] = new_point
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l],
new_point)
res_strong_gens_distr[l + 1] = new_stab_gens
# line 12: calculate minimal orbit representatives for the
# l+1-th basic stabilizer
orbits = _orbits(degree, new_stab_gens)
orbit_reps[l + 1] = get_reps(orbits)
# line 13: amend sorted orbits
l += 1
temp_orbit = [computed_words[l - 1](point) for point
in basic_orbits[l]]
temp_orbit.sort(key=lambda point: base_ordering[point])
sorted_orbits[l] = temp_orbit
# lines 14 and 15: update variables used minimality tests
new_mu = degree + 1
for i in range(l):
if base[l] in res_basic_orbits_init_base[i]:
candidate = computed_words[i](base[i])
if base_ordering[candidate] > base_ordering[new_mu]:
new_mu = candidate
mu[l] = new_mu
update_nu(l)
# line 16: determine the new transversal element
c[l] = 0
temp_point = sorted_orbits[l][c[l]]
gamma = computed_words[l - 1]._array_form.index(temp_point)
u[l] = transversals[l][gamma]
# update computed words
computed_words[l] = rmul(computed_words[l - 1], u[l])
# lines 17 & 18: apply the tests to the group element found
g = computed_words[l]
temp_point = g(base[l])
if l == base_len - 1 and \
base_ordering[mu[l]] < \
base_ordering[temp_point] < base_ordering[nu[l]] and \
temp_point in orbit_reps[l] and \
tests[l](computed_words) and \
prop(g):
# line 19: reset the base of K
res_generators.append(g)
res_base = base[:]
# line 20: recalculate basic orbits (and transversals)
res_strong_gens.append(g)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \
for i in range(base_len)]
# line 21: recalculate orbit representatives
# line 22: reset the search depth
orbit_reps[f] = get_reps(orbits)
l = f
# line 23: go up the tree until in the first branch not fully
# searched
while l >= 0 and c[l] == len(basic_orbits[l]) - 1:
l = l - 1
# line 24: if the entire tree is traversed, return K
if l == -1:
return PermutationGroup(res_generators)
# lines 25-27: update orbit representatives
if l < f:
# line 26
f = l
c[l] = 0
# line 27
temp_orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(temp_orbits)
# line 28: update variables used for minimality testing
mu[l] = degree + 1
temp_index = len(basic_orbits[l]) + 1 - \
len(res_basic_orbits_init_base[l])
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
# line 29: set the next element from the current branch and update
# accordingly
c[l] += 1
if l == 0:
gamma = sorted_orbits[l][c[l]]
else:
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]])
u[l] = transversals[l][gamma]
if l == 0:
computed_words[l] = u[l]
else:
computed_words[l] = rmul(computed_words[l - 1], u[l])
@property
def transitivity_degree(self):
r"""Compute the degree of transitivity of the group.
Explanation
===========
A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is
``k``-fold transitive, if, for any `k` points
`(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points
`(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that
`g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k`
The degree of transitivity of `G` is the maximum ``k`` such that
`G` is ``k``-fold transitive. ([8])
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
See Also
========
is_transitive, orbit
"""
if self._transitivity_degree is None:
n = self.degree
G = self
# if G is k-transitive, a tuple (a_0,..,a_k)
# can be brought to (b_0,...,b_(k-1), b_k)
# where b_0,...,b_(k-1) are fixed points;
# consider the group G_k which stabilizes b_0,...,b_(k-1)
# if G_k is transitive on the subset excluding b_0,...,b_(k-1)
# then G is (k+1)-transitive
for i in range(n):
orb = G.orbit(i)
if len(orb) != n - i:
self._transitivity_degree = i
return i
G = G.stabilizer(i)
self._transitivity_degree = n
return n
else:
return self._transitivity_degree
def _p_elements_group(self, p):
'''
For an abelian p-group, return the subgroup consisting of
all elements of order p (and the identity)
'''
gens = self.generators[:]
gens = sorted(gens, key=lambda x: x.order(), reverse=True)
gens_p = [g**(g.order()/p) for g in gens]
gens_r = []
for i in range(len(gens)):
x = gens[i]
x_order = x.order()
# x_p has order p
x_p = x**(x_order/p)
if i > 0:
P = PermutationGroup(gens_p[:i])
else:
P = PermutationGroup(self.identity)
if x**(x_order/p) not in P:
gens_r.append(x**(x_order/p))
else:
# replace x by an element of order (x.order()/p)
# so that gens still generates G
g = P.generator_product(x_p, original=True)
for s in g:
x = x*s**-1
x_order = x_order/p
# insert x to gens so that the sorting is preserved
del gens[i]
del gens_p[i]
j = i - 1
while j < len(gens) and gens[j].order() >= x_order:
j += 1
gens = gens[:j] + [x] + gens[j:]
gens_p = gens_p[:j] + [x] + gens_p[j:]
return PermutationGroup(gens_r)
def _sylow_alt_sym(self, p):
'''
Return a p-Sylow subgroup of a symmetric or an
alternating group.
Explanation
===========
The algorithm for this is hinted at in [1], Chapter 4,
Exercise 4.
For Sym(n) with n = p^i, the idea is as follows. Partition
the interval [0..n-1] into p equal parts, each of length p^(i-1):
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1].
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup
of ``self``) acting on each of the parts. Call the subgroups
P_1, P_2...P_p. The generators for the subgroups P_2...P_p
can be obtained from those of P_1 by applying a "shifting"
permutation to them, that is, a permutation mapping [0..p^(i-1)-1]
to the second part (the other parts are obtained by using the shift
multiple times). The union of this permutation and the generators
of P_1 is a p-Sylow subgroup of ``self``.
For n not equal to a power of p, partition
[0..n-1] in accordance with how n would be written in base p.
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup,
take the union of the generators for each of the parts.
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)}
from the first part, {(8 9)} from the second part and
nothing from the third. This gives 4 generators in total, and
the subgroup they generate is p-Sylow.
Alternating groups are treated the same except when p=2. In this
case, (0 1)(s s+1) should be added for an appropriate s (the start
of a part) for each part in the partitions.
See Also
========
sylow_subgroup, is_alt_sym
'''
n = self.degree
gens = []
identity = Permutation(n-1)
# the case of 2-sylow subgroups of alternating groups
# needs special treatment
alt = p == 2 and all(g.is_even for g in self.generators)
# find the presentation of n in base p
coeffs = []
m = n
while m > 0:
coeffs.append(m % p)
m = m // p
power = len(coeffs)-1
# for a symmetric group, gens[:i] is the generating
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For
# alternating groups, the same is given by gens[:2*(i-1)]
for i in range(1, power+1):
if i == 1 and alt:
# (0 1) shouldn't be added for alternating groups
continue
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)])
gens.append(identity*gen)
if alt:
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen
gens.append(gen)
# the first point in the current part (see the algorithm
# description in the docstring)
start = 0
while power > 0:
a = coeffs[power]
# make the permutation shifting the start of the first
# part ([0..p^i-1] for some i) to the current one
for _ in range(a):
shift = Permutation()
if start > 0:
for i in range(p**power):
shift = shift(i, start + i)
if alt:
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift
gens.append(gen)
j = 2*(power - 1)
else:
j = power
for i, gen in enumerate(gens[:j]):
if alt and i % 2 == 1:
continue
# shift the generator to the start of the
# partition part
gen = shift*gen*shift
gens.append(gen)
start += p**power
power = power-1
return gens
def sylow_subgroup(self, p):
'''
Return a p-Sylow subgroup of the group.
The algorithm is described in [1], Chapter 4, Section 7
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> D = DihedralGroup(6)
>>> S = D.sylow_subgroup(2)
>>> S.order()
4
>>> G = SymmetricGroup(6)
>>> S = G.sylow_subgroup(5)
>>> S.order()
5
>>> G1 = AlternatingGroup(3)
>>> G2 = AlternatingGroup(5)
>>> G3 = AlternatingGroup(9)
>>> S1 = G1.sylow_subgroup(3)
>>> S2 = G2.sylow_subgroup(3)
>>> S3 = G3.sylow_subgroup(3)
>>> len1 = len(S1.lower_central_series())
>>> len2 = len(S2.lower_central_series())
>>> len3 = len(S3.lower_central_series())
>>> len1 == len2
True
>>> len1 < len3
True
'''
from sympy.combinatorics.homomorphisms import (
orbit_homomorphism, block_homomorphism)
if not isprime(p):
raise ValueError("p must be a prime")
def is_p_group(G):
# check if the order of G is a power of p
# and return the power
m = G.order()
n = 0
while m % p == 0:
m = m/p
n += 1
if m == 1:
return True, n
return False, n
def _sylow_reduce(mu, nu):
# reduction based on two homomorphisms
# mu and nu with trivially intersecting
# kernels
Q = mu.image().sylow_subgroup(p)
Q = mu.invert_subgroup(Q)
nu = nu.restrict_to(Q)
R = nu.image().sylow_subgroup(p)
return nu.invert_subgroup(R)
order = self.order()
if order % p != 0:
return PermutationGroup([self.identity])
p_group, n = is_p_group(self)
if p_group:
return self
if self.is_alt_sym():
return PermutationGroup(self._sylow_alt_sym(p))
# if there is a non-trivial orbit with size not divisible
# by p, the sylow subgroup is contained in its stabilizer
# (by orbit-stabilizer theorem)
orbits = self.orbits()
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1]
if non_p_orbits:
G = self.stabilizer(list(non_p_orbits[0]).pop())
return G.sylow_subgroup(p)
if not self.is_transitive():
# apply _sylow_reduce to orbit actions
orbits = sorted(orbits, key=len)
omega1 = orbits.pop()
omega2 = orbits[0].union(*orbits)
mu = orbit_homomorphism(self, omega1)
nu = orbit_homomorphism(self, omega2)
return _sylow_reduce(mu, nu)
blocks = self.minimal_blocks()
if len(blocks) > 1:
# apply _sylow_reduce to block system actions
mu = block_homomorphism(self, blocks[0])
nu = block_homomorphism(self, blocks[1])
return _sylow_reduce(mu, nu)
elif len(blocks) == 1:
block = list(blocks)[0]
if any(e != 0 for e in block):
# self is imprimitive
mu = block_homomorphism(self, block)
if not is_p_group(mu.image())[0]:
S = mu.image().sylow_subgroup(p)
return mu.invert_subgroup(S).sylow_subgroup(p)
# find an element of order p
g = self.random()
g_order = g.order()
while g_order % p != 0 or g_order == 0:
g = self.random()
g_order = g.order()
g = g**(g_order // p)
if order % p**2 != 0:
return PermutationGroup(g)
C = self.centralizer(g)
while C.order() % p**n != 0:
S = C.sylow_subgroup(p)
s_order = S.order()
Z = S.center()
P = Z._p_elements_group(p)
h = P.random()
C_h = self.centralizer(h)
while C_h.order() % p*s_order != 0:
h = P.random()
C_h = self.centralizer(h)
C = C_h
return C.sylow_subgroup(p)
def _block_verify(self, L, alpha):
delta = sorted(list(self.orbit(alpha)))
# p[i] will be the number of the block
# delta[i] belongs to
p = [-1]*len(delta)
blocks = [-1]*len(delta)
B = [[]] # future list of blocks
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i]
t = L.orbit_transversal(alpha, pairs=True)
for a, beta in t:
B[0].append(a)
i_a = delta.index(a)
p[i_a] = 0
blocks[i_a] = alpha
u[i_a] = beta
rho = 0
m = 0 # number of blocks - 1
while rho <= m:
beta = B[rho][0]
for g in self.generators:
d = beta^g
i_d = delta.index(d)
sigma = p[i_d]
if sigma < 0:
# define a new block
m += 1
sigma = m
u[i_d] = u[delta.index(beta)]*g
p[i_d] = sigma
rep = d
blocks[i_d] = rep
newb = [rep]
for gamma in B[rho][1:]:
i_gamma = delta.index(gamma)
d = gamma^g
i_d = delta.index(d)
if p[i_d] < 0:
u[i_d] = u[i_gamma]*g
p[i_d] = sigma
blocks[i_d] = rep
newb.append(d)
else:
# B[rho] is not a block
s = u[i_gamma]*g*u[i_d]**(-1)
return False, s
B.append(newb)
else:
for h in B[rho][1:]:
if h^g not in B[sigma]:
# B[rho] is not a block
s = u[delta.index(beta)]*g*u[i_d]**(-1)
return False, s
rho += 1
return True, blocks
def _verify(H, K, phi, z, alpha):
'''
Return a list of relators ``rels`` in generators ``gens`_h` that
are mapped to ``H.generators`` by ``phi`` so that given a finite
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h``
<gens_h | rels_k + rels> is a finite presentation of ``H``.
Explanation
===========
``H`` should be generated by the union of ``K.generators`` and ``z``
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a
canonical injection from a free group into a permutation group
containing ``H``.
The algorithm is described in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics import free_group, Permutation, PermutationGroup
>>> from sympy.combinatorics.homomorphisms import homomorphism
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
>>> K = PermutationGroup(Permutation(5)(0, 2))
>>> F = free_group("x_0 x_1")[0]
>>> gens = F.generators
>>> phi = homomorphism(F, H, F.generators, H.generators)
>>> rels_k = [gens[0]**2] # relators for presentation of K
>>> z= Permutation(1, 5)
>>> check, rels_h = H._verify(K, phi, z, 1)
>>> check
True
>>> rels = rels_k + rels_h
>>> G = FpGroup(F, rels) # presentation of H
>>> G.order() == H.order()
True
See also
========
strong_presentation, presentation, stabilizer
'''
orbit = H.orbit(alpha)
beta = alpha^(z**-1)
K_beta = K.stabilizer(beta)
# orbit representatives of K_beta
gammas = [alpha, beta]
orbits = list({tuple(K_beta.orbit(o)) for o in orbit})
orbit_reps = [orb[0] for orb in orbits]
for rep in orbit_reps:
if rep not in gammas:
gammas.append(rep)
# orbit transversal of K
betas = [alpha, beta]
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)}
for s, g in K.orbit_transversal(beta, pairs=True):
if s not in transversal:
transversal[s] = transversal[beta]*phi.invert(g)
union = K.orbit(alpha).union(K.orbit(beta))
while (len(union) < len(orbit)):
for gamma in gammas:
if gamma in union:
r = gamma^z
if r not in union:
betas.append(r)
transversal[r] = transversal[gamma]*phi.invert(z)
for s, g in K.orbit_transversal(r, pairs=True):
if s not in transversal:
transversal[s] = transversal[r]*phi.invert(g)
union = union.union(K.orbit(r))
break
# compute relators
rels = []
for b in betas:
k_gens = K.stabilizer(b).generators
for y in k_gens:
new_rel = transversal[b]
gens = K.generator_product(y, original=True)
for g in gens[::-1]:
new_rel = new_rel*phi.invert(g)
new_rel = new_rel*transversal[b]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
for gamma in gammas:
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
return True, rels
def strong_presentation(self):
'''
Return a strong finite presentation of group. The generators
of the returned group are in the same order as the strong
generators of group.
The algorithm is based on Sims' Verify algorithm described
in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> P = DihedralGroup(4)
>>> G = P.strong_presentation()
>>> P.order() == G.order()
True
See Also
========
presentation, _verify
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import (block_homomorphism,
homomorphism, GroupHomomorphism)
strong_gens = self.strong_gens[:]
stabs = self.basic_stabilizers[:]
base = self.base[:]
# injection from a free group on len(strong_gens)
# generators into G
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))]
F = free_group(', '.join(gen_syms))[0]
phi = homomorphism(F, self, F.generators, strong_gens)
H = PermutationGroup(self.identity)
while stabs:
alpha = base.pop()
K = H
H = stabs.pop()
new_gens = [g for g in H.generators if g not in K]
if K.order() == 1:
z = new_gens.pop()
rels = [F.generators[-1]**z.order()]
intermediate_gens = [z]
K = PermutationGroup(intermediate_gens)
# add generators one at a time building up from K to H
while new_gens:
z = new_gens.pop()
intermediate_gens = [z] + intermediate_gens
K_s = PermutationGroup(intermediate_gens)
orbit = K_s.orbit(alpha)
orbit_k = K.orbit(alpha)
# split into cases based on the orbit of K_s
if orbit_k == orbit:
if z in K:
rel = phi.invert(z)
perm = z
else:
t = K.orbit_rep(alpha, alpha^z)
rel = phi.invert(z)*phi.invert(t)**-1
perm = z*t**-1
for g in K.generator_product(perm, original=True):
rel = rel*phi.invert(g)**-1
new_rels = [rel]
elif len(orbit_k) == 1:
# `success` is always true because `strong_gens`
# and `base` are already a verified BSGS. Later
# this could be changed to start with a randomly
# generated (potential) BSGS, and then new elements
# would have to be appended to it when `success`
# is false.
success, new_rels = K_s._verify(K, phi, z, alpha)
else:
# K.orbit(alpha) should be a block
# under the action of K_s on K_s.orbit(alpha)
check, block = K_s._block_verify(K, alpha)
if check:
# apply _verify to the action of K_s
# on the block system; for convenience,
# add the blocks as additional points
# that K_s should act on
t = block_homomorphism(K_s, block)
m = t.codomain.degree # number of blocks
d = K_s.degree
# conjugating with p will shift
# permutations in t.image() to
# higher numbers, e.g.
# p*(0 1)*p = (m m+1)
p = Permutation()
for i in range(m):
p *= Permutation(i, i+d)
t_img = t.images
# combine generators of K_s with their
# action on the block system
images = {g: g*p*t_img[g]*p for g in t_img}
for g in self.strong_gens[:-len(K_s.generators)]:
images[g] = g
K_s_act = PermutationGroup(list(images.values()))
f = GroupHomomorphism(self, K_s_act, images)
K_act = PermutationGroup([f(g) for g in K.generators])
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d)
for n in new_rels:
if n not in rels:
rels.append(n)
K = K_s
group = FpGroup(F, rels)
return simplify_presentation(group)
def presentation(self, eliminate_gens=True):
'''
Return an `FpGroup` presentation of the group.
The algorithm is described in [1], Chapter 6.1.
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.coset_table import CosetTable
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import homomorphism
if self._fp_presentation:
return self._fp_presentation
def _factor_group_by_rels(G, rels):
if isinstance(G, FpGroup):
rels.extend(G.relators)
return FpGroup(G.free_group, list(set(rels)))
return FpGroup(G, rels)
gens = self.generators
len_g = len(gens)
if len_g == 1:
order = gens[0].order()
# handle the trivial group
if order == 1:
return free_group([])[0]
F, x = free_group('x')
return FpGroup(F, [x**order])
if self.order() > 20:
half_gens = self.generators[0:(len_g+1)//2]
else:
half_gens = []
H = PermutationGroup(half_gens)
H_p = H.presentation()
len_h = len(H_p.generators)
C = self.coset_table(H)
n = len(C) # subgroup index
gen_syms = [('x_%d'%i) for i in range(len(gens))]
F = free_group(', '.join(gen_syms))[0]
# mapping generators of H_p to those of F
images = [F.generators[i] for i in range(len_h)]
R = homomorphism(H_p, F, H_p.generators, images, check=False)
# rewrite relators
rels = R(H_p.relators)
G_p = FpGroup(F, rels)
# injective homomorphism from G_p into self
T = homomorphism(G_p, self, G_p.generators, gens)
C_p = CosetTable(G_p, [])
C_p.table = [[None]*(2*len_g) for i in range(n)]
# initiate the coset transversal
transversal = [None]*n
transversal[0] = G_p.identity
# fill in the coset table as much as possible
for i in range(2*len_h):
C_p.table[0][i] = 0
gamma = 1
for alpha, x in product(range(n), range(2*len_g)):
beta = C[alpha][x]
if beta == gamma:
gen = G_p.generators[x//2]**((-1)**(x % 2))
transversal[beta] = transversal[alpha]*gen
C_p.table[alpha][x] = beta
C_p.table[beta][x + (-1)**(x % 2)] = alpha
gamma += 1
if gamma == n:
break
C_p.p = list(range(n))
beta = x = 0
while not C_p.is_complete():
# find the first undefined entry
while C_p.table[beta][x] == C[beta][x]:
x = (x + 1) % (2*len_g)
if x == 0:
beta = (beta + 1) % n
# define a new relator
gen = G_p.generators[x//2]**((-1)**(x % 2))
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1
perm = T(new_rel)
nxt = G_p.identity
for s in H.generator_product(perm, original=True):
nxt = nxt*T.invert(s)**-1
new_rel = new_rel*nxt
# continue coset enumeration
G_p = _factor_group_by_rels(G_p, [new_rel])
C_p.scan_and_fill(0, new_rel)
C_p = G_p.coset_enumeration([], strategy="coset_table",
draft=C_p, max_cosets=n, incomplete=True)
self._fp_presentation = simplify_presentation(G_p)
return self._fp_presentation
def polycyclic_group(self):
"""
Return the PolycyclicGroup instance with below parameters:
Explanation
===========
* ``pc_sequence`` : Polycyclic sequence is formed by collecting all
the missing generators between the adjacent groups in the
derived series of given permutation group.
* ``pc_series`` : Polycyclic series is formed by adding all the missing
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents
the derived series.
* ``relative_order`` : A list, computed by the ratio of adjacent groups in
pc_series.
"""
from sympy.combinatorics.pc_groups import PolycyclicGroup
if not self.is_polycyclic:
raise ValueError("The group must be solvable")
der = self.derived_series()
pc_series = []
pc_sequence = []
relative_order = []
pc_series.append(der[-1])
der.reverse()
for i in range(len(der)-1):
H = der[i]
for g in der[i+1].generators:
if g not in H:
H = PermutationGroup([g] + H.generators)
pc_series.insert(0, H)
pc_sequence.insert(0, g)
G1 = pc_series[0].order()
G2 = pc_series[1].order()
relative_order.insert(0, G1 // G2)
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None)
def _orbit(degree, generators, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.perm_groups import _orbit
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> _orbit(G.degree, G.generators, 0)
{0, 1, 2}
>>> _orbit(G.degree, G.generators, [0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit, orbit_transversal
"""
if not hasattr(alpha, '__getitem__'):
alpha = [alpha]
gens = [x._array_form for x in generators]
if len(alpha) == 1 or action == 'union':
orb = alpha
used = [False]*degree
for el in alpha:
used[el] = True
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] == False:
orb.append(temp)
used[temp] = True
return set(orb)
elif action == 'tuples':
alpha = tuple(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = tuple([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return set(orb)
elif action == 'sets':
alpha = frozenset(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = frozenset([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return {tuple(x) for x in orb}
def _orbits(degree, generators):
"""Compute the orbits of G.
If ``rep=False`` it returns a list of sets else it returns a list of
representatives of the orbits
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import _orbits
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> _orbits(a.size, [a, b])
[{0, 1, 2}]
"""
orbs = []
sorted_I = list(range(degree))
I = set(sorted_I)
while I:
i = sorted_I[0]
orb = _orbit(degree, generators, i)
orbs.append(orb)
# remove all indices that are in this orbit
I -= orb
sorted_I = [i for i in sorted_I if i not in orb]
return orbs
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
generators generators of the group ``G``
For a permutation group ``G``, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
if ``af`` is ``True``, the transversal elements are given in
array form.
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned
for `\beta \in Orb` where `slp_beta` is a list of indices of the
generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]`
`g_\beta = generators[i_n] \times \dots \times generators[i_1]`.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.perm_groups import _orbit_transversal
>>> G = DihedralGroup(6)
>>> _orbit_transversal(G.degree, G.generators, 0, False)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
"""
tr = [(alpha, list(range(degree)))]
slp_dict = {alpha: []}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
for x, px in tr:
px_slp = slp_dict[x]
for gen in gens:
temp = gen[x]
if used[temp] == False:
slp_dict[temp] = [gens.index(gen)] + px_slp
tr.append((temp, _af_rmul(gen, px)))
used[temp] = True
if pairs:
if not af:
tr = [(x, _af_new(y)) for x, y in tr]
if not slp:
return tr
return tr, slp_dict
if af:
tr = [y for _, y in tr]
if not slp:
return tr
return tr, slp_dict
tr = [_af_new(y) for _, y in tr]
if not slp:
return tr
return tr, slp_dict
def _stabilizer(degree, generators, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
degree : degree of G
generators : generators of G
Examples
========
>>> from sympy.combinatorics.perm_groups import _stabilizer
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> _stabilizer(G.degree, G.generators, 5)
[(5)(0 4)(1 3), (5)]
See Also
========
orbit
"""
orb = [alpha]
table = {alpha: list(range(degree))}
table_inv = {alpha: list(range(degree))}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
stab_gens = []
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] is False:
gen_temp = _af_rmul(gen, table[b])
orb.append(temp)
table[temp] = gen_temp
table_inv[temp] = _af_invert(gen_temp)
used[temp] = True
else:
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b])
if schreier_gen not in stab_gens:
stab_gens.append(schreier_gen)
return [_af_new(x) for x in stab_gens]
PermGroup = PermutationGroup
class SymmetricPermutationGroup(Basic):
"""
The class defining the lazy form of SymmetricGroup.
deg : int
"""
def __new__(cls, deg):
deg = _sympify(deg)
obj = Basic.__new__(cls, deg)
return obj
def __init__(self, *args, **kwargs):
self._deg = self.args[0]
self._order = None
def __contains__(self, i):
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> Permutation(1, 2, 3) in G
True
"""
if not isinstance(i, Permutation):
raise TypeError("A SymmetricPermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return i.size == self.degree
def order(self):
"""
Return the order of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.order()
24
"""
if self._order is not None:
return self._order
n = self._deg
self._order = factorial(n)
return self._order
@property
def degree(self):
"""
Return the degree of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.degree
4
"""
return self._deg
@property
def identity(self):
'''
Return the identity element of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.identity()
(3)
'''
return _af_new(list(range(self._deg)))
class Coset(Basic):
"""A left coset of a permutation group with respect to an element.
Parameters
==========
g : Permutation
H : PermutationGroup
dir : "+" or "-", If not specified by default it will be "+"
here ``dir`` specified the type of coset "+" represent the
right coset and "-" represent the left coset.
G : PermutationGroup, optional
The group which contains *H* as its subgroup and *g* as its
element.
If not specified, it would automatically become a symmetric
group ``SymmetricPermutationGroup(g.size)`` and
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree``
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup
used for representation purpose.
"""
def __new__(cls, g, H, G=None, dir="+"):
g = _sympify(g)
if not isinstance(g, Permutation):
raise NotImplementedError
H = _sympify(H)
if not isinstance(H, PermutationGroup):
raise NotImplementedError
if G is not None:
G = _sympify(G)
if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)):
raise NotImplementedError
if not H.is_subgroup(G):
raise ValueError("{} must be a subgroup of {}.".format(H, G))
if g not in G:
raise ValueError("{} must be an element of {}.".format(g, G))
else:
g_size = g.size
h_degree = H.degree
if g_size != h_degree:
raise ValueError(
"The size of the permutation {} and the degree of "
"the permutation group {} should be matching "
.format(g, H))
G = SymmetricPermutationGroup(g.size)
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("dir must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-'):
raise ValueError("dir must be one of '+' or '-' not %s" % dir)
obj = Basic.__new__(cls, g, H, G, dir)
return obj
def __init__(self, *args, **kwargs):
self._dir = self.args[3]
@property
def is_left_coset(self):
"""
Check if the coset is left coset that is ``gH``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="-")
>>> cst.is_left_coset
True
"""
return str(self._dir) == '-'
@property
def is_right_coset(self):
"""
Check if the coset is right coset that is ``Hg``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="+")
>>> cst.is_right_coset
True
"""
return str(self._dir) == '+'
def as_list(self):
"""
Return all the elements of coset in the form of list.
"""
g = self.args[0]
H = self.args[1]
cst = []
if str(self._dir) == '+':
for h in H.elements:
cst.append(h*g)
else:
for h in H.elements:
cst.append(g*h)
return cst
|
36674ec455782d9d560c300712388ab40f667cc5bc6e7a2319bebcb0001d9a2c | from collections import deque
from sympy.combinatorics.rewritingsystem_fsm import StateMachine
class RewritingSystem:
'''
A class implementing rewriting systems for `FpGroup`s.
References
==========
.. [1] Epstein, D., Holt, D. and Rees, S. (1991).
The use of Knuth-Bendix methods to solve the word problem in automatic groups.
Journal of Symbolic Computation, 12(4-5), pp.397-414.
.. [2] GAP's Manual on its KBMAG package
https://www.gap-system.org/Manuals/pkg/kbmag-1.5.3/doc/manual.pdf
'''
def __init__(self, group):
self.group = group
self.alphabet = group.generators
self._is_confluent = None
# these values are taken from [2]
self.maxeqns = 32767 # max rules
self.tidyint = 100 # rules before tidying
# _max_exceeded is True if maxeqns is exceeded
# at any point
self._max_exceeded = False
# Reduction automaton
self.reduction_automaton = None
self._new_rules = {}
# dictionary of reductions
self.rules = {}
self.rules_cache = deque([], 50)
self._init_rules()
# All the transition symbols in the automaton
generators = list(self.alphabet)
generators += [gen**-1 for gen in generators]
# Create a finite state machine as an instance of the StateMachine object
self.reduction_automaton = StateMachine('Reduction automaton for '+ repr(self.group), generators)
self.construct_automaton()
def set_max(self, n):
'''
Set the maximum number of rules that can be defined
'''
if n > self.maxeqns:
self._max_exceeded = False
self.maxeqns = n
return
@property
def is_confluent(self):
'''
Return `True` if the system is confluent
'''
if self._is_confluent is None:
self._is_confluent = self._check_confluence()
return self._is_confluent
def _init_rules(self):
identity = self.group.free_group.identity
for r in self.group.relators:
self.add_rule(r, identity)
self._remove_redundancies()
return
def _add_rule(self, r1, r2):
'''
Add the rule r1 -> r2 with no checking or further
deductions
'''
if len(self.rules) + 1 > self.maxeqns:
self._is_confluent = self._check_confluence()
self._max_exceeded = True
raise RuntimeError("Too many rules were defined.")
self.rules[r1] = r2
# Add the newly added rule to the `new_rules` dictionary.
if self.reduction_automaton:
self._new_rules[r1] = r2
def add_rule(self, w1, w2, check=False):
new_keys = set()
if w1 == w2:
return new_keys
if w1 < w2:
w1, w2 = w2, w1
if (w1, w2) in self.rules_cache:
return new_keys
self.rules_cache.append((w1, w2))
s1, s2 = w1, w2
# The following is the equivalent of checking
# s1 for overlaps with the implicit reductions
# {g*g**-1 -> <identity>} and {g**-1*g -> <identity>}
# for any generator g without installing the
# redundant rules that would result from processing
# the overlaps. See [1], Section 3 for details.
if len(s1) - len(s2) < 3:
if s1 not in self.rules:
new_keys.add(s1)
if not check:
self._add_rule(s1, s2)
if s2**-1 > s1**-1 and s2**-1 not in self.rules:
new_keys.add(s2**-1)
if not check:
self._add_rule(s2**-1, s1**-1)
# overlaps on the right
while len(s1) - len(s2) > -1:
g = s1[len(s1)-1]
s1 = s1.subword(0, len(s1)-1)
s2 = s2*g**-1
if len(s1) - len(s2) < 0:
if s2 not in self.rules:
if not check:
self._add_rule(s2, s1)
new_keys.add(s2)
elif len(s1) - len(s2) < 3:
new = self.add_rule(s1, s2, check)
new_keys.update(new)
# overlaps on the left
while len(w1) - len(w2) > -1:
g = w1[0]
w1 = w1.subword(1, len(w1))
w2 = g**-1*w2
if len(w1) - len(w2) < 0:
if w2 not in self.rules:
if not check:
self._add_rule(w2, w1)
new_keys.add(w2)
elif len(w1) - len(w2) < 3:
new = self.add_rule(w1, w2, check)
new_keys.update(new)
return new_keys
def _remove_redundancies(self, changes=False):
'''
Reduce left- and right-hand sides of reduction rules
and remove redundant equations (i.e. those for which
lhs == rhs). If `changes` is `True`, return a set
containing the removed keys and a set containing the
added keys
'''
removed = set()
added = set()
rules = self.rules.copy()
for r in rules:
v = self.reduce(r, exclude=r)
w = self.reduce(rules[r])
if v != r:
del self.rules[r]
removed.add(r)
if v > w:
added.add(v)
self.rules[v] = w
elif v < w:
added.add(w)
self.rules[w] = v
else:
self.rules[v] = w
if changes:
return removed, added
return
def make_confluent(self, check=False):
'''
Try to make the system confluent using the Knuth-Bendix
completion algorithm
'''
if self._max_exceeded:
return self._is_confluent
lhs = list(self.rules.keys())
def _overlaps(r1, r2):
len1 = len(r1)
len2 = len(r2)
result = []
for j in range(1, len1 + len2):
if (r1.subword(len1 - j, len1 + len2 - j, strict=False)
== r2.subword(j - len1, j, strict=False)):
a = r1.subword(0, len1-j, strict=False)
a = a*r2.subword(0, j-len1, strict=False)
b = r2.subword(j-len1, j, strict=False)
c = r2.subword(j, len2, strict=False)
c = c*r1.subword(len1 + len2 - j, len1, strict=False)
result.append(a*b*c)
return result
def _process_overlap(w, r1, r2, check):
s = w.eliminate_word(r1, self.rules[r1])
s = self.reduce(s)
t = w.eliminate_word(r2, self.rules[r2])
t = self.reduce(t)
if s != t:
if check:
# system not confluent
return [0]
try:
new_keys = self.add_rule(t, s, check)
return new_keys
except RuntimeError:
return False
return
added = 0
i = 0
while i < len(lhs):
r1 = lhs[i]
i += 1
# j could be i+1 to not
# check each pair twice but lhs
# is extended in the loop and the new
# elements have to be checked with the
# preceding ones. there is probably a better way
# to handle this
j = 0
while j < len(lhs):
r2 = lhs[j]
j += 1
if r1 == r2:
continue
overlaps = _overlaps(r1, r2)
overlaps.extend(_overlaps(r1**-1, r2))
if not overlaps:
continue
for w in overlaps:
new_keys = _process_overlap(w, r1, r2, check)
if new_keys:
if check:
return False
lhs.extend(new_keys)
added += len(new_keys)
elif new_keys == False:
# too many rules were added so the process
# couldn't complete
return self._is_confluent
if added > self.tidyint and not check:
# tidy up
r, a = self._remove_redundancies(changes=True)
added = 0
if r:
# reset i since some elements were removed
i = min([lhs.index(s) for s in r])
lhs = [l for l in lhs if l not in r]
lhs.extend(a)
if r1 in r:
# r1 was removed as redundant
break
self._is_confluent = True
if not check:
self._remove_redundancies()
return True
def _check_confluence(self):
return self.make_confluent(check=True)
def reduce(self, word, exclude=None):
'''
Apply reduction rules to `word` excluding the reduction rule
for the lhs equal to `exclude`
'''
rules = {r: self.rules[r] for r in self.rules if r != exclude}
# the following is essentially `eliminate_words()` code from the
# `FreeGroupElement` class, the only difference being the first
# "if" statement
again = True
new = word
while again:
again = False
for r in rules:
prev = new
if rules[r]**-1 > r**-1:
new = new.eliminate_word(r, rules[r], _all=True, inverse=False)
else:
new = new.eliminate_word(r, rules[r], _all=True)
if new != prev:
again = True
return new
def _compute_inverse_rules(self, rules):
'''
Compute the inverse rules for a given set of rules.
The inverse rules are used in the automaton for word reduction.
Arguments:
rules (dictionary): Rules for which the inverse rules are to computed.
Returns:
Dictionary of inverse_rules.
'''
inverse_rules = {}
for r in rules:
rule_key_inverse = r**-1
rule_value_inverse = (rules[r])**-1
if (rule_value_inverse < rule_key_inverse):
inverse_rules[rule_key_inverse] = rule_value_inverse
else:
inverse_rules[rule_value_inverse] = rule_key_inverse
return inverse_rules
def construct_automaton(self):
'''
Construct the automaton based on the set of reduction rules of the system.
Automata Design:
The accept states of the automaton are the proper prefixes of the left hand side of the rules.
The complete left hand side of the rules are the dead states of the automaton.
'''
self._add_to_automaton(self.rules)
def _add_to_automaton(self, rules):
'''
Add new states and transitions to the automaton.
Summary:
States corresponding to the new rules added to the system are computed and added to the automaton.
Transitions in the previously added states are also modified if necessary.
Arguments:
rules (dictionary) -- Dictionary of the newly added rules.
'''
# Automaton variables
automaton_alphabet = []
proper_prefixes = {}
# compute the inverses of all the new rules added
all_rules = rules
inverse_rules = self._compute_inverse_rules(all_rules)
all_rules.update(inverse_rules)
# Keep track of the accept_states.
accept_states = []
for rule in all_rules:
# The symbols present in the new rules are the symbols to be verified at each state.
# computes the automaton_alphabet, as the transitions solely depend upon the new states.
automaton_alphabet += rule.letter_form_elm
# Compute the proper prefixes for every rule.
proper_prefixes[rule] = []
letter_word_array = [s for s in rule.letter_form_elm]
len_letter_word_array = len(letter_word_array)
for i in range (1, len_letter_word_array):
letter_word_array[i] = letter_word_array[i-1]*letter_word_array[i]
# Add accept states.
elem = letter_word_array[i-1]
if elem not in self.reduction_automaton.states:
self.reduction_automaton.add_state(elem, state_type='a')
accept_states.append(elem)
proper_prefixes[rule] = letter_word_array
# Check for overlaps between dead and accept states.
if rule in accept_states:
self.reduction_automaton.states[rule].state_type = 'd'
self.reduction_automaton.states[rule].rh_rule = all_rules[rule]
accept_states.remove(rule)
# Add dead states
if rule not in self.reduction_automaton.states:
self.reduction_automaton.add_state(rule, state_type='d', rh_rule=all_rules[rule])
automaton_alphabet = set(automaton_alphabet)
# Add new transitions for every state.
for state in self.reduction_automaton.states:
current_state_name = state
current_state_type = self.reduction_automaton.states[state].state_type
# Transitions will be modified only when suffixes of the current_state
# belongs to the proper_prefixes of the new rules.
# The rest are ignored if they cannot lead to a dead state after a finite number of transisitons.
if current_state_type == 's':
for letter in automaton_alphabet:
if letter in self.reduction_automaton.states:
self.reduction_automaton.states[state].add_transition(letter, letter)
else:
self.reduction_automaton.states[state].add_transition(letter, current_state_name)
elif current_state_type == 'a':
# Check if the transition to any new state in possible.
for letter in automaton_alphabet:
_next = current_state_name*letter
while len(_next) and _next not in self.reduction_automaton.states:
_next = _next.subword(1, len(_next))
if not len(_next):
_next = 'start'
self.reduction_automaton.states[state].add_transition(letter, _next)
# Add transitions for new states. All symbols used in the automaton are considered here.
# Ignore this if `reduction_automaton.automaton_alphabet` = `automaton_alphabet`.
if len(self.reduction_automaton.automaton_alphabet) != len(automaton_alphabet):
for state in accept_states:
current_state_name = state
for letter in self.reduction_automaton.automaton_alphabet:
_next = current_state_name*letter
while len(_next) and _next not in self.reduction_automaton.states:
_next = _next.subword(1, len(_next))
if not len(_next):
_next = 'start'
self.reduction_automaton.states[state].add_transition(letter, _next)
def reduce_using_automaton(self, word):
'''
Reduce a word using an automaton.
Summary:
All the symbols of the word are stored in an array and are given as the input to the automaton.
If the automaton reaches a dead state that subword is replaced and the automaton is run from the beginning.
The complete word has to be replaced when the word is read and the automaton reaches a dead state.
So, this process is repeated until the word is read completely and the automaton reaches the accept state.
Arguments:
word (instance of FreeGroupElement) -- Word that needs to be reduced.
'''
# Modify the automaton if new rules are found.
if self._new_rules:
self._add_to_automaton(self._new_rules)
self._new_rules = {}
flag = 1
while flag:
flag = 0
current_state = self.reduction_automaton.states['start']
for i, s in enumerate(word.letter_form_elm):
next_state_name = current_state.transitions[s]
next_state = self.reduction_automaton.states[next_state_name]
if next_state.state_type == 'd':
subst = next_state.rh_rule
word = word.substituted_word(i - len(next_state_name) + 1, i+1, subst)
flag = 1
break
current_state = next_state
return word
|
6a75cca1b52b4f7835f3d2784a2c185705eadf37366c80e2a7560131df7c9aa7 | """
The Schur number S(k) is the largest integer n for which the interval [1,n]
can be partitioned into k sum-free sets.(http://mathworld.wolfram.com/SchurNumber.html)
"""
import math
from sympy.core import S
from sympy.core.basic import Basic
from sympy.core.function import Function
from sympy.core.numbers import Integer
class SchurNumber(Function):
r"""
This function creates a SchurNumber object
which is evaluated for `k \le 5` otherwise only
the lower bound information can be retrieved.
Examples
========
>>> from sympy.combinatorics.schur_number import SchurNumber
Since S(3) = 13, hence the output is a number
>>> SchurNumber(3)
13
We do not know the Schur number for values greater than 5, hence
only the object is returned
>>> SchurNumber(6)
SchurNumber(6)
Now, the lower bound information can be retrieved using lower_bound()
method
>>> SchurNumber(6).lower_bound()
536
"""
@classmethod
def eval(cls, k):
if k.is_Number:
if k is S.Infinity:
return S.Infinity
if k.is_zero:
return S.Zero
if not k.is_integer or k.is_negative:
raise ValueError("k should be a positive integer")
first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160}
if k <= 5:
return Integer(first_known_schur_numbers[k])
def lower_bound(self):
f_ = self.args[0]
# Improved lower bounds known for S(6) and S(7)
if f_ == 6:
return Integer(536)
if f_ == 7:
return Integer(1680)
# For other cases, use general expression
if f_.is_Integer:
return 3*self.func(f_ - 1).lower_bound() - 1
return (3**f_ - 1)/2
def _schur_subsets_number(n):
if n is S.Infinity:
raise ValueError("Input must be finite")
if n <= 0:
raise ValueError("n must be a non-zero positive integer.")
elif n <= 3:
min_k = 1
else:
min_k = math.ceil(math.log(2*n + 1, 3))
return Integer(min_k)
def schur_partition(n):
"""
This function returns the partition in the minimum number of sum-free subsets
according to the lower bound given by the Schur Number.
Parameters
==========
n: a number
n is the upper limit of the range [1, n] for which we need to find and
return the minimum number of free subsets according to the lower bound
of schur number
Returns
=======
List of lists
List of the minimum number of sum-free subsets
Notes
=====
It is possible for some n to make the partition into less
subsets since the only known Schur numbers are:
S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44.
e.g for n = 44 the lower bound from the function above is 5 subsets but it has been proven
that can be done with 4 subsets.
Examples
========
For n = 1, 2, 3 the answer is the set itself
>>> from sympy.combinatorics.schur_number import schur_partition
>>> schur_partition(2)
[[1, 2]]
For n > 3, the answer is the minimum number of sum-free subsets:
>>> schur_partition(5)
[[3, 2], [5], [1, 4]]
>>> schur_partition(8)
[[3, 2], [6, 5, 8], [1, 4, 7]]
"""
if isinstance(n, Basic) and not n.is_Number:
raise ValueError("Input value must be a number")
number_of_subsets = _schur_subsets_number(n)
if n == 1:
sum_free_subsets = [[1]]
elif n == 2:
sum_free_subsets = [[1, 2]]
elif n == 3:
sum_free_subsets = [[1, 2, 3]]
else:
sum_free_subsets = [[1, 4], [2, 3]]
while len(sum_free_subsets) < number_of_subsets:
sum_free_subsets = _generate_next_list(sum_free_subsets, n)
missed_elements = [3*k + 1 for k in range(len(sum_free_subsets), (n-1)//3 + 1)]
sum_free_subsets[-1] += missed_elements
return sum_free_subsets
def _generate_next_list(current_list, n):
new_list = []
for item in current_list:
temp_1 = [number*3 for number in item if number*3 <= n]
temp_2 = [number*3 - 1 for number in item if number*3 - 1 <= n]
new_item = temp_1 + temp_2
new_list.append(new_item)
last_list = [3*k + 1 for k in range(len(current_list)+1) if 3*k + 1 <= n]
new_list.append(last_list)
current_list = new_list
return current_list
|
17c5eb502dc27fcb6431cb1d2c7c4ef784a16ee159778c6c50e6b44dfb3a8997 | from sympy.combinatorics.permutations import Permutation, _af_rmul, \
_af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
_orbit_transversal
from sympy.combinatorics.util import _distribute_gens_by_base, \
_orbits_transversals_from_bsgs
"""
References for tensor canonicalization:
[1] R. Portugal "Algorithmic simplification of tensor expressions",
J. Phys. A 32 (1999) 7779-7789
[2] R. Portugal, B.F. Svaiter "Group-theoretic Approach for Symbolic
Tensor Manipulation: I. Free Indices"
arXiv:math-ph/0107031v1
[3] L.R.U. Manssur, R. Portugal "Group-theoretic Approach for Symbolic
Tensor Manipulation: II. Dummy Indices"
arXiv:math-ph/0107032v1
[4] xperm.c part of XPerm written by J. M. Martin-Garcia
http://www.xact.es/index.html
"""
def dummy_sgs(dummies, sym, n):
"""
Return the strong generators for dummy indices.
Parameters
==========
dummies : List of dummy indices.
`dummies[2k], dummies[2k+1]` are paired indices.
In base form, the dummy indices are always in
consecutive positions.
sym : symmetry under interchange of contracted dummies::
* None no symmetry
* 0 commuting
* 1 anticommuting
n : number of indices
Examples
========
>>> from sympy.combinatorics.tensor_can import dummy_sgs
>>> dummy_sgs(list(range(2, 8)), 0, 8)
[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
[0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
"""
if len(dummies) > n:
raise ValueError("List too large")
res = []
# exchange of contravariant and covariant indices
if sym is not None:
for j in dummies[::2]:
a = list(range(n + 2))
if sym == 1:
a[n] = n + 1
a[n + 1] = n
a[j], a[j + 1] = a[j + 1], a[j]
res.append(a)
# rename dummy indices
for j in dummies[:-3:2]:
a = list(range(n + 2))
a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
res.append(a)
return res
def _min_dummies(dummies, sym, indices):
"""
Return list of minima of the orbits of indices in group of dummies.
See ``double_coset_can_rep`` for the description of ``dummies`` and ``sym``.
``indices`` is the initial list of dummy indices.
Examples
========
>>> from sympy.combinatorics.tensor_can import _min_dummies
>>> _min_dummies([list(range(2, 8))], [0], list(range(10)))
[0, 1, 2, 2, 2, 2, 2, 2, 8, 9]
"""
num_types = len(sym)
m = [min(dx) if dx else None for dx in dummies]
res = indices[:]
for i in range(num_types):
for c, i in enumerate(indices):
for j in range(num_types):
if i in dummies[j]:
res[c] = m[j]
break
return res
def _trace_S(s, j, b, S_cosets):
"""
Return the representative h satisfying s[h[b]] == j
If there is not such a representative return None
"""
for h in S_cosets[b]:
if s[h[b]] == j:
return h
return None
def _trace_D(gj, p_i, Dxtrav):
"""
Return the representative h satisfying h[gj] == p_i
If there is not such a representative return None
"""
for h in Dxtrav:
if h[gj] == p_i:
return h
return None
def _dumx_remove(dumx, dumx_flat, p0):
"""
remove p0 from dumx
"""
res = []
for dx in dumx:
if p0 not in dx:
res.append(dx)
continue
k = dx.index(p0)
if k % 2 == 0:
p0_paired = dx[k + 1]
else:
p0_paired = dx[k - 1]
dx.remove(p0)
dx.remove(p0_paired)
dumx_flat.remove(p0)
dumx_flat.remove(p0_paired)
res.append(dx)
def transversal2coset(size, base, transversal):
a = []
j = 0
for i in range(size):
if i in base:
a.append(sorted(transversal[j].values()))
j += 1
else:
a.append([list(range(size))])
j = len(a) - 1
while a[j] == [list(range(size))]:
j -= 1
return a[:j + 1]
def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g):
r"""
Butler-Portugal algorithm for tensor canonicalization with dummy indices.
Parameters
==========
dummies
list of lists of dummy indices,
one list for each type of index;
the dummy indices are put in order contravariant, covariant
[d0, -d0, d1, -d1, ...].
sym
list of the symmetries of the index metric for each type.
possible symmetries of the metrics
* 0 symmetric
* 1 antisymmetric
* None no symmetry
b_S
base of a minimal slot symmetry BSGS.
sgens
generators of the slot symmetry BSGS.
S_transversals
transversals for the slot BSGS.
g
permutation representing the tensor.
Returns
=======
Return 0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Notes
=====
A tensor with dummy indices can be represented in a number
of equivalent ways which typically grows exponentially with
the number of indices. To be able to establish if two tensors
with many indices are equal becomes computationally very slow
in absence of an efficient algorithm.
The Butler-Portugal algorithm [3] is an efficient algorithm to
put tensors in canonical form, solving the above problem.
Portugal observed that a tensor can be represented by a permutation,
and that the class of tensors equivalent to it under slot and dummy
symmetries is equivalent to the double coset `D*g*S`
(Note: in this documentation we use the conventions for multiplication
of permutations p, q with (p*q)(i) = p[q[i]] which is opposite
to the one used in the Permutation class)
Using the algorithm by Butler to find a representative of the
double coset one can find a canonical form for the tensor.
To see this correspondence,
let `g` be a permutation in array form; a tensor with indices `ind`
(the indices including both the contravariant and the covariant ones)
can be written as
`t = T(ind[g[0]], \dots, ind[g[n-1]])`,
where `n = len(ind)`;
`g` has size `n + 2`, the last two indices for the sign of the tensor
(trick introduced in [4]).
A slot symmetry transformation `s` is a permutation acting on the slots
`t \rightarrow T(ind[(g*s)[0]], \dots, ind[(g*s)[n-1]])`
A dummy symmetry transformation acts on `ind`
`t \rightarrow T(ind[(d*g)[0]], \dots, ind[(d*g)[n-1]])`
Being interested only in the transformations of the tensor under
these symmetries, one can represent the tensor by `g`, which transforms
as
`g -> d*g*s`, so it belongs to the coset `D*g*S`, or in other words
to the set of all permutations allowed by the slot and dummy symmetries.
Let us explain the conventions by an example.
Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
and symmetric metric, find the tensor equivalent to it which
is the lowest under the ordering of indices:
lexicographic ordering `d1, d2, d3` and then contravariant
before covariant index; that is the canonical form of the tensor.
The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}`
obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`.
To convert this problem in the input for this function,
use the following ordering of the index names
(- for covariant for short) `d1, -d1, d2, -d2, d3, -d3`
`T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]`
where the last two indices are for the sign
`sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]`
sgens[0] is the slot symmetry `-(0, 2)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
sgens[1] is the slot symmetry `-(0, 4)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
The dummy symmetry group D is generated by the strong base generators
`[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]`
where the first three interchange covariant and contravariant
positions of the same index (d1 <-> -d1) and the last two interchange
the dummy indices themselves (d1 <-> d2).
The dummy symmetry acts from the left
`d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 \leftrightarrow -d1`
`T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}`
`g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)`
which differs from `_af_rmul(g, d)`.
The slot symmetry acts from the right
`s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign
`T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}`
`g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)`
Example in which the tensor is zero, same slot symmetries as above:
`T^{d2}{}_{d1 d3}{}^{d1 d3}{}_{d2}`
`= -T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,4)`;
`= T_{d3 d1}{}^{d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,2)`;
`= T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` symmetric metric;
`= 0` since two of these lines have tensors differ only for the sign.
The double coset D*g*S consists of permutations `h = d*g*s` corresponding
to equivalent tensors; if there are two `h` which are the same apart
from the sign, return zero; otherwise
choose as representative the tensor with indices
ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]`
that is ``rep = min(D*g*S) = min([d*g*s for d in D for s in S])``
The indices are fixed one by one; first choose the lowest index
for slot 0, then the lowest remaining index for slot 1, etc.
Doing this one obtains a chain of stabilizers
`S \rightarrow S_{b0} \rightarrow S_{b0,b1} \rightarrow \dots` and
`D \rightarrow D_{p0} \rightarrow D_{p0,p1} \rightarrow \dots`
where ``[b0, b1, ...] = range(b)`` is a base of the symmetric group;
the strong base `b_S` of S is an ordered sublist of it;
therefore it is sufficient to compute once the
strong base generators of S using the Schreier-Sims algorithm;
the stabilizers of the strong base generators are the
strong base generators of the stabilizer subgroup.
``dbase = [p0, p1, ...]`` is not in general in lexicographic order,
so that one must recompute the strong base generators each time;
however this is trivial, there is no need to use the Schreier-Sims
algorithm for D.
The algorithm keeps a TAB of elements `(s_i, d_i, h_i)`
where `h_i = d_i \times g \times s_i` satisfying `h_i[j] = p_j` for `0 \le j < i`
starting from `s_0 = id, d_0 = id, h_0 = g`.
The equations `h_0[0] = p_0, h_1[1] = p_1, \dots` are solved in this order,
choosing each time the lowest possible value of p_i
For `j < i`
`d_i*g*s_i*S_{b_0, \dots, b_{i-1}}*b_j = D_{p_0, \dots, p_{i-1}}*p_j`
so that for dx in `D_{p_0,\dots,p_{i-1}}` and sx in
`S_{base[0], \dots, base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j`
Search for dx, sx such that this equation holds for `j = i`;
it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j`
`sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})`
`dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})`
`s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})`
`d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i`
`h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i`
`h_n*b_j = p_j` for all j, so that `h_n` is the solution.
Add the found `(s, d, h)` to TAB1.
At the end of the iteration sort TAB1 with respect to the `h`;
if there are two consecutive `h` in TAB1 which differ only for the
sign, the tensor is zero, so return 0;
if there are two consecutive `h` which are equal, keep only one.
Then stabilize the slot generators under `i` and the dummy generators
under `p_i`.
Assign `TAB = TAB1` at the end of the iteration step.
At the end `TAB` contains a unique `(s, d, h)`, since all the slots
of the tensor `h` have been fixed to have the minimum value according
to the symmetries. The algorithm returns `h`.
It is important that the slot BSGS has lexicographic minimal base,
otherwise there is an `i` which does not belong to the slot base
for which `p_i` is fixed by the dummy symmetry only, while `i`
is not invariant from the slot stabilizer, so `p_i` is not in
general the minimal value.
This algorithm differs slightly from the original algorithm [3]:
the canonical form is minimal lexicographically, and
the BSGS has minimal base under lexicographic order.
Equal tensors `h` are eliminated from TAB.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
>>> base = [0, 2]
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
>>> transversals = get_transversals(base, gens)
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
[0, 1, 2, 3, 4, 5, 7, 6]
>>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
0
"""
size = g.size
g = g.array_form
num_dummies = size - 2
indices = list(range(num_dummies))
all_metrics_with_sym = not any(_ is None for _ in sym)
num_types = len(sym)
dumx = dummies[:]
dumx_flat = []
for dx in dumx:
dumx_flat.extend(dx)
b_S = b_S[:]
sgensx = [h._array_form for h in sgens]
if b_S:
S_transversals = transversal2coset(size, b_S, S_transversals)
# strong generating set for D
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
idn = list(range(size))
# TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
# for short, in the following d*g*s means _af_rmuln(d,g,s)
TAB = [(idn, idn, g)]
for i in range(size - 2):
b = i
testb = b in b_S and sgensx
if testb:
sgensx1 = [_af_new(_) for _ in sgensx]
deltab = _orbit(size, sgensx1, b)
else:
deltab = {b}
# p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB)
if all_metrics_with_sym:
md = _min_dummies(dumx, sym, indices)
else:
md = [min(_orbit(size, [_af_new(
ddx) for ddx in dsgsx], ii)) for ii in range(size - 2)]
p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB])
dsgsx1 = [_af_new(_) for _ in dsgsx]
Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \
if dsgsx else None
if Dxtrav:
Dxtrav = [_af_invert(x) for x in Dxtrav]
# compute the orbit of p_i
for ii in range(num_types):
if p_i in dumx[ii]:
# the orbit is made by all the indices in dum[ii]
if sym[ii] is not None:
deltap = dumx[ii]
else:
# the orbit is made by all the even indices if p_i
# is even, by all the odd indices if p_i is odd
p_i_index = dumx[ii].index(p_i) % 2
deltap = dumx[ii][p_i_index::2]
break
else:
deltap = [p_i]
TAB1 = []
while TAB:
s, d, h = TAB.pop()
if min([md[h[x]] for x in deltab]) != p_i:
continue
deltab1 = [x for x in deltab if md[h[x]] == p_i]
# NEXT = s*deltab1 intersection (d*g)**-1*deltap
dg = _af_rmul(d, g)
dginv = _af_invert(dg)
sdeltab = [s[x] for x in deltab1]
gdeltap = [dginv[x] for x in deltap]
NEXT = [x for x in sdeltab if x in gdeltap]
# d, s satisfy
# d*g*s*base[i-1] = p_{i-1}; using the stabilizers
# d*g*s*S_{base[0],...,base[i-1]}*base[i-1] =
# D_{p_0,...,p_{i-1}}*p_{i-1}
# so that to find d1, s1 satisfying d1*g*s1*b = p_i
# one can look for dx in D_{p_0,...,p_{i-1}} and
# sx in S_{base[0],...,base[i-1]}
# d1 = dx*d; s1 = s*sx
# d1*g*s1*b = dx*d*g*s*sx*b = p_i
for j in NEXT:
if testb:
# solve s1*b = j with s1 = s*sx for some element sx
# of the stabilizer of ..., base[i-1]
# sx*b = s**-1*j; sx = _trace_S(s, j,...)
# s1 = s*trace_S(s**-1*j,...)
s1 = _trace_S(s, j, b, S_transversals)
if not s1:
continue
else:
s1 = [s[ix] for ix in s1]
else:
s1 = s
# assert s1[b] == j # invariant
# solve d1*g*j = p_i with d1 = dx*d for some element dg
# of the stabilizer of ..., p_{i-1}
# dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...)
# d1 = trace_D(d*g*j,...)**-1*d
# to save an inversion in the inner loop; notice we did
# Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop
if Dxtrav:
d1 = _trace_D(dg[j], p_i, Dxtrav)
if not d1:
continue
else:
if p_i != dg[j]:
continue
d1 = idn
assert d1[dg[j]] == p_i # invariant
d1 = [d1[ix] for ix in d]
h1 = [d1[g[ix]] for ix in s1]
# assert h1[b] == p_i # invariant
TAB1.append((s1, d1, h1))
# if TAB contains equal permutations, keep only one of them;
# if TAB contains equal permutations up to the sign, return 0
TAB1.sort(key=lambda x: x[-1])
prev = [0] * size
while TAB1:
s, d, h = TAB1.pop()
if h[:-2] == prev[:-2]:
if h[-1] != prev[-1]:
return 0
else:
TAB.append((s, d, h))
prev = h
# stabilize the SGS
sgensx = [h for h in sgensx if h[b] == b]
if b in b_S:
b_S.remove(b)
_dumx_remove(dumx, dumx_flat, p_i)
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
return TAB[0][-1]
def canonical_free(base, gens, g, num_free):
"""
Canonicalization of a tensor with respect to free indices
choosing the minimum with respect to lexicographical ordering
in the free indices.
Explanation
===========
``base``, ``gens`` BSGS for slot permutation group
``g`` permutation representing the tensor
``num_free`` number of free indices
The indices must be ordered with first the free indices
See explanation in double_coset_can_rep
The algorithm is a variation of the one given in [2].
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import canonical_free
>>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]]
>>> gens = [Permutation(h) for h in gens]
>>> base = [0, 2]
>>> g = Permutation([2, 1, 0, 3, 4, 5])
>>> canonical_free(base, gens, g, 4)
[0, 3, 1, 2, 5, 4]
Consider the product of Riemann tensors
``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}``
The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]``
The permutation corresponding to the tensor is
``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]``
In particular ``a`` is position ``0``, ``b`` is in position ``9``.
Use the slot symmetries to get `T` is a form which is the minimal
in lexicographic order in the free indices ``a`` and ``b``, e.g.
``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to
``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]``
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens
>>> base, gens = riemann_bsgs
>>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0)
>>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9])
>>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2)
[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]
"""
g = g.array_form
size = len(g)
if not base:
return g[:]
transversals = get_transversals(base, gens)
for x in sorted(g[:-2]):
if x not in base:
base.append(x)
h = g
for i, transv in enumerate(transversals):
h_i = [size]*num_free
# find the element s in transversals[i] such that
# _af_rmul(h, s) has its free elements with the lowest position in h
s = None
for sk in transv.values():
h1 = _af_rmul(h, sk)
hi = [h1.index(ix) for ix in range(num_free)]
if hi < h_i:
h_i = hi
s = sk
if s:
h = _af_rmul(h, s)
return h
def _get_map_slots(size, fixed_slots):
res = list(range(size))
pos = 0
for i in range(size):
if i in fixed_slots:
continue
res[i] = pos
pos += 1
return res
def _lift_sgens(size, fixed_slots, free, s):
a = []
j = k = 0
fd = list(zip(fixed_slots, free))
fd = [y for x, y in sorted(fd)]
num_free = len(free)
for i in range(size):
if i in fixed_slots:
a.append(fd[k])
k += 1
else:
a.append(s[j] + num_free)
j += 1
return a
def canonicalize(g, dummies, msym, *v):
"""
canonicalize tensor formed by tensors
Parameters
==========
g : permutation representing the tensor
dummies : list representing the dummy indices
it can be a list of dummy indices of the same type
or a list of lists of dummy indices, one list for each
type of index;
the dummy indices must come after the free indices,
and put in order contravariant, covariant
[d0, -d0, d1,-d1,...]
msym : symmetry of the metric(s)
it can be an integer or a list;
in the first case it is the symmetry of the dummy index metric;
in the second case it is the list of the symmetries of the
index metric for each type
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i : BSGS for tensors of this type.
The BSGS should have minimal base under lexicographic ordering;
if not, an attempt is made do get the minimal BSGS;
in case of failure,
canonicalize_naive is used, which is much slower.
n_i : number of tensors of type `i`.
sym_i : symmetry under exchange of component tensors of type `i`.
Both for msym and sym_i the cases are
* None no symmetry
* 0 commuting
* 1 anticommuting
Returns
=======
0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Algorithm
=========
First one uses canonical_free to get the minimum tensor under
lexicographic order, using only the slot symmetries.
If the component tensors have not minimal BSGS, it is attempted
to find it; if the attempt fails canonicalize_naive
is used instead.
Compute the residual slot symmetry keeping fixed the free indices
using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing
the free indices.
Examples
========
one type of index with commuting metric;
`A_{a b}` and `B_{a b}` antisymmetric and commuting
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
g = [1, 3, 0, 5, 4, 2, 6, 7]
`T_c = 0`
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
same as above, but with `B_{a b}` anticommuting
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
can = [0,2,1,4,3,5,7,6]
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
both with commuting metric
`f^{a b c}` antisymmetric, commuting
`A_{m a}` no symmetry, commuting
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
The canonical tensor is
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
"""
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if msym not in (0, 1, None):
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in (0, 1, None) for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for base_i, gens_i, n_i, sym_i in v:
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies:
flat_dummies.extend(dumx)
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
raise ValueError('dummies is not valid')
# slot symmetry of the tensor
size1, sbase, sgens = gens_products(*v1)
if size != size1:
raise ValueError(
'g has size %d, generators have size %d' % (size, size1))
free = [i for i in range(size - 2) if i not in flat_dummies]
num_free = len(free)
# g1 minimal tensor under slot symmetry
g1 = canonical_free(sbase, sgens, g, num_free)
if not flat_dummies:
return g1
# save the sign of g1
sign = 0 if g1[-1] == size - 1 else 1
# the free indices are kept fixed.
# Determine free_i, the list of slots of tensors which are fixed
# since they are occupied by free indices, which are fixed.
start = 0
for i, (base_i, gens_i, n_i, sym_i) in enumerate(v):
free_i = []
len_tens = gens_i[0].size - 2
# for each component tensor get a list od fixed islots
for j in range(n_i):
# get the elements corresponding to the component tensor
h = g1[start:(start + len_tens)]
fr = []
# get the positions of the fixed elements in h
for k in free:
if k in h:
fr.append(h.index(k))
free_i.append(fr)
start += len_tens
v1[i] = (base_i, gens_i, free_i, sym_i)
# BSGS of the tensor with fixed free indices
# if tensor_gens fails in gens_product, use canonicalize_naive
size, sbase, sgens = gens_products(*v1)
# reduce the permutations getting rid of the free indices
pos_free = [g1.index(x) for x in range(num_free)]
size_red = size - num_free
g1_red = [x - num_free for x in g1 if x in flat_dummies]
if sign:
g1_red.extend([size_red - 1, size_red - 2])
else:
g1_red.extend([size_red - 2, size_red - 1])
map_slots = _get_map_slots(size, pos_free)
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
dummies_red = [[x - num_free for x in y] for y in dummies]
transv_red = get_transversals(sbase_red, sgens_red)
g1_red = _af_new(g1_red)
g2 = double_coset_can_rep(
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
if g2 == 0:
return 0
# lift to the case with the free indices
g3 = _lift_sgens(size, pos_free, free, g2)
return g3
def perm_af_direct_product(gens1, gens2, signed=True):
"""
Direct products of the generators gens1 and gens2.
Examples
========
>>> from sympy.combinatorics.tensor_can import perm_af_direct_product
>>> gens1 = [[1, 0, 2, 3], [0, 1, 3, 2]]
>>> gens2 = [[1, 0]]
>>> perm_af_direct_product(gens1, gens2, False)
[[1, 0, 2, 3, 4, 5], [0, 1, 3, 2, 4, 5], [0, 1, 2, 3, 5, 4]]
>>> gens1 = [[1, 0, 2, 3, 5, 4], [0, 1, 3, 2, 4, 5]]
>>> gens2 = [[1, 0, 2, 3]]
>>> perm_af_direct_product(gens1, gens2, True)
[[1, 0, 2, 3, 4, 5, 7, 6], [0, 1, 3, 2, 4, 5, 6, 7], [0, 1, 2, 3, 5, 4, 6, 7]]
"""
gens1 = [list(x) for x in gens1]
gens2 = [list(x) for x in gens2]
s = 2 if signed else 0
n1 = len(gens1[0]) - s
n2 = len(gens2[0]) - s
start = list(range(n1))
end = list(range(n1, n1 + n2))
if signed:
gens1 = [gen[:-2] + end + [gen[-2] + n2, gen[-1] + n2]
for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
else:
gens1 = [gen + end for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
res = gens1 + gens2
return res
def bsgs_direct_product(base1, gens1, base2, gens2, signed=True):
"""
Direct product of two BSGS.
Parameters
==========
base1 : base of the first BSGS.
gens1 : strong generating sequence of the first BSGS.
base2, gens2 : similarly for the second BSGS.
signed : flag for signed permutations.
Examples
========
>>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs, bsgs_direct_product)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> bsgs_direct_product(base1, gens1, base2, gens2)
([1], [(4)(1 2)])
"""
s = 2 if signed else 0
n1 = gens1[0].size - s
base = list(base1)
base += [x + n1 for x in base2]
gens1 = [h._array_form for h in gens1]
gens2 = [h._array_form for h in gens2]
gens = perm_af_direct_product(gens1, gens2, signed)
size = len(gens[0])
id_af = list(range(size))
gens = [h for h in gens if h != id_af]
if not gens:
gens = [id_af]
return base, [_af_new(h) for h in gens]
def get_symmetric_group_sgs(n, antisym=False):
"""
Return base, gens of the minimal BSGS for (anti)symmetric tensor
Parameters
==========
``n``: rank of the tensor
``antisym`` : bool
``antisym = False`` symmetric tensor
``antisym = True`` antisymmetric tensor
Examples
========
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
>>> get_symmetric_group_sgs(3)
([0, 1], [(4)(0 1), (4)(1 2)])
"""
if n == 1:
return [], [_af_new(list(range(3)))]
gens = [Permutation(n - 1)(i, i + 1)._array_form for i in range(n - 1)]
if antisym == 0:
gens = [x + [n, n + 1] for x in gens]
else:
gens = [x + [n + 1, n] for x in gens]
base = list(range(n - 1))
return base, [_af_new(h) for h in gens]
riemann_bsgs = [0, 2], [Permutation(0, 1)(4, 5), Permutation(2, 3)(4, 5),
Permutation(5)(0, 2)(1, 3)]
def get_transversals(base, gens):
"""
Return transversals for the group with BSGS base, gens
"""
if not base:
return []
stabs = _distribute_gens_by_base(base, gens)
orbits, transversals = _orbits_transversals_from_bsgs(base, stabs)
transversals = [{x: h._array_form for x, h in y.items()} for y in
transversals]
return transversals
def _is_minimal_bsgs(base, gens):
"""
Check if the BSGS has minimal base under lexigographic order.
base, gens BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, _is_minimal_bsgs
>>> _is_minimal_bsgs(*riemann_bsgs)
True
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> _is_minimal_bsgs(*riemann_bsgs1)
False
"""
base1 = []
sgs1 = gens[:]
size = gens[0].size
for i in range(size):
if not all(h._array_form[i] == i for h in sgs1):
base1.append(i)
sgs1 = [h for h in sgs1 if h._array_form[i] == i]
return base1 == base
def get_minimal_bsgs(base, gens):
"""
Compute a minimal GSGS
base, gens BSGS
If base, gens is a minimal BSGS return it; else return a minimal BSGS
if it fails in finding one, it returns None
TODO: use baseswap in the case in which if it fails in finding a
minimal BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import get_minimal_bsgs
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> get_minimal_bsgs(*riemann_bsgs1)
([0, 2], [(0 1)(4 5), (5)(0 2)(1 3), (2 3)(4 5)])
"""
G = PermutationGroup(gens)
base, gens = G.schreier_sims_incremental()
if not _is_minimal_bsgs(base, gens):
return None
return base, gens
def tensor_gens(base, gens, list_free_indices, sym=0):
"""
Returns size, res_base, res_gens BSGS for n tensors of the
same type.
Explanation
===========
base, gens BSGS for tensors of this type
list_free_indices list of the slots occupied by fixed indices
for each of the tensors
sym symmetry under commutation of two tensors
sym None no symmetry
sym 0 commuting
sym 1 anticommuting
Examples
========
>>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
two symmetric tensors with 3 indices without free indices
>>> base, gens = get_symmetric_group_sgs(3)
>>> tensor_gens(base, gens, [[], []])
(8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])
two symmetric tensors with 3 indices with free indices in slot 1 and 0
>>> tensor_gens(base, gens, [[1], [0]])
(8, [0, 4], [(7)(0 2), (7)(4 5)])
four symmetric tensors with 3 indices, two of which with free indices
"""
def _get_bsgs(G, base, gens, free_indices):
"""
return the BSGS for G.pointwise_stabilizer(free_indices)
"""
if not free_indices:
return base[:], gens[:]
else:
H = G.pointwise_stabilizer(free_indices)
base, sgs = H.schreier_sims_incremental()
return base, sgs
# if not base there is no slot symmetry for the component tensors
# if list_free_indices.count([]) < 2 there is no commutation symmetry
# so there is no resulting slot symmetry
if not base and list_free_indices.count([]) < 2:
n = len(list_free_indices)
size = gens[0].size
size = n * (size - 2) + 2
return size, [], [_af_new(list(range(size)))]
# if any(list_free_indices) one needs to compute the pointwise
# stabilizer, so G is needed
if any(list_free_indices):
G = PermutationGroup(gens)
else:
G = None
# no_free list of lists of indices for component tensors without fixed
# indices
no_free = []
size = gens[0].size
id_af = list(range(size))
num_indices = size - 2
if not list_free_indices[0]:
no_free.append(list(range(num_indices)))
res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
for i in range(1, len(list_free_indices)):
base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens,
base1, gens1, 1)
if not list_free_indices[i]:
no_free.append(list(range(size - 2, size - 2 + num_indices)))
size += num_indices
nr = size - 2
res_gens = [h for h in res_gens if h._array_form != id_af]
# if sym there are no commuting tensors stop here
if sym is None or not no_free:
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
# if the component tensors have moinimal BSGS, so is their direct
# product P; the slot symmetry group is S = P*C, where C is the group
# to (anti)commute the component tensors with no free indices
# a stabilizer has the property S_i = P_i*C_i;
# the BSGS of P*C has SGS_P + SGS_C and the base is
# the ordered union of the bases of P and C.
# If P has minimal BSGS, so has S with this base.
base_comm = []
for i in range(len(no_free) - 1):
ind1 = no_free[i]
ind2 = no_free[i + 1]
a = list(range(ind1[0]))
a.extend(ind2)
a.extend(ind1)
base_comm.append(ind1[0])
a.extend(list(range(ind2[-1] + 1, nr)))
if sym == 0:
a.extend([nr, nr + 1])
else:
a.extend([nr + 1, nr])
res_gens.append(_af_new(a))
res_base = list(res_base)
# each base is ordered; order the union of the two bases
for i in base_comm:
if i not in res_base:
res_base.append(i)
res_base.sort()
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
def gens_products(*v):
"""
Returns size, res_base, res_gens BSGS for n tensors of different types.
Explanation
===========
v is a sequence of (base_i, gens_i, free_i, sym_i)
where
base_i, gens_i BSGS of tensor of type `i`
free_i list of the fixed slots for each of the tensors
of type `i`; if there are `n_i` tensors of type `i`
and none of them have fixed slots, `free = [[]]*n_i`
sym 0 (1) if the tensors of type `i` (anti)commute among themselves
Examples
========
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, gens_products
>>> base, gens = get_symmetric_group_sgs(2)
>>> gens_products((base, gens, [[], []], 0))
(6, [0, 2], [(5)(0 1), (5)(2 3), (5)(0 2)(1 3)])
>>> gens_products((base, gens, [[1], []], 0))
(6, [2], [(5)(2 3)])
"""
res_size, res_base, res_gens = tensor_gens(*v[0])
for i in range(1, len(v)):
size, base, gens = tensor_gens(*v[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens, base,
gens, 1)
res_size = res_gens[0].size
id_af = list(range(res_size))
res_gens = [h for h in res_gens if h != id_af]
if not res_gens:
res_gens = [id_af]
return res_size, res_base, res_gens
|
c856833c519ee58424b8f4e5875406e3885d828f612bfb540ed34b6a5b59a171 | from sympy.core import Basic, Dict, sympify, Tuple
from sympy.core.numbers import Integer
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.numbers import bell
from sympy.matrices import zeros
from sympy.sets.sets import FiniteSet, Union
from sympy.utilities.iterables import flatten, group
from sympy.utilities.misc import as_int
from collections import defaultdict
class Partition(FiniteSet):
"""
This class represents an abstract partition.
A partition is a set of disjoint sets whose union equals a given set.
See Also
========
sympy.utilities.iterables.partitions,
sympy.utilities.iterables.multiset_partitions
"""
_rank = None
_partition = None
def __new__(cls, *partition):
"""
Generates a new partition object.
This method also verifies if the arguments passed are
valid and raises a ValueError if they are not.
Examples
========
Creating Partition from Python lists:
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3])
>>> a
Partition({3}, {1, 2})
>>> a.partition
[[1, 2], [3]]
>>> len(a)
2
>>> a.members
(1, 2, 3)
Creating Partition from Python sets:
>>> Partition({1, 2, 3}, {4, 5})
Partition({4, 5}, {1, 2, 3})
Creating Partition from SymPy finite sets:
>>> from sympy import FiniteSet
>>> a = FiniteSet(1, 2, 3)
>>> b = FiniteSet(4, 5)
>>> Partition(a, b)
Partition({4, 5}, {1, 2, 3})
"""
args = []
dups = False
for arg in partition:
if isinstance(arg, list):
as_set = set(arg)
if len(as_set) < len(arg):
dups = True
break # error below
arg = as_set
args.append(_sympify(arg))
if not all(isinstance(part, FiniteSet) for part in args):
raise ValueError(
"Each argument to Partition should be " \
"a list, set, or a FiniteSet")
# sort so we have a canonical reference for RGS
U = Union(*args)
if dups or len(U) < sum(len(arg) for arg in args):
raise ValueError("Partition contained duplicate elements.")
obj = FiniteSet.__new__(cls, *args)
obj.members = tuple(U)
obj.size = len(U)
return obj
def sort_key(self, order=None):
"""Return a canonical key that can be used for sorting.
Ordering is based on the size and sorted elements of the partition
and ties are broken with the rank.
Examples
========
>>> from sympy import default_sort_key
>>> from sympy.combinatorics import Partition
>>> from sympy.abc import x
>>> a = Partition([1, 2])
>>> b = Partition([3, 4])
>>> c = Partition([1, x])
>>> d = Partition(list(range(4)))
>>> l = [d, b, a + 1, a, c]
>>> l.sort(key=default_sort_key); l
[Partition({1, 2}), Partition({1}, {2}), Partition({1, x}), Partition({3, 4}), Partition({0, 1, 2, 3})]
"""
if order is None:
members = self.members
else:
members = tuple(sorted(self.members,
key=lambda w: default_sort_key(w, order)))
return tuple(map(default_sort_key, (self.size, members, self.rank)))
@property
def partition(self):
"""Return partition as a sorted list of lists.
Examples
========
>>> from sympy.combinatorics import Partition
>>> Partition([1], [2, 3]).partition
[[1], [2, 3]]
"""
if self._partition is None:
self._partition = sorted([sorted(p, key=default_sort_key)
for p in self.args])
return self._partition
def __add__(self, other):
"""
Return permutation whose rank is ``other`` greater than current rank,
(mod the maximum rank for the set).
Examples
========
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3])
>>> a.rank
1
>>> (a + 1).rank
2
>>> (a + 100).rank
1
"""
other = as_int(other)
offset = self.rank + other
result = RGS_unrank((offset) %
RGS_enum(self.size),
self.size)
return Partition.from_rgs(result, self.members)
def __sub__(self, other):
"""
Return permutation whose rank is ``other`` less than current rank,
(mod the maximum rank for the set).
Examples
========
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3])
>>> a.rank
1
>>> (a - 1).rank
0
>>> (a - 100).rank
1
"""
return self.__add__(-other)
def __le__(self, other):
"""
Checks if a partition is less than or equal to
the other based on rank.
Examples
========
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3, 4, 5])
>>> b = Partition([1], [2, 3], [4], [5])
>>> a.rank, b.rank
(9, 34)
>>> a <= a
True
>>> a <= b
True
"""
return self.sort_key() <= sympify(other).sort_key()
def __lt__(self, other):
"""
Checks if a partition is less than the other.
Examples
========
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3, 4, 5])
>>> b = Partition([1], [2, 3], [4], [5])
>>> a.rank, b.rank
(9, 34)
>>> a < b
True
"""
return self.sort_key() < sympify(other).sort_key()
@property
def rank(self):
"""
Gets the rank of a partition.
Examples
========
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.rank
13
"""
if self._rank is not None:
return self._rank
self._rank = RGS_rank(self.RGS)
return self._rank
@property
def RGS(self):
"""
Returns the "restricted growth string" of the partition.
Explanation
===========
The RGS is returned as a list of indices, L, where L[i] indicates
the block in which element i appears. For example, in a partition
of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is
[1, 1, 0]: "a" is in block 1, "b" is in block 1 and "c" is in block 0.
Examples
========
>>> from sympy.combinatorics import Partition
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.members
(1, 2, 3, 4, 5)
>>> a.RGS
(0, 0, 1, 2, 2)
>>> a + 1
Partition({3}, {4}, {5}, {1, 2})
>>> _.RGS
(0, 0, 1, 2, 3)
"""
rgs = {}
partition = self.partition
for i, part in enumerate(partition):
for j in part:
rgs[j] = i
return tuple([rgs[i] for i in sorted(
[i for p in partition for i in p], key=default_sort_key)])
@classmethod
def from_rgs(self, rgs, elements):
"""
Creates a set partition from a restricted growth string.
Explanation
===========
The indices given in rgs are assumed to be the index
of the element as given in elements *as provided* (the
elements are not sorted by this routine). Block numbering
starts from 0. If any block was not referenced in ``rgs``
an error will be raised.
Examples
========
>>> from sympy.combinatorics import Partition
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
Partition({c}, {a, d}, {b, e})
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
Partition({e}, {a, c}, {b, d})
>>> a = Partition([1, 4], [2], [3, 5])
>>> Partition.from_rgs(a.RGS, a.members)
Partition({2}, {1, 4}, {3, 5})
"""
if len(rgs) != len(elements):
raise ValueError('mismatch in rgs and element lengths')
max_elem = max(rgs) + 1
partition = [[] for i in range(max_elem)]
j = 0
for i in rgs:
partition[i].append(elements[j])
j += 1
if not all(p for p in partition):
raise ValueError('some blocks of the partition were empty.')
return Partition(*partition)
class IntegerPartition(Basic):
"""
This class represents an integer partition.
Explanation
===========
In number theory and combinatorics, a partition of a positive integer,
``n``, also called an integer partition, is a way of writing ``n`` as a
list of positive integers that sum to n. Two partitions that differ only
in the order of summands are considered to be the same partition; if order
matters then the partitions are referred to as compositions. For example,
4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1];
the compositions [1, 2, 1] and [1, 1, 2] are the same as partition
[2, 1, 1].
See Also
========
sympy.utilities.iterables.partitions,
sympy.utilities.iterables.multiset_partitions
References
==========
.. [1] https://en.wikipedia.org/wiki/Partition_%28number_theory%29
"""
_dict = None
_keys = None
def __new__(cls, partition, integer=None):
"""
Generates a new IntegerPartition object from a list or dictionary.
Explantion
==========
The partition can be given as a list of positive integers or a
dictionary of (integer, multiplicity) items. If the partition is
preceded by an integer an error will be raised if the partition
does not sum to that given integer.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([5, 4, 3, 1, 1])
>>> a
IntegerPartition(14, (5, 4, 3, 1, 1))
>>> print(a)
[5, 4, 3, 1, 1]
>>> IntegerPartition({1:3, 2:1})
IntegerPartition(5, (2, 1, 1, 1))
If the value that the partition should sum to is given first, a check
will be made to see n error will be raised if there is a discrepancy:
>>> IntegerPartition(10, [5, 4, 3, 1])
Traceback (most recent call last):
...
ValueError: The partition is not valid
"""
if integer is not None:
integer, partition = partition, integer
if isinstance(partition, (dict, Dict)):
_ = []
for k, v in sorted(list(partition.items()), reverse=True):
if not v:
continue
k, v = as_int(k), as_int(v)
_.extend([k]*v)
partition = tuple(_)
else:
partition = tuple(sorted(map(as_int, partition), reverse=True))
sum_ok = False
if integer is None:
integer = sum(partition)
sum_ok = True
else:
integer = as_int(integer)
if not sum_ok and sum(partition) != integer:
raise ValueError("Partition did not add to %s" % integer)
if any(i < 1 for i in partition):
raise ValueError("All integer summands must be greater than one")
obj = Basic.__new__(cls, Integer(integer), Tuple(*partition))
obj.partition = list(partition)
obj.integer = integer
return obj
def prev_lex(self):
"""Return the previous partition of the integer, n, in lexical order,
wrapping around to [1, ..., 1] if the partition is [n].
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([4])
>>> print(p.prev_lex())
[3, 1]
>>> p.partition > p.prev_lex().partition
True
"""
d = defaultdict(int)
d.update(self.as_dict())
keys = self._keys
if keys == [1]:
return IntegerPartition({self.integer: 1})
if keys[-1] != 1:
d[keys[-1]] -= 1
if keys[-1] == 2:
d[1] = 2
else:
d[keys[-1] - 1] = d[1] = 1
else:
d[keys[-2]] -= 1
left = d[1] + keys[-2]
new = keys[-2]
d[1] = 0
while left:
new -= 1
if left - new >= 0:
d[new] += left//new
left -= d[new]*new
return IntegerPartition(self.integer, d)
def next_lex(self):
"""Return the next partition of the integer, n, in lexical order,
wrapping around to [n] if the partition is [1, ..., 1].
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> p = IntegerPartition([3, 1])
>>> print(p.next_lex())
[4]
>>> p.partition < p.next_lex().partition
True
"""
d = defaultdict(int)
d.update(self.as_dict())
key = self._keys
a = key[-1]
if a == self.integer:
d.clear()
d[1] = self.integer
elif a == 1:
if d[a] > 1:
d[a + 1] += 1
d[a] -= 2
else:
b = key[-2]
d[b + 1] += 1
d[1] = (d[b] - 1)*b
d[b] = 0
else:
if d[a] > 1:
if len(key) == 1:
d.clear()
d[a + 1] = 1
d[1] = self.integer - a - 1
else:
a1 = a + 1
d[a1] += 1
d[1] = d[a]*a - a1
d[a] = 0
else:
b = key[-2]
b1 = b + 1
d[b1] += 1
need = d[b]*b + d[a]*a - b1
d[a] = d[b] = 0
d[1] = need
return IntegerPartition(self.integer, d)
def as_dict(self):
"""Return the partition as a dictionary whose keys are the
partition integers and the values are the multiplicity of that
integer.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
{1: 3, 2: 1, 3: 4}
"""
if self._dict is None:
groups = group(self.partition, multiple=False)
self._keys = [g[0] for g in groups]
self._dict = dict(groups)
return self._dict
@property
def conjugate(self):
"""
Computes the conjugate partition of itself.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([6, 3, 3, 2, 1])
>>> a.conjugate
[5, 4, 3, 1, 1, 1]
"""
j = 1
temp_arr = list(self.partition) + [0]
k = temp_arr[0]
b = [0]*k
while k > 0:
while k > temp_arr[j]:
b[k - 1] = j
k -= 1
j += 1
return b
def __lt__(self, other):
"""Return True if self is less than other when the partition
is listed from smallest to biggest.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([3, 1])
>>> a < a
False
>>> b = a.next_lex()
>>> a < b
True
>>> a == b
False
"""
return list(reversed(self.partition)) < list(reversed(other.partition))
def __le__(self, other):
"""Return True if self is less than other when the partition
is listed from smallest to biggest.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> a = IntegerPartition([4])
>>> a <= a
True
"""
return list(reversed(self.partition)) <= list(reversed(other.partition))
def as_ferrers(self, char='#'):
"""
Prints the ferrer diagram of a partition.
Examples
========
>>> from sympy.combinatorics.partitions import IntegerPartition
>>> print(IntegerPartition([1, 1, 5]).as_ferrers())
#####
#
#
"""
return "\n".join([char*i for i in self.partition])
def __str__(self):
return str(list(self.partition))
def random_integer_partition(n, seed=None):
"""
Generates a random integer partition summing to ``n`` as a list
of reverse-sorted integers.
Examples
========
>>> from sympy.combinatorics.partitions import random_integer_partition
For the following, a seed is given so a known value can be shown; in
practice, the seed would not be given.
>>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
[85, 12, 2, 1]
>>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
[5, 3, 1, 1]
>>> random_integer_partition(1)
[1]
"""
from sympy.core.random import _randint
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
randint = _randint(seed)
partition = []
while (n > 0):
k = randint(1, n)
mult = randint(1, n//k)
partition.append((k, mult))
n -= k*mult
partition.sort(reverse=True)
partition = flatten([[k]*m for k, m in partition])
return partition
def RGS_generalized(m):
"""
Computes the m + 1 generalized unrestricted growth strings
and returns them as rows in matrix.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_generalized
>>> RGS_generalized(6)
Matrix([
[ 1, 1, 1, 1, 1, 1, 1],
[ 1, 2, 3, 4, 5, 6, 0],
[ 2, 5, 10, 17, 26, 0, 0],
[ 5, 15, 37, 77, 0, 0, 0],
[ 15, 52, 151, 0, 0, 0, 0],
[ 52, 203, 0, 0, 0, 0, 0],
[203, 0, 0, 0, 0, 0, 0]])
"""
d = zeros(m + 1)
for i in range(m + 1):
d[0, i] = 1
for i in range(1, m + 1):
for j in range(m):
if j <= m - i:
d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1]
else:
d[i, j] = 0
return d
def RGS_enum(m):
"""
RGS_enum computes the total number of restricted growth strings
possible for a superset of size m.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_enum
>>> from sympy.combinatorics import Partition
>>> RGS_enum(4)
15
>>> RGS_enum(5)
52
>>> RGS_enum(6)
203
We can check that the enumeration is correct by actually generating
the partitions. Here, the 15 partitions of 4 items are generated:
>>> a = Partition(list(range(4)))
>>> s = set()
>>> for i in range(20):
... s.add(a)
... a += 1
...
>>> assert len(s) == 15
"""
if (m < 1):
return 0
elif (m == 1):
return 1
else:
return bell(m)
def RGS_unrank(rank, m):
"""
Gives the unranked restricted growth string for a given
superset size.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_unrank
>>> RGS_unrank(14, 4)
[0, 1, 2, 3]
>>> RGS_unrank(0, 4)
[0, 0, 0, 0]
"""
if m < 1:
raise ValueError("The superset size must be >= 1")
if rank < 0 or RGS_enum(m) <= rank:
raise ValueError("Invalid arguments")
L = [1] * (m + 1)
j = 1
D = RGS_generalized(m)
for i in range(2, m + 1):
v = D[m - i, j]
cr = j*v
if cr <= rank:
L[i] = j + 1
rank -= cr
j += 1
else:
L[i] = int(rank / v + 1)
rank %= v
return [x - 1 for x in L[1:]]
def RGS_rank(rgs):
"""
Computes the rank of a restricted growth string.
Examples
========
>>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
>>> RGS_rank([0, 1, 2, 1, 3])
42
>>> RGS_rank(RGS_unrank(4, 7))
4
"""
rgs_size = len(rgs)
rank = 0
D = RGS_generalized(rgs_size)
for i in range(1, rgs_size):
n = len(rgs[(i + 1):])
m = max(rgs[0:i])
rank += D[n, m + 1] * rgs[i]
return rank
|
0373b9975b64166175984aa269bd3c781711ea501d8aa289dae3daa3751cbe59 | from sympy.combinatorics.free_groups import free_group
from sympy.printing.defaults import DefaultPrinting
from itertools import chain, product
from bisect import bisect_left
###############################################################################
# COSET TABLE #
###############################################################################
class CosetTable(DefaultPrinting):
# coset_table: Mathematically a coset table
# represented using a list of lists
# alpha: Mathematically a coset (precisely, a live coset)
# represented by an integer between i with 1 <= i <= n
# alpha in c
# x: Mathematically an element of "A" (set of generators and
# their inverses), represented using "FpGroupElement"
# fp_grp: Finitely Presented Group with < X|R > as presentation.
# H: subgroup of fp_grp.
# NOTE: We start with H as being only a list of words in generators
# of "fp_grp". Since `.subgroup` method has not been implemented.
r"""
Properties
==========
[1] `0 \in \Omega` and `\tau(1) = \epsilon`
[2] `\alpha^x = \beta \Leftrightarrow \beta^{x^{-1}} = \alpha`
[3] If `\alpha^x = \beta`, then `H \tau(\alpha)x = H \tau(\beta)`
[4] `\forall \alpha \in \Omega, 1^{\tau(\alpha)} = \alpha`
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
"Implementation and Analysis of the Todd-Coxeter Algorithm"
"""
# default limit for the number of cosets allowed in a
# coset enumeration.
coset_table_max_limit = 4096000
# limit for the current instance
coset_table_limit = None
# maximum size of deduction stack above or equal to
# which it is emptied
max_stack_size = 100
def __init__(self, fp_grp, subgroup, max_cosets=None):
if not max_cosets:
max_cosets = CosetTable.coset_table_max_limit
self.fp_group = fp_grp
self.subgroup = subgroup
self.coset_table_limit = max_cosets
# "p" is setup independent of Omega and n
self.p = [0]
# a list of the form `[gen_1, gen_1^{-1}, ... , gen_k, gen_k^{-1}]`
self.A = list(chain.from_iterable((gen, gen**-1) \
for gen in self.fp_group.generators))
#P[alpha, x] Only defined when alpha^x is defined.
self.P = [[None]*len(self.A)]
# the mathematical coset table which is a list of lists
self.table = [[None]*len(self.A)]
self.A_dict = {x: self.A.index(x) for x in self.A}
self.A_dict_inv = {}
for x, index in self.A_dict.items():
if index % 2 == 0:
self.A_dict_inv[x] = self.A_dict[x] + 1
else:
self.A_dict_inv[x] = self.A_dict[x] - 1
# used in the coset-table based method of coset enumeration. Each of
# the element is called a "deduction" which is the form (alpha, x) whenever
# a value is assigned to alpha^x during a definition or "deduction process"
self.deduction_stack = []
# Attributes for modified methods.
H = self.subgroup
self._grp = free_group(', ' .join(["a_%d" % i for i in range(len(H))]))[0]
self.P = [[None]*len(self.A)]
self.p_p = {}
@property
def omega(self):
"""Set of live cosets. """
return [coset for coset in range(len(self.p)) if self.p[coset] == coset]
def copy(self):
"""
Return a shallow copy of Coset Table instance ``self``.
"""
self_copy = self.__class__(self.fp_group, self.subgroup)
self_copy.table = [list(perm_rep) for perm_rep in self.table]
self_copy.p = list(self.p)
self_copy.deduction_stack = list(self.deduction_stack)
return self_copy
def __str__(self):
return "Coset Table on %s with %s as subgroup generators" \
% (self.fp_group, self.subgroup)
__repr__ = __str__
@property
def n(self):
"""The number `n` represents the length of the sublist containing the
live cosets.
"""
if not self.table:
return 0
return max(self.omega) + 1
# Pg. 152 [1]
def is_complete(self):
r"""
The coset table is called complete if it has no undefined entries
on the live cosets; that is, `\alpha^x` is defined for all
`\alpha \in \Omega` and `x \in A`.
"""
return not any(None in self.table[coset] for coset in self.omega)
# Pg. 153 [1]
def define(self, alpha, x, modified=False):
r"""
This routine is used in the relator-based strategy of Todd-Coxeter
algorithm if some `\alpha^x` is undefined. We check whether there is
space available for defining a new coset. If there is enough space
then we remedy this by adjoining a new coset `\beta` to `\Omega`
(i.e to set of live cosets) and put that equal to `\alpha^x`, then
make an assignment satisfying Property[1]. If there is not enough space
then we halt the Coset Table creation. The maximum amount of space that
can be used by Coset Table can be manipulated using the class variable
``CosetTable.coset_table_max_limit``.
See Also
========
define_c
"""
A = self.A
table = self.table
len_table = len(table)
if len_table >= self.coset_table_limit:
# abort the further generation of cosets
raise ValueError("the coset enumeration has defined more than "
"%s cosets. Try with a greater value max number of cosets "
% self.coset_table_limit)
table.append([None]*len(A))
self.P.append([None]*len(self.A))
# beta is the new coset generated
beta = len_table
self.p.append(beta)
table[alpha][self.A_dict[x]] = beta
table[beta][self.A_dict_inv[x]] = alpha
# P[alpha][x] = epsilon, P[beta][x**-1] = epsilon
if modified:
self.P[alpha][self.A_dict[x]] = self._grp.identity
self.P[beta][self.A_dict_inv[x]] = self._grp.identity
self.p_p[beta] = self._grp.identity
def define_c(self, alpha, x):
r"""
A variation of ``define`` routine, described on Pg. 165 [1], used in
the coset table-based strategy of Todd-Coxeter algorithm. It differs
from ``define`` routine in that for each definition it also adds the
tuple `(\alpha, x)` to the deduction stack.
See Also
========
define
"""
A = self.A
table = self.table
len_table = len(table)
if len_table >= self.coset_table_limit:
# abort the further generation of cosets
raise ValueError("the coset enumeration has defined more than "
"%s cosets. Try with a greater value max number of cosets "
% self.coset_table_limit)
table.append([None]*len(A))
# beta is the new coset generated
beta = len_table
self.p.append(beta)
table[alpha][self.A_dict[x]] = beta
table[beta][self.A_dict_inv[x]] = alpha
# append to deduction stack
self.deduction_stack.append((alpha, x))
def scan_c(self, alpha, word):
"""
A variation of ``scan`` routine, described on pg. 165 of [1], which
puts at tuple, whenever a deduction occurs, to deduction stack.
See Also
========
scan, scan_check, scan_and_fill, scan_and_fill_c
"""
# alpha is an integer representing a "coset"
# since scanning can be in two cases
# 1. for alpha=0 and w in Y (i.e generating set of H)
# 2. alpha in Omega (set of live cosets), w in R (relators)
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
f = alpha
i = 0
r = len(word)
b = alpha
j = r - 1
# list of union of generators and their inverses
while i <= j and table[f][A_dict[word[i]]] is not None:
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
if f != b:
self.coincidence_c(f, b)
return
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
# we have an incorrect completed scan with coincidence f ~ b
# run the "coincidence" routine
self.coincidence_c(f, b)
elif j == i:
# deduction process
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
self.deduction_stack.append((f, word[i]))
# otherwise scan is incomplete and yields no information
# alpha, beta coincide, i.e. alpha, beta represent the pair of cosets where
# coincidence occurs
def coincidence_c(self, alpha, beta):
"""
A variation of ``coincidence`` routine used in the coset-table based
method of coset enumeration. The only difference being on addition of
a new coset in coset table(i.e new coset introduction), then it is
appended to ``deduction_stack``.
See Also
========
coincidence
"""
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
# behaves as a queue
q = []
self.merge(alpha, beta, q)
while len(q) > 0:
gamma = q.pop(0)
for x in A_dict:
delta = table[gamma][A_dict[x]]
if delta is not None:
table[delta][A_dict_inv[x]] = None
# only line of difference from ``coincidence`` routine
self.deduction_stack.append((delta, x**-1))
mu = self.rep(gamma)
nu = self.rep(delta)
if table[mu][A_dict[x]] is not None:
self.merge(nu, table[mu][A_dict[x]], q)
elif table[nu][A_dict_inv[x]] is not None:
self.merge(mu, table[nu][A_dict_inv[x]], q)
else:
table[mu][A_dict[x]] = nu
table[nu][A_dict_inv[x]] = mu
def scan(self, alpha, word, y=None, fill=False, modified=False):
r"""
``scan`` performs a scanning process on the input ``word``.
It first locates the largest prefix ``s`` of ``word`` for which
`\alpha^s` is defined (i.e is not ``None``), ``s`` may be empty. Let
``word=sv``, let ``t`` be the longest suffix of ``v`` for which
`\alpha^{t^{-1}}` is defined, and let ``v=ut``. Then three
possibilities are there:
1. If ``t=v``, then we say that the scan completes, and if, in addition
`\alpha^s = \alpha^{t^{-1}}`, then we say that the scan completes
correctly.
2. It can also happen that scan does not complete, but `|u|=1`; that
is, the word ``u`` consists of a single generator `x \in A`. In that
case, if `\alpha^s = \beta` and `\alpha^{t^{-1}} = \gamma`, then we can
set `\beta^x = \gamma` and `\gamma^{x^{-1}} = \beta`. These assignments
are known as deductions and enable the scan to complete correctly.
3. See ``coicidence`` routine for explanation of third condition.
Notes
=====
The code for the procedure of scanning `\alpha \in \Omega`
under `w \in A*` is defined on pg. 155 [1]
See Also
========
scan_c, scan_check, scan_and_fill, scan_and_fill_c
Scan and Fill
=============
Performed when the default argument fill=True.
Modified Scan
=============
Performed when the default argument modified=True
"""
# alpha is an integer representing a "coset"
# since scanning can be in two cases
# 1. for alpha=0 and w in Y (i.e generating set of H)
# 2. alpha in Omega (set of live cosets), w in R (relators)
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
f = alpha
i = 0
r = len(word)
b = alpha
j = r - 1
b_p = y
if modified:
f_p = self._grp.identity
flag = 0
while fill or flag == 0:
flag = 1
while i <= j and table[f][A_dict[word[i]]] is not None:
if modified:
f_p = f_p*self.P[f][A_dict[word[i]]]
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
if f != b:
if modified:
self.modified_coincidence(f, b, f_p**-1*y)
else:
self.coincidence(f, b)
return
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
if modified:
b_p = b_p*self.P[b][self.A_dict_inv[word[j]]]
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
# we have an incorrect completed scan with coincidence f ~ b
# run the "coincidence" routine
if modified:
self.modified_coincidence(f, b, f_p**-1*b_p)
else:
self.coincidence(f, b)
elif j == i:
# deduction process
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
if modified:
self.P[f][self.A_dict[word[i]]] = f_p**-1*b_p
self.P[b][self.A_dict_inv[word[i]]] = b_p**-1*f_p
return
elif fill:
self.define(f, word[i], modified=modified)
# otherwise scan is incomplete and yields no information
# used in the low-index subgroups algorithm
def scan_check(self, alpha, word):
r"""
Another version of ``scan`` routine, described on, it checks whether
`\alpha` scans correctly under `word`, it is a straightforward
modification of ``scan``. ``scan_check`` returns ``False`` (rather than
calling ``coincidence``) if the scan completes incorrectly; otherwise
it returns ``True``.
See Also
========
scan, scan_c, scan_and_fill, scan_and_fill_c
"""
# alpha is an integer representing a "coset"
# since scanning can be in two cases
# 1. for alpha=0 and w in Y (i.e generating set of H)
# 2. alpha in Omega (set of live cosets), w in R (relators)
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
f = alpha
i = 0
r = len(word)
b = alpha
j = r - 1
while i <= j and table[f][A_dict[word[i]]] is not None:
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
return f == b
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
# we have an incorrect completed scan with coincidence f ~ b
# return False, instead of calling coincidence routine
return False
elif j == i:
# deduction process
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
return True
def merge(self, k, lamda, q, w=None, modified=False):
"""
Merge two classes with representatives ``k`` and ``lamda``, described
on Pg. 157 [1] (for pseudocode), start by putting ``p[k] = lamda``.
It is more efficient to choose the new representative from the larger
of the two classes being merged, i.e larger among ``k`` and ``lamda``.
procedure ``merge`` performs the merging operation, adds the deleted
class representative to the queue ``q``.
Parameters
==========
'k', 'lamda' being the two class representatives to be merged.
Notes
=====
Pg. 86-87 [1] contains a description of this method.
See Also
========
coincidence, rep
"""
p = self.p
rep = self.rep
phi = rep(k, modified=modified)
psi = rep(lamda, modified=modified)
if phi != psi:
mu = min(phi, psi)
v = max(phi, psi)
p[v] = mu
if modified:
if v == phi:
self.p_p[phi] = self.p_p[k]**-1*w*self.p_p[lamda]
else:
self.p_p[psi] = self.p_p[lamda]**-1*w**-1*self.p_p[k]
q.append(v)
def rep(self, k, modified=False):
r"""
Parameters
==========
`k \in [0 \ldots n-1]`, as for ``self`` only array ``p`` is used
Returns
=======
Representative of the class containing ``k``.
Returns the representative of `\sim` class containing ``k``, it also
makes some modification to array ``p`` of ``self`` to ease further
computations, described on Pg. 157 [1].
The information on classes under `\sim` is stored in array `p` of
``self`` argument, which will always satisfy the property:
`p[\alpha] \sim \alpha` and `p[\alpha]=\alpha \iff \alpha=rep(\alpha)`
`\forall \in [0 \ldots n-1]`.
So, for `\alpha \in [0 \ldots n-1]`, we find `rep(self, \alpha)` by
continually replacing `\alpha` by `p[\alpha]` until it becomes
constant (i.e satisfies `p[\alpha] = \alpha`):w
To increase the efficiency of later ``rep`` calculations, whenever we
find `rep(self, \alpha)=\beta`, we set
`p[\gamma] = \beta \forall \gamma \in p-chain` from `\alpha` to `\beta`
Notes
=====
``rep`` routine is also described on Pg. 85-87 [1] in Atkinson's
algorithm, this results from the fact that ``coincidence`` routine
introduces functionality similar to that introduced by the
``minimal_block`` routine on Pg. 85-87 [1].
See Also
========
coincidence, merge
"""
p = self.p
lamda = k
rho = p[lamda]
if modified:
s = p[:]
while rho != lamda:
if modified:
s[rho] = lamda
lamda = rho
rho = p[lamda]
if modified:
rho = s[lamda]
while rho != k:
mu = rho
rho = s[mu]
p[rho] = lamda
self.p_p[rho] = self.p_p[rho]*self.p_p[mu]
else:
mu = k
rho = p[mu]
while rho != lamda:
p[mu] = lamda
mu = rho
rho = p[mu]
return lamda
# alpha, beta coincide, i.e. alpha, beta represent the pair of cosets
# where coincidence occurs
def coincidence(self, alpha, beta, w=None, modified=False):
r"""
The third situation described in ``scan`` routine is handled by this
routine, described on Pg. 156-161 [1].
The unfortunate situation when the scan completes but not correctly,
then ``coincidence`` routine is run. i.e when for some `i` with
`1 \le i \le r+1`, we have `w=st` with `s = x_1 x_2 \dots x_{i-1}`,
`t = x_i x_{i+1} \dots x_r`, and `\beta = \alpha^s` and
`\gamma = \alpha^{t-1}` are defined but unequal. This means that
`\beta` and `\gamma` represent the same coset of `H` in `G`. Described
on Pg. 156 [1]. ``rep``
See Also
========
scan
"""
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
# behaves as a queue
q = []
if modified:
self.modified_merge(alpha, beta, w, q)
else:
self.merge(alpha, beta, q)
while len(q) > 0:
gamma = q.pop(0)
for x in A_dict:
delta = table[gamma][A_dict[x]]
if delta is not None:
table[delta][A_dict_inv[x]] = None
mu = self.rep(gamma, modified=modified)
nu = self.rep(delta, modified=modified)
if table[mu][A_dict[x]] is not None:
if modified:
v = self.p_p[delta]**-1*self.P[gamma][self.A_dict[x]]**-1
v = v*self.p_p[gamma]*self.P[mu][self.A_dict[x]]
self.modified_merge(nu, table[mu][self.A_dict[x]], v, q)
else:
self.merge(nu, table[mu][A_dict[x]], q)
elif table[nu][A_dict_inv[x]] is not None:
if modified:
v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]
v = v*self.p_p[delta]*self.P[mu][self.A_dict_inv[x]]
self.modified_merge(mu, table[nu][self.A_dict_inv[x]], v, q)
else:
self.merge(mu, table[nu][A_dict_inv[x]], q)
else:
table[mu][A_dict[x]] = nu
table[nu][A_dict_inv[x]] = mu
if modified:
v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]*self.p_p[delta]
self.P[mu][self.A_dict[x]] = v
self.P[nu][self.A_dict_inv[x]] = v**-1
# method used in the HLT strategy
def scan_and_fill(self, alpha, word):
"""
A modified version of ``scan`` routine used in the relator-based
method of coset enumeration, described on pg. 162-163 [1], which
follows the idea that whenever the procedure is called and the scan
is incomplete then it makes new definitions to enable the scan to
complete; i.e it fills in the gaps in the scan of the relator or
subgroup generator.
"""
self.scan(alpha, word, fill=True)
def scan_and_fill_c(self, alpha, word):
"""
A modified version of ``scan`` routine, described on Pg. 165 second
para. [1], with modification similar to that of ``scan_anf_fill`` the
only difference being it calls the coincidence procedure used in the
coset-table based method i.e. the routine ``coincidence_c`` is used.
See Also
========
scan, scan_and_fill
"""
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
r = len(word)
f = alpha
i = 0
b = alpha
j = r - 1
# loop until it has filled the alpha row in the table.
while True:
# do the forward scanning
while i <= j and table[f][A_dict[word[i]]] is not None:
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
if f != b:
self.coincidence_c(f, b)
return
# forward scan was incomplete, scan backwards
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
self.coincidence_c(f, b)
elif j == i:
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
self.deduction_stack.append((f, word[i]))
else:
self.define_c(f, word[i])
# method used in the HLT strategy
def look_ahead(self):
"""
When combined with the HLT method this is known as HLT+Lookahead
method of coset enumeration, described on pg. 164 [1]. Whenever
``define`` aborts due to lack of space available this procedure is
executed. This routine helps in recovering space resulting from
"coincidence" of cosets.
"""
R = self.fp_group.relators
p = self.p
# complete scan all relators under all cosets(obviously live)
# without making new definitions
for beta in self.omega:
for w in R:
self.scan(beta, w)
if p[beta] < beta:
break
# Pg. 166
def process_deductions(self, R_c_x, R_c_x_inv):
"""
Processes the deductions that have been pushed onto ``deduction_stack``,
described on Pg. 166 [1] and is used in coset-table based enumeration.
See Also
========
deduction_stack
"""
p = self.p
table = self.table
while len(self.deduction_stack) > 0:
if len(self.deduction_stack) >= CosetTable.max_stack_size:
self.look_ahead()
del self.deduction_stack[:]
continue
else:
alpha, x = self.deduction_stack.pop()
if p[alpha] == alpha:
for w in R_c_x:
self.scan_c(alpha, w)
if p[alpha] < alpha:
break
beta = table[alpha][self.A_dict[x]]
if beta is not None and p[beta] == beta:
for w in R_c_x_inv:
self.scan_c(beta, w)
if p[beta] < beta:
break
def process_deductions_check(self, R_c_x, R_c_x_inv):
"""
A variation of ``process_deductions``, this calls ``scan_check``
wherever ``process_deductions`` calls ``scan``, described on Pg. [1].
See Also
========
process_deductions
"""
table = self.table
while len(self.deduction_stack) > 0:
alpha, x = self.deduction_stack.pop()
for w in R_c_x:
if not self.scan_check(alpha, w):
return False
beta = table[alpha][self.A_dict[x]]
if beta is not None:
for w in R_c_x_inv:
if not self.scan_check(beta, w):
return False
return True
def switch(self, beta, gamma):
r"""Switch the elements `\beta, \gamma \in \Omega` of ``self``, used
by the ``standardize`` procedure, described on Pg. 167 [1].
See Also
========
standardize
"""
A = self.A
A_dict = self.A_dict
table = self.table
for x in A:
z = table[gamma][A_dict[x]]
table[gamma][A_dict[x]] = table[beta][A_dict[x]]
table[beta][A_dict[x]] = z
for alpha in range(len(self.p)):
if self.p[alpha] == alpha:
if table[alpha][A_dict[x]] == beta:
table[alpha][A_dict[x]] = gamma
elif table[alpha][A_dict[x]] == gamma:
table[alpha][A_dict[x]] = beta
def standardize(self):
r"""
A coset table is standardized if when running through the cosets and
within each coset through the generator images (ignoring generator
inverses), the cosets appear in order of the integers
`0, 1, \dots, n`. "Standardize" reorders the elements of `\Omega`
such that, if we scan the coset table first by elements of `\Omega`
and then by elements of A, then the cosets occur in ascending order.
``standardize()`` is used at the end of an enumeration to permute the
cosets so that they occur in some sort of standard order.
Notes
=====
procedure is described on pg. 167-168 [1], it also makes use of the
``switch`` routine to replace by smaller integer value.
Examples
========
>>> from sympy.combinatorics import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
# Example 5.3 from [1]
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
>>> C = coset_enumeration_r(f, [])
>>> C.compress()
>>> C.table
[[1, 3, 1, 3], [2, 0, 2, 0], [3, 1, 3, 1], [0, 2, 0, 2]]
>>> C.standardize()
>>> C.table
[[1, 2, 1, 2], [3, 0, 3, 0], [0, 3, 0, 3], [2, 1, 2, 1]]
"""
A = self.A
A_dict = self.A_dict
gamma = 1
for alpha, x in product(range(self.n), A):
beta = self.table[alpha][A_dict[x]]
if beta >= gamma:
if beta > gamma:
self.switch(gamma, beta)
gamma += 1
if gamma == self.n:
return
# Compression of a Coset Table
def compress(self):
"""Removes the non-live cosets from the coset table, described on
pg. 167 [1].
"""
gamma = -1
A = self.A
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
chi = tuple([i for i in range(len(self.p)) if self.p[i] != i])
for alpha in self.omega:
gamma += 1
if gamma != alpha:
# replace alpha by gamma in coset table
for x in A:
beta = table[alpha][A_dict[x]]
table[gamma][A_dict[x]] = beta
table[beta][A_dict_inv[x]] == gamma
# all the cosets in the table are live cosets
self.p = list(range(gamma + 1))
# delete the useless columns
del table[len(self.p):]
# re-define values
for row in table:
for j in range(len(self.A)):
row[j] -= bisect_left(chi, row[j])
def conjugates(self, R):
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), \
(rel**-1).cyclic_conjugates()) for rel in R))
R_set = set()
for conjugate in R_c:
R_set = R_set.union(conjugate)
R_c_list = []
for x in self.A:
r = {word for word in R_set if word[0] == x}
R_c_list.append(r)
R_set.difference_update(r)
return R_c_list
def coset_representative(self, coset):
'''
Compute the coset representative of a given coset.
Examples
========
>>> from sympy.combinatorics import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_r(f, [x])
>>> C.compress()
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
>>> C.coset_representative(0)
<identity>
>>> C.coset_representative(1)
y
>>> C.coset_representative(2)
y**-1
'''
for x in self.A:
gamma = self.table[coset][self.A_dict[x]]
if coset == 0:
return self.fp_group.identity
if gamma < coset:
return self.coset_representative(gamma)*x**-1
##############################
# Modified Methods #
##############################
def modified_define(self, alpha, x):
r"""
Define a function p_p from from [1..n] to A* as
an additional component of the modified coset table.
Parameters
==========
\alpha \in \Omega
x \in A*
See Also
========
define
"""
self.define(alpha, x, modified=True)
def modified_scan(self, alpha, w, y, fill=False):
r"""
Parameters
==========
\alpha \in \Omega
w \in A*
y \in (YUY^-1)
fill -- `modified_scan_and_fill` when set to True.
See Also
========
scan
"""
self.scan(alpha, w, y=y, fill=fill, modified=True)
def modified_scan_and_fill(self, alpha, w, y):
self.modified_scan(alpha, w, y, fill=True)
def modified_merge(self, k, lamda, w, q):
r"""
Parameters
==========
'k', 'lamda' -- the two class representatives to be merged.
q -- queue of length l of elements to be deleted from `\Omega` *.
w -- Word in (YUY^-1)
See Also
========
merge
"""
self.merge(k, lamda, q, w=w, modified=True)
def modified_rep(self, k):
r"""
Parameters
==========
`k \in [0 \ldots n-1]`
See Also
========
rep
"""
self.rep(k, modified=True)
def modified_coincidence(self, alpha, beta, w):
r"""
Parameters
==========
A coincident pair `\alpha, \beta \in \Omega, w \in Y \cup Y^{-1}`
See Also
========
coincidence
"""
self.coincidence(alpha, beta, w=w, modified=True)
###############################################################################
# COSET ENUMERATION #
###############################################################################
# relator-based method
def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False, modified=False):
"""
This is easier of the two implemented methods of coset enumeration.
and is often called the HLT method, after Hazelgrove, Leech, Trotter
The idea is that we make use of ``scan_and_fill`` makes new definitions
whenever the scan is incomplete to enable the scan to complete; this way
we fill in the gaps in the scan of the relator or subgroup generator,
that's why the name relator-based method.
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
argument `draft` in which case the coset enumeration will start with
that instance and attempt to complete it.
When `incomplete` is `True` and the function is unable to complete for
some reason, the partially complete table will be returned.
# TODO: complete the docstring
See Also
========
scan_and_fill,
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
# Example 5.1 from [1]
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_r(f, [x])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 1, 2]
[1, 1, 2, 0]
[2, 2, 0, 1]
>>> C.p
[0, 1, 2, 1, 1]
# Example from exercises Q2 [1]
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> C = coset_enumeration_r(f, [])
>>> C.compress(); C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# Example 5.2
>>> f = FpGroup(F, [x**2, y**3, (x*y)**3])
>>> Y = [x*y]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 1, 2, 1]
[0, 0, 0, 2]
[3, 3, 1, 0]
[2, 2, 3, 3]
# Example 5.3
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 3, 1, 3]
[2, 0, 2, 0]
[3, 1, 3, 1]
[0, 2, 0, 2]
# Example 5.4
>>> F, a, b, c, d, e = free_group("a, b, c, d, e")
>>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1])
>>> Y = [a]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# example of "compress" method
>>> C.compress()
>>> C.table
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
# Exercises Pg. 161, Q2.
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> C.compress()
>>> C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
# Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490
# from 1973chwd.pdf
# Table 1. Ex. 1
>>> F, r, s, t = free_group("r, s, t")
>>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
>>> C = coset_enumeration_r(E1, [r])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0]
Ex. 2
>>> F, a, b = free_group("a, b")
>>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
>>> C = coset_enumeration_r(Cox, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
500
# Ex. 3
>>> F, a, b = free_group("a, b")
>>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
>>> C = coset_enumeration_r(B_2_4, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
1024
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
# 1. Initialize a coset table C for < X|R >
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
# Define coset table methods.
if modified:
_scan_and_fill = C.modified_scan_and_fill
_define = C.modified_define
else:
_scan_and_fill = C.scan_and_fill
_define = C.define
if draft:
C.table = draft.table[:]
C.p = draft.p[:]
R = fp_grp.relators
A_dict = C.A_dict
p = C.p
for i in range(len(Y)):
if modified:
_scan_and_fill(0, Y[i], C._grp.generators[i])
else:
_scan_and_fill(0, Y[i])
alpha = 0
while alpha < C.n:
if p[alpha] == alpha:
try:
for w in R:
if modified:
_scan_and_fill(alpha, w, C._grp.identity)
else:
_scan_and_fill(alpha, w)
# if alpha was eliminated during the scan then break
if p[alpha] < alpha:
break
if p[alpha] == alpha:
for x in A_dict:
if C.table[alpha][A_dict[x]] is None:
_define(alpha, x)
except ValueError as e:
if incomplete:
return C
raise e
alpha += 1
return C
def modified_coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False):
r"""
Introduce a new set of symbols y \in Y that correspond to the
generators of the subgroup. Store the elements of Y as a
word P[\alpha, x] and compute the coset table similar to that of
the regular coset enumeration methods.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> from sympy.combinatorics.coset_table import modified_coset_enumeration_r
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = modified_coset_enumeration_r(f, [x])
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], [None, 1, None, None], [1, 3, None, None]]
See Also
========
coset_enumertation_r
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.,
"Handbook of Computational Group Theory",
Section 5.3.2
"""
return coset_enumeration_r(fp_grp, Y, max_cosets=max_cosets, draft=draft,
incomplete=incomplete, modified=True)
# Pg. 166
# coset-table based method
def coset_enumeration_c(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False):
"""
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_c
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_c(f, [x])
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
"""
# Initialize a coset table C for < X|R >
X = fp_grp.generators
R = fp_grp.relators
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
if draft:
C.table = draft.table[:]
C.p = draft.p[:]
C.deduction_stack = draft.deduction_stack
for alpha, x in product(range(len(C.table)), X):
if C.table[alpha][C.A_dict[x]] is not None:
C.deduction_stack.append((alpha, x))
A = C.A
# replace all the elements by cyclic reductions
R_cyc_red = [rel.identity_cyclic_reduction() for rel in R]
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), (rel**-1).cyclic_conjugates()) \
for rel in R_cyc_red))
R_set = set()
for conjugate in R_c:
R_set = R_set.union(conjugate)
# a list of subsets of R_c whose words start with "x".
R_c_list = []
for x in C.A:
r = {word for word in R_set if word[0] == x}
R_c_list.append(r)
R_set.difference_update(r)
for w in Y:
C.scan_and_fill_c(0, w)
for x in A:
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
alpha = 0
while alpha < len(C.table):
if C.p[alpha] == alpha:
try:
for x in C.A:
if C.p[alpha] != alpha:
break
if C.table[alpha][C.A_dict[x]] is None:
C.define_c(alpha, x)
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
except ValueError as e:
if incomplete:
return C
raise e
alpha += 1
return C
|
6d9774a5c743ff5148e0770c5ae01bfd91f1c5bcb8b0beb4cffabd693d28a50f | """Various algorithms for helping identifying numbers and sequences."""
from sympy.concrete.products import (Product, product)
from sympy.core import Function, S
from sympy.core.add import Add
from sympy.core.numbers import Integer, Rational
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import floor
from sympy.integrals.integrals import integrate
from sympy.polys.polyfuncs import rational_interpolate as rinterp
from sympy.polys.polytools import lcm
from sympy.simplify.radsimp import denom
from sympy.utilities import public
@public
def find_simple_recurrence_vector(l):
"""
This function is used internally by other functions from the
sympy.concrete.guess module. While most users may want to rather use the
function find_simple_recurrence when looking for recurrence relations
among rational numbers, the current function may still be useful when
some post-processing has to be done.
Explanation
===========
The function returns a vector of length n when a recurrence relation of
order n is detected in the sequence of rational numbers v.
If the returned vector has a length 1, then the returned value is always
the list [0], which means that no relation has been found.
While the functions is intended to be used with rational numbers, it should
work for other kinds of real numbers except for some cases involving
quadratic numbers; for that reason it should be used with some caution when
the argument is not a list of rational numbers.
Examples
========
>>> from sympy.concrete.guess import find_simple_recurrence_vector
>>> from sympy import fibonacci
>>> find_simple_recurrence_vector([fibonacci(k) for k in range(12)])
[1, -1, -1]
See Also
========
See the function sympy.concrete.guess.find_simple_recurrence which is more
user-friendly.
"""
q1 = [0]
q2 = [1]
b, z = 0, len(l) >> 1
while len(q2) <= z:
while l[b]==0:
b += 1
if b == len(l):
c = 1
for x in q2:
c = lcm(c, denom(x))
if q2[0]*c < 0: c = -c
for k in range(len(q2)):
q2[k] = int(q2[k]*c)
return q2
a = S.One/l[b]
m = [a]
for k in range(b+1, len(l)):
m.append(-sum(l[j+1]*m[b-j-1] for j in range(b, k))*a)
l, m = m, [0] * max(len(q2), b+len(q1))
for k, q in enumerate(q2):
m[k] = a*q
for k, q in enumerate(q1):
m[k+b] += q
while m[-1]==0: m.pop() # because trailing zeros can occur
q1, q2, b = q2, m, 1
return [0]
@public
def find_simple_recurrence(v, A=Function('a'), N=Symbol('n')):
"""
Detects and returns a recurrence relation from a sequence of several integer
(or rational) terms. The name of the function in the returned expression is
'a' by default; the main variable is 'n' by default. The smallest index in
the returned expression is always n (and never n-1, n-2, etc.).
Examples
========
>>> from sympy.concrete.guess import find_simple_recurrence
>>> from sympy import fibonacci
>>> find_simple_recurrence([fibonacci(k) for k in range(12)])
-a(n) - a(n + 1) + a(n + 2)
>>> from sympy import Function, Symbol
>>> a = [1, 1, 1]
>>> for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3])
>>> find_simple_recurrence(a, A=Function('f'), N=Symbol('i'))
-8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3)
"""
p = find_simple_recurrence_vector(v)
n = len(p)
if n <= 1: return S.Zero
return Add(*[A(N+n-1-k)*p[k] for k in range(n)])
@public
def rationalize(x, maxcoeff=10000):
"""
Helps identifying a rational number from a float (or mpmath.mpf) value by
using a continued fraction. The algorithm stops as soon as a large partial
quotient is detected (greater than 10000 by default).
Examples
========
>>> from sympy.concrete.guess import rationalize
>>> from mpmath import cos, pi
>>> rationalize(cos(pi/3))
1/2
>>> from mpmath import mpf
>>> rationalize(mpf("0.333333333333333"))
1/3
While the function is rather intended to help 'identifying' rational
values, it may be used in some cases for approximating real numbers.
(Though other functions may be more relevant in that case.)
>>> rationalize(pi, maxcoeff = 250)
355/113
See Also
========
Several other methods can approximate a real number as a rational, like:
* fractions.Fraction.from_decimal
* fractions.Fraction.from_float
* mpmath.identify
* mpmath.pslq by using the following syntax: mpmath.pslq([x, 1])
* mpmath.findpoly by using the following syntax: mpmath.findpoly(x, 1)
* sympy.simplify.nsimplify (which is a more general function)
The main difference between the current function and all these variants is
that control focuses on magnitude of partial quotients here rather than on
global precision of the approximation. If the real is "known to be" a
rational number, the current function should be able to detect it correctly
with the default settings even when denominator is great (unless its
expansion contains unusually big partial quotients) which may occur
when studying sequences of increasing numbers. If the user cares more
on getting simple fractions, other methods may be more convenient.
"""
p0, p1 = 0, 1
q0, q1 = 1, 0
a = floor(x)
while a < maxcoeff or q1==0:
p = a*p1 + p0
q = a*q1 + q0
p0, p1 = p1, p
q0, q1 = q1, q
if x==a: break
x = 1/(x-a)
a = floor(x)
return sympify(p) / q
@public
def guess_generating_function_rational(v, X=Symbol('x')):
"""
Tries to "guess" a rational generating function for a sequence of rational
numbers v.
Examples
========
>>> from sympy.concrete.guess import guess_generating_function_rational
>>> from sympy import fibonacci
>>> l = [fibonacci(k) for k in range(5,15)]
>>> guess_generating_function_rational(l)
(3*x + 5)/(-x**2 - x + 1)
See Also
========
sympy.series.approximants
mpmath.pade
"""
# a) compute the denominator as q
q = find_simple_recurrence_vector(v)
n = len(q)
if n <= 1: return None
# b) compute the numerator as p
p = [sum(v[i-k]*q[k] for k in range(min(i+1, n)))
for i in range(len(v)>>1)]
return (sum(p[k]*X**k for k in range(len(p)))
/ sum(q[k]*X**k for k in range(n)))
@public
def guess_generating_function(v, X=Symbol('x'), types=['all'], maxsqrtn=2):
"""
Tries to "guess" a generating function for a sequence of rational numbers v.
Only a few patterns are implemented yet.
Explanation
===========
The function returns a dictionary where keys are the name of a given type of
generating function. Six types are currently implemented:
type | formal definition
-------+----------------------------------------------------------------
ogf | f(x) = Sum( a_k * x^k , k: 0..infinity )
egf | f(x) = Sum( a_k * x^k / k! , k: 0..infinity )
lgf | f(x) = Sum( (-1)^(k+1) a_k * x^k / k , k: 1..infinity )
| (with initial index being hold as 1 rather than 0)
hlgf | f(x) = Sum( a_k * x^k / k , k: 1..infinity )
| (with initial index being hold as 1 rather than 0)
lgdogf | f(x) = derivate( log(Sum( a_k * x^k, k: 0..infinity )), x)
lgdegf | f(x) = derivate( log(Sum( a_k * x^k / k!, k: 0..infinity )), x)
In order to spare time, the user can select only some types of generating
functions (default being ['all']). While forgetting to use a list in the
case of a single type may seem to work most of the time as in: types='ogf'
this (convenient) syntax may lead to unexpected extra results in some cases.
Discarding a type when calling the function does not mean that the type will
not be present in the returned dictionary; it only means that no extra
computation will be performed for that type, but the function may still add
it in the result when it can be easily converted from another type.
Two generating functions (lgdogf and lgdegf) are not even computed if the
initial term of the sequence is 0; it may be useful in that case to try
again after having removed the leading zeros.
Examples
========
>>> from sympy.concrete.guess import guess_generating_function as ggf
>>> ggf([k+1 for k in range(12)], types=['ogf', 'lgf', 'hlgf'])
{'hlgf': 1/(1 - x), 'lgf': 1/(x + 1), 'ogf': 1/(x**2 - 2*x + 1)}
>>> from sympy import sympify
>>> l = sympify("[3/2, 11/2, 0, -121/2, -363/2, 121]")
>>> ggf(l)
{'ogf': (x + 3/2)/(11*x**2 - 3*x + 1)}
>>> from sympy import fibonacci
>>> ggf([fibonacci(k) for k in range(5, 15)], types=['ogf'])
{'ogf': (3*x + 5)/(-x**2 - x + 1)}
>>> from sympy import factorial
>>> ggf([factorial(k) for k in range(12)], types=['ogf', 'egf', 'lgf'])
{'egf': 1/(1 - x)}
>>> ggf([k+1 for k in range(12)], types=['egf'])
{'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)}
N-th root of a rational function can also be detected (below is an example
coming from the sequence A108626 from http://oeis.org).
The greatest n-th root to be tested is specified as maxsqrtn (default 2).
>>> ggf([1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf']
sqrt(1/(x**4 + 2*x**2 - 4*x + 1))
References
==========
.. [1] "Concrete Mathematics", R.L. Graham, D.E. Knuth, O. Patashnik
.. [2] https://oeis.org/wiki/Generating_functions
"""
# List of all types of all g.f. known by the algorithm
if 'all' in types:
types = ('ogf', 'egf', 'lgf', 'hlgf', 'lgdogf', 'lgdegf')
result = {}
# Ordinary Generating Function (ogf)
if 'ogf' in types:
# Perform some convolutions of the sequence with itself
t = [1] + [0]*(len(v) - 1)
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*v[i] for i in range(n+1)) for n in range(len(v))]
g = guess_generating_function_rational(t, X=X)
if g:
result['ogf'] = g**Rational(1, d+1)
break
# Exponential Generating Function (egf)
if 'egf' in types:
# Transform sequence (division by factorial)
w, f = [], S.One
for i, k in enumerate(v):
f *= i if i else 1
w.append(k/f)
# Perform some convolutions of the sequence with itself
t = [1] + [0]*(len(w) - 1)
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['egf'] = g**Rational(1, d+1)
break
# Logarithmic Generating Function (lgf)
if 'lgf' in types:
# Transform sequence (multiplication by (-1)^(n+1) / n)
w, f = [], S.NegativeOne
for i, k in enumerate(v):
f = -f
w.append(f*k/Integer(i+1))
# Perform some convolutions of the sequence with itself
t = [1] + [0]*(len(w) - 1)
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['lgf'] = g**Rational(1, d+1)
break
# Hyperbolic logarithmic Generating Function (hlgf)
if 'hlgf' in types:
# Transform sequence (division by n+1)
w = []
for i, k in enumerate(v):
w.append(k/Integer(i+1))
# Perform some convolutions of the sequence with itself
t = [1] + [0]*(len(w) - 1)
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['hlgf'] = g**Rational(1, d+1)
break
# Logarithmic derivative of ordinary generating Function (lgdogf)
if v[0] != 0 and ('lgdogf' in types
or ('ogf' in types and 'ogf' not in result)):
# Transform sequence by computing f'(x)/f(x)
# because log(f(x)) = integrate( f'(x)/f(x) )
a, w = sympify(v[0]), []
for n in range(len(v)-1):
w.append(
(v[n+1]*(n+1) - sum(w[-i-1]*v[i+1] for i in range(n)))/a)
# Perform some convolutions of the sequence with itself
t = [1] + [0]*(len(w) - 1)
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['lgdogf'] = g**Rational(1, d+1)
if 'ogf' not in result:
result['ogf'] = exp(integrate(result['lgdogf'], X))
break
# Logarithmic derivative of exponential generating Function (lgdegf)
if v[0] != 0 and ('lgdegf' in types
or ('egf' in types and 'egf' not in result)):
# Transform sequence / step 1 (division by factorial)
z, f = [], S.One
for i, k in enumerate(v):
f *= i if i else 1
z.append(k/f)
# Transform sequence / step 2 by computing f'(x)/f(x)
# because log(f(x)) = integrate( f'(x)/f(x) )
a, w = z[0], []
for n in range(len(z)-1):
w.append(
(z[n+1]*(n+1) - sum(w[-i-1]*z[i+1] for i in range(n)))/a)
# Perform some convolutions of the sequence with itself
t = [1] + [0]*(len(w) - 1)
for d in range(max(1, maxsqrtn)):
t = [sum(t[n-i]*w[i] for i in range(n+1)) for n in range(len(w))]
g = guess_generating_function_rational(t, X=X)
if g:
result['lgdegf'] = g**Rational(1, d+1)
if 'egf' not in result:
result['egf'] = exp(integrate(result['lgdegf'], X))
break
return result
@public
def guess(l, all=False, evaluate=True, niter=2, variables=None):
"""
This function is adapted from the Rate.m package for Mathematica
written by Christian Krattenthaler.
It tries to guess a formula from a given sequence of rational numbers.
Explanation
===========
In order to speed up the process, the 'all' variable is set to False by
default, stopping the computation as some results are returned during an
iteration; the variable can be set to True if more iterations are needed
(other formulas may be found; however they may be equivalent to the first
ones).
Another option is the 'evaluate' variable (default is True); setting it
to False will leave the involved products unevaluated.
By default, the number of iterations is set to 2 but a greater value (up
to len(l)-1) can be specified with the optional 'niter' variable.
More and more convoluted results are found when the order of the
iteration gets higher:
* first iteration returns polynomial or rational functions;
* second iteration returns products of rising factorials and their
inverses;
* third iteration returns products of products of rising factorials
and their inverses;
* etc.
The returned formulas contain symbols i0, i1, i2, ... where the main
variables is i0 (and auxiliary variables are i1, i2, ...). A list of
other symbols can be provided in the 'variables' option; the length of
the least should be the value of 'niter' (more is acceptable but only
the first symbols will be used); in this case, the main variable will be
the first symbol in the list.
Examples
========
>>> from sympy.concrete.guess import guess
>>> guess([1,2,6,24,120], evaluate=False)
[Product(i1 + 1, (i1, 1, i0 - 1))]
>>> from sympy import symbols
>>> r = guess([1,2,7,42,429,7436,218348,10850216], niter=4)
>>> i0 = symbols("i0")
>>> [r[0].subs(i0,n).doit() for n in range(1,10)]
[1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460]
"""
if any(a==0 for a in l[:-1]):
return []
N = len(l)
niter = min(N-1, niter)
myprod = product if evaluate else Product
g = []
res = []
if variables is None:
symb = symbols('i:'+str(niter))
else:
symb = variables
for k, s in enumerate(symb):
g.append(l)
n, r = len(l), []
for i in range(n-2-1, -1, -1):
ri = rinterp(enumerate(g[k][:-1], start=1), i, X=s)
if ((denom(ri).subs({s:n}) != 0)
and (ri.subs({s:n}) - g[k][-1] == 0)
and ri not in r):
r.append(ri)
if r:
for i in range(k-1, -1, -1):
r = list(map(lambda v: g[i][0]
* myprod(v, (symb[i+1], 1, symb[i]-1)), r))
if not all: return r
res += r
l = [Rational(l[i+1], l[i]) for i in range(N-k-1)]
return res
|
7120291813699363b49cb86370fc26e7dd0ee6da36f15725ddf57223ffbbfb8b | from typing import Tuple as tTuple
from sympy.calculus.singularities import is_decreasing
from sympy.calculus.accumulationbounds import AccumulationBounds
from .expr_with_intlimits import ExprWithIntLimits
from .expr_with_limits import AddWithLimits
from .gosper import gosper_sum
from sympy.core.expr import Expr
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.function import Derivative, expand
from sympy.core.mul import Mul
from sympy.core.numbers import Float, _illegal
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Wild, Symbol, symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cot, csc
from sympy.functions.special.hyper import hyper
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import And
from sympy.polys.partfrac import apart
from sympy.polys.polyerrors import PolynomialError, PolificationFailed
from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor
from sympy.polys.rationaltools import together
from sympy.series.limitseq import limit_seq
from sympy.series.order import O
from sympy.series.residues import residue
from sympy.sets.sets import FiniteSet, Interval
from sympy.utilities.iterables import sift
import itertools
class Sum(AddWithLimits, ExprWithIntLimits):
r"""
Represents unevaluated summation.
Explanation
===========
``Sum`` represents a finite or infinite series, with the first argument
being the general form of terms in the series, and the second argument
being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
all integer values from ``start`` through ``end``. In accordance with
long-standing mathematical convention, the end term is included in the
summation.
Finite sums
===========
For finite sums (and sums with symbolic limits assumed to be finite) we
follow the summation convention described by Karr [1], especially
definition 3 of section 1.4. The sum:
.. math::
\sum_{m \leq i < n} f(i)
has *the obvious meaning* for `m < n`, namely:
.. math::
\sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)
with the upper limit value `f(n)` excluded. The sum over an empty set is
zero if and only if `m = n`:
.. math::
\sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n
Finally, for all other sums over empty sets we assume the following
definition:
.. math::
\sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n
It is important to note that Karr defines all sums with the upper
limit being exclusive. This is in contrast to the usual mathematical notation,
but does not affect the summation convention. Indeed we have:
.. math::
\sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)
where the difference in notation is intentional to emphasize the meaning,
with limits typeset on the top being inclusive.
Examples
========
>>> from sympy.abc import i, k, m, n, x
>>> from sympy import Sum, factorial, oo, IndexedBase, Function
>>> Sum(k, (k, 1, m))
Sum(k, (k, 1, m))
>>> Sum(k, (k, 1, m)).doit()
m**2/2 + m/2
>>> Sum(k**2, (k, 1, m))
Sum(k**2, (k, 1, m))
>>> Sum(k**2, (k, 1, m)).doit()
m**3/3 + m**2/2 + m/6
>>> Sum(x**k, (k, 0, oo))
Sum(x**k, (k, 0, oo))
>>> Sum(x**k, (k, 0, oo)).doit()
Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
>>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
exp(x)
Here are examples to do summation with symbolic indices. You
can use either Function of IndexedBase classes:
>>> f = Function('f')
>>> Sum(f(n), (n, 0, 3)).doit()
f(0) + f(1) + f(2) + f(3)
>>> Sum(f(n), (n, 0, oo)).doit()
Sum(f(n), (n, 0, oo))
>>> f = IndexedBase('f')
>>> Sum(f[n]**2, (n, 0, 3)).doit()
f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
An example showing that the symbolic result of a summation is still
valid for seemingly nonsensical values of the limits. Then the Karr
convention allows us to give a perfectly valid interpretation to
those sums by interchanging the limits according to the above rules:
>>> S = Sum(i, (i, 1, n)).doit()
>>> S
n**2/2 + n/2
>>> S.subs(n, -4)
6
>>> Sum(i, (i, 1, -4)).doit()
6
>>> Sum(-i, (i, -3, 0)).doit()
6
An explicit example of the Karr summation convention:
>>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
>>> S1
m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
>>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
>>> S2
-m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
>>> S1 + S2
0
>>> S3 = Sum(i, (i, m, m-1)).doit()
>>> S3
0
See Also
========
summation
Product, sympy.concrete.products.product
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
.. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
.. [3] https://en.wikipedia.org/wiki/Empty_sum
"""
__slots__ = ()
limits: tTuple[tTuple[Symbol, Expr, Expr]]
def __new__(cls, function, *symbols, **assumptions):
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
if not hasattr(obj, 'limits'):
return obj
if any(len(l) != 3 or None in l for l in obj.limits):
raise ValueError('Sum requires values for lower and upper bounds.')
return obj
def _eval_is_zero(self):
# a Sum is only zero if its function is zero or if all terms
# cancel out. This only answers whether the summand is zero; if
# not then None is returned since we don't analyze whether all
# terms cancel out.
if self.function.is_zero or self.has_empty_sequence:
return True
def _eval_is_extended_real(self):
if self.has_empty_sequence:
return True
return self.function.is_extended_real
def _eval_is_positive(self):
if self.has_finite_limits and self.has_reversed_limits is False:
return self.function.is_positive
def _eval_is_negative(self):
if self.has_finite_limits and self.has_reversed_limits is False:
return self.function.is_negative
def _eval_is_finite(self):
if self.has_finite_limits and self.function.is_finite:
return True
def doit(self, **hints):
if hints.get('deep', True):
f = self.function.doit(**hints)
else:
f = self.function
# first make sure any definite limits have summation
# variables with matching assumptions
reps = {}
for xab in self.limits:
d = _dummy_with_inherited_properties_concrete(xab)
if d:
reps[xab[0]] = d
if reps:
undo = {v: k for k, v in reps.items()}
did = self.xreplace(reps).doit(**hints)
if isinstance(did, tuple): # when separate=True
did = tuple([i.xreplace(undo) for i in did])
elif did is not None:
did = did.xreplace(undo)
else:
did = self
return did
if self.function.is_Matrix:
expanded = self.expand()
if self != expanded:
return expanded.doit()
return _eval_matrix_sum(self)
for n, limit in enumerate(self.limits):
i, a, b = limit
dif = b - a
if dif == -1:
# Any summation over an empty set is zero
return S.Zero
if dif.is_integer and dif.is_negative:
a, b = b + 1, a - 1
f = -f
newf = eval_sum(f, (i, a, b))
if newf is None:
if f == self.function:
zeta_function = self.eval_zeta_function(f, (i, a, b))
if zeta_function is not None:
return zeta_function
return self
else:
return self.func(f, *self.limits[n:])
f = newf
if hints.get('deep', True):
# eval_sum could return partially unevaluated
# result with Piecewise. In this case we won't
# doit() recursively.
if not isinstance(f, Piecewise):
return f.doit(**hints)
return f
def eval_zeta_function(self, f, limits):
"""
Check whether the function matches with the zeta function.
If it matches, then return a `Piecewise` expression because
zeta function does not converge unless `s > 1` and `q > 0`
"""
i, a, b = limits
w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
result = f.match((w * i + y) ** (-z))
if result is not None and b is S.Infinity:
coeff = 1 / result[w] ** result[z]
s = result[z]
q = result[y] / result[w] + a
return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))
def _eval_derivative(self, x):
"""
Differentiate wrt x as long as x is not in the free symbols of any of
the upper or lower limits.
Explanation
===========
Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
since the value of the sum is discontinuous in `a`. In a case
involving a limit variable, the unevaluated derivative is returned.
"""
# diff already confirmed that x is in the free symbols of self, but we
# don't want to differentiate wrt any free symbol in the upper or lower
# limits
# XXX remove this test for free_symbols when the default _eval_derivative is in
if isinstance(x, Symbol) and x not in self.free_symbols:
return S.Zero
# get limits and the function
f, limits = self.function, list(self.limits)
limit = limits.pop(-1)
if limits: # f is the argument to a Sum
f = self.func(f, *limits)
_, a, b = limit
if x in a.free_symbols or x in b.free_symbols:
return None
df = Derivative(f, x, evaluate=True)
rv = self.func(df, limit)
return rv
def _eval_difference_delta(self, n, step):
k, _, upper = self.args[-1]
new_upper = upper.subs(n, n + step)
if len(self.args) == 2:
f = self.args[0]
else:
f = self.func(*self.args[:-1])
return Sum(f, (k, upper + 1, new_upper)).doit()
def _eval_simplify(self, **kwargs):
# split the function into adds
terms = Add.make_args(expand(self.function))
s_t = [] # Sum Terms
o_t = [] # Other Terms
for term in terms:
if term.has(Sum):
# if there is an embedded sum here
# it is of the form x * (Sum(whatever))
# hence we make a Mul out of it, and simplify all interior sum terms
subterms = Mul.make_args(expand(term))
out_terms = []
for subterm in subterms:
# go through each term
if isinstance(subterm, Sum):
# if it's a sum, simplify it
out_terms.append(subterm._eval_simplify())
else:
# otherwise, add it as is
out_terms.append(subterm)
# turn it back into a Mul
s_t.append(Mul(*out_terms))
else:
o_t.append(term)
# next try to combine any interior sums for further simplification
from sympy.simplify.simplify import factor_sum, sum_combine
result = Add(sum_combine(s_t), *o_t)
return factor_sum(result, limits=self.limits)
def is_convergent(self):
r"""
Checks for the convergence of a Sum.
Explanation
===========
We divide the study of convergence of infinite sums and products in
two parts.
First Part:
One part is the question whether all the terms are well defined, i.e.,
they are finite in a sum and also non-zero in a product. Zero
is the analogy of (minus) infinity in products as
:math:`e^{-\infty} = 0`.
Second Part:
The second part is the question of convergence after infinities,
and zeros in products, have been omitted assuming that their number
is finite. This means that we only consider the tail of the sum or
product, starting from some point after which all terms are well
defined.
For example, in a sum of the form:
.. math::
\sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
where a and b are numbers. The routine will return true, even if there
are infinities in the term sequence (at most two). An analogous
product would be:
.. math::
\prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}
This is how convergence is interpreted. It is concerned with what
happens at the limit. Finding the bad terms is another independent
matter.
Note: It is responsibility of user to see that the sum or product
is well defined.
There are various tests employed to check the convergence like
divergence test, root test, integral test, alternating series test,
comparison tests, Dirichlet tests. It returns true if Sum is convergent
and false if divergent and NotImplementedError if it cannot be checked.
References
==========
.. [1] https://en.wikipedia.org/wiki/Convergence_tests
Examples
========
>>> from sympy import factorial, S, Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
True
>>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
False
>>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
False
>>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
True
See Also
========
Sum.is_absolutely_convergent()
sympy.concrete.products.Product.is_convergent()
"""
p, q, r = symbols('p q r', cls=Wild)
sym = self.limits[0][0]
lower_limit = self.limits[0][1]
upper_limit = self.limits[0][2]
sequence_term = self.function.simplify()
if len(sequence_term.free_symbols) > 1:
raise NotImplementedError("convergence checking for more than one symbol "
"containing series is not handled")
if lower_limit.is_finite and upper_limit.is_finite:
return S.true
# transform sym -> -sym and swap the upper_limit = S.Infinity
# and lower_limit = - upper_limit
if lower_limit is S.NegativeInfinity:
if upper_limit is S.Infinity:
return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
from sympy.simplify.simplify import simplify
sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
lower_limit = -upper_limit
upper_limit = S.Infinity
sym_ = Dummy(sym.name, integer=True, positive=True)
sequence_term = sequence_term.xreplace({sym: sym_})
sym = sym_
interval = Interval(lower_limit, upper_limit)
# Piecewise function handle
if sequence_term.is_Piecewise:
for func, cond in sequence_term.args:
# see if it represents something going to oo
if cond == True or cond.as_set().sup is S.Infinity:
s = Sum(func, (sym, lower_limit, upper_limit))
return s.is_convergent()
return S.true
### -------- Divergence test ----------- ###
try:
lim_val = limit_seq(sequence_term, sym)
if lim_val is not None and lim_val.is_zero is False:
return S.false
except NotImplementedError:
pass
try:
lim_val_abs = limit_seq(abs(sequence_term), sym)
if lim_val_abs is not None and lim_val_abs.is_zero is False:
return S.false
except NotImplementedError:
pass
order = O(sequence_term, (sym, S.Infinity))
### --------- p-series test (1/n**p) ---------- ###
p_series_test = order.expr.match(sym**p)
if p_series_test is not None:
if p_series_test[p] < -1:
return S.true
if p_series_test[p] >= -1:
return S.false
### ------------- comparison test ------------- ###
# 1/(n**p*log(n)**q*log(log(n))**r) comparison
n_log_test = (order.expr.match(1/(sym**p*log(1/sym)**q*log(-log(1/sym))**r)) or
order.expr.match(1/(sym**p*(-log(1/sym))**q*log(-log(1/sym))**r)))
if n_log_test is not None:
if (n_log_test[p] > 1 or
(n_log_test[p] == 1 and n_log_test[q] > 1) or
(n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
return S.true
return S.false
### ------------- Limit comparison test -----------###
# (1/n) comparison
try:
lim_comp = limit_seq(sym*sequence_term, sym)
if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
return S.false
except NotImplementedError:
pass
### ----------- ratio test ---------------- ###
next_sequence_term = sequence_term.xreplace({sym: sym + 1})
from sympy.simplify.combsimp import combsimp
from sympy.simplify.powsimp import powsimp
ratio = combsimp(powsimp(next_sequence_term/sequence_term))
try:
lim_ratio = limit_seq(ratio, sym)
if lim_ratio is not None and lim_ratio.is_number:
if abs(lim_ratio) > 1:
return S.false
if abs(lim_ratio) < 1:
return S.true
except NotImplementedError:
lim_ratio = None
### ---------- Raabe's test -------------- ###
if lim_ratio == 1: # ratio test inconclusive
test_val = sym*(sequence_term/
sequence_term.subs(sym, sym + 1) - 1)
test_val = test_val.gammasimp()
try:
lim_val = limit_seq(test_val, sym)
if lim_val is not None and lim_val.is_number:
if lim_val > 1:
return S.true
if lim_val < 1:
return S.false
except NotImplementedError:
pass
### ----------- root test ---------------- ###
# lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
try:
lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
if lim_evaluated is not None and lim_evaluated.is_number:
if lim_evaluated < 1:
return S.true
if lim_evaluated > 1:
return S.false
except NotImplementedError:
pass
### ------------- alternating series test ----------- ###
dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q)
if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
return S.true
### ------------- integral test -------------- ###
check_interval = None
from sympy.solvers.solveset import solveset
maxima = solveset(sequence_term.diff(sym), sym, interval)
if not maxima:
check_interval = interval
elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
check_interval = Interval(maxima.sup, interval.sup)
if (check_interval is not None and
(is_decreasing(sequence_term, check_interval) or
is_decreasing(-sequence_term, check_interval))):
integral_val = Integral(
sequence_term, (sym, lower_limit, upper_limit))
try:
integral_val_evaluated = integral_val.doit()
if integral_val_evaluated.is_number:
return S(integral_val_evaluated.is_finite)
except NotImplementedError:
pass
### ----- Dirichlet and bounded times convergent tests ----- ###
# TODO
#
# Dirichlet_test
# https://en.wikipedia.org/wiki/Dirichlet%27s_test
#
# Bounded times convergent test
# It is based on comparison theorems for series.
# In particular, if the general term of a series can
# be written as a product of two terms a_n and b_n
# and if a_n is bounded and if Sum(b_n) is absolutely
# convergent, then the original series Sum(a_n * b_n)
# is absolutely convergent and so convergent.
#
# The following code can grows like 2**n where n is the
# number of args in order.expr
# Possibly combined with the potentially slow checks
# inside the loop, could make this test extremely slow
# for larger summation expressions.
if order.expr.is_Mul:
args = order.expr.args
argset = set(args)
### -------------- Dirichlet tests -------------- ###
m = Dummy('m', integer=True)
def _dirichlet_test(g_n):
try:
ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
if ing_val is not None and ing_val.is_finite:
return S.true
except NotImplementedError:
pass
### -------- bounded times convergent test ---------###
def _bounded_convergent_test(g1_n, g2_n):
try:
lim_val = limit_seq(g1_n, sym)
if lim_val is not None and (lim_val.is_finite or (
isinstance(lim_val, AccumulationBounds)
and (lim_val.max - lim_val.min).is_finite)):
if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
return S.true
except NotImplementedError:
pass
for n in range(1, len(argset)):
for a_tuple in itertools.combinations(args, n):
b_set = argset - set(a_tuple)
a_n = Mul(*a_tuple)
b_n = Mul(*b_set)
if is_decreasing(a_n, interval):
dirich = _dirichlet_test(b_n)
if dirich is not None:
return dirich
bc_test = _bounded_convergent_test(a_n, b_n)
if bc_test is not None:
return bc_test
_sym = self.limits[0][0]
sequence_term = sequence_term.xreplace({sym: _sym})
raise NotImplementedError("The algorithm to find the Sum convergence of %s "
"is not yet implemented" % (sequence_term))
def is_absolutely_convergent(self):
"""
Checks for the absolute convergence of an infinite series.
Same as checking convergence of absolute value of sequence_term of
an infinite series.
References
==========
.. [1] https://en.wikipedia.org/wiki/Absolute_convergence
Examples
========
>>> from sympy import Sum, Symbol, oo
>>> n = Symbol('n', integer=True)
>>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
False
>>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
True
See Also
========
Sum.is_convergent()
"""
return Sum(abs(self.function), self.limits).is_convergent()
def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
"""
Return an Euler-Maclaurin approximation of self, where m is the
number of leading terms to sum directly and n is the number of
terms in the tail.
With m = n = 0, this is simply the corresponding integral
plus a first-order endpoint correction.
Returns (s, e) where s is the Euler-Maclaurin approximation
and e is the estimated error (taken to be the magnitude of
the first omitted term in the tail):
>>> from sympy.abc import k, a, b
>>> from sympy import Sum
>>> Sum(1/k, (k, 2, 5)).doit().evalf()
1.28333333333333
>>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
>>> s
-log(2) + 7/20 + log(5)
>>> from sympy import sstr
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
(1.26629073187415, 0.0175000000000000)
The endpoints may be symbolic:
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)
>>> e
Abs(1/(12*b**2) - 1/(12*a**2))
If the function is a polynomial of degree at most 2n+1, the
Euler-Maclaurin formula becomes exact (and e = 0 is returned):
>>> Sum(k, (k, 2, b)).euler_maclaurin()
(b**2/2 + b/2 - 1, 0)
>>> Sum(k, (k, 2, b)).doit()
b**2/2 + b/2 - 1
With a nonzero eps specified, the summation is ended
as soon as the remainder term is less than the epsilon.
"""
m = int(m)
n = int(n)
f = self.function
if len(self.limits) != 1:
raise ValueError("More than 1 limit")
i, a, b = self.limits[0]
if (a > b) == True:
if a - b == 1:
return S.Zero, S.Zero
a, b = b + 1, a - 1
f = -f
s = S.Zero
if m:
if b.is_Integer and a.is_Integer:
m = min(m, b - a + 1)
if not eps or f.is_polynomial(i):
s = Add(*[f.subs(i, a + k) for k in range(m)])
else:
term = f.subs(i, a)
if term:
test = abs(term.evalf(3)) < eps
if test == True:
return s, abs(term)
elif not (test == False):
# a symbolic Relational class, can't go further
return term, S.Zero
s = term
for k in range(1, m):
term = f.subs(i, a + k)
if abs(term.evalf(3)) < eps and term != 0:
return s, abs(term)
s += term
if b - a + 1 == m:
return s, S.Zero
a += m
x = Dummy('x')
I = Integral(f.subs(i, x), (x, a, b))
if eval_integral:
I = I.doit()
s += I
def fpoint(expr):
if b is S.Infinity:
return expr.subs(i, a), 0
return expr.subs(i, a), expr.subs(i, b)
fa, fb = fpoint(f)
iterm = (fa + fb)/2
g = f.diff(i)
for k in range(1, n + 2):
ga, gb = fpoint(g)
term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
if k > n:
break
if eps and term:
term_evalf = term.evalf(3)
if term_evalf is S.NaN:
return S.NaN, S.NaN
if abs(term_evalf) < eps:
break
s += term
g = g.diff(i, 2, simplify=False)
return s + iterm, abs(term)
def reverse_order(self, *indices):
"""
Reverse the order of a limit in a Sum.
Explanation
===========
``reverse_order(self, *indices)`` reverses some limits in the expression
``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
the argument ``indices`` specify some indices whose limits get reversed.
These selectors are either variable names or numerical indices counted
starting from the inner-most limit tuple.
Examples
========
>>> from sympy import Sum
>>> from sympy.abc import x, y, a, b, c, d
>>> Sum(x, (x, 0, 3)).reverse_order(x)
Sum(-x, (x, 4, -1))
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
Sum(x*y, (x, 6, 0), (y, 7, -1))
>>> Sum(x, (x, a, b)).reverse_order(x)
Sum(-x, (x, b + 1, a - 1))
>>> Sum(x, (x, a, b)).reverse_order(0)
Sum(-x, (x, b + 1, a - 1))
While one should prefer variable names when specifying which limits
to reverse, the index counting notation comes in handy in case there
are several symbols with the same name.
>>> S = Sum(x**2, (x, a, b), (x, c, d))
>>> S
Sum(x**2, (x, a, b), (x, c, d))
>>> S0 = S.reverse_order(0)
>>> S0
Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
>>> S1 = S0.reverse_order(1)
>>> S1
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
Of course we can mix both notations:
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
See Also
========
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
References
==========
.. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
Volume 28 Issue 2, April 1981, Pages 305-350
http://dl.acm.org/citation.cfm?doid=322248.322255
"""
l_indices = list(indices)
for i, indx in enumerate(l_indices):
if not isinstance(indx, int):
l_indices[i] = self.index(indx)
e = 1
limits = []
for i, limit in enumerate(self.limits):
l = limit
if i in l_indices:
e = -e
l = (limit[0], limit[2] + 1, limit[1] - 1)
limits.append(l)
return Sum(e * self.function, *limits)
def _eval_rewrite_as_Product(self, *args, **kwargs):
from sympy.concrete.products import Product
if self.function.is_extended_real:
return log(Product(exp(self.function), *self.limits))
def summation(f, *symbols, **kwargs):
r"""
Compute the summation of f with respect to symbols.
Explanation
===========
The notation for symbols is similar to the notation used in Integral.
summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
i.e.,
::
b
____
\ `
summation(f, (i, a, b)) = ) f
/___,
i = a
If it cannot compute the sum, it returns an unevaluated Sum object.
Repeated sums can be computed by introducing additional symbols tuples::
Examples
========
>>> from sympy import summation, oo, symbols, log
>>> i, n, m = symbols('i n m', integer=True)
>>> summation(2*i - 1, (i, 1, n))
n**2
>>> summation(1/2**i, (i, 0, oo))
2
>>> summation(1/log(n)**n, (n, 2, oo))
Sum(log(n)**(-n), (n, 2, oo))
>>> summation(i, (i, 0, n), (n, 0, m))
m**3/6 + m**2/2 + m/3
>>> from sympy.abc import x
>>> from sympy import factorial
>>> summation(x**n/factorial(n), (n, 0, oo))
exp(x)
See Also
========
Sum
Product, sympy.concrete.products.product
"""
return Sum(f, *symbols, **kwargs).doit(deep=False)
def telescopic_direct(L, R, n, limits):
"""
Returns the direct summation of the terms of a telescopic sum
Explanation
===========
L is the term with lower index
R is the term with higher index
n difference between the indexes of L and R
Examples
========
>>> from sympy.concrete.summations import telescopic_direct
>>> from sympy.abc import k, a, b
>>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
-1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
"""
(i, a, b) = limits
return Add(*[L.subs(i, a + m) + R.subs(i, b - m) for m in range(n)])
def telescopic(L, R, limits):
'''
Tries to perform the summation using the telescopic property.
Return None if not possible.
'''
(i, a, b) = limits
if L.is_Add or R.is_Add:
return None
# We want to solve(L.subs(i, i + m) + R, m)
# First we try a simple match since this does things that
# solve doesn't do, e.g. solve(cos(k+m)-cos(k), m) gives
# a more complicated solution than m == 0.
k = Wild("k")
sol = (-R).match(L.subs(i, i + k))
s = None
if sol and k in sol:
s = sol[k]
if not (s.is_Integer and L.subs(i, i + s) + R == 0):
# invalid match or match didn't work
s = None
# But there are things that match doesn't do that solve
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
if s is None:
m = Dummy('m')
try:
from sympy.solvers.solvers import solve
sol = solve(L.subs(i, i + m) + R, m) or []
except NotImplementedError:
return None
sol = [si for si in sol if si.is_Integer and
(L.subs(i, i + si) + R).expand().is_zero]
if len(sol) != 1:
return None
s = sol[0]
if s < 0:
return telescopic_direct(R, L, abs(s), (i, a, b))
elif s > 0:
return telescopic_direct(L, R, s, (i, a, b))
def eval_sum(f, limits):
(i, a, b) = limits
if f.is_zero:
return S.Zero
if i not in f.free_symbols:
return f*(b - a + 1)
if a == b:
return f.subs(i, a)
if isinstance(f, Piecewise):
if not any(i in arg.args[1].free_symbols for arg in f.args):
# Piecewise conditions do not depend on the dummy summation variable,
# therefore we can fold: Sum(Piecewise((e, c), ...), limits)
# --> Piecewise((Sum(e, limits), c), ...)
newargs = []
for arg in f.args:
newexpr = eval_sum(arg.expr, limits)
if newexpr is None:
return None
newargs.append((newexpr, arg.cond))
return f.func(*newargs)
if f.has(KroneckerDelta):
from .delta import deltasummation, _has_simple_delta
f = f.replace(
lambda x: isinstance(x, Sum),
lambda x: x.factor()
)
if _has_simple_delta(f, limits[0]):
return deltasummation(f, limits)
dif = b - a
definite = dif.is_Integer
# Doing it directly may be faster if there are very few terms.
if definite and (dif < 100):
return eval_sum_direct(f, (i, a, b))
if isinstance(f, Piecewise):
return None
# Try to do it symbolically. Even when the number of terms is
# known, this can save time when b-a is big.
value = eval_sum_symbolic(f.expand(), (i, a, b))
if value is not None:
return value
# Do it directly
if definite:
return eval_sum_direct(f, (i, a, b))
def eval_sum_direct(expr, limits):
"""
Evaluate expression directly, but perform some simple checks first
to possibly result in a smaller expression and faster execution.
"""
(i, a, b) = limits
dif = b - a
# Linearity
if expr.is_Mul:
# Try factor out everything not including i
without_i, with_i = expr.as_independent(i)
if without_i != 1:
s = eval_sum_direct(with_i, (i, a, b))
if s:
r = without_i*s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = expr.as_two_terms()
if not L.has(i):
sR = eval_sum_direct(R, (i, a, b))
if sR:
return L*sR
if not R.has(i):
sL = eval_sum_direct(L, (i, a, b))
if sL:
return sL*R
# do this whether its an Add or Mul
# e.g. apart(1/(25*i**2 + 45*i + 14)) and
# apart(1/((5*i + 2)*(5*i + 7))) ->
# -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
try:
expr = apart(expr, i) # see if it becomes an Add
except PolynomialError:
pass
if expr.is_Add:
# Try factor out everything not including i
without_i, with_i = expr.as_independent(i)
if without_i != 0:
s = eval_sum_direct(with_i, (i, a, b))
if s:
r = without_i*(dif + 1) + s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = expr.as_two_terms()
lsum = eval_sum_direct(L, (i, a, b))
rsum = eval_sum_direct(R, (i, a, b))
if None not in (lsum, rsum):
r = lsum + rsum
if r is not S.NaN:
return r
return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
def eval_sum_symbolic(f, limits):
f_orig = f
(i, a, b) = limits
if not f.has(i):
return f*(b - a + 1)
# Linearity
if f.is_Mul:
# Try factor out everything not including i
without_i, with_i = f.as_independent(i)
if without_i != 1:
s = eval_sum_symbolic(with_i, (i, a, b))
if s:
r = without_i*s
if r is not S.NaN:
return r
else:
# Try term by term
L, R = f.as_two_terms()
if not L.has(i):
sR = eval_sum_symbolic(R, (i, a, b))
if sR:
return L*sR
if not R.has(i):
sL = eval_sum_symbolic(L, (i, a, b))
if sL:
return sL*R
# do this whether its an Add or Mul
# e.g. apart(1/(25*i**2 + 45*i + 14)) and
# apart(1/((5*i + 2)*(5*i + 7))) ->
# -1/(5*(5*i + 7)) + 1/(5*(5*i + 2))
try:
f = apart(f, i)
except PolynomialError:
pass
if f.is_Add:
L, R = f.as_two_terms()
lrsum = telescopic(L, R, (i, a, b))
if lrsum:
return lrsum
# Try factor out everything not including i
without_i, with_i = f.as_independent(i)
if without_i != 0:
s = eval_sum_symbolic(with_i, (i, a, b))
if s:
r = without_i*(b - a + 1) + s
if r is not S.NaN:
return r
else:
# Try term by term
lsum = eval_sum_symbolic(L, (i, a, b))
rsum = eval_sum_symbolic(R, (i, a, b))
if None not in (lsum, rsum):
r = lsum + rsum
if r is not S.NaN:
return r
# Polynomial terms with Faulhaber's formula
n = Wild('n')
result = f.match(i**n)
if result is not None:
n = result[n]
if n.is_Integer:
if n >= 0:
if (b is S.Infinity and a is not S.NegativeInfinity) or \
(a is S.NegativeInfinity and b is not S.Infinity):
return S.Infinity
return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
elif a.is_Integer and a >= 1:
if n == -1:
return harmonic(b) - harmonic(a - 1)
else:
return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))
if not (a.has(S.Infinity, S.NegativeInfinity) or
b.has(S.Infinity, S.NegativeInfinity)):
# Geometric terms
c1 = Wild('c1', exclude=[i])
c2 = Wild('c2', exclude=[i])
c3 = Wild('c3', exclude=[i])
wexp = Wild('wexp')
# Here we first attempt powsimp on f for easier matching with the
# exponential pattern, and attempt expansion on the exponent for easier
# matching with the linear pattern.
e = f.powsimp().match(c1 ** wexp)
if e is not None:
e_exp = e.pop(wexp).expand().match(c2*i + c3)
if e_exp is not None:
e.update(e_exp)
p = (c1**c3).subs(e)
q = (c1**c2).subs(e)
r = p*(q**a - q**(b + 1))/(1 - q)
l = p*(b - a + 1)
return Piecewise((l, Eq(q, S.One)), (r, True))
r = gosper_sum(f, (i, a, b))
if isinstance(r, (Mul,Add)):
from sympy.simplify.radsimp import denom
from sympy.solvers.solvers import solve
non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
den = denom(together(r))
den_sym = non_limit & den.free_symbols
args = []
for v in ordered(den_sym):
try:
s = solve(den, v)
m = Eq(v, s[0]) if s else S.false
if m != False:
args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
break
except NotImplementedError:
continue
args.append((r, True))
return Piecewise(*args)
if r not in (None, S.NaN):
return r
h = eval_sum_hyper(f_orig, (i, a, b))
if h is not None:
return h
r = eval_sum_residue(f_orig, (i, a, b))
if r is not None:
return r
factored = f_orig.factor()
if factored != f_orig:
return eval_sum_symbolic(factored, (i, a, b))
def _eval_sum_hyper(f, i, a):
""" Returns (res, cond). Sums from a to oo. """
if a != 0:
return _eval_sum_hyper(f.subs(i, i + a), i, 0)
if f.subs(i, 0) == 0:
from sympy.simplify.simplify import simplify
if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
return S.Zero, True
return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
from sympy.simplify.simplify import hypersimp
hs = hypersimp(f, i)
if hs is None:
return None
if isinstance(hs, Float):
from sympy.simplify.simplify import nsimplify
hs = nsimplify(hs)
from sympy.simplify.combsimp import combsimp
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.radsimp import fraction
numer, denom = fraction(factor(hs))
top, topl = numer.as_coeff_mul(i)
bot, botl = denom.as_coeff_mul(i)
ab = [top, bot]
factors = [topl, botl]
params = [[], []]
for k in range(2):
for fac in factors[k]:
mul = 1
if fac.is_Pow:
mul = fac.exp
fac = fac.base
if not mul.is_Integer:
return None
p = Poly(fac, i)
if p.degree() != 1:
return None
m, n = p.all_coeffs()
ab[k] *= m**mul
params[k] += [n/m]*mul
# Add "1" to numerator parameters, to account for implicit n! in
# hypergeometric series.
ap = params[0] + [1]
bq = params[1]
x = ab[0]/ab[1]
h = hyper(ap, bq, x)
f = combsimp(f)
return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
def eval_sum_hyper(f, i_a_b):
i, a, b = i_a_b
if f.is_hypergeometric(i) is False:
return
if (b - a).is_Integer:
# We are never going to do better than doing the sum in the obvious way
return None
old_sum = Sum(f, (i, a, b))
if b != S.Infinity:
if a is S.NegativeInfinity:
res = _eval_sum_hyper(f.subs(i, -i), i, -b)
if res is not None:
return Piecewise(res, (old_sum, True))
else:
n_illegal = lambda x: sum(x.count(_) for _ in _illegal)
had = n_illegal(f)
# check that no extra illegals are introduced
res1 = _eval_sum_hyper(f, i, a)
if res1 is None or n_illegal(res1) > had:
return
res2 = _eval_sum_hyper(f, i, b + 1)
if res2 is None or n_illegal(res2) > had:
return
(res1, cond1), (res2, cond2) = res1, res2
cond = And(cond1, cond2)
if cond == False:
return None
return Piecewise((res1 - res2, cond), (old_sum, True))
if a is S.NegativeInfinity:
res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
res2 = _eval_sum_hyper(f, i, 0)
if res1 is None or res2 is None:
return None
res1, cond1 = res1
res2, cond2 = res2
cond = And(cond1, cond2)
if cond == False or cond.as_set() == S.EmptySet:
return None
return Piecewise((res1 + res2, cond), (old_sum, True))
# Now b == oo, a != -oo
res = _eval_sum_hyper(f, i, a)
if res is not None:
r, c = res
if c == False:
if r.is_number:
f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
if f.is_positive or f.is_zero:
return S.Infinity
elif f.is_negative:
return S.NegativeInfinity
return None
return Piecewise(res, (old_sum, True))
def eval_sum_residue(f, i_a_b):
r"""Compute the infinite summation with residues
Notes
=====
If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$,
some infinite summations can be computed by the following residue
evaluations.
.. math::
\sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} =
-\pi \sum_{\alpha|g(\alpha)=0}
\text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha)
.. math::
\sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} =
-\pi \sum_{\alpha|g(\alpha)=0}
\text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha)
Examples
========
>>> from sympy import Sum, oo, Symbol
>>> x = Symbol('x')
Doubly infinite series of rational functions.
>>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit()
pi/tanh(pi)
Doubly infinite alternating series of rational functions.
>>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit()
pi/sinh(pi)
Infinite series of even rational functions.
>>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit()
1/2 + pi/(2*tanh(pi))
Infinite series of alternating even rational functions.
>>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit()
pi/(2*sinh(pi)) + 1/2
This also have heuristics to transform arbitrarily shifted summand or
arbitrarily shifted summation range to the canonical problem the
formula can handle.
>>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit()
1/2 + pi/(2*tanh(pi))
>>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit()
1/2 + pi/(2*tanh(pi))
>>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit()
-1/2 + pi/(2*tanh(pi))
>>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit()
-1 + pi/(2*tanh(pi))
References
==========
.. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf
.. [#] Asmar N.H., Grafakos L. (2018) Residue Theory.
In: Complex Analysis with Applications.
Undergraduate Texts in Mathematics. Springer, Cham.
https://doi.org/10.1007/978-3-319-94063-2_5
"""
i, a, b = i_a_b
def is_even_function(numer, denom):
"""Test if the rational function is an even function"""
numer_even = all(i % 2 == 0 for (i,) in numer.monoms())
denom_even = all(i % 2 == 0 for (i,) in denom.monoms())
numer_odd = all(i % 2 == 1 for (i,) in numer.monoms())
denom_odd = all(i % 2 == 1 for (i,) in denom.monoms())
return (numer_even and denom_even) or (numer_odd and denom_odd)
def match_rational(f, i):
numer, denom = f.as_numer_denom()
try:
(numer, denom), opt = parallel_poly_from_expr((numer, denom), i)
except (PolificationFailed, PolynomialError):
return None
return numer, denom
def get_poles(denom):
roots = denom.sqf_part().all_roots()
roots = sift(roots, lambda x: x.is_integer)
if None in roots:
return None
int_roots, nonint_roots = roots[True], roots[False]
return int_roots, nonint_roots
def get_shift(denom):
n = denom.degree(i)
a = denom.coeff_monomial(i**n)
b = denom.coeff_monomial(i**(n-1))
shift = - b / a / n
return shift
#Need a dummy symbol with no assumptions set for get_residue_factor
z = Dummy('z')
def get_residue_factor(numer, denom, alternating):
residue_factor = (numer.as_expr() / denom.as_expr()).subs(i, z)
if not alternating:
residue_factor *= cot(S.Pi * z)
else:
residue_factor *= csc(S.Pi * z)
return residue_factor
# We don't know how to deal with symbolic constants in summand
if f.free_symbols - set([i]):
return None
if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)):
return None
if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)):
return None
# Quick exit heuristic for the sums which doesn't have infinite range
if a != S.NegativeInfinity and b != S.Infinity:
return None
match = match_rational(f, i)
if match:
alternating = False
numer, denom = match
else:
match = match_rational(f / S.NegativeOne**i, i)
if match:
alternating = True
numer, denom = match
else:
return None
if denom.degree(i) - numer.degree(i) < 2:
return None
if (a, b) == (S.NegativeInfinity, S.Infinity):
poles = get_poles(denom)
if poles is None:
return None
int_roots, nonint_roots = poles
if int_roots:
return None
residue_factor = get_residue_factor(numer, denom, alternating)
residues = [residue(residue_factor, z, root) for root in nonint_roots]
return -S.Pi * sum(residues)
if not (a.is_finite and b is S.Infinity):
return None
if not is_even_function(numer, denom):
# Try shifting summation and check if the summand can be made
# and even function from the origin.
# Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s))
shift = get_shift(denom)
if not shift.is_Integer:
return None
if shift == 0:
return None
numer = numer.shift(shift)
denom = denom.shift(shift)
if not is_even_function(numer, denom):
return None
if alternating:
f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr())
else:
f = numer.as_expr() / denom.as_expr()
return eval_sum_residue(f, (i, a-shift, b-shift))
poles = get_poles(denom)
if poles is None:
return None
int_roots, nonint_roots = poles
if int_roots:
int_roots = [int(root) for root in int_roots]
int_roots_max = max(int_roots)
int_roots_min = min(int_roots)
# Integer valued poles must be next to each other
# and also symmetric from origin (Because the function is even)
if not len(int_roots) == int_roots_max - int_roots_min + 1:
return None
# Check whether the summation indices contain poles
if a <= max(int_roots):
return None
residue_factor = get_residue_factor(numer, denom, alternating)
residues = [residue(residue_factor, z, root) for root in int_roots + nonint_roots]
full_sum = -S.Pi * sum(residues)
if not int_roots:
# Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation
# at the origin.
half_sum = (full_sum + f.xreplace({i: 0})) / 2
# Add and subtract extraneous evaluations
extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)]
extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))]
result = half_sum + sum(extraneous_neg) - sum(extraneous_pos)
return result
# Compute Sum(f, (i, min(poles) + 1, oo))
half_sum = full_sum / 2
# Subtract extraneous evaluations
extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))]
result = half_sum - sum(extraneous)
return result
def _eval_matrix_sum(expression):
f = expression.function
for n, limit in enumerate(expression.limits):
i, a, b = limit
dif = b - a
if dif.is_Integer:
if (dif < 0) == True:
a, b = b + 1, a - 1
f = -f
newf = eval_sum_direct(f, (i, a, b))
if newf is not None:
return newf.doit()
def _dummy_with_inherited_properties_concrete(limits):
"""
Return a Dummy symbol that inherits as many assumptions as possible
from the provided symbol and limits.
If the symbol already has all True assumption shared by the limits
then return None.
"""
x, a, b = limits
l = [a, b]
assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
'extended_nonpositive', 'nonpositive',
'extended_positive', 'positive',
'extended_negative', 'negative',
'integer', 'rational', 'finite',
'zero', 'real', 'extended_real']
assumptions_to_keep = {}
assumptions_to_add = {}
for assum in assumptions_to_consider:
assum_true = x._assumptions.get(assum, None)
if assum_true:
assumptions_to_keep[assum] = True
elif all(getattr(i, 'is_' + assum) for i in l):
assumptions_to_add[assum] = True
if assumptions_to_add:
assumptions_to_keep.update(assumptions_to_add)
return Dummy('d', **assumptions_to_keep)
|
fc5e45554cd560ba67e1feb59b760cef0356541523fe0477fd41ea0c8cd91f13 | """
Limits
======
Implemented according to the PhD thesis
http://www.cybertester.com/data/gruntz.pdf, which contains very thorough
descriptions of the algorithm including many examples. We summarize here
the gist of it.
All functions are sorted according to how rapidly varying they are at
infinity using the following rules. Any two functions f and g can be
compared using the properties of L:
L=lim log|f(x)| / log|g(x)| (for x -> oo)
We define >, < ~ according to::
1. f > g .... L=+-oo
we say that:
- f is greater than any power of g
- f is more rapidly varying than g
- f goes to infinity/zero faster than g
2. f < g .... L=0
we say that:
- f is lower than any power of g
3. f ~ g .... L!=0, +-oo
we say that:
- both f and g are bounded from above and below by suitable integral
powers of the other
Examples
========
::
2 < x < exp(x) < exp(x**2) < exp(exp(x))
2 ~ 3 ~ -5
x ~ x**2 ~ x**3 ~ 1/x ~ x**m ~ -x
exp(x) ~ exp(-x) ~ exp(2x) ~ exp(x)**2 ~ exp(x+exp(-x))
f ~ 1/f
So we can divide all the functions into comparability classes (x and x^2
belong to one class, exp(x) and exp(-x) belong to some other class). In
principle, we could compare any two functions, but in our algorithm, we
do not compare anything below the class 2~3~-5 (for example log(x) is
below this), so we set 2~3~-5 as the lowest comparability class.
Given the function f, we find the list of most rapidly varying (mrv set)
subexpressions of it. This list belongs to the same comparability class.
Let's say it is {exp(x), exp(2x)}. Using the rule f ~ 1/f we find an
element "w" (either from the list or a new one) from the same
comparability class which goes to zero at infinity. In our example we
set w=exp(-x) (but we could also set w=exp(-2x) or w=exp(-3x) ...). We
rewrite the mrv set using w, in our case {1/w, 1/w^2}, and substitute it
into f. Then we expand f into a series in w::
f = c0*w^e0 + c1*w^e1 + ... + O(w^en), where e0<e1<...<en, c0!=0
but for x->oo, lim f = lim c0*w^e0, because all the other terms go to zero,
because w goes to zero faster than the ci and ei. So::
for e0>0, lim f = 0
for e0<0, lim f = +-oo (the sign depends on the sign of c0)
for e0=0, lim f = lim c0
We need to recursively compute limits at several places of the algorithm, but
as is shown in the PhD thesis, it always finishes.
Important functions from the implementation:
compare(a, b, x) compares "a" and "b" by computing the limit L.
mrv(e, x) returns list of most rapidly varying (mrv) subexpressions of "e"
rewrite(e, Omega, x, wsym) rewrites "e" in terms of w
leadterm(f, x) returns the lowest power term in the series of f
mrv_leadterm(e, x) returns the lead term (c0, e0) for e
limitinf(e, x) computes lim e (for x->oo)
limit(e, z, z0) computes any limit by converting it to the case x->oo
All the functions are really simple and straightforward except
rewrite(), which is the most difficult/complex part of the algorithm.
When the algorithm fails, the bugs are usually in the series expansion
(i.e. in SymPy) or in rewrite.
This code is almost exact rewrite of the Maple code inside the Gruntz
thesis.
Debugging
---------
Because the gruntz algorithm is highly recursive, it's difficult to
figure out what went wrong inside a debugger. Instead, turn on nice
debug prints by defining the environment variable SYMPY_DEBUG. For
example:
[user@localhost]: SYMPY_DEBUG=True ./bin/isympy
In [1]: limit(sin(x)/x, x, 0)
limitinf(_x*sin(1/_x), _x) = 1
+-mrv_leadterm(_x*sin(1/_x), _x) = (1, 0)
| +-mrv(_x*sin(1/_x), _x) = set([_x])
| | +-mrv(_x, _x) = set([_x])
| | +-mrv(sin(1/_x), _x) = set([_x])
| | +-mrv(1/_x, _x) = set([_x])
| | +-mrv(_x, _x) = set([_x])
| +-mrv_leadterm(exp(_x)*sin(exp(-_x)), _x, set([exp(_x)])) = (1, 0)
| +-rewrite(exp(_x)*sin(exp(-_x)), set([exp(_x)]), _x, _w) = (1/_w*sin(_w), -_x)
| +-sign(_x, _x) = 1
| +-mrv_leadterm(1, _x) = (1, 0)
+-sign(0, _x) = 0
+-limitinf(1, _x) = 1
And check manually which line is wrong. Then go to the source code and
debug this function to figure out the exact problem.
"""
from functools import reduce
from sympy.core import Basic, S, Mul, PoleError
from sympy.core.cache import cacheit
from sympy.core.numbers import ilcm, I, oo
from sympy.core.symbol import Dummy, Wild
from sympy.core.traversal import bottom_up
from sympy.functions import log, exp, sign as _sign
from sympy.series.order import Order
from sympy.utilities.misc import debug_decorator as debug
from sympy.utilities.timeutils import timethis
timeit = timethis('gruntz')
def compare(a, b, x):
"""Returns "<" if a<b, "=" for a == b, ">" for a>b"""
# log(exp(...)) must always be simplified here for termination
la, lb = log(a), log(b)
if isinstance(a, Basic) and (isinstance(a, exp) or (a.is_Pow and a.base == S.Exp1)):
la = a.exp
if isinstance(b, Basic) and (isinstance(b, exp) or (b.is_Pow and b.base == S.Exp1)):
lb = b.exp
c = limitinf(la/lb, x)
if c == 0:
return "<"
elif c.is_infinite:
return ">"
else:
return "="
class SubsSet(dict):
"""
Stores (expr, dummy) pairs, and how to rewrite expr-s.
Explanation
===========
The gruntz algorithm needs to rewrite certain expressions in term of a new
variable w. We cannot use subs, because it is just too smart for us. For
example::
> Omega=[exp(exp(_p - exp(-_p))/(1 - 1/_p)), exp(exp(_p))]
> O2=[exp(-exp(_p) + exp(-exp(-_p))*exp(_p)/(1 - 1/_p))/_w, 1/_w]
> e = exp(exp(_p - exp(-_p))/(1 - 1/_p)) - exp(exp(_p))
> e.subs(Omega[0],O2[0]).subs(Omega[1],O2[1])
-1/w + exp(exp(p)*exp(-exp(-p))/(1 - 1/p))
is really not what we want!
So we do it the hard way and keep track of all the things we potentially
want to substitute by dummy variables. Consider the expression::
exp(x - exp(-x)) + exp(x) + x.
The mrv set is {exp(x), exp(-x), exp(x - exp(-x))}.
We introduce corresponding dummy variables d1, d2, d3 and rewrite::
d3 + d1 + x.
This class first of all keeps track of the mapping expr->variable, i.e.
will at this stage be a dictionary::
{exp(x): d1, exp(-x): d2, exp(x - exp(-x)): d3}.
[It turns out to be more convenient this way round.]
But sometimes expressions in the mrv set have other expressions from the
mrv set as subexpressions, and we need to keep track of that as well. In
this case, d3 is really exp(x - d2), so rewrites at this stage is::
{d3: exp(x-d2)}.
The function rewrite uses all this information to correctly rewrite our
expression in terms of w. In this case w can be chosen to be exp(-x),
i.e. d2. The correct rewriting then is::
exp(-w)/w + 1/w + x.
"""
def __init__(self):
self.rewrites = {}
def __repr__(self):
return super().__repr__() + ', ' + self.rewrites.__repr__()
def __getitem__(self, key):
if key not in self:
self[key] = Dummy()
return dict.__getitem__(self, key)
def do_subs(self, e):
"""Substitute the variables with expressions"""
for expr, var in self.items():
e = e.xreplace({var: expr})
return e
def meets(self, s2):
"""Tell whether or not self and s2 have non-empty intersection"""
return set(self.keys()).intersection(list(s2.keys())) != set()
def union(self, s2, exps=None):
"""Compute the union of self and s2, adjusting exps"""
res = self.copy()
tr = {}
for expr, var in s2.items():
if expr in self:
if exps:
exps = exps.xreplace({var: res[expr]})
tr[var] = res[expr]
else:
res[expr] = var
for var, rewr in s2.rewrites.items():
res.rewrites[var] = rewr.xreplace(tr)
return res, exps
def copy(self):
"""Create a shallow copy of SubsSet"""
r = SubsSet()
r.rewrites = self.rewrites.copy()
for expr, var in self.items():
r[expr] = var
return r
@debug
def mrv(e, x):
"""Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e',
and e rewritten in terms of these"""
from sympy.simplify.powsimp import powsimp
e = powsimp(e, deep=True, combine='exp')
if not isinstance(e, Basic):
raise TypeError("e should be an instance of Basic")
if not e.has(x):
return SubsSet(), e
elif e == x:
s = SubsSet()
return s, s[x]
elif e.is_Mul or e.is_Add:
i, d = e.as_independent(x) # throw away x-independent terms
if d.func != e.func:
s, expr = mrv(d, x)
return s, e.func(i, expr)
a, b = d.as_two_terms()
s1, e1 = mrv(a, x)
s2, e2 = mrv(b, x)
return mrv_max1(s1, s2, e.func(i, e1, e2), x)
elif e.is_Pow and e.base != S.Exp1:
e1 = S.One
while e.is_Pow:
b1 = e.base
e1 *= e.exp
e = b1
if b1 == 1:
return SubsSet(), b1
if e1.has(x):
base_lim = limitinf(b1, x)
if base_lim is S.One:
return mrv(exp(e1 * (b1 - 1)), x)
return mrv(exp(e1 * log(b1)), x)
else:
s, expr = mrv(b1, x)
return s, expr**e1
elif isinstance(e, log):
s, expr = mrv(e.args[0], x)
return s, log(expr)
elif isinstance(e, exp) or (e.is_Pow and e.base == S.Exp1):
# We know from the theory of this algorithm that exp(log(...)) may always
# be simplified here, and doing so is vital for termination.
if isinstance(e.exp, log):
return mrv(e.exp.args[0], x)
# if a product has an infinite factor the result will be
# infinite if there is no zero, otherwise NaN; here, we
# consider the result infinite if any factor is infinite
li = limitinf(e.exp, x)
if any(_.is_infinite for _ in Mul.make_args(li)):
s1 = SubsSet()
e1 = s1[e]
s2, e2 = mrv(e.exp, x)
su = s1.union(s2)[0]
su.rewrites[e1] = exp(e2)
return mrv_max3(s1, e1, s2, exp(e2), su, e1, x)
else:
s, expr = mrv(e.exp, x)
return s, exp(expr)
elif e.is_Function:
l = [mrv(a, x) for a in e.args]
l2 = [s for (s, _) in l if s != SubsSet()]
if len(l2) != 1:
# e.g. something like BesselJ(x, x)
raise NotImplementedError("MRV set computation for functions in"
" several variables not implemented.")
s, ss = l2[0], SubsSet()
args = [ss.do_subs(x[1]) for x in l]
return s, e.func(*args)
elif e.is_Derivative:
raise NotImplementedError("MRV set computation for derviatives"
" not implemented yet.")
raise NotImplementedError(
"Don't know how to calculate the mrv of '%s'" % e)
def mrv_max3(f, expsf, g, expsg, union, expsboth, x):
"""
Computes the maximum of two sets of expressions f and g, which
are in the same comparability class, i.e. max() compares (two elements of)
f and g and returns either (f, expsf) [if f is larger], (g, expsg)
[if g is larger] or (union, expsboth) [if f, g are of the same class].
"""
if not isinstance(f, SubsSet):
raise TypeError("f should be an instance of SubsSet")
if not isinstance(g, SubsSet):
raise TypeError("g should be an instance of SubsSet")
if f == SubsSet():
return g, expsg
elif g == SubsSet():
return f, expsf
elif f.meets(g):
return union, expsboth
c = compare(list(f.keys())[0], list(g.keys())[0], x)
if c == ">":
return f, expsf
elif c == "<":
return g, expsg
else:
if c != "=":
raise ValueError("c should be =")
return union, expsboth
def mrv_max1(f, g, exps, x):
"""Computes the maximum of two sets of expressions f and g, which
are in the same comparability class, i.e. mrv_max1() compares (two elements of)
f and g and returns the set, which is in the higher comparability class
of the union of both, if they have the same order of variation.
Also returns exps, with the appropriate substitutions made.
"""
u, b = f.union(g, exps)
return mrv_max3(f, g.do_subs(exps), g, f.do_subs(exps),
u, b, x)
@debug
@cacheit
@timeit
def sign(e, x):
"""
Returns a sign of an expression e(x) for x->oo.
::
e > 0 for x sufficiently large ... 1
e == 0 for x sufficiently large ... 0
e < 0 for x sufficiently large ... -1
The result of this function is currently undefined if e changes sign
arbitrarily often for arbitrarily large x (e.g. sin(x)).
Note that this returns zero only if e is *constantly* zero
for x sufficiently large. [If e is constant, of course, this is just
the same thing as the sign of e.]
"""
if not isinstance(e, Basic):
raise TypeError("e should be an instance of Basic")
if e.is_positive:
return 1
elif e.is_negative:
return -1
elif e.is_zero:
return 0
elif not e.has(x):
from sympy.simplify import logcombine
e = logcombine(e)
return _sign(e)
elif e == x:
return 1
elif e.is_Mul:
a, b = e.as_two_terms()
sa = sign(a, x)
if not sa:
return 0
return sa * sign(b, x)
elif isinstance(e, exp):
return 1
elif e.is_Pow:
if e.base == S.Exp1:
return 1
s = sign(e.base, x)
if s == 1:
return 1
if e.exp.is_Integer:
return s**e.exp
elif isinstance(e, log):
return sign(e.args[0] - 1, x)
# if all else fails, do it the hard way
c0, e0 = mrv_leadterm(e, x)
return sign(c0, x)
@debug
@timeit
@cacheit
def limitinf(e, x, leadsimp=False):
"""Limit e(x) for x-> oo.
Explanation
===========
If ``leadsimp`` is True, an attempt is made to simplify the leading
term of the series expansion of ``e``. That may succeed even if
``e`` cannot be simplified.
"""
# rewrite e in terms of tractable functions only
if not e.has(x):
return e # e is a constant
from sympy.simplify.powsimp import powdenest
if e.has(Order):
e = e.expand().removeO()
if not x.is_positive or x.is_integer:
# We make sure that x.is_positive is True and x.is_integer is None
# so we get all the correct mathematical behavior from the expression.
# We need a fresh variable.
p = Dummy('p', positive=True)
e = e.subs(x, p)
x = p
e = e.rewrite('tractable', deep=True, limitvar=x)
e = powdenest(e)
c0, e0 = mrv_leadterm(e, x)
sig = sign(e0, x)
if sig == 1:
return S.Zero # e0>0: lim f = 0
elif sig == -1: # e0<0: lim f = +-oo (the sign depends on the sign of c0)
if c0.match(I*Wild("a", exclude=[I])):
return c0*oo
s = sign(c0, x)
# the leading term shouldn't be 0:
if s == 0:
raise ValueError("Leading term should not be 0")
return s*oo
elif sig == 0:
if leadsimp:
c0 = c0.simplify()
return limitinf(c0, x, leadsimp) # e0=0: lim f = lim c0
else:
raise ValueError("{} could not be evaluated".format(sig))
def moveup2(s, x):
r = SubsSet()
for expr, var in s.items():
r[expr.xreplace({x: exp(x)})] = var
for var, expr in s.rewrites.items():
r.rewrites[var] = s.rewrites[var].xreplace({x: exp(x)})
return r
def moveup(l, x):
return [e.xreplace({x: exp(x)}) for e in l]
@debug
@timeit
def calculate_series(e, x, logx=None):
""" Calculates at least one term of the series of ``e`` in ``x``.
This is a place that fails most often, so it is in its own function.
"""
from sympy.simplify.powsimp import powdenest
for t in e.lseries(x, logx=logx):
# bottom_up function is required for a specific case - when e is
# -exp(p/(p + 1)) + exp(-p**2/(p + 1) + p)
t = bottom_up(t, lambda w:
getattr(w, 'normal', lambda: w)())
# And the expression
# `(-sin(1/x) + sin((x + exp(x))*exp(-x)/x))*exp(x)`
# from the first test of test_gruntz_eval_special needs to
# be expanded. But other forms need to be have at least
# factor_terms applied. `factor` accomplishes both and is
# faster than using `factor_terms` for the gruntz suite. It
# does not appear that use of `cancel` is necessary.
# t = cancel(t, expand=False)
t = t.factor()
if t.has(exp) and t.has(log):
t = powdenest(t)
if not t.is_zero:
break
return t
@debug
@timeit
@cacheit
def mrv_leadterm(e, x):
"""Returns (c0, e0) for e."""
Omega = SubsSet()
if not e.has(x):
return (e, S.Zero)
if Omega == SubsSet():
Omega, exps = mrv(e, x)
if not Omega:
# e really does not depend on x after simplification
return exps, S.Zero
if x in Omega:
# move the whole omega up (exponentiate each term):
Omega_up = moveup2(Omega, x)
exps_up = moveup([exps], x)[0]
# NOTE: there is no need to move this down!
Omega = Omega_up
exps = exps_up
#
# The positive dummy, w, is used here so log(w*2) etc. will expand;
# a unique dummy is needed in this algorithm
#
# For limits of complex functions, the algorithm would have to be
# improved, or just find limits of Re and Im components separately.
#
w = Dummy("w", positive=True)
f, logw = rewrite(exps, Omega, x, w)
series = calculate_series(f, w, logx=logw)
try:
lt = series.leadterm(w, logx=logw)
except (ValueError, PoleError):
lt = f.as_coeff_exponent(w)
# as_coeff_exponent won't always split in required form. It may simply
# return (f, 0) when a better form may be obtained. Example (-x)**(-pi)
# can be written as (-1**(-pi), -pi) which as_coeff_exponent does not return
if lt[0].has(w):
base = f.as_base_exp()[0].as_coeff_exponent(w)
ex = f.as_base_exp()[1]
lt = (base[0]**ex, base[1]*ex)
return (lt[0].subs(log(w), logw), lt[1])
def build_expression_tree(Omega, rewrites):
r""" Helper function for rewrite.
We need to sort Omega (mrv set) so that we replace an expression before
we replace any expression in terms of which it has to be rewritten::
e1 ---> e2 ---> e3
\
-> e4
Here we can do e1, e2, e3, e4 or e1, e2, e4, e3.
To do this we assemble the nodes into a tree, and sort them by height.
This function builds the tree, rewrites then sorts the nodes.
"""
class Node:
def __init__(self):
self.before = []
self.expr = None
self.var = None
def ht(self):
return reduce(lambda x, y: x + y,
[x.ht() for x in self.before], 1)
nodes = {}
for expr, v in Omega:
n = Node()
n.var = v
n.expr = expr
nodes[v] = n
for _, v in Omega:
if v in rewrites:
n = nodes[v]
r = rewrites[v]
for _, v2 in Omega:
if r.has(v2):
n.before.append(nodes[v2])
return nodes
@debug
@timeit
def rewrite(e, Omega, x, wsym):
"""e(x) ... the function
Omega ... the mrv set
wsym ... the symbol which is going to be used for w
Returns the rewritten e in terms of w and log(w). See test_rewrite1()
for examples and correct results.
"""
if not isinstance(Omega, SubsSet):
raise TypeError("Omega should be an instance of SubsSet")
if len(Omega) == 0:
raise ValueError("Length cannot be 0")
# all items in Omega must be exponentials
for t in Omega.keys():
if not isinstance(t, exp):
raise ValueError("Value should be exp")
rewrites = Omega.rewrites
Omega = list(Omega.items())
nodes = build_expression_tree(Omega, rewrites)
Omega.sort(key=lambda x: nodes[x[1]].ht(), reverse=True)
# make sure we know the sign of each exp() term; after the loop,
# g is going to be the "w" - the simplest one in the mrv set
for g, _ in Omega:
sig = sign(g.exp, x)
if sig != 1 and sig != -1:
raise NotImplementedError('Result depends on the sign of %s' % sig)
if sig == 1:
wsym = 1/wsym # if g goes to oo, substitute 1/w
# O2 is a list, which results by rewriting each item in Omega using "w"
O2 = []
denominators = []
for f, var in Omega:
c = limitinf(f.exp/g.exp, x)
if c.is_Rational:
denominators.append(c.q)
arg = f.exp
if var in rewrites:
if not isinstance(rewrites[var], exp):
raise ValueError("Value should be exp")
arg = rewrites[var].args[0]
O2.append((var, exp((arg - c*g.exp).expand())*wsym**c))
# Remember that Omega contains subexpressions of "e". So now we find
# them in "e" and substitute them for our rewriting, stored in O2
# the following powsimp is necessary to automatically combine exponentials,
# so that the .xreplace() below succeeds:
# TODO this should not be necessary
from sympy.simplify.powsimp import powsimp
f = powsimp(e, deep=True, combine='exp')
for a, b in O2:
f = f.xreplace({a: b})
for _, var in Omega:
assert not f.has(var)
# finally compute the logarithm of w (logw).
logw = g.exp
if sig == 1:
logw = -logw # log(w)->log(1/w)=-log(w)
# Some parts of SymPy have difficulty computing series expansions with
# non-integral exponents. The following heuristic improves the situation:
exponent = reduce(ilcm, denominators, 1)
f = f.subs({wsym: wsym**exponent})
logw /= exponent
return f, logw
def gruntz(e, z, z0, dir="+"):
"""
Compute the limit of e(z) at the point z0 using the Gruntz algorithm.
Explanation
===========
``z0`` can be any expression, including oo and -oo.
For ``dir="+"`` (default) it calculates the limit from the right
(z->z0+) and for ``dir="-"`` the limit from the left (z->z0-). For infinite z0
(oo or -oo), the dir argument does not matter.
This algorithm is fully described in the module docstring in the gruntz.py
file. It relies heavily on the series expansion. Most frequently, gruntz()
is only used if the faster limit() function (which uses heuristics) fails.
"""
if not z.is_symbol:
raise NotImplementedError("Second argument must be a Symbol")
# convert all limits to the limit z->oo; sign of z is handled in limitinf
r = None
if z0 in (oo, I*oo):
e0 = e
elif z0 in (-oo, -I*oo):
e0 = e.subs(z, -z)
else:
if str(dir) == "-":
e0 = e.subs(z, z0 - 1/z)
elif str(dir) == "+":
e0 = e.subs(z, z0 + 1/z)
else:
raise NotImplementedError("dir must be '+' or '-'")
try:
r = limitinf(e0, z)
except ValueError:
r = limitinf(e0, z, leadsimp=True)
# This is a bit of a heuristic for nice results... we always rewrite
# tractable functions in terms of familiar intractable ones.
# It might be nicer to rewrite the exactly to what they were initially,
# but that would take some work to implement.
return r.rewrite('intractable', deep=True)
|
52a58c1c62ede62682f6aa5cd8579a994edf7f6bdd087c1ee99ce3f58f1079f3 | from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import Float, _illegal
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (Abs, sign, arg)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.special.gamma_functions import gamma
from sympy.polys import PolynomialError, factor
from sympy.series.order import Order
from .gruntz import gruntz
def limit(e, z, z0, dir="+"):
"""Computes the limit of ``e(z)`` at the point ``z0``.
Parameters
==========
e : expression, the limit of which is to be taken
z : symbol representing the variable in the limit.
Other symbols are treated as constants. Multivariate limits
are not supported.
z0 : the value toward which ``z`` tends. Can be any expression,
including ``oo`` and ``-oo``.
dir : string, optional (default: "+")
The limit is bi-directional if ``dir="+-"``, from the right
(z->z0+) if ``dir="+"``, and from the left (z->z0-) if
``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir``
argument is determined from the direction of the infinity
(i.e., ``dir="-"`` for ``oo``).
Examples
========
>>> from sympy import limit, sin, oo
>>> from sympy.abc import x
>>> limit(sin(x)/x, x, 0)
1
>>> limit(1/x, x, 0) # default dir='+'
oo
>>> limit(1/x, x, 0, dir="-")
-oo
>>> limit(1/x, x, 0, dir='+-')
zoo
>>> limit(1/x, x, oo)
0
Notes
=====
First we try some heuristics for easy and frequent cases like "x", "1/x",
"x**2" and similar, so that it's fast. For all other cases, we use the
Gruntz algorithm (see the gruntz() function).
See Also
========
limit_seq : returns the limit of a sequence.
"""
return Limit(e, z, z0, dir).doit(deep=False)
def heuristics(e, z, z0, dir):
"""Computes the limit of an expression term-wise.
Parameters are the same as for the ``limit`` function.
Works with the arguments of expression ``e`` one by one, computing
the limit of each and then combining the results. This approach
works only for simple limits, but it is fast.
"""
rv = None
if abs(z0) is S.Infinity:
rv = limit(e.subs(z, 1/z), z, S.Zero, "+" if z0 is S.Infinity else "-")
if isinstance(rv, Limit):
return
elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function:
r = []
from sympy.simplify.simplify import together
for a in e.args:
l = limit(a, z, z0, dir)
if l.has(S.Infinity) and l.is_finite is None:
if isinstance(e, Add):
m = factor_terms(e)
if not isinstance(m, Mul): # try together
m = together(m)
if not isinstance(m, Mul): # try factor if the previous methods failed
m = factor(e)
if isinstance(m, Mul):
return heuristics(m, z, z0, dir)
return
return
elif isinstance(l, Limit):
return
elif l is S.NaN:
return
else:
r.append(l)
if r:
rv = e.func(*r)
if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r):
r2 = []
e2 = []
for ii, rval in enumerate(r):
if isinstance(rval, AccumBounds):
r2.append(rval)
else:
e2.append(e.args[ii])
if len(e2) > 0:
e3 = Mul(*e2).simplify()
l = limit(e3, z, z0, dir)
rv = l * Mul(*r2)
if rv is S.NaN:
try:
from sympy.simplify.ratsimp import ratsimp
rat_e = ratsimp(e)
except PolynomialError:
return
if rat_e is S.NaN or rat_e == e:
return
return limit(rat_e, z, z0, dir)
return rv
class Limit(Expr):
"""Represents an unevaluated limit.
Examples
========
>>> from sympy import Limit, sin
>>> from sympy.abc import x
>>> Limit(sin(x)/x, x, 0)
Limit(sin(x)/x, x, 0)
>>> Limit(1/x, x, 0, dir="-")
Limit(1/x, x, 0, dir='-')
"""
def __new__(cls, e, z, z0, dir="+"):
e = sympify(e)
z = sympify(z)
z0 = sympify(z0)
if z0 in (S.Infinity, S.ImaginaryUnit*S.Infinity):
dir = "-"
elif z0 in (S.NegativeInfinity, S.ImaginaryUnit*S.NegativeInfinity):
dir = "+"
if(z0.has(z)):
raise NotImplementedError("Limits approaching a variable point are"
" not supported (%s -> %s)" % (z, z0))
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("direction must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-', '+-'):
raise ValueError("direction must be one of '+', '-' "
"or '+-', not %s" % dir)
obj = Expr.__new__(cls)
obj._args = (e, z, z0, dir)
return obj
@property
def free_symbols(self):
e = self.args[0]
isyms = e.free_symbols
isyms.difference_update(self.args[1].free_symbols)
isyms.update(self.args[2].free_symbols)
return isyms
def pow_heuristics(self, e):
_, z, z0, _ = self.args
b1, e1 = e.base, e.exp
if not b1.has(z):
res = limit(e1*log(b1), z, z0)
return exp(res)
ex_lim = limit(e1, z, z0)
base_lim = limit(b1, z, z0)
if base_lim is S.One:
if ex_lim in (S.Infinity, S.NegativeInfinity):
res = limit(e1*(b1 - 1), z, z0)
return exp(res)
if base_lim is S.NegativeInfinity and ex_lim is S.Infinity:
return S.ComplexInfinity
def doit(self, **hints):
"""Evaluates the limit.
Parameters
==========
deep : bool, optional (default: True)
Invoke the ``doit`` method of the expressions involved before
taking the limit.
hints : optional keyword arguments
To be passed to ``doit`` methods; only used if deep is True.
"""
e, z, z0, dir = self.args
if str(dir) == '+-':
r = limit(e, z, z0, dir='+')
l = limit(e, z, z0, dir='-')
if isinstance(r, Limit) and isinstance(l, Limit):
if r.args[0] == l.args[0]:
return self
if r == l:
return l
if r.is_infinite and l.is_infinite:
return S.ComplexInfinity
raise ValueError("The limit does not exist since "
"left hand limit = %s and right hand limit = %s"
% (l, r))
if z0 is S.ComplexInfinity:
raise NotImplementedError("Limits at complex "
"infinity are not implemented")
if hints.get('deep', True):
e = e.doit(**hints)
z = z.doit(**hints)
z0 = z0.doit(**hints)
if e == z:
return z0
if not e.has(z):
return e
if z0 is S.NaN:
return S.NaN
if e.has(*_illegal):
return self
if e.is_Order:
return Order(limit(e.expr, z, z0), *e.args[1:])
cdir = 0
if str(dir) == "+":
cdir = 1
elif str(dir) == "-":
cdir = -1
def set_signs(expr):
if not expr.args:
return expr
newargs = tuple(set_signs(arg) for arg in expr.args)
if newargs != expr.args:
expr = expr.func(*newargs)
abs_flag = isinstance(expr, Abs)
arg_flag = isinstance(expr, arg)
sign_flag = isinstance(expr, sign)
if abs_flag or sign_flag or arg_flag:
sig = limit(expr.args[0], z, z0, dir)
if sig.is_zero:
sig = limit(1/expr.args[0], z, z0, dir)
if sig.is_extended_real:
if (sig < 0) == True:
return (-expr.args[0] if abs_flag else
S.NegativeOne if sign_flag else S.Pi)
elif (sig > 0) == True:
return (expr.args[0] if abs_flag else
S.One if sign_flag else S.Zero)
return expr
if e.has(Float):
# Convert floats like 0.5 to exact SymPy numbers like S.Half, to
# prevent rounding errors which can lead to unexpected execution
# of conditional blocks that work on comparisons
# Also see comments in https://github.com/sympy/sympy/issues/19453
from sympy.simplify.simplify import nsimplify
e = nsimplify(e)
e = set_signs(e)
if e.is_meromorphic(z, z0):
if abs(z0) is S.Infinity:
newe = e.subs(z, 1/z)
# cdir changes sign as oo- should become 0+
cdir = -cdir
else:
newe = e.subs(z, z + z0)
try:
coeff, ex = newe.leadterm(z, cdir=cdir)
except ValueError:
pass
else:
if ex > 0:
return S.Zero
elif ex == 0:
return coeff
if cdir == 1 or not(int(ex) & 1):
return S.Infinity*sign(coeff)
elif cdir == -1:
return S.NegativeInfinity*sign(coeff)
else:
return S.ComplexInfinity
if abs(z0) is S.Infinity:
if e.is_Mul:
e = factor_terms(e)
newe = e.subs(z, 1/z)
# cdir changes sign as oo- should become 0+
cdir = -cdir
else:
newe = e.subs(z, z + z0)
try:
coeff, ex = newe.leadterm(z, cdir=cdir)
except (ValueError, NotImplementedError, PoleError):
# The NotImplementedError catching is for custom functions
from sympy.simplify.powsimp import powsimp
e = powsimp(e)
if e.is_Pow:
r = self.pow_heuristics(e)
if r is not None:
return r
else:
if isinstance(coeff, AccumBounds) and ex == S.Zero:
return coeff
if coeff.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN):
return self
if not coeff.has(z):
if ex.is_positive:
return S.Zero
elif ex == 0:
return coeff
elif ex.is_negative:
if ex.is_integer:
if cdir == 1 or ex.is_even:
return S.Infinity*sign(coeff)
elif cdir == -1:
return S.NegativeInfinity*sign(coeff)
else:
return S.ComplexInfinity
else:
if cdir == 1:
return S.Infinity*sign(coeff)
elif cdir == -1:
return S.Infinity*sign(coeff)*S.NegativeOne**ex
else:
return S.ComplexInfinity
# gruntz fails on factorials but works with the gamma function
# If no factorial term is present, e should remain unchanged.
# factorial is defined to be zero for negative inputs (which
# differs from gamma) so only rewrite for positive z0.
if z0.is_extended_positive:
e = e.rewrite(factorial, gamma)
l = None
try:
r = gruntz(e, z, z0, dir)
if r is S.NaN or l is S.NaN:
raise PoleError()
except (PoleError, ValueError):
if l is not None:
raise
r = heuristics(e, z, z0, dir)
if r is None:
return self
return r
|
773568e1567c3a40fd6126c111842e769707704755306ecb7e72114cc7782f38 | """Fourier Series"""
from sympy.core.numbers import (oo, pi)
from sympy.core.symbol import Wild
from sympy.core.expr import Expr
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import sin, cos, sinc
from sympy.series.series_class import SeriesBase
from sympy.series.sequences import SeqFormula
from sympy.sets.sets import Interval
from sympy.utilities.iterables import is_sequence
def fourier_cos_seq(func, limits, n):
"""Returns the cos sequence in a Fourier series"""
from sympy.integrals import integrate
x, L = limits[0], limits[2] - limits[1]
cos_term = cos(2*n*pi*x / L)
formula = 2 * cos_term * integrate(func * cos_term, limits) / L
a0 = formula.subs(n, S.Zero) / 2
return a0, SeqFormula(2 * cos_term * integrate(func * cos_term, limits)
/ L, (n, 1, oo))
def fourier_sin_seq(func, limits, n):
"""Returns the sin sequence in a Fourier series"""
from sympy.integrals import integrate
x, L = limits[0], limits[2] - limits[1]
sin_term = sin(2*n*pi*x / L)
return SeqFormula(2 * sin_term * integrate(func * sin_term, limits)
/ L, (n, 1, oo))
def _process_limits(func, limits):
"""
Limits should be of the form (x, start, stop).
x should be a symbol. Both start and stop should be bounded.
Explanation
===========
* If x is not given, x is determined from func.
* If limits is None. Limit of the form (x, -pi, pi) is returned.
Examples
========
>>> from sympy.series.fourier import _process_limits as pari
>>> from sympy.abc import x
>>> pari(x**2, (x, -2, 2))
(x, -2, 2)
>>> pari(x**2, (-2, 2))
(x, -2, 2)
>>> pari(x**2, None)
(x, -pi, pi)
"""
def _find_x(func):
free = func.free_symbols
if len(free) == 1:
return free.pop()
elif not free:
return Dummy('k')
else:
raise ValueError(
" specify dummy variables for %s. If the function contains"
" more than one free symbol, a dummy variable should be"
" supplied explicitly e.g. FourierSeries(m*n**2, (n, -pi, pi))"
% func)
x, start, stop = None, None, None
if limits is None:
x, start, stop = _find_x(func), -pi, pi
if is_sequence(limits, Tuple):
if len(limits) == 3:
x, start, stop = limits
elif len(limits) == 2:
x = _find_x(func)
start, stop = limits
if not isinstance(x, Symbol) or start is None or stop is None:
raise ValueError('Invalid limits given: %s' % str(limits))
unbounded = [S.NegativeInfinity, S.Infinity]
if start in unbounded or stop in unbounded:
raise ValueError("Both the start and end value should be bounded")
return sympify((x, start, stop))
def finite_check(f, x, L):
def check_fx(exprs, x):
return x not in exprs.free_symbols
def check_sincos(_expr, x, L):
if isinstance(_expr, (sin, cos)):
sincos_args = _expr.args[0]
if sincos_args.match(a*(pi/L)*x + b) is not None:
return True
else:
return False
from sympy.simplify.fu import TR2, TR1, sincos_to_sum
_expr = sincos_to_sum(TR2(TR1(f)))
add_coeff = _expr.as_coeff_add()
a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k != S.Zero, ])
b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])
for s in add_coeff[1]:
mul_coeffs = s.as_coeff_mul()[1]
for t in mul_coeffs:
if not (check_fx(t, x) or check_sincos(t, x, L)):
return False, f
return True, _expr
class FourierSeries(SeriesBase):
r"""Represents Fourier sine/cosine series.
Explanation
===========
This class only represents a fourier series.
No computation is performed.
For how to compute Fourier series, see the :func:`fourier_series`
docstring.
See Also
========
sympy.series.fourier.fourier_series
"""
def __new__(cls, *args):
args = map(sympify, args)
return Expr.__new__(cls, *args)
@property
def function(self):
return self.args[0]
@property
def x(self):
return self.args[1][0]
@property
def period(self):
return (self.args[1][1], self.args[1][2])
@property
def a0(self):
return self.args[2][0]
@property
def an(self):
return self.args[2][1]
@property
def bn(self):
return self.args[2][2]
@property
def interval(self):
return Interval(0, oo)
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def length(self):
return oo
@property
def L(self):
return abs(self.period[1] - self.period[0]) / 2
def _eval_subs(self, old, new):
x = self.x
if old.has(x):
return self
def truncate(self, n=3):
"""
Return the first n nonzero terms of the series.
If ``n`` is None return an iterator.
Parameters
==========
n : int or None
Amount of non-zero terms in approximation or None.
Returns
=======
Expr or iterator :
Approximation of function expanded into Fourier series.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x, (x, -pi, pi))
>>> s.truncate(4)
2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2
See Also
========
sympy.series.fourier.FourierSeries.sigma_approximation
"""
if n is None:
return iter(self)
terms = []
for t in self:
if len(terms) == n:
break
if t is not S.Zero:
terms.append(t)
return Add(*terms)
def sigma_approximation(self, n=3):
r"""
Return :math:`\sigma`-approximation of Fourier series with respect
to order n.
Explanation
===========
Sigma approximation adjusts a Fourier summation to eliminate the Gibbs
phenomenon which would otherwise occur at discontinuities.
A sigma-approximated summation for a Fourier series of a T-periodical
function can be written as
.. math::
s(\theta) = \frac{1}{2} a_0 + \sum _{k=1}^{m-1}
\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr) \cdot
\left[ a_k \cos \Bigl( \frac{2\pi k}{T} \theta \Bigr)
+ b_k \sin \Bigl( \frac{2\pi k}{T} \theta \Bigr) \right],
where :math:`a_0, a_k, b_k, k=1,\ldots,{m-1}` are standard Fourier
series coefficients and
:math:`\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr)` is a Lanczos
:math:`\sigma` factor (expressed in terms of normalized
:math:`\operatorname{sinc}` function).
Parameters
==========
n : int
Highest order of the terms taken into account in approximation.
Returns
=======
Expr :
Sigma approximation of function expanded into Fourier series.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x, (x, -pi, pi))
>>> s.sigma_approximation(4)
2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3
See Also
========
sympy.series.fourier.FourierSeries.truncate
Notes
=====
The behaviour of
:meth:`~sympy.series.fourier.FourierSeries.sigma_approximation`
is different from :meth:`~sympy.series.fourier.FourierSeries.truncate`
- it takes all nonzero terms of degree smaller than n, rather than
first n nonzero ones.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gibbs_phenomenon
.. [2] https://en.wikipedia.org/wiki/Sigma_approximation
"""
terms = [sinc(pi * i / n) * t for i, t in enumerate(self[:n])
if t is not S.Zero]
return Add(*terms)
def shift(self, s):
"""
Shift the function by a term independent of x.
Explanation
===========
f(x) -> f(x) + s
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.shift(1).truncate()
-4*cos(x) + cos(2*x) + 1 + pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
a0 = self.a0 + s
sfunc = self.function + s
return self.func(sfunc, self.args[1], (a0, self.an, self.bn))
def shiftx(self, s):
"""
Shift x by a term independent of x.
Explanation
===========
f(x) -> f(x + s)
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.shiftx(1).truncate()
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
an = self.an.subs(x, x + s)
bn = self.bn.subs(x, x + s)
sfunc = self.function.subs(x, x + s)
return self.func(sfunc, self.args[1], (self.a0, an, bn))
def scale(self, s):
"""
Scale the function by a term independent of x.
Explanation
===========
f(x) -> s * f(x)
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.scale(2).truncate()
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
an = self.an.coeff_mul(s)
bn = self.bn.coeff_mul(s)
a0 = self.a0 * s
sfunc = self.args[0] * s
return self.func(sfunc, self.args[1], (a0, an, bn))
def scalex(self, s):
"""
Scale x by a term independent of x.
Explanation
===========
f(x) -> f(s*x)
This is fast, if Fourier series of f(x) is already
computed.
Examples
========
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> s = fourier_series(x**2, (x, -pi, pi))
>>> s.scalex(2).truncate()
-4*cos(2*x) + cos(4*x) + pi**2/3
"""
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
an = self.an.subs(x, x * s)
bn = self.bn.subs(x, x * s)
sfunc = self.function.subs(x, x * s)
return self.func(sfunc, self.args[1], (self.a0, an, bn))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
for t in self:
if t is not S.Zero:
return t
def _eval_term(self, pt):
if pt == 0:
return self.a0
return self.an.coeff(pt) + self.bn.coeff(pt)
def __neg__(self):
return self.scale(-1)
def __add__(self, other):
if isinstance(other, FourierSeries):
if self.period != other.period:
raise ValueError("Both the series should have same periods")
x, y = self.x, other.x
function = self.function + other.function.subs(y, x)
if self.x not in function.free_symbols:
return function
an = self.an + other.an
bn = self.bn + other.bn
a0 = self.a0 + other.a0
return self.func(function, self.args[1], (a0, an, bn))
return Add(self, other)
def __sub__(self, other):
return self.__add__(-other)
class FiniteFourierSeries(FourierSeries):
r"""Represents Finite Fourier sine/cosine series.
For how to compute Fourier series, see the :func:`fourier_series`
docstring.
Parameters
==========
f : Expr
Expression for finding fourier_series
limits : ( x, start, stop)
x is the independent variable for the expression f
(start, stop) is the period of the fourier series
exprs: (a0, an, bn) or Expr
a0 is the constant term a0 of the fourier series
an is a dictionary of coefficients of cos terms
an[k] = coefficient of cos(pi*(k/L)*x)
bn is a dictionary of coefficients of sin terms
bn[k] = coefficient of sin(pi*(k/L)*x)
or exprs can be an expression to be converted to fourier form
Methods
=======
This class is an extension of FourierSeries class.
Please refer to sympy.series.fourier.FourierSeries for
further information.
See Also
========
sympy.series.fourier.FourierSeries
sympy.series.fourier.fourier_series
"""
def __new__(cls, f, limits, exprs):
f = sympify(f)
limits = sympify(limits)
exprs = sympify(exprs)
if not (isinstance(exprs, Tuple) and len(exprs) == 3): # exprs is not of form (a0, an, bn)
# Converts the expression to fourier form
c, e = exprs.as_coeff_add()
from sympy.simplify.fu import TR10
rexpr = c + Add(*[TR10(i) for i in e])
a0, exp_ls = rexpr.expand(trig=False, power_base=False, power_exp=False, log=False).as_coeff_add()
x = limits[0]
L = abs(limits[2] - limits[1]) / 2
a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k is not S.Zero, ])
b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])
an = {}
bn = {}
# separates the coefficients of sin and cos terms in dictionaries an, and bn
for p in exp_ls:
t = p.match(b * cos(a * (pi / L) * x))
q = p.match(b * sin(a * (pi / L) * x))
if t:
an[t[a]] = t[b] + an.get(t[a], S.Zero)
elif q:
bn[q[a]] = q[b] + bn.get(q[a], S.Zero)
else:
a0 += p
exprs = Tuple(a0, an, bn)
return Expr.__new__(cls, f, limits, exprs)
@property
def interval(self):
_length = 1 if self.a0 else 0
_length += max(set(self.an.keys()).union(set(self.bn.keys()))) + 1
return Interval(0, _length)
@property
def length(self):
return self.stop - self.start
def shiftx(self, s):
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
_expr = self.truncate().subs(x, x + s)
sfunc = self.function.subs(x, x + s)
return self.func(sfunc, self.args[1], _expr)
def scale(self, s):
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
_expr = self.truncate() * s
sfunc = self.function * s
return self.func(sfunc, self.args[1], _expr)
def scalex(self, s):
s, x = sympify(s), self.x
if x in s.free_symbols:
raise ValueError("'%s' should be independent of %s" % (s, x))
_expr = self.truncate().subs(x, x * s)
sfunc = self.function.subs(x, x * s)
return self.func(sfunc, self.args[1], _expr)
def _eval_term(self, pt):
if pt == 0:
return self.a0
_term = self.an.get(pt, S.Zero) * cos(pt * (pi / self.L) * self.x) \
+ self.bn.get(pt, S.Zero) * sin(pt * (pi / self.L) * self.x)
return _term
def __add__(self, other):
if isinstance(other, FourierSeries):
return other.__add__(fourier_series(self.function, self.args[1],\
finite=False))
elif isinstance(other, FiniteFourierSeries):
if self.period != other.period:
raise ValueError("Both the series should have same periods")
x, y = self.x, other.x
function = self.function + other.function.subs(y, x)
if self.x not in function.free_symbols:
return function
return fourier_series(function, limits=self.args[1])
def fourier_series(f, limits=None, finite=True):
r"""Computes the Fourier trigonometric series expansion.
Explanation
===========
Fourier trigonometric series of $f(x)$ over the interval $(a, b)$
is defined as:
.. math::
\frac{a_0}{2} + \sum_{n=1}^{\infty}
(a_n \cos(\frac{2n \pi x}{L}) + b_n \sin(\frac{2n \pi x}{L}))
where the coefficients are:
.. math::
L = b - a
.. math::
a_0 = \frac{2}{L} \int_{a}^{b}{f(x) dx}
.. math::
a_n = \frac{2}{L} \int_{a}^{b}{f(x) \cos(\frac{2n \pi x}{L}) dx}
.. math::
b_n = \frac{2}{L} \int_{a}^{b}{f(x) \sin(\frac{2n \pi x}{L}) dx}
The condition whether the function $f(x)$ given should be periodic
or not is more than necessary, because it is sufficient to consider
the series to be converging to $f(x)$ only in the given interval,
not throughout the whole real line.
This also brings a lot of ease for the computation because
you do not have to make $f(x)$ artificially periodic by
wrapping it with piecewise, modulo operations,
but you can shape the function to look like the desired periodic
function only in the interval $(a, b)$, and the computed series will
automatically become the series of the periodic version of $f(x)$.
This property is illustrated in the examples section below.
Parameters
==========
limits : (sym, start, end), optional
*sym* denotes the symbol the series is computed with respect to.
*start* and *end* denotes the start and the end of the interval
where the fourier series converges to the given function.
Default range is specified as $-\pi$ and $\pi$.
Returns
=======
FourierSeries
A symbolic object representing the Fourier trigonometric series.
Examples
========
Computing the Fourier series of $f(x) = x^2$:
>>> from sympy import fourier_series, pi
>>> from sympy.abc import x
>>> f = x**2
>>> s = fourier_series(f, (x, -pi, pi))
>>> s1 = s.truncate(n=3)
>>> s1
-4*cos(x) + cos(2*x) + pi**2/3
Shifting of the Fourier series:
>>> s.shift(1).truncate()
-4*cos(x) + cos(2*x) + 1 + pi**2/3
>>> s.shiftx(1).truncate()
-4*cos(x + 1) + cos(2*x + 2) + pi**2/3
Scaling of the Fourier series:
>>> s.scale(2).truncate()
-8*cos(x) + 2*cos(2*x) + 2*pi**2/3
>>> s.scalex(2).truncate()
-4*cos(2*x) + cos(4*x) + pi**2/3
Computing the Fourier series of $f(x) = x$:
This illustrates how truncating to the higher order gives better
convergence.
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import fourier_series, pi, plot
>>> from sympy.abc import x
>>> f = x
>>> s = fourier_series(f, (x, -pi, pi))
>>> s1 = s.truncate(n = 3)
>>> s2 = s.truncate(n = 5)
>>> s3 = s.truncate(n = 7)
>>> p = plot(f, s1, s2, s3, (x, -pi, pi), show=False, legend=True)
>>> p[0].line_color = (0, 0, 0)
>>> p[0].label = 'x'
>>> p[1].line_color = (0.7, 0.7, 0.7)
>>> p[1].label = 'n=3'
>>> p[2].line_color = (0.5, 0.5, 0.5)
>>> p[2].label = 'n=5'
>>> p[3].line_color = (0.3, 0.3, 0.3)
>>> p[3].label = 'n=7'
>>> p.show()
This illustrates how the series converges to different sawtooth
waves if the different ranges are specified.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> s1 = fourier_series(x, (x, -1, 1)).truncate(10)
>>> s2 = fourier_series(x, (x, -pi, pi)).truncate(10)
>>> s3 = fourier_series(x, (x, 0, 1)).truncate(10)
>>> p = plot(x, s1, s2, s3, (x, -5, 5), show=False, legend=True)
>>> p[0].line_color = (0, 0, 0)
>>> p[0].label = 'x'
>>> p[1].line_color = (0.7, 0.7, 0.7)
>>> p[1].label = '[-1, 1]'
>>> p[2].line_color = (0.5, 0.5, 0.5)
>>> p[2].label = '[-pi, pi]'
>>> p[3].line_color = (0.3, 0.3, 0.3)
>>> p[3].label = '[0, 1]'
>>> p.show()
Notes
=====
Computing Fourier series can be slow
due to the integration required in computing
an, bn.
It is faster to compute Fourier series of a function
by using shifting and scaling on an already
computed Fourier series rather than computing
again.
e.g. If the Fourier series of ``x**2`` is known
the Fourier series of ``x**2 - 1`` can be found by shifting by ``-1``.
See Also
========
sympy.series.fourier.FourierSeries
References
==========
.. [1] https://mathworld.wolfram.com/FourierSeries.html
"""
f = sympify(f)
limits = _process_limits(f, limits)
x = limits[0]
if x not in f.free_symbols:
return f
if finite:
L = abs(limits[2] - limits[1]) / 2
is_finite, res_f = finite_check(f, x, L)
if is_finite:
return FiniteFourierSeries(f, limits, res_f)
n = Dummy('n')
center = (limits[1] + limits[2]) / 2
if center.is_zero:
neg_f = f.subs(x, -x)
if f == neg_f:
a0, an = fourier_cos_seq(f, limits, n)
bn = SeqFormula(0, (1, oo))
return FourierSeries(f, limits, (a0, an, bn))
elif f == -neg_f:
a0 = S.Zero
an = SeqFormula(0, (1, oo))
bn = fourier_sin_seq(f, limits, n)
return FourierSeries(f, limits, (a0, an, bn))
a0, an = fourier_cos_seq(f, limits, n)
bn = fourier_sin_seq(f, limits, n)
return FourierSeries(f, limits, (a0, an, bn))
|
0ad473893508b4077c1bdcfffe327db3b75120700e75e1da8dd3e6341dc74606 | """Formal Power Series"""
from collections import defaultdict
from sympy.core.numbers import (nan, oo, zoo)
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import Derivative, Function, expand
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.relational import Eq
from sympy.sets.sets import Interval
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy, symbols, Symbol
from sympy.core.sympify import sympify
from sympy.discrete.convolutions import convolution
from sympy.functions.combinatorial.factorials import binomial, factorial, rf
from sympy.functions.combinatorial.numbers import bell
from sympy.functions.elementary.integers import floor, frac, ceiling
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.series.limits import Limit
from sympy.series.order import Order
from sympy.series.sequences import sequence
from sympy.series.series_class import SeriesBase
from sympy.utilities.iterables import iterable
def rational_algorithm(f, x, k, order=4, full=False):
"""
Rational algorithm for computing
formula of coefficients of Formal Power Series
of a function.
Explanation
===========
Applicable when f(x) or some derivative of f(x)
is a rational function in x.
:func:`rational_algorithm` uses :func:`~.apart` function for partial fraction
decomposition. :func:`~.apart` by default uses 'undetermined coefficients
method'. By setting ``full=True``, 'Bronstein's algorithm' can be used
instead.
Looks for derivative of a function up to 4'th order (by default).
This can be overridden using order option.
Parameters
==========
x : Symbol
order : int, optional
Order of the derivative of ``f``, Default is 4.
full : bool
Returns
=======
formula : Expr
ind : Expr
Independent terms.
order : int
full : bool
Examples
========
>>> from sympy import log, atan
>>> from sympy.series.formal import rational_algorithm as ra
>>> from sympy.abc import x, k
>>> ra(1 / (1 - x), x, k)
(1, 0, 0)
>>> ra(log(1 + x), x, k)
(-1/((-1)**k*k), 0, 1)
>>> ra(atan(x), x, k, full=True)
((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1)
Notes
=====
By setting ``full=True``, range of admissible functions to be solved using
``rational_algorithm`` can be increased. This option should be used
carefully as it can significantly slow down the computation as ``doit`` is
performed on the :class:`~.RootSum` object returned by the :func:`~.apart`
function. Use ``full=False`` whenever possible.
See Also
========
sympy.polys.partfrac.apart
References
==========
.. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
.. [2] Power Series in Computer Algebra - Wolfram Koepf
"""
from sympy.polys import RootSum, apart
from sympy.integrals import integrate
diff = f
ds = [] # list of diff
for i in range(order + 1):
if i:
diff = diff.diff(x)
if diff.is_rational_function(x):
coeff, sep = S.Zero, S.Zero
terms = apart(diff, x, full=full)
if terms.has(RootSum):
terms = terms.doit()
for t in Add.make_args(terms):
num, den = t.as_numer_denom()
if not den.has(x):
sep += t
else:
if isinstance(den, Mul):
# m*(n*x - a)**j -> (n*x - a)**j
ind = den.as_independent(x)
den = ind[1]
num /= ind[0]
# (n*x - a)**j -> (x - b)
den, j = den.as_base_exp()
a, xterm = den.as_coeff_add(x)
# term -> m/x**n
if not a:
sep += t
continue
xc = xterm[0].coeff(x)
a /= -xc
num /= xc**j
ak = ((-1)**j * num *
binomial(j + k - 1, k).rewrite(factorial) /
a**(j + k))
coeff += ak
# Hacky, better way?
if coeff.is_zero:
return None
if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or
coeff.has(nan)):
return None
for j in range(i):
coeff = (coeff / (k + j + 1))
sep = integrate(sep, x)
sep += (ds.pop() - sep).limit(x, 0) # constant of integration
return (coeff.subs(k, k - i), sep, i)
else:
ds.append(diff)
return None
def rational_independent(terms, x):
"""
Returns a list of all the rationally independent terms.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.series.formal import rational_independent
>>> from sympy.abc import x
>>> rational_independent([cos(x), sin(x)], x)
[cos(x), sin(x)]
>>> rational_independent([x**2, sin(x), x*sin(x), x**3], x)
[x**3 + x**2, x*sin(x) + sin(x)]
"""
if not terms:
return []
ind = terms[0:1]
for t in terms[1:]:
n = t.as_independent(x)[1]
for i, term in enumerate(ind):
d = term.as_independent(x)[1]
q = (n / d).cancel()
if q.is_rational_function(x):
ind[i] += t
break
else:
ind.append(t)
return ind
def simpleDE(f, x, g, order=4):
r"""
Generates simple DE.
Explanation
===========
DE is of the form
.. math::
f^k(x) + \sum\limits_{j=0}^{k-1} A_j f^j(x) = 0
where :math:`A_j` should be rational function in x.
Generates DE's upto order 4 (default). DE's can also have free parameters.
By increasing order, higher order DE's can be found.
Yields a tuple of (DE, order).
"""
from sympy.solvers.solveset import linsolve
a = symbols('a:%d' % (order))
def _makeDE(k):
eq = f.diff(x, k) + Add(*[a[i]*f.diff(x, i) for i in range(0, k)])
DE = g(x).diff(x, k) + Add(*[a[i]*g(x).diff(x, i) for i in range(0, k)])
return eq, DE
found = False
for k in range(1, order + 1):
eq, DE = _makeDE(k)
eq = eq.expand()
terms = eq.as_ordered_terms()
ind = rational_independent(terms, x)
if found or len(ind) == k:
sol = dict(zip(a, (i for s in linsolve(ind, a[:k]) for i in s)))
if sol:
found = True
DE = DE.subs(sol)
DE = DE.as_numer_denom()[0]
DE = DE.factor().as_coeff_mul(Derivative)[1][0]
yield DE.collect(Derivative(g(x))), k
def exp_re(DE, r, k):
"""Converts a DE with constant coefficients (explike) into a RE.
Explanation
===========
Performs the substitution:
.. math::
f^j(x) \\to r(k + j)
Normalises the terms so that lowest order of a term is always r(k).
Examples
========
>>> from sympy import Function, Derivative
>>> from sympy.series.formal import exp_re
>>> from sympy.abc import x, k
>>> f, r = Function('f'), Function('r')
>>> exp_re(-f(x) + Derivative(f(x)), r, k)
-r(k) + r(k + 1)
>>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k)
r(k) + r(k + 1)
See Also
========
sympy.series.formal.hyper_re
"""
RE = S.Zero
g = DE.atoms(Function).pop()
mini = None
for t in Add.make_args(DE):
coeff, d = t.as_independent(g)
if isinstance(d, Derivative):
j = d.derivative_count
else:
j = 0
if mini is None or j < mini:
mini = j
RE += coeff * r(k + j)
if mini:
RE = RE.subs(k, k - mini)
return RE
def hyper_re(DE, r, k):
"""
Converts a DE into a RE.
Explanation
===========
Performs the substitution:
.. math::
x^l f^j(x) \\to (k + 1 - l)_j . a_{k + j - l}
Normalises the terms so that lowest order of a term is always r(k).
Examples
========
>>> from sympy import Function, Derivative
>>> from sympy.series.formal import hyper_re
>>> from sympy.abc import x, k
>>> f, r = Function('f'), Function('r')
>>> hyper_re(-f(x) + Derivative(f(x)), r, k)
(k + 1)*r(k + 1) - r(k)
>>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k)
(k + 2)*(k + 3)*r(k + 3) - r(k)
See Also
========
sympy.series.formal.exp_re
"""
RE = S.Zero
g = DE.atoms(Function).pop()
x = g.atoms(Symbol).pop()
mini = None
for t in Add.make_args(DE.expand()):
coeff, d = t.as_independent(g)
c, v = coeff.as_independent(x)
l = v.as_coeff_exponent(x)[1]
if isinstance(d, Derivative):
j = d.derivative_count
else:
j = 0
RE += c * rf(k + 1 - l, j) * r(k + j - l)
if mini is None or j - l < mini:
mini = j - l
RE = RE.subs(k, k - mini)
m = Wild('m')
return RE.collect(r(k + m))
def _transformation_a(f, x, P, Q, k, m, shift):
f *= x**(-shift)
P = P.subs(k, k + shift)
Q = Q.subs(k, k + shift)
return f, P, Q, m
def _transformation_c(f, x, P, Q, k, m, scale):
f = f.subs(x, x**scale)
P = P.subs(k, k / scale)
Q = Q.subs(k, k / scale)
m *= scale
return f, P, Q, m
def _transformation_e(f, x, P, Q, k, m):
f = f.diff(x)
P = P.subs(k, k + 1) * (k + m + 1)
Q = Q.subs(k, k + 1) * (k + 1)
return f, P, Q, m
def _apply_shift(sol, shift):
return [(res, cond + shift) for res, cond in sol]
def _apply_scale(sol, scale):
return [(res, cond / scale) for res, cond in sol]
def _apply_integrate(sol, x, k):
return [(res / ((cond + 1)*(cond.as_coeff_Add()[1].coeff(k))), cond + 1)
for res, cond in sol]
def _compute_formula(f, x, P, Q, k, m, k_max):
"""Computes the formula for f."""
from sympy.polys import roots
sol = []
for i in range(k_max + 1, k_max + m + 1):
if (i < 0) == True:
continue
r = f.diff(x, i).limit(x, 0) / factorial(i)
if r.is_zero:
continue
kterm = m*k + i
res = r
p = P.subs(k, kterm)
q = Q.subs(k, kterm)
c1 = p.subs(k, 1/k).leadterm(k)[0]
c2 = q.subs(k, 1/k).leadterm(k)[0]
res *= (-c1 / c2)**k
res *= Mul(*[rf(-r, k)**mul for r, mul in roots(p, k).items()])
res /= Mul(*[rf(-r, k)**mul for r, mul in roots(q, k).items()])
sol.append((res, kterm))
return sol
def _rsolve_hypergeometric(f, x, P, Q, k, m):
"""
Recursive wrapper to rsolve_hypergeometric.
Explanation
===========
Returns a Tuple of (formula, series independent terms,
maximum power of x in independent terms) if successful
otherwise ``None``.
See :func:`rsolve_hypergeometric` for details.
"""
from sympy.polys import lcm, roots
from sympy.integrals import integrate
# transformation - c
proots, qroots = roots(P, k), roots(Q, k)
all_roots = dict(proots)
all_roots.update(qroots)
scale = lcm([r.as_numer_denom()[1] for r, t in all_roots.items()
if r.is_rational])
f, P, Q, m = _transformation_c(f, x, P, Q, k, m, scale)
# transformation - a
qroots = roots(Q, k)
if qroots:
k_min = Min(*qroots.keys())
else:
k_min = S.Zero
shift = k_min + m
f, P, Q, m = _transformation_a(f, x, P, Q, k, m, shift)
l = (x*f).limit(x, 0)
if not isinstance(l, Limit) and l != 0: # Ideally should only be l != 0
return None
qroots = roots(Q, k)
if qroots:
k_max = Max(*qroots.keys())
else:
k_max = S.Zero
ind, mp = S.Zero, -oo
for i in range(k_max + m + 1):
r = f.diff(x, i).limit(x, 0) / factorial(i)
if r.is_finite is False:
old_f = f
f, P, Q, m = _transformation_a(f, x, P, Q, k, m, i)
f, P, Q, m = _transformation_e(f, x, P, Q, k, m)
sol, ind, mp = _rsolve_hypergeometric(f, x, P, Q, k, m)
sol = _apply_integrate(sol, x, k)
sol = _apply_shift(sol, i)
ind = integrate(ind, x)
ind += (old_f - ind).limit(x, 0) # constant of integration
mp += 1
return sol, ind, mp
elif r:
ind += r*x**(i + shift)
pow_x = Rational((i + shift), scale)
if pow_x > mp:
mp = pow_x # maximum power of x
ind = ind.subs(x, x**(1/scale))
sol = _compute_formula(f, x, P, Q, k, m, k_max)
sol = _apply_shift(sol, shift)
sol = _apply_scale(sol, scale)
return sol, ind, mp
def rsolve_hypergeometric(f, x, P, Q, k, m):
"""
Solves RE of hypergeometric type.
Explanation
===========
Attempts to solve RE of the form
Q(k)*a(k + m) - P(k)*a(k)
Transformations that preserve Hypergeometric type:
a. x**n*f(x): b(k + m) = R(k - n)*b(k)
b. f(A*x): b(k + m) = A**m*R(k)*b(k)
c. f(x**n): b(k + n*m) = R(k/n)*b(k)
d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k)
e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k)
Some of these transformations have been used to solve the RE.
Returns
=======
formula : Expr
ind : Expr
Independent terms.
order : int
Examples
========
>>> from sympy import exp, ln, S
>>> from sympy.series.formal import rsolve_hypergeometric as rh
>>> from sympy.abc import x, k
>>> rh(exp(x), x, -S.One, (k + 1), k, 1)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
>>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1)
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
References
==========
.. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
.. [2] Power Series in Computer Algebra - Wolfram Koepf
"""
result = _rsolve_hypergeometric(f, x, P, Q, k, m)
if result is None:
return None
sol_list, ind, mp = result
sol_dict = defaultdict(lambda: S.Zero)
for res, cond in sol_list:
j, mk = cond.as_coeff_Add()
c = mk.coeff(k)
if j.is_integer is False:
res *= x**frac(j)
j = floor(j)
res = res.subs(k, (k - j) / c)
cond = Eq(k % c, j % c)
sol_dict[cond] += res # Group together formula for same conditions
sol = []
for cond, res in sol_dict.items():
sol.append((res, cond))
sol.append((S.Zero, True))
sol = Piecewise(*sol)
if mp is -oo:
s = S.Zero
elif mp.is_integer is False:
s = ceiling(mp)
else:
s = mp + 1
# save all the terms of
# form 1/x**k in ind
if s < 0:
ind += sum(sequence(sol * x**k, (k, s, -1)))
s = S.Zero
return (sol, ind, s)
def _solve_hyper_RE(f, x, RE, g, k):
"""See docstring of :func:`rsolve_hypergeometric` for details."""
terms = Add.make_args(RE)
if len(terms) == 2:
gs = list(RE.atoms(Function))
P, Q = map(RE.coeff, gs)
m = gs[1].args[0] - gs[0].args[0]
if m < 0:
P, Q = Q, P
m = abs(m)
return rsolve_hypergeometric(f, x, P, Q, k, m)
def _solve_explike_DE(f, x, DE, g, k):
"""Solves DE with constant coefficients."""
from sympy.solvers import rsolve
for t in Add.make_args(DE):
coeff, d = t.as_independent(g)
if coeff.free_symbols:
return
RE = exp_re(DE, g, k)
init = {}
for i in range(len(Add.make_args(RE))):
if i:
f = f.diff(x)
init[g(k).subs(k, i)] = f.limit(x, 0)
sol = rsolve(RE, g(k), init)
if sol:
return (sol / factorial(k), S.Zero, S.Zero)
def _solve_simple(f, x, DE, g, k):
"""Converts DE into RE and solves using :func:`rsolve`."""
from sympy.solvers import rsolve
RE = hyper_re(DE, g, k)
init = {}
for i in range(len(Add.make_args(RE))):
if i:
f = f.diff(x)
init[g(k).subs(k, i)] = f.limit(x, 0) / factorial(i)
sol = rsolve(RE, g(k), init)
if sol:
return (sol, S.Zero, S.Zero)
def _transform_explike_DE(DE, g, x, order, syms):
"""Converts DE with free parameters into DE with constant coefficients."""
from sympy.solvers.solveset import linsolve
eq = []
highest_coeff = DE.coeff(Derivative(g(x), x, order))
for i in range(order):
coeff = DE.coeff(Derivative(g(x), x, i))
coeff = (coeff / highest_coeff).expand().collect(x)
for t in Add.make_args(coeff):
eq.append(t)
temp = []
for e in eq:
if e.has(x):
break
elif e.has(Symbol):
temp.append(e)
else:
eq = temp
if eq:
sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s)))
if sol:
DE = DE.subs(sol)
DE = DE.factor().as_coeff_mul(Derivative)[1][0]
DE = DE.collect(Derivative(g(x)))
return DE
def _transform_DE_RE(DE, g, k, order, syms):
"""Converts DE with free parameters into RE of hypergeometric type."""
from sympy.solvers.solveset import linsolve
RE = hyper_re(DE, g, k)
eq = []
for i in range(1, order):
coeff = RE.coeff(g(k + i))
eq.append(coeff)
sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s)))
if sol:
m = Wild('m')
RE = RE.subs(sol)
RE = RE.factor().as_numer_denom()[0].collect(g(k + m))
RE = RE.as_coeff_mul(g)[1][0]
for i in range(order): # smallest order should be g(k)
if RE.coeff(g(k + i)) and i:
RE = RE.subs(k, k - i)
break
return RE
def solve_de(f, x, DE, order, g, k):
"""
Solves the DE.
Explanation
===========
Tries to solve DE by either converting into a RE containing two terms or
converting into a DE having constant coefficients.
Returns
=======
formula : Expr
ind : Expr
Independent terms.
order : int
Examples
========
>>> from sympy import Derivative as D, Function
>>> from sympy import exp, ln
>>> from sympy.series.formal import solve_de
>>> from sympy.abc import x, k
>>> f = Function('f')
>>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
>>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k)
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
"""
sol = None
syms = DE.free_symbols.difference({g, x})
if syms:
RE = _transform_DE_RE(DE, g, k, order, syms)
else:
RE = hyper_re(DE, g, k)
if not RE.free_symbols.difference({k}):
sol = _solve_hyper_RE(f, x, RE, g, k)
if sol:
return sol
if syms:
DE = _transform_explike_DE(DE, g, x, order, syms)
if not DE.free_symbols.difference({x}):
sol = _solve_explike_DE(f, x, DE, g, k)
if sol:
return sol
def hyper_algorithm(f, x, k, order=4):
"""
Hypergeometric algorithm for computing Formal Power Series.
Explanation
===========
Steps:
* Generates DE
* Convert the DE into RE
* Solves the RE
Examples
========
>>> from sympy import exp, ln
>>> from sympy.series.formal import hyper_algorithm
>>> from sympy.abc import x, k
>>> hyper_algorithm(exp(x), x, k)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
>>> hyper_algorithm(ln(1 + x), x, k)
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
Eq(Mod(k, 1), 0)), (0, True)), x, 2)
See Also
========
sympy.series.formal.simpleDE
sympy.series.formal.solve_de
"""
g = Function('g')
des = [] # list of DE's
sol = None
for DE, i in simpleDE(f, x, g, order):
if DE is not None:
sol = solve_de(f, x, DE, i, g, k)
if sol:
return sol
if not DE.free_symbols.difference({x}):
des.append(DE)
# If nothing works
# Try plain rsolve
for DE in des:
sol = _solve_simple(f, x, DE, g, k)
if sol:
return sol
def _compute_fps(f, x, x0, dir, hyper, order, rational, full):
"""Recursive wrapper to compute fps.
See :func:`compute_fps` for details.
"""
if x0 in [S.Infinity, S.NegativeInfinity]:
dir = S.One if x0 is S.Infinity else -S.One
temp = f.subs(x, 1/x)
result = _compute_fps(temp, x, 0, dir, hyper, order, rational, full)
if result is None:
return None
return (result[0], result[1].subs(x, 1/x), result[2].subs(x, 1/x))
elif x0 or dir == -S.One:
if dir == -S.One:
rep = -x + x0
rep2 = -x
rep2b = x0
else:
rep = x + x0
rep2 = x
rep2b = -x0
temp = f.subs(x, rep)
result = _compute_fps(temp, x, 0, S.One, hyper, order, rational, full)
if result is None:
return None
return (result[0], result[1].subs(x, rep2 + rep2b),
result[2].subs(x, rep2 + rep2b))
if f.is_polynomial(x):
k = Dummy('k')
ak = sequence(Coeff(f, x, k), (k, 1, oo))
xk = sequence(x**k, (k, 0, oo))
ind = f.coeff(x, 0)
return ak, xk, ind
# Break instances of Add
# this allows application of different
# algorithms on different terms increasing the
# range of admissible functions.
if isinstance(f, Add):
result = False
ak = sequence(S.Zero, (0, oo))
ind, xk = S.Zero, None
for t in Add.make_args(f):
res = _compute_fps(t, x, 0, S.One, hyper, order, rational, full)
if res:
if not result:
result = True
xk = res[1]
if res[0].start > ak.start:
seq = ak
s, f = ak.start, res[0].start
else:
seq = res[0]
s, f = res[0].start, ak.start
save = Add(*[z[0]*z[1] for z in zip(seq[0:(f - s)], xk[s:f])])
ak += res[0]
ind += res[2] + save
else:
ind += t
if result:
return ak, xk, ind
return None
# The symbolic term - symb, if present, is being separated from the function
# Otherwise symb is being set to S.One
syms = f.free_symbols.difference({x})
(f, symb) = expand(f).as_independent(*syms)
result = None
# from here on it's x0=0 and dir=1 handling
k = Dummy('k')
if rational:
result = rational_algorithm(f, x, k, order, full)
if result is None and hyper:
result = hyper_algorithm(f, x, k, order)
if result is None:
return None
from sympy.simplify.powsimp import powsimp
if symb.is_zero:
symb = S.One
else:
symb = powsimp(symb)
ak = sequence(result[0], (k, result[2], oo))
xk_formula = powsimp(x**k * symb)
xk = sequence(xk_formula, (k, 0, oo))
ind = powsimp(result[1] * symb)
return ak, xk, ind
def compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True,
full=False):
"""
Computes the formula for Formal Power Series of a function.
Explanation
===========
Tries to compute the formula by applying the following techniques
(in order):
* rational_algorithm
* Hypergeometric algorithm
Parameters
==========
x : Symbol
x0 : number, optional
Point to perform series expansion about. Default is 0.
dir : {1, -1, '+', '-'}, optional
If dir is 1 or '+' the series is calculated from the right and
for -1 or '-' the series is calculated from the left. For smooth
functions this flag will not alter the results. Default is 1.
hyper : {True, False}, optional
Set hyper to False to skip the hypergeometric algorithm.
By default it is set to False.
order : int, optional
Order of the derivative of ``f``, Default is 4.
rational : {True, False}, optional
Set rational to False to skip rational algorithm. By default it is set
to True.
full : {True, False}, optional
Set full to True to increase the range of rational algorithm.
See :func:`rational_algorithm` for details. By default it is set to
False.
Returns
=======
ak : sequence
Sequence of coefficients.
xk : sequence
Sequence of powers of x.
ind : Expr
Independent terms.
mul : Pow
Common terms.
See Also
========
sympy.series.formal.rational_algorithm
sympy.series.formal.hyper_algorithm
"""
f = sympify(f)
x = sympify(x)
if not f.has(x):
return None
x0 = sympify(x0)
if dir == '+':
dir = S.One
elif dir == '-':
dir = -S.One
elif dir not in [S.One, -S.One]:
raise ValueError("Dir must be '+' or '-'")
else:
dir = sympify(dir)
return _compute_fps(f, x, x0, dir, hyper, order, rational, full)
class Coeff(Function):
"""
Coeff(p, x, n) represents the nth coefficient of the polynomial p in x
"""
@classmethod
def eval(cls, p, x, n):
if p.is_polynomial(x) and n.is_integer:
return p.coeff(x, n)
class FormalPowerSeries(SeriesBase):
"""
Represents Formal Power Series of a function.
Explanation
===========
No computation is performed. This class should only to be used to represent
a series. No checks are performed.
For computing a series use :func:`fps`.
See Also
========
sympy.series.formal.fps
"""
def __new__(cls, *args):
args = map(sympify, args)
return Expr.__new__(cls, *args)
def __init__(self, *args):
ak = args[4][0]
k = ak.variables[0]
self.ak_seq = sequence(ak.formula, (k, 1, oo))
self.fact_seq = sequence(factorial(k), (k, 1, oo))
self.bell_coeff_seq = self.ak_seq * self.fact_seq
self.sign_seq = sequence((-1, 1), (k, 1, oo))
@property
def function(self):
return self.args[0]
@property
def x(self):
return self.args[1]
@property
def x0(self):
return self.args[2]
@property
def dir(self):
return self.args[3]
@property
def ak(self):
return self.args[4][0]
@property
def xk(self):
return self.args[4][1]
@property
def ind(self):
return self.args[4][2]
@property
def interval(self):
return Interval(0, oo)
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def length(self):
return oo
@property
def infinite(self):
"""Returns an infinite representation of the series"""
from sympy.concrete import Sum
ak, xk = self.ak, self.xk
k = ak.variables[0]
inf_sum = Sum(ak.formula * xk.formula, (k, ak.start, ak.stop))
return self.ind + inf_sum
def _get_pow_x(self, term):
"""Returns the power of x in a term."""
xterm, pow_x = term.as_independent(self.x)[1].as_base_exp()
if not xterm.has(self.x):
return S.Zero
return pow_x
def polynomial(self, n=6):
"""
Truncated series as polynomial.
Explanation
===========
Returns series expansion of ``f`` upto order ``O(x**n)``
as a polynomial(without ``O`` term).
"""
terms = []
sym = self.free_symbols
for i, t in enumerate(self):
xp = self._get_pow_x(t)
if xp.has(*sym):
xp = xp.as_coeff_add(*sym)[0]
if xp >= n:
break
elif xp.is_integer is True and i == n + 1:
break
elif t is not S.Zero:
terms.append(t)
return Add(*terms)
def truncate(self, n=6):
"""
Truncated series.
Explanation
===========
Returns truncated series expansion of f upto
order ``O(x**n)``.
If n is ``None``, returns an infinite iterator.
"""
if n is None:
return iter(self)
x, x0 = self.x, self.x0
pt_xk = self.xk.coeff(n)
if x0 is S.NegativeInfinity:
x0 = S.Infinity
return self.polynomial(n) + Order(pt_xk, (x, x0))
def zero_coeff(self):
return self._eval_term(0)
def _eval_term(self, pt):
try:
pt_xk = self.xk.coeff(pt)
pt_ak = self.ak.coeff(pt).simplify() # Simplify the coefficients
except IndexError:
term = S.Zero
else:
term = (pt_ak * pt_xk)
if self.ind:
ind = S.Zero
sym = self.free_symbols
for t in Add.make_args(self.ind):
pow_x = self._get_pow_x(t)
if pow_x.has(*sym):
pow_x = pow_x.as_coeff_add(*sym)[0]
if pt == 0 and pow_x < 1:
ind += t
elif pow_x >= pt and pow_x < pt + 1:
ind += t
term += ind
return term.collect(self.x)
def _eval_subs(self, old, new):
x = self.x
if old.has(x):
return self
def _eval_as_leading_term(self, x, logx=None, cdir=0):
for t in self:
if t is not S.Zero:
return t
def _eval_derivative(self, x):
f = self.function.diff(x)
ind = self.ind.diff(x)
pow_xk = self._get_pow_x(self.xk.formula)
ak = self.ak
k = ak.variables[0]
if ak.formula.has(x):
form = []
for e, c in ak.formula.args:
temp = S.Zero
for t in Add.make_args(e):
pow_x = self._get_pow_x(t)
temp += t * (pow_xk + pow_x)
form.append((temp, c))
form = Piecewise(*form)
ak = sequence(form.subs(k, k + 1), (k, ak.start - 1, ak.stop))
else:
ak = sequence((ak.formula * pow_xk).subs(k, k + 1),
(k, ak.start - 1, ak.stop))
return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind))
def integrate(self, x=None, **kwargs):
"""
Integrate Formal Power Series.
Examples
========
>>> from sympy import fps, sin, integrate
>>> from sympy.abc import x
>>> f = fps(sin(x))
>>> f.integrate(x).truncate()
-1 + x**2/2 - x**4/24 + O(x**6)
>>> integrate(f, (x, 0, 1))
1 - cos(1)
"""
from sympy.integrals import integrate
if x is None:
x = self.x
elif iterable(x):
return integrate(self.function, x)
f = integrate(self.function, x)
ind = integrate(self.ind, x)
ind += (f - ind).limit(x, 0) # constant of integration
pow_xk = self._get_pow_x(self.xk.formula)
ak = self.ak
k = ak.variables[0]
if ak.formula.has(x):
form = []
for e, c in ak.formula.args:
temp = S.Zero
for t in Add.make_args(e):
pow_x = self._get_pow_x(t)
temp += t / (pow_xk + pow_x + 1)
form.append((temp, c))
form = Piecewise(*form)
ak = sequence(form.subs(k, k - 1), (k, ak.start + 1, ak.stop))
else:
ak = sequence((ak.formula / (pow_xk + 1)).subs(k, k - 1),
(k, ak.start + 1, ak.stop))
return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind))
def product(self, other, x=None, n=6):
"""
Multiplies two Formal Power Series, using discrete convolution and
return the truncated terms upto specified order.
Parameters
==========
n : Number, optional
Specifies the order of the term up to which the polynomial should
be truncated.
Examples
========
>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(sin(x))
>>> f2 = fps(exp(x))
>>> f1.product(f2, x).truncate(4)
x + x**2 + x**3/3 + O(x**4)
See Also
========
sympy.discrete.convolutions
sympy.series.formal.FormalPowerSeriesProduct
"""
if n is None:
return iter(self)
other = sympify(other)
if not isinstance(other, FormalPowerSeries):
raise ValueError("Both series should be an instance of FormalPowerSeries"
" class.")
if self.dir != other.dir:
raise ValueError("Both series should be calculated from the"
" same direction.")
elif self.x0 != other.x0:
raise ValueError("Both series should be calculated about the"
" same point.")
elif self.x != other.x:
raise ValueError("Both series should have the same symbol.")
return FormalPowerSeriesProduct(self, other)
def coeff_bell(self, n):
r"""
self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind.
Note that ``n`` should be a integer.
The second kind of Bell polynomials (are sometimes called "partial" Bell
polynomials or incomplete Bell polynomials) are defined as
.. math::
B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) =
\sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n}
\frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!}
\left(\frac{x_1}{1!} \right)^{j_1}
\left(\frac{x_2}{2!} \right)^{j_2} \dotsb
\left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.
* ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind,
`B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`.
See Also
========
sympy.functions.combinatorial.numbers.bell
"""
inner_coeffs = [bell(n, j, tuple(self.bell_coeff_seq[:n-j+1])) for j in range(1, n+1)]
k = Dummy('k')
return sequence(tuple(inner_coeffs), (k, 1, oo))
def compose(self, other, x=None, n=6):
r"""
Returns the truncated terms of the formal power series of the composed function,
up to specified ``n``.
Explanation
===========
If ``f`` and ``g`` are two formal power series of two different functions,
then the coefficient sequence ``ak`` of the composed formal power series `fp`
will be as follows.
.. math::
\sum\limits_{k=0}^{n} b_k B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})
Parameters
==========
n : Number, optional
Specifies the order of the term up to which the polynomial should
be truncated.
Examples
========
>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(sin(x))
>>> f1.compose(f2, x).truncate()
1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)
>>> f1.compose(f2, x).truncate(8)
1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8)
See Also
========
sympy.functions.combinatorial.numbers.bell
sympy.series.formal.FormalPowerSeriesCompose
References
==========
.. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974.
"""
if n is None:
return iter(self)
other = sympify(other)
if not isinstance(other, FormalPowerSeries):
raise ValueError("Both series should be an instance of FormalPowerSeries"
" class.")
if self.dir != other.dir:
raise ValueError("Both series should be calculated from the"
" same direction.")
elif self.x0 != other.x0:
raise ValueError("Both series should be calculated about the"
" same point.")
elif self.x != other.x:
raise ValueError("Both series should have the same symbol.")
if other._eval_term(0).as_coeff_mul(other.x)[0] is not S.Zero:
raise ValueError("The formal power series of the inner function should not have any "
"constant coefficient term.")
return FormalPowerSeriesCompose(self, other)
def inverse(self, x=None, n=6):
r"""
Returns the truncated terms of the inverse of the formal power series,
up to specified ``n``.
Explanation
===========
If ``f`` and ``g`` are two formal power series of two different functions,
then the coefficient sequence ``ak`` of the composed formal power series ``fp``
will be as follows.
.. math::
\sum\limits_{k=0}^{n} (-1)^{k} x_0^{-k-1} B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})
Parameters
==========
n : Number, optional
Specifies the order of the term up to which the polynomial should
be truncated.
Examples
========
>>> from sympy import fps, exp, cos
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(cos(x))
>>> f1.inverse(x).truncate()
1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6)
>>> f2.inverse(x).truncate(8)
1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
See Also
========
sympy.functions.combinatorial.numbers.bell
sympy.series.formal.FormalPowerSeriesInverse
References
==========
.. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974.
"""
if n is None:
return iter(self)
if self._eval_term(0).is_zero:
raise ValueError("Constant coefficient should exist for an inverse of a formal"
" power series to exist.")
return FormalPowerSeriesInverse(self)
def __add__(self, other):
other = sympify(other)
if isinstance(other, FormalPowerSeries):
if self.dir != other.dir:
raise ValueError("Both series should be calculated from the"
" same direction.")
elif self.x0 != other.x0:
raise ValueError("Both series should be calculated about the"
" same point.")
x, y = self.x, other.x
f = self.function + other.function.subs(y, x)
if self.x not in f.free_symbols:
return f
ak = self.ak + other.ak
if self.ak.start > other.ak.start:
seq = other.ak
s, e = other.ak.start, self.ak.start
else:
seq = self.ak
s, e = self.ak.start, other.ak.start
save = Add(*[z[0]*z[1] for z in zip(seq[0:(e - s)], self.xk[s:e])])
ind = self.ind + other.ind + save
return self.func(f, x, self.x0, self.dir, (ak, self.xk, ind))
elif not other.has(self.x):
f = self.function + other
ind = self.ind + other
return self.func(f, self.x, self.x0, self.dir,
(self.ak, self.xk, ind))
return Add(self, other)
def __radd__(self, other):
return self.__add__(other)
def __neg__(self):
return self.func(-self.function, self.x, self.x0, self.dir,
(-self.ak, self.xk, -self.ind))
def __sub__(self, other):
return self.__add__(-other)
def __rsub__(self, other):
return (-self).__add__(other)
def __mul__(self, other):
other = sympify(other)
if other.has(self.x):
return Mul(self, other)
f = self.function * other
ak = self.ak.coeff_mul(other)
ind = self.ind * other
return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind))
def __rmul__(self, other):
return self.__mul__(other)
class FiniteFormalPowerSeries(FormalPowerSeries):
"""Base Class for Product, Compose and Inverse classes"""
def __init__(self, *args):
pass
@property
def ffps(self):
return self.args[0]
@property
def gfps(self):
return self.args[1]
@property
def f(self):
return self.ffps.function
@property
def g(self):
return self.gfps.function
@property
def infinite(self):
raise NotImplementedError("No infinite version for an object of"
" FiniteFormalPowerSeries class.")
def _eval_terms(self, n):
raise NotImplementedError("(%s)._eval_terms()" % self)
def _eval_term(self, pt):
raise NotImplementedError("By the current logic, one can get terms"
"upto a certain order, instead of getting term by term.")
def polynomial(self, n):
return self._eval_terms(n)
def truncate(self, n=6):
ffps = self.ffps
pt_xk = ffps.xk.coeff(n)
x, x0 = ffps.x, ffps.x0
return self.polynomial(n) + Order(pt_xk, (x, x0))
def _eval_derivative(self, x):
raise NotImplementedError
def integrate(self, x):
raise NotImplementedError
class FormalPowerSeriesProduct(FiniteFormalPowerSeries):
"""Represents the product of two formal power series of two functions.
Explanation
===========
No computation is performed. Terms are calculated using a term by term logic,
instead of a point by point logic.
There are two differences between a :obj:`FormalPowerSeries` object and a
:obj:`FormalPowerSeriesProduct` object. The first argument contains the two
functions involved in the product. Also, the coefficient sequence contains
both the coefficient sequence of the formal power series of the involved functions.
See Also
========
sympy.series.formal.FormalPowerSeries
sympy.series.formal.FiniteFormalPowerSeries
"""
def __init__(self, *args):
ffps, gfps = self.ffps, self.gfps
k = ffps.ak.variables[0]
self.coeff1 = sequence(ffps.ak.formula, (k, 0, oo))
k = gfps.ak.variables[0]
self.coeff2 = sequence(gfps.ak.formula, (k, 0, oo))
@property
def function(self):
"""Function of the product of two formal power series."""
return self.f * self.g
def _eval_terms(self, n):
"""
Returns the first ``n`` terms of the product formal power series.
Term by term logic is implemented here.
Examples
========
>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(sin(x))
>>> f2 = fps(exp(x))
>>> fprod = f1.product(f2, x)
>>> fprod._eval_terms(4)
x**3/3 + x**2 + x
See Also
========
sympy.series.formal.FormalPowerSeries.product
"""
coeff1, coeff2 = self.coeff1, self.coeff2
aks = convolution(coeff1[:n], coeff2[:n])
terms = []
for i in range(0, n):
terms.append(aks[i] * self.ffps.xk.coeff(i))
return Add(*terms)
class FormalPowerSeriesCompose(FiniteFormalPowerSeries):
"""
Represents the composed formal power series of two functions.
Explanation
===========
No computation is performed. Terms are calculated using a term by term logic,
instead of a point by point logic.
There are two differences between a :obj:`FormalPowerSeries` object and a
:obj:`FormalPowerSeriesCompose` object. The first argument contains the outer
function and the inner function involved in the omposition. Also, the
coefficient sequence contains the generic sequence which is to be multiplied
by a custom ``bell_seq`` finite sequence. The finite terms will then be added up to
get the final terms.
See Also
========
sympy.series.formal.FormalPowerSeries
sympy.series.formal.FiniteFormalPowerSeries
"""
@property
def function(self):
"""Function for the composed formal power series."""
f, g, x = self.f, self.g, self.ffps.x
return f.subs(x, g)
def _eval_terms(self, n):
"""
Returns the first `n` terms of the composed formal power series.
Term by term logic is implemented here.
Explanation
===========
The coefficient sequence of the :obj:`FormalPowerSeriesCompose` object is the generic sequence.
It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get
the final terms for the polynomial.
Examples
========
>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(sin(x))
>>> fcomp = f1.compose(f2, x)
>>> fcomp._eval_terms(6)
-x**5/15 - x**4/8 + x**2/2 + x + 1
>>> fcomp._eval_terms(8)
x**7/90 - x**6/240 - x**5/15 - x**4/8 + x**2/2 + x + 1
See Also
========
sympy.series.formal.FormalPowerSeries.compose
sympy.series.formal.FormalPowerSeries.coeff_bell
"""
ffps, gfps = self.ffps, self.gfps
terms = [ffps.zero_coeff()]
for i in range(1, n):
bell_seq = gfps.coeff_bell(i)
seq = (ffps.bell_coeff_seq * bell_seq)
terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i))
return Add(*terms)
class FormalPowerSeriesInverse(FiniteFormalPowerSeries):
"""
Represents the Inverse of a formal power series.
Explanation
===========
No computation is performed. Terms are calculated using a term by term logic,
instead of a point by point logic.
There is a single difference between a :obj:`FormalPowerSeries` object and a
:obj:`FormalPowerSeriesInverse` object. The coefficient sequence contains the
generic sequence which is to be multiplied by a custom ``bell_seq`` finite sequence.
The finite terms will then be added up to get the final terms.
See Also
========
sympy.series.formal.FormalPowerSeries
sympy.series.formal.FiniteFormalPowerSeries
"""
def __init__(self, *args):
ffps = self.ffps
k = ffps.xk.variables[0]
inv = ffps.zero_coeff()
inv_seq = sequence(inv ** (-(k + 1)), (k, 1, oo))
self.aux_seq = ffps.sign_seq * ffps.fact_seq * inv_seq
@property
def function(self):
"""Function for the inverse of a formal power series."""
f = self.f
return 1 / f
@property
def g(self):
raise ValueError("Only one function is considered while performing"
"inverse of a formal power series.")
@property
def gfps(self):
raise ValueError("Only one function is considered while performing"
"inverse of a formal power series.")
def _eval_terms(self, n):
"""
Returns the first ``n`` terms of the composed formal power series.
Term by term logic is implemented here.
Explanation
===========
The coefficient sequence of the `FormalPowerSeriesInverse` object is the generic sequence.
It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get
the final terms for the polynomial.
Examples
========
>>> from sympy import fps, exp, cos
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(cos(x))
>>> finv1, finv2 = f1.inverse(), f2.inverse()
>>> finv1._eval_terms(6)
-x**5/120 + x**4/24 - x**3/6 + x**2/2 - x + 1
>>> finv2._eval_terms(8)
61*x**6/720 + 5*x**4/24 + x**2/2 + 1
See Also
========
sympy.series.formal.FormalPowerSeries.inverse
sympy.series.formal.FormalPowerSeries.coeff_bell
"""
ffps = self.ffps
terms = [ffps.zero_coeff()]
for i in range(1, n):
bell_seq = ffps.coeff_bell(i)
seq = (self.aux_seq * bell_seq)
terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i))
return Add(*terms)
def fps(f, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False):
"""
Generates Formal Power Series of ``f``.
Explanation
===========
Returns the formal series expansion of ``f`` around ``x = x0``
with respect to ``x`` in the form of a ``FormalPowerSeries`` object.
Formal Power Series is represented using an explicit formula
computed using different algorithms.
See :func:`compute_fps` for the more details regarding the computation
of formula.
Parameters
==========
x : Symbol, optional
If x is None and ``f`` is univariate, the univariate symbols will be
supplied, otherwise an error will be raised.
x0 : number, optional
Point to perform series expansion about. Default is 0.
dir : {1, -1, '+', '-'}, optional
If dir is 1 or '+' the series is calculated from the right and
for -1 or '-' the series is calculated from the left. For smooth
functions this flag will not alter the results. Default is 1.
hyper : {True, False}, optional
Set hyper to False to skip the hypergeometric algorithm.
By default it is set to False.
order : int, optional
Order of the derivative of ``f``, Default is 4.
rational : {True, False}, optional
Set rational to False to skip rational algorithm. By default it is set
to True.
full : {True, False}, optional
Set full to True to increase the range of rational algorithm.
See :func:`rational_algorithm` for details. By default it is set to
False.
Examples
========
>>> from sympy import fps, ln, atan, sin
>>> from sympy.abc import x, n
Rational Functions
>>> fps(ln(1 + x)).truncate()
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
>>> fps(atan(x), full=True).truncate()
x - x**3/3 + x**5/5 + O(x**6)
Symbolic Functions
>>> fps(x**n*sin(x**2), x).truncate(8)
-x**(n + 6)/6 + x**(n + 2) + O(x**(n + 8))
See Also
========
sympy.series.formal.FormalPowerSeries
sympy.series.formal.compute_fps
"""
f = sympify(f)
if x is None:
free = f.free_symbols
if len(free) == 1:
x = free.pop()
elif not free:
return f
else:
raise NotImplementedError("multivariate formal power series")
result = compute_fps(f, x, x0, dir, hyper, order, rational, full)
if result is None:
return f
return FormalPowerSeries(f, x, x0, dir, result)
|
0d6988bd85ad13b4c9279d3f1361752b5c34e9169265412112d962e8f5b55aca | """
Expand Hypergeometric (and Meijer G) functions into named
special functions.
The algorithm for doing this uses a collection of lookup tables of
hypergeometric functions, and various of their properties, to expand
many hypergeometric functions in terms of special functions.
It is based on the following paper:
Kelly B. Roach. Meijer G Function Representations.
In: Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation, pages 205-211, New York, 1997. ACM.
It is described in great(er) detail in the Sphinx documentation.
"""
# SUMMARY OF EXTENSIONS FOR MEIJER G FUNCTIONS
#
# o z**rho G(ap, bq; z) = G(ap + rho, bq + rho; z)
#
# o denote z*d/dz by D
#
# o It is helpful to keep in mind that ap and bq play essentially symmetric
# roles: G(1/z) has slightly altered parameters, with ap and bq interchanged.
#
# o There are four shift operators:
# A_J = b_J - D, J = 1, ..., n
# B_J = 1 - a_j + D, J = 1, ..., m
# C_J = -b_J + D, J = m+1, ..., q
# D_J = a_J - 1 - D, J = n+1, ..., p
#
# A_J, C_J increment b_J
# B_J, D_J decrement a_J
#
# o The corresponding four inverse-shift operators are defined if there
# is no cancellation. Thus e.g. an index a_J (upper or lower) can be
# incremented if a_J != b_i for i = 1, ..., q.
#
# o Order reduction: if b_j - a_i is a non-negative integer, where
# j <= m and i > n, the corresponding quotient of gamma functions reduces
# to a polynomial. Hence the G function can be expressed using a G-function
# of lower order.
# Similarly if j > m and i <= n.
#
# Secondly, there are paired index theorems [Adamchik, The evaluation of
# integrals of Bessel functions via G-function identities]. Suppose there
# are three parameters a, b, c, where a is an a_i, i <= n, b is a b_j,
# j <= m and c is a denominator parameter (i.e. a_i, i > n or b_j, j > m).
# Suppose further all three differ by integers.
# Then the order can be reduced.
# TODO work this out in detail.
#
# o An index quadruple is called suitable if its order cannot be reduced.
# If there exists a sequence of shift operators transforming one index
# quadruple into another, we say one is reachable from the other.
#
# o Deciding if one index quadruple is reachable from another is tricky. For
# this reason, we use hand-built routines to match and instantiate formulas.
#
from collections import defaultdict
from itertools import product
from functools import reduce
from math import prod
from sympy import SYMPY_DEBUG
from sympy.core import (S, Dummy, symbols, sympify, Tuple, expand, I, pi, Mul,
EulerGamma, oo, zoo, expand_func, Add, nan, Expr, Rational)
from sympy.core.mod import Mod
from sympy.core.sorting import default_sort_key
from sympy.functions import (exp, sqrt, root, log, lowergamma, cos,
besseli, gamma, uppergamma, expint, erf, sin, besselj, Ei, Ci, Si, Shi,
sinh, cosh, Chi, fresnels, fresnelc, polar_lift, exp_polar, floor, ceiling,
rf, factorial, lerchphi, Piecewise, re, elliptic_k, elliptic_e)
from sympy.functions.elementary.complexes import polarify, unpolarify
from sympy.functions.special.hyper import (hyper, HyperRep_atanh,
HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
HyperRep_cosasin, HyperRep_sinasin, meijerg)
from sympy.matrices import Matrix, eye, zeros
from sympy.polys import apart, poly, Poly
from sympy.series import residue
from sympy.simplify.powsimp import powdenest
from sympy.utilities.iterables import sift
# function to define "buckets"
def _mod1(x):
# TODO see if this can work as Mod(x, 1); this will require
# different handling of the "buckets" since these need to
# be sorted and that fails when there is a mixture of
# integers and expressions with parameters. With the current
# Mod behavior, Mod(k, 1) == Mod(1, 1) == 0 if k is an integer.
# Although the sorting can be done with Basic.compare, this may
# still require different handling of the sorted buckets.
if x.is_Number:
return Mod(x, 1)
c, x = x.as_coeff_Add()
return Mod(c, 1) + x
# leave add formulae at the top for easy reference
def add_formulae(formulae):
""" Create our knowledge base. """
a, b, c, z = symbols('a b c, z', cls=Dummy)
def add(ap, bq, res):
func = Hyper_Function(ap, bq)
formulae.append(Formula(func, z, res, (a, b, c)))
def addb(ap, bq, B, C, M):
func = Hyper_Function(ap, bq)
formulae.append(Formula(func, z, None, (a, b, c), B, C, M))
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
# 0F0
add((), (), exp(z))
# 1F0
add((a, ), (), HyperRep_power1(-a, z))
# 2F1
addb((a, a - S.Half), (2*a, ),
Matrix([HyperRep_power2(a, z),
HyperRep_power2(a + S.Half, z)/2]),
Matrix([[1, 0]]),
Matrix([[(a - S.Half)*z/(1 - z), (S.Half - a)*z/(1 - z)],
[a/(1 - z), a*(z - 2)/(1 - z)]]))
addb((1, 1), (2, ),
Matrix([HyperRep_log1(z), 1]), Matrix([[-1/z, 0]]),
Matrix([[0, z/(z - 1)], [0, 0]]))
addb((S.Half, 1), (S('3/2'), ),
Matrix([HyperRep_atanh(z), 1]),
Matrix([[1, 0]]),
Matrix([[Rational(-1, 2), 1/(1 - z)/2], [0, 0]]))
addb((S.Half, S.Half), (S('3/2'), ),
Matrix([HyperRep_asin1(z), HyperRep_power1(Rational(-1, 2), z)]),
Matrix([[1, 0]]),
Matrix([[Rational(-1, 2), S.Half], [0, z/(1 - z)/2]]))
addb((a, S.Half + a), (S.Half, ),
Matrix([HyperRep_sqrts1(-a, z), -HyperRep_sqrts2(-a - S.Half, z)]),
Matrix([[1, 0]]),
Matrix([[0, -a],
[z*(-2*a - 1)/2/(1 - z), S.Half - z*(-2*a - 1)/(1 - z)]]))
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
# Integrals and Series: More Special Functions, Vol. 3,.
# Gordon and Breach Science Publisher
addb([a, -a], [S.Half],
Matrix([HyperRep_cosasin(a, z), HyperRep_sinasin(a, z)]),
Matrix([[1, 0]]),
Matrix([[0, -a], [a*z/(1 - z), 1/(1 - z)/2]]))
addb([1, 1], [3*S.Half],
Matrix([HyperRep_asin2(z), 1]), Matrix([[1, 0]]),
Matrix([[(z - S.Half)/(1 - z), 1/(1 - z)/2], [0, 0]]))
# Complete elliptic integrals K(z) and E(z), both a 2F1 function
addb([S.Half, S.Half], [S.One],
Matrix([elliptic_k(z), elliptic_e(z)]),
Matrix([[2/pi, 0]]),
Matrix([[Rational(-1, 2), -1/(2*z-2)],
[Rational(-1, 2), S.Half]]))
addb([Rational(-1, 2), S.Half], [S.One],
Matrix([elliptic_k(z), elliptic_e(z)]),
Matrix([[0, 2/pi]]),
Matrix([[Rational(-1, 2), -1/(2*z-2)],
[Rational(-1, 2), S.Half]]))
# 3F2
addb([Rational(-1, 2), 1, 1], [S.Half, 2],
Matrix([z*HyperRep_atanh(z), HyperRep_log1(z), 1]),
Matrix([[Rational(-2, 3), -S.One/(3*z), Rational(2, 3)]]),
Matrix([[S.Half, 0, z/(1 - z)/2],
[0, 0, z/(z - 1)],
[0, 0, 0]]))
# actually the formula for 3/2 is much nicer ...
addb([Rational(-1, 2), 1, 1], [2, 2],
Matrix([HyperRep_power1(S.Half, z), HyperRep_log2(z), 1]),
Matrix([[Rational(4, 9) - 16/(9*z), 4/(3*z), 16/(9*z)]]),
Matrix([[z/2/(z - 1), 0, 0], [1/(2*(z - 1)), 0, S.Half], [0, 0, 0]]))
# 1F1
addb([1], [b], Matrix([z**(1 - b) * exp(z) * lowergamma(b - 1, z), 1]),
Matrix([[b - 1, 0]]), Matrix([[1 - b + z, 1], [0, 0]]))
addb([a], [2*a],
Matrix([z**(S.Half - a)*exp(z/2)*besseli(a - S.Half, z/2)
* gamma(a + S.Half)/4**(S.Half - a),
z**(S.Half - a)*exp(z/2)*besseli(a + S.Half, z/2)
* gamma(a + S.Half)/4**(S.Half - a)]),
Matrix([[1, 0]]),
Matrix([[z/2, z/2], [z/2, (z/2 - 2*a)]]))
mz = polar_lift(-1)*z
addb([a], [a + 1],
Matrix([mz**(-a)*a*lowergamma(a, mz), a*exp(z)]),
Matrix([[1, 0]]),
Matrix([[-a, 1], [0, z]]))
# This one is redundant.
add([Rational(-1, 2)], [S.Half], exp(z) - sqrt(pi*z)*(-I)*erf(I*sqrt(z)))
# Added to get nice results for Laplace transform of Fresnel functions
# http://functions.wolfram.com/07.22.03.6437.01
# Basic rule
#add([1], [Rational(3, 4), Rational(5, 4)],
# sqrt(pi) * (cos(2*sqrt(polar_lift(-1)*z))*fresnelc(2*root(polar_lift(-1)*z,4)/sqrt(pi)) +
# sin(2*sqrt(polar_lift(-1)*z))*fresnels(2*root(polar_lift(-1)*z,4)/sqrt(pi)))
# / (2*root(polar_lift(-1)*z,4)))
# Manually tuned rule
addb([1], [Rational(3, 4), Rational(5, 4)],
Matrix([ sqrt(pi)*(I*sinh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))
+ cosh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)))
* exp(-I*pi/4)/(2*root(z, 4)),
sqrt(pi)*root(z, 4)*(sinh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))
+ I*cosh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)))
*exp(-I*pi/4)/2,
1 ]),
Matrix([[1, 0, 0]]),
Matrix([[Rational(-1, 4), 1, Rational(1, 4)],
[ z, Rational(1, 4), 0],
[ 0, 0, 0]]))
# 2F2
addb([S.Half, a], [Rational(3, 2), a + 1],
Matrix([a/(2*a - 1)*(-I)*sqrt(pi/z)*erf(I*sqrt(z)),
a/(2*a - 1)*(polar_lift(-1)*z)**(-a)*
lowergamma(a, polar_lift(-1)*z),
a/(2*a - 1)*exp(z)]),
Matrix([[1, -1, 0]]),
Matrix([[Rational(-1, 2), 0, 1], [0, -a, 1], [0, 0, z]]))
# We make a "basis" of four functions instead of three, and give EulerGamma
# an extra slot (it could just be a coefficient to 1). The advantage is
# that this way Polys will not see multivariate polynomials (it treats
# EulerGamma as an indeterminate), which is *way* faster.
addb([1, 1], [2, 2],
Matrix([Ei(z) - log(z), exp(z), 1, EulerGamma]),
Matrix([[1/z, 0, 0, -1/z]]),
Matrix([[0, 1, -1, 0], [0, z, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]))
# 0F1
add((), (S.Half, ), cosh(2*sqrt(z)))
addb([], [b],
Matrix([gamma(b)*z**((1 - b)/2)*besseli(b - 1, 2*sqrt(z)),
gamma(b)*z**(1 - b/2)*besseli(b, 2*sqrt(z))]),
Matrix([[1, 0]]), Matrix([[0, 1], [z, (1 - b)]]))
# 0F3
x = 4*z**Rational(1, 4)
def fp(a, z):
return besseli(a, x) + besselj(a, x)
def fm(a, z):
return besseli(a, x) - besselj(a, x)
# TODO branching
addb([], [S.Half, a, a + S.Half],
Matrix([fp(2*a - 1, z), fm(2*a, z)*z**Rational(1, 4),
fm(2*a - 1, z)*sqrt(z), fp(2*a, z)*z**Rational(3, 4)])
* 2**(-2*a)*gamma(2*a)*z**((1 - 2*a)/4),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, 1, 0, 0],
[0, S.Half - a, 1, 0],
[0, 0, S.Half, 1],
[z, 0, 0, 1 - a]]))
x = 2*(4*z)**Rational(1, 4)*exp_polar(I*pi/4)
addb([], [a, a + S.Half, 2*a],
(2*sqrt(polar_lift(-1)*z))**(1 - 2*a)*gamma(2*a)**2 *
Matrix([besselj(2*a - 1, x)*besseli(2*a - 1, x),
x*(besseli(2*a, x)*besselj(2*a - 1, x)
- besseli(2*a - 1, x)*besselj(2*a, x)),
x**2*besseli(2*a, x)*besselj(2*a, x),
x**3*(besseli(2*a, x)*besselj(2*a - 1, x)
+ besseli(2*a - 1, x)*besselj(2*a, x))]),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, Rational(1, 4), 0, 0],
[0, (1 - 2*a)/2, Rational(-1, 2), 0],
[0, 0, 1 - 2*a, Rational(1, 4)],
[-32*z, 0, 0, 1 - a]]))
# 1F2
addb([a], [a - S.Half, 2*a],
Matrix([z**(S.Half - a)*besseli(a - S.Half, sqrt(z))**2,
z**(1 - a)*besseli(a - S.Half, sqrt(z))
*besseli(a - Rational(3, 2), sqrt(z)),
z**(Rational(3, 2) - a)*besseli(a - Rational(3, 2), sqrt(z))**2]),
Matrix([[-gamma(a + S.Half)**2/4**(S.Half - a),
2*gamma(a - S.Half)*gamma(a + S.Half)/4**(1 - a),
0]]),
Matrix([[1 - 2*a, 1, 0], [z/2, S.Half - a, S.Half], [0, z, 0]]))
addb([S.Half], [b, 2 - b],
pi*(1 - b)/sin(pi*b)*
Matrix([besseli(1 - b, sqrt(z))*besseli(b - 1, sqrt(z)),
sqrt(z)*(besseli(-b, sqrt(z))*besseli(b - 1, sqrt(z))
+ besseli(1 - b, sqrt(z))*besseli(b, sqrt(z))),
besseli(-b, sqrt(z))*besseli(b, sqrt(z))]),
Matrix([[1, 0, 0]]),
Matrix([[b - 1, S.Half, 0],
[z, 0, z],
[0, S.Half, -b]]))
addb([S.Half], [Rational(3, 2), Rational(3, 2)],
Matrix([Shi(2*sqrt(z))/2/sqrt(z), sinh(2*sqrt(z))/2/sqrt(z),
cosh(2*sqrt(z))]),
Matrix([[1, 0, 0]]),
Matrix([[Rational(-1, 2), S.Half, 0], [0, Rational(-1, 2), S.Half], [0, 2*z, 0]]))
# FresnelS
# Basic rule
#add([Rational(3, 4)], [Rational(3, 2),Rational(7, 4)], 6*fresnels( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( pi * (exp(pi*I/4)*root(z,4)*2/sqrt(pi))**3 ) )
# Manually tuned rule
addb([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)],
Matrix(
[ fresnels(
exp(
pi*I/4)*root(
z, 4)*2/sqrt(
pi) ) / (
pi * (exp(pi*I/4)*root(z, 4)*2/sqrt(pi))**3 ),
sinh(2*sqrt(z))/sqrt(z),
cosh(2*sqrt(z)) ]),
Matrix([[6, 0, 0]]),
Matrix([[Rational(-3, 4), Rational(1, 16), 0],
[ 0, Rational(-1, 2), 1],
[ 0, z, 0]]))
# FresnelC
# Basic rule
#add([Rational(1, 4)], [S.Half,Rational(5, 4)], fresnelc( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) )
# Manually tuned rule
addb([Rational(1, 4)], [S.Half, Rational(5, 4)],
Matrix(
[ sqrt(
pi)*exp(
-I*pi/4)*fresnelc(
2*root(z, 4)*exp(I*pi/4)/sqrt(pi))/(2*root(z, 4)),
cosh(2*sqrt(z)),
sinh(2*sqrt(z))*sqrt(z) ]),
Matrix([[1, 0, 0]]),
Matrix([[Rational(-1, 4), Rational(1, 4), 0 ],
[ 0, 0, 1 ],
[ 0, z, S.Half]]))
# 2F3
# XXX with this five-parameter formula is pretty slow with the current
# Formula.find_instantiations (creates 2!*3!*3**(2+3) ~ 3000
# instantiations ... But it's not too bad.
addb([a, a + S.Half], [2*a, b, 2*a - b + 1],
gamma(b)*gamma(2*a - b + 1) * (sqrt(z)/2)**(1 - 2*a) *
Matrix([besseli(b - 1, sqrt(z))*besseli(2*a - b, sqrt(z)),
sqrt(z)*besseli(b, sqrt(z))*besseli(2*a - b, sqrt(z)),
sqrt(z)*besseli(b - 1, sqrt(z))*besseli(2*a - b + 1, sqrt(z)),
besseli(b, sqrt(z))*besseli(2*a - b + 1, sqrt(z))]),
Matrix([[1, 0, 0, 0]]),
Matrix([[0, S.Half, S.Half, 0],
[z/2, 1 - b, 0, z/2],
[z/2, 0, b - 2*a, z/2],
[0, S.Half, S.Half, -2*a]]))
# (C/f above comment about eulergamma in the basis).
addb([1, 1], [2, 2, Rational(3, 2)],
Matrix([Chi(2*sqrt(z)) - log(2*sqrt(z)),
cosh(2*sqrt(z)), sqrt(z)*sinh(2*sqrt(z)), 1, EulerGamma]),
Matrix([[1/z, 0, 0, 0, -1/z]]),
Matrix([[0, S.Half, 0, Rational(-1, 2), 0],
[0, 0, 1, 0, 0],
[0, z, S.Half, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]))
# 3F3
# This is rule: http://functions.wolfram.com/07.31.03.0134.01
# Initial reason to add it was a nice solution for
# integrate(erf(a*z)/z**2, z) and same for erfc and erfi.
# Basic rule
# add([1, 1, a], [2, 2, a+1], (a/(z*(a-1)**2)) *
# (1 - (-z)**(1-a) * (gamma(a) - uppergamma(a,-z))
# - (a-1) * (EulerGamma + uppergamma(0,-z) + log(-z))
# - exp(z)))
# Manually tuned rule
addb([1, 1, a], [2, 2, a+1],
Matrix([a*(log(-z) + expint(1, -z) + EulerGamma)/(z*(a**2 - 2*a + 1)),
a*(-z)**(-a)*(gamma(a) - uppergamma(a, -z))/(a - 1)**2,
a*exp(z)/(a**2 - 2*a + 1),
a/(z*(a**2 - 2*a + 1))]),
Matrix([[1-a, 1, -1/z, 1]]),
Matrix([[-1,0,-1/z,1],
[0,-a,1,0],
[0,0,z,0],
[0,0,0,-1]]))
def add_meijerg_formulae(formulae):
a, b, c, z = list(map(Dummy, 'abcz'))
rho = Dummy('rho')
def add(an, ap, bm, bq, B, C, M, matcher):
formulae.append(MeijerFormula(an, ap, bm, bq, z, [a, b, c, rho],
B, C, M, matcher))
def detect_uppergamma(func):
x = func.an[0]
y, z = func.bm
swapped = False
if not _mod1((x - y).simplify()):
swapped = True
(y, z) = (z, y)
if _mod1((x - z).simplify()) or x - z > 0:
return None
l = [y, x]
if swapped:
l = [x, y]
return {rho: y, a: x - y}, G_Function([x], [], l, [])
add([a + rho], [], [rho, a + rho], [],
Matrix([gamma(1 - a)*z**rho*exp(z)*uppergamma(a, z),
gamma(1 - a)*z**(a + rho)]),
Matrix([[1, 0]]),
Matrix([[rho + z, -1], [0, a + rho]]),
detect_uppergamma)
def detect_3113(func):
"""http://functions.wolfram.com/07.34.03.0984.01"""
x = func.an[0]
u, v, w = func.bm
if _mod1((u - v).simplify()) == 0:
if _mod1((v - w).simplify()) == 0:
return
sig = (S.Half, S.Half, S.Zero)
x1, x2, y = u, v, w
else:
if _mod1((x - u).simplify()) == 0:
sig = (S.Half, S.Zero, S.Half)
x1, y, x2 = u, v, w
else:
sig = (S.Zero, S.Half, S.Half)
y, x1, x2 = u, v, w
if (_mod1((x - x1).simplify()) != 0 or
_mod1((x - x2).simplify()) != 0 or
_mod1((x - y).simplify()) != S.Half or
x - x1 > 0 or x - x2 > 0):
return
return {a: x}, G_Function([x], [], [x - S.Half + t for t in sig], [])
s = sin(2*sqrt(z))
c_ = cos(2*sqrt(z))
S_ = Si(2*sqrt(z)) - pi/2
C = Ci(2*sqrt(z))
add([a], [], [a, a, a - S.Half], [],
Matrix([sqrt(pi)*z**(a - S.Half)*(c_*S_ - s*C),
sqrt(pi)*z**a*(s*S_ + c_*C),
sqrt(pi)*z**a]),
Matrix([[-2, 0, 0]]),
Matrix([[a - S.Half, -1, 0], [z, a, S.Half], [0, 0, a]]),
detect_3113)
def make_simp(z):
""" Create a function that simplifies rational functions in ``z``. """
def simp(expr):
""" Efficiently simplify the rational function ``expr``. """
numer, denom = expr.as_numer_denom()
numer = numer.expand()
# denom = denom.expand() # is this needed?
c, numer, denom = poly(numer, z).cancel(poly(denom, z))
return c * numer.as_expr() / denom.as_expr()
return simp
def debug(*args):
if SYMPY_DEBUG:
for a in args:
print(a, end="")
print()
class Hyper_Function(Expr):
""" A generalized hypergeometric function. """
def __new__(cls, ap, bq):
obj = super().__new__(cls)
obj.ap = Tuple(*list(map(expand, ap)))
obj.bq = Tuple(*list(map(expand, bq)))
return obj
@property
def args(self):
return (self.ap, self.bq)
@property
def sizes(self):
return (len(self.ap), len(self.bq))
@property
def gamma(self):
"""
Number of upper parameters that are negative integers
This is a transformation invariant.
"""
return sum(bool(x.is_integer and x.is_negative) for x in self.ap)
def _hashable_content(self):
return super()._hashable_content() + (self.ap,
self.bq)
def __call__(self, arg):
return hyper(self.ap, self.bq, arg)
def build_invariants(self):
"""
Compute the invariant vector.
Explanation
===========
The invariant vector is:
(gamma, ((s1, n1), ..., (sk, nk)), ((t1, m1), ..., (tr, mr)))
where gamma is the number of integer a < 0,
s1 < ... < sk
nl is the number of parameters a_i congruent to sl mod 1
t1 < ... < tr
ml is the number of parameters b_i congruent to tl mod 1
If the index pair contains parameters, then this is not truly an
invariant, since the parameters cannot be sorted uniquely mod1.
Examples
========
>>> from sympy.simplify.hyperexpand import Hyper_Function
>>> from sympy import S
>>> ap = (S.Half, S.One/3, S(-1)/2, -2)
>>> bq = (1, 2)
Here gamma = 1,
k = 3, s1 = 0, s2 = 1/3, s3 = 1/2
n1 = 1, n2 = 1, n2 = 2
r = 1, t1 = 0
m1 = 2:
>>> Hyper_Function(ap, bq).build_invariants()
(1, ((0, 1), (1/3, 1), (1/2, 2)), ((0, 2),))
"""
abuckets, bbuckets = sift(self.ap, _mod1), sift(self.bq, _mod1)
def tr(bucket):
bucket = list(bucket.items())
if not any(isinstance(x[0], Mod) for x in bucket):
bucket.sort(key=lambda x: default_sort_key(x[0]))
bucket = tuple([(mod, len(values)) for mod, values in bucket if
values])
return bucket
return (self.gamma, tr(abuckets), tr(bbuckets))
def difficulty(self, func):
""" Estimate how many steps it takes to reach ``func`` from self.
Return -1 if impossible. """
if self.gamma != func.gamma:
return -1
oabuckets, obbuckets, abuckets, bbuckets = [sift(params, _mod1) for
params in (self.ap, self.bq, func.ap, func.bq)]
diff = 0
for bucket, obucket in [(abuckets, oabuckets), (bbuckets, obbuckets)]:
for mod in set(list(bucket.keys()) + list(obucket.keys())):
if (mod not in bucket) or (mod not in obucket) \
or len(bucket[mod]) != len(obucket[mod]):
return -1
l1 = list(bucket[mod])
l2 = list(obucket[mod])
l1.sort()
l2.sort()
for i, j in zip(l1, l2):
diff += abs(i - j)
return diff
def _is_suitable_origin(self):
"""
Decide if ``self`` is a suitable origin.
Explanation
===========
A function is a suitable origin iff:
* none of the ai equals bj + n, with n a non-negative integer
* none of the ai is zero
* none of the bj is a non-positive integer
Note that this gives meaningful results only when none of the indices
are symbolic.
"""
for a in self.ap:
for b in self.bq:
if (a - b).is_integer and (a - b).is_negative is False:
return False
for a in self.ap:
if a == 0:
return False
for b in self.bq:
if b.is_integer and b.is_nonpositive:
return False
return True
class G_Function(Expr):
""" A Meijer G-function. """
def __new__(cls, an, ap, bm, bq):
obj = super().__new__(cls)
obj.an = Tuple(*list(map(expand, an)))
obj.ap = Tuple(*list(map(expand, ap)))
obj.bm = Tuple(*list(map(expand, bm)))
obj.bq = Tuple(*list(map(expand, bq)))
return obj
@property
def args(self):
return (self.an, self.ap, self.bm, self.bq)
def _hashable_content(self):
return super()._hashable_content() + self.args
def __call__(self, z):
return meijerg(self.an, self.ap, self.bm, self.bq, z)
def compute_buckets(self):
"""
Compute buckets for the fours sets of parameters.
Explanation
===========
We guarantee that any two equal Mod objects returned are actually the
same, and that the buckets are sorted by real part (an and bq
descendending, bm and ap ascending).
Examples
========
>>> from sympy.simplify.hyperexpand import G_Function
>>> from sympy.abc import y
>>> from sympy import S
>>> a, b = [1, 3, 2, S(3)/2], [1 + y, y, 2, y + 3]
>>> G_Function(a, b, [2], [y]).compute_buckets()
({0: [3, 2, 1], 1/2: [3/2]},
{0: [2], y: [y, y + 1, y + 3]}, {0: [2]}, {y: [y]})
"""
dicts = pan, pap, pbm, pbq = [defaultdict(list) for i in range(4)]
for dic, lis in zip(dicts, (self.an, self.ap, self.bm, self.bq)):
for x in lis:
dic[_mod1(x)].append(x)
for dic, flip in zip(dicts, (True, False, False, True)):
for m, items in dic.items():
x0 = items[0]
items.sort(key=lambda x: x - x0, reverse=flip)
dic[m] = items
return tuple([dict(w) for w in dicts])
@property
def signature(self):
return (len(self.an), len(self.ap), len(self.bm), len(self.bq))
# Dummy variable.
_x = Dummy('x')
class Formula:
"""
This class represents hypergeometric formulae.
Explanation
===========
Its data members are:
- z, the argument
- closed_form, the closed form expression
- symbols, the free symbols (parameters) in the formula
- func, the function
- B, C, M (see _compute_basis)
Examples
========
>>> from sympy.abc import a, b, z
>>> from sympy.simplify.hyperexpand import Formula, Hyper_Function
>>> func = Hyper_Function((a/2, a/3 + b, (1+a)/2), (a, b, (a+b)/7))
>>> f = Formula(func, z, None, [a, b])
"""
def _compute_basis(self, closed_form):
"""
Compute a set of functions B=(f1, ..., fn), a nxn matrix M
and a 1xn matrix C such that:
closed_form = C B
z d/dz B = M B.
"""
afactors = [_x + a for a in self.func.ap]
bfactors = [_x + b - 1 for b in self.func.bq]
expr = _x*Mul(*bfactors) - self.z*Mul(*afactors)
poly = Poly(expr, _x)
n = poly.degree() - 1
b = [closed_form]
for _ in range(n):
b.append(self.z*b[-1].diff(self.z))
self.B = Matrix(b)
self.C = Matrix([[1] + [0]*n])
m = eye(n)
m = m.col_insert(0, zeros(n, 1))
l = poly.all_coeffs()[1:]
l.reverse()
self.M = m.row_insert(n, -Matrix([l])/poly.all_coeffs()[0])
def __init__(self, func, z, res, symbols, B=None, C=None, M=None):
z = sympify(z)
res = sympify(res)
symbols = [x for x in sympify(symbols) if func.has(x)]
self.z = z
self.symbols = symbols
self.B = B
self.C = C
self.M = M
self.func = func
# TODO with symbolic parameters, it could be advantageous
# (for prettier answers) to compute a basis only *after*
# instantiation
if res is not None:
self._compute_basis(res)
@property
def closed_form(self):
return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero)
def find_instantiations(self, func):
"""
Find substitutions of the free symbols that match ``func``.
Return the substitution dictionaries as a list. Note that the returned
instantiations need not actually match, or be valid!
"""
from sympy.solvers import solve
ap = func.ap
bq = func.bq
if len(ap) != len(self.func.ap) or len(bq) != len(self.func.bq):
raise TypeError('Cannot instantiate other number of parameters')
symbol_values = []
for a in self.symbols:
if a in self.func.ap.args:
symbol_values.append(ap)
elif a in self.func.bq.args:
symbol_values.append(bq)
else:
raise ValueError("At least one of the parameters of the "
"formula must be equal to %s" % (a,))
base_repl = [dict(list(zip(self.symbols, values)))
for values in product(*symbol_values)]
abuckets, bbuckets = [sift(params, _mod1) for params in [ap, bq]]
a_inv, b_inv = [{a: len(vals) for a, vals in bucket.items()}
for bucket in [abuckets, bbuckets]]
critical_values = [[0] for _ in self.symbols]
result = []
_n = Dummy()
for repl in base_repl:
symb_a, symb_b = [sift(params, lambda x: _mod1(x.xreplace(repl)))
for params in [self.func.ap, self.func.bq]]
for bucket, obucket in [(abuckets, symb_a), (bbuckets, symb_b)]:
for mod in set(list(bucket.keys()) + list(obucket.keys())):
if (mod not in bucket) or (mod not in obucket) \
or len(bucket[mod]) != len(obucket[mod]):
break
for a, vals in zip(self.symbols, critical_values):
if repl[a].free_symbols:
continue
exprs = [expr for expr in obucket[mod] if expr.has(a)]
repl0 = repl.copy()
repl0[a] += _n
for expr in exprs:
for target in bucket[mod]:
n0, = solve(expr.xreplace(repl0) - target, _n)
if n0.free_symbols:
raise ValueError("Value should not be true")
vals.append(n0)
else:
values = []
for a, vals in zip(self.symbols, critical_values):
a0 = repl[a]
min_ = floor(min(vals))
max_ = ceiling(max(vals))
values.append([a0 + n for n in range(min_, max_ + 1)])
result.extend(dict(list(zip(self.symbols, l))) for l in product(*values))
return result
class FormulaCollection:
""" A collection of formulae to use as origins. """
def __init__(self):
""" Doing this globally at module init time is a pain ... """
self.symbolic_formulae = {}
self.concrete_formulae = {}
self.formulae = []
add_formulae(self.formulae)
# Now process the formulae into a helpful form.
# These dicts are indexed by (p, q).
for f in self.formulae:
sizes = f.func.sizes
if len(f.symbols) > 0:
self.symbolic_formulae.setdefault(sizes, []).append(f)
else:
inv = f.func.build_invariants()
self.concrete_formulae.setdefault(sizes, {})[inv] = f
def lookup_origin(self, func):
"""
Given the suitable target ``func``, try to find an origin in our
knowledge base.
Examples
========
>>> from sympy.simplify.hyperexpand import (FormulaCollection,
... Hyper_Function)
>>> f = FormulaCollection()
>>> f.lookup_origin(Hyper_Function((), ())).closed_form
exp(_z)
>>> f.lookup_origin(Hyper_Function([1], ())).closed_form
HyperRep_power1(-1, _z)
>>> from sympy import S
>>> i = Hyper_Function([S('1/4'), S('3/4 + 4')], [S.Half])
>>> f.lookup_origin(i).closed_form
HyperRep_sqrts1(-1/4, _z)
"""
inv = func.build_invariants()
sizes = func.sizes
if sizes in self.concrete_formulae and \
inv in self.concrete_formulae[sizes]:
return self.concrete_formulae[sizes][inv]
# We don't have a concrete formula. Try to instantiate.
if sizes not in self.symbolic_formulae:
return None # Too bad...
possible = []
for f in self.symbolic_formulae[sizes]:
repls = f.find_instantiations(func)
for repl in repls:
func2 = f.func.xreplace(repl)
if not func2._is_suitable_origin():
continue
diff = func2.difficulty(func)
if diff == -1:
continue
possible.append((diff, repl, f, func2))
# find the nearest origin
possible.sort(key=lambda x: x[0])
for _, repl, f, func2 in possible:
f2 = Formula(func2, f.z, None, [], f.B.subs(repl),
f.C.subs(repl), f.M.subs(repl))
if not any(e.has(S.NaN, oo, -oo, zoo) for e in [f2.B, f2.M, f2.C]):
return f2
return None
class MeijerFormula:
"""
This class represents a Meijer G-function formula.
Its data members are:
- z, the argument
- symbols, the free symbols (parameters) in the formula
- func, the function
- B, C, M (c/f ordinary Formula)
"""
def __init__(self, an, ap, bm, bq, z, symbols, B, C, M, matcher):
an, ap, bm, bq = [Tuple(*list(map(expand, w))) for w in [an, ap, bm, bq]]
self.func = G_Function(an, ap, bm, bq)
self.z = z
self.symbols = symbols
self._matcher = matcher
self.B = B
self.C = C
self.M = M
@property
def closed_form(self):
return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero)
def try_instantiate(self, func):
"""
Try to instantiate the current formula to (almost) match func.
This uses the _matcher passed on init.
"""
if func.signature != self.func.signature:
return None
res = self._matcher(func)
if res is not None:
subs, newfunc = res
return MeijerFormula(newfunc.an, newfunc.ap, newfunc.bm, newfunc.bq,
self.z, [],
self.B.subs(subs), self.C.subs(subs),
self.M.subs(subs), None)
class MeijerFormulaCollection:
"""
This class holds a collection of meijer g formulae.
"""
def __init__(self):
formulae = []
add_meijerg_formulae(formulae)
self.formulae = defaultdict(list)
for formula in formulae:
self.formulae[formula.func.signature].append(formula)
self.formulae = dict(self.formulae)
def lookup_origin(self, func):
""" Try to find a formula that matches func. """
if func.signature not in self.formulae:
return None
for formula in self.formulae[func.signature]:
res = formula.try_instantiate(func)
if res is not None:
return res
class Operator:
"""
Base class for operators to be applied to our functions.
Explanation
===========
These operators are differential operators. They are by convention
expressed in the variable D = z*d/dz (although this base class does
not actually care).
Note that when the operator is applied to an object, we typically do
*not* blindly differentiate but instead use a different representation
of the z*d/dz operator (see make_derivative_operator).
To subclass from this, define a __init__ method that initializes a
self._poly variable. This variable stores a polynomial. By convention
the generator is z*d/dz, and acts to the right of all coefficients.
Thus this poly
x**2 + 2*z*x + 1
represents the differential operator
(z*d/dz)**2 + 2*z**2*d/dz.
This class is used only in the implementation of the hypergeometric
function expansion algorithm.
"""
def apply(self, obj, op):
"""
Apply ``self`` to the object ``obj``, where the generator is ``op``.
Examples
========
>>> from sympy.simplify.hyperexpand import Operator
>>> from sympy.polys.polytools import Poly
>>> from sympy.abc import x, y, z
>>> op = Operator()
>>> op._poly = Poly(x**2 + z*x + y, x)
>>> op.apply(z**7, lambda f: f.diff(z))
y*z**7 + 7*z**7 + 42*z**5
"""
coeffs = self._poly.all_coeffs()
coeffs.reverse()
diffs = [obj]
for c in coeffs[1:]:
diffs.append(op(diffs[-1]))
r = coeffs[0]*diffs[0]
for c, d in zip(coeffs[1:], diffs[1:]):
r += c*d
return r
class MultOperator(Operator):
""" Simply multiply by a "constant" """
def __init__(self, p):
self._poly = Poly(p, _x)
class ShiftA(Operator):
""" Increment an upper index. """
def __init__(self, ai):
ai = sympify(ai)
if ai == 0:
raise ValueError('Cannot increment zero upper index.')
self._poly = Poly(_x/ai + 1, _x)
def __str__(self):
return '<Increment upper %s.>' % (1/self._poly.all_coeffs()[0])
class ShiftB(Operator):
""" Decrement a lower index. """
def __init__(self, bi):
bi = sympify(bi)
if bi == 1:
raise ValueError('Cannot decrement unit lower index.')
self._poly = Poly(_x/(bi - 1) + 1, _x)
def __str__(self):
return '<Decrement lower %s.>' % (1/self._poly.all_coeffs()[0] + 1)
class UnShiftA(Operator):
""" Decrement an upper index. """
def __init__(self, ap, bq, i, z):
""" Note: i counts from zero! """
ap, bq, i = list(map(sympify, [ap, bq, i]))
self._ap = ap
self._bq = bq
self._i = i
ap = list(ap)
bq = list(bq)
ai = ap.pop(i) - 1
if ai == 0:
raise ValueError('Cannot decrement unit upper index.')
m = Poly(z*ai, _x)
for a in ap:
m *= Poly(_x + a, _x)
A = Dummy('A')
n = D = Poly(ai*A - ai, A)
for b in bq:
n *= D + (b - 1).as_poly(A)
b0 = -n.nth(0)
if b0 == 0:
raise ValueError('Cannot decrement upper index: '
'cancels with lower')
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, _x/ai + 1), _x)
self._poly = Poly((n - m)/b0, _x)
def __str__(self):
return '<Decrement upper index #%s of %s, %s.>' % (self._i,
self._ap, self._bq)
class UnShiftB(Operator):
""" Increment a lower index. """
def __init__(self, ap, bq, i, z):
""" Note: i counts from zero! """
ap, bq, i = list(map(sympify, [ap, bq, i]))
self._ap = ap
self._bq = bq
self._i = i
ap = list(ap)
bq = list(bq)
bi = bq.pop(i) + 1
if bi == 0:
raise ValueError('Cannot increment -1 lower index.')
m = Poly(_x*(bi - 1), _x)
for b in bq:
m *= Poly(_x + b - 1, _x)
B = Dummy('B')
D = Poly((bi - 1)*B - bi + 1, B)
n = Poly(z, B)
for a in ap:
n *= (D + a.as_poly(B))
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot increment index: cancels with upper')
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
B, _x/(bi - 1) + 1), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Increment lower index #%s of %s, %s.>' % (self._i,
self._ap, self._bq)
class MeijerShiftA(Operator):
""" Increment an upper b index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(bi - _x, _x)
def __str__(self):
return '<Increment upper b=%s.>' % (self._poly.all_coeffs()[1])
class MeijerShiftB(Operator):
""" Decrement an upper a index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(1 - bi + _x, _x)
def __str__(self):
return '<Decrement upper a=%s.>' % (1 - self._poly.all_coeffs()[1])
class MeijerShiftC(Operator):
""" Increment a lower b index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(-bi + _x, _x)
def __str__(self):
return '<Increment lower b=%s.>' % (-self._poly.all_coeffs()[1])
class MeijerShiftD(Operator):
""" Decrement a lower a index. """
def __init__(self, bi):
bi = sympify(bi)
self._poly = Poly(bi - 1 - _x, _x)
def __str__(self):
return '<Decrement lower a=%s.>' % (self._poly.all_coeffs()[1] + 1)
class MeijerUnShiftA(Operator):
""" Decrement an upper b index. """
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
bi = bm.pop(i) - 1
m = Poly(1, _x) * prod(Poly(b - _x, _x) for b in bm) * prod(Poly(_x - b, _x) for b in bq)
A = Dummy('A')
D = Poly(bi - A, A)
n = Poly(z, A) * prod((D + 1 - a) for a in an) * prod((-D + a - 1) for a in ap)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot decrement upper b index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, bi - _x), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Decrement upper b index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class MeijerUnShiftB(Operator):
""" Increment an upper a index. """
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
ai = an.pop(i) + 1
m = Poly(z, _x)
for a in an:
m *= Poly(1 - a + _x, _x)
for a in ap:
m *= Poly(a - 1 - _x, _x)
B = Dummy('B')
D = Poly(B + ai - 1, B)
n = Poly(1, B)
for b in bm:
n *= (-D + b)
for b in bq:
n *= (D - b)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot increment upper a index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
B, 1 - ai + _x), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Increment upper a index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class MeijerUnShiftC(Operator):
""" Decrement a lower b index. """
# XXX this is "essentially" the same as MeijerUnShiftA. This "essentially"
# can be made rigorous using the functional equation G(1/z) = G'(z),
# where G' denotes a G function of slightly altered parameters.
# However, sorting out the details seems harder than just coding it
# again.
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
bi = bq.pop(i) - 1
m = Poly(1, _x)
for b in bm:
m *= Poly(b - _x, _x)
for b in bq:
m *= Poly(_x - b, _x)
C = Dummy('C')
D = Poly(bi + C, C)
n = Poly(z, C)
for a in an:
n *= (D + 1 - a)
for a in ap:
n *= (-D + a - 1)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot decrement lower b index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], C).as_expr().subs(C, _x - bi), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Decrement lower b index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class MeijerUnShiftD(Operator):
""" Increment a lower a index. """
# XXX This is essentially the same as MeijerUnShiftA.
# See comment at MeijerUnShiftC.
def __init__(self, an, ap, bm, bq, i, z):
""" Note: i counts from zero! """
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
self._an = an
self._ap = ap
self._bm = bm
self._bq = bq
self._i = i
an = list(an)
ap = list(ap)
bm = list(bm)
bq = list(bq)
ai = ap.pop(i) + 1
m = Poly(z, _x)
for a in an:
m *= Poly(1 - a + _x, _x)
for a in ap:
m *= Poly(a - 1 - _x, _x)
B = Dummy('B') # - this is the shift operator `D_I`
D = Poly(ai - 1 - B, B)
n = Poly(1, B)
for b in bm:
n *= (-D + b)
for b in bq:
n *= (D - b)
b0 = n.nth(0)
if b0 == 0:
raise ValueError('Cannot increment lower a index (cancels)')
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
B, ai - 1 - _x), _x)
self._poly = Poly((m - n)/b0, _x)
def __str__(self):
return '<Increment lower a index #%s of %s, %s, %s, %s.>' % (self._i,
self._an, self._ap, self._bm, self._bq)
class ReduceOrder(Operator):
""" Reduce Order by cancelling an upper and a lower index. """
def __new__(cls, ai, bj):
""" For convenience if reduction is not possible, return None. """
ai = sympify(ai)
bj = sympify(bj)
n = ai - bj
if not n.is_Integer or n < 0:
return None
if bj.is_integer and bj.is_nonpositive:
return None
expr = Operator.__new__(cls)
p = S.One
for k in range(n):
p *= (_x + bj + k)/(bj + k)
expr._poly = Poly(p, _x)
expr._a = ai
expr._b = bj
return expr
@classmethod
def _meijer(cls, b, a, sign):
""" Cancel b + sign*s and a + sign*s
This is for meijer G functions. """
b = sympify(b)
a = sympify(a)
n = b - a
if n.is_negative or not n.is_Integer:
return None
expr = Operator.__new__(cls)
p = S.One
for k in range(n):
p *= (sign*_x + a + k)
expr._poly = Poly(p, _x)
if sign == -1:
expr._a = b
expr._b = a
else:
expr._b = Add(1, a - 1, evaluate=False)
expr._a = Add(1, b - 1, evaluate=False)
return expr
@classmethod
def meijer_minus(cls, b, a):
return cls._meijer(b, a, -1)
@classmethod
def meijer_plus(cls, a, b):
return cls._meijer(1 - a, 1 - b, 1)
def __str__(self):
return '<Reduce order by cancelling upper %s with lower %s.>' % \
(self._a, self._b)
def _reduce_order(ap, bq, gen, key):
""" Order reduction algorithm used in Hypergeometric and Meijer G """
ap = list(ap)
bq = list(bq)
ap.sort(key=key)
bq.sort(key=key)
nap = []
# we will edit bq in place
operators = []
for a in ap:
op = None
for i in range(len(bq)):
op = gen(a, bq[i])
if op is not None:
bq.pop(i)
break
if op is None:
nap.append(a)
else:
operators.append(op)
return nap, bq, operators
def reduce_order(func):
"""
Given the hypergeometric function ``func``, find a sequence of operators to
reduces order as much as possible.
Explanation
===========
Return (newfunc, [operators]), where applying the operators to the
hypergeometric function newfunc yields func.
Examples
========
>>> from sympy.simplify.hyperexpand import reduce_order, Hyper_Function
>>> reduce_order(Hyper_Function((1, 2), (3, 4)))
(Hyper_Function((1, 2), (3, 4)), [])
>>> reduce_order(Hyper_Function((1,), (1,)))
(Hyper_Function((), ()), [<Reduce order by cancelling upper 1 with lower 1.>])
>>> reduce_order(Hyper_Function((2, 4), (3, 3)))
(Hyper_Function((2,), (3,)), [<Reduce order by cancelling
upper 4 with lower 3.>])
"""
nap, nbq, operators = _reduce_order(func.ap, func.bq, ReduceOrder, default_sort_key)
return Hyper_Function(Tuple(*nap), Tuple(*nbq)), operators
def reduce_order_meijer(func):
"""
Given the Meijer G function parameters, ``func``, find a sequence of
operators that reduces order as much as possible.
Return newfunc, [operators].
Examples
========
>>> from sympy.simplify.hyperexpand import (reduce_order_meijer,
... G_Function)
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 2]))[0]
G_Function((4, 3), (5, 6), (3, 4), (2, 1))
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 8]))[0]
G_Function((3,), (5, 6), (3, 4), (1,))
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [1, 5]))[0]
G_Function((3,), (), (), (1,))
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [5, 3]))[0]
G_Function((), (), (), ())
"""
nan, nbq, ops1 = _reduce_order(func.an, func.bq, ReduceOrder.meijer_plus,
lambda x: default_sort_key(-x))
nbm, nap, ops2 = _reduce_order(func.bm, func.ap, ReduceOrder.meijer_minus,
default_sort_key)
return G_Function(nan, nap, nbm, nbq), ops1 + ops2
def make_derivative_operator(M, z):
""" Create a derivative operator, to be passed to Operator.apply. """
def doit(C):
r = z*C.diff(z) + C*M
r = r.applyfunc(make_simp(z))
return r
return doit
def apply_operators(obj, ops, op):
"""
Apply the list of operators ``ops`` to object ``obj``, substituting
``op`` for the generator.
"""
res = obj
for o in reversed(ops):
res = o.apply(res, op)
return res
def devise_plan(target, origin, z):
"""
Devise a plan (consisting of shift and un-shift operators) to be applied
to the hypergeometric function ``target`` to yield ``origin``.
Returns a list of operators.
Examples
========
>>> from sympy.simplify.hyperexpand import devise_plan, Hyper_Function
>>> from sympy.abc import z
Nothing to do:
>>> devise_plan(Hyper_Function((1, 2), ()), Hyper_Function((1, 2), ()), z)
[]
>>> devise_plan(Hyper_Function((), (1, 2)), Hyper_Function((), (1, 2)), z)
[]
Very simple plans:
>>> devise_plan(Hyper_Function((2,), ()), Hyper_Function((1,), ()), z)
[<Increment upper 1.>]
>>> devise_plan(Hyper_Function((), (2,)), Hyper_Function((), (1,)), z)
[<Increment lower index #0 of [], [1].>]
Several buckets:
>>> from sympy import S
>>> devise_plan(Hyper_Function((1, S.Half), ()),
... Hyper_Function((2, S('3/2')), ()), z) #doctest: +NORMALIZE_WHITESPACE
[<Decrement upper index #0 of [3/2, 1], [].>,
<Decrement upper index #0 of [2, 3/2], [].>]
A slightly more complicated plan:
>>> devise_plan(Hyper_Function((1, 3), ()), Hyper_Function((2, 2), ()), z)
[<Increment upper 2.>, <Decrement upper index #0 of [2, 2], [].>]
Another more complicated plan: (note that the ap have to be shifted first!)
>>> devise_plan(Hyper_Function((1, -1), (2,)), Hyper_Function((3, -2), (4,)), z)
[<Decrement lower 3.>, <Decrement lower 4.>,
<Decrement upper index #1 of [-1, 2], [4].>,
<Decrement upper index #1 of [-1, 3], [4].>, <Increment upper -2.>]
"""
abuckets, bbuckets, nabuckets, nbbuckets = [sift(params, _mod1) for
params in (target.ap, target.bq, origin.ap, origin.bq)]
if len(list(abuckets.keys())) != len(list(nabuckets.keys())) or \
len(list(bbuckets.keys())) != len(list(nbbuckets.keys())):
raise ValueError('%s not reachable from %s' % (target, origin))
ops = []
def do_shifts(fro, to, inc, dec):
ops = []
for i in range(len(fro)):
if to[i] - fro[i] > 0:
sh = inc
ch = 1
else:
sh = dec
ch = -1
while to[i] != fro[i]:
ops += [sh(fro, i)]
fro[i] += ch
return ops
def do_shifts_a(nal, nbk, al, aother, bother):
""" Shift us from (nal, nbk) to (al, nbk). """
return do_shifts(nal, al, lambda p, i: ShiftA(p[i]),
lambda p, i: UnShiftA(p + aother, nbk + bother, i, z))
def do_shifts_b(nal, nbk, bk, aother, bother):
""" Shift us from (nal, nbk) to (nal, bk). """
return do_shifts(nbk, bk,
lambda p, i: UnShiftB(nal + aother, p + bother, i, z),
lambda p, i: ShiftB(p[i]))
for r in sorted(list(abuckets.keys()) + list(bbuckets.keys()), key=default_sort_key):
al = ()
nal = ()
bk = ()
nbk = ()
if r in abuckets:
al = abuckets[r]
nal = nabuckets[r]
if r in bbuckets:
bk = bbuckets[r]
nbk = nbbuckets[r]
if len(al) != len(nal) or len(bk) != len(nbk):
raise ValueError('%s not reachable from %s' % (target, origin))
al, nal, bk, nbk = [sorted(list(w), key=default_sort_key)
for w in [al, nal, bk, nbk]]
def others(dic, key):
l = []
for k, value in dic.items():
if k != key:
l += list(dic[k])
return l
aother = others(nabuckets, r)
bother = others(nbbuckets, r)
if len(al) == 0:
# there can be no complications, just shift the bs as we please
ops += do_shifts_b([], nbk, bk, aother, bother)
elif len(bk) == 0:
# there can be no complications, just shift the as as we please
ops += do_shifts_a(nal, [], al, aother, bother)
else:
namax = nal[-1]
amax = al[-1]
if nbk[0] - namax <= 0 or bk[0] - amax <= 0:
raise ValueError('Non-suitable parameters.')
if namax - amax > 0:
# we are going to shift down - first do the as, then the bs
ops += do_shifts_a(nal, nbk, al, aother, bother)
ops += do_shifts_b(al, nbk, bk, aother, bother)
else:
# we are going to shift up - first do the bs, then the as
ops += do_shifts_b(nal, nbk, bk, aother, bother)
ops += do_shifts_a(nal, bk, al, aother, bother)
nabuckets[r] = al
nbbuckets[r] = bk
ops.reverse()
return ops
def try_shifted_sum(func, z):
""" Try to recognise a hypergeometric sum that starts from k > 0. """
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
if len(abuckets[S.Zero]) != 1:
return None
r = abuckets[S.Zero][0]
if r <= 0:
return None
if S.Zero not in bbuckets:
return None
l = list(bbuckets[S.Zero])
l.sort()
k = l[0]
if k <= 0:
return None
nap = list(func.ap)
nap.remove(r)
nbq = list(func.bq)
nbq.remove(k)
k -= 1
nap = [x - k for x in nap]
nbq = [x - k for x in nbq]
ops = []
for n in range(r - 1):
ops.append(ShiftA(n + 1))
ops.reverse()
fac = factorial(k)/z**k
fac *= Mul(*[rf(b, k) for b in nbq])
fac /= Mul(*[rf(a, k) for a in nap])
ops += [MultOperator(fac)]
p = 0
for n in range(k):
m = z**n/factorial(n)
m *= Mul(*[rf(a, n) for a in nap])
m /= Mul(*[rf(b, n) for b in nbq])
p += m
return Hyper_Function(nap, nbq), ops, -p
def try_polynomial(func, z):
""" Recognise polynomial cases. Returns None if not such a case.
Requires order to be fully reduced. """
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
a0 = abuckets[S.Zero]
b0 = bbuckets[S.Zero]
a0.sort()
b0.sort()
al0 = [x for x in a0 if x <= 0]
bl0 = [x for x in b0 if x <= 0]
if bl0 and all(a < bl0[-1] for a in al0):
return oo
if not al0:
return None
a = al0[-1]
fac = 1
res = S.One
for n in Tuple(*list(range(-a))):
fac *= z
fac /= n + 1
fac *= Mul(*[a + n for a in func.ap])
fac /= Mul(*[b + n for b in func.bq])
res += fac
return res
def try_lerchphi(func):
"""
Try to find an expression for Hyper_Function ``func`` in terms of Lerch
Transcendents.
Return None if no such expression can be found.
"""
# This is actually quite simple, and is described in Roach's paper,
# section 18.
# We don't need to implement the reduction to polylog here, this
# is handled by expand_func.
# First we need to figure out if the summation coefficient is a rational
# function of the summation index, and construct that rational function.
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
paired = {}
for key, value in abuckets.items():
if key != 0 and key not in bbuckets:
return None
bvalue = bbuckets[key]
paired[key] = (list(value), list(bvalue))
bbuckets.pop(key, None)
if bbuckets != {}:
return None
if S.Zero not in abuckets:
return None
aints, bints = paired[S.Zero]
# Account for the additional n! in denominator
paired[S.Zero] = (aints, bints + [1])
t = Dummy('t')
numer = S.One
denom = S.One
for key, (avalue, bvalue) in paired.items():
if len(avalue) != len(bvalue):
return None
# Note that since order has been reduced fully, all the b are
# bigger than all the a they differ from by an integer. In particular
# if there are any negative b left, this function is not well-defined.
for a, b in zip(avalue, bvalue):
if (a - b).is_positive:
k = a - b
numer *= rf(b + t, k)
denom *= rf(b, k)
else:
k = b - a
numer *= rf(a, k)
denom *= rf(a + t, k)
# Now do a partial fraction decomposition.
# We assemble two structures: a list monomials of pairs (a, b) representing
# a*t**b (b a non-negative integer), and a dict terms, where
# terms[a] = [(b, c)] means that there is a term b/(t-a)**c.
part = apart(numer/denom, t)
args = Add.make_args(part)
monomials = []
terms = {}
for arg in args:
numer, denom = arg.as_numer_denom()
if not denom.has(t):
p = Poly(numer, t)
if not p.is_monomial:
raise TypeError("p should be monomial")
((b, ), a) = p.LT()
monomials += [(a/denom, b)]
continue
if numer.has(t):
raise NotImplementedError('Need partial fraction decomposition'
' with linear denominators')
indep, [dep] = denom.as_coeff_mul(t)
n = 1
if dep.is_Pow:
n = dep.exp
dep = dep.base
if dep == t:
a == 0
elif dep.is_Add:
a, tmp = dep.as_independent(t)
b = 1
if tmp != t:
b, _ = tmp.as_independent(t)
if dep != b*t + a:
raise NotImplementedError('unrecognised form %s' % dep)
a /= b
indep *= b**n
else:
raise NotImplementedError('unrecognised form of partial fraction')
terms.setdefault(a, []).append((numer/indep, n))
# Now that we have this information, assemble our formula. All the
# monomials yield rational functions and go into one basis element.
# The terms[a] are related by differentiation. If the largest exponent is
# n, we need lerchphi(z, k, a) for k = 1, 2, ..., n.
# deriv maps a basis to its derivative, expressed as a C(z)-linear
# combination of other basis elements.
deriv = {}
coeffs = {}
z = Dummy('z')
monomials.sort(key=lambda x: x[1])
mon = {0: 1/(1 - z)}
if monomials:
for k in range(monomials[-1][1]):
mon[k + 1] = z*mon[k].diff(z)
for a, n in monomials:
coeffs.setdefault(S.One, []).append(a*mon[n])
for a, l in terms.items():
for c, k in l:
coeffs.setdefault(lerchphi(z, k, a), []).append(c)
l.sort(key=lambda x: x[1])
for k in range(2, l[-1][1] + 1):
deriv[lerchphi(z, k, a)] = [(-a, lerchphi(z, k, a)),
(1, lerchphi(z, k - 1, a))]
deriv[lerchphi(z, 1, a)] = [(-a, lerchphi(z, 1, a)),
(1/(1 - z), S.One)]
trans = {}
for n, b in enumerate([S.One] + list(deriv.keys())):
trans[b] = n
basis = [expand_func(b) for (b, _) in sorted(list(trans.items()),
key=lambda x:x[1])]
B = Matrix(basis)
C = Matrix([[0]*len(B)])
for b, c in coeffs.items():
C[trans[b]] = Add(*c)
M = zeros(len(B))
for b, l in deriv.items():
for c, b2 in l:
M[trans[b], trans[b2]] = c
return Formula(func, z, None, [], B, C, M)
def build_hypergeometric_formula(func):
"""
Create a formula object representing the hypergeometric function ``func``.
"""
# We know that no `ap` are negative integers, otherwise "detect poly"
# would have kicked in. However, `ap` could be empty. In this case we can
# use a different basis.
# I'm not aware of a basis that works in all cases.
z = Dummy('z')
if func.ap:
afactors = [_x + a for a in func.ap]
bfactors = [_x + b - 1 for b in func.bq]
expr = _x*Mul(*bfactors) - z*Mul(*afactors)
poly = Poly(expr, _x)
n = poly.degree()
basis = []
M = zeros(n)
for k in range(n):
a = func.ap[0] + k
basis += [hyper([a] + list(func.ap[1:]), func.bq, z)]
if k < n - 1:
M[k, k] = -a
M[k, k + 1] = a
B = Matrix(basis)
C = Matrix([[1] + [0]*(n - 1)])
derivs = [eye(n)]
for k in range(n):
derivs.append(M*derivs[k])
l = poly.all_coeffs()
l.reverse()
res = [0]*n
for k, c in enumerate(l):
for r, d in enumerate(C*derivs[k]):
res[r] += c*d
for k, c in enumerate(res):
M[n - 1, k] = -c/derivs[n - 1][0, n - 1]/poly.all_coeffs()[0]
return Formula(func, z, None, [], B, C, M)
else:
# Since there are no `ap`, none of the `bq` can be non-positive
# integers.
basis = []
bq = list(func.bq[:])
for i in range(len(bq)):
basis += [hyper([], bq, z)]
bq[i] += 1
basis += [hyper([], bq, z)]
B = Matrix(basis)
n = len(B)
C = Matrix([[1] + [0]*(n - 1)])
M = zeros(n)
M[0, n - 1] = z/Mul(*func.bq)
for k in range(1, n):
M[k, k - 1] = func.bq[k - 1]
M[k, k] = -func.bq[k - 1]
return Formula(func, z, None, [], B, C, M)
def hyperexpand_special(ap, bq, z):
"""
Try to find a closed-form expression for hyper(ap, bq, z), where ``z``
is supposed to be a "special" value, e.g. 1.
This function tries various of the classical summation formulae
(Gauss, Saalschuetz, etc).
"""
# This code is very ad-hoc. There are many clever algorithms
# (notably Zeilberger's) related to this problem.
# For now we just want a few simple cases to work.
p, q = len(ap), len(bq)
z_ = z
z = unpolarify(z)
if z == 0:
return S.One
from sympy.simplify.simplify import simplify
if p == 2 and q == 1:
# 2F1
a, b, c = ap + bq
if z == 1:
# Gauss
return gamma(c - a - b)*gamma(c)/gamma(c - a)/gamma(c - b)
if z == -1 and simplify(b - a + c) == 1:
b, a = a, b
if z == -1 and simplify(a - b + c) == 1:
# Kummer
if b.is_integer and b.is_negative:
return 2*cos(pi*b/2)*gamma(-b)*gamma(b - a + 1) \
/gamma(-b/2)/gamma(b/2 - a + 1)
else:
return gamma(b/2 + 1)*gamma(b - a + 1) \
/gamma(b + 1)/gamma(b/2 - a + 1)
# TODO tons of more formulae
# investigate what algorithms exist
return hyper(ap, bq, z_)
_collection = None
def _hyperexpand(func, z, ops0=[], z0=Dummy('z0'), premult=1, prem=0,
rewrite='default'):
"""
Try to find an expression for the hypergeometric function ``func``.
Explanation
===========
The result is expressed in terms of a dummy variable ``z0``. Then it
is multiplied by ``premult``. Then ``ops0`` is applied.
``premult`` must be a*z**prem for some a independent of ``z``.
"""
if z.is_zero:
return S.One
from sympy.simplify.simplify import simplify
z = polarify(z, subs=False)
if rewrite == 'default':
rewrite = 'nonrepsmall'
def carryout_plan(f, ops):
C = apply_operators(f.C.subs(f.z, z0), ops,
make_derivative_operator(f.M.subs(f.z, z0), z0))
C = apply_operators(C, ops0,
make_derivative_operator(f.M.subs(f.z, z0)
+ prem*eye(f.M.shape[0]), z0))
if premult == 1:
C = C.applyfunc(make_simp(z0))
r = reduce(lambda s,m: s+m[0]*m[1], zip(C, f.B.subs(f.z, z0)), S.Zero)*premult
res = r.subs(z0, z)
if rewrite:
res = res.rewrite(rewrite)
return res
# TODO
# The following would be possible:
# *) PFD Duplication (see Kelly Roach's paper)
# *) In a similar spirit, try_lerchphi() can be generalised considerably.
global _collection
if _collection is None:
_collection = FormulaCollection()
debug('Trying to expand hypergeometric function ', func)
# First reduce order as much as possible.
func, ops = reduce_order(func)
if ops:
debug(' Reduced order to ', func)
else:
debug(' Could not reduce order.')
# Now try polynomial cases
res = try_polynomial(func, z0)
if res is not None:
debug(' Recognised polynomial.')
p = apply_operators(res, ops, lambda f: z0*f.diff(z0))
p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0))
return unpolarify(simplify(p).subs(z0, z))
# Try to recognise a shifted sum.
p = S.Zero
res = try_shifted_sum(func, z0)
if res is not None:
func, nops, p = res
debug(' Recognised shifted sum, reduced order to ', func)
ops += nops
# apply the plan for poly
p = apply_operators(p, ops, lambda f: z0*f.diff(z0))
p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0))
p = simplify(p).subs(z0, z)
# Try special expansions early.
if unpolarify(z) in [1, -1] and (len(func.ap), len(func.bq)) == (2, 1):
f = build_hypergeometric_formula(func)
r = carryout_plan(f, ops).replace(hyper, hyperexpand_special)
if not r.has(hyper):
return r + p
# Try to find a formula in our collection
formula = _collection.lookup_origin(func)
# Now try a lerch phi formula
if formula is None:
formula = try_lerchphi(func)
if formula is None:
debug(' Could not find an origin. ',
'Will return answer in terms of '
'simpler hypergeometric functions.')
formula = build_hypergeometric_formula(func)
debug(' Found an origin: ', formula.closed_form, ' ', formula.func)
# We need to find the operators that convert formula into func.
ops += devise_plan(func, formula.func, z0)
# Now carry out the plan.
r = carryout_plan(formula, ops) + p
return powdenest(r, polar=True).replace(hyper, hyperexpand_special)
def devise_plan_meijer(fro, to, z):
"""
Find operators to convert G-function ``fro`` into G-function ``to``.
Explanation
===========
It is assumed that ``fro`` and ``to`` have the same signatures, and that in fact
any corresponding pair of parameters differs by integers, and a direct path
is possible. I.e. if there are parameters a1 b1 c1 and a2 b2 c2 it is
assumed that a1 can be shifted to a2, etc. The only thing this routine
determines is the order of shifts to apply, nothing clever will be tried.
It is also assumed that ``fro`` is suitable.
Examples
========
>>> from sympy.simplify.hyperexpand import (devise_plan_meijer,
... G_Function)
>>> from sympy.abc import z
Empty plan:
>>> devise_plan_meijer(G_Function([1], [2], [3], [4]),
... G_Function([1], [2], [3], [4]), z)
[]
Very simple plans:
>>> devise_plan_meijer(G_Function([0], [], [], []),
... G_Function([1], [], [], []), z)
[<Increment upper a index #0 of [0], [], [], [].>]
>>> devise_plan_meijer(G_Function([0], [], [], []),
... G_Function([-1], [], [], []), z)
[<Decrement upper a=0.>]
>>> devise_plan_meijer(G_Function([], [1], [], []),
... G_Function([], [2], [], []), z)
[<Increment lower a index #0 of [], [1], [], [].>]
Slightly more complicated plans:
>>> devise_plan_meijer(G_Function([0], [], [], []),
... G_Function([2], [], [], []), z)
[<Increment upper a index #0 of [1], [], [], [].>,
<Increment upper a index #0 of [0], [], [], [].>]
>>> devise_plan_meijer(G_Function([0], [], [0], []),
... G_Function([-1], [], [1], []), z)
[<Increment upper b=0.>, <Decrement upper a=0.>]
Order matters:
>>> devise_plan_meijer(G_Function([0], [], [0], []),
... G_Function([1], [], [1], []), z)
[<Increment upper a index #0 of [0], [], [1], [].>, <Increment upper b=0.>]
"""
# TODO for now, we use the following simple heuristic: inverse-shift
# when possible, shift otherwise. Give up if we cannot make progress.
def try_shift(f, t, shifter, diff, counter):
""" Try to apply ``shifter`` in order to bring some element in ``f``
nearer to its counterpart in ``to``. ``diff`` is +/- 1 and
determines the effect of ``shifter``. Counter is a list of elements
blocking the shift.
Return an operator if change was possible, else None.
"""
for idx, (a, b) in enumerate(zip(f, t)):
if (
(a - b).is_integer and (b - a)/diff > 0 and
all(a != x for x in counter)):
sh = shifter(idx)
f[idx] += diff
return sh
fan = list(fro.an)
fap = list(fro.ap)
fbm = list(fro.bm)
fbq = list(fro.bq)
ops = []
change = True
while change:
change = False
op = try_shift(fan, to.an,
lambda i: MeijerUnShiftB(fan, fap, fbm, fbq, i, z),
1, fbm + fbq)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fap, to.ap,
lambda i: MeijerUnShiftD(fan, fap, fbm, fbq, i, z),
1, fbm + fbq)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbm, to.bm,
lambda i: MeijerUnShiftA(fan, fap, fbm, fbq, i, z),
-1, fan + fap)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbq, to.bq,
lambda i: MeijerUnShiftC(fan, fap, fbm, fbq, i, z),
-1, fan + fap)
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fan, to.an, lambda i: MeijerShiftB(fan[i]), -1, [])
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fap, to.ap, lambda i: MeijerShiftD(fap[i]), -1, [])
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbm, to.bm, lambda i: MeijerShiftA(fbm[i]), 1, [])
if op is not None:
ops += [op]
change = True
continue
op = try_shift(fbq, to.bq, lambda i: MeijerShiftC(fbq[i]), 1, [])
if op is not None:
ops += [op]
change = True
continue
if fan != list(to.an) or fap != list(to.ap) or fbm != list(to.bm) or \
fbq != list(to.bq):
raise NotImplementedError('Could not devise plan.')
ops.reverse()
return ops
_meijercollection = None
def _meijergexpand(func, z0, allow_hyper=False, rewrite='default',
place=None):
"""
Try to find an expression for the Meijer G function specified
by the G_Function ``func``. If ``allow_hyper`` is True, then returning
an expression in terms of hypergeometric functions is allowed.
Currently this just does Slater's theorem.
If expansions exist both at zero and at infinity, ``place``
can be set to ``0`` or ``zoo`` for the preferred choice.
"""
global _meijercollection
if _meijercollection is None:
_meijercollection = MeijerFormulaCollection()
if rewrite == 'default':
rewrite = None
func0 = func
debug('Try to expand Meijer G function corresponding to ', func)
# We will play games with analytic continuation - rather use a fresh symbol
z = Dummy('z')
func, ops = reduce_order_meijer(func)
if ops:
debug(' Reduced order to ', func)
else:
debug(' Could not reduce order.')
# Try to find a direct formula
f = _meijercollection.lookup_origin(func)
if f is not None:
debug(' Found a Meijer G formula: ', f.func)
ops += devise_plan_meijer(f.func, func, z)
# Now carry out the plan.
C = apply_operators(f.C.subs(f.z, z), ops,
make_derivative_operator(f.M.subs(f.z, z), z))
C = C.applyfunc(make_simp(z))
r = C*f.B.subs(f.z, z)
r = r[0].subs(z, z0)
return powdenest(r, polar=True)
debug(" Could not find a direct formula. Trying Slater's theorem.")
# TODO the following would be possible:
# *) Paired Index Theorems
# *) PFD Duplication
# (See Kelly Roach's paper for details on either.)
#
# TODO Also, we tend to create combinations of gamma functions that can be
# simplified.
def can_do(pbm, pap):
""" Test if slater applies. """
for i in pbm:
if len(pbm[i]) > 1:
l = 0
if i in pap:
l = len(pap[i])
if l + 1 < len(pbm[i]):
return False
return True
def do_slater(an, bm, ap, bq, z, zfinal):
# zfinal is the value that will eventually be substituted for z.
# We pass it to _hyperexpand to improve performance.
func = G_Function(an, bm, ap, bq)
_, pbm, pap, _ = func.compute_buckets()
if not can_do(pbm, pap):
return S.Zero, False
cond = len(an) + len(ap) < len(bm) + len(bq)
if len(an) + len(ap) == len(bm) + len(bq):
cond = abs(z) < 1
if cond is False:
return S.Zero, False
res = S.Zero
for m in pbm:
if len(pbm[m]) == 1:
bh = pbm[m][0]
fac = 1
bo = list(bm)
bo.remove(bh)
for bj in bo:
fac *= gamma(bj - bh)
for aj in an:
fac *= gamma(1 + bh - aj)
for bj in bq:
fac /= gamma(1 + bh - bj)
for aj in ap:
fac /= gamma(aj - bh)
nap = [1 + bh - a for a in list(an) + list(ap)]
nbq = [1 + bh - b for b in list(bo) + list(bq)]
k = polar_lift(S.NegativeOne**(len(ap) - len(bm)))
harg = k*zfinal
# NOTE even though k "is" +-1, this has to be t/k instead of
# t*k ... we are using polar numbers for consistency!
premult = (t/k)**bh
hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops,
t, premult, bh, rewrite=None)
res += fac * hyp
else:
b_ = pbm[m][0]
ki = [bi - b_ for bi in pbm[m][1:]]
u = len(ki)
li = [ai - b_ for ai in pap[m][:u + 1]]
bo = list(bm)
for b in pbm[m]:
bo.remove(b)
ao = list(ap)
for a in pap[m][:u]:
ao.remove(a)
lu = li[-1]
di = [l - k for (l, k) in zip(li, ki)]
# We first work out the integrand:
s = Dummy('s')
integrand = z**s
for b in bm:
if not Mod(b, 1) and b.is_Number:
b = int(round(b))
integrand *= gamma(b - s)
for a in an:
integrand *= gamma(1 - a + s)
for b in bq:
integrand /= gamma(1 - b + s)
for a in ap:
integrand /= gamma(a - s)
# Now sum the finitely many residues:
# XXX This speeds up some cases - is it a good idea?
integrand = expand_func(integrand)
for r in range(int(round(lu))):
resid = residue(integrand, s, b_ + r)
resid = apply_operators(resid, ops, lambda f: z*f.diff(z))
res -= resid
# Now the hypergeometric term.
au = b_ + lu
k = polar_lift(S.NegativeOne**(len(ao) + len(bo) + 1))
harg = k*zfinal
premult = (t/k)**au
nap = [1 + au - a for a in list(an) + list(ap)] + [1]
nbq = [1 + au - b for b in list(bm) + list(bq)]
hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops,
t, premult, au, rewrite=None)
C = S.NegativeOne**(lu)/factorial(lu)
for i in range(u):
C *= S.NegativeOne**di[i]/rf(lu - li[i] + 1, di[i])
for a in an:
C *= gamma(1 - a + au)
for b in bo:
C *= gamma(b - au)
for a in ao:
C /= gamma(a - au)
for b in bq:
C /= gamma(1 - b + au)
res += C*hyp
return res, cond
t = Dummy('t')
slater1, cond1 = do_slater(func.an, func.bm, func.ap, func.bq, z, z0)
def tr(l):
return [1 - x for x in l]
for op in ops:
op._poly = Poly(op._poly.subs({z: 1/t, _x: -_x}), _x)
slater2, cond2 = do_slater(tr(func.bm), tr(func.an), tr(func.bq), tr(func.ap),
t, 1/z0)
slater1 = powdenest(slater1.subs(z, z0), polar=True)
slater2 = powdenest(slater2.subs(t, 1/z0), polar=True)
if not isinstance(cond2, bool):
cond2 = cond2.subs(t, 1/z)
m = func(z)
if m.delta > 0 or \
(m.delta == 0 and len(m.ap) == len(m.bq) and
(re(m.nu) < -1) is not False and polar_lift(z0) == polar_lift(1)):
# The condition delta > 0 means that the convergence region is
# connected. Any expression we find can be continued analytically
# to the entire convergence region.
# The conditions delta==0, p==q, re(nu) < -1 imply that G is continuous
# on the positive reals, so the values at z=1 agree.
if cond1 is not False:
cond1 = True
if cond2 is not False:
cond2 = True
if cond1 is True:
slater1 = slater1.rewrite(rewrite or 'nonrep')
else:
slater1 = slater1.rewrite(rewrite or 'nonrepsmall')
if cond2 is True:
slater2 = slater2.rewrite(rewrite or 'nonrep')
else:
slater2 = slater2.rewrite(rewrite or 'nonrepsmall')
if cond1 is not False and cond2 is not False:
# If one condition is False, there is no choice.
if place == 0:
cond2 = False
if place == zoo:
cond1 = False
if not isinstance(cond1, bool):
cond1 = cond1.subs(z, z0)
if not isinstance(cond2, bool):
cond2 = cond2.subs(z, z0)
def weight(expr, cond):
if cond is True:
c0 = 0
elif cond is False:
c0 = 1
else:
c0 = 2
if expr.has(oo, zoo, -oo, nan):
# XXX this actually should not happen, but consider
# S('meijerg(((0, -1/2, 0, -1/2, 1/2), ()), ((0,),
# (-1/2, -1/2, -1/2, -1)), exp_polar(I*pi))/4')
c0 = 3
return (c0, expr.count(hyper), expr.count_ops())
w1 = weight(slater1, cond1)
w2 = weight(slater2, cond2)
if min(w1, w2) <= (0, 1, oo):
if w1 < w2:
return slater1
else:
return slater2
if max(w1[0], w2[0]) <= 1 and max(w1[1], w2[1]) <= 1:
return Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True))
# We couldn't find an expression without hypergeometric functions.
# TODO it would be helpful to give conditions under which the integral
# is known to diverge.
r = Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True))
if r.has(hyper) and not allow_hyper:
debug(' Could express using hypergeometric functions, '
'but not allowed.')
if not r.has(hyper) or allow_hyper:
return r
return func0(z0)
def hyperexpand(f, allow_hyper=False, rewrite='default', place=None):
"""
Expand hypergeometric functions. If allow_hyper is True, allow partial
simplification (that is a result different from input,
but still containing hypergeometric functions).
If a G-function has expansions both at zero and at infinity,
``place`` can be set to ``0`` or ``zoo`` to indicate the
preferred choice.
Examples
========
>>> from sympy.simplify.hyperexpand import hyperexpand
>>> from sympy.functions import hyper
>>> from sympy.abc import z
>>> hyperexpand(hyper([], [], z))
exp(z)
Non-hyperegeometric parts of the expression and hypergeometric expressions
that are not recognised are left unchanged:
>>> hyperexpand(1 + hyper([1, 1, 1], [], z))
hyper((1, 1, 1), (), z) + 1
"""
f = sympify(f)
def do_replace(ap, bq, z):
r = _hyperexpand(Hyper_Function(ap, bq), z, rewrite=rewrite)
if r is None:
return hyper(ap, bq, z)
else:
return r
def do_meijer(ap, bq, z):
r = _meijergexpand(G_Function(ap[0], ap[1], bq[0], bq[1]), z,
allow_hyper, rewrite=rewrite, place=place)
if not r.has(nan, zoo, oo, -oo):
return r
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
|
4e6142c107c291e83a463672f392a400fc1fc996e9bf06cc0fc4afa3ee729a6a | from collections import defaultdict
from sympy import SYMPY_DEBUG
from sympy.core import sympify, S, Mul, Derivative, Pow
from sympy.core.add import _unevaluated_Add, Add
from sympy.core.assumptions import assumptions
from sympy.core.exprtools import Factors, gcd_terms
from sympy.core.function import _mexpand, expand_mul, expand_power_base
from sympy.core.mul import _keep_coeff, _unevaluated_Mul, _mulsort
from sympy.core.numbers import Rational, zoo, nan
from sympy.core.parameters import global_parameters
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.symbol import Dummy, Wild, symbols
from sympy.functions import exp, sqrt, log
from sympy.functions.elementary.complexes import Abs
from sympy.polys import gcd
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.utilities.iterables import iterable, sift
def collect(expr, syms, func=None, evaluate=None, exact=False, distribute_order_term=True):
"""
Collect additive terms of an expression.
Explanation
===========
This function collects additive terms of an expression with respect
to a list of expression up to powers with rational exponents. By the
term symbol here are meant arbitrary expressions, which can contain
powers, products, sums etc. In other words symbol is a pattern which
will be searched for in the expression's terms.
The input expression is not expanded by :func:`collect`, so user is
expected to provide an expression in an appropriate form. This makes
:func:`collect` more predictable as there is no magic happening behind the
scenes. However, it is important to note, that powers of products are
converted to products of powers using the :func:`~.expand_power_base`
function.
There are two possible types of output. First, if ``evaluate`` flag is
set, this function will return an expression with collected terms or
else it will return a dictionary with expressions up to rational powers
as keys and collected coefficients as values.
Examples
========
>>> from sympy import S, collect, expand, factor, Wild
>>> from sympy.abc import a, b, c, x, y
This function can collect symbolic coefficients in polynomials or
rational expressions. It will manage to find all integer or rational
powers of collection variable::
>>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x)
c + x**2*(a + b) + x*(a - b)
The same result can be achieved in dictionary form::
>>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
>>> d[x**2]
a + b
>>> d[x]
a - b
>>> d[S.One]
c
You can also work with multivariate polynomials. However, remember that
this function is greedy so it will care only about a single symbol at time,
in specification order::
>>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
x**2*(y + 1) + x*y + y*(a + 1)
Also more complicated expressions can be used as patterns::
>>> from sympy import sin, log
>>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
(a + b)*sin(2*x)
>>> collect(a*x*log(x) + b*(x*log(x)), x*log(x))
x*(a + b)*log(x)
You can use wildcards in the pattern::
>>> w = Wild('w1')
>>> collect(a*x**y - b*x**y, w**y)
x**y*(a - b)
It is also possible to work with symbolic powers, although it has more
complicated behavior, because in this case power's base and symbolic part
of the exponent are treated as a single symbol::
>>> collect(a*x**c + b*x**c, x)
a*x**c + b*x**c
>>> collect(a*x**c + b*x**c, x**c)
x**c*(a + b)
However if you incorporate rationals to the exponents, then you will get
well known behavior::
>>> collect(a*x**(2*c) + b*x**(2*c), x**c)
x**(2*c)*(a + b)
Note also that all previously stated facts about :func:`collect` function
apply to the exponential function, so you can get::
>>> from sympy import exp
>>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
(a + b)*exp(2*x)
If you are interested only in collecting specific powers of some symbols
then set ``exact`` flag to True::
>>> collect(a*x**7 + b*x**7, x, exact=True)
a*x**7 + b*x**7
>>> collect(a*x**7 + b*x**7, x**7, exact=True)
x**7*(a + b)
If you want to collect on any object containing symbols, set
``exact`` to None:
>>> collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x, x, exact=None)
x*exp(x) + 3*x + (y + 2)*sin(x)
>>> collect(a*x*y + x*y + b*x + x, [x, y], exact=None)
x*y*(a + 1) + x*(b + 1)
You can also apply this function to differential equations, where
derivatives of arbitrary order can be collected. Note that if you
collect with respect to a function or a derivative of a function, all
derivatives of that function will also be collected. Use
``exact=True`` to prevent this from happening::
>>> from sympy import Derivative as D, collect, Function
>>> f = Function('f') (x)
>>> collect(a*D(f,x) + b*D(f,x), D(f,x))
(a + b)*Derivative(f(x), x)
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f)
(a + b)*Derivative(f(x), (x, 2))
>>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True)
a*Derivative(f(x), (x, 2)) + b*Derivative(f(x), (x, 2))
>>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f)
(a + b)*f(x) + (a + b)*Derivative(f(x), x)
Or you can even match both derivative order and exponent at the same time::
>>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x))
(a + b)*Derivative(f(x), (x, 2))**2
Finally, you can apply a function to each of the collected coefficients.
For example you can factorize symbolic coefficients of polynomial::
>>> f = expand((x + a + 1)**3)
>>> collect(f, x, factor)
x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + (a + 1)**3
.. note:: Arguments are expected to be in expanded form, so you might have
to call :func:`~.expand` prior to calling this function.
See Also
========
collect_const, collect_sqrt, rcollect
"""
expr = sympify(expr)
syms = [sympify(i) for i in (syms if iterable(syms) else [syms])]
# replace syms[i] if it is not x, -x or has Wild symbols
cond = lambda x: x.is_Symbol or (-x).is_Symbol or bool(
x.atoms(Wild))
_, nonsyms = sift(syms, cond, binary=True)
if nonsyms:
reps = dict(zip(nonsyms, [Dummy(**assumptions(i)) for i in nonsyms]))
syms = [reps.get(s, s) for s in syms]
rv = collect(expr.subs(reps), syms,
func=func, evaluate=evaluate, exact=exact,
distribute_order_term=distribute_order_term)
urep = {v: k for k, v in reps.items()}
if not isinstance(rv, dict):
return rv.xreplace(urep)
else:
return {urep.get(k, k).xreplace(urep): v.xreplace(urep)
for k, v in rv.items()}
# see if other expressions should be considered
if exact is None:
_syms = set()
for i in Add.make_args(expr):
if not i.has_free(*syms) or i in syms:
continue
if not i.is_Mul and i not in syms:
_syms.add(i)
else:
# identify compound generators
g = i._new_rawargs(*i.as_coeff_mul(*syms)[1])
if g not in syms:
_syms.add(g)
simple = all(i.is_Pow and i.base in syms for i in _syms)
syms = syms + list(ordered(_syms))
if not simple:
return collect(expr, syms,
func=func, evaluate=evaluate, exact=False,
distribute_order_term=distribute_order_term)
if evaluate is None:
evaluate = global_parameters.evaluate
def make_expression(terms):
product = []
for term, rat, sym, deriv in terms:
if deriv is not None:
var, order = deriv
while order > 0:
term, order = Derivative(term, var), order - 1
if sym is None:
if rat is S.One:
product.append(term)
else:
product.append(Pow(term, rat))
else:
product.append(Pow(term, rat*sym))
return Mul(*product)
def parse_derivative(deriv):
# scan derivatives tower in the input expression and return
# underlying function and maximal differentiation order
expr, sym, order = deriv.expr, deriv.variables[0], 1
for s in deriv.variables[1:]:
if s == sym:
order += 1
else:
raise NotImplementedError(
'Improve MV Derivative support in collect')
while isinstance(expr, Derivative):
s0 = expr.variables[0]
for s in expr.variables:
if s != s0:
raise NotImplementedError(
'Improve MV Derivative support in collect')
if s0 == sym:
expr, order = expr.expr, order + len(expr.variables)
else:
break
return expr, (sym, Rational(order))
def parse_term(expr):
"""Parses expression expr and outputs tuple (sexpr, rat_expo,
sym_expo, deriv)
where:
- sexpr is the base expression
- rat_expo is the rational exponent that sexpr is raised to
- sym_expo is the symbolic exponent that sexpr is raised to
- deriv contains the derivatives of the expression
For example, the output of x would be (x, 1, None, None)
the output of 2**x would be (2, 1, x, None).
"""
rat_expo, sym_expo = S.One, None
sexpr, deriv = expr, None
if expr.is_Pow:
if isinstance(expr.base, Derivative):
sexpr, deriv = parse_derivative(expr.base)
else:
sexpr = expr.base
if expr.base == S.Exp1:
arg = expr.exp
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_Mul(rational=True)
sexpr, rat_expo = exp(tail), coeff
elif expr.exp.is_Number:
rat_expo = expr.exp
else:
coeff, tail = expr.exp.as_coeff_Mul()
if coeff.is_Number:
rat_expo, sym_expo = coeff, tail
else:
sym_expo = expr.exp
elif isinstance(expr, exp):
arg = expr.exp
if arg.is_Rational:
sexpr, rat_expo = S.Exp1, arg
elif arg.is_Mul:
coeff, tail = arg.as_coeff_Mul(rational=True)
sexpr, rat_expo = exp(tail), coeff
elif isinstance(expr, Derivative):
sexpr, deriv = parse_derivative(expr)
return sexpr, rat_expo, sym_expo, deriv
def parse_expression(terms, pattern):
"""Parse terms searching for a pattern.
Terms is a list of tuples as returned by parse_terms;
Pattern is an expression treated as a product of factors.
"""
pattern = Mul.make_args(pattern)
if len(terms) < len(pattern):
# pattern is longer than matched product
# so no chance for positive parsing result
return None
else:
pattern = [parse_term(elem) for elem in pattern]
terms = terms[:] # need a copy
elems, common_expo, has_deriv = [], None, False
for elem, e_rat, e_sym, e_ord in pattern:
if elem.is_Number and e_rat == 1 and e_sym is None:
# a constant is a match for everything
continue
for j in range(len(terms)):
if terms[j] is None:
continue
term, t_rat, t_sym, t_ord = terms[j]
# keeping track of whether one of the terms had
# a derivative or not as this will require rebuilding
# the expression later
if t_ord is not None:
has_deriv = True
if (term.match(elem) is not None and
(t_sym == e_sym or t_sym is not None and
e_sym is not None and
t_sym.match(e_sym) is not None)):
if exact is False:
# we don't have to be exact so find common exponent
# for both expression's term and pattern's element
expo = t_rat / e_rat
if common_expo is None:
# first time
common_expo = expo
else:
# common exponent was negotiated before so
# there is no chance for a pattern match unless
# common and current exponents are equal
if common_expo != expo:
common_expo = 1
else:
# we ought to be exact so all fields of
# interest must match in every details
if e_rat != t_rat or e_ord != t_ord:
continue
# found common term so remove it from the expression
# and try to match next element in the pattern
elems.append(terms[j])
terms[j] = None
break
else:
# pattern element not found
return None
return [_f for _f in terms if _f], elems, common_expo, has_deriv
if evaluate:
if expr.is_Add:
o = expr.getO() or 0
expr = expr.func(*[
collect(a, syms, func, True, exact, distribute_order_term)
for a in expr.args if a != o]) + o
elif expr.is_Mul:
return expr.func(*[
collect(term, syms, func, True, exact, distribute_order_term)
for term in expr.args])
elif expr.is_Pow:
b = collect(
expr.base, syms, func, True, exact, distribute_order_term)
return Pow(b, expr.exp)
syms = [expand_power_base(i, deep=False) for i in syms]
order_term = None
if distribute_order_term:
order_term = expr.getO()
if order_term is not None:
if order_term.has(*syms):
order_term = None
else:
expr = expr.removeO()
summa = [expand_power_base(i, deep=False) for i in Add.make_args(expr)]
collected, disliked = defaultdict(list), S.Zero
for product in summa:
c, nc = product.args_cnc(split_1=False)
args = list(ordered(c)) + nc
terms = [parse_term(i) for i in args]
small_first = True
for symbol in syms:
if SYMPY_DEBUG:
print("DEBUG: parsing of expression %s with symbol %s " % (
str(terms), str(symbol))
)
if isinstance(symbol, Derivative) and small_first:
terms = list(reversed(terms))
small_first = not small_first
result = parse_expression(terms, symbol)
if SYMPY_DEBUG:
print("DEBUG: returned %s" % str(result))
if result is not None:
if not symbol.is_commutative:
raise AttributeError("Can not collect noncommutative symbol")
terms, elems, common_expo, has_deriv = result
# when there was derivative in current pattern we
# will need to rebuild its expression from scratch
if not has_deriv:
margs = []
for elem in elems:
if elem[2] is None:
e = elem[1]
else:
e = elem[1]*elem[2]
margs.append(Pow(elem[0], e))
index = Mul(*margs)
else:
index = make_expression(elems)
terms = expand_power_base(make_expression(terms), deep=False)
index = expand_power_base(index, deep=False)
collected[index].append(terms)
break
else:
# none of the patterns matched
disliked += product
# add terms now for each key
collected = {k: Add(*v) for k, v in collected.items()}
if disliked is not S.Zero:
collected[S.One] = disliked
if order_term is not None:
for key, val in collected.items():
collected[key] = val + order_term
if func is not None:
collected = {
key: func(val) for key, val in collected.items()}
if evaluate:
return Add(*[key*val for key, val in collected.items()])
else:
return collected
def rcollect(expr, *vars):
"""
Recursively collect sums in an expression.
Examples
========
>>> from sympy.simplify import rcollect
>>> from sympy.abc import x, y
>>> expr = (x**2*y + x*y + x + y)/(x + y)
>>> rcollect(expr, y)
(x + y*(x**2 + x + 1))/(x + y)
See Also
========
collect, collect_const, collect_sqrt
"""
if expr.is_Atom or not expr.has(*vars):
return expr
else:
expr = expr.__class__(*[rcollect(arg, *vars) for arg in expr.args])
if expr.is_Add:
return collect(expr, vars)
else:
return expr
def collect_sqrt(expr, evaluate=None):
"""Return expr with terms having common square roots collected together.
If ``evaluate`` is False a count indicating the number of sqrt-containing
terms will be returned and, if non-zero, the terms of the Add will be
returned, else the expression itself will be returned as a single term.
If ``evaluate`` is True, the expression with any collected terms will be
returned.
Note: since I = sqrt(-1), it is collected, too.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b
>>> r2, r3, r5 = [sqrt(i) for i in [2, 3, 5]]
>>> collect_sqrt(a*r2 + b*r2)
sqrt(2)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r3)
sqrt(2)*(a + b) + sqrt(3)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5)
sqrt(3)*a + sqrt(5)*b + sqrt(2)*(a + b)
If evaluate is False then the arguments will be sorted and
returned as a list and a count of the number of sqrt-containing
terms will be returned:
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5, evaluate=False)
((sqrt(3)*a, sqrt(5)*b, sqrt(2)*(a + b)), 3)
>>> collect_sqrt(a*sqrt(2) + b, evaluate=False)
((b, sqrt(2)*a), 1)
>>> collect_sqrt(a + b, evaluate=False)
((a + b,), 0)
See Also
========
collect, collect_const, rcollect
"""
if evaluate is None:
evaluate = global_parameters.evaluate
# this step will help to standardize any complex arguments
# of sqrts
coeff, expr = expr.as_content_primitive()
vars = set()
for a in Add.make_args(expr):
for m in a.args_cnc()[0]:
if m.is_number and (
m.is_Pow and m.exp.is_Rational and m.exp.q == 2 or
m is S.ImaginaryUnit):
vars.add(m)
# we only want radicals, so exclude Number handling; in this case
# d will be evaluated
d = collect_const(expr, *vars, Numbers=False)
hit = expr != d
if not evaluate:
nrad = 0
# make the evaluated args canonical
args = list(ordered(Add.make_args(d)))
for i, m in enumerate(args):
c, nc = m.args_cnc()
for ci in c:
# XXX should this be restricted to ci.is_number as above?
if ci.is_Pow and ci.exp.is_Rational and ci.exp.q == 2 or \
ci is S.ImaginaryUnit:
nrad += 1
break
args[i] *= coeff
if not (hit or nrad):
args = [Add(*args)]
return tuple(args), nrad
return coeff*d
def collect_abs(expr):
"""Return ``expr`` with arguments of multiple Abs in a term collected
under a single instance.
Examples
========
>>> from sympy.simplify.radsimp import collect_abs
>>> from sympy.abc import x
>>> collect_abs(abs(x + 1)/abs(x**2 - 1))
Abs((x + 1)/(x**2 - 1))
>>> collect_abs(abs(1/x))
Abs(1/x)
"""
def _abs(mul):
c, nc = mul.args_cnc()
a = []
o = []
for i in c:
if isinstance(i, Abs):
a.append(i.args[0])
elif isinstance(i, Pow) and isinstance(i.base, Abs) and i.exp.is_real:
a.append(i.base.args[0]**i.exp)
else:
o.append(i)
if len(a) < 2 and not any(i.exp.is_negative for i in a if isinstance(i, Pow)):
return mul
absarg = Mul(*a)
A = Abs(absarg)
args = [A]
args.extend(o)
if not A.has(Abs):
args.extend(nc)
return Mul(*args)
if not isinstance(A, Abs):
# reevaluate and make it unevaluated
A = Abs(absarg, evaluate=False)
args[0] = A
_mulsort(args)
args.extend(nc) # nc always go last
return Mul._from_args(args, is_commutative=not nc)
return expr.replace(
lambda x: isinstance(x, Mul),
lambda x: _abs(x)).replace(
lambda x: isinstance(x, Pow),
lambda x: _abs(x))
def collect_const(expr, *vars, Numbers=True):
"""A non-greedy collection of terms with similar number coefficients in
an Add expr. If ``vars`` is given then only those constants will be
targeted. Although any Number can also be targeted, if this is not
desired set ``Numbers=False`` and no Float or Rational will be collected.
Parameters
==========
expr : SymPy expression
This parameter defines the expression the expression from which
terms with similar coefficients are to be collected. A non-Add
expression is returned as it is.
vars : variable length collection of Numbers, optional
Specifies the constants to target for collection. Can be multiple in
number.
Numbers : bool
Specifies to target all instance of
:class:`sympy.core.numbers.Number` class. If ``Numbers=False``, then
no Float or Rational will be collected.
Returns
=======
expr : Expr
Returns an expression with similar coefficient terms collected.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import s, x, y, z
>>> from sympy.simplify.radsimp import collect_const
>>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
sqrt(3)*(sqrt(2) + 2)
>>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
(sqrt(3) + sqrt(7))*(s + 1)
>>> s = sqrt(2) + 2
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
(sqrt(2) + 3)*(sqrt(3) + sqrt(7))
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)
The collection is sign-sensitive, giving higher precedence to the
unsigned values:
>>> collect_const(x - y - z)
x - (y + z)
>>> collect_const(-y - z)
-(y + z)
>>> collect_const(2*x - 2*y - 2*z, 2)
2*(x - y - z)
>>> collect_const(2*x - 2*y - 2*z, -2)
2*x - 2*(y + z)
See Also
========
collect, collect_sqrt, rcollect
"""
if not expr.is_Add:
return expr
recurse = False
if not vars:
recurse = True
vars = set()
for a in expr.args:
for m in Mul.make_args(a):
if m.is_number:
vars.add(m)
else:
vars = sympify(vars)
if not Numbers:
vars = [v for v in vars if not v.is_Number]
vars = list(ordered(vars))
for v in vars:
terms = defaultdict(list)
Fv = Factors(v)
for m in Add.make_args(expr):
f = Factors(m)
q, r = f.div(Fv)
if r.is_one:
# only accept this as a true factor if
# it didn't change an exponent from an Integer
# to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
# -- we aren't looking for this sort of change
fwas = f.factors.copy()
fnow = q.factors
if not any(k in fwas and fwas[k].is_Integer and not
fnow[k].is_Integer for k in fnow):
terms[v].append(q.as_expr())
continue
terms[S.One].append(m)
args = []
hit = False
uneval = False
for k in ordered(terms):
v = terms[k]
if k is S.One:
args.extend(v)
continue
if len(v) > 1:
v = Add(*v)
hit = True
if recurse and v != expr:
vars.append(v)
else:
v = v[0]
# be careful not to let uneval become True unless
# it must be because it's going to be more expensive
# to rebuild the expression as an unevaluated one
if Numbers and k.is_Number and v.is_Add:
args.append(_keep_coeff(k, v, sign=True))
uneval = True
else:
args.append(k*v)
if hit:
if uneval:
expr = _unevaluated_Add(*args)
else:
expr = Add(*args)
if not expr.is_Add:
break
return expr
def radsimp(expr, symbolic=True, max_terms=4):
r"""
Rationalize the denominator by removing square roots.
Explanation
===========
The expression returned from radsimp must be used with caution
since if the denominator contains symbols, it will be possible to make
substitutions that violate the assumptions of the simplification process:
that for a denominator matching a + b*sqrt(c), a != +/-b*sqrt(c). (If
there are no symbols, this assumptions is made valid by collecting terms
of sqrt(c) so the match variable ``a`` does not contain ``sqrt(c)``.) If
you do not want the simplification to occur for symbolic denominators, set
``symbolic`` to False.
If there are more than ``max_terms`` radical terms then the expression is
returned unchanged.
Examples
========
>>> from sympy import radsimp, sqrt, Symbol, pprint
>>> from sympy import factor_terms, fraction, signsimp
>>> from sympy.simplify.radsimp import collect_sqrt
>>> from sympy.abc import a, b, c
>>> radsimp(1/(2 + sqrt(2)))
(2 - sqrt(2))/2
>>> x,y = map(Symbol, 'xy')
>>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2))
>>> radsimp(e)
sqrt(2)*(x + y)
No simplification beyond removal of the gcd is done. One might
want to polish the result a little, however, by collecting
square root terms:
>>> r2 = sqrt(2)
>>> r5 = sqrt(5)
>>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5)); pprint(ans)
___ ___ ___ ___
\/ 5 *a + \/ 5 *b - \/ 2 *x - \/ 2 *y
------------------------------------------
2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
>>> n, d = fraction(ans)
>>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True))
___ ___
\/ 5 *(a + b) - \/ 2 *(x + y)
------------------------------------------
2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
If radicals in the denominator cannot be removed or there is no denominator,
the original expression will be returned.
>>> radsimp(sqrt(2)*x + sqrt(2))
sqrt(2)*x + sqrt(2)
Results with symbols will not always be valid for all substitutions:
>>> eq = 1/(a + b*sqrt(c))
>>> eq.subs(a, b*sqrt(c))
1/(2*b*sqrt(c))
>>> radsimp(eq).subs(a, b*sqrt(c))
nan
If ``symbolic=False``, symbolic denominators will not be transformed (but
numeric denominators will still be processed):
>>> radsimp(eq, symbolic=False)
1/(a + b*sqrt(c))
"""
from sympy.simplify.simplify import signsimp
syms = symbols("a:d A:D")
def _num(rterms):
# return the multiplier that will simplify the expression described
# by rterms [(sqrt arg, coeff), ... ]
a, b, c, d, A, B, C, D = syms
if len(rterms) == 2:
reps = dict(list(zip([A, a, B, b], [j for i in rterms for j in i])))
return (
sqrt(A)*a - sqrt(B)*b).xreplace(reps)
if len(rterms) == 3:
reps = dict(list(zip([A, a, B, b, C, c], [j for i in rterms for j in i])))
return (
(sqrt(A)*a + sqrt(B)*b - sqrt(C)*c)*(2*sqrt(A)*sqrt(B)*a*b - A*a**2 -
B*b**2 + C*c**2)).xreplace(reps)
elif len(rterms) == 4:
reps = dict(list(zip([A, a, B, b, C, c, D, d], [j for i in rterms for j in i])))
return ((sqrt(A)*a + sqrt(B)*b - sqrt(C)*c - sqrt(D)*d)*(2*sqrt(A)*sqrt(B)*a*b
- A*a**2 - B*b**2 - 2*sqrt(C)*sqrt(D)*c*d + C*c**2 +
D*d**2)*(-8*sqrt(A)*sqrt(B)*sqrt(C)*sqrt(D)*a*b*c*d + A**2*a**4 -
2*A*B*a**2*b**2 - 2*A*C*a**2*c**2 - 2*A*D*a**2*d**2 + B**2*b**4 -
2*B*C*b**2*c**2 - 2*B*D*b**2*d**2 + C**2*c**4 - 2*C*D*c**2*d**2 +
D**2*d**4)).xreplace(reps)
elif len(rterms) == 1:
return sqrt(rterms[0][0])
else:
raise NotImplementedError
def ispow2(d, log2=False):
if not d.is_Pow:
return False
e = d.exp
if e.is_Rational and e.q == 2 or symbolic and denom(e) == 2:
return True
if log2:
q = 1
if e.is_Rational:
q = e.q
elif symbolic:
d = denom(e)
if d.is_Integer:
q = d
if q != 1 and log(q, 2).is_Integer:
return True
return False
def handle(expr):
# Handle first reduces to the case
# expr = 1/d, where d is an add, or d is base**p/2.
# We do this by recursively calling handle on each piece.
from sympy.simplify.simplify import nsimplify
n, d = fraction(expr)
if expr.is_Atom or (d.is_Atom and n.is_Atom):
return expr
elif not n.is_Atom:
n = n.func(*[handle(a) for a in n.args])
return _unevaluated_Mul(n, handle(1/d))
elif n is not S.One:
return _unevaluated_Mul(n, handle(1/d))
elif d.is_Mul:
return _unevaluated_Mul(*[handle(1/d) for d in d.args])
# By this step, expr is 1/d, and d is not a mul.
if not symbolic and d.free_symbols:
return expr
if ispow2(d):
d2 = sqrtdenest(sqrt(d.base))**numer(d.exp)
if d2 != d:
return handle(1/d2)
elif d.is_Pow and (d.exp.is_integer or d.base.is_positive):
# (1/d**i) = (1/d)**i
return handle(1/d.base)**d.exp
if not (d.is_Add or ispow2(d)):
return 1/d.func(*[handle(a) for a in d.args])
# handle 1/d treating d as an Add (though it may not be)
keep = True # keep changes that are made
# flatten it and collect radicals after checking for special
# conditions
d = _mexpand(d)
# did it change?
if d.is_Atom:
return 1/d
# is it a number that might be handled easily?
if d.is_number:
_d = nsimplify(d)
if _d.is_Number and _d.equals(d):
return 1/_d
while True:
# collect similar terms
collected = defaultdict(list)
for m in Add.make_args(d): # d might have become non-Add
p2 = []
other = []
for i in Mul.make_args(m):
if ispow2(i, log2=True):
p2.append(i.base if i.exp is S.Half else i.base**(2*i.exp))
elif i is S.ImaginaryUnit:
p2.append(S.NegativeOne)
else:
other.append(i)
collected[tuple(ordered(p2))].append(Mul(*other))
rterms = list(ordered(list(collected.items())))
rterms = [(Mul(*i), Add(*j)) for i, j in rterms]
nrad = len(rterms) - (1 if rterms[0][0] is S.One else 0)
if nrad < 1:
break
elif nrad > max_terms:
# there may have been invalid operations leading to this point
# so don't keep changes, e.g. this expression is troublesome
# in collecting terms so as not to raise the issue of 2834:
# r = sqrt(sqrt(5) + 5)
# eq = 1/(sqrt(5)*r + 2*sqrt(5)*sqrt(-sqrt(5) + 5) + 5*r)
keep = False
break
if len(rterms) > 4:
# in general, only 4 terms can be removed with repeated squaring
# but other considerations can guide selection of radical terms
# so that radicals are removed
if all(x.is_Integer and (y**2).is_Rational for x, y in rterms):
nd, d = rad_rationalize(S.One, Add._from_args(
[sqrt(x)*y for x, y in rterms]))
n *= nd
else:
# is there anything else that might be attempted?
keep = False
break
from sympy.simplify.powsimp import powsimp, powdenest
num = powsimp(_num(rterms))
n *= num
d *= num
d = powdenest(_mexpand(d), force=symbolic)
if d.has(S.Zero, nan, zoo):
return expr
if d.is_Atom:
break
if not keep:
return expr
return _unevaluated_Mul(n, 1/d)
coeff, expr = expr.as_coeff_Add()
expr = expr.normal()
old = fraction(expr)
n, d = fraction(handle(expr))
if old != (n, d):
if not d.is_Atom:
was = (n, d)
n = signsimp(n, evaluate=False)
d = signsimp(d, evaluate=False)
u = Factors(_unevaluated_Mul(n, 1/d))
u = _unevaluated_Mul(*[k**v for k, v in u.factors.items()])
n, d = fraction(u)
if old == (n, d):
n, d = was
n = expand_mul(n)
if d.is_Number or d.is_Add:
n2, d2 = fraction(gcd_terms(_unevaluated_Mul(n, 1/d)))
if d2.is_Number or (d2.count_ops() <= d.count_ops()):
n, d = [signsimp(i) for i in (n2, d2)]
if n.is_Mul and n.args[0].is_Number:
n = n.func(*n.args)
return coeff + _unevaluated_Mul(n, 1/d)
def rad_rationalize(num, den):
"""
Rationalize ``num/den`` by removing square roots in the denominator;
num and den are sum of terms whose squares are positive rationals.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import rad_rationalize
>>> rad_rationalize(sqrt(3), 1 + sqrt(2)/3)
(-sqrt(3) + sqrt(6)/3, -7/9)
"""
if not den.is_Add:
return num, den
g, a, b = split_surds(den)
a = a*sqrt(g)
num = _mexpand((a - b)*num)
den = _mexpand(a**2 - b**2)
return rad_rationalize(num, den)
def fraction(expr, exact=False):
"""Returns a pair with expression's numerator and denominator.
If the given expression is not a fraction then this function
will return the tuple (expr, 1).
This function will not make any attempt to simplify nested
fractions or to do any term rewriting at all.
If only one of the numerator/denominator pair is needed then
use numer(expr) or denom(expr) functions respectively.
>>> from sympy import fraction, Rational, Symbol
>>> from sympy.abc import x, y
>>> fraction(x/y)
(x, y)
>>> fraction(x)
(x, 1)
>>> fraction(1/y**2)
(1, y**2)
>>> fraction(x*y/2)
(x*y, 2)
>>> fraction(Rational(1, 2))
(1, 2)
This function will also work fine with assumptions:
>>> k = Symbol('k', negative=True)
>>> fraction(x * y**k)
(x, y**(-k))
If we know nothing about sign of some exponent and ``exact``
flag is unset, then structure this exponent's structure will
be analyzed and pretty fraction will be returned:
>>> from sympy import exp, Mul
>>> fraction(2*x**(-y))
(2, x**y)
>>> fraction(exp(-x))
(1, exp(x))
>>> fraction(exp(-x), exact=True)
(exp(-x), 1)
The ``exact`` flag will also keep any unevaluated Muls from
being evaluated:
>>> u = Mul(2, x + 1, evaluate=False)
>>> fraction(u)
(2*x + 2, 1)
>>> fraction(u, exact=True)
(2*(x + 1), 1)
"""
expr = sympify(expr)
numer, denom = [], []
for term in Mul.make_args(expr):
if term.is_commutative and (term.is_Pow or isinstance(term, exp)):
b, ex = term.as_base_exp()
if ex.is_negative:
if ex is S.NegativeOne:
denom.append(b)
elif exact:
if ex.is_constant():
denom.append(Pow(b, -ex))
else:
numer.append(term)
else:
denom.append(Pow(b, -ex))
elif ex.is_positive:
numer.append(term)
elif not exact and ex.is_Mul:
n, d = term.as_numer_denom()
if n != 1:
numer.append(n)
denom.append(d)
else:
numer.append(term)
elif term.is_Rational and not term.is_Integer:
if term.p != 1:
numer.append(term.p)
denom.append(term.q)
else:
numer.append(term)
return Mul(*numer, evaluate=not exact), Mul(*denom, evaluate=not exact)
def numer(expr):
return fraction(expr)[0]
def denom(expr):
return fraction(expr)[1]
def fraction_expand(expr, **hints):
return expr.expand(frac=True, **hints)
def numer_expand(expr, **hints):
a, b = fraction(expr)
return a.expand(numer=True, **hints) / b
def denom_expand(expr, **hints):
a, b = fraction(expr)
return a / b.expand(denom=True, **hints)
expand_numer = numer_expand
expand_denom = denom_expand
expand_fraction = fraction_expand
def split_surds(expr):
"""
Split an expression with terms whose squares are positive rationals
into a sum of terms whose surds squared have gcd equal to g
and a sum of terms with surds squared prime with g.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.radsimp import split_surds
>>> split_surds(3*sqrt(3) + sqrt(5)/7 + sqrt(6) + sqrt(10) + sqrt(15))
(3, sqrt(2) + sqrt(5) + 3, sqrt(5)/7 + sqrt(10))
"""
args = sorted(expr.args, key=default_sort_key)
coeff_muls = [x.as_coeff_Mul() for x in args]
surds = [x[1]**2 for x in coeff_muls if x[1].is_Pow]
surds.sort(key=default_sort_key)
g, b1, b2 = _split_gcd(*surds)
g2 = g
if not b2 and len(b1) >= 2:
b1n = [x/g for x in b1]
b1n = [x for x in b1n if x != 1]
# only a common factor has been factored; split again
g1, b1n, b2 = _split_gcd(*b1n)
g2 = g*g1
a1v, a2v = [], []
for c, s in coeff_muls:
if s.is_Pow and s.exp == S.Half:
s1 = s.base
if s1 in b1:
a1v.append(c*sqrt(s1/g2))
else:
a2v.append(c*s)
else:
a2v.append(c*s)
a = Add(*a1v)
b = Add(*a2v)
return g2, a, b
def _split_gcd(*a):
"""
Split the list of integers ``a`` into a list of integers, ``a1`` having
``g = gcd(a1)``, and a list ``a2`` whose elements are not divisible by
``g``. Returns ``g, a1, a2``.
Examples
========
>>> from sympy.simplify.radsimp import _split_gcd
>>> _split_gcd(55, 35, 22, 14, 77, 10)
(5, [55, 35, 10], [22, 14, 77])
"""
g = a[0]
b1 = [g]
b2 = []
for x in a[1:]:
g1 = gcd(g, x)
if g1 == 1:
b2.append(x)
else:
g = g1
b1.append(x)
return g, b1, b2
|
ca7b883f2f458da83975afb8dd61563dc2afb9ab5d0e36d80123c9739947d60d | from sympy.core import Add, Expr, Mul, S, sympify
from sympy.core.function import _mexpand, count_ops, expand_mul
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Dummy
from sympy.functions import root, sign, sqrt
from sympy.polys import Poly, PolynomialError
def is_sqrt(expr):
"""Return True if expr is a sqrt, otherwise False."""
return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half
def sqrt_depth(p):
"""Return the maximum depth of any square root argument of p.
>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import sqrt_depth
Neither of these square roots contains any other square roots
so the depth is 1:
>>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3)))
1
The sqrt(3) is contained within a square root so the depth is
2:
>>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3)))
2
"""
if p is S.ImaginaryUnit:
return 1
if p.is_Atom:
return 0
elif p.is_Add or p.is_Mul:
return max([sqrt_depth(x) for x in p.args], key=default_sort_key)
elif is_sqrt(p):
return sqrt_depth(p.base) + 1
else:
return 0
def is_algebraic(p):
"""Return True if p is comprised of only Rationals or square roots
of Rationals and algebraic operations.
Examples
========
>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import is_algebraic
>>> from sympy import cos
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2))))
True
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2))))
False
"""
if p.is_Rational:
return True
elif p.is_Atom:
return False
elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer:
return is_algebraic(p.base)
elif p.is_Add or p.is_Mul:
return all(is_algebraic(x) for x in p.args)
else:
return False
def _subsets(n):
"""
Returns all possible subsets of the set (0, 1, ..., n-1) except the
empty set, listed in reversed lexicographical order according to binary
representation, so that the case of the fourth root is treated last.
Examples
========
>>> from sympy.simplify.sqrtdenest import _subsets
>>> _subsets(2)
[[1, 0], [0, 1], [1, 1]]
"""
if n == 1:
a = [[1]]
elif n == 2:
a = [[1, 0], [0, 1], [1, 1]]
elif n == 3:
a = [[1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
else:
b = _subsets(n - 1)
a0 = [x + [0] for x in b]
a1 = [x + [1] for x in b]
a = a0 + [[0]*(n - 1) + [1]] + a1
return a
def sqrtdenest(expr, max_iter=3):
"""Denests sqrts in an expression that contain other square roots
if possible, otherwise returns the expr unchanged. This is based on the
algorithms of [1].
Examples
========
>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> from sympy import sqrt
>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
sqrt(2) + sqrt(3)
See Also
========
sympy.solvers.solvers.unrad
References
==========
.. [1] http://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf
.. [2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots
by Denesting' (available at http://www.cybertester.com/data/denest.pdf)
"""
expr = expand_mul(expr)
for i in range(max_iter):
z = _sqrtdenest0(expr)
if expr == z:
return expr
expr = z
return expr
def _sqrt_match(p):
"""Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
matching, sqrt(r) also has then maximal sqrt_depth among addends of p.
Examples
========
>>> from sympy.functions.elementary.miscellaneous import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrt_match
>>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) + 2*sqrt(1+sqrt(5)))
[1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
"""
from sympy.simplify.radsimp import split_surds
p = _mexpand(p)
if p.is_Number:
res = (p, S.Zero, S.Zero)
elif p.is_Add:
pargs = sorted(p.args, key=default_sort_key)
sqargs = [x**2 for x in pargs]
if all(sq.is_Rational and sq.is_positive for sq in sqargs):
r, b, a = split_surds(p)
res = a, b, r
return list(res)
# to make the process canonical, the argument is included in the tuple
# so when the max is selected, it will be the largest arg having a
# given depth
v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
nmax = max(v, key=default_sort_key)
if nmax[0] == 0:
res = []
else:
# select r
depth, _, i = nmax
r = pargs.pop(i)
v.pop(i)
b = S.One
if r.is_Mul:
bv = []
rv = []
for x in r.args:
if sqrt_depth(x) < depth:
bv.append(x)
else:
rv.append(x)
b = Mul._from_args(bv)
r = Mul._from_args(rv)
# collect terms comtaining r
a1 = []
b1 = [b]
for x in v:
if x[0] < depth:
a1.append(x[1])
else:
x1 = x[1]
if x1 == r:
b1.append(1)
else:
if x1.is_Mul:
x1args = list(x1.args)
if r in x1args:
x1args.remove(r)
b1.append(Mul(*x1args))
else:
a1.append(x[1])
else:
a1.append(x[1])
a = Add(*a1)
b = Add(*b1)
res = (a, b, r**2)
else:
b, r = p.as_coeff_Mul()
if is_sqrt(r):
res = (S.Zero, b, r**2)
else:
res = []
return list(res)
class SqrtdenestStopIteration(StopIteration):
pass
def _sqrtdenest0(expr):
"""Returns expr after denesting its arguments."""
if is_sqrt(expr):
n, d = expr.as_numer_denom()
if d is S.One: # n is a square root
if n.base.is_Add:
args = sorted(n.base.args, key=default_sort_key)
if len(args) > 2 and all((x**2).is_Integer for x in args):
try:
return _sqrtdenest_rec(n)
except SqrtdenestStopIteration:
pass
expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args])))
return _sqrtdenest1(expr)
else:
n, d = [_sqrtdenest0(i) for i in (n, d)]
return n/d
if isinstance(expr, Add):
cs = []
args = []
for arg in expr.args:
c, a = arg.as_coeff_Mul()
cs.append(c)
args.append(a)
if all(c.is_Rational for c in cs) and all(is_sqrt(arg) for arg in args):
return _sqrt_ratcomb(cs, args)
if isinstance(expr, Expr):
args = expr.args
if args:
return expr.func(*[_sqrtdenest0(a) for a in args])
return expr
def _sqrtdenest_rec(expr):
"""Helper that denests the square root of three or more surds.
Explanation
===========
It returns the denested expression; if it cannot be denested it
throws SqrtdenestStopIteration
Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
split expr.base = a + b*sqrt(r_k), where `a` and `b` are on
Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
See [1], section 6.
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
>>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
-sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
>>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
>>> _sqrtdenest_rec(sqrt(w))
-sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
"""
from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds
if not expr.is_Pow:
return sqrtdenest(expr)
if expr.base < 0:
return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base))
g, a, b = split_surds(expr.base)
a = a*sqrt(g)
if a < b:
a, b = b, a
c2 = _mexpand(a**2 - b**2)
if len(c2.args) > 2:
g, a1, b1 = split_surds(c2)
a1 = a1*sqrt(g)
if a1 < b1:
a1, b1 = b1, a1
c2_1 = _mexpand(a1**2 - b1**2)
c_1 = _sqrtdenest_rec(sqrt(c2_1))
d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
num, den = rad_rationalize(b1, d_1)
c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2)))
else:
c = _sqrtdenest1(sqrt(c2))
if sqrt_depth(c) > 1:
raise SqrtdenestStopIteration
ac = a + c
if len(ac.args) >= len(expr.args):
if count_ops(ac) >= count_ops(expr.base):
raise SqrtdenestStopIteration
d = sqrtdenest(sqrt(ac))
if sqrt_depth(d) > 1:
raise SqrtdenestStopIteration
num, den = rad_rationalize(b, d)
r = d/sqrt(2) + num/(den*sqrt(2))
r = radsimp(r)
return _mexpand(r)
def _sqrtdenest1(expr, denester=True):
"""Return denested expr after denesting with simpler methods or, that
failing, using the denester."""
from sympy.simplify.simplify import radsimp
if not is_sqrt(expr):
return expr
a = expr.base
if a.is_Atom:
return expr
val = _sqrt_match(a)
if not val:
return expr
a, b, r = val
# try a quick numeric denesting
d2 = _mexpand(a**2 - b**2*r)
if d2.is_Rational:
if d2.is_positive:
z = _sqrt_numeric_denest(a, b, r, d2)
if z is not None:
return z
else:
# fourth root case
# sqrtdenest(sqrt(3 + 2*sqrt(3))) =
# sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
dr2 = _mexpand(-d2*r)
dr = sqrt(dr2)
if dr.is_Rational:
z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2)
if z is not None:
return z/root(r, 4)
else:
z = _sqrt_symbolic_denest(a, b, r)
if z is not None:
return z
if not denester or not is_algebraic(expr):
return expr
res = sqrt_biquadratic_denest(expr, a, b, r, d2)
if res:
return res
# now call to the denester
av0 = [a, b, r, d2]
z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
if av0[1] is None:
return expr
if z is not None:
if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr):
return expr
return z
return expr
def _sqrt_symbolic_denest(a, b, r):
"""Given an expression, sqrt(a + b*sqrt(b)), return the denested
expression or None.
Explanation
===========
If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
(y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
(cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).
Examples
========
>>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
>>> from sympy import sqrt, Symbol
>>> from sympy.abc import x
>>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
>>> _sqrt_symbolic_denest(a, b, r)
sqrt(11 - 2*sqrt(29)) + sqrt(5)
If the expression is numeric, it will be simplified:
>>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
>>> sqrtdenest(sqrt((w**2).expand()))
1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))
Otherwise, it will only be simplified if assumptions allow:
>>> w = w.subs(sqrt(3), sqrt(x + 3))
>>> sqrtdenest(sqrt((w**2).expand()))
sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)
Notice that the argument of the sqrt is a square. If x is made positive
then the sqrt of the square is resolved:
>>> _.subs(x, Symbol('x', positive=True))
sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
"""
a, b, r = map(sympify, (a, b, r))
rval = _sqrt_match(r)
if not rval:
return None
ra, rb, rr = rval
if rb:
y = Dummy('y', positive=True)
try:
newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
except PolynomialError:
return None
if newa.degree() == 2:
ca, cb, cc = newa.all_coeffs()
cb += b
if _mexpand(cb**2 - 4*ca*cc).equals(0):
z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
if z.is_number:
z = _mexpand(Mul._from_args(z.as_content_primitive()))
return z
def _sqrt_numeric_denest(a, b, r, d2):
r"""Helper that denest
$\sqrt{a + b \sqrt{r}}, d^2 = a^2 - b^2 r > 0$
If it cannot be denested, it returns ``None``.
"""
d = sqrt(d2)
s = a + d
# sqrt_depth(res) <= sqrt_depth(s) + 1
# sqrt_depth(expr) = sqrt_depth(r) + 2
# there is denesting if sqrt_depth(s) + 1 < sqrt_depth(r) + 2
# if s**2 is Number there is a fourth root
if sqrt_depth(s) < sqrt_depth(r) + 1 or (s**2).is_Rational:
s1, s2 = sign(s), sign(b)
if s1 == s2 == -1:
s1 = s2 = 1
res = (s1 * sqrt(a + d) + s2 * sqrt(a - d)) * sqrt(2) / 2
return res.expand()
def sqrt_biquadratic_denest(expr, a, b, r, d2):
"""denest expr = sqrt(a + b*sqrt(r))
where a, b, r are linear combinations of square roots of
positive rationals on the rationals (SQRR) and r > 0, b != 0,
d2 = a**2 - b**2*r > 0
If it cannot denest it returns None.
Explanation
===========
Search for a solution A of type SQRR of the biquadratic equation
4*A**4 - 4*a*A**2 + b**2*r = 0 (1)
sqd = sqrt(a**2 - b**2*r)
Choosing the sqrt to be positive, the possible solutions are
A = sqrt(a/2 +/- sqd/2)
Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
so if sqd can be denested, it is done by
_sqrtdenest_rec, and the result is a SQRR.
Similarly for A.
Examples of solutions (in both cases a and sqd are positive):
Example of expr with solution sqrt(a/2 + sqd/2) but not
solution sqrt(a/2 - sqd/2):
expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)
Example of expr with solution sqrt(a/2 - sqd/2) but not
solution sqrt(a/2 + sqd/2):
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
expr = sqrt((w**2).expand())
a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
sqd = 29 + 20*sqrt(3)
Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
>>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
>>> a, b, r = _sqrt_match(z**2)
>>> d2 = a**2 - b**2*r
>>> sqrt_biquadratic_denest(z, a, b, r, d2)
sqrt(2) + sqrt(sqrt(2) + 2) + 2
"""
from sympy.simplify.radsimp import radsimp, rad_rationalize
if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
return None
for x in (a, b, r):
for y in x.args:
y2 = y**2
if not y2.is_Integer or not y2.is_positive:
return None
sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
if sqrt_depth(sqd) > 1:
return None
x1, x2 = [a/2 + sqd/2, a/2 - sqd/2]
# look for a solution A with depth 1
for x in (x1, x2):
A = sqrtdenest(sqrt(x))
if sqrt_depth(A) > 1:
continue
Bn, Bd = rad_rationalize(b, _mexpand(2*A))
B = Bn/Bd
z = A + B*sqrt(r)
if z < 0:
z = -z
return _mexpand(z)
return None
def _denester(nested, av0, h, max_depth_level):
"""Denests a list of expressions that contain nested square roots.
Explanation
===========
Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.
It is assumed that all of the elements of 'nested' share the same
bottom-level radicand. (This is stated in the paper, on page 177, in
the paragraph immediately preceding the algorithm.)
When evaluating all of the arguments in parallel, the bottom-level
radicand only needs to be denested once. This means that calling
_denester with x arguments results in a recursive invocation with x+1
arguments; hence _denester has polynomial complexity.
However, if the arguments were evaluated separately, each call would
result in two recursive invocations, and the algorithm would have
exponential complexity.
This is discussed in the paper in the middle paragraph of page 179.
"""
from sympy.simplify.simplify import radsimp
if h > max_depth_level:
return None, None
if av0[1] is None:
return None, None
if (av0[0] is None and
all(n.is_Number for n in nested)): # no arguments are nested
for f in _subsets(len(nested)): # test subset 'f' of nested
p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
if f.count(1) > 1 and f[-1]:
p = -p
sqp = sqrt(p)
if sqp.is_Rational:
return sqp, f # got a perfect square so return its square root.
# Otherwise, return the radicand from the previous invocation.
return sqrt(nested[-1]), [0]*len(nested)
else:
R = None
if av0[0] is not None:
values = [av0[:2]]
R = av0[2]
nested2 = [av0[3], R]
av0[0] = None
else:
values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
for v in values:
if v[2]: # Since if b=0, r is not defined
if R is not None:
if R != v[2]:
av0[1] = None
return None, None
else:
R = v[2]
if R is None:
# return the radicand from the previous invocation
return sqrt(nested[-1]), [0]*len(nested)
nested2 = [_mexpand(v[0]**2) -
_mexpand(R*v[1]**2) for v in values] + [R]
d, f = _denester(nested2, av0, h + 1, max_depth_level)
if not f:
return None, None
if not any(f[i] for i in range(len(nested))):
v = values[-1]
return sqrt(v[0] + _mexpand(v[1]*d)), f
else:
p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
v = _sqrt_match(p)
if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
v[0] = -v[0]
v[1] = -v[1]
if not f[len(nested)]: # Solution denests with square roots
vad = _mexpand(v[0] + d)
if vad <= 0:
# return the radicand from the previous invocation.
return sqrt(nested[-1]), [0]*len(nested)
if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or
(vad**2).is_Number):
av0[1] = None
return None, None
sqvad = _sqrtdenest1(sqrt(vad), denester=False)
if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
av0[1] = None
return None, None
sqvad1 = radsimp(1/sqvad)
res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2)))
return res, f
# sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
else: # Solution requires a fourth root
s2 = _mexpand(v[1]*R) + d
if s2 <= 0:
return sqrt(nested[-1]), [0]*len(nested)
FR, s = root(_mexpand(R), 4), sqrt(s2)
return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f
def _sqrt_ratcomb(cs, args):
"""Denest rational combinations of radicals.
Based on section 5 of [1].
Examples
========
>>> from sympy import sqrt
>>> from sympy.simplify.sqrtdenest import sqrtdenest
>>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
>>> sqrtdenest(z)
0
"""
from sympy.simplify.radsimp import radsimp
# check if there exists a pair of sqrt that can be denested
def find(a):
n = len(a)
for i in range(n - 1):
for j in range(i + 1, n):
s1 = a[i].base
s2 = a[j].base
p = _mexpand(s1 * s2)
s = sqrtdenest(sqrt(p))
if s != sqrt(p):
return s, i, j
indices = find(args)
if indices is None:
return Add(*[c * arg for c, arg in zip(cs, args)])
s, i1, i2 = indices
c2 = cs.pop(i2)
args.pop(i2)
a1 = args[i1]
# replace a2 by s/a1
cs[i1] += radsimp(c2 * s / a1.base)
return _sqrt_ratcomb(cs, args)
|
0448f6e449d832a83ef998403ebdd2169de0decf228acc44f89bc47e94fd860b | from collections import defaultdict
from functools import reduce
from math import prod
from sympy.core.function import expand_log, count_ops, _coeff_isneg
from sympy.core import sympify, Basic, Dummy, S, Add, Mul, Pow, expand_mul, factor_terms
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.numbers import Integer, Rational
from sympy.core.mul import _keep_coeff
from sympy.core.rules import Transform
from sympy.functions import exp_polar, exp, log, root, polarify, unpolarify
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.polys import lcm, gcd
from sympy.ntheory.factor_ import multiplicity
def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
"""
reduces expression by combining powers with similar bases and exponents.
Explanation
===========
If ``deep`` is ``True`` then powsimp() will also simplify arguments of
functions. By default ``deep`` is set to ``False``.
If ``force`` is ``True`` then bases will be combined without checking for
assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
if x and y are both negative.
You can make powsimp() only combine bases or only combine exponents by
changing combine='base' or combine='exp'. By default, combine='all',
which does both. combine='base' will only combine::
a a a 2x x
x * y => (x*y) as well as things like 2 => 4
and combine='exp' will only combine
::
a b (a + b)
x * x => x
combine='exp' will strictly only combine exponents in the way that used
to be automatic. Also use deep=True if you need the old behavior.
When combine='all', 'exp' is evaluated first. Consider the first
example below for when there could be an ambiguity relating to this.
This is done so things like the second example can be completely
combined. If you want 'base' combined first, do something like
powsimp(powsimp(expr, combine='base'), combine='exp').
Examples
========
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n
>>> powsimp(x**y*x**z*y**z, combine='all')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='exp')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
x**y*(x*y)**z
>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)*x**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z
>>> x, y = symbols('x y', positive=True)
>>> powsimp(log(exp(x)*exp(y)))
log(exp(x)*exp(y))
>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
Radicals with Mul bases will be combined if combine='exp'
>>> from sympy import sqrt
>>> x, y = symbols('x y')
Two radicals are automatically joined through Mul:
>>> a=sqrt(x*sqrt(y))
>>> a*a**3 == a**4
True
But if an integer power of that radical has been
autoexpanded then Mul does not join the resulting factors:
>>> a**4 # auto expands to a Mul, no longer a Pow
x**2*y
>>> _*a # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
>>> powsimp(_) # but powsimp will
(x*sqrt(y))**(5/2)
>>> powsimp(x*y*a) # but won't when doing so would violate assumptions
x*y*sqrt(x*sqrt(y))
"""
def recurse(arg, **kwargs):
_deep = kwargs.get('deep', deep)
_combine = kwargs.get('combine', combine)
_force = kwargs.get('force', force)
_measure = kwargs.get('measure', measure)
return powsimp(arg, _deep, _combine, _force, _measure)
expr = sympify(expr)
if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or (
expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
return expr
if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
expr = expr.func(*[recurse(w) for w in expr.args])
if expr.is_Pow:
return recurse(expr*_y, deep=False)/_y
if not expr.is_Mul:
return expr
# handle the Mul
if combine in ('exp', 'all'):
# Collect base/exp data, while maintaining order in the
# non-commutative parts of the product
c_powers = defaultdict(list)
nc_part = []
newexpr = []
coeff = S.One
for term in expr.args:
if term.is_Rational:
coeff *= term
continue
if term.is_Pow:
term = _denest_pow(term)
if term.is_commutative:
b, e = term.as_base_exp()
if deep:
b, e = [recurse(i) for i in [b, e]]
if b.is_Pow or isinstance(b, exp):
# don't let smthg like sqrt(x**a) split into x**a, 1/2
# or else it will be joined as x**(a/2) later
b, e = b**e, S.One
c_powers[b].append(e)
else:
# This is the logic that combines exponents for equal,
# but non-commutative bases: A**x*A**y == A**(x+y).
if nc_part:
b1, e1 = nc_part[-1].as_base_exp()
b2, e2 = term.as_base_exp()
if (b1 == b2 and
e1.is_commutative and e2.is_commutative):
nc_part[-1] = Pow(b1, Add(e1, e2))
continue
nc_part.append(term)
# add up exponents of common bases
for b, e in ordered(iter(c_powers.items())):
# allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
# Numbers since autoevaluation will undo it, e.g.
# 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
coeff is not S.One and
b not in (S.One, S.NegativeOne)):
m = multiplicity(abs(b), abs(coeff))
if m:
e.append(m)
coeff /= b**m
c_powers[b] = Add(*e)
if coeff is not S.One:
if coeff in c_powers:
c_powers[coeff] += S.One
else:
c_powers[coeff] = S.One
# convert to plain dictionary
c_powers = dict(c_powers)
# check for base and inverted base pairs
be = list(c_powers.items())
skip = set() # skip if we already saw them
for b, e in be:
if b in skip:
continue
bpos = b.is_positive or b.is_polar
if bpos:
binv = 1/b
if b != binv and binv in c_powers:
if b.as_numer_denom()[0] is S.One:
c_powers.pop(b)
c_powers[binv] -= e
else:
skip.add(binv)
e = c_powers.pop(binv)
c_powers[b] -= e
# check for base and negated base pairs
be = list(c_powers.items())
_n = S.NegativeOne
for b, e in be:
if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers:
if (b.is_positive is not None or e.is_integer):
if e.is_integer or b.is_negative:
c_powers[-b] += c_powers.pop(b)
else: # (-b).is_positive so use its e
e = c_powers.pop(-b)
c_powers[b] += e
if _n in c_powers:
c_powers[_n] += e
else:
c_powers[_n] = e
# filter c_powers and convert to a list
c_powers = [(b, e) for b, e in c_powers.items() if e]
# ==============================================================
# check for Mul bases of Rational powers that can be combined with
# separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
# (x*sqrt(x*y))**(3/2)
# ---------------- helper functions
def ratq(x):
'''Return Rational part of x's exponent as it appears in the bkey.
'''
return bkey(x)[0][1]
def bkey(b, e=None):
'''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
it will be taken by using as_base_exp() on the input b.
e.g.
x**3/2 -> (x, 2), 3
x**y -> (x**y, 1), 1
x**(2*y/3) -> (x**y, 3), 2
exp(x/2) -> (exp(a), 2), 1
'''
if e is not None: # coming from c_powers or from below
if e.is_Integer:
return (b, S.One), e
elif e.is_Rational:
return (b, Integer(e.q)), Integer(e.p)
else:
c, m = e.as_coeff_Mul(rational=True)
if c is not S.One:
if m.is_integer:
return (b, Integer(c.q)), m*Integer(c.p)
return (b**m, Integer(c.q)), Integer(c.p)
else:
return (b**e, S.One), S.One
else:
return bkey(*b.as_base_exp())
def update(b):
'''Decide what to do with base, b. If its exponent is now an
integer multiple of the Rational denominator, then remove it
and put the factors of its base in the common_b dictionary or
update the existing bases if necessary. If it has been zeroed
out, simply remove the base.
'''
newe, r = divmod(common_b[b], b[1])
if not r:
common_b.pop(b)
if newe:
for m in Mul.make_args(b[0]**newe):
b, e = bkey(m)
if b not in common_b:
common_b[b] = 0
common_b[b] += e
if b[1] != 1:
bases.append(b)
# ---------------- end of helper functions
# assemble a dictionary of the factors having a Rational power
common_b = {}
done = []
bases = []
for b, e in c_powers:
b, e = bkey(b, e)
if b in common_b:
common_b[b] = common_b[b] + e
else:
common_b[b] = e
if b[1] != 1 and b[0].is_Mul:
bases.append(b)
bases.sort(key=default_sort_key) # this makes tie-breaking canonical
bases.sort(key=measure, reverse=True) # handle longest first
for base in bases:
if base not in common_b: # it may have been removed already
continue
b, exponent = base
last = False # True when no factor of base is a radical
qlcm = 1 # the lcm of the radical denominators
while True:
bstart = b
qstart = qlcm
bb = [] # list of factors
ee = [] # (factor's expo. and it's current value in common_b)
for bi in Mul.make_args(b):
bib, bie = bkey(bi)
if bib not in common_b or common_b[bib] < bie:
ee = bb = [] # failed
break
ee.append([bie, common_b[bib]])
bb.append(bib)
if ee:
# find the number of integral extractions possible
# e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
min1 = ee[0][1]//ee[0][0]
for i in range(1, len(ee)):
rat = ee[i][1]//ee[i][0]
if rat < 1:
break
min1 = min(min1, rat)
else:
# update base factor counts
# e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
# and the new base counts will be 5-2*2 and 6-2*3
for i in range(len(bb)):
common_b[bb[i]] -= min1*ee[i][0]
update(bb[i])
# update the count of the base
# e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
# will increase by 4 to give bkey (x*sqrt(y), 2, 5)
common_b[base] += min1*qstart*exponent
if (last # no more radicals in base
or len(common_b) == 1 # nothing left to join with
or all(k[1] == 1 for k in common_b) # no rad's in common_b
):
break
# see what we can exponentiate base by to remove any radicals
# so we know what to search for
# e.g. if base were x**(1/2)*y**(1/3) then we should
# exponentiate by 6 and look for powers of x and y in the ratio
# of 2 to 3
qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
if qlcm == 1:
break # we are done
b = bstart**qlcm
qlcm *= qstart
if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
last = True # we are going to be done after this next pass
# this base no longer can find anything to join with and
# since it was longer than any other we are done with it
b, q = base
done.append((b, common_b.pop(base)*Rational(1, q)))
# update c_powers and get ready to continue with powsimp
c_powers = done
# there may be terms still in common_b that were bases that were
# identified as needing processing, so remove those, too
for (b, q), e in common_b.items():
if (b.is_Pow or isinstance(b, exp)) and \
q is not S.One and not b.exp.is_Rational:
b, be = b.as_base_exp()
b = b**(be/q)
else:
b = root(b, q)
c_powers.append((b, e))
check = len(c_powers)
c_powers = dict(c_powers)
assert len(c_powers) == check # there should have been no duplicates
# ==============================================================
# rebuild the expression
newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()]))
if combine == 'exp':
return expr.func(newexpr, expr.func(*nc_part))
else:
return recurse(expr.func(*nc_part), combine='base') * \
recurse(newexpr, combine='base')
elif combine == 'base':
# Build c_powers and nc_part. These must both be lists not
# dicts because exp's are not combined.
c_powers = []
nc_part = []
for term in expr.args:
if term.is_commutative:
c_powers.append(list(term.as_base_exp()))
else:
nc_part.append(term)
# Pull out numerical coefficients from exponent if assumptions allow
# e.g., 2**(2*x) => 4**x
for i in range(len(c_powers)):
b, e = c_powers[i]
if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar):
continue
exp_c, exp_t = e.as_coeff_Mul(rational=True)
if exp_c is not S.One and exp_t is not S.One:
c_powers[i] = [Pow(b, exp_c), exp_t]
# Combine bases whenever they have the same exponent and
# assumptions allow
# first gather the potential bases under the common exponent
c_exp = defaultdict(list)
for b, e in c_powers:
if deep:
e = recurse(e)
if e.is_Add and (b.is_positive or e.is_integer):
e = factor_terms(e)
if _coeff_isneg(e):
e = -e
b = 1/b
c_exp[e].append(b)
del c_powers
# Merge back in the results of the above to form a new product
c_powers = defaultdict(list)
for e in c_exp:
bases = c_exp[e]
# calculate the new base for e
if len(bases) == 1:
new_base = bases[0]
elif e.is_integer or force:
new_base = expr.func(*bases)
else:
# see which ones can be joined
unk = []
nonneg = []
neg = []
for bi in bases:
if bi.is_negative:
neg.append(bi)
elif bi.is_nonnegative:
nonneg.append(bi)
elif bi.is_polar:
nonneg.append(
bi) # polar can be treated like non-negative
else:
unk.append(bi)
if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
# a single neg or a single unk can join the rest
nonneg.extend(unk + neg)
unk = neg = []
elif neg:
# their negative signs cancel in groups of 2*q if we know
# that e = p/q else we have to treat them as unknown
israt = False
if e.is_Rational:
israt = True
else:
p, d = e.as_numer_denom()
if p.is_integer and d.is_integer:
israt = True
if israt:
neg = [-w for w in neg]
unk.extend([S.NegativeOne]*len(neg))
else:
unk.extend(neg)
neg = []
del israt
# these shouldn't be joined
for b in unk:
c_powers[b].append(e)
# here is a new joined base
new_base = expr.func(*(nonneg + neg))
# if there are positive parts they will just get separated
# again unless some change is made
def _terms(e):
# return the number of terms of this expression
# when multiplied out -- assuming no joining of terms
if e.is_Add:
return sum([_terms(ai) for ai in e.args])
if e.is_Mul:
return prod([_terms(mi) for mi in e.args])
return 1
xnew_base = expand_mul(new_base, deep=False)
if len(Add.make_args(xnew_base)) < _terms(new_base):
new_base = factor_terms(xnew_base)
c_powers[new_base].append(e)
# break out the powers from c_powers now
c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]
# we're done
return expr.func(*(c_part + nc_part))
else:
raise ValueError("combine must be one of ('all', 'exp', 'base').")
def powdenest(eq, force=False, polar=False):
r"""
Collect exponents on powers as assumptions allow.
Explanation
===========
Given ``(bb**be)**e``, this can be simplified as follows:
* if ``bb`` is positive, or
* ``e`` is an integer, or
* ``|be| < 1`` then this simplifies to ``bb**(be*e)``
Given a product of powers raised to a power, ``(bb1**be1 *
bb2**be2...)**e``, simplification can be done as follows:
- if e is positive, the gcd of all bei can be joined with e;
- all non-negative bb can be separated from those that are negative
and their gcd can be joined with e; autosimplification already
handles this separation.
- integer factors from powers that have integers in the denominator
of the exponent can be removed from any term and the gcd of such
integers can be joined with e
Setting ``force`` to ``True`` will make symbols that are not explicitly
negative behave as though they are positive, resulting in more
denesting.
Setting ``polar`` to ``True`` will do simplifications on the Riemann surface of
the logarithm, also resulting in more denestings.
When there are sums of logs in exp() then a product of powers may be
obtained e.g. ``exp(3*(log(a) + 2*log(b)))`` - > ``a**3*b**6``.
Examples
========
>>> from sympy.abc import a, b, x, y, z
>>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest
>>> powdenest((x**(2*a/3))**(3*x))
(x**(2*a/3))**(3*x)
>>> powdenest(exp(3*x*log(2)))
2**(3*x)
Assumptions may prevent expansion:
>>> powdenest(sqrt(x**2))
sqrt(x**2)
>>> p = symbols('p', positive=True)
>>> powdenest(sqrt(p**2))
p
No other expansion is done.
>>> i, j = symbols('i,j', integer=True)
>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j
x**(x*(i + j))
But exp() will be denested by moving all non-log terms outside of
the function; this may result in the collapsing of the exp to a power
with a different base:
>>> powdenest(exp(3*y*log(x)))
x**(3*y)
>>> powdenest(exp(y*(log(a) + log(b))))
(a*b)**y
>>> powdenest(exp(3*(log(a) + log(b))))
a**3*b**3
If assumptions allow, symbols can also be moved to the outermost exponent:
>>> i = Symbol('i', integer=True)
>>> powdenest(((x**(2*i))**(3*y))**x)
((x**(2*i))**(3*y))**x
>>> powdenest(((x**(2*i))**(3*y))**x, force=True)
x**(6*i*x*y)
>>> powdenest(((x**(2*a/3))**(3*y/i))**x)
((x**(2*a/3))**(3*y/i))**x
>>> powdenest((x**(2*i)*y**(4*i))**z, force=True)
(x*y**2)**(2*i*z)
>>> n = Symbol('n', negative=True)
>>> powdenest((x**i)**y, force=True)
x**(i*y)
>>> powdenest((n**i)**x, force=True)
(n**i)**x
"""
from sympy.simplify.simplify import posify
if force:
def _denest(b, e):
if not isinstance(b, (Pow, exp)):
return b.is_positive, Pow(b, e, evaluate=False)
return _denest(b.base, b.exp*e)
reps = []
for p in eq.atoms(Pow, exp):
if isinstance(p.base, (Pow, exp)):
ok, dp = _denest(*p.args)
if ok is not False:
reps.append((p, dp))
if reps:
eq = eq.subs(reps)
eq, reps = posify(eq)
return powdenest(eq, force=False, polar=polar).xreplace(reps)
if polar:
eq, rep = polarify(eq)
return unpolarify(powdenest(unpolarify(eq, exponents_only=True)), rep)
new = powsimp(eq)
return new.xreplace(Transform(
_denest_pow, filter=lambda m: m.is_Pow or isinstance(m, exp)))
_y = Dummy('y')
def _denest_pow(eq):
"""
Denest powers.
This is a helper function for powdenest that performs the actual
transformation.
"""
from sympy.simplify.simplify import logcombine
b, e = eq.as_base_exp()
if b.is_Pow or isinstance(b, exp) and e != 1:
new = b._eval_power(e)
if new is not None:
eq = new
b, e = new.as_base_exp()
# denest exp with log terms in exponent
if b is S.Exp1 and e.is_Mul:
logs = []
other = []
for ei in e.args:
if any(isinstance(ai, log) for ai in Add.make_args(ei)):
logs.append(ei)
else:
other.append(ei)
logs = logcombine(Mul(*logs))
return Pow(exp(logs), Mul(*other))
_, be = b.as_base_exp()
if be is S.One and not (b.is_Mul or
b.is_Rational and b.q != 1 or
b.is_positive):
return eq
# denest eq which is either pos**e or Pow**e or Mul**e or
# Mul(b1**e1, b2**e2)
# handle polar numbers specially
polars, nonpolars = [], []
for bb in Mul.make_args(b):
if bb.is_polar:
polars.append(bb.as_base_exp())
else:
nonpolars.append(bb)
if len(polars) == 1 and not polars[0][0].is_Mul:
return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e)
elif polars:
return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \
*powdenest(Mul(*nonpolars)**e)
if b.is_Integer:
# use log to see if there is a power here
logb = expand_log(log(b))
if logb.is_Mul:
c, logb = logb.args
e *= c
base = logb.args[0]
return Pow(base, e)
# if b is not a Mul or any factor is an atom then there is nothing to do
if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)):
return eq
# let log handle the case of the base of the argument being a Mul, e.g.
# sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we
# will take the log, expand it, and then factor out the common powers that
# now appear as coefficient. We do this manually since terms_gcd pulls out
# fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2;
# gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but
# we want 3*x. Neither work with noncommutatives.
def nc_gcd(aa, bb):
a, b = [i.as_coeff_Mul() for i in [aa, bb]]
c = gcd(a[0], b[0]).as_numer_denom()[0]
g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
return _keep_coeff(c, g)
glogb = expand_log(log(b))
if glogb.is_Add:
args = glogb.args
g = reduce(nc_gcd, args)
if g != 1:
cg, rg = g.as_coeff_Mul()
glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args]))
# now put the log back together again
if isinstance(glogb, log) or not glogb.is_Mul:
if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp):
glogb = _denest_pow(glogb.args[0])
if (abs(glogb.exp) < 1) == True:
return Pow(glogb.base, glogb.exp*e)
return eq
# the log(b) was a Mul so join any adds with logcombine
add = []
other = []
for a in glogb.args:
if a.is_Add:
add.append(a)
else:
other.append(a)
return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))
|
90ec1ecab3fd5d4315c82ead5d2e2640652a47629dfc710f5214de984be6fdca | from sympy.core import Function, S, Mul, Pow, Add
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.function import expand_func
from sympy.core.symbol import Dummy
from sympy.functions import gamma, sqrt, sin
from sympy.polys import factor, cancel
from sympy.utilities.iterables import sift, uniq
def gammasimp(expr):
r"""
Simplify expressions with gamma functions.
Explanation
===========
This function takes as input an expression containing gamma
functions or functions that can be rewritten in terms of gamma
functions and tries to minimize the number of those functions and
reduce the size of their arguments.
The algorithm works by rewriting all gamma functions as expressions
involving rising factorials (Pochhammer symbols) and applies
recurrence relations and other transformations applicable to rising
factorials, to reduce their arguments, possibly letting the resulting
rising factorial to cancel. Rising factorials with the second argument
being an integer are expanded into polynomial forms and finally all
other rising factorial are rewritten in terms of gamma functions.
Then the following two steps are performed.
1. Reduce the number of gammas by applying the reflection theorem
gamma(x)*gamma(1-x) == pi/sin(pi*x).
2. Reduce the number of gammas by applying the multiplication theorem
gamma(x)*gamma(x+1/n)*...*gamma(x+(n-1)/n) == C*gamma(n*x).
It then reduces the number of prefactors by absorbing them into gammas
where possible and expands gammas with rational argument.
All transformation rules can be found (or were derived from) here:
.. [1] http://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
.. [2] http://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/
Examples
========
>>> from sympy.simplify import gammasimp
>>> from sympy import gamma, Symbol
>>> from sympy.abc import x
>>> n = Symbol('n', integer = True)
>>> gammasimp(gamma(x)/gamma(x - 3))
(x - 3)*(x - 2)*(x - 1)
>>> gammasimp(gamma(n + 3))
gamma(n + 3)
"""
expr = expr.rewrite(gamma)
# compute_ST will be looking for Functions and we don't want
# it looking for non-gamma functions: issue 22606
# so we mask free, non-gamma functions
f = expr.atoms(Function)
# take out gammas
gammas = {i for i in f if isinstance(i, gamma)}
if not gammas:
return expr # avoid side effects like factoring
f -= gammas
# keep only those without bound symbols
f = f & expr.as_dummy().atoms(Function)
if f:
dum, fun, simp = zip(*[
(Dummy(), fi, fi.func(*[
_gammasimp(a, as_comb=False) for a in fi.args]))
for fi in ordered(f)])
d = expr.xreplace(dict(zip(fun, dum)))
return _gammasimp(d, as_comb=False).xreplace(dict(zip(dum, simp)))
return _gammasimp(expr, as_comb=False)
def _gammasimp(expr, as_comb):
"""
Helper function for gammasimp and combsimp.
Explanation
===========
Simplifies expressions written in terms of gamma function. If
as_comb is True, it tries to preserve integer arguments. See
docstring of gammasimp for more information. This was part of
combsimp() in combsimp.py.
"""
expr = expr.replace(gamma,
lambda n: _rf(1, (n - 1).expand()))
if as_comb:
expr = expr.replace(_rf,
lambda a, b: gamma(b + 1))
else:
expr = expr.replace(_rf,
lambda a, b: gamma(a + b)/gamma(a))
def rule_gamma(expr, level=0):
""" Simplify products of gamma functions further. """
if expr.is_Atom:
return expr
def gamma_rat(x):
# helper to simplify ratios of gammas
was = x.count(gamma)
xx = x.replace(gamma, lambda n: _rf(1, (n - 1).expand()
).replace(_rf, lambda a, b: gamma(a + b)/gamma(a)))
if xx.count(gamma) < was:
x = xx
return x
def gamma_factor(x):
# return True if there is a gamma factor in shallow args
if isinstance(x, gamma):
return True
if x.is_Add or x.is_Mul:
return any(gamma_factor(xi) for xi in x.args)
if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
return gamma_factor(x.base)
return False
# recursion step
if level == 0:
expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
level += 1
if not expr.is_Mul:
return expr
# non-commutative step
if level == 1:
args, nc = expr.args_cnc()
if not args:
return expr
if nc:
return rule_gamma(Mul._from_args(args), level + 1)*Mul._from_args(nc)
level += 1
# pure gamma handling, not factor absorption
if level == 2:
T, F = sift(expr.args, gamma_factor, binary=True)
gamma_ind = Mul(*F)
d = Mul(*T)
nd, dd = d.as_numer_denom()
for ipass in range(2):
args = list(ordered(Mul.make_args(nd)))
for i, ni in enumerate(args):
if ni.is_Add:
ni, dd = Add(*[
rule_gamma(gamma_rat(a/dd), level + 1) for a in ni.args]
).as_numer_denom()
args[i] = ni
if not dd.has(gamma):
break
nd = Mul(*args)
if ipass == 0 and not gamma_factor(nd):
break
nd, dd = dd, nd # now process in reversed order
expr = gamma_ind*nd/dd
if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
return expr
level += 1
# iteration until constant
if level == 3:
while True:
was = expr
expr = rule_gamma(expr, 4)
if expr == was:
return expr
numer_gammas = []
denom_gammas = []
numer_others = []
denom_others = []
def explicate(p):
if p is S.One:
return None, []
b, e = p.as_base_exp()
if e.is_Integer:
if isinstance(b, gamma):
return True, [b.args[0]]*e
else:
return False, [b]*e
else:
return False, [p]
newargs = list(ordered(expr.args))
while newargs:
n, d = newargs.pop().as_numer_denom()
isg, l = explicate(n)
if isg:
numer_gammas.extend(l)
elif isg is False:
numer_others.extend(l)
isg, l = explicate(d)
if isg:
denom_gammas.extend(l)
elif isg is False:
denom_others.extend(l)
# =========== level 2 work: pure gamma manipulation =========
if not as_comb:
# Try to reduce the number of gamma factors by applying the
# reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
for gammas, numer, denom in [(
numer_gammas, numer_others, denom_others),
(denom_gammas, denom_others, numer_others)]:
new = []
while gammas:
g1 = gammas.pop()
if g1.is_integer:
new.append(g1)
continue
for i, g2 in enumerate(gammas):
n = g1 + g2 - 1
if not n.is_Integer:
continue
numer.append(S.Pi)
denom.append(sin(S.Pi*g1))
gammas.pop(i)
if n > 0:
for k in range(n):
numer.append(1 - g1 + k)
elif n < 0:
for k in range(-n):
denom.append(-g1 - k)
break
else:
new.append(g1)
# /!\ updating IN PLACE
gammas[:] = new
# Try to reduce the number of gammas by using the duplication
# theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
# 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
# be done with higher argument ratios like gamma(3*x)/gamma(x),
# this would not reduce the number of gammas as in this case.
for ng, dg, no, do in [(numer_gammas, denom_gammas, numer_others,
denom_others),
(denom_gammas, numer_gammas, denom_others,
numer_others)]:
while True:
for x in ng:
for y in dg:
n = x - 2*y
if n.is_Integer:
break
else:
continue
break
else:
break
ng.remove(x)
dg.remove(y)
if n > 0:
for k in range(n):
no.append(2*y + k)
elif n < 0:
for k in range(-n):
do.append(2*y - 1 - k)
ng.append(y + S.Half)
no.append(2**(2*y - 1))
do.append(sqrt(S.Pi))
# Try to reduce the number of gamma factors by applying the
# multiplication theorem (used when n gammas with args differing
# by 1/n mod 1 are encountered).
#
# run of 2 with args differing by 1/2
#
# >>> gammasimp(gamma(x)*gamma(x+S.Half))
# 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
#
# run of 3 args differing by 1/3 (mod 1)
#
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
# 6*3**(-3*x - 1/2)*pi*gamma(3*x)
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
# 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
#
def _run(coeffs):
# find runs in coeffs such that the difference in terms (mod 1)
# of t1, t2, ..., tn is 1/n
u = list(uniq(coeffs))
for i in range(len(u)):
dj = ([((u[j] - u[i]) % 1, j) for j in range(i + 1, len(u))])
for one, j in dj:
if one.p == 1 and one.q != 1:
n = one.q
got = [i]
get = list(range(1, n))
for d, j in dj:
m = n*d
if m.is_Integer and m in get:
get.remove(m)
got.append(j)
if not get:
break
else:
continue
for i, j in enumerate(got):
c = u[j]
coeffs.remove(c)
got[i] = c
return one.q, got[0], got[1:]
def _mult_thm(gammas, numer, denom):
# pull off and analyze the leading coefficient from each gamma arg
# looking for runs in those Rationals
# expr -> coeff + resid -> rats[resid] = coeff
rats = {}
for g in gammas:
c, resid = g.as_coeff_Add()
rats.setdefault(resid, []).append(c)
# look for runs in Rationals for each resid
keys = sorted(rats, key=default_sort_key)
for resid in keys:
coeffs = list(sorted(rats[resid]))
new = []
while True:
run = _run(coeffs)
if run is None:
break
# process the sequence that was found:
# 1) convert all the gamma functions to have the right
# argument (could be off by an integer)
# 2) append the factors corresponding to the theorem
# 3) append the new gamma function
n, ui, other = run
# (1)
for u in other:
con = resid + u - 1
for k in range(int(u - ui)):
numer.append(con - k)
con = n*(resid + ui) # for (2) and (3)
# (2)
numer.append((2*S.Pi)**(S(n - 1)/2)*
n**(S.Half - con))
# (3)
new.append(con)
# restore resid to coeffs
rats[resid] = [resid + c for c in coeffs] + new
# rebuild the gamma arguments
g = []
for resid in keys:
g += rats[resid]
# /!\ updating IN PLACE
gammas[:] = g
for l, numer, denom in [(numer_gammas, numer_others, denom_others),
(denom_gammas, denom_others, numer_others)]:
_mult_thm(l, numer, denom)
# =========== level >= 2 work: factor absorption =========
if level >= 2:
# Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
# and gamma(x)/(x - 1) -> gamma(x - 1)
# This code (in particular repeated calls to find_fuzzy) can be very
# slow.
def find_fuzzy(l, x):
if not l:
return
S1, T1 = compute_ST(x)
for y in l:
S2, T2 = inv[y]
if T1 != T2 or (not S1.intersection(S2) and
(S1 != set() or S2 != set())):
continue
# XXX we want some simplification (e.g. cancel or
# simplify) but no matter what it's slow.
a = len(cancel(x/y).free_symbols)
b = len(x.free_symbols)
c = len(y.free_symbols)
# TODO is there a better heuristic?
if a == 0 and (b > 0 or c > 0):
return y
# We thus try to avoid expensive calls by building the following
# "invariants": For every factor or gamma function argument
# - the set of free symbols S
# - the set of functional components T
# We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
# or S1 == S2 == emptyset)
inv = {}
def compute_ST(expr):
if expr in inv:
return inv[expr]
return (expr.free_symbols, expr.atoms(Function).union(
{e.exp for e in expr.atoms(Pow)}))
def update_ST(expr):
inv[expr] = compute_ST(expr)
for expr in numer_gammas + denom_gammas + numer_others + denom_others:
update_ST(expr)
for gammas, numer, denom in [(
numer_gammas, numer_others, denom_others),
(denom_gammas, denom_others, numer_others)]:
new = []
while gammas:
g = gammas.pop()
cont = True
while cont:
cont = False
y = find_fuzzy(numer, g)
if y is not None:
numer.remove(y)
if y != g:
numer.append(y/g)
update_ST(y/g)
g += 1
cont = True
y = find_fuzzy(denom, g - 1)
if y is not None:
denom.remove(y)
if y != g - 1:
numer.append((g - 1)/y)
update_ST((g - 1)/y)
g -= 1
cont = True
new.append(g)
# /!\ updating IN PLACE
gammas[:] = new
# =========== rebuild expr ==================================
return Mul(*[gamma(g) for g in numer_gammas]) \
/ Mul(*[gamma(g) for g in denom_gammas]) \
* Mul(*numer_others) / Mul(*denom_others)
was = factor(expr)
# (for some reason we cannot use Basic.replace in this case)
expr = rule_gamma(was)
if expr != was:
expr = factor(expr)
expr = expr.replace(gamma,
lambda n: expand_func(gamma(n)) if n.is_Rational else gamma(n))
return expr
class _rf(Function):
@classmethod
def eval(cls, a, b):
if b.is_Integer:
if not b:
return S.One
n = int(b)
if n > 0:
return Mul(*[a + i for i in range(n)])
elif n < 0:
return 1/Mul(*[a - i for i in range(1, -n + 1)])
else:
if b.is_Add:
c, _b = b.as_coeff_Add()
if c.is_Integer:
if c > 0:
return _rf(a, _b)*_rf(a + _b, c)
elif c < 0:
return _rf(a, _b)/_rf(a + _b + c, -c)
if a.is_Add:
c, _a = a.as_coeff_Add()
if c.is_Integer:
if c > 0:
return _rf(_a, b)*_rf(_a + b, c)/_rf(_a, c)
elif c < 0:
return _rf(_a, b)*_rf(_a + c, -c)/_rf(_a + b + c, -c)
|
22c406f453b8ebbf2c23f70cc01c4d6fb791ee9effaa24bd5547a11d953857d4 | """ Tools for doing common subexpression elimination.
"""
from collections import defaultdict
from sympy.core import Basic, Mul, Add, Pow, sympify
from sympy.core.containers import Tuple, OrderedSet
from sympy.core.exprtools import factor_terms
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import symbols, Symbol
from sympy.matrices import (MatrixBase, Matrix, ImmutableMatrix,
SparseMatrix, ImmutableSparseMatrix)
from sympy.matrices.expressions import (MatrixExpr, MatrixSymbol, MatMul,
MatAdd, MatPow)
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.polys.rootoftools import RootOf
from sympy.utilities.iterables import numbered_symbols, sift, \
topological_sort, iterable
from . import cse_opts
# (preprocessor, postprocessor) pairs which are commonly useful. They should
# each take a SymPy expression and return a possibly transformed expression.
# When used in the function ``cse()``, the target expressions will be transformed
# by each of the preprocessor functions in order. After the common
# subexpressions are eliminated, each resulting expression will have the
# postprocessor functions transform them in *reverse* order in order to undo the
# transformation if necessary. This allows the algorithm to operate on
# a representation of the expressions that allows for more optimization
# opportunities.
# ``None`` can be used to specify no transformation for either the preprocessor or
# postprocessor.
basic_optimizations = [(cse_opts.sub_pre, cse_opts.sub_post),
(factor_terms, None)]
# sometimes we want the output in a different format; non-trivial
# transformations can be put here for users
# ===============================================================
def reps_toposort(r):
"""Sort replacements ``r`` so (k1, v1) appears before (k2, v2)
if k2 is in v1's free symbols. This orders items in the
way that cse returns its results (hence, in order to use the
replacements in a substitution option it would make sense
to reverse the order).
Examples
========
>>> from sympy.simplify.cse_main import reps_toposort
>>> from sympy.abc import x, y
>>> from sympy import Eq
>>> for l, r in reps_toposort([(x, y + 1), (y, 2)]):
... print(Eq(l, r))
...
Eq(y, 2)
Eq(x, y + 1)
"""
r = sympify(r)
E = []
for c1, (k1, v1) in enumerate(r):
for c2, (k2, v2) in enumerate(r):
if k1 in v2.free_symbols:
E.append((c1, c2))
return [r[i] for i in topological_sort((range(len(r)), E))]
def cse_separate(r, e):
"""Move expressions that are in the form (symbol, expr) out of the
expressions and sort them into the replacements using the reps_toposort.
Examples
========
>>> from sympy.simplify.cse_main import cse_separate
>>> from sympy.abc import x, y, z
>>> from sympy import cos, exp, cse, Eq, symbols
>>> x0, x1 = symbols('x:2')
>>> eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
>>> cse([eq, Eq(x, z + 1), z - 2], postprocess=cse_separate) in [
... [[(x0, y + 1), (x, z + 1), (x1, x + 1)],
... [x1 + exp(x1/x0) + cos(x0), z - 2]],
... [[(x1, y + 1), (x, z + 1), (x0, x + 1)],
... [x0 + exp(x0/x1) + cos(x1), z - 2]]]
...
True
"""
d = sift(e, lambda w: w.is_Equality and w.lhs.is_Symbol)
r = r + [w.args for w in d[True]]
e = d[False]
return [reps_toposort(r), e]
def cse_release_variables(r, e):
"""
Return tuples giving ``(a, b)`` where ``a`` is a symbol and ``b`` is
either an expression or None. The value of None is used when a
symbol is no longer needed for subsequent expressions.
Use of such output can reduce the memory footprint of lambdified
expressions that contain large, repeated subexpressions.
Examples
========
>>> from sympy import cse
>>> from sympy.simplify.cse_main import cse_release_variables
>>> from sympy.abc import x, y
>>> eqs = [(x + y - 1)**2, x, x + y, (x + y)/(2*x + 1) + (x + y - 1)**2, (2*x + 1)**(x + y)]
>>> defs, rvs = cse_release_variables(*cse(eqs))
>>> for i in defs:
... print(i)
...
(x0, x + y)
(x1, (x0 - 1)**2)
(x2, 2*x + 1)
(_3, x0/x2 + x1)
(_4, x2**x0)
(x2, None)
(_0, x1)
(x1, None)
(_2, x0)
(x0, None)
(_1, x)
>>> print(rvs)
(_0, _1, _2, _3, _4)
"""
if not r:
return r, e
s, p = zip(*r)
esyms = symbols('_:%d' % len(e))
syms = list(esyms)
s = list(s)
in_use = set(s)
p = list(p)
# sort e so those with most sub-expressions appear first
e = [(e[i], syms[i]) for i in range(len(e))]
e, syms = zip(*sorted(e,
key=lambda x: -sum([p[s.index(i)].count_ops()
for i in x[0].free_symbols & in_use])))
syms = list(syms)
p += e
rv = []
i = len(p) - 1
while i >= 0:
_p = p.pop()
c = in_use & _p.free_symbols
if c: # sorting for canonical results
rv.extend([(s, None) for s in sorted(c, key=str)])
if i >= len(r):
rv.append((syms.pop(), _p))
else:
rv.append((s[i], _p))
in_use -= c
i -= 1
rv.reverse()
return rv, esyms
# ====end of cse postprocess idioms===========================
def preprocess_for_cse(expr, optimizations):
""" Preprocess an expression to optimize for common subexpression
elimination.
Parameters
==========
expr : SymPy expression
The target expression to optimize.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs.
Returns
=======
expr : SymPy expression
The transformed expression.
"""
for pre, post in optimizations:
if pre is not None:
expr = pre(expr)
return expr
def postprocess_for_cse(expr, optimizations):
"""Postprocess an expression after common subexpression elimination to
return the expression to canonical SymPy form.
Parameters
==========
expr : SymPy expression
The target expression to transform.
optimizations : list of (callable, callable) pairs, optional
The (preprocessor, postprocessor) pairs. The postprocessors will be
applied in reversed order to undo the effects of the preprocessors
correctly.
Returns
=======
expr : SymPy expression
The transformed expression.
"""
for pre, post in reversed(optimizations):
if post is not None:
expr = post(expr)
return expr
class FuncArgTracker:
"""
A class which manages a mapping from functions to arguments and an inverse
mapping from arguments to functions.
"""
def __init__(self, funcs):
# To minimize the number of symbolic comparisons, all function arguments
# get assigned a value number.
self.value_numbers = {}
self.value_number_to_value = []
# Both of these maps use integer indices for arguments / functions.
self.arg_to_funcset = []
self.func_to_argset = []
for func_i, func in enumerate(funcs):
func_argset = OrderedSet()
for func_arg in func.args:
arg_number = self.get_or_add_value_number(func_arg)
func_argset.add(arg_number)
self.arg_to_funcset[arg_number].add(func_i)
self.func_to_argset.append(func_argset)
def get_args_in_value_order(self, argset):
"""
Return the list of arguments in sorted order according to their value
numbers.
"""
return [self.value_number_to_value[argn] for argn in sorted(argset)]
def get_or_add_value_number(self, value):
"""
Return the value number for the given argument.
"""
nvalues = len(self.value_numbers)
value_number = self.value_numbers.setdefault(value, nvalues)
if value_number == nvalues:
self.value_number_to_value.append(value)
self.arg_to_funcset.append(OrderedSet())
return value_number
def stop_arg_tracking(self, func_i):
"""
Remove the function func_i from the argument to function mapping.
"""
for arg in self.func_to_argset[func_i]:
self.arg_to_funcset[arg].remove(func_i)
def get_common_arg_candidates(self, argset, min_func_i=0):
"""Return a dict whose keys are function numbers. The entries of the dict are
the number of arguments said function has in common with
``argset``. Entries have at least 2 items in common. All keys have
value at least ``min_func_i``.
"""
count_map = defaultdict(lambda: 0)
if not argset:
return count_map
funcsets = [self.arg_to_funcset[arg] for arg in argset]
# As an optimization below, we handle the largest funcset separately from
# the others.
largest_funcset = max(funcsets, key=len)
for funcset in funcsets:
if largest_funcset is funcset:
continue
for func_i in funcset:
if func_i >= min_func_i:
count_map[func_i] += 1
# We pick the smaller of the two containers (count_map, largest_funcset)
# to iterate over to reduce the number of iterations needed.
(smaller_funcs_container,
larger_funcs_container) = sorted(
[largest_funcset, count_map],
key=len)
for func_i in smaller_funcs_container:
# Not already in count_map? It can't possibly be in the output, so
# skip it.
if count_map[func_i] < 1:
continue
if func_i in larger_funcs_container:
count_map[func_i] += 1
return {k: v for k, v in count_map.items() if v >= 2}
def get_subset_candidates(self, argset, restrict_to_funcset=None):
"""
Return a set of functions each of which whose argument list contains
``argset``, optionally filtered only to contain functions in
``restrict_to_funcset``.
"""
iarg = iter(argset)
indices = OrderedSet(
fi for fi in self.arg_to_funcset[next(iarg)])
if restrict_to_funcset is not None:
indices &= restrict_to_funcset
for arg in iarg:
indices &= self.arg_to_funcset[arg]
return indices
def update_func_argset(self, func_i, new_argset):
"""
Update a function with a new set of arguments.
"""
new_args = OrderedSet(new_argset)
old_args = self.func_to_argset[func_i]
for deleted_arg in old_args - new_args:
self.arg_to_funcset[deleted_arg].remove(func_i)
for added_arg in new_args - old_args:
self.arg_to_funcset[added_arg].add(func_i)
self.func_to_argset[func_i].clear()
self.func_to_argset[func_i].update(new_args)
class Unevaluated:
def __init__(self, func, args):
self.func = func
self.args = args
def __str__(self):
return "Uneval<{}>({})".format(
self.func, ", ".join(str(a) for a in self.args))
def as_unevaluated_basic(self):
return self.func(*self.args, evaluate=False)
@property
def free_symbols(self):
return set().union(*[a.free_symbols for a in self.args])
__repr__ = __str__
def match_common_args(func_class, funcs, opt_subs):
"""
Recognize and extract common subexpressions of function arguments within a
set of function calls. For instance, for the following function calls::
x + z + y
sin(x + y)
this will extract a common subexpression of `x + y`::
w = x + y
w + z
sin(w)
The function we work with is assumed to be associative and commutative.
Parameters
==========
func_class: class
The function class (e.g. Add, Mul)
funcs: list of functions
A list of function calls.
opt_subs: dict
A dictionary of substitutions which this function may update.
"""
# Sort to ensure that whole-function subexpressions come before the items
# that use them.
funcs = sorted(funcs, key=lambda f: len(f.args))
arg_tracker = FuncArgTracker(funcs)
changed = OrderedSet()
for i in range(len(funcs)):
common_arg_candidates_counts = arg_tracker.get_common_arg_candidates(
arg_tracker.func_to_argset[i], min_func_i=i + 1)
# Sort the candidates in order of match size.
# This makes us try combining smaller matches first.
common_arg_candidates = OrderedSet(sorted(
common_arg_candidates_counts.keys(),
key=lambda k: (common_arg_candidates_counts[k], k)))
while common_arg_candidates:
j = common_arg_candidates.pop(last=False)
com_args = arg_tracker.func_to_argset[i].intersection(
arg_tracker.func_to_argset[j])
if len(com_args) <= 1:
# This may happen if a set of common arguments was already
# combined in a previous iteration.
continue
# For all sets, replace the common symbols by the function
# over them, to allow recursive matches.
diff_i = arg_tracker.func_to_argset[i].difference(com_args)
if diff_i:
# com_func needs to be unevaluated to allow for recursive matches.
com_func = Unevaluated(
func_class, arg_tracker.get_args_in_value_order(com_args))
com_func_number = arg_tracker.get_or_add_value_number(com_func)
arg_tracker.update_func_argset(i, diff_i | OrderedSet([com_func_number]))
changed.add(i)
else:
# Treat the whole expression as a CSE.
#
# The reason this needs to be done is somewhat subtle. Within
# tree_cse(), to_eliminate only contains expressions that are
# seen more than once. The problem is unevaluated expressions
# do not compare equal to the evaluated equivalent. So
# tree_cse() won't mark funcs[i] as a CSE if we use an
# unevaluated version.
com_func_number = arg_tracker.get_or_add_value_number(funcs[i])
diff_j = arg_tracker.func_to_argset[j].difference(com_args)
arg_tracker.update_func_argset(j, diff_j | OrderedSet([com_func_number]))
changed.add(j)
for k in arg_tracker.get_subset_candidates(
com_args, common_arg_candidates):
diff_k = arg_tracker.func_to_argset[k].difference(com_args)
arg_tracker.update_func_argset(k, diff_k | OrderedSet([com_func_number]))
changed.add(k)
if i in changed:
opt_subs[funcs[i]] = Unevaluated(func_class,
arg_tracker.get_args_in_value_order(arg_tracker.func_to_argset[i]))
arg_tracker.stop_arg_tracking(i)
def opt_cse(exprs, order='canonical'):
"""Find optimization opportunities in Adds, Muls, Pows and negative
coefficient Muls.
Parameters
==========
exprs : list of SymPy expressions
The expressions to optimize.
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. For large
expressions where speed is a concern, use the setting order='none'.
Returns
=======
opt_subs : dictionary of expression substitutions
The expression substitutions which can be useful to optimize CSE.
Examples
========
>>> from sympy.simplify.cse_main import opt_cse
>>> from sympy.abc import x
>>> opt_subs = opt_cse([x**-2])
>>> k, v = list(opt_subs.keys())[0], list(opt_subs.values())[0]
>>> print((k, v.as_unevaluated_basic()))
(x**(-2), 1/(x**2))
"""
opt_subs = {}
adds = OrderedSet()
muls = OrderedSet()
seen_subexp = set()
def _find_opts(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return
if expr.is_Atom or expr.is_Order:
return
if iterable(expr):
list(map(_find_opts, expr))
return
if expr in seen_subexp:
return expr
seen_subexp.add(expr)
list(map(_find_opts, expr.args))
if expr.could_extract_minus_sign():
neg_expr = -expr
if not neg_expr.is_Atom:
opt_subs[expr] = Unevaluated(Mul, (S.NegativeOne, neg_expr))
seen_subexp.add(neg_expr)
expr = neg_expr
if isinstance(expr, (Mul, MatMul)):
muls.add(expr)
elif isinstance(expr, (Add, MatAdd)):
adds.add(expr)
elif isinstance(expr, (Pow, MatPow)):
base, exp = expr.base, expr.exp
if exp.could_extract_minus_sign():
opt_subs[expr] = Unevaluated(Pow, (Pow(base, -exp), -1))
for e in exprs:
if isinstance(e, (Basic, Unevaluated)):
_find_opts(e)
# split muls into commutative
commutative_muls = OrderedSet()
for m in muls:
c, nc = m.args_cnc(cset=False)
if c:
c_mul = m.func(*c)
if nc:
if c_mul == 1:
new_obj = m.func(*nc)
else:
new_obj = m.func(c_mul, m.func(*nc), evaluate=False)
opt_subs[m] = new_obj
if len(c) > 1:
commutative_muls.add(c_mul)
match_common_args(Add, adds, opt_subs)
match_common_args(Mul, commutative_muls, opt_subs)
return opt_subs
def tree_cse(exprs, symbols, opt_subs=None, order='canonical', ignore=()):
"""Perform raw CSE on expression tree, taking opt_subs into account.
Parameters
==========
exprs : list of SymPy expressions
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out.
opt_subs : dictionary of expression substitutions
The expressions to be substituted before any CSE action is performed.
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. For large
expressions where speed is a concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
"""
if opt_subs is None:
opt_subs = {}
## Find repeated sub-expressions
to_eliminate = set()
seen_subexp = set()
excluded_symbols = set()
def _find_repeated(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return
if isinstance(expr, RootOf):
return
if isinstance(expr, Basic) and (
expr.is_Atom or
expr.is_Order or
isinstance(expr, (MatrixSymbol, MatrixElement))):
if expr.is_Symbol:
excluded_symbols.add(expr)
return
if iterable(expr):
args = expr
else:
if expr in seen_subexp:
for ign in ignore:
if ign in expr.free_symbols:
break
else:
to_eliminate.add(expr)
return
seen_subexp.add(expr)
if expr in opt_subs:
expr = opt_subs[expr]
args = expr.args
list(map(_find_repeated, args))
for e in exprs:
if isinstance(e, Basic):
_find_repeated(e)
## Rebuild tree
# Remove symbols from the generator that conflict with names in the expressions.
symbols = (symbol for symbol in symbols if symbol not in excluded_symbols)
replacements = []
subs = {}
def _rebuild(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return expr
if not expr.args:
return expr
if iterable(expr):
new_args = [_rebuild(arg) for arg in expr]
return expr.func(*new_args)
if expr in subs:
return subs[expr]
orig_expr = expr
if expr in opt_subs:
expr = opt_subs[expr]
# If enabled, parse Muls and Adds arguments by order to ensure
# replacement order independent from hashes
if order != 'none':
if isinstance(expr, (Mul, MatMul)):
c, nc = expr.args_cnc()
if c == [1]:
args = nc
else:
args = list(ordered(c)) + nc
elif isinstance(expr, (Add, MatAdd)):
args = list(ordered(expr.args))
else:
args = expr.args
else:
args = expr.args
new_args = list(map(_rebuild, args))
if isinstance(expr, Unevaluated) or new_args != args:
new_expr = expr.func(*new_args)
else:
new_expr = expr
if orig_expr in to_eliminate:
try:
sym = next(symbols)
except StopIteration:
raise ValueError("Symbols iterator ran out of symbols.")
if isinstance(orig_expr, MatrixExpr):
sym = MatrixSymbol(sym.name, orig_expr.rows,
orig_expr.cols)
subs[orig_expr] = sym
replacements.append((sym, new_expr))
return sym
else:
return new_expr
reduced_exprs = []
for e in exprs:
if isinstance(e, Basic):
reduced_e = _rebuild(e)
else:
reduced_e = e
reduced_exprs.append(reduced_e)
return replacements, reduced_exprs
def cse(exprs, symbols=None, optimizations=None, postprocess=None,
order='canonical', ignore=(), list=True):
""" Perform common subexpression elimination on an expression.
Parameters
==========
exprs : list of SymPy expressions, or a single SymPy expression
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out. The ``numbered_symbols`` generator is useful. The default is a
stream of symbols of the form "x0", "x1", etc. This must be an
infinite iterator.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs of external optimization
functions. Optionally 'basic' can be passed for a set of predefined
basic optimizations. Such 'basic' optimizations were used by default
in old implementation, however they can be really slow on larger
expressions. Now, no pre or post optimizations are made by default.
postprocess : a function which accepts the two return values of cse and
returns the desired form of output from cse, e.g. if you want the
replacements reversed the function might be the following lambda:
lambda r, e: return reversed(r), e
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. If set to
'canonical', arguments will be canonically ordered. If set to 'none',
ordering will be faster but dependent on expressions hashes, thus
machine dependent and variable. For large expressions where speed is a
concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
list : bool, (default True)
Returns expression in list or else with same type as input (when False).
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of SymPy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
List of expressions with recursive substitutions:
>>> m = SparseMatrix([x + y, x + y + z])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
[x0],
[x1]])])
Note: the type and mutability of input matrices is retained.
>>> isinstance(_[1][-1], SparseMatrix)
True
The user may disallow substitutions containing certain symbols:
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
The default return value for the reduced expression(s) is a list, even if there is only
one expression. The `list` flag preserves the type of the input in the output:
>>> cse(x)
([], [x])
>>> cse(x, list=False)
([], x)
"""
if not list:
return _cse_homogeneous(exprs,
symbols=symbols, optimizations=optimizations,
postprocess=postprocess, order=order, ignore=ignore)
if isinstance(exprs, (int, float)):
exprs = sympify(exprs)
# Handle the case if just one expression was passed.
if isinstance(exprs, (Basic, MatrixBase)):
exprs = [exprs]
copy = exprs
temp = []
for e in exprs:
if isinstance(e, (Matrix, ImmutableMatrix)):
temp.append(Tuple(*e.flat()))
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
temp.append(Tuple(*e.todok().items()))
else:
temp.append(e)
exprs = temp
del temp
if optimizations is None:
optimizations = []
elif optimizations == 'basic':
optimizations = basic_optimizations
# Preprocess the expressions to give us better optimization opportunities.
reduced_exprs = [preprocess_for_cse(e, optimizations) for e in exprs]
if symbols is None:
symbols = numbered_symbols(cls=Symbol)
else:
# In case we get passed an iterable with an __iter__ method instead of
# an actual iterator.
symbols = iter(symbols)
# Find other optimization opportunities.
opt_subs = opt_cse(reduced_exprs, order)
# Main CSE algorithm.
replacements, reduced_exprs = tree_cse(reduced_exprs, symbols, opt_subs,
order, ignore)
# Postprocess the expressions to return the expressions to canonical form.
exprs = copy
for i, (sym, subtree) in enumerate(replacements):
subtree = postprocess_for_cse(subtree, optimizations)
replacements[i] = (sym, subtree)
reduced_exprs = [postprocess_for_cse(e, optimizations)
for e in reduced_exprs]
# Get the matrices back
for i, e in enumerate(exprs):
if isinstance(e, (Matrix, ImmutableMatrix)):
reduced_exprs[i] = Matrix(e.rows, e.cols, reduced_exprs[i])
if isinstance(e, ImmutableMatrix):
reduced_exprs[i] = reduced_exprs[i].as_immutable()
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
m = SparseMatrix(e.rows, e.cols, {})
for k, v in reduced_exprs[i]:
m[k] = v
if isinstance(e, ImmutableSparseMatrix):
m = m.as_immutable()
reduced_exprs[i] = m
if postprocess is None:
return replacements, reduced_exprs
return postprocess(replacements, reduced_exprs)
def _cse_homogeneous(exprs, **kwargs):
"""
Same as ``cse`` but the ``reduced_exprs`` are returned
with the same type as ``exprs`` or a sympified version of the same.
Parameters
==========
exprs : an Expr, iterable of Expr or dictionary with Expr values
the expressions in which repeated subexpressions will be identified
kwargs : additional arguments for the ``cse`` function
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of SymPy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy.simplify.cse_main import cse
>>> from sympy import cos, Tuple, Matrix
>>> from sympy.abc import x
>>> output = lambda x: type(cse(x, list=False)[1])
>>> output(1)
<class 'sympy.core.numbers.One'>
>>> output('cos(x)')
<class 'str'>
>>> output(cos(x))
cos
>>> output(Tuple(1, x))
<class 'sympy.core.containers.Tuple'>
>>> output(Matrix([[1,0], [0,1]]))
<class 'sympy.matrices.dense.MutableDenseMatrix'>
>>> output([1, x])
<class 'list'>
>>> output((1, x))
<class 'tuple'>
>>> output({1, x})
<class 'set'>
"""
if isinstance(exprs, str):
replacements, reduced_exprs = _cse_homogeneous(
sympify(exprs), **kwargs)
return replacements, repr(reduced_exprs)
if isinstance(exprs, (list, tuple, set)):
replacements, reduced_exprs = cse(exprs, **kwargs)
return replacements, type(exprs)(reduced_exprs)
if isinstance(exprs, dict):
keys = list(exprs.keys()) # In order to guarantee the order of the elements.
replacements, values = cse([exprs[k] for k in keys], **kwargs)
reduced_exprs = dict(zip(keys, values))
return replacements, reduced_exprs
try:
replacements, (reduced_exprs,) = cse(exprs, **kwargs)
except TypeError: # For example 'mpf' objects
return [], exprs
else:
return replacements, reduced_exprs
|
21a74b29aded6e24462031474dfaddb25c3dd19e33bee4af9aefa6802fce22b6 | from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import (conjugate, im, re, sign)
from sympy.functions.elementary.exponential import (exp, log as ln)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, cos, sin, atan2)
from sympy.simplify.trigsimp import trigsimp
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.core.sympify import sympify, _sympify
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_not, fuzzy_or
from mpmath.libmp.libmpf import prec_to_dps
class Quaternion(Expr):
"""Provides basic quaternion operations.
Quaternion objects can be instantiated as Quaternion(a, b, c, d)
as in (a + b*i + c*j + d*k).
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k
Quaternions over complex fields can be defined as :
>>> from sympy import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
References
==========
.. [1] http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
.. [2] https://en.wikipedia.org/wiki/Quaternion
"""
_op_priority = 11.0
is_commutative = False
def __new__(cls, a=0, b=0, c=0, d=0, real_field=True):
a, b, c, d = map(sympify, (a, b, c, d))
if any(i.is_commutative is False for i in [a, b, c, d]):
raise ValueError("arguments have to be commutative")
else:
obj = Expr.__new__(cls, a, b, c, d)
obj._a = a
obj._b = b
obj._c = c
obj._d = d
obj._real_field = real_field
return obj
@property
def a(self):
return self._a
@property
def b(self):
return self._b
@property
def c(self):
return self._c
@property
def d(self):
return self._d
@property
def real_field(self):
return self._real_field
@classmethod
def from_axis_angle(cls, vector, angle):
"""Returns a rotation quaternion given the axis and the angle of rotation.
Parameters
==========
vector : tuple of three numbers
The vector representation of the given axis.
angle : number
The angle by which axis is rotated (in radians).
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the given axis and the angle of rotation.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
"""
(x, y, z) = vector
norm = sqrt(x**2 + y**2 + z**2)
(x, y, z) = (x / norm, y / norm, z / norm)
s = sin(angle * S.Half)
a = cos(angle * S.Half)
b = x * s
c = y * s
d = z * s
# note that this quaternion is already normalized by construction:
# c^2 + (s*x)^2 + (s*y)^2 + (s*z)^2 = c^2 + s^2*(x^2 + y^2 + z^2) = c^2 + s^2 * 1 = c^2 + s^2 = 1
# so, what we return is a normalized quaternion
return cls(a, b, c, d)
@classmethod
def from_rotation_matrix(cls, M):
"""Returns the equivalent quaternion of a matrix. The quaternion will be normalized
only if the matrix is special orthogonal (orthogonal and det(M) = 1).
Parameters
==========
M : Matrix
Input matrix to be converted to equivalent quaternion. M must be special
orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.
Returns
=======
Quaternion
The quaternion equivalent to given matrix.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
>>> q
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
"""
absQ = M.det()**Rational(1, 3)
a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2
b = b * sign(M[2, 1] - M[1, 2])
c = c * sign(M[0, 2] - M[2, 0])
d = d * sign(M[1, 0] - M[0, 1])
return Quaternion(a, b, c, d)
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
return self.add(other)
def __sub__(self, other):
return self.add(other*-1)
def __mul__(self, other):
return self._generic_mul(self, _sympify(other))
def __rmul__(self, other):
return self._generic_mul(_sympify(other), self)
def __pow__(self, p):
return self.pow(p)
def __neg__(self):
return Quaternion(-self._a, -self._b, -self._c, -self.d)
def __truediv__(self, other):
return self * sympify(other)**-1
def __rtruediv__(self, other):
return sympify(other) * self**-1
def _eval_Integral(self, *args):
return self.integrate(*args)
def diff(self, *symbols, **kwargs):
kwargs.setdefault('evaluate', True)
return self.func(*[a.diff(*symbols, **kwargs) for a in self.args])
def add(self, other):
"""Adds quaternions.
Parameters
==========
other : Quaternion
The quaternion to add to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after adding self to other
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
>>> q1 + 5
6 + 2*i + 3*j + 4*k
>>> x = symbols('x', real = True)
>>> q1.add(x)
(x + 1) + 2*i + 3*j + 4*k
Quaternions over complex fields :
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
q1 = self
q2 = sympify(other)
# If q2 is a number or a SymPy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
elif q2.is_commutative:
return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
else:
raise ValueError("Only commutative expressions can be added with a Quaternion.")
return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
+ q2.d)
def mul(self, other):
"""Multiplies quaternions.
Parameters
==========
other : Quaternion or symbol
The quaternion to multiply to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after multiplying self with other
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real = True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
return self._generic_mul(self, _sympify(other))
@staticmethod
def _generic_mul(q1, q2):
"""Generic multiplication.
Parameters
==========
q1 : Quaternion or symbol
q2 : Quaternion or symbol
It is important to note that if neither q1 nor q2 is a Quaternion,
this function simply returns q1 * q2.
Returns
=======
Quaternion
The resultant quaternion after multiplying q1 and q2
Examples
========
>>> from sympy import Quaternion
>>> from sympy import Symbol, S
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> Quaternion._generic_mul(q1, q2)
(-60) + 12*i + 30*j + 24*k
>>> Quaternion._generic_mul(q1, S(2))
2 + 4*i + 6*j + 8*k
>>> x = Symbol('x', real = True)
>>> Quaternion._generic_mul(q1, x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> Quaternion._generic_mul(q3, 2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
# None is a Quaternion:
if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
return q1 * q2
# If q1 is a number or a SymPy expression instead of a quaternion
if not isinstance(q1, Quaternion):
if q2.real_field and q1.is_complex:
return Quaternion(re(q1), im(q1), 0, 0) * q2
elif q1.is_commutative:
return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If q2 is a number or a SymPy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return q1 * Quaternion(re(q2), im(q2), 0, 0)
elif q2.is_commutative:
return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
-q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d)
def _eval_conjugate(self):
"""Returns the conjugate of the quaternion."""
q = self
return Quaternion(q.a, -q.b, -q.c, -q.d)
def norm(self):
"""Returns the norm of the quaternion."""
q = self
# trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
# arise when from_axis_angle is used).
return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))
def normalize(self):
"""Returns the normalized form of the quaternion."""
q = self
return q * (1/q.norm())
def inverse(self):
"""Returns the inverse of the quaternion."""
q = self
if not q.norm():
raise ValueError("Cannot compute inverse for a quaternion with zero norm")
return conjugate(q) * (1/q.norm()**2)
def pow(self, p):
"""Finds the pth power of the quaternion.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
Returns the p-th power of the current quaternion.
Returns the inverse if p = -1.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
"""
p = sympify(p)
q = self
if p == -1:
return q.inverse()
res = 1
if not p.is_Integer:
return NotImplemented
if p < 0:
q, p = q.inverse(), -p
while p > 0:
if p % 2 == 1:
res = q * res
p = p//2
q = q * q
return res
def exp(self):
"""Returns the exponential of q (e^q).
Returns
=======
Quaternion
Exponential of q (e^q).
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
"""
# exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
a = exp(q.a) * cos(vector_norm)
b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
d = exp(q.a) * sin(vector_norm) * q.d / vector_norm
return Quaternion(a, b, c, d)
def _ln(self):
"""Returns the natural logarithm of the quaternion (_ln(q)).
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q._ln()
log(sqrt(30))
+ 2*sqrt(29)*acos(sqrt(30)/30)/29*i
+ 3*sqrt(29)*acos(sqrt(30)/30)/29*j
+ 4*sqrt(29)*acos(sqrt(30)/30)/29*k
"""
# _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
q_norm = q.norm()
a = ln(q_norm)
b = q.b * acos(q.a / q_norm) / vector_norm
c = q.c * acos(q.a / q_norm) / vector_norm
d = q.d * acos(q.a / q_norm) / vector_norm
return Quaternion(a, b, c, d)
def _eval_evalf(self, prec):
"""Returns the floating point approximations (decimal numbers) of the quaternion.
Returns
=======
Quaternion
Floating point approximations of quaternion(self)
Examples
========
>>> from sympy import Quaternion
>>> from sympy import sqrt
>>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
>>> q.evalf()
1.00000000000000
+ 0.707106781186547*i
+ 0.577350269189626*j
+ 0.500000000000000*k
"""
nprec = prec_to_dps(prec)
return Quaternion(*[arg.evalf(n=nprec) for arg in self.args])
def pow_cos_sin(self, p):
"""Computes the pth power in the cos-sin form.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
The p-th power in the cos-sin form.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
"""
# q = ||q||*(cos(a) + u*sin(a))
# q^p = ||q||^p * (cos(p*a) + u*sin(p*a))
q = self
(v, angle) = q.to_axis_angle()
q2 = Quaternion.from_axis_angle(v, p * angle)
return q2 * (q.norm()**p)
def integrate(self, *args):
"""Computes integration of quaternion.
Returns
=======
Quaternion
Integration of the quaternion(self) with the given variable.
Examples
========
Indefinite Integral of quaternion :
>>> from sympy import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate(x)
x + 2*x*i + 3*x*j + 4*x*k
Definite integral of quaternion :
>>> from sympy import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate((x, 1, 5))
4 + 8*i + 12*j + 16*k
"""
# TODO: is this expression correct?
return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
integrate(self.c, *args), integrate(self.d, *args))
@staticmethod
def rotate_point(pin, r):
"""Returns the coordinates of the point pin(a 3 tuple) after rotation.
Parameters
==========
pin : tuple
A 3-element tuple of coordinates of a point which needs to be
rotated.
r : Quaternion or tuple
Axis and angle of rotation.
It's important to note that when r is a tuple, it must be of the form
(axis, angle)
Returns
=======
tuple
The coordinates of the point after rotation.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
"""
if isinstance(r, tuple):
# if r is of the form (vector, angle)
q = Quaternion.from_axis_angle(r[0], r[1])
else:
# if r is a quaternion
q = r.normalize()
pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
return (pout.b, pout.c, pout.d)
def to_axis_angle(self):
"""Returns the axis and angle of rotation of a quaternion
Returns
=======
tuple
Tuple of (axis, angle)
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
"""
q = self
if q.a.is_negative:
q = q * -1
q = q.normalize()
angle = trigsimp(2 * acos(q.a))
# Since quaternion is normalised, q.a is less than 1.
s = sqrt(1 - q.a*q.a)
x = trigsimp(q.b / s)
y = trigsimp(q.c / s)
z = trigsimp(q.d / s)
v = (x, y, z)
t = (v, angle)
return t
def to_rotation_matrix(self, v=None):
"""Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Parameters
==========
v : tuple or None
Default value: None
Returns
=======
tuple
Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix())
Matrix([
[cos(x), -sin(x), 0],
[sin(x), cos(x), 0],
[ 0, 0, 1]])
Generates a 4x4 transformation matrix (used for rotation about a point
other than the origin) if the point(v) is passed as an argument.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix((1, 1, 1)))
Matrix([
[cos(x), -sin(x), 0, sin(x) - cos(x) + 1],
[sin(x), cos(x), 0, -sin(x) - cos(x) + 1],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
"""
q = self
s = q.norm()**-2
m00 = 1 - 2*s*(q.c**2 + q.d**2)
m01 = 2*s*(q.b*q.c - q.d*q.a)
m02 = 2*s*(q.b*q.d + q.c*q.a)
m10 = 2*s*(q.b*q.c + q.d*q.a)
m11 = 1 - 2*s*(q.b**2 + q.d**2)
m12 = 2*s*(q.c*q.d - q.b*q.a)
m20 = 2*s*(q.b*q.d - q.c*q.a)
m21 = 2*s*(q.c*q.d + q.b*q.a)
m22 = 1 - 2*s*(q.b**2 + q.c**2)
if not v:
return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])
else:
(x, y, z) = v
m03 = x - x*m00 - y*m01 - z*m02
m13 = y - x*m10 - y*m11 - z*m12
m23 = z - x*m20 - y*m21 - z*m22
m30 = m31 = m32 = 0
m33 = 1
return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
[m20, m21, m22, m23], [m30, m31, m32, m33]])
def scalar_part(self):
r"""Returns scalar part($\mathbf{S}(q)$) of the quaternion q.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{S}(q) = a$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(4, 8, 13, 12)
>>> q.scalar_part()
4
"""
return self.a
def vector_part(self):
r"""
Returns vector part($\mathbf{V}(q)$) of the quaternion q.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{V}(q) = bi + cj + dk$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.vector_part()
0 + 1*i + 1*j + 1*k
>>> q = Quaternion(4, 8, 13, 12)
>>> q.vector_part()
0 + 8*i + 13*j + 12*k
"""
return Quaternion(0, self.b, self.c, self.d)
def axis(self):
r"""
Returns the axis($\mathbf{Ax}(q)$) of the quaternion.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{Ax}(q)$ i.e., the versor of the vector part of that quaternion
equal to $\mathbf{U}[\mathbf{V}(q)]$.
The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.axis()
0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k
See Also
========
vector_part
"""
axis = self.vector_part().normalize()
return Quaternion(0, axis.b, axis.c, axis.d)
def is_pure(self):
"""
Returns true if the quaternion is pure, false if the quaternion is not pure
or returns none if it is unknown.
Explanation
===========
A pure quaternion (also a vector quaternion) is a quaternion with scalar
part equal to 0.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 8, 13, 12)
>>> q.is_pure()
True
See Also
========
scalar_part
"""
return self.a.is_zero
def is_zero_quaternion(self):
"""
Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion
and None if the value is unknown.
Explanation
===========
A zero quaternion is a quaternion with both scalar part and
vector part equal to 0.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 0, 0, 0)
>>> q.is_zero_quaternion()
False
>>> q = Quaternion(0, 0, 0, 0)
>>> q.is_zero_quaternion()
True
See Also
========
scalar_part
vector_part
"""
return self.norm().is_zero
def angle(self):
r"""
Returns the angle of the quaternion measured in the real-axis plane.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
are real numbers, returns the angle of the quaternion given by
.. math::
angle := atan2(\sqrt{b^2 + c^2 + d^2}, {a})
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 4, 4, 4)
>>> q.angle()
atan(4*sqrt(3))
"""
return atan2(self.vector_part().norm(), self.scalar_part())
def arc_coplanar(self, other):
"""
Returns True if the transformation arcs represented by the input quaternions happen in the same plane.
Explanation
===========
Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel.
The plane of a quaternion is the one normal to its axis.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the planes of the two quaternions are the same, apart from its orientation/sign.
False : if the planes of the two quaternions are not the same, apart from its orientation/sign.
None : if plane of either of the quaternion is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(1, 4, 4, 4)
>>> q2 = Quaternion(3, 8, 8, 8)
>>> Quaternion.arc_coplanar(q1, q2)
True
>>> q1 = Quaternion(2, 8, 13, 12)
>>> Quaternion.arc_coplanar(q1, q2)
False
See Also
========
vector_coplanar
is_pure
"""
if (self.is_zero_quaternion()) or (other.is_zero_quaternion()):
raise ValueError('Neither of the given quaternions can be 0')
return fuzzy_or([(self.axis() - other.axis()).is_zero_quaternion(), (self.axis() + other.axis()).is_zero_quaternion()])
@classmethod
def vector_coplanar(cls, q1, q2, q3):
r"""
Returns True if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar.
Explanation
===========
Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.
Parameters
==========
q1 : a pure Quaternion.
q2 : a pure Quaternion.
q3 : a pure Quaternion.
Returns
=======
True : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar.
False : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are not coplanar.
None : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(0, 4, 4, 4)
>>> q2 = Quaternion(0, 8, 8, 8)
>>> q3 = Quaternion(0, 24, 24, 24)
>>> Quaternion.vector_coplanar(q1, q2, q3)
True
>>> q1 = Quaternion(0, 8, 16, 8)
>>> q2 = Quaternion(0, 8, 3, 12)
>>> Quaternion.vector_coplanar(q1, q2, q3)
False
See Also
========
axis
is_pure
"""
if fuzzy_not(q1.is_pure()) or fuzzy_not(q2.is_pure()) or fuzzy_not(q3.is_pure()):
raise ValueError('The given quaternions must be pure')
M = Matrix([[q1.b, q1.c, q1.d], [q2.b, q2.c, q2.d], [q3.b, q3.c, q3.d]]).det()
return M.is_zero
def parallel(self, other):
"""
Returns True if the two pure quaternions seen as 3D vectors are parallel.
Explanation
===========
Two pure quaternions are called parallel when their vector product is commutative which
implies that the quaternions seen as 3D vectors have same direction.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the two pure quaternions seen as 3D vectors are parallel.
False : if the two pure quaternions seen as 3D vectors are not parallel.
None : if the two pure quaternions seen as 3D vectors are parallel is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.parallel(q1)
True
>>> q1 = Quaternion(0, 8, 13, 12)
>>> q.parallel(q1)
False
"""
if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
raise ValueError('The provided quaternions must be pure')
return (self*other - other*self).is_zero_quaternion()
def orthogonal(self, other):
"""
Returns the orthogonality of two quaternions.
Explanation
===========
Two pure quaternions are called orthogonal when their product is anti-commutative.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the two pure quaternions seen as 3D vectors are orthogonal.
False : if the two pure quaternions seen as 3D vectors are not orthogonal.
None : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.orthogonal(q1)
False
>>> q1 = Quaternion(0, 2, 2, 0)
>>> q = Quaternion(0, 2, -2, 0)
>>> q.orthogonal(q1)
True
"""
if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
raise ValueError('The given quaternions must be pure')
return (self*other + other*self).is_zero_quaternion()
def index_vector(self):
r"""
Returns the index vector of the quaternion.
Explanation
===========
Index vector is given by $\mathbf{T}(q)$ multiplied by $\mathbf{Ax}(q)$ where $\mathbf{Ax}(q)$ is the axis of the quaternion q,
and mod(q) is the $\mathbf{T}(q)$ (magnitude) of the quaternion.
Returns
=======
Quaternion: representing index vector of the provided quaternion.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.index_vector()
0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k
See Also
========
axis
norm
"""
return self.norm() * self.axis()
def mensor(self):
"""
Returns the natural logarithm of the norm(magnitude) of the quaternion.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.mensor()
log(2*sqrt(10))
>>> q.norm()
2*sqrt(10)
See Also
========
norm
"""
return ln(self.norm())
|
e6164b03a923732e7101e6262796c825eb4fb9e1a0d359a577447a5fd6ce03b1 | from typing import Any, Set as tSet
from functools import reduce
from itertools import permutations
from sympy.combinatorics import Permutation
from sympy.core import (
Basic, Expr, Function, diff,
Pow, Mul, Add, Lambda, S, Tuple, Dict
)
from sympy.core.cache import cacheit
from sympy.core.symbol import Symbol, Dummy
from sympy.core.symbol import Str
from sympy.core.sympify import _sympify
from sympy.functions import factorial
from sympy.matrices import ImmutableDenseMatrix as Matrix
from sympy.solvers import solve
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
# TODO you are a bit excessive in the use of Dummies
# TODO dummy point, literal field
# TODO too often one needs to call doit or simplify on the output, check the
# tests and find out why
from sympy.tensor.array import ImmutableDenseNDimArray
class Manifold(Basic):
"""
A mathematical manifold.
Explanation
===========
A manifold is a topological space that locally resembles
Euclidean space near each point [1].
This class does not provide any means to study the topological
characteristics of the manifold that it represents, though.
Parameters
==========
name : str
The name of the manifold.
dim : int
The dimension of the manifold.
Examples
========
>>> from sympy.diffgeom import Manifold
>>> m = Manifold('M', 2)
>>> m
M
>>> m.dim
2
References
==========
.. [1] https://en.wikipedia.org/wiki/Manifold
"""
def __new__(cls, name, dim, **kwargs):
if not isinstance(name, Str):
name = Str(name)
dim = _sympify(dim)
obj = super().__new__(cls, name, dim)
obj.patches = _deprecated_list(
"""
Manifold.patches is deprecated. The Manifold object is now
immutable. Instead use a separate list to keep track of the
patches.
""", [])
return obj
@property
def name(self):
return self.args[0]
@property
def dim(self):
return self.args[1]
class Patch(Basic):
"""
A patch on a manifold.
Explanation
===========
Coordinate patch, or patch in short, is a simply-connected open set around
a point in the manifold [1]. On a manifold one can have many patches that
do not always include the whole manifold. On these patches coordinate
charts can be defined that permit the parameterization of any point on the
patch in terms of a tuple of real numbers (the coordinates).
This class does not provide any means to study the topological
characteristics of the patch that it represents.
Parameters
==========
name : str
The name of the patch.
manifold : Manifold
The manifold on which the patch is defined.
Examples
========
>>> from sympy.diffgeom import Manifold, Patch
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> p
P
>>> p.dim
2
References
==========
.. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry
(2013)
"""
def __new__(cls, name, manifold, **kwargs):
if not isinstance(name, Str):
name = Str(name)
obj = super().__new__(cls, name, manifold)
obj.manifold.patches.append(obj) # deprecated
obj.coord_systems = _deprecated_list(
"""
Patch.coord_systms is deprecated. The Patch class is now
immutable. Instead use a separate list to keep track of coordinate
systems.
""", [])
return obj
@property
def name(self):
return self.args[0]
@property
def manifold(self):
return self.args[1]
@property
def dim(self):
return self.manifold.dim
class CoordSystem(Basic):
"""
A coordinate system defined on the patch.
Explanation
===========
Coordinate system is a system that uses one or more coordinates to uniquely
determine the position of the points or other geometric elements on a
manifold [1].
By passing ``Symbols`` to *symbols* parameter, user can define the name and
assumptions of coordinate symbols of the coordinate system. If not passed,
these symbols are generated automatically and are assumed to be real valued.
By passing *relations* parameter, user can define the tranform relations of
coordinate systems. Inverse transformation and indirect transformation can
be found automatically. If this parameter is not passed, coordinate
transformation cannot be done.
Parameters
==========
name : str
The name of the coordinate system.
patch : Patch
The patch where the coordinate system is defined.
symbols : list of Symbols, optional
Defines the names and assumptions of coordinate symbols.
relations : dict, optional
Key is a tuple of two strings, who are the names of the systems where
the coordinates transform from and transform to.
Value is a tuple of the symbols before transformation and a tuple of
the expressions after transformation.
Examples
========
We define two-dimensional Cartesian coordinate system and polar coordinate
system.
>>> from sympy import symbols, pi, sqrt, atan2, cos, sin
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> x, y = symbols('x y', real=True)
>>> r, theta = symbols('r theta', nonnegative=True)
>>> relation_dict = {
... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))]
... }
>>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict)
>>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict)
``symbols`` property returns ``CoordinateSymbol`` instances. These symbols
are not same with the symbols used to construct the coordinate system.
>>> Car2D
Car2D
>>> Car2D.dim
2
>>> Car2D.symbols
(x, y)
>>> _[0].func
<class 'sympy.diffgeom.diffgeom.CoordinateSymbol'>
``transformation()`` method returns the transformation function from
one coordinate system to another. ``transform()`` method returns the
transformed coordinates.
>>> Car2D.transformation(Pol)
Lambda((x, y), Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]]))
>>> Car2D.transform(Pol)
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> Car2D.transform(Pol, [1, 2])
Matrix([
[sqrt(5)],
[atan(2)]])
``jacobian()`` method returns the Jacobian matrix of coordinate
transformation between two systems. ``jacobian_determinant()`` method
returns the Jacobian determinant of coordinate transformation between two
systems.
>>> Pol.jacobian(Car2D)
Matrix([
[cos(theta), -r*sin(theta)],
[sin(theta), r*cos(theta)]])
>>> Pol.jacobian(Car2D, [1, pi/2])
Matrix([
[0, -1],
[1, 0]])
>>> Car2D.jacobian_determinant(Pol)
1/sqrt(x**2 + y**2)
>>> Car2D.jacobian_determinant(Pol, [1,0])
1
References
==========
.. [1] https://en.wikipedia.org/wiki/Coordinate_system
"""
def __new__(cls, name, patch, symbols=None, relations={}, **kwargs):
if not isinstance(name, Str):
name = Str(name)
# canonicallize the symbols
if symbols is None:
names = kwargs.get('names', None)
if names is None:
symbols = Tuple(
*[Symbol('%s_%s' % (name.name, i), real=True)
for i in range(patch.dim)]
)
else:
sympy_deprecation_warning(
f"""
The 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That
is, replace
CoordSystem(..., names={names})
with
CoordSystem(..., symbols=[{', '.join(["Symbol(" + repr(n) + ", real=True)" for n in names])}])
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
symbols = Tuple(
*[Symbol(n, real=True) for n in names]
)
else:
syms = []
for s in symbols:
if isinstance(s, Symbol):
syms.append(Symbol(s.name, **s._assumptions.generator))
elif isinstance(s, str):
sympy_deprecation_warning(
f"""
Passing a string as the coordinate symbol name to CoordSystem is deprecated.
Pass a Symbol with the appropriate name and assumptions instead.
That is, replace {s} with Symbol({s!r}, real=True).
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
syms.append(Symbol(s, real=True))
symbols = Tuple(*syms)
# canonicallize the relations
rel_temp = {}
for k,v in relations.items():
s1, s2 = k
if not isinstance(s1, Str):
s1 = Str(s1)
if not isinstance(s2, Str):
s2 = Str(s2)
key = Tuple(s1, s2)
# Old version used Lambda as a value.
if isinstance(v, Lambda):
v = (tuple(v.signature), tuple(v.expr))
else:
v = (tuple(v[0]), tuple(v[1]))
rel_temp[key] = v
relations = Dict(rel_temp)
# construct the object
obj = super().__new__(cls, name, patch, symbols, relations)
# Add deprecated attributes
obj.transforms = _deprecated_dict(
"""
CoordSystem.transforms is deprecated. The CoordSystem class is now
immutable. Use the 'relations' keyword argument to the
CoordSystems() constructor to specify relations.
""", {})
obj._names = [str(n) for n in symbols]
obj.patch.coord_systems.append(obj) # deprecated
obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated
obj._dummy = Dummy()
return obj
@property
def name(self):
return self.args[0]
@property
def patch(self):
return self.args[1]
@property
def manifold(self):
return self.patch.manifold
@property
def symbols(self):
return tuple(CoordinateSymbol(self, i, **s._assumptions.generator)
for i,s in enumerate(self.args[2]))
@property
def relations(self):
return self.args[3]
@property
def dim(self):
return self.patch.dim
##########################################################################
# Finding transformation relation
##########################################################################
def transformation(self, sys):
"""
Return coordinate transformation function from *self* to *sys*.
Parameters
==========
sys : CoordSystem
Returns
=======
sympy.Lambda
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.transformation(R2_p)
Lambda((x, y), Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]]))
"""
signature = self.args[2]
key = Tuple(self.name, sys.name)
if self == sys:
expr = Matrix(self.symbols)
elif key in self.relations:
expr = Matrix(self.relations[key][1])
elif key[::-1] in self.relations:
expr = Matrix(self._inverse_transformation(sys, self))
else:
expr = Matrix(self._indirect_transformation(self, sys))
return Lambda(signature, expr)
@staticmethod
def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name):
ret = solve(
[t[0] - t[1] for t in zip(sym2, exprs)],
list(sym1), dict=True)
if len(ret) == 0:
temp = "Cannot solve inverse relation from {} to {}."
raise NotImplementedError(temp.format(sys1_name, sys2_name))
elif len(ret) > 1:
temp = "Obtained multiple inverse relation from {} to {}."
raise ValueError(temp.format(sys1_name, sys2_name))
return ret[0]
@classmethod
def _inverse_transformation(cls, sys1, sys2):
# Find the transformation relation from sys2 to sys1
forward = sys1.transform(sys2)
inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward,
sys1.name, sys2.name)
signature = tuple(sys1.symbols)
return [inv_results[s] for s in signature]
@classmethod
@cacheit
def _indirect_transformation(cls, sys1, sys2):
# Find the transformation relation between two indirectly connected
# coordinate systems
rel = sys1.relations
path = cls._dijkstra(sys1, sys2)
transforms = []
for s1, s2 in zip(path, path[1:]):
if (s1, s2) in rel:
transforms.append(rel[(s1, s2)])
else:
sym2, inv_exprs = rel[(s2, s1)]
sym1 = tuple(Dummy() for i in sym2)
ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1)
ret = tuple(ret[s] for s in sym2)
transforms.append((sym1, ret))
syms = sys1.args[2]
exprs = syms
for newsyms, newexprs in transforms:
exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs)
return exprs
@staticmethod
def _dijkstra(sys1, sys2):
# Use Dijkstra algorithm to find the shortest path between two indirectly-connected
# coordinate systems
# return value is the list of the names of the systems.
relations = sys1.relations
graph = {}
for s1, s2 in relations.keys():
if s1 not in graph:
graph[s1] = {s2}
else:
graph[s1].add(s2)
if s2 not in graph:
graph[s2] = {s1}
else:
graph[s2].add(s1)
path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited
def visit(sys):
path_dict[sys][2] = 1
for newsys in graph[sys]:
distance = path_dict[sys][0] + 1
if path_dict[newsys][0] >= distance or not path_dict[newsys][1]:
path_dict[newsys][0] = distance
path_dict[newsys][1] = [i for i in path_dict[sys][1]]
path_dict[newsys][1].append(sys)
visit(sys1.name)
while True:
min_distance = max(path_dict.values(), key=lambda x:x[0])[0]
newsys = None
for sys, lst in path_dict.items():
if 0 < lst[0] <= min_distance and not lst[2]:
min_distance = lst[0]
newsys = sys
if newsys is None:
break
visit(newsys)
result = path_dict[sys2.name][1]
result.append(sys2.name)
if result == [sys2.name]:
raise KeyError("Two coordinate systems are not connected.")
return result
def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False):
sympy_deprecation_warning(
"""
The CoordSystem.connect_to() method is deprecated. Instead,
generate a new instance of CoordSystem with the 'relations'
keyword argument (CoordSystem classes are now immutable).
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
from_coords, to_exprs = dummyfy(from_coords, to_exprs)
self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs)
if inverse:
to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs)
if fill_in_gaps:
self._fill_gaps_in_transformations()
@staticmethod
def _inv_transf(from_coords, to_exprs):
# Will be removed when connect_to is removed
inv_from = [i.as_dummy() for i in from_coords]
inv_to = solve(
[t[0] - t[1] for t in zip(inv_from, to_exprs)],
list(from_coords), dict=True)[0]
inv_to = [inv_to[fc] for fc in from_coords]
return Matrix(inv_from), Matrix(inv_to)
@staticmethod
def _fill_gaps_in_transformations():
# Will be removed when connect_to is removed
raise NotImplementedError
##########################################################################
# Coordinate transformations
##########################################################################
def transform(self, sys, coordinates=None):
"""
Return the result of coordinate transformation from *self* to *sys*.
If coordinates are not given, coordinate symbols of *self* are used.
Parameters
==========
sys : CoordSystem
coordinates : Any iterable, optional.
Returns
=======
sympy.ImmutableDenseMatrix containing CoordinateSymbol
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.transform(R2_p)
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> R2_r.transform(R2_p, [0, 1])
Matrix([
[ 1],
[pi/2]])
"""
if coordinates is None:
coordinates = self.symbols
if self != sys:
transf = self.transformation(sys)
coordinates = transf(*coordinates)
else:
coordinates = Matrix(coordinates)
return coordinates
def coord_tuple_transform_to(self, to_sys, coords):
"""Transform ``coords`` to coord system ``to_sys``."""
sympy_deprecation_warning(
"""
The CoordSystem.coord_tuple_transform_to() method is deprecated.
Use the CoordSystem.transform() method instead.
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
coords = Matrix(coords)
if self != to_sys:
with ignore_warnings(SymPyDeprecationWarning):
transf = self.transforms[to_sys]
coords = transf[1].subs(list(zip(transf[0], coords)))
return coords
def jacobian(self, sys, coordinates=None):
"""
Return the jacobian matrix of a transformation on given coordinates.
If coordinates are not given, coordinate symbols of *self* are used.
Parameters
==========
sys : CoordSystem
coordinates : Any iterable, optional.
Returns
=======
sympy.ImmutableDenseMatrix
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_p.jacobian(R2_r)
Matrix([
[cos(theta), -rho*sin(theta)],
[sin(theta), rho*cos(theta)]])
>>> R2_p.jacobian(R2_r, [1, 0])
Matrix([
[1, 0],
[0, 1]])
"""
result = self.transform(sys).jacobian(self.symbols)
if coordinates is not None:
result = result.subs(list(zip(self.symbols, coordinates)))
return result
jacobian_matrix = jacobian
def jacobian_determinant(self, sys, coordinates=None):
"""
Return the jacobian determinant of a transformation on given
coordinates. If coordinates are not given, coordinate symbols of *self*
are used.
Parameters
==========
sys : CoordSystem
coordinates : Any iterable, optional.
Returns
=======
sympy.Expr
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.jacobian_determinant(R2_p)
1/sqrt(x**2 + y**2)
>>> R2_r.jacobian_determinant(R2_p, [1, 0])
1
"""
return self.jacobian(sys, coordinates).det()
##########################################################################
# Points
##########################################################################
def point(self, coords):
"""Create a ``Point`` with coordinates given in this coord system."""
return Point(self, coords)
def point_to_coords(self, point):
"""Calculate the coordinates of a point in this coord system."""
return point.coords(self)
##########################################################################
# Base fields.
##########################################################################
def base_scalar(self, coord_index):
"""Return ``BaseScalarField`` that takes a point and returns one of the coordinates."""
return BaseScalarField(self, coord_index)
coord_function = base_scalar
def base_scalars(self):
"""Returns a list of all coordinate functions.
For more details see the ``base_scalar`` method of this class."""
return [self.base_scalar(i) for i in range(self.dim)]
coord_functions = base_scalars
def base_vector(self, coord_index):
"""Return a basis vector field.
The basis vector field for this coordinate system. It is also an
operator on scalar fields."""
return BaseVectorField(self, coord_index)
def base_vectors(self):
"""Returns a list of all base vectors.
For more details see the ``base_vector`` method of this class."""
return [self.base_vector(i) for i in range(self.dim)]
def base_oneform(self, coord_index):
"""Return a basis 1-form field.
The basis one-form field for this coordinate system. It is also an
operator on vector fields."""
return Differential(self.coord_function(coord_index))
def base_oneforms(self):
"""Returns a list of all base oneforms.
For more details see the ``base_oneform`` method of this class."""
return [self.base_oneform(i) for i in range(self.dim)]
class CoordinateSymbol(Symbol):
"""A symbol which denotes an abstract value of i-th coordinate of
the coordinate system with given context.
Explanation
===========
Each coordinates in coordinate system are represented by unique symbol,
such as x, y, z in Cartesian coordinate system.
You may not construct this class directly. Instead, use `symbols` method
of CoordSystem.
Parameters
==========
coord_sys : CoordSystem
index : integer
Examples
========
>>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> x, y = symbols('x y', real=True)
>>> r, theta = symbols('r theta', nonnegative=True)
>>> relation_dict = {
... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, x)])),
... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), r*sin(theta)]))
... }
>>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict)
>>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict)
>>> x, y = Car2D.symbols
``CoordinateSymbol`` contains its coordinate symbol and index.
>>> x.name
'x'
>>> x.coord_sys == Car2D
True
>>> x.index
0
>>> x.is_real
True
You can transform ``CoordinateSymbol`` into other coordinate system using
``rewrite()`` method.
>>> x.rewrite(Pol)
r*cos(theta)
>>> sqrt(x**2 + y**2).rewrite(Pol).simplify()
r
"""
def __new__(cls, coord_sys, index, **assumptions):
name = coord_sys.args[2][index].name
obj = super().__new__(cls, name, **assumptions)
obj.coord_sys = coord_sys
obj.index = index
return obj
def __getnewargs__(self):
return (self.coord_sys, self.index)
def _hashable_content(self):
return (
self.coord_sys, self.index
) + tuple(sorted(self.assumptions0.items()))
def _eval_rewrite(self, rule, args, **hints):
if isinstance(rule, CoordSystem):
return rule.transform(self.coord_sys)[self.index]
return super()._eval_rewrite(rule, args, **hints)
class Point(Basic):
"""Point defined in a coordinate system.
Explanation
===========
Mathematically, point is defined in the manifold and does not have any coordinates
by itself. Coordinate system is what imbues the coordinates to the point by coordinate
chart. However, due to the difficulty of realizing such logic, you must supply
a coordinate system and coordinates to define a Point here.
The usage of this object after its definition is independent of the
coordinate system that was used in order to define it, however due to
limitations in the simplification routines you can arrive at complicated
expressions if you use inappropriate coordinate systems.
Parameters
==========
coord_sys : CoordSystem
coords : list
The coordinates of the point.
Examples
========
>>> from sympy import pi
>>> from sympy.diffgeom import Point
>>> from sympy.diffgeom.rn import R2, R2_r, R2_p
>>> rho, theta = R2_p.symbols
>>> p = Point(R2_p, [rho, 3*pi/4])
>>> p.manifold == R2
True
>>> p.coords()
Matrix([
[ rho],
[3*pi/4]])
>>> p.coords(R2_r)
Matrix([
[-sqrt(2)*rho/2],
[ sqrt(2)*rho/2]])
"""
def __new__(cls, coord_sys, coords, **kwargs):
coords = Matrix(coords)
obj = super().__new__(cls, coord_sys, coords)
obj._coord_sys = coord_sys
obj._coords = coords
return obj
@property
def patch(self):
return self._coord_sys.patch
@property
def manifold(self):
return self._coord_sys.manifold
@property
def dim(self):
return self.manifold.dim
def coords(self, sys=None):
"""
Coordinates of the point in given coordinate system. If coordinate system
is not passed, it returns the coordinates in the coordinate system in which
the poin was defined.
"""
if sys is None:
return self._coords
else:
return self._coord_sys.transform(sys, self._coords)
@property
def free_symbols(self):
return self._coords.free_symbols
class BaseScalarField(Expr):
"""Base scalar field over a manifold for a given coordinate system.
Explanation
===========
A scalar field takes a point as an argument and returns a scalar.
A base scalar field of a coordinate system takes a point and returns one of
the coordinates of that point in the coordinate system in question.
To define a scalar field you need to choose the coordinate system and the
index of the coordinate.
The use of the scalar field after its definition is independent of the
coordinate system in which it was defined, however due to limitations in
the simplification routines you may arrive at more complicated
expression if you use unappropriate coordinate systems.
You can build complicated scalar fields by just building up SymPy
expressions containing ``BaseScalarField`` instances.
Parameters
==========
coord_sys : CoordSystem
index : integer
Examples
========
>>> from sympy import Function, pi
>>> from sympy.diffgeom import BaseScalarField
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> rho, _ = R2_p.symbols
>>> point = R2_p.point([rho, 0])
>>> fx, fy = R2_r.base_scalars()
>>> ftheta = BaseScalarField(R2_r, 1)
>>> fx(point)
rho
>>> fy(point)
0
>>> (fx**2+fy**2).rcall(point)
rho**2
>>> g = Function('g')
>>> fg = g(ftheta-pi)
>>> fg.rcall(point)
g(-pi)
"""
is_commutative = True
def __new__(cls, coord_sys, index, **kwargs):
index = _sympify(index)
obj = super().__new__(cls, coord_sys, index)
obj._coord_sys = coord_sys
obj._index = index
return obj
@property
def coord_sys(self):
return self.args[0]
@property
def index(self):
return self.args[1]
@property
def patch(self):
return self.coord_sys.patch
@property
def manifold(self):
return self.coord_sys.manifold
@property
def dim(self):
return self.manifold.dim
def __call__(self, *args):
"""Evaluating the field at a point or doing nothing.
If the argument is a ``Point`` instance, the field is evaluated at that
point. The field is returned itself if the argument is any other
object. It is so in order to have working recursive calling mechanics
for all fields (check the ``__call__`` method of ``Expr``).
"""
point = args[0]
if len(args) != 1 or not isinstance(point, Point):
return self
coords = point.coords(self._coord_sys)
# XXX Calling doit is necessary with all the Subs expressions
# XXX Calling simplify is necessary with all the trig expressions
return simplify(coords[self._index]).doit()
# XXX Workaround for limitations on the content of args
free_symbols = set() # type: tSet[Any]
class BaseVectorField(Expr):
r"""Base vector field over a manifold for a given coordinate system.
Explanation
===========
A vector field is an operator taking a scalar field and returning a
directional derivative (which is also a scalar field).
A base vector field is the same type of operator, however the derivation is
specifically done with respect to a chosen coordinate.
To define a base vector field you need to choose the coordinate system and
the index of the coordinate.
The use of the vector field after its definition is independent of the
coordinate system in which it was defined, however due to limitations in the
simplification routines you may arrive at more complicated expression if you
use unappropriate coordinate systems.
Parameters
==========
coord_sys : CoordSystem
index : integer
Examples
========
>>> from sympy import Function
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import BaseVectorField
>>> from sympy import pprint
>>> x, y = R2_r.symbols
>>> rho, theta = R2_p.symbols
>>> fx, fy = R2_r.base_scalars()
>>> point_p = R2_p.point([rho, theta])
>>> point_r = R2_r.point([x, y])
>>> g = Function('g')
>>> s_field = g(fx, fy)
>>> v = BaseVectorField(R2_r, 1)
>>> pprint(v(s_field))
/ d \|
|---(g(x, xi))||
\dxi /|xi=y
>>> pprint(v(s_field).rcall(point_r).doit())
d
--(g(x, y))
dy
>>> pprint(v(s_field).rcall(point_p))
/ d \|
|---(g(rho*cos(theta), xi))||
\dxi /|xi=rho*sin(theta)
"""
is_commutative = False
def __new__(cls, coord_sys, index, **kwargs):
index = _sympify(index)
obj = super().__new__(cls, coord_sys, index)
obj._coord_sys = coord_sys
obj._index = index
return obj
@property
def coord_sys(self):
return self.args[0]
@property
def index(self):
return self.args[1]
@property
def patch(self):
return self.coord_sys.patch
@property
def manifold(self):
return self.coord_sys.manifold
@property
def dim(self):
return self.manifold.dim
def __call__(self, scalar_field):
"""Apply on a scalar field.
The action of a vector field on a scalar field is a directional
differentiation.
If the argument is not a scalar field an error is raised.
"""
if covariant_order(scalar_field) or contravariant_order(scalar_field):
raise ValueError('Only scalar fields can be supplied as arguments to vector fields.')
if scalar_field is None:
return self
base_scalars = list(scalar_field.atoms(BaseScalarField))
# First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r)
d_var = self._coord_sys._dummy
# TODO: you need a real dummy function for the next line
d_funcs = [Function('_#_%s' % i)(d_var) for i,
b in enumerate(base_scalars)]
d_result = scalar_field.subs(list(zip(base_scalars, d_funcs)))
d_result = d_result.diff(d_var)
# Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y))
coords = self._coord_sys.symbols
d_funcs_deriv = [f.diff(d_var) for f in d_funcs]
d_funcs_deriv_sub = []
for b in base_scalars:
jac = self._coord_sys.jacobian(b._coord_sys, coords)
d_funcs_deriv_sub.append(jac[b._index, self._index])
d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub)))
# Remove the dummies
result = d_result.subs(list(zip(d_funcs, base_scalars)))
result = result.subs(list(zip(coords, self._coord_sys.coord_functions())))
return result.doit()
def _find_coords(expr):
# Finds CoordinateSystems existing in expr
fields = expr.atoms(BaseScalarField, BaseVectorField)
result = set()
for f in fields:
result.add(f._coord_sys)
return result
class Commutator(Expr):
r"""Commutator of two vector fields.
Explanation
===========
The commutator of two vector fields `v_1` and `v_2` is defined as the
vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal
to `v_1(v_2(f)) - v_2(v_1(f))`.
Examples
========
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import Commutator
>>> from sympy import simplify
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> e_r = R2_p.base_vector(0)
>>> c_xy = Commutator(e_x, e_y)
>>> c_xr = Commutator(e_x, e_r)
>>> c_xy
0
Unfortunately, the current code is not able to compute everything:
>>> c_xr
Commutator(e_x, e_rho)
>>> simplify(c_xr(fy**2))
-2*cos(theta)*y**2/(x**2 + y**2)
"""
def __new__(cls, v1, v2):
if (covariant_order(v1) or contravariant_order(v1) != 1
or covariant_order(v2) or contravariant_order(v2) != 1):
raise ValueError(
'Only commutators of vector fields are supported.')
if v1 == v2:
return S.Zero
coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)])
if len(coord_sys) == 1:
# Only one coordinate systems is used, hence it is easy enough to
# actually evaluate the commutator.
if all(isinstance(v, BaseVectorField) for v in (v1, v2)):
return S.Zero
bases_1, bases_2 = [list(v.atoms(BaseVectorField))
for v in (v1, v2)]
coeffs_1 = [v1.expand().coeff(b) for b in bases_1]
coeffs_2 = [v2.expand().coeff(b) for b in bases_2]
res = 0
for c1, b1 in zip(coeffs_1, bases_1):
for c2, b2 in zip(coeffs_2, bases_2):
res += c1*b1(c2)*b2 - c2*b2(c1)*b1
return res
else:
obj = super().__new__(cls, v1, v2)
obj._v1 = v1 # deprecated assignment
obj._v2 = v2 # deprecated assignment
return obj
@property
def v1(self):
return self.args[0]
@property
def v2(self):
return self.args[1]
def __call__(self, scalar_field):
"""Apply on a scalar field.
If the argument is not a scalar field an error is raised.
"""
return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field))
class Differential(Expr):
r"""Return the differential (exterior derivative) of a form field.
Explanation
===========
The differential of a form (i.e. the exterior derivative) has a complicated
definition in the general case.
The differential `df` of the 0-form `f` is defined for any vector field `v`
as `df(v) = v(f)`.
Examples
========
>>> from sympy import Function
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import Differential
>>> from sympy import pprint
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> g = Function('g')
>>> s_field = g(fx, fy)
>>> dg = Differential(s_field)
>>> dg
d(g(x, y))
>>> pprint(dg(e_x))
/ d \|
|---(g(xi, y))||
\dxi /|xi=x
>>> pprint(dg(e_y))
/ d \|
|---(g(x, xi))||
\dxi /|xi=y
Applying the exterior derivative operator twice always results in:
>>> Differential(dg)
0
"""
is_commutative = False
def __new__(cls, form_field):
if contravariant_order(form_field):
raise ValueError(
'A vector field was supplied as an argument to Differential.')
if isinstance(form_field, Differential):
return S.Zero
else:
obj = super().__new__(cls, form_field)
obj._form_field = form_field # deprecated assignment
return obj
@property
def form_field(self):
return self.args[0]
def __call__(self, *vector_fields):
"""Apply on a list of vector_fields.
Explanation
===========
If the number of vector fields supplied is not equal to 1 + the order of
the form field inside the differential the result is undefined.
For 1-forms (i.e. differentials of scalar fields) the evaluation is
done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector
field, the differential is returned unchanged. This is done in order to
permit partial contractions for higher forms.
In the general case the evaluation is done by applying the form field
inside the differential on a list with one less elements than the number
of elements in the original list. Lowering the number of vector fields
is achieved through replacing each pair of fields by their
commutator.
If the arguments are not vectors or ``None``s an error is raised.
"""
if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None
for a in vector_fields):
raise ValueError('The arguments supplied to Differential should be vector fields or Nones.')
k = len(vector_fields)
if k == 1:
if vector_fields[0]:
return vector_fields[0].rcall(self._form_field)
return self
else:
# For higher form it is more complicated:
# Invariant formula:
# https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula
# df(v1, ... vn) = +/- vi(f(v1..no i..vn))
# +/- f([vi,vj],v1..no i, no j..vn)
f = self._form_field
v = vector_fields
ret = 0
for i in range(k):
t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:]))
ret += (-1)**i*t
for j in range(i + 1, k):
c = Commutator(v[i], v[j])
if c: # TODO this is ugly - the Commutator can be Zero and
# this causes the next line to fail
t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:])
ret += (-1)**(i + j)*t
return ret
class TensorProduct(Expr):
"""Tensor product of forms.
Explanation
===========
The tensor product permits the creation of multilinear functionals (i.e.
higher order tensors) out of lower order fields (e.g. 1-forms and vector
fields). However, the higher tensors thus created lack the interesting
features provided by the other type of product, the wedge product, namely
they are not antisymmetric and hence are not form fields.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> TensorProduct(dx, dy)(e_x, e_y)
1
>>> TensorProduct(dx, dy)(e_y, e_x)
0
>>> TensorProduct(dx, fx*dy)(fx*e_x, e_y)
x**2
>>> TensorProduct(e_x, e_y)(fx**2, fy**2)
4*x*y
>>> TensorProduct(e_y, dx)(fy)
dx
You can nest tensor products.
>>> tp1 = TensorProduct(dx, dy)
>>> TensorProduct(tp1, dx)(e_x, e_y, e_x)
1
You can make partial contraction for instance when 'raising an index'.
Putting ``None`` in the second argument of ``rcall`` means that the
respective position in the tensor product is left as it is.
>>> TP = TensorProduct
>>> metric = TP(dx, dx) + 3*TP(dy, dy)
>>> metric.rcall(e_y, None)
3*dy
Or automatically pad the args with ``None`` without specifying them.
>>> metric.rcall(e_y)
3*dy
"""
def __new__(cls, *args):
scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0])
multifields = [m for m in args if covariant_order(m) + contravariant_order(m)]
if multifields:
if len(multifields) == 1:
return scalar*multifields[0]
return scalar*super().__new__(cls, *multifields)
else:
return scalar
def __call__(self, *fields):
"""Apply on a list of fields.
If the number of input fields supplied is not equal to the order of
the tensor product field, the list of arguments is padded with ``None``'s.
The list of arguments is divided in sublists depending on the order of
the forms inside the tensor product. The sublists are provided as
arguments to these forms and the resulting expressions are given to the
constructor of ``TensorProduct``.
"""
tot_order = covariant_order(self) + contravariant_order(self)
tot_args = len(fields)
if tot_args != tot_order:
fields = list(fields) + [None]*(tot_order - tot_args)
orders = [covariant_order(f) + contravariant_order(f) for f in self._args]
indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)]
fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])]
multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)]
return TensorProduct(*multipliers)
class WedgeProduct(TensorProduct):
"""Wedge product of forms.
Explanation
===========
In the context of integration only completely antisymmetric forms make
sense. The wedge product permits the creation of such forms.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import WedgeProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> WedgeProduct(dx, dy)(e_x, e_y)
1
>>> WedgeProduct(dx, dy)(e_y, e_x)
-1
>>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y)
x**2
>>> WedgeProduct(e_x, e_y)(fy, None)
-e_x
You can nest wedge products.
>>> wp1 = WedgeProduct(dx, dy)
>>> WedgeProduct(wp1, dx)(e_x, e_y, e_x)
0
"""
# TODO the calculation of signatures is slow
# TODO you do not need all these permutations (neither the prefactor)
def __call__(self, *fields):
"""Apply on a list of vector_fields.
The expression is rewritten internally in terms of tensor products and evaluated."""
orders = (covariant_order(e) + contravariant_order(e) for e in self.args)
mul = 1/Mul(*(factorial(o) for o in orders))
perms = permutations(fields)
perms_par = (Permutation(
p).signature() for p in permutations(list(range(len(fields)))))
tensor_prod = TensorProduct(*self.args)
return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)])
class LieDerivative(Expr):
"""Lie derivative with respect to a vector field.
Explanation
===========
The transport operator that defines the Lie derivative is the pushforward of
the field to be derived along the integral curve of the field with respect
to which one derives.
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> from sympy.diffgeom import (LieDerivative, TensorProduct)
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> e_rho, e_theta = R2_p.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> LieDerivative(e_x, fy)
0
>>> LieDerivative(e_x, fx)
1
>>> LieDerivative(e_x, e_x)
0
The Lie derivative of a tensor field by another tensor field is equal to
their commutator:
>>> LieDerivative(e_x, e_rho)
Commutator(e_x, e_rho)
>>> LieDerivative(e_x + e_y, fx)
1
>>> tp = TensorProduct(dx, dy)
>>> LieDerivative(e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
>>> LieDerivative(e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
"""
def __new__(cls, v_field, expr):
expr_form_ord = covariant_order(expr)
if contravariant_order(v_field) != 1 or covariant_order(v_field):
raise ValueError('Lie derivatives are defined only with respect to'
' vector fields. The supplied argument was not a '
'vector field.')
if expr_form_ord > 0:
obj = super().__new__(cls, v_field, expr)
# deprecated assignments
obj._v_field = v_field
obj._expr = expr
return obj
if expr.atoms(BaseVectorField):
return Commutator(v_field, expr)
else:
return v_field.rcall(expr)
@property
def v_field(self):
return self.args[0]
@property
def expr(self):
return self.args[1]
def __call__(self, *args):
v = self.v_field
expr = self.expr
lead_term = v(expr(*args))
rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:])
for i in range(len(args))])
return lead_term - rest
class BaseCovarDerivativeOp(Expr):
"""Covariant derivative operator with respect to a base vector.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import BaseCovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
>>> cvd(fx)
1
>>> cvd(fx*e_x)
e_x
"""
def __new__(cls, coord_sys, index, christoffel):
index = _sympify(index)
christoffel = ImmutableDenseNDimArray(christoffel)
obj = super().__new__(cls, coord_sys, index, christoffel)
# deprecated assignments
obj._coord_sys = coord_sys
obj._index = index
obj._christoffel = christoffel
return obj
@property
def coord_sys(self):
return self.args[0]
@property
def index(self):
return self.args[1]
@property
def christoffel(self):
return self.args[2]
def __call__(self, field):
"""Apply on a scalar field.
The action of a vector field on a scalar field is a directional
differentiation.
If the argument is not a scalar field the behaviour is undefined.
"""
if covariant_order(field) != 0:
raise NotImplementedError()
field = vectors_in_basis(field, self._coord_sys)
wrt_vector = self._coord_sys.base_vector(self._index)
wrt_scalar = self._coord_sys.coord_function(self._index)
vectors = list(field.atoms(BaseVectorField))
# First step: replace all vectors with something susceptible to
# derivation and do the derivation
# TODO: you need a real dummy function for the next line
d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i,
b in enumerate(vectors)]
d_result = field.subs(list(zip(vectors, d_funcs)))
d_result = wrt_vector(d_result)
# Second step: backsubstitute the vectors in
d_result = d_result.subs(list(zip(d_funcs, vectors)))
# Third step: evaluate the derivatives of the vectors
derivs = []
for v in vectors:
d = Add(*[(self._christoffel[k, wrt_vector._index, v._index]
*v._coord_sys.base_vector(k))
for k in range(v._coord_sys.dim)])
derivs.append(d)
to_subs = [wrt_vector(d) for d in d_funcs]
# XXX: This substitution can fail when there are Dummy symbols and the
# cache is disabled: https://github.com/sympy/sympy/issues/17794
result = d_result.subs(list(zip(to_subs, derivs)))
# Remove the dummies
result = result.subs(list(zip(d_funcs, vectors)))
return result.doit()
class CovarDerivativeOp(Expr):
"""Covariant derivative operator.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import CovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = CovarDerivativeOp(fx*e_x, ch)
>>> cvd(fx)
x
>>> cvd(fx*e_x)
x*e_x
"""
def __new__(cls, wrt, christoffel):
if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1:
raise NotImplementedError()
if contravariant_order(wrt) != 1 or covariant_order(wrt):
raise ValueError('Covariant derivatives are defined only with '
'respect to vector fields. The supplied argument '
'was not a vector field.')
christoffel = ImmutableDenseNDimArray(christoffel)
obj = super().__new__(cls, wrt, christoffel)
# deprecated assigments
obj._wrt = wrt
obj._christoffel = christoffel
return obj
@property
def wrt(self):
return self.args[0]
@property
def christoffel(self):
return self.args[1]
def __call__(self, field):
vectors = list(self._wrt.atoms(BaseVectorField))
base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel)
for v in vectors]
return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field)
###############################################################################
# Integral curves on vector fields
###############################################################################
def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False):
r"""Return the series expansion for an integral curve of the field.
Explanation
===========
Integral curve is a function `\gamma` taking a parameter in `R` to a point
in the manifold. It verifies the equation:
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
where the given ``vector_field`` is denoted as `V`. This holds for any
value `t` for the parameter and any scalar field `f`.
This equation can also be decomposed of a basis of coordinate functions
`V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i`
This function returns a series expansion of `\gamma(t)` in terms of the
coordinate system ``coord_sys``. The equations and expansions are necessarily
done in coordinate-system-dependent way as there is no other way to
represent movement between points on the manifold (i.e. there is no such
thing as a difference of points for a general manifold).
Parameters
==========
vector_field
the vector field for which an integral curve will be given
param
the argument of the function `\gamma` from R to the curve
start_point
the point which corresponds to `\gamma(0)`
n
the order to which to expand
coord_sys
the coordinate system in which to expand
coeffs (default False) - if True return a list of elements of the expansion
Examples
========
Use the predefined R2 manifold:
>>> from sympy.abc import t, x, y
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import intcurve_series
Specify a starting point and a vector field:
>>> start_point = R2_r.point([x, y])
>>> vector_field = R2_r.e_x
Calculate the series:
>>> intcurve_series(vector_field, t, start_point, n=3)
Matrix([
[t + x],
[ y]])
Or get the elements of the expansion in a list:
>>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
>>> series[0]
Matrix([
[x],
[y]])
>>> series[1]
Matrix([
[t],
[0]])
>>> series[2]
Matrix([
[0],
[0]])
The series in the polar coordinate system:
>>> series = intcurve_series(vector_field, t, start_point,
... n=3, coord_sys=R2_p, coeffs=True)
>>> series[0]
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> series[1]
Matrix([
[t*x/sqrt(x**2 + y**2)],
[ -t*y/(x**2 + y**2)]])
>>> series[2]
Matrix([
[t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
[ t**2*x*y/(x**2 + y**2)**2]])
See Also
========
intcurve_diffequ
"""
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
raise ValueError('The supplied field was not a vector field.')
def iter_vfield(scalar_field, i):
"""Return ``vector_field`` called `i` times on ``scalar_field``."""
return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field)
def taylor_terms_per_coord(coord_function):
"""Return the series for one of the coordinates."""
return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i)
for i in range(n)]
coord_sys = coord_sys if coord_sys else start_point._coord_sys
coord_functions = coord_sys.coord_functions()
taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions]
if coeffs:
return [Matrix(t) for t in zip(*taylor_terms)]
else:
return Matrix([sum(c) for c in taylor_terms])
def intcurve_diffequ(vector_field, param, start_point, coord_sys=None):
r"""Return the differential equation for an integral curve of the field.
Explanation
===========
Integral curve is a function `\gamma` taking a parameter in `R` to a point
in the manifold. It verifies the equation:
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
where the given ``vector_field`` is denoted as `V`. This holds for any
value `t` for the parameter and any scalar field `f`.
This function returns the differential equation of `\gamma(t)` in terms of the
coordinate system ``coord_sys``. The equations and expansions are necessarily
done in coordinate-system-dependent way as there is no other way to
represent movement between points on the manifold (i.e. there is no such
thing as a difference of points for a general manifold).
Parameters
==========
vector_field
the vector field for which an integral curve will be given
param
the argument of the function `\gamma` from R to the curve
start_point
the point which corresponds to `\gamma(0)`
coord_sys
the coordinate system in which to give the equations
Returns
=======
a tuple of (equations, initial conditions)
Examples
========
Use the predefined R2 manifold:
>>> from sympy.abc import t
>>> from sympy.diffgeom.rn import R2, R2_p, R2_r
>>> from sympy.diffgeom import intcurve_diffequ
Specify a starting point and a vector field:
>>> start_point = R2_r.point([0, 1])
>>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
Get the equation:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
>>> equations
[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
>>> init_cond
[f_0(0), f_1(0) - 1]
The series in the polar coordinate system:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
>>> equations
[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
>>> init_cond
[f_0(0) - 1, f_1(0) - pi/2]
See Also
========
intcurve_series
"""
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
raise ValueError('The supplied field was not a vector field.')
coord_sys = coord_sys if coord_sys else start_point._coord_sys
gammas = [Function('f_%d' % i)(param) for i in range(
start_point._coord_sys.dim)]
arbitrary_p = Point(coord_sys, gammas)
coord_functions = coord_sys.coord_functions()
equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p))
for cf in coord_functions]
init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point))
for cf in coord_functions]
return equations, init_cond
###############################################################################
# Helpers
###############################################################################
def dummyfy(args, exprs):
# TODO Is this a good idea?
d_args = Matrix([s.as_dummy() for s in args])
reps = dict(zip(args, d_args))
d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs])
return d_args, d_exprs
###############################################################################
# Helpers
###############################################################################
def contravariant_order(expr, _strict=False):
"""Return the contravariant order of an expression.
Examples
========
>>> from sympy.diffgeom import contravariant_order
>>> from sympy.diffgeom.rn import R2
>>> from sympy.abc import a
>>> contravariant_order(a)
0
>>> contravariant_order(a*R2.x + 2)
0
>>> contravariant_order(a*R2.x*R2.e_y + R2.e_x)
1
"""
# TODO move some of this to class methods.
# TODO rewrite using the .as_blah_blah methods
if isinstance(expr, Add):
orders = [contravariant_order(e) for e in expr.args]
if len(set(orders)) != 1:
raise ValueError('Misformed expression containing contravariant fields of varying order.')
return orders[0]
elif isinstance(expr, Mul):
orders = [contravariant_order(e) for e in expr.args]
not_zero = [o for o in orders if o != 0]
if len(not_zero) > 1:
raise ValueError('Misformed expression containing multiplication between vectors.')
return 0 if not not_zero else not_zero[0]
elif isinstance(expr, Pow):
if covariant_order(expr.base) or covariant_order(expr.exp):
raise ValueError(
'Misformed expression containing a power of a vector.')
return 0
elif isinstance(expr, BaseVectorField):
return 1
elif isinstance(expr, TensorProduct):
return sum(contravariant_order(a) for a in expr.args)
elif not _strict or expr.atoms(BaseScalarField):
return 0
else: # If it does not contain anything related to the diffgeom module and it is _strict
return -1
def covariant_order(expr, _strict=False):
"""Return the covariant order of an expression.
Examples
========
>>> from sympy.diffgeom import covariant_order
>>> from sympy.diffgeom.rn import R2
>>> from sympy.abc import a
>>> covariant_order(a)
0
>>> covariant_order(a*R2.x + 2)
0
>>> covariant_order(a*R2.x*R2.dy + R2.dx)
1
"""
# TODO move some of this to class methods.
# TODO rewrite using the .as_blah_blah methods
if isinstance(expr, Add):
orders = [covariant_order(e) for e in expr.args]
if len(set(orders)) != 1:
raise ValueError('Misformed expression containing form fields of varying order.')
return orders[0]
elif isinstance(expr, Mul):
orders = [covariant_order(e) for e in expr.args]
not_zero = [o for o in orders if o != 0]
if len(not_zero) > 1:
raise ValueError('Misformed expression containing multiplication between forms.')
return 0 if not not_zero else not_zero[0]
elif isinstance(expr, Pow):
if covariant_order(expr.base) or covariant_order(expr.exp):
raise ValueError(
'Misformed expression containing a power of a form.')
return 0
elif isinstance(expr, Differential):
return covariant_order(*expr.args) + 1
elif isinstance(expr, TensorProduct):
return sum(covariant_order(a) for a in expr.args)
elif not _strict or expr.atoms(BaseScalarField):
return 0
else: # If it does not contain anything related to the diffgeom module and it is _strict
return -1
###############################################################################
# Coordinate transformation functions
###############################################################################
def vectors_in_basis(expr, to_sys):
"""Transform all base vectors in base vectors of a specified coord basis.
While the new base vectors are in the new coordinate system basis, any
coefficients are kept in the old system.
Examples
========
>>> from sympy.diffgeom import vectors_in_basis
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> vectors_in_basis(R2_r.e_x, R2_p)
-y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2)
>>> vectors_in_basis(R2_p.e_r, R2_r)
sin(theta)*e_y + cos(theta)*e_x
"""
vectors = list(expr.atoms(BaseVectorField))
new_vectors = []
for v in vectors:
cs = v._coord_sys
jac = cs.jacobian(to_sys, cs.coord_functions())
new = (jac.T*Matrix(to_sys.base_vectors()))[v._index]
new_vectors.append(new)
return expr.subs(list(zip(vectors, new_vectors)))
###############################################################################
# Coordinate-dependent functions
###############################################################################
def twoform_to_matrix(expr):
"""Return the matrix representing the twoform.
For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`,
where `e_i` is the i-th base vector field for the coordinate system in
which the expression of `w` is given.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import twoform_to_matrix, TensorProduct
>>> TP = TensorProduct
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[1, 0],
[0, 1]])
>>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[x, 0],
[0, 1]])
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
Matrix([
[ 1, 0],
[-1/2, 1]])
"""
if covariant_order(expr) != 2 or contravariant_order(expr):
raise ValueError('The input expression is not a two-form.')
coord_sys = _find_coords(expr)
if len(coord_sys) != 1:
raise ValueError('The input expression concerns more than one '
'coordinate systems, hence there is no unambiguous '
'way to choose a coordinate system for the matrix.')
coord_sys = coord_sys.pop()
vectors = coord_sys.base_vectors()
expr = expr.expand()
matrix_content = [[expr.rcall(v1, v2) for v1 in vectors]
for v2 in vectors]
return Matrix(matrix_content)
def metric_to_Christoffel_1st(expr):
"""Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of first kind that represents the
Levi-Civita connection for the given metric.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]
"""
matrix = twoform_to_matrix(expr)
if not matrix.is_symmetric():
raise ValueError(
'The two-form representing the metric is not symmetric.')
coord_sys = _find_coords(expr).pop()
deriv_matrices = [matrix.applyfunc(d) for d in coord_sys.base_vectors()]
indices = list(range(coord_sys.dim))
christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2
for k in indices]
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(christoffel)
def metric_to_Christoffel_2nd(expr):
"""Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of second kind that represents the
Levi-Civita connection for the given metric.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]
"""
ch_1st = metric_to_Christoffel_1st(expr)
coord_sys = _find_coords(expr).pop()
indices = list(range(coord_sys.dim))
# XXX workaround, inverting a matrix does not work if it contains non
# symbols
#matrix = twoform_to_matrix(expr).inv()
matrix = twoform_to_matrix(expr)
s_fields = set()
for e in matrix:
s_fields.update(e.atoms(BaseScalarField))
s_fields = list(s_fields)
dums = coord_sys.symbols
matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields)))
# XXX end of workaround
christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices])
for k in indices]
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(christoffel)
def metric_to_Riemann_components(expr):
"""Return the components of the Riemann tensor expressed in a given basis.
Given a metric it calculates the components of the Riemann tensor in the
canonical basis of the coordinate system in which the metric expression is
given.
Examples
========
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
R2.r**2*TP(R2.dtheta, R2.dtheta)
>>> non_trivial_metric
exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
>>> riemann = metric_to_Riemann_components(non_trivial_metric)
>>> riemann[0, :, :, :]
[[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]]
>>> riemann[1, :, :, :]
[[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]]
"""
ch_2nd = metric_to_Christoffel_2nd(expr)
coord_sys = _find_coords(expr).pop()
indices = list(range(coord_sys.dim))
deriv_ch = [[[[d(ch_2nd[i, j, k])
for d in coord_sys.base_vectors()]
for k in indices]
for j in indices]
for i in indices]
riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu]
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices])
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu]
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
return ImmutableDenseNDimArray(riemann)
def metric_to_Ricci_components(expr):
"""Return the components of the Ricci tensor expressed in a given basis.
Given a metric it calculates the components of the Ricci tensor in the
canonical basis of the coordinate system in which the metric expression is
given.
Examples
========
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[0, 0], [0, 0]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
R2.r**2*TP(R2.dtheta, R2.dtheta)
>>> non_trivial_metric
exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
>>> metric_to_Ricci_components(non_trivial_metric)
[[1/rho, 0], [0, exp(-2*rho)*rho]]
"""
riemann = metric_to_Riemann_components(expr)
coord_sys = _find_coords(expr).pop()
indices = list(range(coord_sys.dim))
ricci = [[Add(*[riemann[k, i, k, j] for k in indices])
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(ricci)
###############################################################################
# Classes for deprecation
###############################################################################
class _deprecated_container:
# This class gives deprecation warning.
# When deprecated features are completely deleted, this should be removed as well.
# See https://github.com/sympy/sympy/pull/19368
def __init__(self, message, data):
super().__init__(data)
self.message = message
def warn(self):
sympy_deprecation_warning(
self.message,
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
stacklevel=4
)
def __iter__(self):
self.warn()
return super().__iter__()
def __getitem__(self, key):
self.warn()
return super().__getitem__(key)
def __contains__(self, key):
self.warn()
return super().__contains__(key)
class _deprecated_list(_deprecated_container, list):
pass
class _deprecated_dict(_deprecated_container, dict):
pass
# Import at end to avoid cyclic imports
from sympy.simplify.simplify import simplify
|
d79cdde67895e1d68b41b155d2bdb7f99da42c945cf75c53c421650a15ee5ea2 | """
The classes used here are for the internal use of assumptions system
only and should not be used anywhere else as these do not possess the
signatures common to SymPy objects. For general use of logic constructs
please refer to sympy.logic classes And, Or, Not, etc.
"""
from itertools import combinations, product, zip_longest
from sympy.assumptions.assume import AppliedPredicate, Predicate
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.core.singleton import S
from sympy.logic.boolalg import Or, And, Not, Xnor
from sympy.logic.boolalg import (Equivalent, ITE, Implies, Nand, Nor, Xor)
class Literal:
"""
The smallest element of a CNF object.
Parameters
==========
lit : Boolean expression
is_Not : bool
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import Literal
>>> from sympy.abc import x
>>> Literal(Q.even(x))
Literal(Q.even(x), False)
>>> Literal(~Q.even(x))
Literal(Q.even(x), True)
"""
def __new__(cls, lit, is_Not=False):
if isinstance(lit, Not):
lit = lit.args[0]
is_Not = True
elif isinstance(lit, (AND, OR, Literal)):
return ~lit if is_Not else lit
obj = super().__new__(cls)
obj.lit = lit
obj.is_Not = is_Not
return obj
@property
def arg(self):
return self.lit
def rcall(self, expr):
if callable(self.lit):
lit = self.lit(expr)
else:
try:
lit = self.lit.apply(expr)
except AttributeError:
lit = self.lit.rcall(expr)
return type(self)(lit, self.is_Not)
def __invert__(self):
is_Not = not self.is_Not
return Literal(self.lit, is_Not)
def __str__(self):
return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not)
__repr__ = __str__
def __eq__(self, other):
return self.arg == other.arg and self.is_Not == other.is_Not
def __hash__(self):
h = hash((type(self).__name__, self.arg, self.is_Not))
return h
class OR:
"""
A low-level implementation for Or
"""
def __init__(self, *args):
self._args = args
@property
def args(self):
return sorted(self._args, key=str)
def rcall(self, expr):
return type(self)(*[arg.rcall(expr)
for arg in self._args
])
def __invert__(self):
return AND(*[~arg for arg in self._args])
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(self, other):
return self.args == other.args
def __str__(self):
s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')'
return s
__repr__ = __str__
class AND:
"""
A low-level implementation for And
"""
def __init__(self, *args):
self._args = args
def __invert__(self):
return OR(*[~arg for arg in self._args])
@property
def args(self):
return sorted(self._args, key=str)
def rcall(self, expr):
return type(self)(*[arg.rcall(expr)
for arg in self._args
])
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(self, other):
return self.args == other.args
def __str__(self):
s = '('+' & '.join([str(arg) for arg in self.args])+')'
return s
__repr__ = __str__
def to_NNF(expr, composite_map=None):
"""
Generates the Negation Normal Form of any boolean expression in terms
of AND, OR, and Literal objects.
Examples
========
>>> from sympy import Q, Eq
>>> from sympy.assumptions.cnf import to_NNF
>>> from sympy.abc import x, y
>>> expr = Q.even(x) & ~Q.positive(x)
>>> to_NNF(expr)
(Literal(Q.even(x), False) & Literal(Q.positive(x), True))
Supported boolean objects are converted to corresponding predicates.
>>> to_NNF(Eq(x, y))
Literal(Q.eq(x, y), False)
If ``composite_map`` argument is given, ``to_NNF`` decomposes the
specified predicate into a combination of primitive predicates.
>>> cmap = {Q.nonpositive: Q.negative | Q.zero}
>>> to_NNF(Q.nonpositive, cmap)
(Literal(Q.negative, False) | Literal(Q.zero, False))
>>> to_NNF(Q.nonpositive(x), cmap)
(Literal(Q.negative(x), False) | Literal(Q.zero(x), False))
"""
from sympy.assumptions.ask import Q
if composite_map is None:
composite_map = {}
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
if type(expr) in binrelpreds:
pred = binrelpreds[type(expr)]
expr = pred(*expr.args)
if isinstance(expr, Not):
arg = expr.args[0]
tmp = to_NNF(arg, composite_map) # Strategy: negate the NNF of expr
return ~tmp
if isinstance(expr, Or):
return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)])
if isinstance(expr, And):
return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)])
if isinstance(expr, Nand):
tmp = AND(*[to_NNF(x, composite_map) for x in expr.args])
return ~tmp
if isinstance(expr, Nor):
tmp = OR(*[to_NNF(x, composite_map) for x in expr.args])
return ~tmp
if isinstance(expr, Xor):
cnfs = []
for i in range(0, len(expr.args) + 1, 2):
for neg in combinations(expr.args, i):
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
for s in expr.args]
cnfs.append(OR(*clause))
return AND(*cnfs)
if isinstance(expr, Xnor):
cnfs = []
for i in range(0, len(expr.args) + 1, 2):
for neg in combinations(expr.args, i):
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
for s in expr.args]
cnfs.append(OR(*clause))
return ~AND(*cnfs)
if isinstance(expr, Implies):
L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map)
return OR(~L, R)
if isinstance(expr, Equivalent):
cnfs = []
for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]):
a = to_NNF(a, composite_map)
b = to_NNF(b, composite_map)
cnfs.append(OR(~a, b))
return AND(*cnfs)
if isinstance(expr, ITE):
L = to_NNF(expr.args[0], composite_map)
M = to_NNF(expr.args[1], composite_map)
R = to_NNF(expr.args[2], composite_map)
return AND(OR(~L, M), OR(L, R))
if isinstance(expr, AppliedPredicate):
pred, args = expr.function, expr.arguments
newpred = composite_map.get(pred, None)
if newpred is not None:
return to_NNF(newpred.rcall(*args), composite_map)
if isinstance(expr, Predicate):
newpred = composite_map.get(expr, None)
if newpred is not None:
return to_NNF(newpred, composite_map)
return Literal(expr)
def distribute_AND_over_OR(expr):
"""
Distributes AND over OR in the NNF expression.
Returns the result( Conjunctive Normal Form of expression)
as a CNF object.
"""
if not isinstance(expr, (AND, OR)):
tmp = set()
tmp.add(frozenset((expr,)))
return CNF(tmp)
if isinstance(expr, OR):
return CNF.all_or(*[distribute_AND_over_OR(arg)
for arg in expr._args])
if isinstance(expr, AND):
return CNF.all_and(*[distribute_AND_over_OR(arg)
for arg in expr._args])
class CNF:
"""
Class to represent CNF of a Boolean expression.
Consists of set of clauses, which themselves are stored as
frozenset of Literal objects.
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.abc import x
>>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x))
>>> cnf.clauses
{frozenset({Literal(Q.zero(x), True)}),
frozenset({Literal(Q.negative(x), False),
Literal(Q.positive(x), False), Literal(Q.zero(x), False)})}
"""
def __init__(self, clauses=None):
if not clauses:
clauses = set()
self.clauses = clauses
def add(self, prop):
clauses = CNF.to_CNF(prop).clauses
self.add_clauses(clauses)
def __str__(self):
s = ' & '.join(
['(' + ' | '.join([str(lit) for lit in clause]) +')'
for clause in self.clauses]
)
return s
def extend(self, props):
for p in props:
self.add(p)
return self
def copy(self):
return CNF(set(self.clauses))
def add_clauses(self, clauses):
self.clauses |= clauses
@classmethod
def from_prop(cls, prop):
res = cls()
res.add(prop)
return res
def __iand__(self, other):
self.add_clauses(other.clauses)
return self
def all_predicates(self):
predicates = set()
for c in self.clauses:
predicates |= {arg.lit for arg in c}
return predicates
def _or(self, cnf):
clauses = set()
for a, b in product(self.clauses, cnf.clauses):
tmp = set(a)
for t in b:
tmp.add(t)
clauses.add(frozenset(tmp))
return CNF(clauses)
def _and(self, cnf):
clauses = self.clauses.union(cnf.clauses)
return CNF(clauses)
def _not(self):
clss = list(self.clauses)
ll = set()
for x in clss[-1]:
ll.add(frozenset((~x,)))
ll = CNF(ll)
for rest in clss[:-1]:
p = set()
for x in rest:
p.add(frozenset((~x,)))
ll = ll._or(CNF(p))
return ll
def rcall(self, expr):
clause_list = list()
for clause in self.clauses:
lits = [arg.rcall(expr) for arg in clause]
clause_list.append(OR(*lits))
expr = AND(*clause_list)
return distribute_AND_over_OR(expr)
@classmethod
def all_or(cls, *cnfs):
b = cnfs[0].copy()
for rest in cnfs[1:]:
b = b._or(rest)
return b
@classmethod
def all_and(cls, *cnfs):
b = cnfs[0].copy()
for rest in cnfs[1:]:
b = b._and(rest)
return b
@classmethod
def to_CNF(cls, expr):
from sympy.assumptions.facts import get_composite_predicates
expr = to_NNF(expr, get_composite_predicates())
expr = distribute_AND_over_OR(expr)
return expr
@classmethod
def CNF_to_cnf(cls, cnf):
"""
Converts CNF object to SymPy's boolean expression
retaining the form of expression.
"""
def remove_literal(arg):
return Not(arg.lit) if arg.is_Not else arg.lit
return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses))
class EncodedCNF:
"""
Class for encoding the CNF expression.
"""
def __init__(self, data=None, encoding=None):
if not data and not encoding:
data = []
encoding = {}
self.data = data
self.encoding = encoding
self._symbols = list(encoding.keys())
def from_cnf(self, cnf):
self._symbols = list(cnf.all_predicates())
n = len(self._symbols)
self.encoding = dict(list(zip(self._symbols, list(range(1, n + 1)))))
self.data = [self.encode(clause) for clause in cnf.clauses]
@property
def symbols(self):
return self._symbols
@property
def variables(self):
return range(1, len(self._symbols) + 1)
def copy(self):
new_data = [set(clause) for clause in self.data]
return EncodedCNF(new_data, dict(self.encoding))
def add_prop(self, prop):
cnf = CNF.from_prop(prop)
self.add_from_cnf(cnf)
def add_from_cnf(self, cnf):
clauses = [self.encode(clause) for clause in cnf.clauses]
self.data += clauses
def encode_arg(self, arg):
literal = arg.lit
value = self.encoding.get(literal, None)
if value is None:
n = len(self._symbols)
self._symbols.append(literal)
value = self.encoding[literal] = n + 1
if arg.is_Not:
return -value
else:
return value
def encode(self, clause):
return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}
|
731d00f2832dc09c962a73fd90ed8a58ac6996fa55c478203c6c0c26f6c7c26b | from sympy.core.add import Add
from sympy.core.exprtools import factor_terms
from sympy.core.function import expand_log, _mexpand
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.miscellaneous import root
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly, factor
from sympy.simplify.simplify import separatevars
from sympy.simplify.radsimp import collect
from sympy.simplify.simplify import powsimp
from sympy.solvers.solvers import solve, _invert
from sympy.utilities.iterables import uniq
def _filtered_gens(poly, symbol):
"""process the generators of ``poly``, returning the set of generators that
have ``symbol``. If there are two generators that are inverses of each other,
prefer the one that has no denominator.
Examples
========
>>> from sympy.solvers.bivariate import _filtered_gens
>>> from sympy import Poly, exp
>>> from sympy.abc import x
>>> _filtered_gens(Poly(x + 1/x + exp(x)), x)
{x, exp(x)}
"""
# TODO it would be good to pick the smallest divisible power
# instead of the base for something like x**4 + x**2 -->
# return x**2 not x
gens = {g for g in poly.gens if symbol in g.free_symbols}
for g in list(gens):
ag = 1/g
if g in gens and ag in gens:
if ag.as_numer_denom()[1] is not S.One:
g = ag
gens.remove(g)
return gens
def _mostfunc(lhs, func, X=None):
"""Returns the term in lhs which contains the most of the
func-type things e.g. log(log(x)) wins over log(x) if both terms appear.
``func`` can be a function (exp, log, etc...) or any other SymPy object,
like Pow.
If ``X`` is not ``None``, then the function returns the term composed with the
most ``func`` having the specified variable.
Examples
========
>>> from sympy.solvers.bivariate import _mostfunc
>>> from sympy import exp
>>> from sympy.abc import x, y
>>> _mostfunc(exp(x) + exp(exp(x) + 2), exp)
exp(exp(x) + 2)
>>> _mostfunc(exp(x) + exp(exp(y) + 2), exp)
exp(exp(y) + 2)
>>> _mostfunc(exp(x) + exp(exp(y) + 2), exp, x)
exp(x)
>>> _mostfunc(x, exp, x) is None
True
>>> _mostfunc(exp(x) + exp(x*y), exp, x)
exp(x)
"""
fterms = [tmp for tmp in lhs.atoms(func) if (not X or
X.is_Symbol and X in tmp.free_symbols or
not X.is_Symbol and tmp.has(X))]
if len(fterms) == 1:
return fterms[0]
elif fterms:
return max(list(ordered(fterms)), key=lambda x: x.count(func))
return None
def _linab(arg, symbol):
"""Return ``a, b, X`` assuming ``arg`` can be written as ``a*X + b``
where ``X`` is a symbol-dependent factor and ``a`` and ``b`` are
independent of ``symbol``.
Examples
========
>>> from sympy.solvers.bivariate import _linab
>>> from sympy.abc import x, y
>>> from sympy import exp, S
>>> _linab(S(2), x)
(2, 0, 1)
>>> _linab(2*x, x)
(2, 0, x)
>>> _linab(y + y*x + 2*x, x)
(y + 2, y, x)
>>> _linab(3 + 2*exp(x), x)
(2, 3, exp(x))
"""
arg = factor_terms(arg.expand())
ind, dep = arg.as_independent(symbol)
if arg.is_Mul and dep.is_Add:
a, b, x = _linab(dep, symbol)
return ind*a, ind*b, x
if not arg.is_Add:
b = 0
a, x = ind, dep
else:
b = ind
a, x = separatevars(dep).as_independent(symbol, as_Add=False)
if x.could_extract_minus_sign():
a = -a
x = -x
return a, b, x
def _lambert(eq, x):
"""
Given an expression assumed to be in the form
``F(X, a..f) = a*log(b*X + c) + d*X + f = 0``
where X = g(x) and x = g^-1(X), return the Lambert solution,
``x = g^-1(-c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(-f/a)))``.
"""
eq = _mexpand(expand_log(eq))
mainlog = _mostfunc(eq, log, x)
if not mainlog:
return [] # violated assumptions
other = eq.subs(mainlog, 0)
if isinstance(-other, log):
eq = (eq - other).subs(mainlog, mainlog.args[0])
mainlog = mainlog.args[0]
if not isinstance(mainlog, log):
return [] # violated assumptions
other = -(-other).args[0]
eq += other
if x not in other.free_symbols:
return [] # violated assumptions
d, f, X2 = _linab(other, x)
logterm = collect(eq - other, mainlog)
a = logterm.as_coefficient(mainlog)
if a is None or x in a.free_symbols:
return [] # violated assumptions
logarg = mainlog.args[0]
b, c, X1 = _linab(logarg, x)
if X1 != X2:
return [] # violated assumptions
# invert the generator X1 so we have x(u)
u = Dummy('rhs')
xusolns = solve(X1 - u, x)
# There are infinitely many branches for LambertW
# but only branches for k = -1 and 0 might be real. The k = 0
# branch is real and the k = -1 branch is real if the LambertW argumen
# in in range [-1/e, 0]. Since `solve` does not return infinite
# solutions we will only include the -1 branch if it tests as real.
# Otherwise, inclusion of any LambertW in the solution indicates to
# the user that there are imaginary solutions corresponding to
# different k values.
lambert_real_branches = [-1, 0]
sol = []
# solution of the given Lambert equation is like
# sol = -c/b + (a/d)*LambertW(arg, k),
# where arg = d/(a*b)*exp((c*d-b*f)/a/b) and k in lambert_real_branches.
# Instead of considering the single arg, `d/(a*b)*exp((c*d-b*f)/a/b)`,
# the individual `p` roots obtained when writing `exp((c*d-b*f)/a/b)`
# as `exp(A/p) = exp(A)**(1/p)`, where `p` is an Integer, are used.
# calculating args for LambertW
num, den = ((c*d-b*f)/a/b).as_numer_denom()
p, den = den.as_coeff_Mul()
e = exp(num/den)
t = Dummy('t')
args = [d/(a*b)*t for t in roots(t**p - e, t).keys()]
# calculating solutions from args
for arg in args:
for k in lambert_real_branches:
w = LambertW(arg, k)
if k and not w.is_real:
continue
rhs = -c/b + (a/d)*w
sol.extend(xu.subs(u, rhs) for xu in xusolns)
return sol
def _solve_lambert(f, symbol, gens):
"""Return solution to ``f`` if it is a Lambert-type expression
else raise NotImplementedError.
For ``f(X, a..f) = a*log(b*X + c) + d*X - f = 0`` the solution
for ``X`` is ``X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))``.
There are a variety of forms for `f(X, a..f)` as enumerated below:
1a1)
if B**B = R for R not in [0, 1] (since those cases would already
be solved before getting here) then log of both sides gives
log(B) + log(log(B)) = log(log(R)) and
X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R))
1a2)
if B*(b*log(B) + c)**a = R then log of both sides gives
log(B) + a*log(b*log(B) + c) = log(R) and
X = log(B), d=1, f=log(R)
1b)
if a*log(b*B + c) + d*B = R and
X = B, f = R
2a)
if (b*B + c)*exp(d*B + g) = R then log of both sides gives
log(b*B + c) + d*B + g = log(R) and
X = B, a = 1, f = log(R) - g
2b)
if g*exp(d*B + h) - b*B = c then the log form is
log(g) + d*B + h - log(b*B + c) = 0 and
X = B, a = -1, f = -h - log(g)
3)
if d*p**(a*B + g) - b*B = c then the log form is
log(d) + (a*B + g)*log(p) - log(b*B + c) = 0 and
X = B, a = -1, d = a*log(p), f = -log(d) - g*log(p)
"""
def _solve_even_degree_expr(expr, t, symbol):
"""Return the unique solutions of equations derived from
``expr`` by replacing ``t`` with ``+/- symbol``.
Parameters
==========
expr : Expr
The expression which includes a dummy variable t to be
replaced with +symbol and -symbol.
symbol : Symbol
The symbol for which a solution is being sought.
Returns
=======
List of unique solution of the two equations generated by
replacing ``t`` with positive and negative ``symbol``.
Notes
=====
If ``expr = 2*log(t) + x/2` then solutions for
``2*log(x) + x/2 = 0`` and ``2*log(-x) + x/2 = 0`` are
returned by this function. Though this may seem
counter-intuitive, one must note that the ``expr`` being
solved here has been derived from a different expression. For
an expression like ``eq = x**2*g(x) = 1``, if we take the
log of both sides we obtain ``log(x**2) + log(g(x)) = 0``. If
x is positive then this simplifies to
``2*log(x) + log(g(x)) = 0``; the Lambert-solving routines will
return solutions for this, but we must also consider the
solutions for ``2*log(-x) + log(g(x))`` since those must also
be a solution of ``eq`` which has the same value when the ``x``
in ``x**2`` is negated. If `g(x)` does not have even powers of
symbol then we do not want to replace the ``x`` there with
``-x``. So the role of the ``t`` in the expression received by
this function is to mark where ``+/-x`` should be inserted
before obtaining the Lambert solutions.
"""
nlhs, plhs = [
expr.xreplace({t: sgn*symbol}) for sgn in (-1, 1)]
sols = _solve_lambert(nlhs, symbol, gens)
if plhs != nlhs:
sols.extend(_solve_lambert(plhs, symbol, gens))
# uniq is needed for a case like
# 2*log(t) - log(-z**2) + log(z + log(x) + log(z))
# where subtituting t with +/-x gives all the same solution;
# uniq, rather than list(set()), is used to maintain canonical
# order
return list(uniq(sols))
nrhs, lhs = f.as_independent(symbol, as_Add=True)
rhs = -nrhs
lamcheck = [tmp for tmp in gens
if (tmp.func in [exp, log] or
(tmp.is_Pow and symbol in tmp.exp.free_symbols))]
if not lamcheck:
raise NotImplementedError()
if lhs.is_Add or lhs.is_Mul:
# replacing all even_degrees of symbol with dummy variable t
# since these will need special handling; non-Add/Mul do not
# need this handling
t = Dummy('t', **symbol.assumptions0)
lhs = lhs.replace(
lambda i: # find symbol**even
i.is_Pow and i.base == symbol and i.exp.is_even,
lambda i: # replace t**even
t**i.exp)
if lhs.is_Add and lhs.has(t):
t_indep = lhs.subs(t, 0)
t_term = lhs - t_indep
_rhs = rhs - t_indep
if not t_term.is_Add and _rhs and not (
t_term.has(S.ComplexInfinity, S.NaN)):
eq = expand_log(log(t_term) - log(_rhs))
return _solve_even_degree_expr(eq, t, symbol)
elif lhs.is_Mul and rhs:
# this needs to happen whether t is present or not
lhs = expand_log(log(lhs), force=True)
rhs = log(rhs)
if lhs.has(t) and lhs.is_Add:
# it expanded from Mul to Add
eq = lhs - rhs
return _solve_even_degree_expr(eq, t, symbol)
# restore symbol in lhs
lhs = lhs.xreplace({t: symbol})
lhs = powsimp(factor(lhs, deep=True))
# make sure we have inverted as completely as possible
r = Dummy()
i, lhs = _invert(lhs - r, symbol)
rhs = i.xreplace({r: rhs})
# For the first forms:
#
# 1a1) B**B = R will arrive here as B*log(B) = log(R)
# lhs is Mul so take log of both sides:
# log(B) + log(log(B)) = log(log(R))
# 1a2) B*(b*log(B) + c)**a = R will arrive unchanged so
# lhs is Mul, so take log of both sides:
# log(B) + a*log(b*log(B) + c) = log(R)
# 1b) d*log(a*B + b) + c*B = R will arrive unchanged so
# lhs is Add, so isolate c*B and expand log of both sides:
# log(c) + log(B) = log(R - d*log(a*B + b))
soln = []
if not soln:
mainlog = _mostfunc(lhs, log, symbol)
if mainlog:
if lhs.is_Mul and rhs != 0:
soln = _lambert(log(lhs) - log(rhs), symbol)
elif lhs.is_Add:
other = lhs.subs(mainlog, 0)
if other and not other.is_Add and [
tmp for tmp in other.atoms(Pow)
if symbol in tmp.free_symbols]:
if not rhs:
diff = log(other) - log(other - lhs)
else:
diff = log(lhs - other) - log(rhs - other)
soln = _lambert(expand_log(diff), symbol)
else:
#it's ready to go
soln = _lambert(lhs - rhs, symbol)
# For the next forms,
#
# collect on main exp
# 2a) (b*B + c)*exp(d*B + g) = R
# lhs is mul, so take log of both sides:
# log(b*B + c) + d*B = log(R) - g
# 2b) g*exp(d*B + h) - b*B = R
# lhs is add, so add b*B to both sides,
# take the log of both sides and rearrange to give
# log(R + b*B) - d*B = log(g) + h
if not soln:
mainexp = _mostfunc(lhs, exp, symbol)
if mainexp:
lhs = collect(lhs, mainexp)
if lhs.is_Mul and rhs != 0:
soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
elif lhs.is_Add:
# move all but mainexp-containing term to rhs
other = lhs.subs(mainexp, 0)
mainterm = lhs - other
rhs = rhs - other
if (mainterm.could_extract_minus_sign() and
rhs.could_extract_minus_sign()):
mainterm *= -1
rhs *= -1
diff = log(mainterm) - log(rhs)
soln = _lambert(expand_log(diff), symbol)
# For the last form:
#
# 3) d*p**(a*B + g) - b*B = c
# collect on main pow, add b*B to both sides,
# take log of both sides and rearrange to give
# a*B*log(p) - log(b*B + c) = -log(d) - g*log(p)
if not soln:
mainpow = _mostfunc(lhs, Pow, symbol)
if mainpow and symbol in mainpow.exp.free_symbols:
lhs = collect(lhs, mainpow)
if lhs.is_Mul and rhs != 0:
# b*B = 0
soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
elif lhs.is_Add:
# move all but mainpow-containing term to rhs
other = lhs.subs(mainpow, 0)
mainterm = lhs - other
rhs = rhs - other
diff = log(mainterm) - log(rhs)
soln = _lambert(expand_log(diff), symbol)
if not soln:
raise NotImplementedError('%s does not appear to have a solution in '
'terms of LambertW' % f)
return list(ordered(soln))
def bivariate_type(f, x, y, *, first=True):
"""Given an expression, f, 3 tests will be done to see what type
of composite bivariate it might be, options for u(x, y) are::
x*y
x+y
x*y+x
x*y+y
If it matches one of these types, ``u(x, y)``, ``P(u)`` and dummy
variable ``u`` will be returned. Solving ``P(u)`` for ``u`` and
equating the solutions to ``u(x, y)`` and then solving for ``x`` or
``y`` is equivalent to solving the original expression for ``x`` or
``y``. If ``x`` and ``y`` represent two functions in the same
variable, e.g. ``x = g(t)`` and ``y = h(t)``, then if ``u(x, y) - p``
can be solved for ``t`` then these represent the solutions to
``P(u) = 0`` when ``p`` are the solutions of ``P(u) = 0``.
Only positive values of ``u`` are considered.
Examples
========
>>> from sympy import solve
>>> from sympy.solvers.bivariate import bivariate_type
>>> from sympy.abc import x, y
>>> eq = (x**2 - 3).subs(x, x + y)
>>> bivariate_type(eq, x, y)
(x + y, _u**2 - 3, _u)
>>> uxy, pu, u = _
>>> usol = solve(pu, u); usol
[sqrt(3)]
>>> [solve(uxy - s) for s in solve(pu, u)]
[[{x: -y + sqrt(3)}]]
>>> all(eq.subs(s).equals(0) for sol in _ for s in sol)
True
"""
u = Dummy('u', positive=True)
if first:
p = Poly(f, x, y)
f = p.as_expr()
_x = Dummy()
_y = Dummy()
rv = bivariate_type(Poly(f.subs({x: _x, y: _y}), _x, _y), _x, _y, first=False)
if rv:
reps = {_x: x, _y: y}
return rv[0].xreplace(reps), rv[1].xreplace(reps), rv[2]
return
p = f
f = p.as_expr()
# f(x*y)
args = Add.make_args(p.as_expr())
new = []
for a in args:
a = _mexpand(a.subs(x, u/y))
free = a.free_symbols
if x in free or y in free:
break
new.append(a)
else:
return x*y, Add(*new), u
def ok(f, v, c):
new = _mexpand(f.subs(v, c))
free = new.free_symbols
return None if (x in free or y in free) else new
# f(a*x + b*y)
new = []
d = p.degree(x)
if p.degree(y) == d:
a = root(p.coeff_monomial(x**d), d)
b = root(p.coeff_monomial(y**d), d)
new = ok(f, x, (u - b*y)/a)
if new is not None:
return a*x + b*y, new, u
# f(a*x*y + b*y)
new = []
d = p.degree(x)
if p.degree(y) == d:
for itry in range(2):
a = root(p.coeff_monomial(x**d*y**d), d)
b = root(p.coeff_monomial(y**d), d)
new = ok(f, x, (u - b*y)/a/y)
if new is not None:
return a*x*y + b*y, new, u
x, y = y, x
|
beefa9eef253f7152e05792df7ad1195e58faae551cfe0a24a783c9f03f40158 | r"""
This module is intended for solving recurrences or, in other words,
difference equations. Currently supported are linear, inhomogeneous
equations with polynomial or rational coefficients.
The solutions are obtained among polynomials, rational functions,
hypergeometric terms, or combinations of hypergeometric term which
are pairwise dissimilar.
``rsolve_X`` functions were meant as a low level interface
for ``rsolve`` which would use Mathematica's syntax.
Given a recurrence relation:
.. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) +
... + a_{0}(n) y(n) = f(n)
where `k > 0` and `a_{i}(n)` are polynomials in `n`. To use
``rsolve_X`` we need to put all coefficients in to a list ``L`` of
`k+1` elements the following way:
``L = [a_{0}(n), ..., a_{k-1}(n), a_{k}(n)]``
where ``L[i]``, for `i=0, \ldots, k`, maps to
`a_{i}(n) y(n+i)` (`y(n+i)` is implicit).
For example if we would like to compute `m`-th Bernoulli polynomial
up to a constant (example was taken from rsolve_poly docstring),
then we would use `b(n+1) - b(n) = m n^{m-1}` recurrence, which
has solution `b(n) = B_m + C`.
Then ``L = [-1, 1]`` and `f(n) = m n^(m-1)` and finally for `m=4`:
>>> from sympy import Symbol, bernoulli, rsolve_poly
>>> n = Symbol('n', integer=True)
>>> rsolve_poly([-1, 1], 4*n**3, n)
C0 + n**4 - 2*n**3 + n**2
>>> bernoulli(4, n)
n**4 - 2*n**3 + n**2 - 1/30
For the sake of completeness, `f(n)` can be:
[1] a polynomial -> rsolve_poly
[2] a rational function -> rsolve_ratio
[3] a hypergeometric function -> rsolve_hyper
"""
from collections import defaultdict
from sympy.concrete import product
from sympy.core.singleton import S
from sympy.core.numbers import Rational, I
from sympy.core.symbol import Symbol, Wild, Dummy
from sympy.core.relational import Equality
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import sympify
from sympy.simplify import simplify, hypersimp, hypersimilar # type: ignore
from sympy.solvers import solve, solve_undetermined_coeffs
from sympy.polys import Poly, quo, gcd, lcm, roots, resultant
from sympy.functions import binomial, factorial, FallingFactorial, RisingFactorial
from sympy.matrices import Matrix, casoratian
from sympy.utilities.iterables import numbered_symbols
def rsolve_poly(coeffs, f, n, shift=0, **hints):
r"""
Given linear recurrence operator `\operatorname{L}` of order
`k` with polynomial coefficients and inhomogeneous equation
`\operatorname{L} y = f`, where `f` is a polynomial, we seek for
all polynomial solutions over field `K` of characteristic zero.
The algorithm performs two basic steps:
(1) Compute degree `N` of the general polynomial solution.
(2) Find all polynomials of degree `N` or less
of `\operatorname{L} y = f`.
There are two methods for computing the polynomial solutions.
If the degree bound is relatively small, i.e. it's smaller than
or equal to the order of the recurrence, then naive method of
undetermined coefficients is being used. This gives system
of algebraic equations with `N+1` unknowns.
In the other case, the algorithm performs transformation of the
initial equation to an equivalent one, for which the system of
algebraic equations has only `r` indeterminates. This method is
quite sophisticated (in comparison with the naive one) and was
invented together by Abramov, Bronstein and Petkovsek.
It is possible to generalize the algorithm implemented here to
the case of linear q-difference and differential equations.
Lets say that we would like to compute `m`-th Bernoulli polynomial
up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}`
recurrence, which has solution `b(n) = B_m + C`. For example:
>>> from sympy import Symbol, rsolve_poly
>>> n = Symbol('n', integer=True)
>>> rsolve_poly([-1, 1], 4*n**3, n)
C0 + n**4 - 2*n**3 + n**2
References
==========
.. [1] S. A. Abramov, M. Bronstein and M. Petkovsek, On polynomial
solutions of linear operator equations, in: T. Levelt, ed.,
Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.
.. [2] M. Petkovsek, Hypergeometric solutions of linear recurrences
with polynomial coefficients, J. Symbolic Computation,
14 (1992), 243-264.
.. [3] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.
"""
f = sympify(f)
if not f.is_polynomial(n):
return None
homogeneous = f.is_zero
r = len(coeffs) - 1
coeffs = [Poly(coeff, n) for coeff in coeffs]
polys = [Poly(0, n)]*(r + 1)
terms = [(S.Zero, S.NegativeInfinity)]*(r + 1)
for i in range(r + 1):
for j in range(i, r + 1):
polys[i] += coeffs[j]*(binomial(j, i).as_poly(n))
if not polys[i].is_zero:
(exp,), coeff = polys[i].LT()
terms[i] = (coeff, exp)
d = b = terms[0][1]
for i in range(1, r + 1):
if terms[i][1] > d:
d = terms[i][1]
if terms[i][1] - i > b:
b = terms[i][1] - i
d, b = int(d), int(b)
x = Dummy('x')
degree_poly = S.Zero
for i in range(r + 1):
if terms[i][1] - i == b:
degree_poly += terms[i][0]*FallingFactorial(x, i)
nni_roots = list(roots(degree_poly, x, filter='Z',
predicate=lambda r: r >= 0).keys())
if nni_roots:
N = [max(nni_roots)]
else:
N = []
if homogeneous:
N += [-b - 1]
else:
N += [f.as_poly(n).degree() - b, -b - 1]
N = int(max(N))
if N < 0:
if homogeneous:
if hints.get('symbols', False):
return (S.Zero, [])
else:
return S.Zero
else:
return None
if N <= r:
C = []
y = E = S.Zero
for i in range(N + 1):
C.append(Symbol('C' + str(i + shift)))
y += C[i] * n**i
for i in range(r + 1):
E += coeffs[i].as_expr()*y.subs(n, n + i)
solutions = solve_undetermined_coeffs(E - f, C, n)
if solutions is not None:
C = [c for c in C if (c not in solutions)]
result = y.subs(solutions)
else:
return None # TBD
else:
A = r
U = N + A + b + 1
nni_roots = list(roots(polys[r], filter='Z',
predicate=lambda r: r >= 0).keys())
if nni_roots != []:
a = max(nni_roots) + 1
else:
a = S.Zero
def _zero_vector(k):
return [S.Zero] * k
def _one_vector(k):
return [S.One] * k
def _delta(p, k):
B = S.One
D = p.subs(n, a + k)
for i in range(1, k + 1):
B *= Rational(i - k - 1, i)
D += B * p.subs(n, a + k - i)
return D
alpha = {}
for i in range(-A, d + 1):
I = _one_vector(d + 1)
for k in range(1, d + 1):
I[k] = I[k - 1] * (x + i - k + 1)/k
alpha[i] = S.Zero
for j in range(A + 1):
for k in range(d + 1):
B = binomial(k, i + j)
D = _delta(polys[j].as_expr(), k)
alpha[i] += I[k]*B*D
V = Matrix(U, A, lambda i, j: int(i == j))
if homogeneous:
for i in range(A, U):
v = _zero_vector(A)
for k in range(1, A + b + 1):
if i - k < 0:
break
B = alpha[k - A].subs(x, i - k)
for j in range(A):
v[j] += B * V[i - k, j]
denom = alpha[-A].subs(x, i)
for j in range(A):
V[i, j] = -v[j] / denom
else:
G = _zero_vector(U)
for i in range(A, U):
v = _zero_vector(A)
g = S.Zero
for k in range(1, A + b + 1):
if i - k < 0:
break
B = alpha[k - A].subs(x, i - k)
for j in range(A):
v[j] += B * V[i - k, j]
g += B * G[i - k]
denom = alpha[-A].subs(x, i)
for j in range(A):
V[i, j] = -v[j] / denom
G[i] = (_delta(f, i - A) - g) / denom
P, Q = _one_vector(U), _zero_vector(A)
for i in range(1, U):
P[i] = (P[i - 1] * (n - a - i + 1)/i).expand()
for i in range(A):
Q[i] = Add(*[(v*p).expand() for v, p in zip(V[:, i], P)])
if not homogeneous:
h = Add(*[(g*p).expand() for g, p in zip(G, P)])
C = [Symbol('C' + str(i + shift)) for i in range(A)]
g = lambda i: Add(*[c*_delta(q, i) for c, q in zip(C, Q)])
if homogeneous:
E = [g(i) for i in range(N + 1, U)]
else:
E = [g(i) + _delta(h, i) for i in range(N + 1, U)]
if E != []:
solutions = solve(E, *C)
if not solutions:
if homogeneous:
if hints.get('symbols', False):
return (S.Zero, [])
else:
return S.Zero
else:
return None
else:
solutions = {}
if homogeneous:
result = S.Zero
else:
result = h
for c, q in list(zip(C, Q)):
if c in solutions:
s = solutions[c]*q
C.remove(c)
else:
s = c*q
result += s.expand()
if hints.get('symbols', False):
return (result, C)
else:
return result
def rsolve_ratio(coeffs, f, n, **hints):
r"""
Given linear recurrence operator `\operatorname{L}` of order `k`
with polynomial coefficients and inhomogeneous equation
`\operatorname{L} y = f`, where `f` is a polynomial, we seek
for all rational solutions over field `K` of characteristic zero.
This procedure accepts only polynomials, however if you are
interested in solving recurrence with rational coefficients
then use ``rsolve`` which will pre-process the given equation
and run this procedure with polynomial arguments.
The algorithm performs two basic steps:
(1) Compute polynomial `v(n)` which can be used as universal
denominator of any rational solution of equation
`\operatorname{L} y = f`.
(2) Construct new linear difference equation by substitution
`y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its
polynomial solutions. Return ``None`` if none were found.
Algorithm implemented here is a revised version of the original
Abramov's algorithm, developed in 1989. The new approach is much
simpler to implement and has better overall efficiency. This
method can be easily adapted to q-difference equations case.
Besides finding rational solutions alone, this functions is
an important part of Hyper algorithm were it is used to find
particular solution of inhomogeneous part of a recurrence.
Examples
========
>>> from sympy.abc import x
>>> from sympy.solvers.recurr import rsolve_ratio
>>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x,
... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x)
C2*(2*x - 3)/(2*(x**2 - 1))
References
==========
.. [1] S. A. Abramov, Rational solutions of linear difference
and q-difference equations with polynomial coefficients,
in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York,
1995, 285-289
See Also
========
rsolve_hyper
"""
f = sympify(f)
if not f.is_polynomial(n):
return None
coeffs = list(map(sympify, coeffs))
r = len(coeffs) - 1
A, B = coeffs[r], coeffs[0]
A = A.subs(n, n - r).expand()
h = Dummy('h')
res = resultant(A, B.subs(n, n + h), n)
if not res.is_polynomial(h):
p, q = res.as_numer_denom()
res = quo(p, q, h)
nni_roots = list(roots(res, h, filter='Z',
predicate=lambda r: r >= 0).keys())
if not nni_roots:
return rsolve_poly(coeffs, f, n, **hints)
else:
C, numers = S.One, [S.Zero]*(r + 1)
for i in range(int(max(nni_roots)), -1, -1):
d = gcd(A, B.subs(n, n + i), n)
A = quo(A, d, n)
B = quo(B, d.subs(n, n - i), n)
C *= Mul(*[d.subs(n, n - j) for j in range(i + 1)])
denoms = [C.subs(n, n + i) for i in range(r + 1)]
for i in range(r + 1):
g = gcd(coeffs[i], denoms[i], n)
numers[i] = quo(coeffs[i], g, n)
denoms[i] = quo(denoms[i], g, n)
for i in range(r + 1):
numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:]))
result = rsolve_poly(numers, f * Mul(*denoms), n, **hints)
if result is not None:
if hints.get('symbols', False):
return (simplify(result[0] / C), result[1])
else:
return simplify(result / C)
else:
return None
def rsolve_hyper(coeffs, f, n, **hints):
r"""
Given linear recurrence operator `\operatorname{L}` of order `k`
with polynomial coefficients and inhomogeneous equation
`\operatorname{L} y = f` we seek for all hypergeometric solutions
over field `K` of characteristic zero.
The inhomogeneous part can be either hypergeometric or a sum
of a fixed number of pairwise dissimilar hypergeometric terms.
The algorithm performs three basic steps:
(1) Group together similar hypergeometric terms in the
inhomogeneous part of `\operatorname{L} y = f`, and find
particular solution using Abramov's algorithm.
(2) Compute generating set of `\operatorname{L}` and find basis
in it, so that all solutions are linearly independent.
(3) Form final solution with the number of arbitrary
constants equal to dimension of basis of `\operatorname{L}`.
Term `a(n)` is hypergeometric if it is annihilated by first order
linear difference equations with polynomial coefficients or, in
simpler words, if consecutive term ratio is a rational function.
The output of this procedure is a linear combination of fixed
number of hypergeometric terms. However the underlying method
can generate larger class of solutions - D'Alembertian terms.
Note also that this method not only computes the kernel of the
inhomogeneous equation, but also reduces in to a basis so that
solutions generated by this procedure are linearly independent
Examples
========
>>> from sympy.solvers import rsolve_hyper
>>> from sympy.abc import x
>>> rsolve_hyper([-1, -1, 1], 0, x)
C0*(1/2 - sqrt(5)/2)**x + C1*(1/2 + sqrt(5)/2)**x
>>> rsolve_hyper([-1, 1], 1 + x, x)
C0 + x*(x + 1)/2
References
==========
.. [1] M. Petkovsek, Hypergeometric solutions of linear recurrences
with polynomial coefficients, J. Symbolic Computation,
14 (1992), 243-264.
.. [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.
"""
coeffs = list(map(sympify, coeffs))
f = sympify(f)
r, kernel, symbols = len(coeffs) - 1, [], set()
if not f.is_zero:
if f.is_Add:
similar = {}
for g in f.expand().args:
if not g.is_hypergeometric(n):
return None
for h in similar.keys():
if hypersimilar(g, h, n):
similar[h] += g
break
else:
similar[g] = S.Zero
inhomogeneous = [g + h for g, h in similar.items()]
elif f.is_hypergeometric(n):
inhomogeneous = [f]
else:
return None
for i, g in enumerate(inhomogeneous):
coeff, polys = S.One, coeffs[:]
denoms = [S.One]*(r + 1)
s = hypersimp(g, n)
for j in range(1, r + 1):
coeff *= s.subs(n, n + j - 1)
p, q = coeff.as_numer_denom()
polys[j] *= p
denoms[j] = q
for j in range(r + 1):
polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))
# FIXME: The call to rsolve_ratio below should suffice (rsolve_poly
# call can be removed) but the XFAIL test_rsolve_ratio_missed must
# be fixed first.
R = rsolve_ratio(polys, Mul(*denoms), n, symbols=True)
if R is not None:
R, syms = R
if syms:
R = R.subs(zip(syms, [0]*len(syms)))
else:
R = rsolve_poly(polys, Mul(*denoms), n)
if R:
inhomogeneous[i] *= R
else:
return None
result = Add(*inhomogeneous)
result = simplify(result)
else:
result = S.Zero
Z = Dummy('Z')
p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)
p_factors = [z for z in roots(p, n).keys()]
q_factors = [z for z in roots(q, n).keys()]
factors = [(S.One, S.One)]
for p in p_factors:
for q in q_factors:
if p.is_integer and q.is_integer and p <= q:
continue
else:
factors += [(n - p, n - q)]
p = [(n - p, S.One) for p in p_factors]
q = [(S.One, n - q) for q in q_factors]
factors = p + factors + q
for A, B in factors:
polys, degrees = [], []
D = A*B.subs(n, n + r - 1)
for i in range(r + 1):
a = Mul(*[A.subs(n, n + j) for j in range(i)])
b = Mul(*[B.subs(n, n + j) for j in range(i, r)])
poly = quo(coeffs[i]*a*b, D, n)
polys.append(poly.as_poly(n))
if not poly.is_zero:
degrees.append(polys[i].degree())
if degrees:
d, poly = max(degrees), S.Zero
else:
return None
for i in range(r + 1):
coeff = polys[i].nth(d)
if coeff is not S.Zero:
poly += coeff * Z**i
for z in roots(poly, Z).keys():
if z.is_zero:
continue
recurr_coeffs = [polys[i].as_expr()*z**i for i in range(r + 1)]
if d == 0 and 0 != Add(*[recurr_coeffs[j]*j for j in range(1, r + 1)]):
# faster inline check (than calling rsolve_poly) for a
# constant solution to a constant coefficient recurrence.
sol = [Symbol("C" + str(len(symbols)))]
else:
sol, syms = rsolve_poly(recurr_coeffs, 0, n, len(symbols), symbols=True)
sol = sol.collect(syms)
sol = [sol.coeff(s) for s in syms]
for C in sol:
ratio = z * A * C.subs(n, n + 1) / B / C
ratio = simplify(ratio)
# If there is a nonnegative root in the denominator of the ratio,
# this indicates that the term y(n_root) is zero, and one should
# start the product with the term y(n_root + 1).
n0 = 0
for n_root in roots(ratio.as_numer_denom()[1], n).keys():
if n_root.has(I):
return None
elif (n0 < (n_root + 1)) == True:
n0 = n_root + 1
K = product(ratio, (n, n0, n - 1))
if K.has(factorial, FallingFactorial, RisingFactorial):
K = simplify(K)
if casoratian(kernel + [K], n, zero=False) != 0:
kernel.append(K)
kernel.sort(key=default_sort_key)
sk = list(zip(numbered_symbols('C'), kernel))
for C, ker in sk:
result += C * ker
if hints.get('symbols', False):
# XXX: This returns the symbols in a non-deterministic order
symbols |= {s for s, k in sk}
return (result, list(symbols))
else:
return result
def rsolve(f, y, init=None):
r"""
Solve univariate recurrence with rational coefficients.
Given `k`-th order linear recurrence `\operatorname{L} y = f`,
or equivalently:
.. math:: a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) +
\cdots + a_{0}(n) y(n) = f(n)
where `a_{i}(n)`, for `i=0, \ldots, k`, are polynomials or rational
functions in `n`, and `f` is a hypergeometric function or a sum
of a fixed number of pairwise dissimilar hypergeometric terms in
`n`, finds all solutions or returns ``None``, if none were found.
Initial conditions can be given as a dictionary in two forms:
(1) ``{ n_0 : v_0, n_1 : v_1, ..., n_m : v_m}``
(2) ``{y(n_0) : v_0, y(n_1) : v_1, ..., y(n_m) : v_m}``
or as a list ``L`` of values:
``L = [v_0, v_1, ..., v_m]``
where ``L[i] = v_i``, for `i=0, \ldots, m`, maps to `y(n_i)`.
Examples
========
Lets consider the following recurrence:
.. math:: (n - 1) y(n + 2) - (n^2 + 3 n - 2) y(n + 1) +
2 n (n + 1) y(n) = 0
>>> from sympy import Function, rsolve
>>> from sympy.abc import n
>>> y = Function('y')
>>> f = (n - 1)*y(n + 2) - (n**2 + 3*n - 2)*y(n + 1) + 2*n*(n + 1)*y(n)
>>> rsolve(f, y(n))
2**n*C0 + C1*factorial(n)
>>> rsolve(f, y(n), {y(0):0, y(1):3})
3*2**n - 3*factorial(n)
See Also
========
rsolve_poly, rsolve_ratio, rsolve_hyper
"""
if isinstance(f, Equality):
f = f.lhs - f.rhs
n = y.args[0]
k = Wild('k', exclude=(n,))
# Preprocess user input to allow things like
# y(n) + a*(y(n + 1) + y(n - 1))/2
f = f.expand().collect(y.func(Wild('m', integer=True)))
h_part = defaultdict(list)
i_part = []
for g in Add.make_args(f):
coeff, dep = g.as_coeff_mul(y.func)
if not dep:
i_part.append(coeff)
continue
for h in dep:
if h.is_Function and h.func == y.func:
result = h.args[0].match(n + k)
if result is not None:
h_part[int(result[k])].append(coeff)
continue
raise ValueError(
"'%s(%s + k)' expected, got '%s'" % (y.func, n, h))
for k in h_part:
h_part[k] = Add(*h_part[k])
h_part.default_factory = lambda: 0
i_part = Add(*i_part)
for k, coeff in h_part.items():
h_part[k] = simplify(coeff)
common = S.One
if not i_part.is_zero and not i_part.is_hypergeometric(n) and \
not (i_part.is_Add and all(map(lambda x: x.is_hypergeometric(n), i_part.expand().args))):
raise ValueError("The independent term should be a sum of hypergeometric functions, got '%s'" % i_part)
for coeff in h_part.values():
if coeff.is_rational_function(n):
if not coeff.is_polynomial(n):
common = lcm(common, coeff.as_numer_denom()[1], n)
else:
raise ValueError(
"Polynomial or rational function expected, got '%s'" % coeff)
i_numer, i_denom = i_part.as_numer_denom()
if i_denom.is_polynomial(n):
common = lcm(common, i_denom, n)
if common is not S.One:
for k, coeff in h_part.items():
numer, denom = coeff.as_numer_denom()
h_part[k] = numer*quo(common, denom, n)
i_part = i_numer*quo(common, i_denom, n)
K_min = min(h_part.keys())
if K_min < 0:
K = abs(K_min)
H_part = defaultdict(lambda: S.Zero)
i_part = i_part.subs(n, n + K).expand()
common = common.subs(n, n + K).expand()
for k, coeff in h_part.items():
H_part[k + K] = coeff.subs(n, n + K).expand()
else:
H_part = h_part
K_max = max(H_part.keys())
coeffs = [H_part[i] for i in range(K_max + 1)]
result = rsolve_hyper(coeffs, -i_part, n, symbols=True)
if result is None:
return None
solution, symbols = result
if init in ({}, []):
init = None
if symbols and init is not None:
if isinstance(init, list):
init = {i: init[i] for i in range(len(init))}
equations = []
for k, v in init.items():
try:
i = int(k)
except TypeError:
if k.is_Function and k.func == y.func:
i = int(k.args[0])
else:
raise ValueError("Integer or term expected, got '%s'" % k)
eq = solution.subs(n, i) - v
if eq.has(S.NaN):
eq = solution.limit(n, i) - v
equations.append(eq)
result = solve(equations, *symbols)
if not result:
return None
else:
solution = solution.subs(result)
return solution
|
66603ccc548a39641bc06352f85df39b08d721e1c0d009e0e412d445f422de65 | """
This module contains functions to:
- solve a single equation for a single variable, in any domain either real or complex.
- solve a single transcendental equation for a single variable in any domain either real or complex.
(currently supports solving in real domain only)
- solve a system of linear equations with N variables and M equations.
- solve a system of Non Linear Equations with N variables and M equations
"""
from sympy.core.sympify import sympify
from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul, Equality,
Add)
from sympy.core.containers import Tuple
from sympy.core.function import (Lambda, expand_complex, AppliedUndef,
expand_log, _mexpand, expand_trig, nfloat)
from sympy.core.mod import Mod
from sympy.core.numbers import igcd, I, Number, Rational, oo, ilcm
from sympy.core.power import integer_log
from sympy.core.relational import Eq, Ne, Relational
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Symbol, _uniquely_named_symbol
from sympy.core.sympify import _sympify
from sympy.core.traversal import iterfreeargs
from sympy.polys.polyroots import UnsolvableFactorError
from sympy.simplify.simplify import simplify, fraction, trigsimp, nsimplify
from sympy.simplify import powdenest, logcombine
from sympy.functions import (log, tan, cot, sin, cos, sec, csc, exp,
acos, asin, acsc, asec,
piecewise_fold, Piecewise)
from sympy.functions.elementary.complexes import Abs, arg, re, im
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.miscellaneous import real_root
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.logic.boolalg import And, BooleanTrue
from sympy.sets import (FiniteSet, imageset, Interval, Intersection,
Union, ConditionSet, ImageSet, Complement, Contains)
from sympy.sets.sets import Set, ProductSet
from sympy.matrices import Matrix, MatrixBase
from sympy.ntheory import totient
from sympy.ntheory.factor_ import divisors
from sympy.ntheory.residue_ntheory import discrete_log, nthroot_mod
from sympy.polys import (roots, Poly, degree, together, PolynomialError,
RootOf, factor, lcm, gcd)
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polytools import invert, groebner, poly
from sympy.polys.solvers import (sympy_eqs_to_ring, solve_lin_sys,
PolyNonlinearError)
from sympy.polys.matrices.linsolve import _linsolve
from sympy.solvers.solvers import (checksol, denoms, unrad,
_simple_dens, recast_to_symbols)
from sympy.solvers.polysys import solve_poly_system
from sympy.utilities import filldedent
from sympy.utilities.iterables import (numbered_symbols, has_dups,
is_sequence)
from sympy.calculus.util import periodicity, continuous_domain, function_range
from types import GeneratorType
from collections import defaultdict
class NonlinearError(ValueError):
"""Raised when unexpectedly encountering nonlinear equations"""
pass
_rc = Dummy("R", real=True), Dummy("C", complex=True)
def _masked(f, *atoms):
"""Return ``f``, with all objects given by ``atoms`` replaced with
Dummy symbols, ``d``, and the list of replacements, ``(d, e)``,
where ``e`` is an object of type given by ``atoms`` in which
any other instances of atoms have been recursively replaced with
Dummy symbols, too. The tuples are ordered so that if they are
applied in sequence, the origin ``f`` will be restored.
Examples
========
>>> from sympy import cos
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import _masked
>>> f = cos(cos(x) + 1)
>>> f, reps = _masked(cos(1 + cos(x)), cos)
>>> f
_a1
>>> reps
[(_a1, cos(_a0 + 1)), (_a0, cos(x))]
>>> for d, e in reps:
... f = f.xreplace({d: e})
>>> f
cos(cos(x) + 1)
"""
sym = numbered_symbols('a', cls=Dummy, real=True)
mask = []
for a in ordered(f.atoms(*atoms)):
for i in mask:
a = a.replace(*i)
mask.append((a, next(sym)))
for i, (o, n) in enumerate(mask):
f = f.replace(o, n)
mask[i] = (n, o)
mask = list(reversed(mask))
return f, mask
def _invert(f_x, y, x, domain=S.Complexes):
r"""
Reduce the complex valued equation $f(x) = y$ to a set of equations
$$\left\{g(x) = h_1(y),\ g(x) = h_2(y),\ \dots,\ g(x) = h_n(y) \right\}$$
where $g(x)$ is a simpler function than $f(x)$. The return value is a tuple
$(g(x), \mathrm{set}_h)$, where $g(x)$ is a function of $x$ and $\mathrm{set}_h$ is
the set of function $\left\{h_1(y), h_2(y), \dots, h_n(y)\right\}$.
Here, $y$ is not necessarily a symbol.
$\mathrm{set}_h$ contains the functions, along with the information
about the domain in which they are valid, through set
operations. For instance, if :math:`y = |x| - n` is inverted
in the real domain, then $\mathrm{set}_h$ is not simply
$\{-n, n\}$ as the nature of `n` is unknown; rather, it is:
$$ \left(\left[0, \infty\right) \cap \left\{n\right\}\right) \cup
\left(\left(-\infty, 0\right] \cap \left\{- n\right\}\right)$$
By default, the complex domain is used which means that inverting even
seemingly simple functions like $\exp(x)$ will give very different
results from those obtained in the real domain.
(In the case of $\exp(x)$, the inversion via $\log$ is multi-valued
in the complex domain, having infinitely many branches.)
If you are working with real values only (or you are not sure which
function to use) you should probably set the domain to
``S.Reals`` (or use ``invert_real`` which does that automatically).
Examples
========
>>> from sympy.solvers.solveset import invert_complex, invert_real
>>> from sympy.abc import x, y
>>> from sympy import exp
When does exp(x) == y?
>>> invert_complex(exp(x), y, x)
(x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers))
>>> invert_real(exp(x), y, x)
(x, Intersection({log(y)}, Reals))
When does exp(x) == 1?
>>> invert_complex(exp(x), 1, x)
(x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers))
>>> invert_real(exp(x), 1, x)
(x, {0})
See Also
========
invert_real, invert_complex
"""
x = sympify(x)
if not x.is_Symbol:
raise ValueError("x must be a symbol")
f_x = sympify(f_x)
if x not in f_x.free_symbols:
raise ValueError("Inverse of constant function doesn't exist")
y = sympify(y)
if x in y.free_symbols:
raise ValueError("y should be independent of x ")
if domain.is_subset(S.Reals):
x1, s = _invert_real(f_x, FiniteSet(y), x)
else:
x1, s = _invert_complex(f_x, FiniteSet(y), x)
if not isinstance(s, FiniteSet) or x1 != x:
return x1, s
# Avoid adding gratuitous intersections with S.Complexes. Actual
# conditions should be handled by the respective inverters.
if domain is S.Complexes:
return x1, s
else:
return x1, s.intersection(domain)
invert_complex = _invert
def invert_real(f_x, y, x):
"""
Inverts a real-valued function. Same as :func:`invert_complex`, but sets
the domain to ``S.Reals`` before inverting.
"""
return _invert(f_x, y, x, S.Reals)
def _invert_real(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol or g_ys is S.EmptySet:
return (f, g_ys)
n = Dummy('n', real=True)
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
return _invert_real(f.exp,
imageset(Lambda(n, log(n)), g_ys),
symbol)
if hasattr(f, 'inverse') and f.inverse() is not None and not isinstance(f, (
TrigonometricFunction,
HyperbolicFunction,
)):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_real(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys),
symbol)
if isinstance(f, Abs):
return _invert_abs(f.args[0], g_ys, symbol)
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if not expo_has_sym:
if expo.is_rational:
num, den = expo.as_numer_denom()
if den % 2 == 0 and num % 2 == 1 and den.is_zero is False:
# Here we have f(x)**(num/den) = y
# where den is nonzero and even and y is an element
# of the set g_ys.
# den is even, so we are only interested in the cases
# where both f(x) and y are positive.
# Restricting y to be positive (using the set g_ys_pos)
# means that y**(den/num) is always positive.
# Therefore it isn't necessary to also constrain f(x)
# to be positive because we are only going to
# find solutions of f(x) = y**(d/n)
# where the rhs is already required to be positive.
root = Lambda(n, real_root(n, expo))
g_ys_pos = g_ys & Interval(0, oo)
res = imageset(root, g_ys_pos)
_inv, _set = _invert_real(base, res, symbol)
return (_inv, _set)
if den % 2 == 1:
root = Lambda(n, real_root(n, expo))
res = imageset(root, g_ys)
if num % 2 == 0:
neg_res = imageset(Lambda(n, -n), res)
return _invert_real(base, res + neg_res, symbol)
if num % 2 == 1:
return _invert_real(base, res, symbol)
elif expo.is_irrational:
root = Lambda(n, real_root(n, expo))
g_ys_pos = g_ys & Interval(0, oo)
res = imageset(root, g_ys_pos)
return _invert_real(base, res, symbol)
else:
# indeterminate exponent, e.g. Float or parity of
# num, den of rational could not be determined
pass # use default return
if not base_has_sym:
rhs = g_ys.args[0]
if base.is_positive:
return _invert_real(expo,
imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol)
elif base.is_negative:
s, b = integer_log(rhs, base)
if b:
return _invert_real(expo, FiniteSet(s), symbol)
else:
return (expo, S.EmptySet)
elif base.is_zero:
one = Eq(rhs, 1)
if one == S.true:
# special case: 0**x - 1
return _invert_real(expo, FiniteSet(0), symbol)
elif one == S.false:
return (expo, S.EmptySet)
if isinstance(f, TrigonometricFunction):
if isinstance(g_ys, FiniteSet):
def inv(trig):
if isinstance(trig, (sin, csc)):
F = asin if isinstance(trig, sin) else acsc
return (lambda a: n*pi + S.NegativeOne**n*F(a),)
if isinstance(trig, (cos, sec)):
F = acos if isinstance(trig, cos) else asec
return (
lambda a: 2*n*pi + F(a),
lambda a: 2*n*pi - F(a),)
if isinstance(trig, (tan, cot)):
return (lambda a: n*pi + trig.inverse()(a),)
n = Dummy('n', integer=True)
invs = S.EmptySet
for L in inv(f):
invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys])
return _invert_real(f.args[0], invs, symbol)
return (f, g_ys)
def _invert_complex(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol or g_ys is S.EmptySet:
return (f, g_ys)
n = Dummy('n')
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
if g in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}:
return (h, S.EmptySet)
return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
# special case: g**r = 0
# Could be improved like `_invert_real` to handle more general cases.
if expo.is_Rational and g_ys == FiniteSet(0):
if expo.is_positive:
return _invert_complex(base, g_ys, symbol)
if hasattr(f, 'inverse') and f.inverse() is not None and \
not isinstance(f, TrigonometricFunction) and \
not isinstance(f, HyperbolicFunction) and \
not isinstance(f, exp):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_complex(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys), symbol)
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
if isinstance(g_ys, ImageSet):
# can solve upto `(d*exp(exp(...(exp(a*x + b))...) + c)` format.
# Further can be improved to `(d*exp(exp(...(exp(a*x**n + b*x**(n-1) + ... + f))...) + c)`.
g_ys_expr = g_ys.lamda.expr
g_ys_vars = g_ys.lamda.variables
k = Dummy('k{}'.format(len(g_ys_vars)))
g_ys_vars_1 = (k,) + g_ys_vars
exp_invs = Union(*[imageset(Lambda((g_ys_vars_1,), (I*(2*k*pi + arg(g_ys_expr))
+ log(Abs(g_ys_expr)))), S.Integers**(len(g_ys_vars_1)))])
return _invert_complex(f.exp, exp_invs, symbol)
elif isinstance(g_ys, FiniteSet):
exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) +
log(Abs(g_y))), S.Integers)
for g_y in g_ys if g_y != 0])
return _invert_complex(f.exp, exp_invs, symbol)
return (f, g_ys)
def _invert_abs(f, g_ys, symbol):
"""Helper function for inverting absolute value functions.
Returns the complete result of inverting an absolute value
function along with the conditions which must also be satisfied.
If it is certain that all these conditions are met, a :class:`~.FiniteSet`
of all possible solutions is returned. If any condition cannot be
satisfied, an :class:`~.EmptySet` is returned. Otherwise, a
:class:`~.ConditionSet` of the solutions, with all the required conditions
specified, is returned.
"""
if not g_ys.is_FiniteSet:
# this could be used for FiniteSet, but the
# results are more compact if they aren't, e.g.
# ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs
# Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n}))
# for the solution of abs(x) - n
pos = Intersection(g_ys, Interval(0, S.Infinity))
parg = _invert_real(f, pos, symbol)
narg = _invert_real(-f, pos, symbol)
if parg[0] != narg[0]:
raise NotImplementedError
return parg[0], Union(narg[1], parg[1])
# check conditions: all these must be true. If any are unknown
# then return them as conditions which must be satisfied
unknown = []
for a in g_ys.args:
ok = a.is_nonnegative if a.is_Number else a.is_positive
if ok is None:
unknown.append(a)
elif not ok:
return symbol, S.EmptySet
if unknown:
conditions = And(*[Contains(i, Interval(0, oo))
for i in unknown])
else:
conditions = True
n = Dummy('n', real=True)
# this is slightly different than above: instead of solving
# +/-f on positive values, here we solve for f on +/- g_ys
g_x, values = _invert_real(f, Union(
imageset(Lambda(n, n), g_ys),
imageset(Lambda(n, -n), g_ys)), symbol)
return g_x, ConditionSet(g_x, conditions, values)
def domain_check(f, symbol, p):
"""Returns False if point p is infinite or any subexpression of f
is infinite or becomes so after replacing symbol with p. If none of
these conditions is met then True will be returned.
Examples
========
>>> from sympy import Mul, oo
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import domain_check
>>> g = 1/(1 + (1/(x + 1))**2)
>>> domain_check(g, x, -1)
False
>>> domain_check(x**2, x, 0)
True
>>> domain_check(1/x, x, oo)
False
* The function relies on the assumption that the original form
of the equation has not been changed by automatic simplification.
>>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1
True
* To deal with automatic evaluations use evaluate=False:
>>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)
False
"""
f, p = sympify(f), sympify(p)
if p.is_infinite:
return False
return _domain_check(f, symbol, p)
def _domain_check(f, symbol, p):
# helper for domain check
if f.is_Atom and f.is_finite:
return True
elif f.subs(symbol, p).is_infinite:
return False
elif isinstance(f, Piecewise):
# Check the cases of the Piecewise in turn. There might be invalid
# expressions in later cases that don't apply e.g.
# solveset(Piecewise((0, Eq(x, 0)), (1/x, True)), x)
for expr, cond in f.args:
condsubs = cond.subs(symbol, p)
if condsubs is S.false:
continue
elif condsubs is S.true:
return _domain_check(expr, symbol, p)
else:
# We don't know which case of the Piecewise holds. On this
# basis we cannot decide whether any solution is in or out of
# the domain. Ideally this function would allow returning a
# symbolic condition for the validity of the solution that
# could be handled in the calling code. In the mean time we'll
# give this particular solution the benefit of the doubt and
# let it pass.
return True
else:
# TODO : We should not blindly recurse through all args of arbitrary expressions like this
return all(_domain_check(g, symbol, p)
for g in f.args)
def _is_finite_with_finite_vars(f, domain=S.Complexes):
"""
Return True if the given expression is finite. For symbols that
do not assign a value for `complex` and/or `real`, the domain will
be used to assign a value; symbols that do not assign a value
for `finite` will be made finite. All other assumptions are
left unmodified.
"""
def assumptions(s):
A = s.assumptions0
A.setdefault('finite', A.get('finite', True))
if domain.is_subset(S.Reals):
# if this gets set it will make complex=True, too
A.setdefault('real', True)
else:
# don't change 'real' because being complex implies
# nothing about being real
A.setdefault('complex', True)
return A
reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols}
return f.xreplace(reps).is_finite
def _is_function_class_equation(func_class, f, symbol):
""" Tests whether the equation is an equation of the given function class.
The given equation belongs to the given function class if it is
comprised of functions of the function class which are multiplied by
or added to expressions independent of the symbol. In addition, the
arguments of all such functions must be linear in the symbol as well.
Examples
========
>>> from sympy.solvers.solveset import _is_function_class_equation
>>> from sympy import tan, sin, tanh, sinh, exp
>>> from sympy.abc import x
>>> from sympy.functions.elementary.trigonometric import TrigonometricFunction
>>> from sympy.functions.elementary.hyperbolic import HyperbolicFunction
>>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)
True
>>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)
True
>>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)
True
"""
if f.is_Mul or f.is_Add:
return all(_is_function_class_equation(func_class, arg, symbol)
for arg in f.args)
if f.is_Pow:
if not f.exp.has(symbol):
return _is_function_class_equation(func_class, f.base, symbol)
else:
return False
if not f.has(symbol):
return True
if isinstance(f, func_class):
try:
g = Poly(f.args[0], symbol)
return g.degree() <= 1
except PolynomialError:
return False
else:
return False
def _solve_as_rational(f, symbol, domain):
""" solve rational functions"""
f = together(_mexpand(f, recursive=True), deep=True)
g, h = fraction(f)
if not h.has(symbol):
try:
return _solve_as_poly(g, symbol, domain)
except NotImplementedError:
# The polynomial formed from g could end up having
# coefficients in a ring over which finding roots
# isn't implemented yet, e.g. ZZ[a] for some symbol a
return ConditionSet(symbol, Eq(f, 0), domain)
except CoercionFailed:
# contained oo, zoo or nan
return S.EmptySet
else:
valid_solns = _solveset(g, symbol, domain)
invalid_solns = _solveset(h, symbol, domain)
return valid_solns - invalid_solns
class _SolveTrig1Error(Exception):
"""Raised when _solve_trig1 heuristics do not apply"""
def _solve_trig(f, symbol, domain):
"""Function to call other helpers to solve trigonometric equations """
sol = None
try:
sol = _solve_trig1(f, symbol, domain)
except _SolveTrig1Error:
try:
sol = _solve_trig2(f, symbol, domain)
except ValueError:
raise NotImplementedError(filldedent('''
Solution to this kind of trigonometric equations
is yet to be implemented'''))
return sol
def _solve_trig1(f, symbol, domain):
"""Primary solver for trigonometric and hyperbolic equations
Returns either the solution set as a ConditionSet (auto-evaluated to a
union of ImageSets if no variables besides 'symbol' are involved) or
raises _SolveTrig1Error if f == 0 cannot be solved.
Notes
=====
Algorithm:
1. Do a change of variable x -> mu*x in arguments to trigonometric and
hyperbolic functions, in order to reduce them to small integers. (This
step is crucial to keep the degrees of the polynomials of step 4 low.)
2. Rewrite trigonometric/hyperbolic functions as exponentials.
3. Proceed to a 2nd change of variable, replacing exp(I*x) or exp(x) by y.
4. Solve the resulting rational equation.
5. Use invert_complex or invert_real to return to the original variable.
6. If the coefficients of 'symbol' were symbolic in nature, add the
necessary consistency conditions in a ConditionSet.
"""
# Prepare change of variable
x = Dummy('x')
if _is_function_class_equation(HyperbolicFunction, f, symbol):
cov = exp(x)
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
else:
cov = exp(I*x)
inverter = invert_complex
f = trigsimp(f)
f_original = f
trig_functions = f.atoms(TrigonometricFunction, HyperbolicFunction)
trig_arguments = [e.args[0] for e in trig_functions]
# trigsimp may have reduced the equation to an expression
# that is independent of 'symbol' (e.g. cos**2+sin**2)
if not any(a.has(symbol) for a in trig_arguments):
return solveset(f_original, symbol, domain)
denominators = []
numerators = []
for ar in trig_arguments:
try:
poly_ar = Poly(ar, symbol)
except PolynomialError:
raise _SolveTrig1Error("trig argument is not a polynomial")
if poly_ar.degree() > 1: # degree >1 still bad
raise _SolveTrig1Error("degree of variable must not exceed one")
if poly_ar.degree() == 0: # degree 0, don't care
continue
c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol'
numerators.append(fraction(c)[0])
denominators.append(fraction(c)[1])
mu = lcm(denominators)/gcd(numerators)
f = f.subs(symbol, mu*x)
f = f.rewrite(exp)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(cov, y), h.subs(cov, y)
if g.has(x) or h.has(x):
raise _SolveTrig1Error("change of variable not possible")
solns = solveset_complex(g, y) - solveset_complex(h, y)
if isinstance(solns, ConditionSet):
raise _SolveTrig1Error("polynomial has ConditionSet solution")
if isinstance(solns, FiniteSet):
if any(isinstance(s, RootOf) for s in solns):
raise _SolveTrig1Error("polynomial results in RootOf object")
# revert the change of variable
cov = cov.subs(x, symbol/mu)
result = Union(*[inverter(cov, s, symbol)[1] for s in solns])
# In case of symbolic coefficients, the solution set is only valid
# if numerator and denominator of mu are non-zero.
if mu.has(Symbol):
syms = (mu).atoms(Symbol)
munum, muden = fraction(mu)
condnum = munum.as_independent(*syms, as_Add=False)[1]
condden = muden.as_independent(*syms, as_Add=False)[1]
cond = And(Ne(condnum, 0), Ne(condden, 0))
else:
cond = True
# Actual conditions are returned as part of the ConditionSet. Adding an
# intersection with C would only complicate some solution sets due to
# current limitations of intersection code. (e.g. #19154)
if domain is S.Complexes:
# This is a slight abuse of ConditionSet. Ideally this should
# be some kind of "PiecewiseSet". (See #19507 discussion)
return ConditionSet(symbol, cond, result)
else:
return ConditionSet(symbol, cond, Intersection(result, domain))
elif solns is S.EmptySet:
return S.EmptySet
else:
raise _SolveTrig1Error("polynomial solutions must form FiniteSet")
def _solve_trig2(f, symbol, domain):
"""Secondary helper to solve trigonometric equations,
called when first helper fails """
f = trigsimp(f)
f_original = f
trig_functions = f.atoms(sin, cos, tan, sec, cot, csc)
trig_arguments = [e.args[0] for e in trig_functions]
denominators = []
numerators = []
# todo: This solver can be extended to hyperbolics if the
# analogous change of variable to tanh (instead of tan)
# is used.
if not trig_functions:
return ConditionSet(symbol, Eq(f_original, 0), domain)
# todo: The pre-processing below (extraction of numerators, denominators,
# gcd, lcm, mu, etc.) should be updated to the enhanced version in
# _solve_trig1. (See #19507)
for ar in trig_arguments:
try:
poly_ar = Poly(ar, symbol)
except PolynomialError:
raise ValueError("give up, we cannot solve if this is not a polynomial in x")
if poly_ar.degree() > 1: # degree >1 still bad
raise ValueError("degree of variable inside polynomial should not exceed one")
if poly_ar.degree() == 0: # degree 0, don't care
continue
c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol'
try:
numerators.append(Rational(c).p)
denominators.append(Rational(c).q)
except TypeError:
return ConditionSet(symbol, Eq(f_original, 0), domain)
x = Dummy('x')
# ilcm() and igcd() require more than one argument
if len(numerators) > 1:
mu = Rational(2)*ilcm(*denominators)/igcd(*numerators)
else:
assert len(numerators) == 1
mu = Rational(2)*denominators[0]/numerators[0]
f = f.subs(symbol, mu*x)
f = f.rewrite(tan)
f = expand_trig(f)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(tan(x), y), h.subs(tan(x), y)
if g.has(x) or h.has(x):
return ConditionSet(symbol, Eq(f_original, 0), domain)
solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals)
if isinstance(solns, FiniteSet):
result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1]
for s in solns])
dsol = invert_real(tan(symbol/mu), oo, symbol)[1]
if degree(h) > degree(g): # If degree(denom)>degree(num) then there
result = Union(result, dsol) # would be another sol at Lim(denom-->oo)
return Intersection(result, domain)
elif solns is S.EmptySet:
return S.EmptySet
else:
return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
def _solve_as_poly(f, symbol, domain=S.Complexes):
"""
Solve the equation using polynomial techniques if it already is a
polynomial equation or, with a change of variables, can be made so.
"""
result = None
if f.is_polynomial(symbol):
solns = roots(f, symbol, cubics=True, quartics=True,
quintics=True, domain='EX')
num_roots = sum(solns.values())
if degree(f, symbol) <= num_roots:
result = FiniteSet(*solns.keys())
else:
poly = Poly(f, symbol)
solns = poly.all_roots()
if poly.degree() <= len(solns):
result = FiniteSet(*solns)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
poly = Poly(f)
if poly is None:
result = ConditionSet(symbol, Eq(f, 0), domain)
gens = [g for g in poly.gens if g.has(symbol)]
if len(gens) == 1:
poly = Poly(poly, gens[0])
gen = poly.gen
deg = poly.degree()
poly = Poly(poly.as_expr(), poly.gen, composite=True)
poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True,
quintics=True).keys())
if len(poly_solns) < deg:
result = ConditionSet(symbol, Eq(f, 0), domain)
if gen != symbol:
y = Dummy('y')
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
lhs, rhs_s = inverter(gen, y, symbol)
if lhs == symbol:
result = Union(*[rhs_s.subs(y, s) for s in poly_solns])
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
if result is not None:
if isinstance(result, FiniteSet):
# this is to simplify solutions like -sqrt(-I) to sqrt(2)/2
# - sqrt(2)*I/2. We are not expanding for solution with symbols
# or undefined functions because that makes the solution more complicated.
# For example, expand_complex(a) returns re(a) + I*im(a)
if all(s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf)
for s in result):
s = Dummy('s')
result = imageset(Lambda(s, expand_complex(s)), result)
if isinstance(result, FiniteSet) and domain != S.Complexes:
# Avoid adding gratuitous intersections with S.Complexes. Actual
# conditions should be handled elsewhere.
result = result.intersection(domain)
return result
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def _solve_radical(f, unradf, symbol, solveset_solver):
""" Helper function to solve equations with radicals """
res = unradf
eq, cov = res if res else (f, [])
if not cov:
result = solveset_solver(eq, symbol) - \
Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)])
else:
y, yeq = cov
if not solveset_solver(y - I, y):
yreal = Dummy('yreal', real=True)
yeq = yeq.xreplace({y: yreal})
eq = eq.xreplace({y: yreal})
y = yreal
g_y_s = solveset_solver(yeq, symbol)
f_y_sols = solveset_solver(eq, y)
result = Union(*[imageset(Lambda(y, g_y), f_y_sols)
for g_y in g_y_s])
if not isinstance(result, FiniteSet):
solution_set = result
else:
f_set = [] # solutions for FiniteSet
c_set = [] # solutions for ConditionSet
for s in result:
if checksol(f, symbol, s):
f_set.append(s)
else:
c_set.append(s)
solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set))
return solution_set
def _solve_abs(f, symbol, domain):
""" Helper function to solve equation involving absolute value function """
if not domain.is_subset(S.Reals):
raise ValueError(filldedent('''
Absolute values cannot be inverted in the
complex domain.'''))
p, q, r = Wild('p'), Wild('q'), Wild('r')
pattern_match = f.match(p*Abs(q) + r) or {}
f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)]
if not (f_p.is_zero or f_q.is_zero):
domain = continuous_domain(f_q, symbol, domain)
from .inequalities import solve_univariate_inequality
q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol,
relational=False, domain=domain, continuous=True)
q_neg_cond = q_pos_cond.complement(domain)
sols_q_pos = solveset_real(f_p*f_q + f_r,
symbol).intersect(q_pos_cond)
sols_q_neg = solveset_real(f_p*(-f_q) + f_r,
symbol).intersect(q_neg_cond)
return Union(sols_q_pos, sols_q_neg)
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def solve_decomposition(f, symbol, domain):
"""
Function to solve equations via the principle of "Decomposition
and Rewriting".
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S
>>> from sympy.solvers.solveset import solve_decomposition as sd
>>> x = Symbol('x')
>>> f1 = exp(2*x) - 3*exp(x) + 2
>>> sd(f1, x, S.Reals)
{0, log(2)}
>>> f2 = sin(x)**2 + 2*sin(x) + 1
>>> pprint(sd(f2, x, S.Reals), use_unicode=False)
3*pi
{2*n*pi + ---- | n in Integers}
2
>>> f3 = sin(x + 2)
>>> pprint(sd(f3, x, S.Reals), use_unicode=False)
{2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers}
"""
from sympy.solvers.decompogen import decompogen
# decompose the given function
g_s = decompogen(f, symbol)
# `y_s` represents the set of values for which the function `g` is to be
# solved.
# `solutions` represent the solutions of the equations `g = y_s` or
# `g = 0` depending on the type of `y_s`.
# As we are interested in solving the equation: f = 0
y_s = FiniteSet(0)
for g in g_s:
frange = function_range(g, symbol, domain)
y_s = Intersection(frange, y_s)
result = S.EmptySet
if isinstance(y_s, FiniteSet):
for y in y_s:
solutions = solveset(Eq(g, y), symbol, domain)
if not isinstance(solutions, ConditionSet):
result += solutions
else:
if isinstance(y_s, ImageSet):
iter_iset = (y_s,)
elif isinstance(y_s, Union):
iter_iset = y_s.args
elif y_s is S.EmptySet:
# y_s is not in the range of g in g_s, so no solution exists
#in the given domain
return S.EmptySet
for iset in iter_iset:
new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain)
dummy_var = tuple(iset.lamda.expr.free_symbols)[0]
(base_set,) = iset.base_sets
if isinstance(new_solutions, FiniteSet):
new_exprs = new_solutions
elif isinstance(new_solutions, Intersection):
if isinstance(new_solutions.args[1], FiniteSet):
new_exprs = new_solutions.args[1]
for new_expr in new_exprs:
result += ImageSet(Lambda(dummy_var, new_expr), base_set)
if result is S.EmptySet:
return ConditionSet(symbol, Eq(f, 0), domain)
y_s = result
return y_s
def _solveset(f, symbol, domain, _check=False):
"""Helper for solveset to return a result from an expression
that has already been sympify'ed and is known to contain the
given symbol."""
# _check controls whether the answer is checked or not
from sympy.simplify.simplify import signsimp
if isinstance(f, BooleanTrue):
return domain
orig_f = f
if f.is_Mul:
coeff, f = f.as_independent(symbol, as_Add=False)
if coeff in {S.ComplexInfinity, S.NegativeInfinity, S.Infinity}:
f = together(orig_f)
elif f.is_Add:
a, h = f.as_independent(symbol)
m, h = h.as_independent(symbol, as_Add=False)
if m not in {S.ComplexInfinity, S.Zero, S.Infinity,
S.NegativeInfinity}:
f = a/m + h # XXX condition `m != 0` should be added to soln
# assign the solvers to use
solver = lambda f, x, domain=domain: _solveset(f, x, domain)
inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain)
result = S.EmptySet
if f.expand().is_zero:
return domain
elif not f.has(symbol):
return S.EmptySet
elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain)
for m in f.args):
# if f(x) and g(x) are both finite we can say that the solution of
# f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
# general. g(x) can grow to infinitely large for the values where
# f(x) == 0. To be sure that we are not silently allowing any
# wrong solutions we are using this technique only if both f and g are
# finite for a finite input.
result = Union(*[solver(m, symbol) for m in f.args])
elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
_is_function_class_equation(HyperbolicFunction, f, symbol):
result = _solve_trig(f, symbol, domain)
elif isinstance(f, arg):
a = f.args[0]
result = Intersection(_solveset(re(a) > 0, symbol, domain),
_solveset(im(a), symbol, domain))
elif f.is_Piecewise:
expr_set_pairs = f.as_expr_set_pairs(domain)
for (expr, in_set) in expr_set_pairs:
if in_set.is_Relational:
in_set = in_set.as_set()
solns = solver(expr, symbol, in_set)
result += solns
elif isinstance(f, Eq):
result = solver(Add(f.lhs, - f.rhs, evaluate=False), symbol, domain)
elif f.is_Relational:
from .inequalities import solve_univariate_inequality
try:
result = solve_univariate_inequality(
f, symbol, domain=domain, relational=False)
except NotImplementedError:
result = ConditionSet(symbol, f, domain)
return result
elif _is_modular(f, symbol):
result = _solve_modular(f, symbol, domain)
else:
lhs, rhs_s = inverter(f, 0, symbol)
if lhs == symbol:
# do some very minimal simplification since
# repeated inversion may have left the result
# in a state that other solvers (e.g. poly)
# would have simplified; this is done here
# rather than in the inverter since here it
# is only done once whereas there it would
# be repeated for each step of the inversion
if isinstance(rhs_s, FiniteSet):
rhs_s = FiniteSet(*[Mul(*
signsimp(i).as_content_primitive())
for i in rhs_s])
result = rhs_s
elif isinstance(rhs_s, FiniteSet):
for equation in [lhs - rhs for rhs in rhs_s]:
if equation == f:
u = unrad(f, symbol)
if u:
result += _solve_radical(equation, u,
symbol,
solver)
elif equation.has(Abs):
result += _solve_abs(f, symbol, domain)
else:
result_rational = _solve_as_rational(equation, symbol, domain)
if not isinstance(result_rational, ConditionSet):
result += result_rational
else:
# may be a transcendental type equation
t_result = _transolve(equation, symbol, domain)
if isinstance(t_result, ConditionSet):
# might need factoring; this is expensive so we
# have delayed until now. To avoid recursion
# errors look for a non-trivial factoring into
# a product of symbol dependent terms; I think
# that something that factors as a Pow would
# have already been recognized by now.
factored = equation.factor()
if factored.is_Mul and equation != factored:
_, dep = factored.as_independent(symbol)
if not dep.is_Add:
# non-trivial factoring of equation
# but use form with constants
# in case they need special handling
t_results = []
for fac in Mul.make_args(factored):
if fac.has(symbol):
t_results.append(solver(fac, symbol))
t_result = Union(*t_results)
result += t_result
else:
result += solver(equation, symbol)
elif rhs_s is not S.EmptySet:
result = ConditionSet(symbol, Eq(f, 0), domain)
if isinstance(result, ConditionSet):
if isinstance(f, Expr):
num, den = f.as_numer_denom()
if den.has(symbol):
_result = _solveset(num, symbol, domain)
if not isinstance(_result, ConditionSet):
singularities = _solveset(den, symbol, domain)
result = _result - singularities
if _check:
if isinstance(result, ConditionSet):
# it wasn't solved or has enumerated all conditions
# -- leave it alone
return result
# whittle away all but the symbol-containing core
# to use this for testing
if isinstance(orig_f, Expr):
fx = orig_f.as_independent(symbol, as_Add=True)[1]
fx = fx.as_independent(symbol, as_Add=False)[1]
else:
fx = orig_f
if isinstance(result, FiniteSet):
# check the result for invalid solutions
result = FiniteSet(*[s for s in result
if isinstance(s, RootOf)
or domain_check(fx, symbol, s)])
return result
def _is_modular(f, symbol):
"""
Helper function to check below mentioned types of modular equations.
``A - Mod(B, C) = 0``
A -> This can or cannot be a function of symbol.
B -> This is surely a function of symbol.
C -> It is an integer.
Parameters
==========
f : Expr
The equation to be checked.
symbol : Symbol
The concerned variable for which the equation is to be checked.
Examples
========
>>> from sympy import symbols, exp, Mod
>>> from sympy.solvers.solveset import _is_modular as check
>>> x, y = symbols('x y')
>>> check(Mod(x, 3) - 1, x)
True
>>> check(Mod(x, 3) - 1, y)
False
>>> check(Mod(x, 3)**2 - 5, x)
False
>>> check(Mod(x, 3)**2 - y, x)
False
>>> check(exp(Mod(x, 3)) - 1, x)
False
>>> check(Mod(3, y) - 1, y)
False
"""
if not f.has(Mod):
return False
# extract modterms from f.
modterms = list(f.atoms(Mod))
return (len(modterms) == 1 and # only one Mod should be present
modterms[0].args[0].has(symbol) and # B-> function of symbol
modterms[0].args[1].is_integer and # C-> to be an integer.
any(isinstance(term, Mod)
for term in list(_term_factors(f))) # free from other funcs
)
def _invert_modular(modterm, rhs, n, symbol):
"""
Helper function to invert modular equation.
``Mod(a, m) - rhs = 0``
Generally it is inverted as (a, ImageSet(Lambda(n, m*n + rhs), S.Integers)).
More simplified form will be returned if possible.
If it is not invertible then (modterm, rhs) is returned.
The following cases arise while inverting equation ``Mod(a, m) - rhs = 0``:
1. If a is symbol then m*n + rhs is the required solution.
2. If a is an instance of ``Add`` then we try to find two symbol independent
parts of a and the symbol independent part gets tranferred to the other
side and again the ``_invert_modular`` is called on the symbol
dependent part.
3. If a is an instance of ``Mul`` then same as we done in ``Add`` we separate
out the symbol dependent and symbol independent parts and transfer the
symbol independent part to the rhs with the help of invert and again the
``_invert_modular`` is called on the symbol dependent part.
4. If a is an instance of ``Pow`` then two cases arise as following:
- If a is of type (symbol_indep)**(symbol_dep) then the remainder is
evaluated with the help of discrete_log function and then the least
period is being found out with the help of totient function.
period*n + remainder is the required solution in this case.
For reference: (https://en.wikipedia.org/wiki/Euler's_theorem)
- If a is of type (symbol_dep)**(symbol_indep) then we try to find all
primitive solutions list with the help of nthroot_mod function.
m*n + rem is the general solution where rem belongs to solutions list
from nthroot_mod function.
Parameters
==========
modterm, rhs : Expr
The modular equation to be inverted, ``modterm - rhs = 0``
symbol : Symbol
The variable in the equation to be inverted.
n : Dummy
Dummy variable for output g_n.
Returns
=======
A tuple (f_x, g_n) is being returned where f_x is modular independent function
of symbol and g_n being set of values f_x can have.
Examples
========
>>> from sympy import symbols, exp, Mod, Dummy, S
>>> from sympy.solvers.solveset import _invert_modular as invert_modular
>>> x, y = symbols('x y')
>>> n = Dummy('n')
>>> invert_modular(Mod(exp(x), 7), S(5), n, x)
(Mod(exp(x), 7), 5)
>>> invert_modular(Mod(x, 7), S(5), n, x)
(x, ImageSet(Lambda(_n, 7*_n + 5), Integers))
>>> invert_modular(Mod(3*x + 8, 7), S(5), n, x)
(x, ImageSet(Lambda(_n, 7*_n + 6), Integers))
>>> invert_modular(Mod(x**4, 7), S(5), n, x)
(x, EmptySet)
>>> invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x)
(x**2 + x + 1, ImageSet(Lambda(_n, 3*_n + 1), Naturals0))
"""
a, m = modterm.args
if rhs.is_real is False or any(term.is_real is False
for term in list(_term_factors(a))):
# Check for complex arguments
return modterm, rhs
if abs(rhs) >= abs(m):
# if rhs has value greater than value of m.
return symbol, S.EmptySet
if a == symbol:
return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers)
if a.is_Add:
# g + h = a
g, h = a.as_independent(symbol)
if g is not S.Zero:
x_indep_term = rhs - Mod(g, m)
return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol)
if a.is_Mul:
# g*h = a
g, h = a.as_independent(symbol)
if g is not S.One:
x_indep_term = rhs*invert(g, m)
return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol)
if a.is_Pow:
# base**expo = a
base, expo = a.args
if expo.has(symbol) and not base.has(symbol):
# remainder -> solution independent of n of equation.
# m, rhs are made coprime by dividing igcd(m, rhs)
try:
remainder = discrete_log(m / igcd(m, rhs), rhs, a.base)
except ValueError: # log does not exist
return modterm, rhs
# period -> coefficient of n in the solution and also referred as
# the least period of expo in which it is repeats itself.
# (a**(totient(m)) - 1) divides m. Here is link of theorem:
# (https://en.wikipedia.org/wiki/Euler's_theorem)
period = totient(m)
for p in divisors(period):
# there might a lesser period exist than totient(m).
if pow(a.base, p, m / igcd(m, a.base)) == 1:
period = p
break
# recursion is not applied here since _invert_modular is currently
# not smart enough to handle infinite rhs as here expo has infinite
# rhs = ImageSet(Lambda(n, period*n + remainder), S.Naturals0).
return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0)
elif base.has(symbol) and not expo.has(symbol):
try:
remainder_list = nthroot_mod(rhs, expo, m, all_roots=True)
if remainder_list == []:
return symbol, S.EmptySet
except (ValueError, NotImplementedError):
return modterm, rhs
g_n = S.EmptySet
for rem in remainder_list:
g_n += ImageSet(Lambda(n, m*n + rem), S.Integers)
return base, g_n
return modterm, rhs
def _solve_modular(f, symbol, domain):
r"""
Helper function for solving modular equations of type ``A - Mod(B, C) = 0``,
where A can or cannot be a function of symbol, B is surely a function of
symbol and C is an integer.
Currently ``_solve_modular`` is only able to solve cases
where A is not a function of symbol.
Parameters
==========
f : Expr
The modular equation to be solved, ``f = 0``
symbol : Symbol
The variable in the equation to be solved.
domain : Set
A set over which the equation is solved. It has to be a subset of
Integers.
Returns
=======
A set of integer solutions satisfying the given modular equation.
A ``ConditionSet`` if the equation is unsolvable.
Examples
========
>>> from sympy.solvers.solveset import _solve_modular as solve_modulo
>>> from sympy import S, Symbol, sin, Intersection, Interval, Mod
>>> x = Symbol('x')
>>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Integers)
ImageSet(Lambda(_n, 7*_n + 5), Integers)
>>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Reals) # domain should be subset of integers.
ConditionSet(x, Eq(Mod(5*x + 6, 7) - 3, 0), Reals)
>>> solve_modulo(-7 + Mod(x, 5), x, S.Integers)
EmptySet
>>> solve_modulo(Mod(12**x, 21) - 18, x, S.Integers)
ImageSet(Lambda(_n, 6*_n + 2), Naturals0)
>>> solve_modulo(Mod(sin(x), 7) - 3, x, S.Integers) # not solvable
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), Integers)
>>> solve_modulo(3 - Mod(x, 5), x, Intersection(S.Integers, Interval(0, 100)))
Intersection(ImageSet(Lambda(_n, 5*_n + 3), Integers), Range(0, 101, 1))
"""
# extract modterm and g_y from f
unsolved_result = ConditionSet(symbol, Eq(f, 0), domain)
modterm = list(f.atoms(Mod))[0]
rhs = -S.One*(f.subs(modterm, S.Zero))
if f.as_coefficients_dict()[modterm].is_negative:
# checks if coefficient of modterm is negative in main equation.
rhs *= -S.One
if not domain.is_subset(S.Integers):
return unsolved_result
if rhs.has(symbol):
# TODO Case: A-> function of symbol, can be extended here
# in future.
return unsolved_result
n = Dummy('n', integer=True)
f_x, g_n = _invert_modular(modterm, rhs, n, symbol)
if f_x == modterm and g_n == rhs:
return unsolved_result
if f_x == symbol:
if domain is not S.Integers:
return domain.intersect(g_n)
return g_n
if isinstance(g_n, ImageSet):
lamda_expr = g_n.lamda.expr
lamda_vars = g_n.lamda.variables
base_sets = g_n.base_sets
sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers)
if isinstance(sol_set, FiniteSet):
tmp_sol = S.EmptySet
for sol in sol_set:
tmp_sol += ImageSet(Lambda(lamda_vars, sol), *base_sets)
sol_set = tmp_sol
else:
sol_set = ImageSet(Lambda(lamda_vars, sol_set), *base_sets)
return domain.intersect(sol_set)
return unsolved_result
def _term_factors(f):
"""
Iterator to get the factors of all terms present
in the given equation.
Parameters
==========
f : Expr
Equation that needs to be addressed
Returns
=======
Factors of all terms present in the equation.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.solveset import _term_factors
>>> x = symbols('x')
>>> list(_term_factors(-2 - x**2 + x*(x + 1)))
[-2, -1, x**2, x, x + 1]
"""
for add_arg in Add.make_args(f):
yield from Mul.make_args(add_arg)
def _solve_exponential(lhs, rhs, symbol, domain):
r"""
Helper function for solving (supported) exponential equations.
Exponential equations are the sum of (currently) at most
two terms with one or both of them having a power with a
symbol-dependent exponent.
For example
.. math:: 5^{2x + 3} - 5^{3x - 1}
.. math:: 4^{5 - 9x} - e^{2 - x}
Parameters
==========
lhs, rhs : Expr
The exponential equation to be solved, `lhs = rhs`
symbol : Symbol
The variable in which the equation is solved
domain : Set
A set over which the equation is solved.
Returns
=======
A set of solutions satisfying the given equation.
A ``ConditionSet`` if the equation is unsolvable or
if the assumptions are not properly defined, in that case
a different style of ``ConditionSet`` is returned having the
solution(s) of the equation with the desired assumptions.
Examples
========
>>> from sympy.solvers.solveset import _solve_exponential as solve_expo
>>> from sympy import symbols, S
>>> x = symbols('x', real=True)
>>> a, b = symbols('a b')
>>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals)
>>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions
ConditionSet(x, (a > 0) & (b > 0), {0})
>>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals)
{-3*log(2)/(-2*log(3) + log(2))}
>>> solve_expo(2**x - 4**x, 0, x, S.Reals)
{0}
* Proof of correctness of the method
The logarithm function is the inverse of the exponential function.
The defining relation between exponentiation and logarithm is:
.. math:: {\log_b x} = y \enspace if \enspace b^y = x
Therefore if we are given an equation with exponent terms, we can
convert every term to its corresponding logarithmic form. This is
achieved by taking logarithms and expanding the equation using
logarithmic identities so that it can easily be handled by ``solveset``.
For example:
.. math:: 3^{2x} = 2^{x + 3}
Taking log both sides will reduce the equation to
.. math:: (2x)\log(3) = (x + 3)\log(2)
This form can be easily handed by ``solveset``.
"""
unsolved_result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain)
newlhs = powdenest(lhs)
if lhs != newlhs:
# it may also be advantageous to factor the new expr
neweq = factor(newlhs - rhs)
if neweq != (lhs - rhs):
return _solveset(neweq, symbol, domain) # try again with _solveset
if not (isinstance(lhs, Add) and len(lhs.args) == 2):
# solving for the sum of more than two powers is possible
# but not yet implemented
return unsolved_result
if rhs != 0:
return unsolved_result
a, b = list(ordered(lhs.args))
a_term = a.as_independent(symbol)[1]
b_term = b.as_independent(symbol)[1]
a_base, a_exp = a_term.as_base_exp()
b_base, b_exp = b_term.as_base_exp()
if domain.is_subset(S.Reals):
conditions = And(
a_base > 0,
b_base > 0,
Eq(im(a_exp), 0),
Eq(im(b_exp), 0))
else:
conditions = And(
Ne(a_base, 0),
Ne(b_base, 0))
L, R = map(lambda i: expand_log(log(i), force=True), (a, -b))
solutions = _solveset(L - R, symbol, domain)
return ConditionSet(symbol, conditions, solutions)
def _is_exponential(f, symbol):
r"""
Return ``True`` if one or more terms contain ``symbol`` only in
exponents, else ``False``.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Examples
========
>>> from sympy import symbols, cos, exp
>>> from sympy.solvers.solveset import _is_exponential as check
>>> x, y = symbols('x y')
>>> check(y, y)
False
>>> check(x**y - 1, y)
True
>>> check(x**y*2**y - 1, y)
True
>>> check(exp(x + 3) + 3**x, x)
True
>>> check(cos(2**x), x)
False
* Philosophy behind the helper
The function extracts each term of the equation and checks if it is
of exponential form w.r.t ``symbol``.
"""
rv = False
for expr_arg in _term_factors(f):
if symbol not in expr_arg.free_symbols:
continue
if (isinstance(expr_arg, Pow) and
symbol not in expr_arg.base.free_symbols or
isinstance(expr_arg, exp)):
rv = True # symbol in exponent
else:
return False # dependent on symbol in non-exponential way
return rv
def _solve_logarithm(lhs, rhs, symbol, domain):
r"""
Helper to solve logarithmic equations which are reducible
to a single instance of `\log`.
Logarithmic equations are (currently) the equations that contains
`\log` terms which can be reduced to a single `\log` term or
a constant using various logarithmic identities.
For example:
.. math:: \log(x) + \log(x - 4)
can be reduced to:
.. math:: \log(x(x - 4))
Parameters
==========
lhs, rhs : Expr
The logarithmic equation to be solved, `lhs = rhs`
symbol : Symbol
The variable in which the equation is solved
domain : Set
A set over which the equation is solved.
Returns
=======
A set of solutions satisfying the given equation.
A ``ConditionSet`` if the equation is unsolvable.
Examples
========
>>> from sympy import symbols, log, S
>>> from sympy.solvers.solveset import _solve_logarithm as solve_log
>>> x = symbols('x')
>>> f = log(x - 3) + log(x + 3)
>>> solve_log(f, 0, x, S.Reals)
{-sqrt(10), sqrt(10)}
* Proof of correctness
A logarithm is another way to write exponent and is defined by
.. math:: {\log_b x} = y \enspace if \enspace b^y = x
When one side of the equation contains a single logarithm, the
equation can be solved by rewriting the equation as an equivalent
exponential equation as defined above. But if one side contains
more than one logarithm, we need to use the properties of logarithm
to condense it into a single logarithm.
Take for example
.. math:: \log(2x) - 15 = 0
contains single logarithm, therefore we can directly rewrite it to
exponential form as
.. math:: x = \frac{e^{15}}{2}
But if the equation has more than one logarithm as
.. math:: \log(x - 3) + \log(x + 3) = 0
we use logarithmic identities to convert it into a reduced form
Using,
.. math:: \log(a) + \log(b) = \log(ab)
the equation becomes,
.. math:: \log((x - 3)(x + 3))
This equation contains one logarithm and can be solved by rewriting
to exponents.
"""
new_lhs = logcombine(lhs, force=True)
new_f = new_lhs - rhs
return _solveset(new_f, symbol, domain)
def _is_logarithmic(f, symbol):
r"""
Return ``True`` if the equation is in the form
`a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Returns
=======
``True`` if the equation is logarithmic otherwise ``False``.
Examples
========
>>> from sympy import symbols, tan, log
>>> from sympy.solvers.solveset import _is_logarithmic as check
>>> x, y = symbols('x y')
>>> check(log(x + 2) - log(x + 3), x)
True
>>> check(tan(log(2*x)), x)
False
>>> check(x*log(x), x)
False
>>> check(x + log(x), x)
False
>>> check(y + log(x), x)
True
* Philosophy behind the helper
The function extracts each term and checks whether it is
logarithmic w.r.t ``symbol``.
"""
rv = False
for term in Add.make_args(f):
saw_log = False
for term_arg in Mul.make_args(term):
if symbol not in term_arg.free_symbols:
continue
if isinstance(term_arg, log):
if saw_log:
return False # more than one log in term
saw_log = True
else:
return False # dependent on symbol in non-log way
if saw_log:
rv = True
return rv
def _is_lambert(f, symbol):
r"""
If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called.
Explanation
===========
Quick check for cases that the Lambert solver might be able to handle.
1. Equations containing more than two operands and `symbol`s involving any of
`Pow`, `exp`, `HyperbolicFunction`,`TrigonometricFunction`, `log` terms.
2. In `Pow`, `exp` the exponent should have `symbol` whereas for
`HyperbolicFunction`,`TrigonometricFunction`, `log` should contain `symbol`.
3. For `HyperbolicFunction`,`TrigonometricFunction` the number of trigonometric functions in
equation should be less than number of symbols. (since `A*cos(x) + B*sin(x) - c`
is not the Lambert type).
Some forms of lambert equations are:
1. X**X = C
2. X*(B*log(X) + D)**A = C
3. A*log(B*X + A) + d*X = C
4. (B*X + A)*exp(d*X + g) = C
5. g*exp(B*X + h) - B*X = C
6. A*D**(E*X + g) - B*X = C
7. A*cos(X) + B*sin(X) - D*X = C
8. A*cosh(X) + B*sinh(X) - D*X = C
Where X is any variable,
A, B, C, D, E are any constants,
g, h are linear functions or log terms.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Returns
=======
If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called.
Examples
========
>>> from sympy.solvers.solveset import _is_lambert
>>> from sympy import symbols, cosh, sinh, log
>>> x = symbols('x')
>>> _is_lambert(3*log(x) - x*log(3), x)
True
>>> _is_lambert(log(log(x - 3)) + log(x-3), x)
True
>>> _is_lambert(cosh(x) - sinh(x), x)
False
>>> _is_lambert((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x)
True
See Also
========
_solve_lambert
"""
term_factors = list(_term_factors(f.expand()))
# total number of symbols in equation
no_of_symbols = len([arg for arg in term_factors if arg.has(symbol)])
# total number of trigonometric terms in equation
no_of_trig = len([arg for arg in term_factors \
if arg.has(HyperbolicFunction, TrigonometricFunction)])
if f.is_Add and no_of_symbols >= 2:
# `log`, `HyperbolicFunction`, `TrigonometricFunction` should have symbols
# and no_of_trig < no_of_symbols
lambert_funcs = (log, HyperbolicFunction, TrigonometricFunction)
if any(isinstance(arg, lambert_funcs)\
for arg in term_factors if arg.has(symbol)):
if no_of_trig < no_of_symbols:
return True
# here, `Pow`, `exp` exponent should have symbols
elif any(isinstance(arg, (Pow, exp)) \
for arg in term_factors if (arg.as_base_exp()[1]).has(symbol)):
return True
return False
def _transolve(f, symbol, domain):
r"""
Function to solve transcendental equations. It is a helper to
``solveset`` and should be used internally. ``_transolve``
currently supports the following class of equations:
- Exponential equations
- Logarithmic equations
Parameters
==========
f : Any transcendental equation that needs to be solved.
This needs to be an expression, which is assumed
to be equal to ``0``.
symbol : The variable for which the equation is solved.
This needs to be of class ``Symbol``.
domain : A set over which the equation is solved.
This needs to be of class ``Set``.
Returns
=======
Set
A set of values for ``symbol`` for which ``f`` is equal to
zero. An ``EmptySet`` is returned if ``f`` does not have solutions
in respective domain. A ``ConditionSet`` is returned as unsolved
object if algorithms to evaluate complete solution are not
yet implemented.
How to use ``_transolve``
=========================
``_transolve`` should not be used as an independent function, because
it assumes that the equation (``f``) and the ``symbol`` comes from
``solveset`` and might have undergone a few modification(s).
To use ``_transolve`` as an independent function the equation (``f``)
and the ``symbol`` should be passed as they would have been by
``solveset``.
Examples
========
>>> from sympy.solvers.solveset import _transolve as transolve
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy import symbols, S, pprint
>>> x = symbols('x', real=True) # assumption added
>>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals)
{-(log(3) + 3*log(5))/(-log(5) + 2*log(3))}
How ``_transolve`` works
========================
``_transolve`` uses two types of helper functions to solve equations
of a particular class:
Identifying helpers: To determine whether a given equation
belongs to a certain class of equation or not. Returns either
``True`` or ``False``.
Solving helpers: Once an equation is identified, a corresponding
helper either solves the equation or returns a form of the equation
that ``solveset`` might better be able to handle.
* Philosophy behind the module
The purpose of ``_transolve`` is to take equations which are not
already polynomial in their generator(s) and to either recast them
as such through a valid transformation or to solve them outright.
A pair of helper functions for each class of supported
transcendental functions are employed for this purpose. One
identifies the transcendental form of an equation and the other
either solves it or recasts it into a tractable form that can be
solved by ``solveset``.
For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0`
can be transformed to
`\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0`
(under certain assumptions) and this can be solved with ``solveset``
if `f(x)` and `g(x)` are in polynomial form.
How ``_transolve`` is better than ``_tsolve``
=============================================
1) Better output
``_transolve`` provides expressions in a more simplified form.
Consider a simple exponential equation
>>> f = 3**(2*x) - 2**(x + 3)
>>> pprint(transolve(f, x, S.Reals), use_unicode=False)
-3*log(2)
{------------------}
-2*log(3) + log(2)
>>> pprint(tsolve(f, x), use_unicode=False)
/ 3 \
| --------|
| log(2/9)|
[-log\2 /]
2) Extensible
The API of ``_transolve`` is designed such that it is easily
extensible, i.e. the code that solves a given class of
equations is encapsulated in a helper and not mixed in with
the code of ``_transolve`` itself.
3) Modular
``_transolve`` is designed to be modular i.e, for every class of
equation a separate helper for identification and solving is
implemented. This makes it easy to change or modify any of the
method implemented directly in the helpers without interfering
with the actual structure of the API.
4) Faster Computation
Solving equation via ``_transolve`` is much faster as compared to
``_tsolve``. In ``solve``, attempts are made computing every possibility
to get the solutions. This series of attempts makes solving a bit
slow. In ``_transolve``, computation begins only after a particular
type of equation is identified.
How to add new class of equations
=================================
Adding a new class of equation solver is a three-step procedure:
- Identify the type of the equations
Determine the type of the class of equations to which they belong:
it could be of ``Add``, ``Pow``, etc. types. Separate internal functions
are used for each type. Write identification and solving helpers
and use them from within the routine for the given type of equation
(after adding it, if necessary). Something like:
.. code-block:: python
def add_type(lhs, rhs, x):
....
if _is_exponential(lhs, x):
new_eq = _solve_exponential(lhs, rhs, x)
....
rhs, lhs = eq.as_independent(x)
if lhs.is_Add:
result = add_type(lhs, rhs, x)
- Define the identification helper.
- Define the solving helper.
Apart from this, a few other things needs to be taken care while
adding an equation solver:
- Naming conventions:
Name of the identification helper should be as
``_is_class`` where class will be the name or abbreviation
of the class of equation. The solving helper will be named as
``_solve_class``.
For example: for exponential equations it becomes
``_is_exponential`` and ``_solve_expo``.
- The identifying helpers should take two input parameters,
the equation to be checked and the variable for which a solution
is being sought, while solving helpers would require an additional
domain parameter.
- Be sure to consider corner cases.
- Add tests for each helper.
- Add a docstring to your helper that describes the method
implemented.
The documentation of the helpers should identify:
- the purpose of the helper,
- the method used to identify and solve the equation,
- a proof of correctness
- the return values of the helpers
"""
def add_type(lhs, rhs, symbol, domain):
"""
Helper for ``_transolve`` to handle equations of
``Add`` type, i.e. equations taking the form as
``a*f(x) + b*g(x) + .... = c``.
For example: 4**x + 8**x = 0
"""
result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain)
# check if it is exponential type equation
if _is_exponential(lhs, symbol):
result = _solve_exponential(lhs, rhs, symbol, domain)
# check if it is logarithmic type equation
elif _is_logarithmic(lhs, symbol):
result = _solve_logarithm(lhs, rhs, symbol, domain)
return result
result = ConditionSet(symbol, Eq(f, 0), domain)
# invert_complex handles the call to the desired inverter based
# on the domain specified.
lhs, rhs_s = invert_complex(f, 0, symbol, domain)
if isinstance(rhs_s, FiniteSet):
assert (len(rhs_s.args)) == 1
rhs = rhs_s.args[0]
if lhs.is_Add:
result = add_type(lhs, rhs, symbol, domain)
else:
result = rhs_s
return result
def solveset(f, symbol=None, domain=S.Complexes):
r"""Solves a given inequality or equation with set as output
Parameters
==========
f : Expr or a relational.
The target equation or inequality
symbol : Symbol
The variable for which the equation is solved
domain : Set
The domain over which the equation is solved
Returns
=======
Set
A set of values for `symbol` for which `f` is True or is equal to
zero. An :class:`~.EmptySet` is returned if `f` is False or nonzero.
A :class:`~.ConditionSet` is returned as unsolved object if algorithms
to evaluate complete solution are not yet implemented.
``solveset`` claims to be complete in the solution set that it returns.
Raises
======
NotImplementedError
The algorithms to solve inequalities in complex domain are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report to the github issue tracker.
Notes
=====
Python interprets 0 and 1 as False and True, respectively, but
in this function they refer to solutions of an expression. So 0 and 1
return the domain and EmptySet, respectively, while True and False
return the opposite (as they are assumed to be solutions of relational
expressions).
See Also
========
solveset_real: solver for real domain
solveset_complex: solver for complex domain
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S, Eq
>>> from sympy.solvers.solveset import solveset, solveset_real
* The default domain is complex. Not specifying a domain will lead
to the solving of the equation in the complex domain (and this
is not affected by the assumptions on the symbol):
>>> x = Symbol('x')
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers}
>>> x = Symbol('x', real=True)
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers}
* If you want to use ``solveset`` to solve the equation in the
real domain, provide a real domain. (Using ``solveset_real``
does this automatically.)
>>> R = S.Reals
>>> x = Symbol('x')
>>> solveset(exp(x) - 1, x, R)
{0}
>>> solveset_real(exp(x) - 1, x)
{0}
The solution is unaffected by assumptions on the symbol:
>>> p = Symbol('p', positive=True)
>>> pprint(solveset(p**2 - 4))
{-2, 2}
When a :class:`~.ConditionSet` is returned, symbols with assumptions that
would alter the set are replaced with more generic symbols:
>>> i = Symbol('i', imaginary=True)
>>> solveset(Eq(i**2 + i*sin(i), 1), i, domain=S.Reals)
ConditionSet(_R, Eq(_R**2 + _R*sin(_R) - 1, 0), Reals)
* Inequalities can be solved over the real domain only. Use of a complex
domain leads to a NotImplementedError.
>>> solveset(exp(x) > 1, x, R)
Interval.open(0, oo)
"""
f = sympify(f)
symbol = sympify(symbol)
if f is S.true:
return domain
if f is S.false:
return S.EmptySet
if not isinstance(f, (Expr, Relational, Number)):
raise ValueError("%s is not a valid SymPy expression" % f)
if not isinstance(symbol, (Expr, Relational)) and symbol is not None:
raise ValueError("%s is not a valid SymPy symbol" % (symbol,))
if not isinstance(domain, Set):
raise ValueError("%s is not a valid domain" %(domain))
free_symbols = f.free_symbols
if f.has(Piecewise):
f = piecewise_fold(f)
if symbol is None and not free_symbols:
b = Eq(f, 0)
if b is S.true:
return domain
elif b is S.false:
return S.EmptySet
else:
raise NotImplementedError(filldedent('''
relationship between value and 0 is unknown: %s''' % b))
if symbol is None:
if len(free_symbols) == 1:
symbol = free_symbols.pop()
elif free_symbols:
raise ValueError(filldedent('''
The independent variable must be specified for a
multivariate equation.'''))
elif not isinstance(symbol, Symbol):
f, s, swap = recast_to_symbols([f], [symbol])
# the xreplace will be needed if a ConditionSet is returned
return solveset(f[0], s[0], domain).xreplace(swap)
# solveset should ignore assumptions on symbols
if symbol not in _rc:
x = _rc[0] if domain.is_subset(S.Reals) else _rc[1]
rv = solveset(f.xreplace({symbol: x}), x, domain)
# try to use the original symbol if possible
try:
_rv = rv.xreplace({x: symbol})
except TypeError:
_rv = rv
if rv.dummy_eq(_rv):
rv = _rv
return rv
# Abs has its own handling method which avoids the
# rewriting property that the first piece of abs(x)
# is for x >= 0 and the 2nd piece for x < 0 -- solutions
# can look better if the 2nd condition is x <= 0. Since
# the solution is a set, duplication of results is not
# an issue, e.g. {y, -y} when y is 0 will be {0}
f, mask = _masked(f, Abs)
f = f.rewrite(Piecewise) # everything that's not an Abs
for d, e in mask:
# everything *in* an Abs
e = e.func(e.args[0].rewrite(Piecewise))
f = f.xreplace({d: e})
f = piecewise_fold(f)
return _solveset(f, symbol, domain, _check=True)
def solveset_real(f, symbol):
return solveset(f, symbol, S.Reals)
def solveset_complex(f, symbol):
return solveset(f, symbol, S.Complexes)
def _solveset_multi(eqs, syms, domains):
'''Basic implementation of a multivariate solveset.
For internal use (not ready for public consumption)'''
rep = {}
for sym, dom in zip(syms, domains):
if dom is S.Reals:
rep[sym] = Symbol(sym.name, real=True)
eqs = [eq.subs(rep) for eq in eqs]
syms = [sym.subs(rep) for sym in syms]
syms = tuple(syms)
if len(eqs) == 0:
return ProductSet(*domains)
if len(syms) == 1:
sym = syms[0]
domain = domains[0]
solsets = [solveset(eq, sym, domain) for eq in eqs]
solset = Intersection(*solsets)
return ImageSet(Lambda((sym,), (sym,)), solset).doit()
eqs = sorted(eqs, key=lambda eq: len(eq.free_symbols & set(syms)))
for n, eq in enumerate(eqs):
sols = []
all_handled = True
for sym in syms:
if sym not in eq.free_symbols:
continue
sol = solveset(eq, sym, domains[syms.index(sym)])
if isinstance(sol, FiniteSet):
i = syms.index(sym)
symsp = syms[:i] + syms[i+1:]
domainsp = domains[:i] + domains[i+1:]
eqsp = eqs[:n] + eqs[n+1:]
for s in sol:
eqsp_sub = [eq.subs(sym, s) for eq in eqsp]
sol_others = _solveset_multi(eqsp_sub, symsp, domainsp)
fun = Lambda((symsp,), symsp[:i] + (s,) + symsp[i:])
sols.append(ImageSet(fun, sol_others).doit())
else:
all_handled = False
if all_handled:
return Union(*sols)
def solvify(f, symbol, domain):
"""Solves an equation using solveset and returns the solution in accordance
with the `solve` output API.
Returns
=======
We classify the output based on the type of solution returned by `solveset`.
Solution | Output
----------------------------------------
FiniteSet | list
ImageSet, | list (if `f` is periodic)
Union |
Union | list (with FiniteSet)
EmptySet | empty list
Others | None
Raises
======
NotImplementedError
A ConditionSet is the input.
Examples
========
>>> from sympy.solvers.solveset import solvify
>>> from sympy.abc import x
>>> from sympy import S, tan, sin, exp
>>> solvify(x**2 - 9, x, S.Reals)
[-3, 3]
>>> solvify(sin(x) - 1, x, S.Reals)
[pi/2]
>>> solvify(tan(x), x, S.Reals)
[0]
>>> solvify(exp(x) - 1, x, S.Complexes)
>>> solvify(exp(x) - 1, x, S.Reals)
[0]
"""
solution_set = solveset(f, symbol, domain)
result = None
if solution_set is S.EmptySet:
result = []
elif isinstance(solution_set, ConditionSet):
raise NotImplementedError('solveset is unable to solve this equation.')
elif isinstance(solution_set, FiniteSet):
result = list(solution_set)
else:
period = periodicity(f, symbol)
if period is not None:
solutions = S.EmptySet
iter_solutions = ()
if isinstance(solution_set, ImageSet):
iter_solutions = (solution_set,)
elif isinstance(solution_set, Union):
if all(isinstance(i, ImageSet) for i in solution_set.args):
iter_solutions = solution_set.args
for solution in iter_solutions:
solutions += solution.intersect(Interval(0, period, False, True))
if isinstance(solutions, FiniteSet):
result = list(solutions)
else:
solution = solution_set.intersect(domain)
if isinstance(solution, Union):
# concerned about only FiniteSet with Union but not about ImageSet
# if required could be extend
if any(isinstance(i, FiniteSet) for i in solution.args):
result = [sol for soln in solution.args \
for sol in soln.args if isinstance(soln,FiniteSet)]
else:
return None
elif isinstance(solution, FiniteSet):
result += solution
return result
###############################################################################
################################ LINSOLVE #####################################
###############################################################################
def linear_coeffs(eq, *syms, **_kw):
"""Return a list whose elements are the coefficients of the
corresponding symbols in the sum of terms in ``eq``.
The additive constant is returned as the last element of the
list.
Raises
======
NonlinearError
The equation contains a nonlinear term
Examples
========
>>> from sympy.solvers.solveset import linear_coeffs
>>> from sympy.abc import x, y, z
>>> linear_coeffs(3*x + 2*y - 1, x, y)
[3, 2, -1]
It is not necessary to expand the expression:
>>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x)
[3*y*z + 1, y*(2*z + 3)]
But if there are nonlinear or cross terms -- even if they would
cancel after simplification -- an error is raised so the situation
does not pass silently past the caller's attention:
>>> eq = 1/x*(x - 1) + 1/x
>>> linear_coeffs(eq.expand(), x)
[0, 1]
>>> linear_coeffs(eq, x)
Traceback (most recent call last):
...
NonlinearError: nonlinear term encountered: 1/x
>>> linear_coeffs(x*(y + 1) - x*y, x, y)
Traceback (most recent call last):
...
NonlinearError: nonlinear term encountered: x*(y + 1)
"""
d = defaultdict(list)
eq = _sympify(eq)
symset = set(syms)
if len(symset) != len(syms):
raise ValueError('duplicate symbols given')
has = set(iterfreeargs(eq)) & symset
if not has:
return [S.Zero]*len(syms) + [eq]
c, terms = eq.as_coeff_add(*has)
d[0].extend(Add.make_args(c))
for t in terms:
m, f = t.as_coeff_mul(*has)
if len(f) != 1:
break
f = f[0]
if f in symset:
d[f].append(m)
elif f.is_Add:
d1 = linear_coeffs(f, *has, **{'dict': True})
d[0].append(m*d1.pop(0))
for xf, vf in d1.items():
d[xf].append(m*vf)
else:
break
else:
for k, v in d.items():
d[k] = Add(*v)
if not _kw:
return [d.get(s, S.Zero) for s in syms]+ [d[0]]
return d # default is still list but this won't matter
raise NonlinearError('nonlinear term encountered: %s' % t)
def linear_eq_to_matrix(equations, *symbols):
r"""
Converts a given System of Equations into Matrix form.
Here `equations` must be a linear system of equations in
`symbols`. Element ``M[i, j]`` corresponds to the coefficient
of the jth symbol in the ith equation.
The Matrix form corresponds to the augmented matrix form.
For example:
.. math:: 4x + 2y + 3z = 1
.. math:: 3x + y + z = -6
.. math:: 2x + 4y + 9z = 2
This system will return $A$ and $b$ as:
$$ A = \left[\begin{array}{ccc}
4 & 2 & 3 \\
3 & 1 & 1 \\
2 & 4 & 9
\end{array}\right] \ \ b = \left[\begin{array}{c}
1 \\ -6 \\ 2
\end{array}\right] $$
The only simplification performed is to convert
``Eq(a, b)`` $\Rightarrow a - b$.
Raises
======
NonlinearError
The equations contain a nonlinear term.
ValueError
The symbols are not given or are not unique.
Examples
========
>>> from sympy import linear_eq_to_matrix, symbols
>>> c, x, y, z = symbols('c, x, y, z')
The coefficients (numerical or symbolic) of the symbols will
be returned as matrices:
>>> eqns = [c*x + z - 1 - c, y + z, x - y]
>>> A, b = linear_eq_to_matrix(eqns, [x, y, z])
>>> A
Matrix([
[c, 0, 1],
[0, 1, 1],
[1, -1, 0]])
>>> b
Matrix([
[c + 1],
[ 0],
[ 0]])
This routine does not simplify expressions and will raise an error
if nonlinearity is encountered:
>>> eqns = [
... (x**2 - 3*x)/(x - 3) - 3,
... y**2 - 3*y - y*(y - 4) + x - 4]
>>> linear_eq_to_matrix(eqns, [x, y])
Traceback (most recent call last):
...
NonlinearError:
The term (x**2 - 3*x)/(x - 3) is nonlinear in {x, y}
Simplifying these equations will discard the removable singularity
in the first, reveal the linear structure of the second:
>>> [e.simplify() for e in eqns]
[x - 3, x + y - 4]
Any such simplification needed to eliminate nonlinear terms must
be done before calling this routine.
"""
if not symbols:
raise ValueError(filldedent('''
Symbols must be given, for which coefficients
are to be found.
'''))
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
for i in symbols:
if not isinstance(i, Symbol):
raise ValueError(filldedent('''
Expecting a Symbol but got %s
''' % i))
if has_dups(symbols):
raise ValueError('Symbols must be unique')
equations = sympify(equations)
if isinstance(equations, MatrixBase):
equations = list(equations)
elif isinstance(equations, (Expr, Eq)):
equations = [equations]
elif not is_sequence(equations):
raise ValueError(filldedent('''
Equation(s) must be given as a sequence, Expr,
Eq or Matrix.
'''))
A, b = [], []
for i, f in enumerate(equations):
if isinstance(f, Equality):
f = f.rewrite(Add, evaluate=False)
coeff_list = linear_coeffs(f, *symbols)
b.append(-coeff_list.pop())
A.append(coeff_list)
A, b = map(Matrix, (A, b))
return A, b
def linsolve(system, *symbols):
r"""
Solve system of $N$ linear equations with $M$ variables; both
underdetermined and overdetermined systems are supported.
The possible number of solutions is zero, one or infinite.
Zero solutions throws a ValueError, whereas infinite
solutions are represented parametrically in terms of the given
symbols. For unique solution a :class:`~.FiniteSet` of ordered tuples
is returned.
All standard input formats are supported:
For the given set of equations, the respective input types
are given below:
.. math:: 3x + 2y - z = 1
.. math:: 2x - 2y + 4z = -2
.. math:: 2x - y + 2z = 0
* Augmented matrix form, ``system`` given below:
$$ \text{system} = \left[{array}{cccc}
3 & 2 & -1 & 1\\
2 & -2 & 4 & -2\\
2 & -1 & 2 & 0
\end{array}\right] $$
::
system = Matrix([[3, 2, -1, 1], [2, -2, 4, -2], [2, -1, 2, 0]])
* List of equations form
::
system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]
* Input $A$ and $b$ in matrix form (from $Ax = b$) are given as:
$$ A = \left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & -2 & 4 \\
2 & -1 & 2
\end{array}\right] \ \ b = \left[\begin{array}{c}
1 \\ -2 \\ 0
\end{array}\right] $$
::
A = Matrix([[3, 2, -1], [2, -2, 4], [2, -1, 2]])
b = Matrix([[1], [-2], [0]])
system = (A, b)
Symbols can always be passed but are actually only needed
when 1) a system of equations is being passed and 2) the
system is passed as an underdetermined matrix and one wants
to control the name of the free variables in the result.
An error is raised if no symbols are used for case 1, but if
no symbols are provided for case 2, internally generated symbols
will be provided. When providing symbols for case 2, there should
be at least as many symbols are there are columns in matrix A.
The algorithm used here is Gauss-Jordan elimination, which
results, after elimination, in a row echelon form matrix.
Returns
=======
A FiniteSet containing an ordered tuple of values for the
unknowns for which the `system` has a solution. (Wrapping
the tuple in FiniteSet is used to maintain a consistent
output format throughout solveset.)
Returns EmptySet, if the linear system is inconsistent.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
Examples
========
>>> from sympy import Matrix, linsolve, symbols
>>> x, y, z = symbols("x, y, z")
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> A
Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 10]])
>>> b
Matrix([
[3],
[6],
[9]])
>>> linsolve((A, b), [x, y, z])
{(-1, 2, 0)}
* Parametric Solution: In case the system is underdetermined, the
function will return a parametric solution in terms of the given
symbols. Those that are free will be returned unchanged. e.g. in
the system below, `z` is returned as the solution for variable z;
it can take on any value.
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = Matrix([3, 6, 9])
>>> linsolve((A, b), x, y, z)
{(z - 1, 2 - 2*z, z)}
If no symbols are given, internally generated symbols will be used.
The ``tau0`` in the third position indicates (as before) that the third
variable -- whatever it is named -- can take on any value:
>>> linsolve((A, b))
{(tau0 - 1, 2 - 2*tau0, tau0)}
* List of equations as input
>>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z]
>>> linsolve(Eqns, x, y, z)
{(1, -2, -2)}
* Augmented matrix as input
>>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])
>>> aug
Matrix([
[2, 1, 3, 1],
[2, 6, 8, 3],
[6, 8, 18, 5]])
>>> linsolve(aug, x, y, z)
{(3/10, 2/5, 0)}
* Solve for symbolic coefficients
>>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')
>>> eqns = [a*x + b*y - c, d*x + e*y - f]
>>> linsolve(eqns, x, y)
{((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}
* A degenerate system returns solution as set of given
symbols.
>>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0]))
>>> linsolve(system, x, y)
{(x, y)}
* For an empty system linsolve returns empty set
>>> linsolve([], x)
EmptySet
* An error is raised if, after expansion, any nonlinearity
is detected:
>>> linsolve([x*(1/x - 1), (y - 1)**2 - y**2 + 1], x, y)
{(1, 1)}
>>> linsolve([x**2 - 1], x)
Traceback (most recent call last):
...
NonlinearError:
nonlinear term encountered: x**2
"""
if not system:
return S.EmptySet
# If second argument is an iterable
if symbols and hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
sym_gen = isinstance(symbols, GeneratorType)
b = None # if we don't get b the input was bad
# unpack system
if hasattr(system, '__iter__'):
# 1). (A, b)
if len(system) == 2 and isinstance(system[0], MatrixBase):
A, b = system
# 2). (eq1, eq2, ...)
if not isinstance(system[0], MatrixBase):
if sym_gen or not symbols:
raise ValueError(filldedent('''
When passing a system of equations, the explicit
symbols for which a solution is being sought must
be given as a sequence, too.
'''))
#
# Pass to the sparse solver implemented in polys. It is important
# that we do not attempt to convert the equations to a matrix
# because that would be very inefficient for large sparse systems
# of equations.
#
eqs = system
eqs = [sympify(eq) for eq in eqs]
try:
sol = _linsolve(eqs, symbols)
except PolyNonlinearError as exc:
# e.g. cos(x) contains an element of the set of generators
raise NonlinearError(str(exc))
if sol is None:
return S.EmptySet
sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols)))
return sol
elif isinstance(system, MatrixBase) and not (
symbols and not isinstance(symbols, GeneratorType) and
isinstance(symbols[0], MatrixBase)):
# 3). A augmented with b
A, b = system[:, :-1], system[:, -1:]
if b is None:
raise ValueError("Invalid arguments")
if sym_gen:
symbols = [next(symbols) for i in range(A.cols)]
if any(set(symbols) & (A.free_symbols | b.free_symbols)):
raise ValueError(filldedent('''
At least one of the symbols provided
already appears in the system to be solved.
One way to avoid this is to use Dummy symbols in
the generator, e.g. numbered_symbols('%s', cls=Dummy)
''' % symbols[0].name.rstrip('1234567890')))
if not symbols:
symbols = [Dummy() for _ in range(A.cols)]
name = _uniquely_named_symbol('tau', (A, b),
compare=lambda i: str(i).rstrip('1234567890')).name
gen = numbered_symbols(name)
else:
gen = None
# This is just a wrapper for solve_lin_sys
eqs = []
rows = A.tolist()
for rowi, bi in zip(rows, b):
terms = [elem * sym for elem, sym in zip(rowi, symbols) if elem]
terms.append(-bi)
eqs.append(Add(*terms))
eqs, ring = sympy_eqs_to_ring(eqs, symbols)
sol = solve_lin_sys(eqs, ring, _raw=False)
if sol is None:
return S.EmptySet
#sol = {sym:val for sym, val in sol.items() if sym != val}
sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols)))
if gen is not None:
solsym = sol.free_symbols
rep = {sym: next(gen) for sym in symbols if sym in solsym}
sol = sol.subs(rep)
return sol
##############################################################################
# ------------------------------nonlinsolve ---------------------------------#
##############################################################################
def _return_conditionset(eqs, symbols):
# return conditionset
eqs = (Eq(lhs, 0) for lhs in eqs)
condition_set = ConditionSet(
Tuple(*symbols), And(*eqs), S.Complexes**len(symbols))
return condition_set
def substitution(system, symbols, result=[{}], known_symbols=[],
exclude=[], all_symbols=None):
r"""
Solves the `system` using substitution method. It is used in
:func:`~.nonlinsolve`. This will be called from :func:`~.nonlinsolve` when any
equation(s) is non polynomial equation.
Parameters
==========
system : list of equations
The target system of equations
symbols : list of symbols to be solved.
The variable(s) for which the system is solved
known_symbols : list of solved symbols
Values are known for these variable(s)
result : An empty list or list of dict
If No symbol values is known then empty list otherwise
symbol as keys and corresponding value in dict.
exclude : Set of expression.
Mostly denominator expression(s) of the equations of the system.
Final solution should not satisfy these expressions.
all_symbols : known_symbols + symbols(unsolved).
Returns
=======
A FiniteSet of ordered tuple of values of `all_symbols` for which the
`system` has solution. Order of values in the tuple is same as symbols
present in the parameter `all_symbols`. If parameter `all_symbols` is None
then same as symbols present in the parameter `symbols`.
Please note that general FiniteSet is unordered, the solution returned
here is not simply a FiniteSet of solutions, rather it is a FiniteSet of
ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of
solutions, which is ordered, & hence the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper `{}` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not :class:`~.Symbol` type.
Examples
========
>>> from sympy import symbols, substitution
>>> x, y = symbols('x, y', real=True)
>>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y])
{(-1, 1)}
* When you want a soln not satisfying $x + 1 = 0$
>>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x])
EmptySet
>>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x])
{(1, -1)}
>>> substitution([x + y - 1, y - x**2 + 5], [x, y])
{(-3, 4), (2, -1)}
* Returns both real and complex solution
>>> x, y, z = symbols('x, y, z')
>>> from sympy import exp, sin
>>> substitution([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
(ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
>>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)]
>>> substitution(eqs, [y, z])
{(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3)))),
(ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers),
ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers)),
(ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers),
ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers))}
"""
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if not is_sequence(symbols):
msg = ('symbols should be given as a sequence, e.g. a list.'
'Not type %s: %s')
raise TypeError(filldedent(msg % (type(symbols), symbols)))
if not getattr(symbols[0], 'is_Symbol', False):
msg = ('Iterable of symbols must be given as '
'second argument, not type %s: %s')
raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0])))
# By default `all_symbols` will be same as `symbols`
if all_symbols is None:
all_symbols = symbols
old_result = result
# storing complements and intersection for particular symbol
complements = {}
intersections = {}
# when total_solveset_call equals total_conditionset
# it means that solveset failed to solve all eqs.
total_conditionset = -1
total_solveset_call = -1
def _unsolved_syms(eq, sort=False):
"""Returns the unsolved symbol present
in the equation `eq`.
"""
free = eq.free_symbols
unsolved = (free - set(known_symbols)) & set(all_symbols)
if sort:
unsolved = list(unsolved)
unsolved.sort(key=default_sort_key)
return unsolved
# end of _unsolved_syms()
# sort such that equation with the fewest potential symbols is first.
# means eq with less number of variable first in the list.
eqs_in_better_order = list(
ordered(system, lambda _: len(_unsolved_syms(_))))
def add_intersection_complement(result, intersection_dict, complement_dict):
# If solveset has returned some intersection/complement
# for any symbol, it will be added in the final solution.
final_result = []
for res in result:
res_copy = res
for key_res, value_res in res.items():
intersect_set, complement_set = None, None
for key_sym, value_sym in intersection_dict.items():
if key_sym == key_res:
intersect_set = value_sym
for key_sym, value_sym in complement_dict.items():
if key_sym == key_res:
complement_set = value_sym
if intersect_set or complement_set:
new_value = FiniteSet(value_res)
if intersect_set and intersect_set != S.Complexes:
new_value = Intersection(new_value, intersect_set)
if complement_set:
new_value = Complement(new_value, complement_set)
if new_value is S.EmptySet:
res_copy = None
break
elif new_value.is_FiniteSet and len(new_value) == 1:
res_copy[key_res] = set(new_value).pop()
else:
res_copy[key_res] = new_value
if res_copy is not None:
final_result.append(res_copy)
return final_result
# end of def add_intersection_complement()
def _extract_main_soln(sym, sol, soln_imageset):
"""Separate the Complements, Intersections, ImageSet lambda expr and
its base_set. This function returns the unmasks sol from different classes
of sets and also returns the appended ImageSet elements in a
soln_imageset (dict: where key as unmasked element and value as ImageSet).
"""
# if there is union, then need to check
# Complement, Intersection, Imageset.
# Order should not be changed.
if isinstance(sol, ConditionSet):
# extracts any solution in ConditionSet
sol = sol.base_set
if isinstance(sol, Complement):
# extract solution and complement
complements[sym] = sol.args[1]
sol = sol.args[0]
# complement will be added at the end
# using `add_intersection_complement` method
# if there is union of Imageset or other in soln.
# no testcase is written for this if block
if isinstance(sol, Union):
sol_args = sol.args
sol = S.EmptySet
# We need in sequence so append finteset elements
# and then imageset or other.
for sol_arg2 in sol_args:
if isinstance(sol_arg2, FiniteSet):
sol += sol_arg2
else:
# ImageSet, Intersection, complement then
# append them directly
sol += FiniteSet(sol_arg2)
if isinstance(sol, Intersection):
# Interval/Set will be at 0th index always
if sol.args[0] not in (S.Reals, S.Complexes):
# Sometimes solveset returns soln with intersection
# S.Reals or S.Complexes. We don't consider that
# intersection.
intersections[sym] = sol.args[0]
sol = sol.args[1]
# after intersection and complement Imageset should
# be checked.
if isinstance(sol, ImageSet):
soln_imagest = sol
expr2 = sol.lamda.expr
sol = FiniteSet(expr2)
soln_imageset[expr2] = soln_imagest
if not isinstance(sol, FiniteSet):
sol = FiniteSet(sol)
return sol, soln_imageset
# end of def _extract_main_soln()
# helper function for _append_new_soln
def _check_exclude(rnew, imgset_yes):
rnew_ = rnew
if imgset_yes:
# replace all dummy variables (Imageset lambda variables)
# with zero before `checksol`. Considering fundamental soln
# for `checksol`.
rnew_copy = rnew.copy()
dummy_n = imgset_yes[0]
for key_res, value_res in rnew_copy.items():
rnew_copy[key_res] = value_res.subs(dummy_n, 0)
rnew_ = rnew_copy
# satisfy_exclude == true if it satisfies the expr of `exclude` list.
try:
# something like : `Mod(-log(3), 2*I*pi)` can't be
# simplified right now, so `checksol` returns `TypeError`.
# when this issue is fixed this try block should be
# removed. Mod(-log(3), 2*I*pi) == -log(3)
satisfy_exclude = any(
checksol(d, rnew_) for d in exclude)
except TypeError:
satisfy_exclude = None
return satisfy_exclude
# end of def _check_exclude()
# helper function for _append_new_soln
def _restore_imgset(rnew, original_imageset, newresult):
restore_sym = set(rnew.keys()) & \
set(original_imageset.keys())
for key_sym in restore_sym:
img = original_imageset[key_sym]
rnew[key_sym] = img
if rnew not in newresult:
newresult.append(rnew)
# end of def _restore_imgset()
def _append_eq(eq, result, res, delete_soln, n=None):
u = Dummy('u')
if n:
eq = eq.subs(n, 0)
satisfy = eq if eq in (True, False) else checksol(u, u, eq, minimal=True)
if satisfy is False:
delete_soln = True
res = {}
else:
result.append(res)
return result, res, delete_soln
def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult, eq=None):
"""If `rnew` (A dict <symbol: soln>) contains valid soln
append it to `newresult` list.
`imgset_yes` is (base, dummy_var) if there was imageset in previously
calculated result(otherwise empty tuple). `original_imageset` is dict
of imageset expr and imageset from this result.
`soln_imageset` dict of imageset expr and imageset of new soln.
"""
satisfy_exclude = _check_exclude(rnew, imgset_yes)
delete_soln = False
# soln should not satisfy expr present in `exclude` list.
if not satisfy_exclude:
local_n = None
# if it is imageset
if imgset_yes:
local_n = imgset_yes[0]
base = imgset_yes[1]
if sym and sol:
# when `sym` and `sol` is `None` means no new
# soln. In that case we will append rnew directly after
# substituting original imagesets in rnew values if present
# (second last line of this function using _restore_imgset)
dummy_list = list(sol.atoms(Dummy))
# use one dummy `n` which is in
# previous imageset
local_n_list = [
local_n for i in range(
0, len(dummy_list))]
dummy_zip = zip(dummy_list, local_n_list)
lam = Lambda(local_n, sol.subs(dummy_zip))
rnew[sym] = ImageSet(lam, base)
if eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln, local_n)
elif eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln)
elif sol in soln_imageset.keys():
rnew[sym] = soln_imageset[sol]
# restore original imageset
_restore_imgset(rnew, original_imageset, newresult)
else:
newresult.append(rnew)
elif satisfy_exclude:
delete_soln = True
rnew = {}
_restore_imgset(rnew, original_imageset, newresult)
return newresult, delete_soln
# end of def _append_new_soln()
def _new_order_result(result, eq):
# separate first, second priority. `res` that makes `eq` value equals
# to zero, should be used first then other result(second priority).
# If it is not done then we may miss some soln.
first_priority = []
second_priority = []
for res in result:
if not any(isinstance(val, ImageSet) for val in res.values()):
if eq.subs(res) == 0:
first_priority.append(res)
else:
second_priority.append(res)
if first_priority or second_priority:
return first_priority + second_priority
return result
def _solve_using_known_values(result, solver):
"""Solves the system using already known solution
(result contains the dict <symbol: value>).
solver is :func:`~.solveset_complex` or :func:`~.solveset_real`.
"""
# stores imageset <expr: imageset(Lambda(n, expr), base)>.
soln_imageset = {}
total_solvest_call = 0
total_conditionst = 0
# sort such that equation with the fewest potential symbols is first.
# means eq with less variable first
for index, eq in enumerate(eqs_in_better_order):
newresult = []
original_imageset = {}
# if imageset expr is used to solve other symbol
imgset_yes = False
result = _new_order_result(result, eq)
for res in result:
got_symbol = set() # symbols solved in one iteration
# find the imageset and use its expr.
for key_res, value_res in res.items():
if isinstance(value_res, ImageSet):
res[key_res] = value_res.lamda.expr
original_imageset[key_res] = value_res
dummy_n = value_res.lamda.expr.atoms(Dummy).pop()
(base,) = value_res.base_sets
imgset_yes = (dummy_n, base)
# update eq with everything that is known so far
eq2 = eq.subs(res).expand()
unsolved_syms = _unsolved_syms(eq2, sort=True)
if not unsolved_syms:
if res:
newresult, delete_res = _append_new_soln(
res, None, None, imgset_yes, soln_imageset,
original_imageset, newresult, eq2)
if delete_res:
# `delete_res` is true, means substituting `res` in
# eq2 doesn't return `zero` or deleting the `res`
# (a soln) since it staisfies expr of `exclude`
# list.
result.remove(res)
continue # skip as it's independent of desired symbols
depen1, depen2 = (eq2.rewrite(Add)).as_independent(*unsolved_syms)
if (depen1.has(Abs) or depen2.has(Abs)) and solver == solveset_complex:
# Absolute values cannot be inverted in the
# complex domain
continue
soln_imageset = {}
for sym in unsolved_syms:
not_solvable = False
try:
soln = solver(eq2, sym)
total_solvest_call += 1
soln_new = S.EmptySet
if isinstance(soln, Complement):
# separate solution and complement
complements[sym] = soln.args[1]
soln = soln.args[0]
# complement will be added at the end
if isinstance(soln, Intersection):
# Interval will be at 0th index always
if soln.args[0] != Interval(-oo, oo):
# sometimes solveset returns soln
# with intersection S.Reals, to confirm that
# soln is in domain=S.Reals
intersections[sym] = soln.args[0]
soln_new += soln.args[1]
soln = soln_new if soln_new else soln
if index > 0 and solver == solveset_real:
# one symbol's real soln, another symbol may have
# corresponding complex soln.
if not isinstance(soln, (ImageSet, ConditionSet)):
soln += solveset_complex(eq2, sym) # might give ValueError with Abs
except (NotImplementedError, ValueError):
# If solveset is not able to solve equation `eq2`. Next
# time we may get soln using next equation `eq2`
continue
if isinstance(soln, ConditionSet):
if soln.base_set in (S.Reals, S.Complexes):
soln = S.EmptySet
# don't do `continue` we may get soln
# in terms of other symbol(s)
not_solvable = True
total_conditionst += 1
else:
soln = soln.base_set
if soln is not S.EmptySet:
soln, soln_imageset = _extract_main_soln(
sym, soln, soln_imageset)
for sol in soln:
# sol is not a `Union` since we checked it
# before this loop
sol, soln_imageset = _extract_main_soln(
sym, sol, soln_imageset)
sol = set(sol).pop()
free = sol.free_symbols
if got_symbol and any(
ss in free for ss in got_symbol
):
# sol depends on previously solved symbols
# then continue
continue
rnew = res.copy()
# put each solution in res and append the new result
# in the new result list (solution for symbol `s`)
# along with old results.
for k, v in res.items():
if isinstance(v, Expr) and isinstance(sol, Expr):
# if any unsolved symbol is present
# Then subs known value
rnew[k] = v.subs(sym, sol)
# and add this new solution
if sol in soln_imageset.keys():
# replace all lambda variables with 0.
imgst = soln_imageset[sol]
rnew[sym] = imgst.lamda(
*[0 for i in range(0, len(
imgst.lamda.variables))])
else:
rnew[sym] = sol
newresult, delete_res = _append_new_soln(
rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult)
if delete_res:
# deleting the `res` (a soln) since it staisfies
# eq of `exclude` list
result.remove(res)
# solution got for sym
if not not_solvable:
got_symbol.add(sym)
# next time use this new soln
if newresult:
result = newresult
return result, total_solvest_call, total_conditionst
# end def _solve_using_know_values()
new_result_real, solve_call1, cnd_call1 = _solve_using_known_values(
old_result, solveset_real)
new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values(
old_result, solveset_complex)
# If total_solveset_call is equal to total_conditionset
# then solveset failed to solve all of the equations.
# In this case we return a ConditionSet here.
total_conditionset += (cnd_call1 + cnd_call2)
total_solveset_call += (solve_call1 + solve_call2)
if total_conditionset == total_solveset_call and total_solveset_call != -1:
return _return_conditionset(eqs_in_better_order, all_symbols)
# don't keep duplicate solutions
filtered_complex = []
for i in list(new_result_complex):
for j in list(new_result_real):
if i.keys() != j.keys():
continue
if all(a.dummy_eq(b) for a, b in zip(i.values(), j.values()) \
if not (isinstance(a, int) and isinstance(b, int))):
break
else:
filtered_complex.append(i)
# overall result
result = new_result_real + filtered_complex
result_all_variables = []
result_infinite = []
for res in result:
if not res:
# means {None : None}
continue
# If length < len(all_symbols) means infinite soln.
# Some or all the soln is dependent on 1 symbol.
# eg. {x: y+2} then final soln {x: y+2, y: y}
if len(res) < len(all_symbols):
solved_symbols = res.keys()
unsolved = list(filter(
lambda x: x not in solved_symbols, all_symbols))
for unsolved_sym in unsolved:
res[unsolved_sym] = unsolved_sym
result_infinite.append(res)
if res not in result_all_variables:
result_all_variables.append(res)
if result_infinite:
# we have general soln
# eg : [{x: -1, y : 1}, {x : -y, y: y}] then
# return [{x : -y, y : y}]
result_all_variables = result_infinite
if intersections or complements:
result_all_variables = add_intersection_complement(
result_all_variables, intersections, complements)
# convert to ordered tuple
result = S.EmptySet
for r in result_all_variables:
temp = [r[symb] for symb in all_symbols]
result += FiniteSet(tuple(temp))
return result
# end of def substitution()
def _solveset_work(system, symbols):
soln = solveset(system[0], symbols[0])
if isinstance(soln, FiniteSet):
_soln = FiniteSet(*[tuple((s,)) for s in soln])
return _soln
else:
return FiniteSet(tuple(FiniteSet(soln)))
def _handle_positive_dimensional(polys, symbols, denominators):
from sympy.polys.polytools import groebner
# substitution method where new system is groebner basis of the system
_symbols = list(symbols)
_symbols.sort(key=default_sort_key)
basis = groebner(polys, _symbols, polys=True)
new_system = []
for poly_eq in basis:
new_system.append(poly_eq.as_expr())
result = [{}]
result = substitution(
new_system, symbols, result, [],
denominators)
return result
# end of def _handle_positive_dimensional()
def _handle_zero_dimensional(polys, symbols, system):
# solve 0 dimensional poly system using `solve_poly_system`
result = solve_poly_system(polys, *symbols)
# May be some extra soln is added because
# we used `unrad` in `_separate_poly_nonpoly`, so
# need to check and remove if it is not a soln.
result_update = S.EmptySet
for res in result:
dict_sym_value = dict(list(zip(symbols, res)))
if all(checksol(eq, dict_sym_value) for eq in system):
result_update += FiniteSet(res)
return result_update
# end of def _handle_zero_dimensional()
def _separate_poly_nonpoly(system, symbols):
polys = []
polys_expr = []
nonpolys = []
# unrad_changed stores a list of expressions containing
# radicals that were processed using unrad
# this is useful if solutions need to be checked later.
unrad_changed = []
denominators = set()
poly = None
for eq in system:
# Store denom expressions that contain symbols
denominators.update(_simple_dens(eq, symbols))
# Convert equality to expression
if isinstance(eq, Equality):
eq = eq.rewrite(Add)
# try to remove sqrt and rational power
without_radicals = unrad(simplify(eq), *symbols)
if without_radicals:
unrad_changed.append(eq)
eq_unrad, cov = without_radicals
if not cov:
eq = eq_unrad
if isinstance(eq, Expr):
eq = eq.as_numer_denom()[0]
poly = eq.as_poly(*symbols, extension=True)
elif simplify(eq).is_number:
continue
if poly is not None:
polys.append(poly)
polys_expr.append(poly.as_expr())
else:
nonpolys.append(eq)
return polys, polys_expr, nonpolys, denominators, unrad_changed
# end of def _separate_poly_nonpoly()
def _handle_poly(polys, symbols):
# _handle_poly(polys, symbols) -> (poly_sol, poly_eqs)
#
# We will return possible solution information to nonlinsolve as well as a
# new system of polynomial equations to be solved if we cannot solve
# everything directly here. The new system of polynomial equations will be
# a lex-order Groebner basis for the original system. The lex basis
# hopefully separate some of the variables and equations and give something
# easier for substitution to work with.
# The format for representing solution sets in nonlinsolve and substitution
# is a list of dicts. These are the special cases:
no_information = [{}] # No equations solved yet
no_solutions = [] # The system is inconsistent and has no solutions.
# If there is no need to attempt further solution of these equations then
# we return no equations:
no_equations = []
inexact = any(not p.domain.is_Exact for p in polys)
if inexact:
# The use of Groebner over RR is likely to result incorrectly in an
# inconsistent Groebner basis. So, convert any float coefficients to
# Rational before computing the Groebner basis.
polys = [poly(nsimplify(p, rational=True)) for p in polys]
# Compute a Groebner basis in grevlex order wrt the ordering given. We will
# try to convert this to lex order later. Usually it seems to be more
# efficient to compute a lex order basis by computing a grevlex basis and
# converting to lex with fglm.
basis = groebner(polys, symbols, order='grevlex', polys=False)
#
# No solutions (inconsistent equations)?
#
if 1 in basis:
# No solutions:
poly_sol = no_solutions
poly_eqs = no_equations
#
# Finite number of solutions (zero-dimensional case)
#
elif basis.is_zero_dimensional:
# Convert Groebner basis to lex ordering
basis = basis.fglm('lex')
# Convert polynomial coefficients back to float before calling
# solve_poly_system
if inexact:
basis = [nfloat(p) for p in basis]
# Solve the zero-dimensional case using solve_poly_system if possible.
# If some polynomials have factors that cannot be solved in radicals
# then this will fail. Using solve_poly_system(..., strict=True)
# ensures that we either get a complete solution set in radicals or
# UnsolvableFactorError will be raised.
try:
result = solve_poly_system(basis, *symbols, strict=True)
except UnsolvableFactorError:
# Failure... not fully solvable in radicals. Return the lex-order
# basis for substitution to handle.
poly_sol = no_information
poly_eqs = list(basis)
else:
# Success! We have a finite solution set and solve_poly_system has
# succeeded in finding all solutions. Return the solutions and also
# an empty list of remaining equations to be solved.
poly_sol = [dict(zip(symbols, res)) for res in result]
poly_eqs = no_equations
#
# Infinite families of solutions (positive-dimensional case)
#
else:
# In this case the grevlex basis cannot be converted to lex using the
# fglm method and also solve_poly_system cannot solve the equations. We
# would like to return a lex basis but since we can't use fglm we
# compute the lex basis directly here. The time required to recompute
# the basis is generally significantly less than the time required by
# substitution to solve the new system.
poly_sol = no_information
poly_eqs = list(groebner(polys, symbols, order='lex', polys=False))
if inexact:
poly_eqs = [nfloat(p) for p in poly_eqs]
return poly_sol, poly_eqs
def nonlinsolve(system, *symbols):
r"""
Solve system of $N$ nonlinear equations with $M$ variables, which means both
under and overdetermined systems are supported. Positive dimensional
system is also supported (A system with infinitely many solutions is said
to be positive-dimensional). In a positive dimensional system the solution will
be dependent on at least one symbol. Returns both real solution
and complex solution (if they exist).
Parameters
==========
system : list of equations
The target system of equations
symbols : list of Symbols
symbols should be given as a sequence eg. list
Returns
=======
A :class:`~.FiniteSet` of ordered tuple of values of `symbols` for which the `system`
has solution. Order of values in the tuple is same as symbols present in
the parameter `symbols`.
Please note that general :class:`~.FiniteSet` is unordered, the solution
returned here is not simply a :class:`~.FiniteSet` of solutions, rather it
is a :class:`~.FiniteSet` of ordered tuple, i.e. the first and only
argument to :class:`~.FiniteSet` is a tuple of solutions, which is
ordered, and, hence ,the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper ``{}`` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
For the given set of equations, the respective input types
are given below:
.. math:: xy - 1 = 0
.. math:: 4x^2 + y^2 - 5 = 0
::
system = [x*y - 1, 4*x**2 + y**2 - 5]
symbols = [x, y]
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not `Symbol` type.
Examples
========
>>> from sympy import symbols, nonlinsolve
>>> x, y, z = symbols('x, y, z', real=True)
>>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])
{(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}
1. Positive dimensional system and complements:
>>> from sympy import pprint
>>> from sympy.polys.polytools import is_zero_dimensional
>>> a, b, c, d = symbols('a, b, c, d', extended_real=True)
>>> eq1 = a + b + c + d
>>> eq2 = a*b + b*c + c*d + d*a
>>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b
>>> eq4 = a*b*c*d - 1
>>> system = [eq1, eq2, eq3, eq4]
>>> is_zero_dimensional(system)
False
>>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)
-1 1 1 -1
{(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})}
d d d d
>>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y])
{(2 - y, y)}
2. If some of the equations are non-polynomial then `nonlinsolve`
will call the ``substitution`` function and return real and complex solutions,
if present.
>>> from sympy import exp, sin
>>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
(ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
3. If system is non-linear polynomial and zero-dimensional then it
returns both solution (real and complex solutions, if present) using
:func:`~.solve_poly_system`:
>>> from sympy import sqrt
>>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y])
{(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}
4. ``nonlinsolve`` can solve some linear (zero or positive dimensional)
system (because it uses the :func:`sympy.polys.polytools.groebner` function to get the
groebner basis and then uses the ``substitution`` function basis as the
new `system`). But it is not recommended to solve linear system using
``nonlinsolve``, because :func:`~.linsolve` is better for general linear systems.
>>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9, y + z - 4], [x, y, z])
{(3*z - 5, 4 - z, z)}
5. System having polynomial equations and only real solution is
solved using :func:`~.solve_poly_system`:
>>> e1 = sqrt(x**2 + y**2) - 10
>>> e2 = sqrt(y**2 + (-x + 10)**2) - 3
>>> nonlinsolve((e1, e2), (x, y))
{(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y])
{(1, 2), (1 - sqrt(5), 2 + sqrt(5)), (1 + sqrt(5), 2 - sqrt(5))}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x])
{(2, 1), (2 - sqrt(5), 1 + sqrt(5)), (2 + sqrt(5), 1 - sqrt(5))}
6. It is better to use symbols instead of trigonometric functions or
:class:`~.Function`. For example, replace $\sin(x)$ with a symbol, replace
$f(x)$ with a symbol and so on. Get a solution from ``nonlinsolve`` and then
use :func:`~.solveset` to get the value of $x$.
How nonlinsolve is better than old solver ``_solve_system`` :
=============================================================
1. A positive dimensional system solver: nonlinsolve can return
solution for positive dimensional system. It finds the
Groebner Basis of the positive dimensional system(calling it as
basis) then we can start solving equation(having least number of
variable first in the basis) using solveset and substituting that
solved solutions into other equation(of basis) to get solution in
terms of minimum variables. Here the important thing is how we
are substituting the known values and in which equations.
2. Real and complex solutions: nonlinsolve returns both real
and complex solution. If all the equations in the system are polynomial
then using :func:`~.solve_poly_system` both real and complex solution is returned.
If all the equations in the system are not polynomial equation then goes to
``substitution`` method with this polynomial and non polynomial equation(s),
to solve for unsolved variables. Here to solve for particular variable
solveset_real and solveset_complex is used. For both real and complex
solution ``_solve_using_known_values`` is used inside ``substitution``
(``substitution`` will be called when any non-polynomial equation is present).
If a solution is valid its general solution is added to the final result.
3. :class:`~.Complement` and :class:`~.Intersection` will be added:
nonlinsolve maintains dict for complements and intersections. If solveset
find complements or/and intersections with any interval or set during the
execution of ``substitution`` function, then complement or/and
intersection for that variable is added before returning final solution.
"""
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
if not is_sequence(symbols) or not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise IndexError(filldedent(msg))
symbols = list(map(_sympify, symbols))
system, symbols, swap = recast_to_symbols(system, symbols)
if swap:
soln = nonlinsolve(system, symbols)
return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln])
if len(system) == 1 and len(symbols) == 1:
return _solveset_work(system, symbols)
# main code of def nonlinsolve() starts from here
polys, polys_expr, nonpolys, denominators, unrad_changed = \
_separate_poly_nonpoly(system, symbols)
poly_eqs = []
poly_sol = [{}]
if polys:
poly_sol, poly_eqs = _handle_poly(polys, symbols)
if poly_sol and poly_sol[0]:
poly_syms = set().union(*(eq.free_symbols for eq in polys))
unrad_syms = set().union(*(eq.free_symbols for eq in unrad_changed))
if unrad_syms == poly_syms and unrad_changed:
# if all the symbols have been solved by _handle_poly
# and unrad has been used then check solutions
poly_sol = [sol for sol in poly_sol if checksol(unrad_changed, sol)]
# Collect together the unsolved polynomials with the non-polynomial
# equations.
remaining = poly_eqs + nonpolys
# to_tuple converts a solution dictionary to a tuple containing the
# value for each symbol
to_tuple = lambda sol: tuple(sol[s] for s in symbols)
if not remaining:
# If there is nothing left to solve then return the solution from
# solve_poly_system directly.
return FiniteSet(*map(to_tuple, poly_sol))
else:
# Here we handle:
#
# 1. The Groebner basis if solve_poly_system failed.
# 2. The Groebner basis in the positive-dimensional case.
# 3. Any non-polynomial equations
#
# If solve_poly_system did succeed then we pass those solutions in as
# preliminary results.
subs_res = substitution(remaining, symbols, result=poly_sol, exclude=denominators)
if not isinstance(subs_res, FiniteSet):
return subs_res
# check solutions produced by substitution. Currently, checking is done for
# only those solutions which have non-Set variable values.
if unrad_changed:
result = [dict(zip(symbols, sol)) for sol in subs_res.args]
correct_sols = [sol for sol in result if any(isinstance(v, Set) for v in sol)
or checksol(unrad_changed, sol) != False]
return FiniteSet(*map(to_tuple, correct_sols))
else:
return subs_res
|
15116711b0fb64939ccbcfaad4b67936f611b7816ee00bdfe577ba5e4ea95a8a | """
This module contains pdsolve() and different helper functions that it
uses. It is heavily inspired by the ode module and hence the basic
infrastructure remains the same.
**Functions in this module**
These are the user functions in this module:
- pdsolve() - Solves PDE's
- classify_pde() - Classifies PDEs into possible hints for dsolve().
- pde_separate() - Separate variables in partial differential equation either by
additive or multiplicative separation approach.
These are the helper functions in this module:
- pde_separate_add() - Helper function for searching additive separable solutions.
- pde_separate_mul() - Helper function for searching multiplicative
separable solutions.
**Currently implemented solver methods**
The following methods are implemented for solving partial differential
equations. See the docstrings of the various pde_hint() functions for
more information on each (run help(pde)):
- 1st order linear homogeneous partial differential equations
with constant coefficients.
- 1st order linear general partial differential equations
with constant coefficients.
- 1st order linear partial differential equations with
variable coefficients.
"""
from functools import reduce
from itertools import combinations_with_replacement
from sympy.simplify import simplify # type: ignore
from sympy.core import Add, S
from sympy.core.function import Function, expand, AppliedUndef, Subs
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Wild, symbols
from sympy.functions import exp
from sympy.integrals.integrals import Integral, integrate
from sympy.utilities.iterables import has_dups, is_sequence
from sympy.utilities.misc import filldedent
from sympy.solvers.deutils import _preprocess, ode_order, _desolve
from sympy.solvers.solvers import solve
from sympy.simplify.radsimp import collect
import operator
allhints = (
"1st_linear_constant_coeff_homogeneous",
"1st_linear_constant_coeff",
"1st_linear_constant_coeff_Integral",
"1st_linear_variable_coeff"
)
def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs):
"""
Solves any (supported) kind of partial differential equation.
**Usage**
pdsolve(eq, f(x,y), hint) -> Solve partial differential equation
eq for function f(x,y), using method hint.
**Details**
``eq`` can be any supported partial differential equation (see
the pde docstring for supported methods). This can either
be an Equality, or an expression, which is assumed to be
equal to 0.
``f(x,y)`` is a function of two variables whose derivatives in that
variable make up the partial differential equation. In many
cases it is not necessary to provide this; it will be autodetected
(and an error raised if it could not be detected).
``hint`` is the solving method that you want pdsolve to use. Use
classify_pde(eq, f(x,y)) to get all of the possible hints for
a PDE. The default hint, 'default', will use whatever hint
is returned first by classify_pde(). See Hints below for
more options that you can use for hint.
``solvefun`` is the convention used for arbitrary functions returned
by the PDE solver. If not set by the user, it is set by default
to be F.
**Hints**
Aside from the various solving methods, there are also some
meta-hints that you can pass to pdsolve():
"default":
This uses whatever hint is returned first by
classify_pde(). This is the default argument to
pdsolve().
"all":
To make pdsolve apply all relevant classification hints,
use pdsolve(PDE, func, hint="all"). This will return a
dictionary of hint:solution terms. If a hint causes
pdsolve to raise the NotImplementedError, value of that
hint's key will be the exception object raised. The
dictionary will also include some special keys:
- order: The order of the PDE. See also ode_order() in
deutils.py
- default: The solution that would be returned by
default. This is the one produced by the hint that
appears first in the tuple returned by classify_pde().
"all_Integral":
This is the same as "all", except if a hint also has a
corresponding "_Integral" hint, it only returns the
"_Integral" hint. This is useful if "all" causes
pdsolve() to hang because of a difficult or impossible
integral. This meta-hint will also be much faster than
"all", because integrate() is an expensive routine.
See also the classify_pde() docstring for more info on hints,
and the pde docstring for a list of all supported hints.
**Tips**
- You can declare the derivative of an unknown function this way:
>>> from sympy import Function, Derivative
>>> from sympy.abc import x, y # x and y are the independent variables
>>> f = Function("f")(x, y) # f is a function of x and y
>>> # fx will be the partial derivative of f with respect to x
>>> fx = Derivative(f, x)
>>> # fy will be the partial derivative of f with respect to y
>>> fy = Derivative(f, y)
- See test_pde.py for many tests, which serves also as a set of
examples for how to use pdsolve().
- pdsolve always returns an Equality class (except for the case
when the hint is "all" or "all_Integral"). Note that it is not possible
to get an explicit solution for f(x, y) as in the case of ODE's
- Do help(pde.pde_hintname) to get help more information on a
specific hint
Examples
========
>>> from sympy.solvers.pde import pdsolve
>>> from sympy import Function, Eq
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
>>> pdsolve(eq)
Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13))
"""
if not solvefun:
solvefun = Function('F')
# See the docstring of _desolve for more details.
hints = _desolve(eq, func=func, hint=hint, simplify=True,
type='pde', **kwargs)
eq = hints.pop('eq', False)
all_ = hints.pop('all', False)
if all_:
# TODO : 'best' hint should be implemented when adequate
# number of hints are added.
pdedict = {}
failed_hints = {}
gethints = classify_pde(eq, dict=True)
pdedict.update({'order': gethints['order'],
'default': gethints['default']})
for hint in hints:
try:
rv = _helper_simplify(eq, hint, hints[hint]['func'],
hints[hint]['order'], hints[hint][hint], solvefun)
except NotImplementedError as detail:
failed_hints[hint] = detail
else:
pdedict[hint] = rv
pdedict.update(failed_hints)
return pdedict
else:
return _helper_simplify(eq, hints['hint'], hints['func'],
hints['order'], hints[hints['hint']], solvefun)
def _helper_simplify(eq, hint, func, order, match, solvefun):
"""Helper function of pdsolve that calls the respective
pde functions to solve for the partial differential
equations. This minimizes the computation in
calling _desolve multiple times.
"""
if hint.endswith("_Integral"):
solvefunc = globals()[
"pde_" + hint[:-len("_Integral")]]
else:
solvefunc = globals()["pde_" + hint]
return _handle_Integral(solvefunc(eq, func, order,
match, solvefun), func, order, hint)
def _handle_Integral(expr, func, order, hint):
r"""
Converts a solution with integrals in it into an actual solution.
Simplifies the integral mainly using doit()
"""
if hint.endswith("_Integral"):
return expr
elif hint == "1st_linear_constant_coeff":
return simplify(expr.doit())
else:
return expr
def classify_pde(eq, func=None, dict=False, *, prep=True, **kwargs):
"""
Returns a tuple of possible pdsolve() classifications for a PDE.
The tuple is ordered so that first item is the classification that
pdsolve() uses to solve the PDE by default. In general,
classifications near the beginning of the list will produce
better solutions faster than those near the end, though there are
always exceptions. To make pdsolve use a different classification,
use pdsolve(PDE, func, hint=<classification>). See also the pdsolve()
docstring for different meta-hints you can use.
If ``dict`` is true, classify_pde() will return a dictionary of
hint:match expression terms. This is intended for internal use by
pdsolve(). Note that because dictionaries are ordered arbitrarily,
this will most likely not be in the same order as the tuple.
You can get help on different hints by doing help(pde.pde_hintname),
where hintname is the name of the hint without "_Integral".
See sympy.pde.allhints or the sympy.pde docstring for a list of all
supported hints that can be returned from classify_pde.
Examples
========
>>> from sympy.solvers.pde import classify_pde
>>> from sympy import Function, Eq
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
>>> classify_pde(eq)
('1st_linear_constant_coeff_homogeneous',)
"""
if func and len(func.args) != 2:
raise NotImplementedError("Right now only partial "
"differential equations of two variables are supported")
if prep or func is None:
prep, func_ = _preprocess(eq, func)
if func is None:
func = func_
if isinstance(eq, Equality):
if eq.rhs != 0:
return classify_pde(eq.lhs - eq.rhs, func)
eq = eq.lhs
f = func.func
x = func.args[0]
y = func.args[1]
fx = f(x,y).diff(x)
fy = f(x,y).diff(y)
# TODO : For now pde.py uses support offered by the ode_order function
# to find the order with respect to a multi-variable function. An
# improvement could be to classify the order of the PDE on the basis of
# individual variables.
order = ode_order(eq, f(x,y))
# hint:matchdict or hint:(tuple of matchdicts)
# Also will contain "default":<default hint> and "order":order items.
matching_hints = {'order': order}
if not order:
if dict:
matching_hints["default"] = None
return matching_hints
else:
return ()
eq = expand(eq)
a = Wild('a', exclude = [f(x,y)])
b = Wild('b', exclude = [f(x,y), fx, fy, x, y])
c = Wild('c', exclude = [f(x,y), fx, fy, x, y])
d = Wild('d', exclude = [f(x,y), fx, fy, x, y])
e = Wild('e', exclude = [f(x,y), fx, fy])
n = Wild('n', exclude = [x, y])
# Try removing the smallest power of f(x,y)
# from the highest partial derivatives of f(x,y)
reduced_eq = None
if eq.is_Add:
var = set(combinations_with_replacement((x,y), order))
dummyvar = var.copy()
power = None
for i in var:
coeff = eq.coeff(f(x,y).diff(*i))
if coeff != 1:
match = coeff.match(a*f(x,y)**n)
if match and match[a]:
power = match[n]
dummyvar.remove(i)
break
dummyvar.remove(i)
for i in dummyvar:
coeff = eq.coeff(f(x,y).diff(*i))
if coeff != 1:
match = coeff.match(a*f(x,y)**n)
if match and match[a] and match[n] < power:
power = match[n]
if power:
den = f(x,y)**power
reduced_eq = Add(*[arg/den for arg in eq.args])
if not reduced_eq:
reduced_eq = eq
if order == 1:
reduced_eq = collect(reduced_eq, f(x, y))
r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e)
if r:
if not r[e]:
## Linear first-order homogeneous partial-differential
## equation with constant coefficients
r.update({'b': b, 'c': c, 'd': d})
matching_hints["1st_linear_constant_coeff_homogeneous"] = r
else:
if r[b]**2 + r[c]**2 != 0:
## Linear first-order general partial-differential
## equation with constant coefficients
r.update({'b': b, 'c': c, 'd': d, 'e': e})
matching_hints["1st_linear_constant_coeff"] = r
matching_hints[
"1st_linear_constant_coeff_Integral"] = r
else:
b = Wild('b', exclude=[f(x, y), fx, fy])
c = Wild('c', exclude=[f(x, y), fx, fy])
d = Wild('d', exclude=[f(x, y), fx, fy])
r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e)
if r:
r.update({'b': b, 'c': c, 'd': d, 'e': e})
matching_hints["1st_linear_variable_coeff"] = r
# Order keys based on allhints.
retlist = [i for i in allhints if i in matching_hints]
if dict:
# Dictionaries are ordered arbitrarily, so make note of which
# hint would come first for pdsolve(). Use an ordered dict in Py 3.
matching_hints["default"] = None
matching_hints["ordered_hints"] = tuple(retlist)
for i in allhints:
if i in matching_hints:
matching_hints["default"] = i
break
return matching_hints
else:
return tuple(retlist)
def checkpdesol(pde, sol, func=None, solve_for_func=True):
"""
Checks if the given solution satisfies the partial differential
equation.
pde is the partial differential equation which can be given in the
form of an equation or an expression. sol is the solution for which
the pde is to be checked. This can also be given in an equation or
an expression form. If the function is not provided, the helper
function _preprocess from deutils is used to identify the function.
If a sequence of solutions is passed, the same sort of container will be
used to return the result for each solution.
The following methods are currently being implemented to check if the
solution satisfies the PDE:
1. Directly substitute the solution in the PDE and check. If the
solution has not been solved for f, then it will solve for f
provided solve_for_func has not been set to False.
If the solution satisfies the PDE, then a tuple (True, 0) is returned.
Otherwise a tuple (False, expr) where expr is the value obtained
after substituting the solution in the PDE. However if a known solution
returns False, it may be due to the inability of doit() to simplify it to zero.
Examples
========
>>> from sympy import Function, symbols
>>> from sympy.solvers.pde import checkpdesol, pdsolve
>>> x, y = symbols('x y')
>>> f = Function('f')
>>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y)
>>> sol = pdsolve(eq)
>>> assert checkpdesol(eq, sol)[0]
>>> eq = x*f(x,y) + f(x,y).diff(x)
>>> checkpdesol(eq, sol)
(False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25))
"""
# Converting the pde into an equation
if not isinstance(pde, Equality):
pde = Eq(pde, 0)
# If no function is given, try finding the function present.
if func is None:
try:
_, func = _preprocess(pde.lhs)
except ValueError:
funcs = [s.atoms(AppliedUndef) for s in (
sol if is_sequence(sol, set) else [sol])]
funcs = set().union(funcs)
if len(funcs) != 1:
raise ValueError(
'must pass func arg to checkpdesol for this case.')
func = funcs.pop()
# If the given solution is in the form of a list or a set
# then return a list or set of tuples.
if is_sequence(sol, set):
return type(sol)([checkpdesol(
pde, i, func=func,
solve_for_func=solve_for_func) for i in sol])
# Convert solution into an equation
if not isinstance(sol, Equality):
sol = Eq(func, sol)
elif sol.rhs == func:
sol = sol.reversed
# Try solving for the function
solved = sol.lhs == func and not sol.rhs.has(func)
if solve_for_func and not solved:
solved = solve(sol, func)
if solved:
if len(solved) == 1:
return checkpdesol(pde, Eq(func, solved[0]),
func=func, solve_for_func=False)
else:
return checkpdesol(pde, [Eq(func, t) for t in solved],
func=func, solve_for_func=False)
# try direct substitution of the solution into the PDE and simplify
if sol.lhs == func:
pde = pde.lhs - pde.rhs
s = simplify(pde.subs(func, sol.rhs).doit())
return s is S.Zero, s
raise NotImplementedError(filldedent('''
Unable to test if %s is a solution to %s.''' % (sol, pde)))
def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun):
r"""
Solves a first order linear homogeneous
partial differential equation with constant coefficients.
The general form of this partial differential equation is
.. math:: a \frac{\partial f(x,y)}{\partial x}
+ b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = 0
where `a`, `b` and `c` are constants.
The general solution is of the form:
.. math::
f(x, y) = F(- a y + b x ) e^{- \frac{c (a x + b y)}{a^2 + b^2}}
and can be found in SymPy with ``pdsolve``::
>>> from sympy.solvers import pdsolve
>>> from sympy.abc import x, y, a, b, c
>>> from sympy import Function, pprint
>>> f = Function('f')
>>> u = f(x,y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a*ux + b*uy + c*u
>>> pprint(genform)
d d
a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y)
dx dy
>>> pprint(pdsolve(genform))
-c*(a*x + b*y)
---------------
2 2
a + b
f(x, y) = F(-a*y + b*x)*e
Examples
========
>>> from sympy import pdsolve
>>> from sympy import Function, pprint
>>> from sympy.abc import x,y
>>> f = Function('f')
>>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))
Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
>>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)))
x y
- - - -
2 2
f(x, y) = F(x - y)*e
References
==========
- Viktor Grigoryan, "Partial Differential Equations"
Math 124A - Fall 2010, pp.7
"""
# TODO : For now homogeneous first order linear PDE's having
# two variables are implemented. Once there is support for
# solving systems of ODE's, this can be extended to n variables.
f = func.func
x = func.args[0]
y = func.args[1]
b = match[match['b']]
c = match[match['c']]
d = match[match['d']]
return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y))
def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun):
r"""
Solves a first order linear partial differential equation
with constant coefficients.
The general form of this partial differential equation is
.. math:: a \frac{\partial f(x,y)}{\partial x}
+ b \frac{\partial f(x,y)}{\partial y}
+ c f(x,y) = G(x,y)
where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary
function in `x` and `y`.
The general solution of the PDE is:
.. math::
f(x, y) = \left. \left[F(\eta) + \frac{1}{a^2 + b^2}
\int\limits^{a x + b y} G\left(\frac{a \xi + b \eta}{a^2 + b^2},
\frac{- a \eta + b \xi}{a^2 + b^2} \right)
e^{\frac{c \xi}{a^2 + b^2}}\, d\xi\right]
e^{- \frac{c \xi}{a^2 + b^2}}
\right|_{\substack{\eta=- a y + b x\\ \xi=a x + b y }}\, ,
where `F(\eta)` is an arbitrary single-valued function. The solution
can be found in SymPy with ``pdsolve``::
>>> from sympy.solvers import pdsolve
>>> from sympy.abc import x, y, a, b, c
>>> from sympy import Function, pprint
>>> f = Function('f')
>>> G = Function('G')
>>> u = f(x,y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a*ux + b*uy + c*u - G(x,y)
>>> pprint(genform)
d d
a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) - G(x, y)
dx dy
>>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral'))
// a*x + b*y \
|| / |
|| | |
|| | c*xi |
|| | ------- |
|| | 2 2 |
|| | /a*xi + b*eta -a*eta + b*xi\ a + b |
|| | G|------------, -------------|*e d(xi)|
|| | | 2 2 2 2 | |
|| | \ a + b a + b / |
|| | |
|| / |
|| |
f(x, y) = ||F(eta) + -------------------------------------------------------|*
|| 2 2 |
\\ a + b /
<BLANKLINE>
\|
||
||
||
||
||
||
||
||
-c*xi ||
-------||
2 2||
a + b ||
e ||
||
/|eta=-a*y + b*x, xi=a*x + b*y
Examples
========
>>> from sympy.solvers.pde import pdsolve
>>> from sympy import Function, pprint, exp
>>> from sympy.abc import x,y
>>> f = Function('f')
>>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y)
>>> pdsolve(eq)
Eq(f(x, y), (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))
References
==========
- Viktor Grigoryan, "Partial Differential Equations"
Math 124A - Fall 2010, pp.7
"""
# TODO : For now homogeneous first order linear PDE's having
# two variables are implemented. Once there is support for
# solving systems of ODE's, this can be extended to n variables.
xi, eta = symbols("xi eta")
f = func.func
x = func.args[0]
y = func.args[1]
b = match[match['b']]
c = match[match['c']]
d = match[match['d']]
e = -match[match['e']]
expterm = exp(-S(d)/(b**2 + c**2)*xi)
functerm = solvefun(eta)
solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y)
# Integral should remain as it is in terms of xi,
# doit() should be done in _handle_Integral.
genterm = (1/S(b**2 + c**2))*Integral(
(1/expterm*e).subs(solvedict), (xi, b*x + c*y))
return Eq(f(x,y), Subs(expterm*(functerm + genterm),
(eta, xi), (c*x - b*y, b*x + c*y)))
def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun):
r"""
Solves a first order linear partial differential equation
with variable coefficients. The general form of this partial
differential equation is
.. math:: a(x, y) \frac{\partial f(x, y)}{\partial x}
+ b(x, y) \frac{\partial f(x, y)}{\partial y}
+ c(x, y) f(x, y) = G(x, y)
where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary
functions in `x` and `y`. This PDE is converted into an ODE by
making the following transformation:
1. `\xi` as `x`
2. `\eta` as the constant in the solution to the differential
equation `\frac{dy}{dx} = -\frac{b}{a}`
Making the previous substitutions reduces it to the linear ODE
.. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0
which can be solved using ``dsolve``.
>>> from sympy.abc import x, y
>>> from sympy import Function, pprint
>>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']]
>>> u = f(x,y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y)
>>> pprint(genform)
d d
-G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y))
dx dy
Examples
========
>>> from sympy.solvers.pde import pdsolve
>>> from sympy import Function, pprint
>>> from sympy.abc import x,y
>>> f = Function('f')
>>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
>>> pdsolve(eq)
Eq(f(x, y), F(x*y)*exp(y**2/2) + 1)
References
==========
- Viktor Grigoryan, "Partial Differential Equations"
Math 124A - Fall 2010, pp.7
"""
from sympy.solvers.ode import dsolve
xi, eta = symbols("xi eta")
f = func.func
x = func.args[0]
y = func.args[1]
b = match[match['b']]
c = match[match['c']]
d = match[match['d']]
e = -match[match['e']]
if not d:
# To deal with cases like b*ux = e or c*uy = e
if not (b and c):
if c:
try:
tsol = integrate(e/c, y)
except NotImplementedError:
raise NotImplementedError("Unable to find a solution"
" due to inability of integrate")
else:
return Eq(f(x,y), solvefun(x) + tsol)
if b:
try:
tsol = integrate(e/b, x)
except NotImplementedError:
raise NotImplementedError("Unable to find a solution"
" due to inability of integrate")
else:
return Eq(f(x,y), solvefun(y) + tsol)
if not c:
# To deal with cases when c is 0, a simpler method is used.
# The PDE reduces to b*(u.diff(x)) + d*u = e, which is a linear ODE in x
plode = f(x).diff(x)*b + d*f(x) - e
sol = dsolve(plode, f(x))
syms = sol.free_symbols - plode.free_symbols - {x, y}
rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y)
return Eq(f(x, y), rhs)
if not b:
# To deal with cases when b is 0, a simpler method is used.
# The PDE reduces to c*(u.diff(y)) + d*u = e, which is a linear ODE in y
plode = f(y).diff(y)*c + d*f(y) - e
sol = dsolve(plode, f(y))
syms = sol.free_symbols - plode.free_symbols - {x, y}
rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x)
return Eq(f(x, y), rhs)
dummy = Function('d')
h = (c/b).subs(y, dummy(x))
sol = dsolve(dummy(x).diff(x) - h, dummy(x))
if isinstance(sol, list):
sol = sol[0]
solsym = sol.free_symbols - h.free_symbols - {x, y}
if len(solsym) == 1:
solsym = solsym.pop()
etat = (solve(sol, solsym)[0]).subs(dummy(x), y)
ysub = solve(eta - etat, y)[0]
deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub)
final = (dsolve(deq, f(x), hint='1st_linear')).rhs
if isinstance(final, list):
final = final[0]
finsyms = final.free_symbols - deq.free_symbols - {x, y}
rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat)
return Eq(f(x, y), rhs)
else:
raise NotImplementedError("Cannot solve the partial differential equation due"
" to inability of constantsimp")
def _simplify_variable_coeff(sol, syms, func, funcarg):
r"""
Helper function to replace constants by functions in 1st_linear_variable_coeff
"""
eta = Symbol("eta")
if len(syms) == 1:
sym = syms.pop()
final = sol.subs(sym, func(funcarg))
else:
for key, sym in enumerate(syms):
final = sol.subs(sym, func(funcarg))
return simplify(final.subs(eta, funcarg))
def pde_separate(eq, fun, sep, strategy='mul'):
"""Separate variables in partial differential equation either by additive
or multiplicative separation approach. It tries to rewrite an equation so
that one of the specified variables occurs on a different side of the
equation than the others.
:param eq: Partial differential equation
:param fun: Original function F(x, y, z)
:param sep: List of separated functions [X(x), u(y, z)]
:param strategy: Separation strategy. You can choose between additive
separation ('add') and multiplicative separation ('mul') which is
default.
Examples
========
>>> from sympy import E, Eq, Function, pde_separate, Derivative as D
>>> from sympy.abc import x, t
>>> u, X, T = map(Function, 'uXT')
>>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add')
[exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]
>>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2))
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul')
[Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)]
See Also
========
pde_separate_add, pde_separate_mul
"""
do_add = False
if strategy == 'add':
do_add = True
elif strategy == 'mul':
do_add = False
else:
raise ValueError('Unknown strategy: %s' % strategy)
if isinstance(eq, Equality):
if eq.rhs != 0:
return pde_separate(Eq(eq.lhs - eq.rhs, 0), fun, sep, strategy)
else:
return pde_separate(Eq(eq, 0), fun, sep, strategy)
if eq.rhs != 0:
raise ValueError("Value should be 0")
# Handle arguments
orig_args = list(fun.args)
subs_args = [arg for s in sep for arg in s.args]
if do_add:
functions = reduce(operator.add, sep)
else:
functions = reduce(operator.mul, sep)
# Check whether variables match
if len(subs_args) != len(orig_args):
raise ValueError("Variable counts do not match")
# Check for duplicate arguments like [X(x), u(x, y)]
if has_dups(subs_args):
raise ValueError("Duplicate substitution arguments detected")
# Check whether the variables match
if set(orig_args) != set(subs_args):
raise ValueError("Arguments do not match")
# Substitute original function with separated...
result = eq.lhs.subs(fun, functions).doit()
# Divide by terms when doing multiplicative separation
if not do_add:
eq = 0
for i in result.args:
eq += i/functions
result = eq
svar = subs_args[0]
dvar = subs_args[1:]
return _separate(result, svar, dvar)
def pde_separate_add(eq, fun, sep):
"""
Helper function for searching additive separable solutions.
Consider an equation of two independent variables x, y and a dependent
variable w, we look for the product of two functions depending on different
arguments:
`w(x, y, z) = X(x) + y(y, z)`
Examples
========
>>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D
>>> from sympy.abc import x, t
>>> u, X, T = map(Function, 'uXT')
>>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
>>> pde_separate_add(eq, u(x, t), [X(x), T(t)])
[exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]
"""
return pde_separate(eq, fun, sep, strategy='add')
def pde_separate_mul(eq, fun, sep):
"""
Helper function for searching multiplicative separable solutions.
Consider an equation of two independent variables x, y and a dependent
variable w, we look for the product of two functions depending on different
arguments:
`w(x, y, z) = X(x)*u(y, z)`
Examples
========
>>> from sympy import Function, Eq, pde_separate_mul, Derivative as D
>>> from sympy.abc import x, y
>>> u, X, Y = map(Function, 'uXY')
>>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2))
>>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)])
[Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)]
"""
return pde_separate(eq, fun, sep, strategy='mul')
def _separate(eq, dep, others):
"""Separate expression into two parts based on dependencies of variables."""
# FIRST PASS
# Extract derivatives depending our separable variable...
terms = set()
for term in eq.args:
if term.is_Mul:
for i in term.args:
if i.is_Derivative and not i.has(*others):
terms.add(term)
continue
elif term.is_Derivative and not term.has(*others):
terms.add(term)
# Find the factor that we need to divide by
div = set()
for term in terms:
ext, sep = term.expand().as_independent(dep)
# Failed?
if sep.has(*others):
return None
div.add(ext)
# FIXME: Find lcm() of all the divisors and divide with it, instead of
# current hack :(
# https://github.com/sympy/sympy/issues/4597
if len(div) > 0:
# double sum required or some tests will fail
eq = Add(*[simplify(Add(*[term/i for i in div])) for term in eq.args])
# SECOND PASS - separate the derivatives
div = set()
lhs = rhs = 0
for term in eq.args:
# Check, whether we have already term with independent variable...
if not term.has(*others):
lhs += term
continue
# ...otherwise, try to separate
temp, sep = term.expand().as_independent(dep)
# Failed?
if sep.has(*others):
return None
# Extract the divisors
div.add(sep)
rhs -= term.expand()
# Do the division
fulldiv = reduce(operator.add, div)
lhs = simplify(lhs/fulldiv).expand()
rhs = simplify(rhs/fulldiv).expand()
# ...and check whether we were successful :)
if lhs.has(*others) or rhs.has(dep):
return None
return [lhs, rhs]
|
e9d088a19a97f26173efb4a94f50ce33f239caf770535b543274db036be360c1 | """Utility functions for classifying and solving
ordinary and partial differential equations.
Contains
========
_preprocess
ode_order
_desolve
"""
from sympy.core import Pow
from sympy.core.function import Derivative, AppliedUndef
from sympy.core.relational import Equality
from sympy.core.symbol import Wild
def _preprocess(expr, func=None, hint='_Integral'):
"""Prepare expr for solving by making sure that differentiation
is done so that only func remains in unevaluated derivatives and
(if hint does not end with _Integral) that doit is applied to all
other derivatives. If hint is None, do not do any differentiation.
(Currently this may cause some simple differential equations to
fail.)
In case func is None, an attempt will be made to autodetect the
function to be solved for.
>>> from sympy.solvers.deutils import _preprocess
>>> from sympy import Derivative, Function
>>> from sympy.abc import x, y, z
>>> f, g = map(Function, 'fg')
If f(x)**p == 0 and p>0 then we can solve for f(x)=0
>>> _preprocess((f(x).diff(x)-4)**5, f(x))
(Derivative(f(x), x) - 4, f(x))
Apply doit to derivatives that contain more than the function
of interest:
>>> _preprocess(Derivative(f(x) + x, x))
(Derivative(f(x), x) + 1, f(x))
Do others if the differentiation variable(s) intersect with those
of the function of interest or contain the function of interest:
>>> _preprocess(Derivative(g(x), y, z), f(y))
(0, f(y))
>>> _preprocess(Derivative(f(y), z), f(y))
(0, f(y))
Do others if the hint does not end in '_Integral' (the default
assumes that it does):
>>> _preprocess(Derivative(g(x), y), f(x))
(Derivative(g(x), y), f(x))
>>> _preprocess(Derivative(f(x), y), f(x), hint='')
(0, f(x))
Do not do any derivatives if hint is None:
>>> eq = Derivative(f(x) + 1, x) + Derivative(f(x), y)
>>> _preprocess(eq, f(x), hint=None)
(Derivative(f(x) + 1, x) + Derivative(f(x), y), f(x))
If it's not clear what the function of interest is, it must be given:
>>> eq = Derivative(f(x) + g(x), x)
>>> _preprocess(eq, g(x))
(Derivative(f(x), x) + Derivative(g(x), x), g(x))
>>> try: _preprocess(eq)
... except ValueError: print("A ValueError was raised.")
A ValueError was raised.
"""
if isinstance(expr, Pow):
# if f(x)**p=0 then f(x)=0 (p>0)
if (expr.exp).is_positive:
expr = expr.base
derivs = expr.atoms(Derivative)
if not func:
funcs = set().union(*[d.atoms(AppliedUndef) for d in derivs])
if len(funcs) != 1:
raise ValueError('The function cannot be '
'automatically detected for %s.' % expr)
func = funcs.pop()
fvars = set(func.args)
if hint is None:
return expr, func
reps = [(d, d.doit()) for d in derivs if not hint.endswith('_Integral') or
d.has(func) or set(d.variables) & fvars]
eq = expr.subs(reps)
return eq, func
def ode_order(expr, func):
"""
Returns the order of a given differential
equation with respect to func.
This function is implemented recursively.
Examples
========
>>> from sympy import Function
>>> from sympy.solvers.deutils import ode_order
>>> from sympy.abc import x
>>> f, g = map(Function, ['f', 'g'])
>>> ode_order(f(x).diff(x, 2) + f(x).diff(x)**2 +
... f(x).diff(x), f(x))
2
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x))
2
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x))
3
"""
a = Wild('a', exclude=[func])
if expr.match(a):
return 0
if isinstance(expr, Derivative):
if expr.args[0] == func:
return len(expr.variables)
else:
args = expr.args[0].args
rv = len(expr.variables)
if args:
rv += max(ode_order(_, func) for _ in args)
return rv
else:
return max(ode_order(_, func) for _ in expr.args) if expr.args else 0
def _desolve(eq, func=None, hint="default", ics=None, simplify=True, *, prep=True, **kwargs):
"""This is a helper function to dsolve and pdsolve in the ode
and pde modules.
If the hint provided to the function is "default", then a dict with
the following keys are returned
'func' - It provides the function for which the differential equation
has to be solved. This is useful when the expression has
more than one function in it.
'default' - The default key as returned by classifier functions in ode
and pde.py
'hint' - The hint given by the user for which the differential equation
is to be solved. If the hint given by the user is 'default',
then the value of 'hint' and 'default' is the same.
'order' - The order of the function as returned by ode_order
'match' - It returns the match as given by the classifier functions, for
the default hint.
If the hint provided to the function is not "default" and is not in
('all', 'all_Integral', 'best'), then a dict with the above mentioned keys
is returned along with the keys which are returned when dict in
classify_ode or classify_pde is set True
If the hint given is in ('all', 'all_Integral', 'best'), then this function
returns a nested dict, with the keys, being the set of classified hints
returned by classifier functions, and the values being the dict of form
as mentioned above.
Key 'eq' is a common key to all the above mentioned hints which returns an
expression if eq given by user is an Equality.
See Also
========
classify_ode(ode.py)
classify_pde(pde.py)
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
# preprocess the equation and find func if not given
if prep or func is None:
eq, func = _preprocess(eq, func)
prep = False
# type is an argument passed by the solve functions in ode and pde.py
# that identifies whether the function caller is an ordinary
# or partial differential equation. Accordingly corresponding
# changes are made in the function.
type = kwargs.get('type', None)
xi = kwargs.get('xi')
eta = kwargs.get('eta')
x0 = kwargs.get('x0', 0)
terms = kwargs.get('n')
if type == 'ode':
from sympy.solvers.ode import classify_ode, allhints
classifier = classify_ode
string = 'ODE '
dummy = ''
elif type == 'pde':
from sympy.solvers.pde import classify_pde, allhints
classifier = classify_pde
string = 'PDE '
dummy = 'p'
# Magic that should only be used internally. Prevents classify_ode from
# being called more than it needs to be by passing its results through
# recursive calls.
if kwargs.get('classify', True):
hints = classifier(eq, func, dict=True, ics=ics, xi=xi, eta=eta,
n=terms, x0=x0, hint=hint, prep=prep)
else:
# Here is what all this means:
#
# hint: The hint method given to _desolve() by the user.
# hints: The dictionary of hints that match the DE, along with other
# information (including the internal pass-through magic).
# default: The default hint to return, the first hint from allhints
# that matches the hint; obtained from classify_ode().
# match: Dictionary containing the match dictionary for each hint
# (the parts of the DE for solving). When going through the
# hints in "all", this holds the match string for the current
# hint.
# order: The order of the DE, as determined by ode_order().
hints = kwargs.get('hint',
{'default': hint,
hint: kwargs['match'],
'order': kwargs['order']})
if not hints['default']:
# classify_ode will set hints['default'] to None if no hints match.
if hint not in allhints and hint != 'default':
raise ValueError("Hint not recognized: " + hint)
elif hint not in hints['ordered_hints'] and hint != 'default':
raise ValueError(string + str(eq) + " does not match hint " + hint)
# If dsolve can't solve the purely algebraic equation then dsolve will raise
# ValueError
elif hints['order'] == 0:
raise ValueError(
str(eq) + " is not a solvable differential equation in " + str(func))
else:
raise NotImplementedError(dummy + "solve" + ": Cannot solve " + str(eq))
if hint == 'default':
return _desolve(eq, func, ics=ics, hint=hints['default'], simplify=simplify,
prep=prep, x0=x0, classify=False, order=hints['order'],
match=hints[hints['default']], xi=xi, eta=eta, n=terms, type=type)
elif hint in ('all', 'all_Integral', 'best'):
retdict = {}
gethints = set(hints) - {'order', 'default', 'ordered_hints'}
if hint == 'all_Integral':
for i in hints:
if i.endswith('_Integral'):
gethints.remove(i[:-len('_Integral')])
# special cases
for k in ["1st_homogeneous_coeff_best", "1st_power_series",
"lie_group", "2nd_power_series_ordinary", "2nd_power_series_regular"]:
if k in gethints:
gethints.remove(k)
for i in gethints:
sol = _desolve(eq, func, ics=ics, hint=i, x0=x0, simplify=simplify, prep=prep,
classify=False, n=terms, order=hints['order'], match=hints[i], type=type)
retdict[i] = sol
retdict['all'] = True
retdict['eq'] = eq
return retdict
elif hint not in allhints: # and hint not in ('default', 'ordered_hints'):
raise ValueError("Hint not recognized: " + hint)
elif hint not in hints:
raise ValueError(string + str(eq) + " does not match hint " + hint)
else:
# Key added to identify the hint needed to solve the equation
hints['hint'] = hint
hints.update({'func': func, 'eq': eq})
return hints
|
46300ad7a8f1ae51221dd1ca1aacf9e1c743e97ece49fa9f772ecc86c85c19fd | """Solvers of systems of polynomial equations. """
import itertools
from sympy.core import S
from sympy.core.sorting import default_sort_key
from sympy.polys import Poly, groebner, roots
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.polys.polyerrors import (ComputationFailed,
PolificationFailed, CoercionFailed)
from sympy.simplify import rcollect
from sympy.utilities import postfixes
from sympy.utilities.misc import filldedent
class SolveFailed(Exception):
"""Raised when solver's conditions were not met. """
def solve_poly_system(seq, *gens, strict=False, **args):
"""
Solve a system of polynomial equations.
Parameters
==========
seq: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in seq for which we want the
solutions
strict: a boolean (default is False)
if strict is True, NotImplementedError will be raised if
the solution is known to be incomplete (which can occur if
not all solutions are expressible in radicals)
args: Keyword arguments
Special options for solving the equations.
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in seq
Examples
========
>>> from sympy import solve_poly_system
>>> from sympy.abc import x, y
>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
>>> solve_poly_system([x**5 - x + y**3, y**2 - 1], x, y, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('solve_poly_system', len(seq), exc)
if len(polys) == len(opt.gens) == 2:
f, g = polys
if all(i <= 2 for i in f.degree_list() + g.degree_list()):
try:
return solve_biquadratic(f, g, opt)
except SolveFailed:
pass
return solve_generic(polys, opt, strict=strict)
def solve_biquadratic(f, g, opt):
"""Solve a system of two bivariate quadratic polynomial equations.
Parameters
==========
f: a single Expr or Poly
First equation
g: a single Expr or Poly
Second Equation
opt: an Options object
For specifying keyword arguments and generators
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in seq.
Examples
========
>>> from sympy import Options, Poly
>>> from sympy.abc import x, y
>>> from sympy.solvers.polysys import solve_biquadratic
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')
>>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(1/3, 3), (41/27, 11/9)]
>>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')
>>> b = Poly(-y + x - 4, y, x, domain='ZZ')
>>> solve_biquadratic(a, b, NewOption)
[(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \
sqrt(29)/2)]
"""
G = groebner([f, g])
if len(G) == 1 and G[0].is_ground:
return None
if len(G) != 2:
raise SolveFailed
x, y = opt.gens
p, q = G
if not p.gcd(q).is_ground:
# not 0-dimensional
raise SolveFailed
p = Poly(p, x, expand=False)
p_roots = [rcollect(expr, y) for expr in roots(p).keys()]
q = q.ltrim(-1)
q_roots = list(roots(q).keys())
solutions = [(p_root.subs(y, q_root), q_root) for q_root, p_root in
itertools.product(q_roots, p_roots)]
return sorted(solutions, key=default_sort_key)
def solve_generic(polys, opt, strict=False):
"""
Solve a generic system of polynomial equations.
Returns all possible solutions over C[x_1, x_2, ..., x_m] of a
set F = { f_1, f_2, ..., f_n } of polynomial equations, using
Groebner basis approach. For now only zero-dimensional systems
are supported, which means F can have at most a finite number
of solutions.
The algorithm works by the fact that, supposing G is the basis
of F with respect to an elimination order (here lexicographic
order is used), G and F generate the same ideal, they have the
same set of solutions. By the elimination property, if G is a
reduced, zero-dimensional Groebner basis, then there exists an
univariate polynomial in G (in its last variable). This can be
solved by computing its roots. Substituting all computed roots
for the last (eliminated) variable in other elements of G, new
polynomial system is generated. Applying the above procedure
recursively, a finite number of solutions can be found.
The ability of finding all solutions by this procedure depends
on the root finding algorithms. If no solutions were found, it
means only that roots() failed, but the system is solvable. To
overcome this difficulty use numerical algorithms instead.
Parameters
==========
polys: a list/tuple/set
Listing all the polynomial equations that are needed to be solved
opt: an Options object
For specifying keyword arguments and generators
strict: a boolean
If strict is True, NotImplementedError will be raised if the solution
is known to be incomplete
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in seq
References
==========
.. [Buchberger01] B. Buchberger, Groebner Bases: A Short
Introduction for Systems Theorists, In: R. Moreno-Diaz,
B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01,
February, 2001
.. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties
and Algorithms, Springer, Second Edition, 1997, pp. 112
Raises
========
NotImplementedError
If the system is not zero-dimensional. (does not have a finite
number of solutions)
UnsolvableFactorError
If ``strict`` is True and not all solution components are
expressible in radicals
Examples
========
>>> from sympy import Poly, Options
>>> from sympy.solvers.polysys import solve_generic
>>> from sympy.abc import x, y
>>> NewOption = Options((x, y), {'domain': 'ZZ'})
>>> a = Poly(x - y + 5, x, y, domain='ZZ')
>>> b = Poly(x + y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(-1, 4)]
>>> a = Poly(x - 2*y + 5, x, y, domain='ZZ')
>>> b = Poly(2*x - y - 3, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(11/3, 13/3)]
>>> a = Poly(x**2 + y, x, y, domain='ZZ')
>>> b = Poly(x + y*4, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption)
[(0, 0), (1/4, -1/16)]
>>> a = Poly(x**5 - x + y**3, x, y, domain='ZZ')
>>> b = Poly(y**2 - 1, x, y, domain='ZZ')
>>> solve_generic([a, b], NewOption, strict=True)
Traceback (most recent call last):
...
UnsolvableFactorError
"""
def _is_univariate(f):
"""Returns True if 'f' is univariate in its last variable. """
for monom in f.monoms():
if any(monom[:-1]):
return False
return True
def _subs_root(f, gen, zero):
"""Replace generator with a root so that the result is nice. """
p = f.as_expr({gen: zero})
if f.degree(gen) >= 2:
p = p.expand(deep=False)
return p
def _solve_reduced_system(system, gens, entry=False):
"""Recursively solves reduced polynomial systems. """
if len(system) == len(gens) == 1:
# the below line will produce UnsolvableFactorError if
# strict=True and the produced by roots is incomplete
zeros = list(roots(system[0], gens[-1], strict=strict).keys())
return [(zero,) for zero in zeros]
basis = groebner(system, gens, polys=True)
if len(basis) == 1 and basis[0].is_ground:
if not entry:
return []
else:
return None
univariate = list(filter(_is_univariate, basis))
if len(basis) < len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
if len(univariate) == 1:
f = univariate.pop()
else:
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
gens = f.gens
gen = gens[-1]
# the below line will produce UnsolvableFactorError if
# strict=True and the produced by roots is incomplete
zeros = list(roots(f.ltrim(gen), strict=strict).keys())
if not zeros:
return []
if len(basis) == 1:
return [(zero,) for zero in zeros]
solutions = []
for zero in zeros:
new_system = []
new_gens = gens[:-1]
for b in basis[:-1]:
eq = _subs_root(b, gen, zero)
if eq is not S.Zero:
new_system.append(eq)
for solution in _solve_reduced_system(new_system, new_gens):
solutions.append(solution + (zero,))
if solutions and len(solutions[0]) != len(gens):
raise NotImplementedError(filldedent('''
only zero-dimensional systems supported
(finite number of solutions)
'''))
return solutions
try:
result = _solve_reduced_system(polys, opt.gens, entry=True)
except CoercionFailed:
raise NotImplementedError
if result is not None:
return sorted(result, key=default_sort_key)
else:
return None
def solve_triangulated(polys, *gens, **args):
"""
Solve a polynomial system using Gianni-Kalkbrenner algorithm.
The algorithm proceeds by computing one Groebner basis in the ground
domain and then by iteratively computing polynomial factorizations in
appropriately constructed algebraic extensions of the ground domain.
Parameters
==========
polys: a list/tuple/set
Listing all the equations that are needed to be solved
gens: generators
generators of the equations in polys for which we want the
solutions
args: Keyword arguments
Special options for solving the equations
Returns
=======
List[Tuple]
A List of tuples. Solutions for symbols that satisfy the
equations listed in polys
Examples
========
>>> from sympy import solve_triangulated
>>> from sympy.abc import x, y, z
>>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1]
>>> solve_triangulated(F, x, y, z)
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
References
==========
1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of
Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989
"""
G = groebner(polys, gens, polys=True)
G = list(reversed(G))
domain = args.get('domain')
if domain is not None:
for i, g in enumerate(G):
G[i] = g.set_domain(domain)
f, G = G[0].ltrim(-1), G[1:]
dom = f.get_domain()
zeros = f.ground_roots()
solutions = set()
for zero in zeros:
solutions.add(((zero,), dom))
var_seq = reversed(gens[:-1])
vars_seq = postfixes(gens[1:])
for var, vars in zip(var_seq, vars_seq):
_solutions = set()
for values, dom in solutions:
H, mapping = [], list(zip(vars, values))
for g in G:
_vars = (var,) + vars
if g.has_only_gens(*_vars) and g.degree(var) != 0:
h = g.ltrim(var).eval(dict(mapping))
if g.degree(var) == h.degree():
H.append(h)
p = min(H, key=lambda h: h.degree())
zeros = p.ground_roots()
for zero in zeros:
if not zero.is_Rational:
dom_zero = dom.algebraic_field(zero)
else:
dom_zero = dom
_solutions.add(((zero,) + values, dom_zero))
solutions = _solutions
solutions = list(solutions)
for i, (solution, _) in enumerate(solutions):
solutions[i] = solution
return sorted(solutions, key=default_sort_key)
|
9e88ba4cb81d06b3619b03e574148549041ad079fa9cfb4adcbc036cece8f3a9 | """Tools for solving inequalities and systems of inequalities. """
import itertools
from sympy.calculus.util import (continuous_domain, periodicity,
function_range)
from sympy.core import Symbol, Dummy, sympify
from sympy.core.exprtools import factor_terms
from sympy.core.relational import Relational, Eq, Ge, Lt
from sympy.sets.sets import Interval, FiniteSet, Union, Intersection
from sympy.core.singleton import S
from sympy.core.function import expand_mul
from sympy.functions.elementary.complexes import im, Abs
from sympy.logic import And
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
from sympy.polys.polyutils import _nsort
from sympy.solvers.solveset import solvify, solveset
from sympy.utilities.iterables import sift, iterable
from sympy.utilities.misc import filldedent
def solve_poly_inequality(poly, rel):
"""Solve a polynomial inequality with rational coefficients.
Examples
========
>>> from sympy import solve_poly_inequality, Poly
>>> from sympy.abc import x
>>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
[{0}]
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
[Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
[{-1}, {1}]
See Also
========
solve_poly_inequalities
"""
if not isinstance(poly, Poly):
raise ValueError(
'For efficiency reasons, `poly` should be a Poly instance')
if poly.as_expr().is_number:
t = Relational(poly.as_expr(), 0, rel)
if t is S.true:
return [S.Reals]
elif t is S.false:
return [S.EmptySet]
else:
raise NotImplementedError(
"could not determine truth value of %s" % t)
reals, intervals = poly.real_roots(multiple=False), []
if rel == '==':
for root, _ in reals:
interval = Interval(root, root)
intervals.append(interval)
elif rel == '!=':
left = S.NegativeInfinity
for right, _ in reals + [(S.Infinity, 1)]:
interval = Interval(left, right, True, True)
intervals.append(interval)
left = right
else:
if poly.LC() > 0:
sign = +1
else:
sign = -1
eq_sign, equal = None, False
if rel == '>':
eq_sign = +1
elif rel == '<':
eq_sign = -1
elif rel == '>=':
eq_sign, equal = +1, True
elif rel == '<=':
eq_sign, equal = -1, True
else:
raise ValueError("'%s' is not a valid relation" % rel)
right, right_open = S.Infinity, True
for left, multiplicity in reversed(reals):
if multiplicity % 2:
if sign == eq_sign:
intervals.insert(
0, Interval(left, right, not equal, right_open))
sign, right, right_open = -sign, left, not equal
else:
if sign == eq_sign and not equal:
intervals.insert(
0, Interval(left, right, True, right_open))
right, right_open = left, True
elif sign != eq_sign and equal:
intervals.insert(0, Interval(left, left))
if sign == eq_sign:
intervals.insert(
0, Interval(S.NegativeInfinity, right, True, right_open))
return intervals
def solve_poly_inequalities(polys):
"""Solve polynomial inequalities with rational coefficients.
Examples
========
>>> from sympy import Poly
>>> from sympy.solvers.inequalities import solve_poly_inequalities
>>> from sympy.abc import x
>>> solve_poly_inequalities(((
... Poly(x**2 - 3), ">"), (
... Poly(-x**2 + 1), ">")))
Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
"""
return Union(*[s for p in polys for s in solve_poly_inequality(*p)])
def solve_rational_inequalities(eqs):
"""Solve a system of rational inequalities with rational coefficients.
Examples
========
>>> from sympy.abc import x
>>> from sympy import solve_rational_inequalities, Poly
>>> solve_rational_inequalities([[
... ((Poly(-x + 1), Poly(1, x)), '>='),
... ((Poly(-x + 1), Poly(1, x)), '<=')]])
{1}
>>> solve_rational_inequalities([[
... ((Poly(x), Poly(1, x)), '!='),
... ((Poly(-x + 1), Poly(1, x)), '>=')]])
Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))
See Also
========
solve_poly_inequality
"""
result = S.EmptySet
for _eqs in eqs:
if not _eqs:
continue
global_intervals = [Interval(S.NegativeInfinity, S.Infinity)]
for (numer, denom), rel in _eqs:
numer_intervals = solve_poly_inequality(numer*denom, rel)
denom_intervals = solve_poly_inequality(denom, '==')
intervals = []
for numer_interval, global_interval in itertools.product(
numer_intervals, global_intervals):
interval = numer_interval.intersect(global_interval)
if interval is not S.EmptySet:
intervals.append(interval)
global_intervals = intervals
intervals = []
for global_interval in global_intervals:
for denom_interval in denom_intervals:
global_interval -= denom_interval
if global_interval is not S.EmptySet:
intervals.append(global_interval)
global_intervals = intervals
if not global_intervals:
break
for interval in global_intervals:
result = result.union(interval)
return result
def reduce_rational_inequalities(exprs, gen, relational=True):
"""Reduce a system of rational inequalities with rational coefficients.
Examples
========
>>> from sympy import Symbol
>>> from sympy.solvers.inequalities import reduce_rational_inequalities
>>> x = Symbol('x', real=True)
>>> reduce_rational_inequalities([[x**2 <= 0]], x)
Eq(x, 0)
>>> reduce_rational_inequalities([[x + 2 > 0]], x)
-2 < x
>>> reduce_rational_inequalities([[(x + 2, ">")]], x)
-2 < x
>>> reduce_rational_inequalities([[x + 2]], x)
Eq(x, -2)
This function find the non-infinite solution set so if the unknown symbol
is declared as extended real rather than real then the result may include
finiteness conditions:
>>> y = Symbol('y', extended_real=True)
>>> reduce_rational_inequalities([[y + 2 > 0]], y)
(-2 < y) & (y < oo)
"""
exact = True
eqs = []
solution = S.Reals if exprs else S.EmptySet
for _exprs in exprs:
_eqs = []
for expr in _exprs:
if isinstance(expr, tuple):
expr, rel = expr
else:
if expr.is_Relational:
expr, rel = expr.lhs - expr.rhs, expr.rel_op
else:
expr, rel = expr, '=='
if expr is S.true:
numer, denom, rel = S.Zero, S.One, '=='
elif expr is S.false:
numer, denom, rel = S.One, S.One, '=='
else:
numer, denom = expr.together().as_numer_denom()
try:
(numer, denom), opt = parallel_poly_from_expr(
(numer, denom), gen)
except PolynomialError:
raise PolynomialError(filldedent('''
only polynomials and rational functions are
supported in this context.
'''))
if not opt.domain.is_Exact:
numer, denom, exact = numer.to_exact(), denom.to_exact(), False
domain = opt.domain.get_exact()
if not (domain.is_ZZ or domain.is_QQ):
expr = numer/denom
expr = Relational(expr, 0, rel)
solution &= solve_univariate_inequality(expr, gen, relational=False)
else:
_eqs.append(((numer, denom), rel))
if _eqs:
eqs.append(_eqs)
if eqs:
solution &= solve_rational_inequalities(eqs)
exclude = solve_rational_inequalities([[((d, d.one), '==')
for i in eqs for ((n, d), _) in i if d.has(gen)]])
solution -= exclude
if not exact and solution:
solution = solution.evalf()
if relational:
solution = solution.as_relational(gen)
return solution
def reduce_abs_inequality(expr, rel, gen):
"""Reduce an inequality with nested absolute values.
Examples
========
>>> from sympy import reduce_abs_inequality, Abs, Symbol
>>> x = Symbol('x', real=True)
>>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
(2 < x) & (x < 8)
>>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
(-19/3 < x) & (x < 7/3)
See Also
========
reduce_abs_inequalities
"""
if gen.is_extended_real is False:
raise TypeError(filldedent('''
Cannot solve inequalities with absolute values containing
non-real variables.
'''))
def _bottom_up_scan(expr):
exprs = []
if expr.is_Add or expr.is_Mul:
op = expr.func
for arg in expr.args:
_exprs = _bottom_up_scan(arg)
if not exprs:
exprs = _exprs
else:
exprs = [(op(expr, _expr), conds + _conds) for (expr, conds), (_expr, _conds) in
itertools.product(exprs, _exprs)]
elif expr.is_Pow:
n = expr.exp
if not n.is_Integer:
raise ValueError("Only Integer Powers are allowed on Abs.")
exprs.extend((expr**n, conds) for expr, conds in _bottom_up_scan(expr.base))
elif isinstance(expr, Abs):
_exprs = _bottom_up_scan(expr.args[0])
for expr, conds in _exprs:
exprs.append(( expr, conds + [Ge(expr, 0)]))
exprs.append((-expr, conds + [Lt(expr, 0)]))
else:
exprs = [(expr, [])]
return exprs
mapping = {'<': '>', '<=': '>='}
inequalities = []
for expr, conds in _bottom_up_scan(expr):
if rel not in mapping.keys():
expr = Relational( expr, 0, rel)
else:
expr = Relational(-expr, 0, mapping[rel])
inequalities.append([expr] + conds)
return reduce_rational_inequalities(inequalities, gen)
def reduce_abs_inequalities(exprs, gen):
"""Reduce a system of inequalities with nested absolute values.
Examples
========
>>> from sympy import reduce_abs_inequalities, Abs, Symbol
>>> x = Symbol('x', extended_real=True)
>>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
... (Abs(x + 25) - 13, '>')], x)
(-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))
>>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
(1/2 < x) & (x < 4)
See Also
========
reduce_abs_inequality
"""
return And(*[ reduce_abs_inequality(expr, rel, gen)
for expr, rel in exprs ])
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
"""Solves a real univariate inequality.
Parameters
==========
expr : Relational
The target inequality
gen : Symbol
The variable for which the inequality is solved
relational : bool
A Relational type output is expected or not
domain : Set
The domain over which the equation is solved
continuous: bool
True if expr is known to be continuous over the given domain
(and so continuous_domain() does not need to be called on it)
Raises
======
NotImplementedError
The solution of the inequality cannot be determined due to limitation
in :func:`sympy.solvers.solveset.solvify`.
Notes
=====
Currently, we cannot solve all the inequalities due to limitations in
:func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
are restricted in its periodic interval.
See Also
========
sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API
Examples
========
>>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
>>> x = Symbol('x')
>>> solve_univariate_inequality(x**2 >= 4, x)
((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))
>>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
Union(Interval(-oo, -2), Interval(2, oo))
>>> domain = Interval(0, S.Infinity)
>>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
Interval(2, oo)
>>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
Interval.open(0, pi)
"""
from sympy.solvers.solvers import denoms
if domain.is_subset(S.Reals) is False:
raise NotImplementedError(filldedent('''
Inequalities in the complex domain are
not supported. Try the real domain by
setting domain=S.Reals'''))
elif domain is not S.Reals:
rv = solve_univariate_inequality(
expr, gen, relational=False, continuous=continuous).intersection(domain)
if relational:
rv = rv.as_relational(gen)
return rv
else:
pass # continue with attempt to solve in Real domain
# This keeps the function independent of the assumptions about `gen`.
# `solveset` makes sure this function is called only when the domain is
# real.
_gen = gen
_domain = domain
if gen.is_extended_real is False:
rv = S.EmptySet
return rv if not relational else rv.as_relational(_gen)
elif gen.is_extended_real is None:
gen = Dummy('gen', extended_real=True)
try:
expr = expr.xreplace({_gen: gen})
except TypeError:
raise TypeError(filldedent('''
When gen is real, the relational has a complex part
which leads to an invalid comparison like I < 0.
'''))
rv = None
if expr is S.true:
rv = domain
elif expr is S.false:
rv = S.EmptySet
else:
e = expr.lhs - expr.rhs
period = periodicity(e, gen)
if period == S.Zero:
e = expand_mul(e)
const = expr.func(e, 0)
if const is S.true:
rv = domain
elif const is S.false:
rv = S.EmptySet
elif period is not None:
frange = function_range(e, gen, domain)
rel = expr.rel_op
if rel in ('<', '<='):
if expr.func(frange.sup, 0):
rv = domain
elif not expr.func(frange.inf, 0):
rv = S.EmptySet
elif rel in ('>', '>='):
if expr.func(frange.inf, 0):
rv = domain
elif not expr.func(frange.sup, 0):
rv = S.EmptySet
inf, sup = domain.inf, domain.sup
if sup - inf is S.Infinity:
domain = Interval(0, period, False, True).intersect(_domain)
_domain = domain
if rv is None:
n, d = e.as_numer_denom()
try:
if gen not in n.free_symbols and len(e.free_symbols) > 1:
raise ValueError
# this might raise ValueError on its own
# or it might give None...
solns = solvify(e, gen, domain)
if solns is None:
# in which case we raise ValueError
raise ValueError
except (ValueError, NotImplementedError):
# replace gen with generic x since it's
# univariate anyway
raise NotImplementedError(filldedent('''
The inequality, %s, cannot be solved using
solve_univariate_inequality.
''' % expr.subs(gen, Symbol('x'))))
expanded_e = expand_mul(e)
def valid(x):
# this is used to see if gen=x satisfies the
# relational by substituting it into the
# expanded form and testing against 0, e.g.
# if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
# and expanded_e = x**2 + x - 2; the test is
# whether a given value of x satisfies
# x**2 + x - 2 < 0
#
# expanded_e, expr and gen used from enclosing scope
v = expanded_e.subs(gen, expand_mul(x))
try:
r = expr.func(v, 0)
except TypeError:
r = S.false
if r in (S.true, S.false):
return r
if v.is_extended_real is False:
return S.false
else:
v = v.n(2)
if v.is_comparable:
return expr.func(v, 0)
# not comparable or couldn't be evaluated
raise NotImplementedError(
'relationship did not evaluate: %s' % r)
singularities = []
for d in denoms(expr, gen):
singularities.extend(solvify(d, gen, domain))
if not continuous:
domain = continuous_domain(expanded_e, gen, domain)
include_x = '=' in expr.rel_op and expr.rel_op != '!='
try:
discontinuities = set(domain.boundary -
FiniteSet(domain.inf, domain.sup))
# remove points that are not between inf and sup of domain
critical_points = FiniteSet(*(solns + singularities + list(
discontinuities))).intersection(
Interval(domain.inf, domain.sup,
domain.inf not in domain, domain.sup not in domain))
if all(r.is_number for r in critical_points):
reals = _nsort(critical_points, separated=True)[0]
else:
sifted = sift(critical_points, lambda x: x.is_extended_real)
if sifted[None]:
# there were some roots that weren't known
# to be real
raise NotImplementedError
try:
reals = sifted[True]
if len(reals) > 1:
reals = list(sorted(reals))
except TypeError:
raise NotImplementedError
except NotImplementedError:
raise NotImplementedError('sorting of these roots is not supported')
# If expr contains imaginary coefficients, only take real
# values of x for which the imaginary part is 0
make_real = S.Reals
if im(expanded_e) != S.Zero:
check = True
im_sol = FiniteSet()
try:
a = solveset(im(expanded_e), gen, domain)
if not isinstance(a, Interval):
for z in a:
if z not in singularities and valid(z) and z.is_extended_real:
im_sol += FiniteSet(z)
else:
start, end = a.inf, a.sup
for z in _nsort(critical_points + FiniteSet(end)):
valid_start = valid(start)
if start != end:
valid_z = valid(z)
pt = _pt(start, z)
if pt not in singularities and pt.is_extended_real and valid(pt):
if valid_start and valid_z:
im_sol += Interval(start, z)
elif valid_start:
im_sol += Interval.Ropen(start, z)
elif valid_z:
im_sol += Interval.Lopen(start, z)
else:
im_sol += Interval.open(start, z)
start = z
for s in singularities:
im_sol -= FiniteSet(s)
except (TypeError):
im_sol = S.Reals
check = False
if im_sol is S.EmptySet:
raise ValueError(filldedent('''
%s contains imaginary parts which cannot be
made 0 for any value of %s satisfying the
inequality, leading to relations like I < 0.
''' % (expr.subs(gen, _gen), _gen)))
make_real = make_real.intersect(im_sol)
sol_sets = [S.EmptySet]
start = domain.inf
if start in domain and valid(start) and start.is_finite:
sol_sets.append(FiniteSet(start))
for x in reals:
end = x
if valid(_pt(start, end)):
sol_sets.append(Interval(start, end, True, True))
if x in singularities:
singularities.remove(x)
else:
if x in discontinuities:
discontinuities.remove(x)
_valid = valid(x)
else: # it's a solution
_valid = include_x
if _valid:
sol_sets.append(FiniteSet(x))
start = end
end = domain.sup
if end in domain and valid(end) and end.is_finite:
sol_sets.append(FiniteSet(end))
if valid(_pt(start, end)):
sol_sets.append(Interval.open(start, end))
if im(expanded_e) != S.Zero and check:
rv = (make_real).intersect(_domain)
else:
rv = Intersection(
(Union(*sol_sets)), make_real, _domain).subs(gen, _gen)
return rv if not relational else rv.as_relational(_gen)
def _pt(start, end):
"""Return a point between start and end"""
if not start.is_infinite and not end.is_infinite:
pt = (start + end)/2
elif start.is_infinite and end.is_infinite:
pt = S.Zero
else:
if (start.is_infinite and start.is_extended_positive is None or
end.is_infinite and end.is_extended_positive is None):
raise ValueError('cannot proceed with unsigned infinite values')
if (end.is_infinite and end.is_extended_negative or
start.is_infinite and start.is_extended_positive):
start, end = end, start
# if possible, use a multiple of self which has
# better behavior when checking assumptions than
# an expression obtained by adding or subtracting 1
if end.is_infinite:
if start.is_extended_positive:
pt = start*2
elif start.is_extended_negative:
pt = start*S.Half
else:
pt = start + 1
elif start.is_infinite:
if end.is_extended_positive:
pt = end*S.Half
elif end.is_extended_negative:
pt = end*2
else:
pt = end - 1
return pt
def _solve_inequality(ie, s, linear=False):
"""Return the inequality with s isolated on the left, if possible.
If the relationship is non-linear, a solution involving And or Or
may be returned. False or True are returned if the relationship
is never True or always True, respectively.
If `linear` is True (default is False) an `s`-dependent expression
will be isolated on the left, if possible
but it will not be solved for `s` unless the expression is linear
in `s`. Furthermore, only "safe" operations which do not change the
sense of the relationship are applied: no division by an unsigned
value is attempted unless the relationship involves Eq or Ne and
no division by a value not known to be nonzero is ever attempted.
Examples
========
>>> from sympy import Eq, Symbol
>>> from sympy.solvers.inequalities import _solve_inequality as f
>>> from sympy.abc import x, y
For linear expressions, the symbol can be isolated:
>>> f(x - 2 < 0, x)
x < 2
>>> f(-x - 6 < x, x)
x > -3
Sometimes nonlinear relationships will be False
>>> f(x**2 + 4 < 0, x)
False
Or they may involve more than one region of values:
>>> f(x**2 - 4 < 0, x)
(-2 < x) & (x < 2)
To restrict the solution to a relational, set linear=True
and only the x-dependent portion will be isolated on the left:
>>> f(x**2 - 4 < 0, x, linear=True)
x**2 < 4
Division of only nonzero quantities is allowed, so x cannot
be isolated by dividing by y:
>>> y.is_nonzero is None # it is unknown whether it is 0 or not
True
>>> f(x*y < 1, x)
x*y < 1
And while an equality (or inequality) still holds after dividing by a
non-zero quantity
>>> nz = Symbol('nz', nonzero=True)
>>> f(Eq(x*nz, 1), x)
Eq(x, 1/nz)
the sign must be known for other inequalities involving > or <:
>>> f(x*nz <= 1, x)
nz*x <= 1
>>> p = Symbol('p', positive=True)
>>> f(x*p <= 1, x)
x <= 1/p
When there are denominators in the original expression that
are removed by expansion, conditions for them will be returned
as part of the result:
>>> f(x < x*(2/x - 1), x)
(x < 1) & Ne(x, 0)
"""
from sympy.solvers.solvers import denoms
if s not in ie.free_symbols:
return ie
if ie.rhs == s:
ie = ie.reversed
if ie.lhs == s and s not in ie.rhs.free_symbols:
return ie
def classify(ie, s, i):
# return True or False if ie evaluates when substituting s with
# i else None (if unevaluated) or NaN (when there is an error
# in evaluating)
try:
v = ie.subs(s, i)
if v is S.NaN:
return v
elif v not in (True, False):
return
return v
except TypeError:
return S.NaN
rv = None
oo = S.Infinity
expr = ie.lhs - ie.rhs
try:
p = Poly(expr, s)
if p.degree() == 0:
rv = ie.func(p.as_expr(), 0)
elif not linear and p.degree() > 1:
# handle in except clause
raise NotImplementedError
except (PolynomialError, NotImplementedError):
if not linear:
try:
rv = reduce_rational_inequalities([[ie]], s)
except PolynomialError:
rv = solve_univariate_inequality(ie, s)
# remove restrictions wrt +/-oo that may have been
# applied when using sets to simplify the relationship
okoo = classify(ie, s, oo)
if okoo is S.true and classify(rv, s, oo) is S.false:
rv = rv.subs(s < oo, True)
oknoo = classify(ie, s, -oo)
if (oknoo is S.true and
classify(rv, s, -oo) is S.false):
rv = rv.subs(-oo < s, True)
rv = rv.subs(s > -oo, True)
if rv is S.true:
rv = (s <= oo) if okoo is S.true else (s < oo)
if oknoo is not S.true:
rv = And(-oo < s, rv)
else:
p = Poly(expr)
conds = []
if rv is None:
e = p.as_expr() # this is in expanded form
# Do a safe inversion of e, moving non-s terms
# to the rhs and dividing by a nonzero factor if
# the relational is Eq/Ne; for other relationals
# the sign must also be positive or negative
rhs = 0
b, ax = e.as_independent(s, as_Add=True)
e -= b
rhs -= b
ef = factor_terms(e)
a, e = ef.as_independent(s, as_Add=False)
if (a.is_zero != False or # don't divide by potential 0
a.is_negative ==
a.is_positive is None and # if sign is not known then
ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
e = ef
a = S.One
rhs /= a
if a.is_positive:
rv = ie.func(e, rhs)
else:
rv = ie.reversed.func(e, rhs)
# return conditions under which the value is
# valid, too.
beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
current_denoms = denoms(rv)
for d in beginning_denoms - current_denoms:
c = _solve_inequality(Eq(d, 0), s, linear=linear)
if isinstance(c, Eq) and c.lhs == s:
if classify(rv, s, c.rhs) is S.true:
# rv is permitting this value but it shouldn't
conds.append(~c)
for i in (-oo, oo):
if (classify(rv, s, i) is S.true and
classify(ie, s, i) is not S.true):
conds.append(s < i if i is oo else i < s)
conds.append(rv)
return And(*conds)
def _reduce_inequalities(inequalities, symbols):
# helper for reduce_inequalities
poly_part, abs_part = {}, {}
other = []
for inequality in inequalities:
expr, rel = inequality.lhs, inequality.rel_op # rhs is 0
# check for gens using atoms which is more strict than free_symbols to
# guard against EX domain which won't be handled by
# reduce_rational_inequalities
gens = expr.atoms(Symbol)
if len(gens) == 1:
gen = gens.pop()
else:
common = expr.free_symbols & symbols
if len(common) == 1:
gen = common.pop()
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
continue
else:
raise NotImplementedError(filldedent('''
inequality has more than one symbol of interest.
'''))
if expr.is_polynomial(gen):
poly_part.setdefault(gen, []).append((expr, rel))
else:
components = expr.find(lambda u:
u.has(gen) and (
u.is_Function or u.is_Pow and not u.exp.is_Integer))
if components and all(isinstance(i, Abs) for i in components):
abs_part.setdefault(gen, []).append((expr, rel))
else:
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
poly_reduced = [reduce_rational_inequalities([exprs], gen) for gen, exprs in poly_part.items()]
abs_reduced = [reduce_abs_inequalities(exprs, gen) for gen, exprs in abs_part.items()]
return And(*(poly_reduced + abs_reduced + other))
def reduce_inequalities(inequalities, symbols=[]):
"""Reduce a system of inequalities with rational coefficients.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import reduce_inequalities
>>> reduce_inequalities(0 <= x + 3, [])
(-3 <= x) & (x < oo)
>>> reduce_inequalities(0 <= x + y*2 - 1, [x])
(x < oo) & (x >= 1 - 2*y)
"""
if not iterable(inequalities):
inequalities = [inequalities]
inequalities = [sympify(i) for i in inequalities]
gens = set().union(*[i.free_symbols for i in inequalities])
if not iterable(symbols):
symbols = [symbols]
symbols = (set(symbols) or gens) & gens
if any(i.is_extended_real is False for i in symbols):
raise TypeError(filldedent('''
inequalities cannot contain symbols that are not real.
'''))
# make vanilla symbol real
recast = {i: Dummy(i.name, extended_real=True)
for i in gens if i.is_extended_real is None}
inequalities = [i.xreplace(recast) for i in inequalities]
symbols = {i.xreplace(recast) for i in symbols}
# prefilter
keep = []
for i in inequalities:
if isinstance(i, Relational):
i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
elif i not in (True, False):
i = Eq(i, 0)
if i == True:
continue
elif i == False:
return S.false
if i.lhs.is_number:
raise NotImplementedError(
"could not determine truth value of %s" % i)
keep.append(i)
inequalities = keep
del keep
# solve system
rv = _reduce_inequalities(inequalities, symbols)
# restore original symbols and return
return rv.xreplace({v: k for k, v in recast.items()})
|
421379f956893d7db8ac1f0704d69d575406aeace54ec671905ea27b07766bb4 | """
This module contain solvers for all kinds of equations:
- algebraic or transcendental, use solve()
- recurrence, use rsolve()
- differential, use dsolve()
- nonlinear (numerically), use nsolve()
(you will need a good starting point)
"""
from sympy.core import (S, Add, Symbol, Dummy, Expr, Mul)
from sympy.core.assumptions import check_assumptions
from sympy.core.exprtools import factor_terms
from sympy.core.function import (expand_mul, expand_log, Derivative,
AppliedUndef, UndefinedFunction, nfloat,
Function, expand_power_exp, _mexpand, expand,
expand_func)
from sympy.core.logic import fuzzy_not
from sympy.core.numbers import ilcm, Float, Rational, _illegal
from sympy.core.power import integer_log, Pow
from sympy.core.relational import Relational, Eq, Ne
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.sympify import sympify, _sympify
from sympy.core.traversal import preorder_traversal
from sympy.logic.boolalg import And, Or, BooleanAtom
from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan,
Abs, re, im, arg, sqrt, atan2)
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.integrals.integrals import Integral
from sympy.ntheory.factor_ import divisors
from sympy.simplify import (simplify, collect, powsimp, posify, # type: ignore
powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction,
separatevars)
from sympy.simplify.sqrtdenest import sqrt_depth
from sympy.simplify.fu import TR1, TR2i
from sympy.matrices.common import NonInvertibleMatrixError
from sympy.matrices import Matrix, zeros
from sympy.polys import roots, cancel, factor, Poly
from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError
from sympy.polys.solvers import sympy_eqs_to_ring, solve_lin_sys
from sympy.utilities.lambdify import lambdify
from sympy.utilities.misc import filldedent, debug
from sympy.utilities.iterables import (connected_components,
generate_bell, uniq, iterable, is_sequence, subsets, flatten)
from sympy.utilities.decorator import conserve_mpmath_dps
from mpmath import findroot
from sympy.solvers.polysys import solve_poly_system
from types import GeneratorType
from collections import defaultdict
from itertools import combinations, product
import warnings
def recast_to_symbols(eqs, symbols):
"""
Return (e, s, d) where e and s are versions of *eqs* and
*symbols* in which any non-Symbol objects in *symbols* have
been replaced with generic Dummy symbols and d is a dictionary
that can be used to restore the original expressions.
Examples
========
>>> from sympy.solvers.solvers import recast_to_symbols
>>> from sympy import symbols, Function
>>> x, y = symbols('x y')
>>> fx = Function('f')(x)
>>> eqs, syms = [fx + 1, x, y], [fx, y]
>>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d)
([_X0 + 1, x, y], [_X0, y], {_X0: f(x)})
The original equations and symbols can be restored using d:
>>> assert [i.xreplace(d) for i in eqs] == eqs
>>> assert [d.get(i, i) for i in s] == syms
"""
if not iterable(eqs) and iterable(symbols):
raise ValueError('Both eqs and symbols must be iterable')
orig = list(symbols)
symbols = list(ordered(symbols))
swap_sym = {}
i = 0
for j, s in enumerate(symbols):
if not isinstance(s, Symbol) and s not in swap_sym:
swap_sym[s] = Dummy('X%d' % i)
i += 1
new_f = []
for i in eqs:
isubs = getattr(i, 'subs', None)
if isubs is not None:
new_f.append(isubs(swap_sym))
else:
new_f.append(i)
restore = {v: k for k, v in swap_sym.items()}
return new_f, [swap_sym.get(i, i) for i in orig], restore
def _ispow(e):
"""Return True if e is a Pow or is exp."""
return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp))
def _simple_dens(f, symbols):
# when checking if a denominator is zero, we can just check the
# base of powers with nonzero exponents since if the base is zero
# the power will be zero, too. To keep it simple and fast, we
# limit simplification to exponents that are Numbers
dens = set()
for d in denoms(f, symbols):
if d.is_Pow and d.exp.is_Number:
if d.exp.is_zero:
continue # foo**0 is never 0
d = d.base
dens.add(d)
return dens
def denoms(eq, *symbols):
"""
Return (recursively) set of all denominators that appear in *eq*
that contain any symbol in *symbols*; if *symbols* are not
provided then all denominators will be returned.
Examples
========
>>> from sympy.solvers.solvers import denoms
>>> from sympy.abc import x, y, z
>>> denoms(x/y)
{y}
>>> denoms(x/(y*z))
{y, z}
>>> denoms(3/x + y/z)
{x, z}
>>> denoms(x/2 + y/z)
{2, z}
If *symbols* are provided then only denominators containing
those symbols will be returned:
>>> denoms(1/x + 1/y + 1/z, y, z)
{y, z}
"""
pot = preorder_traversal(eq)
dens = set()
for p in pot:
# Here p might be Tuple or Relational
# Expr subtrees (e.g. lhs and rhs) will be traversed after by pot
if not isinstance(p, Expr):
continue
den = denom(p)
if den is S.One:
continue
for d in Mul.make_args(den):
dens.add(d)
if not symbols:
return dens
elif len(symbols) == 1:
if iterable(symbols[0]):
symbols = symbols[0]
return {d for d in dens if any(s in d.free_symbols for s in symbols)}
def checksol(f, symbol, sol=None, **flags):
"""
Checks whether sol is a solution of equation f == 0.
Explanation
===========
Input can be either a single symbol and corresponding value
or a dictionary of symbols and values. When given as a dictionary
and flag ``simplify=True``, the values in the dictionary will be
simplified. *f* can be a single equation or an iterable of equations.
A solution must satisfy all equations in *f* to be considered valid;
if a solution does not satisfy any equation, False is returned; if one or
more checks are inconclusive (and none are False) then None is returned.
Examples
========
>>> from sympy import checksol, symbols
>>> x, y = symbols('x,y')
>>> checksol(x**4 - 1, x, 1)
True
>>> checksol(x**4 - 1, x, 0)
False
>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True
To check if an expression is zero using ``checksol()``, pass it
as *f* and send an empty dictionary for *symbol*:
>>> checksol(x**2 + x - x*(x + 1), {})
True
None is returned if ``checksol()`` could not conclude.
flags:
'numerical=True (default)'
do a fast numerical check if ``f`` has only one symbol.
'minimal=True (default is False)'
a very fast, minimal testing.
'warn=True (default is False)'
show a warning if checksol() could not conclude.
'simplify=True (default)'
simplify solution before substituting into function and
simplify the function before trying specific simplifications
'force=True (default is False)'
make positive all symbols without assumptions regarding sign.
"""
from sympy.physics.units import Unit
minimal = flags.get('minimal', False)
if sol is not None:
sol = {symbol: sol}
elif isinstance(symbol, dict):
sol = symbol
else:
msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)'
raise ValueError(msg % (symbol, sol))
if iterable(f):
if not f:
raise ValueError('no functions to check')
rv = True
for fi in f:
check = checksol(fi, sol, **flags)
if check:
continue
if check is False:
return False
rv = None # don't return, wait to see if there's a False
return rv
f = _sympify(f)
if f.is_number:
return f.is_zero
if isinstance(f, Poly):
f = f.as_expr()
elif isinstance(f, (Eq, Ne)):
if f.rhs in (S.true, S.false):
f = f.reversed
B, E = f.args
if isinstance(B, BooleanAtom):
f = f.subs(sol)
if not f.is_Boolean:
return
else:
f = f.rewrite(Add, evaluate=False)
if isinstance(f, BooleanAtom):
return bool(f)
elif not f.is_Relational and not f:
return True
illegal = set(_illegal)
if any(sympify(v).atoms() & illegal for k, v in sol.items()):
return False
was = f
attempt = -1
numerical = flags.get('numerical', True)
while 1:
attempt += 1
if attempt == 0:
val = f.subs(sol)
if isinstance(val, Mul):
val = val.as_independent(Unit)[0]
if val.atoms() & illegal:
return False
elif attempt == 1:
if not val.is_number:
if not val.is_constant(*list(sol.keys()), simplify=not minimal):
return False
# there are free symbols -- simple expansion might work
_, val = val.as_content_primitive()
val = _mexpand(val.as_numer_denom()[0], recursive=True)
elif attempt == 2:
if minimal:
return
if flags.get('simplify', True):
for k in sol:
sol[k] = simplify(sol[k])
# start over without the failed expanded form, possibly
# with a simplified solution
val = simplify(f.subs(sol))
if flags.get('force', True):
val, reps = posify(val)
# expansion may work now, so try again and check
exval = _mexpand(val, recursive=True)
if exval.is_number:
# we can decide now
val = exval
else:
# if there are no radicals and no functions then this can't be
# zero anymore -- can it?
pot = preorder_traversal(expand_mul(val))
seen = set()
saw_pow_func = False
for p in pot:
if p in seen:
continue
seen.add(p)
if p.is_Pow and not p.exp.is_Integer:
saw_pow_func = True
elif p.is_Function:
saw_pow_func = True
elif isinstance(p, UndefinedFunction):
saw_pow_func = True
if saw_pow_func:
break
if saw_pow_func is False:
return False
if flags.get('force', True):
# don't do a zero check with the positive assumptions in place
val = val.subs(reps)
nz = fuzzy_not(val.is_zero)
if nz is not None:
# issue 5673: nz may be True even when False
# so these are just hacks to keep a false positive
# from being returned
# HACK 1: LambertW (issue 5673)
if val.is_number and val.has(LambertW):
# don't eval this to verify solution since if we got here,
# numerical must be False
return None
# add other HACKs here if necessary, otherwise we assume
# the nz value is correct
return not nz
break
if numerical and val.is_number:
return (abs(val.n(18).n(12, chop=True)) < 1e-9) is S.true
if val == was:
continue
elif val.is_Rational:
return val == 0
was = val
if flags.get('warn', False):
warnings.warn("\n\tWarning: could not verify solution %s." % sol)
# returns None if it can't conclude
# TODO: improve solution testing
def solve(f, *symbols, **flags):
r"""
Algebraically solves equations and systems of equations.
Explanation
===========
Currently supported:
- polynomial
- transcendental
- piecewise combinations of the above
- systems of linear and polynomial equations
- systems containing relational expressions
Examples
========
The output varies according to the input and can be seen by example:
>>> from sympy import solve, Poly, Eq, Function, exp
>>> from sympy.abc import x, y, z, a, b
>>> f = Function('f')
Boolean or univariate Relational:
>>> solve(x < 3)
(-oo < x) & (x < 3)
To always get a list of solution mappings, use flag dict=True:
>>> solve(x - 3, dict=True)
[{x: 3}]
>>> sol = solve([x - 3, y - 1], dict=True)
>>> sol
[{x: 3, y: 1}]
>>> sol[0][x]
3
>>> sol[0][y]
1
To get a list of *symbols* and set of solution(s) use flag set=True:
>>> solve([x**2 - 3, y - 1], set=True)
([x, y], {(-sqrt(3), 1), (sqrt(3), 1)})
Single expression and single symbol that is in the expression:
>>> solve(x - y, x)
[y]
>>> solve(x - 3, x)
[3]
>>> solve(Eq(x, 3), x)
[3]
>>> solve(Poly(x - 3), x)
[3]
>>> solve(x**2 - y**2, x, set=True)
([x], {(-y,), (y,)})
>>> solve(x**4 - 1, x, set=True)
([x], {(-1,), (1,), (-I,), (I,)})
Single expression with no symbol that is in the expression:
>>> solve(3, x)
[]
>>> solve(x - 3, y)
[]
Single expression with no symbol given. In this case, all free *symbols*
will be selected as potential *symbols* to solve for. If the equation is
univariate then a list of solutions is returned; otherwise - as is the case
when *symbols* are given as an iterable of length greater than 1 - a list of
mappings will be returned:
>>> solve(x - 3)
[3]
>>> solve(x**2 - y**2)
[{x: -y}, {x: y}]
>>> solve(z**2*x**2 - z**2*y**2)
[{x: -y}, {x: y}, {z: 0}]
>>> solve(z**2*x - z**2*y**2)
[{x: y**2}, {z: 0}]
When an object other than a Symbol is given as a symbol, it is
isolated algebraically and an implicit solution may be obtained.
This is mostly provided as a convenience to save you from replacing
the object with a Symbol and solving for that Symbol. It will only
work if the specified object can be replaced with a Symbol using the
subs method:
>>> solve(f(x) - x, f(x))
[x]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[x + f(x)]
>>> solve(f(x).diff(x) - f(x) - x, f(x))
[-x + Derivative(f(x), x)]
>>> solve(x + exp(x)**2, exp(x), set=True)
([exp(x)], {(-sqrt(-x),), (sqrt(-x),)})
>>> from sympy import Indexed, IndexedBase, Tuple, sqrt
>>> A = IndexedBase('A')
>>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1)
>>> solve(eqs, eqs.atoms(Indexed))
{A[1]: 1, A[2]: 2}
* To solve for a symbol implicitly, use implicit=True:
>>> solve(x + exp(x), x)
[-LambertW(1)]
>>> solve(x + exp(x), x, implicit=True)
[-exp(x)]
* It is possible to solve for anything that can be targeted with
subs:
>>> solve(x + 2 + sqrt(3), x + 2)
[-sqrt(3)]
>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2)
{y: -2 + sqrt(3), x + 2: -sqrt(3)}
* Nothing heroic is done in this implicit solving so you may end up
with a symbol still in the solution:
>>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y)
>>> solve(eqs, y, x + 2)
{y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + sqrt(3)/(x + 3)}
>>> solve(eqs, y*x, x)
{x: -y - 4, x*y: -3*y - sqrt(3)}
* If you attempt to solve for a number remember that the number
you have obtained does not necessarily mean that the value is
equivalent to the expression obtained:
>>> solve(sqrt(2) - 1, 1)
[sqrt(2)]
>>> solve(x - y + 1, 1) # /!\ -1 is targeted, too
[x/(y - 1)]
>>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)]
[-x + y]
* To solve for a function within a derivative, use ``dsolve``.
Single expression and more than one symbol:
* When there is a linear solution:
>>> solve(x - y**2, x, y)
[(y**2, y)]
>>> solve(x**2 - y, x, y)
[(x, x**2)]
>>> solve(x**2 - y, x, y, dict=True)
[{y: x**2}]
* When undetermined coefficients are identified:
* That are linear:
>>> solve((a + b)*x - b + 2, a, b)
{a: -2, b: 2}
* That are nonlinear:
>>> solve((a + b)*x - b**2 + 2, a, b, set=True)
([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))})
* If there is no linear solution, then the first successful
attempt for a nonlinear solution will be returned:
>>> solve(x**2 - y**2, x, y, dict=True)
[{x: -y}, {x: y}]
>>> solve(x**2 - y**2/exp(x), x, y, dict=True)
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
>>> solve(x**2 - y**2/exp(x), y, x)
[(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)]
Iterable of one or more of the above:
* Involving relationals or bools:
>>> solve([x < 3, x - 2])
Eq(x, 2)
>>> solve([x > 3, x - 2])
False
* When the system is linear:
* With a solution:
>>> solve([x - 3], x)
{x: 3}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z)
{x: -3, y: 1}
>>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y)
{x: 2 - 5*y, z: 21*y - 6}
* Without a solution:
>>> solve([x + 3, x - 3])
[]
* When the system is not linear:
>>> solve([x**2 + y -2, y**2 - 4], x, y, set=True)
([x, y], {(-2, -2), (0, 2), (2, -2)})
* If no *symbols* are given, all free *symbols* will be selected and a
list of mappings returned:
>>> solve([x - 2, x**2 + y])
[{x: 2, y: -4}]
>>> solve([x - 2, x**2 + f(x)], {f(x), x})
[{x: 2, f(x): -4}]
* If any equation does not depend on the symbol(s) given, it will be
eliminated from the equation set and an answer may be given
implicitly in terms of variables that were not of interest:
>>> solve([x - y, y - 3], x)
{x: y}
**Additional Examples**
``solve()`` with check=True (default) will run through the symbol tags to
elimate unwanted solutions. If no assumptions are included, all possible
solutions will be returned:
>>> from sympy import Symbol, solve
>>> x = Symbol("x")
>>> solve(x**2 - 1)
[-1, 1]
By using the positive tag, only one solution will be returned:
>>> pos = Symbol("pos", positive=True)
>>> solve(pos**2 - 1)
[1]
Assumptions are not checked when ``solve()`` input involves
relationals or bools.
When the solutions are checked, those that make any denominator zero
are automatically excluded. If you do not want to exclude such solutions,
then use the check=False option:
>>> from sympy import sin, limit
>>> solve(sin(x)/x) # 0 is excluded
[pi]
If check=False, then a solution to the numerator being zero is found: x = 0.
In this case, this is a spurious solution since $\sin(x)/x$ has the well
known limit (without dicontinuity) of 1 at x = 0:
>>> solve(sin(x)/x, check=False)
[0, pi]
In the following case, however, the limit exists and is equal to the
value of x = 0 that is excluded when check=True:
>>> eq = x**2*(1/x - z**2/x)
>>> solve(eq, x)
[]
>>> solve(eq, x, check=False)
[0]
>>> limit(eq, x, 0, '-')
0
>>> limit(eq, x, 0, '+')
0
**Disabling High-Order Explicit Solutions**
When solving polynomial expressions, you might not want explicit solutions
(which can be quite long). If the expression is univariate, ``CRootOf``
instances will be returned instead:
>>> solve(x**3 - x + 1)
[-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) -
(-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3,
-(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 -
1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)),
-(3*sqrt(69)/2 + 27/2)**(1/3)/3 -
1/(3*sqrt(69)/2 + 27/2)**(1/3)]
>>> solve(x**3 - x + 1, cubics=False)
[CRootOf(x**3 - x + 1, 0),
CRootOf(x**3 - x + 1, 1),
CRootOf(x**3 - x + 1, 2)]
If the expression is multivariate, no solution might be returned:
>>> solve(x**3 - x + a, x, cubics=False)
[]
Sometimes solutions will be obtained even when a flag is False because the
expression could be factored. In the following example, the equation can
be factored as the product of a linear and a quadratic factor so explicit
solutions (which did not require solving a cubic expression) are obtained:
>>> eq = x**3 + 3*x**2 + x - 1
>>> solve(eq, cubics=False)
[-1, -1 + sqrt(2), -sqrt(2) - 1]
**Solving Equations Involving Radicals**
Because of SymPy's use of the principle root, some solutions
to radical equations will be missed unless check=False:
>>> from sympy import root
>>> eq = root(x**3 - 3*x**2, 3) + 1 - x
>>> solve(eq)
[]
>>> solve(eq, check=False)
[1/3]
In the above example, there is only a single solution to the
equation. Other expressions will yield spurious roots which
must be checked manually; roots which give a negative argument
to odd-powered radicals will also need special checking:
>>> from sympy import real_root, S
>>> eq = root(x, 3) - root(x, 5) + S(1)/7
>>> solve(eq) # this gives 2 solutions but misses a 3rd
[CRootOf(7*x**5 - 7*x**3 + 1, 1)**15,
CRootOf(7*x**5 - 7*x**3 + 1, 2)**15]
>>> sol = solve(eq, check=False)
>>> [abs(eq.subs(x,i).n(2)) for i in sol]
[0.48, 0.e-110, 0.e-110, 0.052, 0.052]
The first solution is negative so ``real_root`` must be used to see that it
satisfies the expression:
>>> abs(real_root(eq.subs(x, sol[0])).n(2))
0.e-110
If the roots of the equation are not real then more care will be
necessary to find the roots, especially for higher order equations.
Consider the following expression:
>>> expr = root(x, 3) - root(x, 5)
We will construct a known value for this expression at x = 3 by selecting
the 1-th root for each radical:
>>> expr1 = root(x, 3, 1) - root(x, 5, 1)
>>> v = expr1.subs(x, -3)
The ``solve`` function is unable to find any exact roots to this equation:
>>> eq = Eq(expr, v); eq1 = Eq(expr1, v)
>>> solve(eq, check=False), solve(eq1, check=False)
([], [])
The function ``unrad``, however, can be used to get a form of the equation
for which numerical roots can be found:
>>> from sympy.solvers.solvers import unrad
>>> from sympy import nroots
>>> e, (p, cov) = unrad(eq)
>>> pvals = nroots(e)
>>> inversion = solve(cov, x)[0]
>>> xvals = [inversion.subs(p, i) for i in pvals]
Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the
solution can only be verified with ``expr1``:
>>> z = expr - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9]
[]
>>> z1 = expr1 - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9]
[-3.0]
Parameters
==========
f :
- a single Expr or Poly that must be zero
- an Equality
- a Relational expression
- a Boolean
- iterable of one or more of the above
symbols : (object(s) to solve for) specified as
- none given (other non-numeric objects will be used)
- single symbol
- denested list of symbols
(e.g., ``solve(f, x, y)``)
- ordered iterable of symbols
(e.g., ``solve(f, [x, y])``)
flags :
dict=True (default is False)
Return list (perhaps empty) of solution mappings.
set=True (default is False)
Return list of symbols and set of tuple(s) of solution(s).
exclude=[] (default)
Do not try to solve for any of the free symbols in exclude;
if expressions are given, the free symbols in them will
be extracted automatically.
check=True (default)
If False, do not do any testing of solutions. This can be
useful if you want to include solutions that make any
denominator zero.
numerical=True (default)
Do a fast numerical check if *f* has only one symbol.
minimal=True (default is False)
A very fast, minimal testing.
warn=True (default is False)
Show a warning if ``checksol()`` could not conclude.
simplify=True (default)
Simplify all but polynomials of order 3 or greater before
returning them and (if check is not False) use the
general simplify function on the solutions and the
expression obtained when they are substituted into the
function which should be zero.
force=True (default is False)
Make positive all symbols without assumptions regarding sign.
rational=True (default)
Recast Floats as Rational; if this option is not used, the
system containing Floats may fail to solve because of issues
with polys. If rational=None, Floats will be recast as
rationals but the answer will be recast as Floats. If the
flag is False then nothing will be done to the Floats.
manual=True (default is False)
Do not use the polys/matrix method to solve a system of
equations, solve them one at a time as you might "manually."
implicit=True (default is False)
Allows ``solve`` to return a solution for a pattern in terms of
other functions that contain that pattern; this is only
needed if the pattern is inside of some invertible function
like cos, exp, ect.
particular=True (default is False)
Instructs ``solve`` to try to find a particular solution to
a linear system with as many zeros as possible; this is very
expensive.
quick=True (default is False; ``particular`` must be True)
Selects a fast heuristic to find a solution with many zeros
whereas a value of False uses the very slow method guaranteed
to find the largest number of zeros possible.
cubics=True (default)
Return explicit solutions when cubic expressions are encountered.
When False, quartics and quintics are disabled, too.
quartics=True (default)
Return explicit solutions when quartic expressions are encountered.
When False, quintics are disabled, too.
quintics=True (default)
Return explicit solutions (if possible) when quintic expressions
are encountered.
See Also
========
rsolve: For solving recurrence relationships
dsolve: For solving differential equations
"""
from .inequalities import reduce_inequalities
# set solver types explicitly; as soon as one is False
# all the rest will be False
###########################################################################
hints = ('cubics', 'quartics', 'quintics')
default = True
for k in hints:
default = flags.setdefault(k, bool(flags.get(k, default)))
# keeping track of how f was passed since if it is a list
# a dictionary of results will be returned.
###########################################################################
def _sympified_list(w):
return list(map(sympify, w if iterable(w) else [w]))
bare_f = not iterable(f)
# check flag usage for particular/quick which should only be used
# with systems of equations
if flags.get('quick', None) is not None:
if not flags.get('particular', None):
raise ValueError('when using `quick`, `particular` should be True')
if flags.get('particular', False) and bare_f:
raise ValueError(filldedent("""
The 'particular/quick' flag is usually used with systems of
equations. Either pass your equation in a list or
consider using a solver like `diophantine` if you are
looking for a solution in integers."""))
ordered_symbols = (symbols and
symbols[0] and
(isinstance(symbols[0], Symbol) or
is_sequence(symbols[0],
include=GeneratorType)))
f, symbols = (_sympified_list(w) for w in [f, symbols])
if isinstance(f, list):
f = [s for s in f if s is not S.true and s is not True]
implicit = flags.get('implicit', False)
# preprocess symbol(s)
###########################################################################
if not symbols:
# get symbols from equations
symbols = set().union(*[fi.free_symbols for fi in f])
if len(symbols) < len(f):
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if isinstance(p, AppliedUndef):
flags['dict'] = True # better show symbols
symbols.add(p)
pot.skip() # don't go any deeper
symbols = list(symbols)
ordered_symbols = False
elif len(symbols) == 1 and iterable(symbols[0]):
symbols = symbols[0]
# remove symbols the user is not interested in
exclude = flags.pop('exclude', set())
if exclude:
if isinstance(exclude, Expr):
exclude = [exclude]
exclude = set().union(*[e.free_symbols for e in sympify(exclude)])
symbols = [s for s in symbols if s not in exclude]
# preprocess equation(s)
###########################################################################
for i, fi in enumerate(f):
if isinstance(fi, (Eq, Ne)):
if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]:
fi = fi.lhs - fi.rhs
else:
L, R = fi.args
if isinstance(R, BooleanAtom):
L, R = R, L
if isinstance(L, BooleanAtom):
if isinstance(fi, Ne):
L = ~L
if R.is_Relational:
fi = ~R if L is S.false else R
elif R.is_Symbol:
return L
elif R.is_Boolean and (~R).is_Symbol:
return ~L
else:
raise NotImplementedError(filldedent('''
Unanticipated argument of Eq when other arg
is True or False.
'''))
else:
fi = fi.rewrite(Add, evaluate=False)
f[i] = fi
if fi.is_Relational:
return reduce_inequalities(f, symbols=symbols)
if isinstance(fi, Poly):
f[i] = fi.as_expr()
# rewrite hyperbolics in terms of exp if they have symbols of
# interest
f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction) and \
w.has_free(*symbols), lambda w: w.rewrite(exp))
# if we have a Matrix, we need to iterate over its elements again
if f[i].is_Matrix:
bare_f = False
f.extend(list(f[i]))
f[i] = S.Zero
# if we can split it into real and imaginary parts then do so
freei = f[i].free_symbols
if freei and all(s.is_extended_real or s.is_imaginary for s in freei):
fr, fi = f[i].as_real_imag()
# accept as long as new re, im, arg or atan2 are not introduced
had = f[i].atoms(re, im, arg, atan2)
if fr and fi and fr != fi and not any(
i.atoms(re, im, arg, atan2) - had for i in (fr, fi)):
if bare_f:
bare_f = False
f[i: i + 1] = [fr, fi]
# real/imag handling -----------------------------
if any(isinstance(fi, (bool, BooleanAtom)) for fi in f):
if flags.get('set', False):
return [], set()
return []
for i, fi in enumerate(f):
# Abs
while True:
was = fi
fi = fi.replace(Abs, lambda arg:
separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols)
else Abs(arg))
if was == fi:
break
for e in fi.find(Abs):
if e.has(*symbols):
raise NotImplementedError('solving %s when the argument '
'is not real or imaginary.' % e)
# arg
fi = fi.replace(arg, lambda a: arg(a).rewrite(atan2).rewrite(atan))
# save changes
f[i] = fi
# see if re(s) or im(s) appear
freim = [fi for fi in f if fi.has(re, im)]
if freim:
irf = []
for s in symbols:
if s.is_real or s.is_imaginary:
continue # neither re(x) nor im(x) will appear
# if re(s) or im(s) appear, the auxiliary equation must be present
if any(fi.has(re(s), im(s)) for fi in freim):
irf.append((s, re(s) + S.ImaginaryUnit*im(s)))
if irf:
for s, rhs in irf:
f = [fi.xreplace({s: rhs}) for fi in f] + [s - rhs]
symbols.extend([re(s), im(s)])
if bare_f:
bare_f = False
flags['dict'] = True
# end of real/imag handling -----------------------------
symbols = list(uniq(symbols))
if not ordered_symbols:
# we do this to make the results returned canonical in case f
# contains a system of nonlinear equations; all other cases should
# be unambiguous
symbols = sorted(symbols, key=default_sort_key)
# we can solve for non-symbol entities by replacing them with Dummy symbols
f, symbols, swap_sym = recast_to_symbols(f, symbols)
# this is needed in the next two events
symset = set(symbols)
# get rid of equations that have no symbols of interest; we don't
# try to solve them because the user didn't ask and they might be
# hard to solve; this means that solutions may be given in terms
# of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y}
newf = []
for fi in f:
# let the solver handle equations that..
# - have no symbols but are expressions
# - have symbols of interest
# - have no symbols of interest but are constant
# but when an expression is not constant and has no symbols of
# interest, it can't change what we obtain for a solution from
# the remaining equations so we don't include it; and if it's
# zero it can be removed and if it's not zero, there is no
# solution for the equation set as a whole
#
# The reason for doing this filtering is to allow an answer
# to be obtained to queries like solve((x - y, y), x); without
# this mod the return value is []
ok = False
if fi.free_symbols & symset:
ok = True
else:
if fi.is_number:
if fi.is_Number:
if fi.is_zero:
continue
return []
ok = True
else:
if fi.is_constant():
ok = True
if ok:
newf.append(fi)
if not newf:
return []
f = newf
del newf
# mask off any Object that we aren't going to invert: Derivative,
# Integral, etc... so that solving for anything that they contain will
# give an implicit solution
seen = set()
non_inverts = set()
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if not isinstance(p, Expr) or isinstance(p, Piecewise):
pass
elif (isinstance(p, bool) or
not p.args or
p in symset or
p.is_Add or p.is_Mul or
p.is_Pow and not implicit or
p.is_Function and not implicit) and p.func not in (re, im):
continue
elif p not in seen:
seen.add(p)
if p.free_symbols & symset:
non_inverts.add(p)
else:
continue
pot.skip()
del seen
non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts])))
f = [fi.subs(non_inverts) for fi in f]
# Both xreplace and subs are needed below: xreplace to force substitution
# inside Derivative, subs to handle non-straightforward substitutions
non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()]
# rationalize Floats
floats = False
if flags.get('rational', True) is not False:
for i, fi in enumerate(f):
if fi.has(Float):
floats = True
f[i] = nsimplify(fi, rational=True)
# capture any denominators before rewriting since
# they may disappear after the rewrite, e.g. issue 14779
flags['_denominators'] = _simple_dens(f[0], symbols)
# Any embedded piecewise functions need to be brought out to the
# top level so that the appropriate strategy gets selected.
# However, this is necessary only if one of the piecewise
# functions depends on one of the symbols we are solving for.
def _has_piecewise(e):
if e.is_Piecewise:
return e.has(*symbols)
return any(_has_piecewise(a) for a in e.args)
for i, fi in enumerate(f):
if _has_piecewise(fi):
f[i] = piecewise_fold(fi)
#
# try to get a solution
###########################################################################
if bare_f:
solution = _solve(f[0], *symbols, **flags)
else:
solution = _solve_system(f, symbols, **flags)
#
# postprocessing
###########################################################################
# Restore masked-off objects
if non_inverts:
def _do_dict(solution):
return {k: v.subs(non_inverts) for k, v in
solution.items()}
for i in range(1):
if isinstance(solution, dict):
solution = _do_dict(solution)
break
elif solution and isinstance(solution, list):
if isinstance(solution[0], dict):
solution = [_do_dict(s) for s in solution]
break
elif isinstance(solution[0], tuple):
solution = [tuple([v.subs(non_inverts) for v in s]) for s
in solution]
break
else:
solution = [v.subs(non_inverts) for v in solution]
break
elif not solution:
break
else:
raise NotImplementedError(filldedent('''
no handling of %s was implemented''' % solution))
# Restore original "symbols" if a dictionary is returned.
# This is not necessary for
# - the single univariate equation case
# since the symbol will have been removed from the solution;
# - the nonlinear poly_system since that only supports zero-dimensional
# systems and those results come back as a list
#
# ** unless there were Derivatives with the symbols, but those were handled
# above.
if swap_sym:
symbols = [swap_sym.get(k, k) for k in symbols]
if isinstance(solution, dict):
solution = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in solution.items()}
elif solution and isinstance(solution, list) and isinstance(solution[0], dict):
for i, sol in enumerate(solution):
solution[i] = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in sol.items()}
# undo the dictionary solutions returned when the system was only partially
# solved with poly-system if all symbols are present
if (
not flags.get('dict', False) and
solution and
ordered_symbols and
not isinstance(solution, dict) and
all(isinstance(sol, dict) for sol in solution)
):
solution = [tuple([r.get(s, s) for s in symbols]) for r in solution]
# Get assumptions about symbols, to filter solutions.
# Note that if assumptions about a solution can't be verified, it is still
# returned.
check = flags.get('check', True)
# restore floats
if floats and solution and flags.get('rational', None) is None:
solution = nfloat(solution, exponent=False)
if check and solution: # assumption checking
warn = flags.get('warn', False)
got_None = [] # solutions for which one or more symbols gave None
no_False = [] # solutions for which no symbols gave False
if isinstance(solution, tuple):
# this has already been checked and is in as_set form
return solution
elif isinstance(solution, list):
if isinstance(solution[0], tuple):
for sol in solution:
for symb, val in zip(symbols, sol):
test = check_assumptions(val, **symb.assumptions0)
if test is False:
break
if test is None:
got_None.append(sol)
else:
no_False.append(sol)
elif isinstance(solution[0], dict):
for sol in solution:
a_None = False
for symb, val in sol.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
break
a_None = True
else:
no_False.append(sol)
if a_None:
got_None.append(sol)
else: # list of expressions
for sol in solution:
test = check_assumptions(sol, **symbols[0].assumptions0)
if test is False:
continue
no_False.append(sol)
if test is None:
got_None.append(sol)
elif isinstance(solution, dict):
a_None = False
for symb, val in solution.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
no_False = None
break
a_None = True
else:
no_False = solution
if a_None:
got_None.append(solution)
elif isinstance(solution, (Relational, And, Or)):
if len(symbols) != 1:
raise ValueError("Length should be 1")
if warn and symbols[0].assumptions0:
warnings.warn(filldedent("""
\tWarning: assumptions about variable '%s' are
not handled currently.""" % symbols[0]))
# TODO: check also variable assumptions for inequalities
else:
raise TypeError('Unrecognized solution') # improve the checker
solution = no_False
if warn and got_None:
warnings.warn(filldedent("""
\tWarning: assumptions concerning following solution(s)
cannot be checked:""" + '\n\t' +
', '.join(str(s) for s in got_None)))
#
# done
###########################################################################
as_dict = flags.get('dict', False)
as_set = flags.get('set', False)
if not as_set and isinstance(solution, list):
# Make sure that a list of solutions is ordered in a canonical way.
solution.sort(key=default_sort_key)
if not as_dict and not as_set:
return solution or []
# return a list of mappings or []
if not solution:
solution = []
else:
if isinstance(solution, dict):
solution = [solution]
elif iterable(solution[0]):
solution = [dict(list(zip(symbols, s))) for s in solution]
elif isinstance(solution[0], dict):
solution = [{k: s[k] for k in ordered(s)} for s in solution]
else:
if len(symbols) != 1:
raise ValueError("Length should be 1")
solution = [{symbols[0]: s} for s in solution]
if as_dict:
return solution
assert as_set
# each dict does not necessarily have the same keys so unify them
k = list(ordered(set(flatten(tuple(i.keys()) for i in solution))))
return k, {tuple([s.get(ki, ki) for ki in k]) for s in solution}
def _solve(f, *symbols, **flags):
"""
Return a checked solution for *f* in terms of one or more of the
symbols. A list should be returned except for the case when a linear
undetermined-coefficients equation is encountered (in which case
a dictionary is returned).
If no method is implemented to solve the equation, a NotImplementedError
will be raised. In the case that conversion of an expression to a Poly
gives None a ValueError will be raised.
"""
not_impl_msg = "No algorithms are implemented to solve equation %s"
if len(symbols) != 1:
soln = None
free = f.free_symbols
ex = free - set(symbols)
if len(ex) != 1:
ind, dep = f.as_independent(*symbols)
ex = ind.free_symbols & dep.free_symbols
if len(ex) == 1:
ex = ex.pop()
try:
# soln may come back as dict, list of dicts or tuples, or
# tuple of symbol list and set of solution tuples
soln = solve_undetermined_coeffs(f, symbols, ex, **flags)
except NotImplementedError:
pass
if soln:
if flags.get('simplify', True):
if isinstance(soln, dict):
for k in soln:
soln[k] = simplify(soln[k])
elif isinstance(soln, list):
if isinstance(soln[0], dict):
for d in soln:
for k in d:
d[k] = simplify(d[k])
elif isinstance(soln[0], tuple):
soln = [tuple(simplify(i) for i in j) for j in soln]
else:
raise TypeError('unrecognized args in list')
elif isinstance(soln, tuple):
sym, sols = soln
soln = sym, {tuple(simplify(i) for i in j) for j in sols}
else:
raise TypeError('unrecognized solution type')
return soln
# look for solutions for desired symbols that are independent
# of symbols already solved for, e.g. if we solve for x = y
# then no symbol having x in its solution will be returned.
# First solve for linear symbols (since that is easier and limits
# solution size) and then proceed with symbols appearing
# in a non-linear fashion. Ideally, if one is solving a single
# expression for several symbols, they would have to be
# appear in factors of an expression, but we do not here
# attempt factorization. XXX perhaps handling a Mul
# should come first in this routine whether there is
# one or several symbols.
nonlin_s = []
got_s = set()
rhs_s = set()
result = []
for s in symbols:
xi, v = solve_linear(f, symbols=[s])
if xi == s:
# no need to check but we should simplify if desired
if flags.get('simplify', True):
v = simplify(v)
vfree = v.free_symbols
if vfree & got_s:
# was linear, but has redundant relationship
# e.g. x - y = 0 has y == x is redundant for x == y
# so ignore
continue
rhs_s |= vfree
got_s.add(xi)
result.append({xi: v})
elif xi: # there might be a non-linear solution if xi is not 0
nonlin_s.append(s)
if not nonlin_s:
return result
for s in nonlin_s:
try:
soln = _solve(f, s, **flags)
for sol in soln:
if sol.free_symbols & got_s:
# depends on previously solved symbols: ignore
continue
got_s.add(s)
result.append({s: sol})
except NotImplementedError:
continue
if got_s:
return result
else:
raise NotImplementedError(not_impl_msg % f)
# solve f for a single variable
symbol = symbols[0]
# expand binomials only if it has the unknown symbol
f = f.replace(lambda e: isinstance(e, binomial) and e.has(symbol),
lambda e: expand_func(e))
# checking will be done unless it is turned off before making a
# recursive call; the variables `checkdens` and `check` are
# captured here (for reference below) in case flag value changes
flags['check'] = checkdens = check = flags.pop('check', True)
# build up solutions if f is a Mul
if f.is_Mul:
result = set()
for m in f.args:
if m in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}:
result = set()
break
soln = _solve(m, symbol, **flags)
result.update(set(soln))
result = list(result)
if check:
# all solutions have been checked but now we must
# check that the solutions do not set denominators
# in any factor to zero
dens = flags.get('_denominators', _simple_dens(f, symbols))
result = [s for s in result if
not any(checksol(den, {symbol: s}, **flags) for den in
dens)]
# set flags for quick exit at end; solutions for each
# factor were already checked and simplified
check = False
flags['simplify'] = False
elif f.is_Piecewise:
result = set()
for i, (expr, cond) in enumerate(f.args):
if expr.is_zero:
raise NotImplementedError(
'solve cannot represent interval solutions')
candidates = _solve(expr, symbol, **flags)
# the explicit condition for this expr is the current cond
# and none of the previous conditions
args = [~c for _, c in f.args[:i]] + [cond]
cond = And(*args)
for candidate in candidates:
if candidate in result:
# an unconditional value was already there
continue
try:
v = cond.subs(symbol, candidate)
_eval_simplify = getattr(v, '_eval_simplify', None)
if _eval_simplify is not None:
# unconditionally take the simpification of v
v = _eval_simplify(ratio=2, measure=lambda x: 1)
except TypeError:
# incompatible type with condition(s)
continue
if v == False:
continue
if v == True:
result.add(candidate)
else:
result.add(Piecewise(
(candidate, v),
(S.NaN, True)))
# set flags for quick exit at end; solutions for each
# piece were already checked and simplified
check = False
flags['simplify'] = False
else:
# first see if it really depends on symbol and whether there
# is only a linear solution
f_num, sol = solve_linear(f, symbols=symbols)
if f_num.is_zero or sol is S.NaN:
return []
elif f_num.is_Symbol:
# no need to check but simplify if desired
if flags.get('simplify', True):
sol = simplify(sol)
return [sol]
poly = None
# check for a single Add generator
if not f_num.is_Add:
add_args = [i for i in f_num.atoms(Add)
if symbol in i.free_symbols]
if len(add_args) == 1:
gen = add_args[0]
spart = gen.as_independent(symbol)[1].as_base_exp()[0]
if spart == symbol:
try:
poly = Poly(f_num, spart)
except PolynomialError:
pass
result = False # no solution was obtained
msg = '' # there is no failure message
# Poly is generally robust enough to convert anything to
# a polynomial and tell us the different generators that it
# contains, so we will inspect the generators identified by
# polys to figure out what to do.
# try to identify a single generator that will allow us to solve this
# as a polynomial, followed (perhaps) by a change of variables if the
# generator is not a symbol
try:
if poly is None:
poly = Poly(f_num)
if poly is None:
raise ValueError('could not convert %s to Poly' % f_num)
except GeneratorsNeeded:
simplified_f = simplify(f_num)
if simplified_f != f_num:
return _solve(simplified_f, symbol, **flags)
raise ValueError('expression appears to be a constant')
gens = [g for g in poly.gens if g.has(symbol)]
def _as_base_q(x):
"""Return (b**e, q) for x = b**(p*e/q) where p/q is the leading
Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3)
"""
b, e = x.as_base_exp()
if e.is_Rational:
return b, e.q
if not e.is_Mul:
return x, 1
c, ee = e.as_coeff_Mul()
if c.is_Rational and c is not S.One: # c could be a Float
return b**ee, c.q
return x, 1
if len(gens) > 1:
# If there is more than one generator, it could be that the
# generators have the same base but different powers, e.g.
# >>> Poly(exp(x) + 1/exp(x))
# Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ')
#
# If unrad was not disabled then there should be no rational
# exponents appearing as in
# >>> Poly(sqrt(x) + sqrt(sqrt(x)))
# Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ')
bases, qs = list(zip(*[_as_base_q(g) for g in gens]))
bases = set(bases)
if len(bases) > 1 or not all(q == 1 for q in qs):
funcs = {b for b in bases if b.is_Function}
trig = {_ for _ in funcs if
isinstance(_, TrigonometricFunction)}
other = funcs - trig
if not other and len(funcs.intersection(trig)) > 1:
newf = None
if f_num.is_Add and len(f_num.args) == 2:
# check for sin(x)**p = cos(x)**p
_args = f_num.args
t = a, b = [i.atoms(Function).intersection(
trig) for i in _args]
if all(len(i) == 1 for i in t):
a, b = [i.pop() for i in t]
if isinstance(a, cos):
a, b = b, a
_args = _args[::-1]
if isinstance(a, sin) and isinstance(b, cos
) and a.args[0] == b.args[0]:
# sin(x) + cos(x) = 0 -> tan(x) + 1 = 0
newf, _d = (TR2i(_args[0]/_args[1]) + 1
).as_numer_denom()
if not _d.is_Number:
newf = None
if newf is None:
newf = TR1(f_num).rewrite(tan)
if newf != f_num:
# don't check the rewritten form --check
# solutions in the un-rewritten form below
flags['check'] = False
result = _solve(newf, symbol, **flags)
flags['check'] = check
# just a simple case - see if replacement of single function
# clears all symbol-dependent functions, e.g.
# log(x) - log(log(x) - 1) - 3 can be solved even though it has
# two generators.
if result is False and funcs:
funcs = list(ordered(funcs)) # put shallowest function first
f1 = funcs[0]
t = Dummy('t')
# perform the substitution
ftry = f_num.subs(f1, t)
# if no Functions left, we can proceed with usual solve
if not ftry.has(symbol):
cv_sols = _solve(ftry, t, **flags)
cv_inv = _solve(t - f1, symbol, **flags)[0]
sols = list()
for sol in cv_sols:
sols.append(cv_inv.subs(t, sol))
result = list(ordered(sols))
if result is False:
msg = 'multiple generators %s' % gens
else:
# e.g. case where gens are exp(x), exp(-x)
u = bases.pop()
t = Dummy('t')
inv = _solve(u - t, symbol, **flags)
if isinstance(u, (Pow, exp)):
# this will be resolved by factor in _tsolve but we might
# as well try a simple expansion here to get things in
# order so something like the following will work now without
# having to factor:
#
# >>> eq = (exp(I*(-x-2))+exp(I*(x+2)))
# >>> eq.subs(exp(x),y) # fails
# exp(I*(-x - 2)) + exp(I*(x + 2))
# >>> eq.expand().subs(exp(x),y) # works
# y**I*exp(2*I) + y**(-I)*exp(-2*I)
def _expand(p):
b, e = p.as_base_exp()
e = expand_mul(e)
return expand_power_exp(b**e)
ftry = f_num.replace(
lambda w: w.is_Pow or isinstance(w, exp),
_expand).subs(u, t)
if not ftry.has(symbol):
soln = _solve(ftry, t, **flags)
sols = list()
for sol in soln:
for i in inv:
sols.append(i.subs(t, sol))
result = list(ordered(sols))
elif len(gens) == 1:
# There is only one generator that we are interested in, but
# there may have been more than one generator identified by
# polys (e.g. for symbols other than the one we are interested
# in) so recast the poly in terms of our generator of interest.
# Also use composite=True with f_num since Poly won't update
# poly as documented in issue 8810.
poly = Poly(f_num, gens[0], composite=True)
# if we aren't on the tsolve-pass, use roots
if not flags.pop('tsolve', False):
soln = None
deg = poly.degree()
flags['tsolve'] = True
hints = ('cubics', 'quartics', 'quintics')
solvers = {h: flags.get(h) for h in hints}
soln = roots(poly, **solvers)
if sum(soln.values()) < deg:
# e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 +
# 5000*x**2 + 6250*x + 3189) -> {}
# so all_roots is used and RootOf instances are
# returned *unless* the system is multivariate
# or high-order EX domain.
try:
soln = poly.all_roots()
except NotImplementedError:
if not flags.get('incomplete', True):
raise NotImplementedError(
filldedent('''
Neither high-order multivariate polynomials
nor sorting of EX-domain polynomials is supported.
If you want to see any results, pass keyword incomplete=True to
solve; to see numerical values of roots
for univariate expressions, use nroots.
'''))
else:
pass
else:
soln = list(soln.keys())
if soln is not None:
u = poly.gen
if u != symbol:
try:
t = Dummy('t')
iv = _solve(u - t, symbol, **flags)
soln = list(ordered({i.subs(t, s) for i in iv for s in soln}))
except NotImplementedError:
# perhaps _tsolve can handle f_num
soln = None
else:
check = False # only dens need to be checked
if soln is not None:
if len(soln) > 2:
# if the flag wasn't set then unset it since high-order
# results are quite long. Perhaps one could base this
# decision on a certain critical length of the
# roots. In addition, wester test M2 has an expression
# whose roots can be shown to be real with the
# unsimplified form of the solution whereas only one of
# the simplified forms appears to be real.
flags['simplify'] = flags.get('simplify', False)
result = soln
# fallback if above fails
# -----------------------
if result is False:
# try unrad
if flags.pop('_unrad', True):
try:
u = unrad(f_num, symbol)
except (ValueError, NotImplementedError):
u = False
if u:
eq, cov = u
if cov:
isym, ieq = cov
inv = _solve(ieq, symbol, **flags)[0]
rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)}
else:
try:
rv = set(_solve(eq, symbol, **flags))
except NotImplementedError:
rv = None
if rv is not None:
result = list(ordered(rv))
# if the flag wasn't set then unset it since unrad results
# can be quite long or of very high order
flags['simplify'] = flags.get('simplify', False)
else:
pass # for coverage
# try _tsolve
if result is False:
flags.pop('tsolve', None) # allow tsolve to be used on next pass
try:
soln = _tsolve(f_num, symbol, **flags)
if soln is not None:
result = soln
except PolynomialError:
pass
# ----------- end of fallback ----------------------------
if result is False:
raise NotImplementedError('\n'.join([msg, not_impl_msg % f]))
if flags.get('simplify', True):
result = list(map(simplify, result))
# we just simplified the solution so we now set the flag to
# False so the simplification doesn't happen again in checksol()
flags['simplify'] = False
if checkdens:
# reject any result that makes any denom. affirmatively 0;
# if in doubt, keep it
dens = _simple_dens(f, symbols)
result = [s for s in result if
not any(checksol(d, {symbol: s}, **flags)
for d in dens)]
if check:
# keep only results if the check is not False
result = [r for r in result if
checksol(f_num, {symbol: r}, **flags) is not False]
return result
def _solve_system(exprs, symbols, **flags):
if not exprs:
return []
if flags.pop('_split', True):
# Split the system into connected components
V = exprs
symsset = set(symbols)
exprsyms = {e: e.free_symbols & symsset for e in exprs}
E = []
sym_indices = {sym: i for i, sym in enumerate(symbols)}
for n, e1 in enumerate(exprs):
for e2 in exprs[:n]:
# Equations are connected if they share a symbol
if exprsyms[e1] & exprsyms[e2]:
E.append((e1, e2))
G = V, E
subexprs = connected_components(G)
if len(subexprs) > 1:
subsols = []
for subexpr in subexprs:
subsyms = set()
for e in subexpr:
subsyms |= exprsyms[e]
subsyms = list(sorted(subsyms, key = lambda x: sym_indices[x]))
flags['_split'] = False # skip split step
subsol = _solve_system(subexpr, subsyms, **flags)
if not isinstance(subsol, list):
subsol = [subsol]
subsols.append(subsol)
# Full solution is cartesion product of subsystems
sols = []
for soldicts in product(*subsols):
sols.append(dict(item for sd in soldicts
for item in sd.items()))
# Return a list with one dict as just the dict
if len(sols) == 1:
return sols[0]
return sols
polys = []
dens = set()
failed = []
result = False
linear = False
manual = flags.get('manual', False)
checkdens = check = flags.get('check', True)
for j, g in enumerate(exprs):
dens.update(_simple_dens(g, symbols))
i, d = _invert(g, *symbols)
g = d - i
g = g.as_numer_denom()[0]
if manual:
failed.append(g)
continue
poly = g.as_poly(*symbols, extension=True)
if poly is not None:
polys.append(poly)
else:
failed.append(g)
if not polys:
solved_syms = []
else:
if all(p.is_linear for p in polys):
n, m = len(polys), len(symbols)
matrix = zeros(n, m + 1)
for i, poly in enumerate(polys):
for monom, coeff in poly.terms():
try:
j = monom.index(1)
matrix[i, j] = coeff
except ValueError:
matrix[i, m] = -coeff
# returns a dictionary ({symbols: values}) or None
if flags.pop('particular', False):
result = minsolve_linear_system(matrix, *symbols, **flags)
else:
result = solve_linear_system(matrix, *symbols, **flags)
if failed:
if result:
solved_syms = list(result.keys())
else:
solved_syms = []
else:
linear = True
else:
if len(symbols) > len(polys):
free = set().union(*[p.free_symbols for p in polys])
free = list(ordered(free.intersection(symbols)))
got_s = set()
result = []
for syms in subsets(free, len(polys)):
try:
# returns [] or list of tuples of solutions for syms
res = solve_poly_system(polys, *syms)
if res:
for r in res:
skip = False
for r1 in r:
if got_s and any(ss in r1.free_symbols
for ss in got_s):
# sol depends on previously
# solved symbols: discard it
skip = True
if not skip:
got_s.update(syms)
result.extend([dict(list(zip(syms, r)))])
except NotImplementedError:
pass
if got_s:
solved_syms = list(got_s)
else:
raise NotImplementedError('no valid subset found')
else:
try:
result = solve_poly_system(polys, *symbols)
if result:
solved_syms = symbols
# we don't know here if the symbols provided
# were given or not, so let solve resolve that.
# A list of dictionaries is going to always be
# returned from here.
result = [dict(list(zip(solved_syms, r))) for r in result]
except NotImplementedError:
failed.extend([g.as_expr() for g in polys])
solved_syms = []
result = None
if result:
if isinstance(result, dict):
result = [result]
else:
result = [{}]
if failed:
# For each failed equation, see if we can solve for one of the
# remaining symbols from that equation. If so, we update the
# solution set and continue with the next failed equation,
# repeating until we are done or we get an equation that can't
# be solved.
def _ok_syms(e, sort=False):
rv = e.free_symbols & legal
# Solve first for symbols that have lower degree in the equation.
# Ideally we want to solve firstly for symbols that appear linearly
# with rational coefficients e.g. if e = x*y + z then we should
# solve for z first.
def key(sym):
ep = e.as_poly(sym)
if ep is None:
complexity = (S.Infinity, S.Infinity, S.Infinity)
else:
coeff_syms = ep.LC().free_symbols
complexity = (ep.degree(), len(coeff_syms & rv), len(coeff_syms))
return complexity + (default_sort_key(sym),)
if sort:
rv = sorted(rv, key=key)
return rv
legal = set(symbols) # what we are interested in
# sort so equation with the fewest potential symbols is first
u = Dummy() # used in solution checking
for eq in ordered(failed, lambda _: len(_ok_syms(_))):
newresult = []
bad_results = []
got_s = set()
hit = False
for r in result:
# update eq with everything that is known so far
eq2 = eq.subs(r)
# if check is True then we see if it satisfies this
# equation, otherwise we just accept it
if check and r:
b = checksol(u, u, eq2, minimal=True)
if b is not None:
# this solution is sufficient to know whether
# it is valid or not so we either accept or
# reject it, then continue
if b:
newresult.append(r)
else:
bad_results.append(r)
continue
# search for a symbol amongst those available that
# can be solved for
ok_syms = _ok_syms(eq2, sort=True)
if not ok_syms:
if r:
newresult.append(r)
break # skip as it's independent of desired symbols
for s in ok_syms:
try:
soln = _solve(eq2, s, **flags)
except NotImplementedError:
continue
# put each solution in r and append the now-expanded
# result in the new result list; use copy since the
# solution for s is being added in-place
for sol in soln:
if got_s and any(ss in sol.free_symbols for ss in got_s):
# sol depends on previously solved symbols: discard it
continue
rnew = r.copy()
for k, v in r.items():
rnew[k] = v.subs(s, sol)
# and add this new solution
rnew[s] = sol
# check that it is independent of previous solutions
iset = set(rnew.items())
for i in newresult:
if len(i) < len(iset) and not set(i.items()) - iset:
# this is a superset of a known solution that
# is smaller
break
else:
# keep it
newresult.append(rnew)
hit = True
got_s.add(s)
if not hit:
raise NotImplementedError('could not solve %s' % eq2)
else:
result = newresult
for b in bad_results:
if b in result:
result.remove(b)
default_simplify = bool(failed) # rely on system-solvers to simplify
if flags.get('simplify', default_simplify):
for r in result:
for k in r:
r[k] = simplify(r[k])
flags['simplify'] = False # don't need to do so in checksol now
if checkdens:
result = [r for r in result
if not any(checksol(d, r, **flags) for d in dens)]
if check and not linear:
result = [r for r in result
if not any(checksol(e, r, **flags) is False for e in exprs)]
result = [r for r in result if r]
if linear and result:
result = result[0]
return result
def solve_linear(lhs, rhs=0, symbols=[], exclude=[]):
r"""
Return a tuple derived from ``f = lhs - rhs`` that is one of
the following: ``(0, 1)``, ``(0, 0)``, ``(symbol, solution)``, ``(n, d)``.
Explanation
===========
``(0, 1)`` meaning that ``f`` is independent of the symbols in *symbols*
that are not in *exclude*.
``(0, 0)`` meaning that there is no solution to the equation amongst the
symbols given. If the first element of the tuple is not zero, then the
function is guaranteed to be dependent on a symbol in *symbols*.
``(symbol, solution)`` where symbol appears linearly in the numerator of
``f``, is in *symbols* (if given), and is not in *exclude* (if given). No
simplification is done to ``f`` other than a ``mul=True`` expansion, so the
solution will correspond strictly to a unique solution.
``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f``
when the numerator was not linear in any symbol of interest; ``n`` will
never be a symbol unless a solution for that symbol was found (in which case
the second element is the solution, not the denominator).
Examples
========
>>> from sympy import cancel, Pow
``f`` is independent of the symbols in *symbols* that are not in
*exclude*:
>>> from sympy import cos, sin, solve_linear
>>> from sympy.abc import x, y, z
>>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
>>> solve_linear(eq)
(0, 1)
>>> eq = cos(x)**2 + sin(x)**2 # = 1
>>> solve_linear(eq)
(0, 1)
>>> solve_linear(x, exclude=[x])
(0, 1)
The variable ``x`` appears as a linear variable in each of the
following:
>>> solve_linear(x + y**2)
(x, -y**2)
>>> solve_linear(1/x - y**2)
(x, y**(-2))
When not linear in ``x`` or ``y`` then the numerator and denominator are
returned:
>>> solve_linear(x**2/y**2 - 3)
(x**2 - 3*y**2, y**2)
If the numerator of the expression is a symbol, then ``(0, 0)`` is
returned if the solution for that symbol would have set any
denominator to 0:
>>> eq = 1/(1/x - 2)
>>> eq.as_numer_denom()
(x, 1 - 2*x)
>>> solve_linear(eq)
(0, 0)
But automatic rewriting may cause a symbol in the denominator to
appear in the numerator so a solution will be returned:
>>> (1/x)**-1
x
>>> solve_linear((1/x)**-1)
(x, 0)
Use an unevaluated expression to avoid this:
>>> solve_linear(Pow(1/x, -1, evaluate=False))
(0, 0)
If ``x`` is allowed to cancel in the following expression, then it
appears to be linear in ``x``, but this sort of cancellation is not
done by ``solve_linear`` so the solution will always satisfy the
original expression without causing a division by zero error.
>>> eq = x**2*(1/x - z**2/x)
>>> solve_linear(cancel(eq))
(x, 0)
>>> solve_linear(eq)
(x**2*(1 - z**2), x)
A list of symbols for which a solution is desired may be given:
>>> solve_linear(x + y + z, symbols=[y])
(y, -x - z)
A list of symbols to ignore may also be given:
>>> solve_linear(x + y + z, exclude=[x])
(y, -x - z)
(A solution for ``y`` is obtained because it is the first variable
from the canonically sorted list of symbols that had a linear
solution.)
"""
if isinstance(lhs, Eq):
if rhs:
raise ValueError(filldedent('''
If lhs is an Equality, rhs must be 0 but was %s''' % rhs))
rhs = lhs.rhs
lhs = lhs.lhs
dens = None
eq = lhs - rhs
n, d = eq.as_numer_denom()
if not n:
return S.Zero, S.One
free = n.free_symbols
if not symbols:
symbols = free
else:
bad = [s for s in symbols if not s.is_Symbol]
if bad:
if len(bad) == 1:
bad = bad[0]
if len(symbols) == 1:
eg = 'solve(%s, %s)' % (eq, symbols[0])
else:
eg = 'solve(%s, *%s)' % (eq, list(symbols))
raise ValueError(filldedent('''
solve_linear only handles symbols, not %s. To isolate
non-symbols use solve, e.g. >>> %s <<<.
''' % (bad, eg)))
symbols = free.intersection(symbols)
symbols = symbols.difference(exclude)
if not symbols:
return S.Zero, S.One
# derivatives are easy to do but tricky to analyze to see if they
# are going to disallow a linear solution, so for simplicity we
# just evaluate the ones that have the symbols of interest
derivs = defaultdict(list)
for der in n.atoms(Derivative):
csym = der.free_symbols & symbols
for c in csym:
derivs[c].append(der)
all_zero = True
for xi in sorted(symbols, key=default_sort_key): # canonical order
# if there are derivatives in this var, calculate them now
if isinstance(derivs[xi], list):
derivs[xi] = {der: der.doit() for der in derivs[xi]}
newn = n.subs(derivs[xi])
dnewn_dxi = newn.diff(xi)
# dnewn_dxi can be nonzero if it survives differentation by any
# of its free symbols
free = dnewn_dxi.free_symbols
if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free) or free == symbols):
all_zero = False
if dnewn_dxi is S.NaN:
break
if xi not in dnewn_dxi.free_symbols:
vi = -1/dnewn_dxi*(newn.subs(xi, 0))
if dens is None:
dens = _simple_dens(eq, symbols)
if not any(checksol(di, {xi: vi}, minimal=True) is True
for di in dens):
# simplify any trivial integral
irep = [(i, i.doit()) for i in vi.atoms(Integral) if
i.function.is_number]
# do a slight bit of simplification
vi = expand_mul(vi.subs(irep))
return xi, vi
if all_zero:
return S.Zero, S.One
if n.is_Symbol: # no solution for this symbol was found
return S.Zero, S.Zero
return n, d
def minsolve_linear_system(system, *symbols, **flags):
r"""
Find a particular solution to a linear system.
Explanation
===========
In particular, try to find a solution with the minimal possible number
of non-zero variables using a naive algorithm with exponential complexity.
If ``quick=True``, a heuristic is used.
"""
quick = flags.get('quick', False)
# Check if there are any non-zero solutions at all
s0 = solve_linear_system(system, *symbols, **flags)
if not s0 or all(v == 0 for v in s0.values()):
return s0
if quick:
# We just solve the system and try to heuristically find a nice
# solution.
s = solve_linear_system(system, *symbols)
def update(determined, solution):
delete = []
for k, v in solution.items():
solution[k] = v.subs(determined)
if not solution[k].free_symbols:
delete.append(k)
determined[k] = solution[k]
for k in delete:
del solution[k]
determined = {}
update(determined, s)
while s:
# NOTE sort by default_sort_key to get deterministic result
k = max((k for k in s.values()),
key=lambda x: (len(x.free_symbols), default_sort_key(x)))
kfree = k.free_symbols
x = next(reversed(list(ordered(kfree))))
if len(kfree) != 1:
determined[x] = S.Zero
else:
val = _solve(k, x, check=False)[0]
if val == 0 and all(v.subs(x, val) == 0 for v in s.values()):
determined[x] = S.One
else:
determined[x] = val
update(determined, s)
return determined
else:
# We try to select n variables which we want to be non-zero.
# All others will be assumed zero. We try to solve the modified system.
# If there is a non-trivial solution, just set the free variables to
# one. If we do this for increasing n, trying all combinations of
# variables, we will find an optimal solution.
# We speed up slightly by starting at one less than the number of
# variables the quick method manages.
N = len(symbols)
bestsol = minsolve_linear_system(system, *symbols, quick=True)
n0 = len([x for x in bestsol.values() if x != 0])
for n in range(n0 - 1, 1, -1):
debug('minsolve: %s' % n)
thissol = None
for nonzeros in combinations(list(range(N)), n):
subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T
s = solve_linear_system(subm, *[symbols[i] for i in nonzeros])
if s and not all(v == 0 for v in s.values()):
subs = [(symbols[v], S.One) for v in nonzeros]
for k, v in s.items():
s[k] = v.subs(subs)
for sym in symbols:
if sym not in s:
if symbols.index(sym) in nonzeros:
s[sym] = S.One
else:
s[sym] = S.Zero
thissol = s
break
if thissol is None:
break
bestsol = thissol
return bestsol
def solve_linear_system(system, *symbols, **flags):
r"""
Solve system of $N$ linear equations with $M$ variables, which means
both under- and overdetermined systems are supported.
Explanation
===========
The possible number of solutions is zero, one, or infinite. Respectively,
this procedure will return None or a dictionary with solutions. In the
case of underdetermined systems, all arbitrary parameters are skipped.
This may cause a situation in which an empty dictionary is returned.
In that case, all symbols can be assigned arbitrary values.
Input to this function is a $N\times M + 1$ matrix, which means it has
to be in augmented form. If you prefer to enter $N$ equations and $M$
unknowns then use ``solve(Neqs, *Msymbols)`` instead. Note: a local
copy of the matrix is made by this routine so the matrix that is
passed will not be modified.
The algorithm used here is fraction-free Gaussian elimination,
which results, after elimination, in an upper-triangular matrix.
Then solutions are found using back-substitution. This approach
is more efficient and compact than the Gauss-Jordan method.
Examples
========
>>> from sympy import Matrix, solve_linear_system
>>> from sympy.abc import x, y
Solve the following system::
x + 4 y == 2
-2 x + y == 14
>>> system = Matrix(( (1, 4, 2), (-2, 1, 14)))
>>> solve_linear_system(system, x, y)
{x: -6, y: 2}
A degenerate system returns an empty dictionary:
>>> system = Matrix(( (0,0,0), (0,0,0) ))
>>> solve_linear_system(system, x, y)
{}
"""
assert system.shape[1] == len(symbols) + 1
# This is just a wrapper for solve_lin_sys
eqs = list(system * Matrix(symbols + (-1,)))
eqs, ring = sympy_eqs_to_ring(eqs, symbols)
sol = solve_lin_sys(eqs, ring, _raw=False)
if sol is not None:
sol = {sym:val for sym, val in sol.items() if sym != val}
return sol
def solve_undetermined_coeffs(equ, coeffs, sym, **flags):
r"""
Solve equation of a type $p(x; a_1, \ldots, a_k) = q(x)$ where both
$p$ and $q$ are univariate polynomials that depend on $k$ parameters.
Explanation
===========
The result of this function is a dictionary with symbolic values of those
parameters with respect to coefficients in $q$.
This function accepts both equations class instances and ordinary
SymPy expressions. Specification of parameters and variables is
obligatory for efficiency and simplicity reasons.
Examples
========
>>> from sympy import Eq, solve_undetermined_coeffs
>>> from sympy.abc import a, b, c, x
>>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x)
{a: 1/2, b: -1/2}
>>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x)
{a: 1/c, b: -1/c}
"""
if isinstance(equ, Eq):
# got equation, so move all the
# terms to the left hand side
equ = equ.lhs - equ.rhs
equ = cancel(equ).as_numer_denom()[0]
system = list(collect(equ.expand(), sym, evaluate=False).values())
if not any(equ.has(sym) for equ in system):
# consecutive powers in the input expressions have
# been successfully collected, so solve remaining
# system using Gaussian elimination algorithm
return solve(system, *coeffs, **flags)
else:
return None # no solutions
def solve_linear_system_LU(matrix, syms):
"""
Solves the augmented matrix system using ``LUsolve`` and returns a
dictionary in which solutions are keyed to the symbols of *syms* as ordered.
Explanation
===========
The matrix must be invertible.
Examples
========
>>> from sympy import Matrix, solve_linear_system_LU
>>> from sympy.abc import x, y, z
>>> solve_linear_system_LU(Matrix([
... [1, 2, 0, 1],
... [3, 2, 2, 1],
... [2, 0, 0, 1]]), [x, y, z])
{x: 1/2, y: 1/4, z: -1/2}
See Also
========
LUsolve
"""
if matrix.rows != matrix.cols - 1:
raise ValueError("Rows should be equal to columns - 1")
A = matrix[:matrix.rows, :matrix.rows]
b = matrix[:, matrix.cols - 1:]
soln = A.LUsolve(b)
solutions = {}
for i in range(soln.rows):
solutions[syms[i]] = soln[i, 0]
return solutions
def det_perm(M):
"""
Return the determinant of *M* by using permutations to select factors.
Explanation
===========
For sizes larger than 8 the number of permutations becomes prohibitively
large, or if there are no symbols in the matrix, it is better to use the
standard determinant routines (e.g., ``M.det()``.)
See Also
========
det_minor
det_quick
"""
args = []
s = True
n = M.rows
list_ = M.flat()
for perm in generate_bell(n):
fac = []
idx = 0
for j in perm:
fac.append(list_[idx + j])
idx += n
term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7
args.append(term if s else -term)
s = not s
return Add(*args)
def det_minor(M):
"""
Return the ``det(M)`` computed from minors without
introducing new nesting in products.
See Also
========
det_perm
det_quick
"""
n = M.rows
if n == 2:
return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1]
else:
return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in
Add.make_args(det_minor(M.minor_submatrix(0, i)))])
if M[0, i] else S.Zero for i in range(n)])
def det_quick(M, method=None):
"""
Return ``det(M)`` assuming that either
there are lots of zeros or the size of the matrix
is small. If this assumption is not met, then the normal
Matrix.det function will be used with method = ``method``.
See Also
========
det_minor
det_perm
"""
if any(i.has(Symbol) for i in M):
if M.rows < 8 and all(i.has(Symbol) for i in M):
return det_perm(M)
return det_minor(M)
else:
return M.det(method=method) if method else M.det()
def inv_quick(M):
"""Return the inverse of ``M``, assuming that either
there are lots of zeros or the size of the matrix
is small.
"""
if not all(i.is_Number for i in M):
if not any(i.is_Number for i in M):
det = lambda _: det_perm(_)
else:
det = lambda _: det_minor(_)
else:
return M.inv()
n = M.rows
d = det(M)
if d == S.Zero:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
ret = zeros(n)
s1 = -1
for i in range(n):
s = s1 = -s1
for j in range(n):
di = det(M.minor_submatrix(i, j))
ret[j, i] = s*di/d
s = -s
return ret
# these are functions that have multiple inverse values per period
multi_inverses = {
sin: lambda x: (asin(x), S.Pi - asin(x)),
cos: lambda x: (acos(x), 2*S.Pi - acos(x)),
}
def _tsolve(eq, sym, **flags):
"""
Helper for ``_solve`` that solves a transcendental equation with respect
to the given symbol. Various equations containing powers and logarithms,
can be solved.
There is currently no guarantee that all solutions will be returned or
that a real solution will be favored over a complex one.
Either a list of potential solutions will be returned or None will be
returned (in the case that no method was known to get a solution
for the equation). All other errors (like the inability to cast an
expression as a Poly) are unhandled.
Examples
========
>>> from sympy import log
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy.abc import x
>>> tsolve(3**(2*x + 5) - 4, x)
[-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)]
>>> tsolve(log(x) + 2*x, x)
[LambertW(2)/2]
"""
if 'tsolve_saw' not in flags:
flags['tsolve_saw'] = []
if eq in flags['tsolve_saw']:
return None
else:
flags['tsolve_saw'].append(eq)
rhs, lhs = _invert(eq, sym)
if lhs == sym:
return [rhs]
try:
if lhs.is_Add:
# it's time to try factoring; powdenest is used
# to try get powers in standard form for better factoring
f = factor(powdenest(lhs - rhs))
if f.is_Mul:
return _solve(f, sym, **flags)
if rhs:
f = logcombine(lhs, force=flags.get('force', True))
if f.count(log) != lhs.count(log):
if isinstance(f, log):
return _solve(f.args[0] - exp(rhs), sym, **flags)
return _tsolve(f - rhs, sym, **flags)
elif lhs.is_Pow:
if lhs.exp.is_Integer:
if lhs - rhs != eq:
return _solve(lhs - rhs, sym, **flags)
if sym not in lhs.exp.free_symbols:
return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags)
# _tsolve calls this with Dummy before passing the actual number in.
if any(t.is_Dummy for t in rhs.free_symbols):
raise NotImplementedError # _tsolve will call here again...
# a ** g(x) == 0
if not rhs:
# f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at
# the same place
sol_base = _solve(lhs.base, sym, **flags)
return [s for s in sol_base if lhs.exp.subs(sym, s) != 0]
# a ** g(x) == b
if not lhs.base.has(sym):
if lhs.base == 0:
return _solve(lhs.exp, sym, **flags) if rhs != 0 else []
# Gets most solutions...
if lhs.base == rhs.as_base_exp()[0]:
# handles case when bases are equal
sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags)
else:
# handles cases when bases are not equal and exp
# may or may not be equal
sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags)
# Check for duplicate solutions
def equal(expr1, expr2):
_ = Dummy()
eq = checksol(expr1 - _, _, expr2)
if eq is None:
if nsimplify(expr1) != nsimplify(expr2):
return False
# they might be coincidentally the same
# so check more rigorously
eq = expr1.equals(expr2)
return eq
# Guess a rational exponent
e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base)))
e_rat = simplify(posify(e_rat)[0])
n, d = fraction(e_rat)
if expand(lhs.base**n - rhs**d) == 0:
sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)]
sol.extend(_solve(lhs.exp - e_rat, sym, **flags))
return list(ordered(set(sol)))
# f(x) ** g(x) == c
else:
sol = []
logform = lhs.exp*log(lhs.base) - log(rhs)
if logform != lhs - rhs:
try:
sol.extend(_solve(logform, sym, **flags))
except NotImplementedError:
pass
# Collect possible solutions and check with substitution later.
check = []
if rhs == 1:
# f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1
check.extend(_solve(lhs.exp, sym, **flags))
check.extend(_solve(lhs.base - 1, sym, **flags))
check.extend(_solve(lhs.base + 1, sym, **flags))
elif rhs.is_Rational:
for d in (i for i in divisors(abs(rhs.p)) if i != 1):
e, t = integer_log(rhs.p, d)
if not t:
continue # rhs.p != d**b
for s in divisors(abs(rhs.q)):
if s**e== rhs.q:
r = Rational(d, s)
check.extend(_solve(lhs.base - r, sym, **flags))
check.extend(_solve(lhs.base + r, sym, **flags))
check.extend(_solve(lhs.exp - e, sym, **flags))
elif rhs.is_irrational:
b_l, e_l = lhs.base.as_base_exp()
n, d = (e_l*lhs.exp).as_numer_denom()
b, e = sqrtdenest(rhs).as_base_exp()
check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))]
check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))])
if e_l*d != 1:
check.extend(_solve(b_l**n - rhs**(e_l*d), sym, **flags))
for s in check:
ok = checksol(eq, sym, s)
if ok is None:
ok = eq.subs(sym, s).equals(0)
if ok:
sol.append(s)
return list(ordered(set(sol)))
elif lhs.is_Function and len(lhs.args) == 1:
if lhs.func in multi_inverses:
# sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3))
soln = []
for i in multi_inverses[type(lhs)](rhs):
soln.extend(_solve(lhs.args[0] - i, sym, **flags))
return list(ordered(soln))
elif lhs.func == LambertW:
return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags)
rewrite = lhs.rewrite(exp)
if rewrite != lhs:
return _solve(rewrite - rhs, sym, **flags)
except NotImplementedError:
pass
# maybe it is a lambert pattern
if flags.pop('bivariate', True):
# lambert forms may need some help being recognized, e.g. changing
# 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1
# to 2**(3*x) + (x*log(2) + 1)**3
# make generator in log have exponent of 1
logs = eq.atoms(log)
spow = min(
{i.exp for j in logs for i in j.atoms(Pow)
if i.base == sym} or {1})
if spow != 1:
p = sym**spow
u = Dummy('bivariate-cov')
ueq = eq.subs(p, u)
if not ueq.has_free(sym):
sol = solve(ueq, u, **flags)
inv = solve(p - u, sym)
rv = []
for i in inv:
rv.extend([i.subs(u, s) for s in sol])
return rv
g = _filtered_gens(eq.as_poly(), sym)
up_or_log = set()
for gi in g:
if isinstance(gi, (exp, log)) or (gi.is_Pow and gi.base == S.Exp1):
up_or_log.add(gi)
elif gi.is_Pow:
gisimp = powdenest(expand_power_exp(gi))
if gisimp.is_Pow and sym in gisimp.exp.free_symbols:
up_or_log.add(gi)
eq_down = expand_log(expand_power_exp(eq)).subs(
dict(list(zip(up_or_log, [0]*len(up_or_log)))))
eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down))
rhs, lhs = _invert(eq, sym)
if lhs.has(sym):
try:
poly = lhs.as_poly()
g = _filtered_gens(poly, sym)
_eq = lhs - rhs
sols = _solve_lambert(_eq, sym, g)
# use a simplified form if it satisfies eq
# and has fewer operations
for n, s in enumerate(sols):
ns = nsimplify(s)
if ns != s and ns.count_ops() <= s.count_ops():
ok = checksol(_eq, sym, ns)
if ok is None:
ok = _eq.subs(sym, ns).equals(0)
if ok:
sols[n] = ns
return sols
except NotImplementedError:
# maybe it's a convoluted function
if len(g) == 2:
try:
gpu = bivariate_type(lhs - rhs, *g)
if gpu is None:
raise NotImplementedError
g, p, u = gpu
flags['bivariate'] = False
inversion = _tsolve(g - u, sym, **flags)
if inversion:
sol = _solve(p, u, **flags)
return list(ordered({i.subs(u, s)
for i in inversion for s in sol}))
except NotImplementedError:
pass
else:
pass
if flags.pop('force', True):
flags['force'] = False
pos, reps = posify(lhs - rhs)
if rhs == S.ComplexInfinity:
return []
for u, s in reps.items():
if s == sym:
break
else:
u = sym
if pos.has(u):
try:
soln = _solve(pos, u, **flags)
return list(ordered([s.subs(reps) for s in soln]))
except NotImplementedError:
pass
else:
pass # here for coverage
return # here for coverage
# TODO: option for calculating J numerically
@conserve_mpmath_dps
def nsolve(*args, dict=False, **kwargs):
r"""
Solve a nonlinear equation system numerically: ``nsolve(f, [args,] x0,
modules=['mpmath'], **kwargs)``.
Explanation
===========
``f`` is a vector function of symbolic expressions representing the system.
*args* are the variables. If there is only one variable, this argument can
be omitted. ``x0`` is a starting vector close to a solution.
Use the modules keyword to specify which modules should be used to
evaluate the function and the Jacobian matrix. Make sure to use a module
that supports matrices. For more information on the syntax, please see the
docstring of ``lambdify``.
If the keyword arguments contain ``dict=True`` (default is False) ``nsolve``
will return a list (perhaps empty) of solution mappings. This might be
especially useful if you want to use ``nsolve`` as a fallback to solve since
using the dict argument for both methods produces return values of
consistent type structure. Please note: to keep this consistent with
``solve``, the solution will be returned in a list even though ``nsolve``
(currently at least) only finds one solution at a time.
Overdetermined systems are supported.
Examples
========
>>> from sympy import Symbol, nsolve
>>> import mpmath
>>> mpmath.mp.dps = 15
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
Matrix([[-1.19287309935246], [1.27844411169911]])
For one-dimensional functions the syntax is simplified:
>>> from sympy import sin, nsolve
>>> from sympy.abc import x
>>> nsolve(sin(x), x, 2)
3.14159265358979
>>> nsolve(sin(x), 2)
3.14159265358979
To solve with higher precision than the default, use the prec argument:
>>> from sympy import cos
>>> nsolve(cos(x) - x, 1)
0.739085133215161
>>> nsolve(cos(x) - x, 1, prec=50)
0.73908513321516064165531208767387340401341175890076
>>> cos(_)
0.73908513321516064165531208767387340401341175890076
To solve for complex roots of real functions, a nonreal initial point
must be specified:
>>> from sympy import I
>>> nsolve(x**2 + 2, I)
1.4142135623731*I
``mpmath.findroot`` is used and you can find their more extensive
documentation, especially concerning keyword parameters and
available solvers. Note, however, that functions which are very
steep near the root, the verification of the solution may fail. In
this case you should use the flag ``verify=False`` and
independently verify the solution.
>>> from sympy import cos, cosh
>>> f = cos(x)*cosh(x) - 1
>>> nsolve(f, 3.14*100)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19)
>>> ans = nsolve(f, 3.14*100, verify=False); ans
312.588469032184
>>> f.subs(x, ans).n(2)
2.1e+121
>>> (f/f.diff(x)).subs(x, ans).n(2)
7.4e-15
One might safely skip the verification if bounds of the root are known
and a bisection method is used:
>>> bounds = lambda i: (3.14*i, 3.14*(i + 1))
>>> nsolve(f, bounds(100), solver='bisect', verify=False)
315.730061685774
Alternatively, a function may be better behaved when the
denominator is ignored. Since this is not always the case, however,
the decision of what function to use is left to the discretion of
the user.
>>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100
>>> nsolve(eq, 0.46)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19)
Try another starting point or tweak arguments.
>>> nsolve(eq.as_numer_denom()[0], 0.46)
0.46792545969349058
"""
# there are several other SymPy functions that use method= so
# guard against that here
if 'method' in kwargs:
raise ValueError(filldedent('''
Keyword "method" should not be used in this context. When using
some mpmath solvers directly, the keyword "method" is
used, but when using nsolve (and findroot) the keyword to use is
"solver".'''))
if 'prec' in kwargs:
import mpmath
mpmath.mp.dps = kwargs.pop('prec')
# keyword argument to return result as a dictionary
as_dict = dict
from builtins import dict # to unhide the builtin
# interpret arguments
if len(args) == 3:
f = args[0]
fargs = args[1]
x0 = args[2]
if iterable(fargs) and iterable(x0):
if len(x0) != len(fargs):
raise TypeError('nsolve expected exactly %i guess vectors, got %i'
% (len(fargs), len(x0)))
elif len(args) == 2:
f = args[0]
fargs = None
x0 = args[1]
if iterable(f):
raise TypeError('nsolve expected 3 arguments, got 2')
elif len(args) < 2:
raise TypeError('nsolve expected at least 2 arguments, got %i'
% len(args))
else:
raise TypeError('nsolve expected at most 3 arguments, got %i'
% len(args))
modules = kwargs.get('modules', ['mpmath'])
if iterable(f):
f = list(f)
for i, fi in enumerate(f):
if isinstance(fi, Eq):
f[i] = fi.lhs - fi.rhs
f = Matrix(f).T
if iterable(x0):
x0 = list(x0)
if not isinstance(f, Matrix):
# assume it's a SymPy expression
if isinstance(f, Eq):
f = f.lhs - f.rhs
syms = f.free_symbols
if fargs is None:
fargs = syms.copy().pop()
if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)):
raise ValueError(filldedent('''
expected a one-dimensional and numerical function'''))
# the function is much better behaved if there is no denominator
# but sending the numerator is left to the user since sometimes
# the function is better behaved when the denominator is present
# e.g., issue 11768
f = lambdify(fargs, f, modules)
x = sympify(findroot(f, x0, **kwargs))
if as_dict:
return [{fargs: x}]
return x
if len(fargs) > f.cols:
raise NotImplementedError(filldedent('''
need at least as many equations as variables'''))
verbose = kwargs.get('verbose', False)
if verbose:
print('f(x):')
print(f)
# derive Jacobian
J = f.jacobian(fargs)
if verbose:
print('J(x):')
print(J)
# create functions
f = lambdify(fargs, f.T, modules)
J = lambdify(fargs, J, modules)
# solve the system numerically
x = findroot(f, x0, J=J, **kwargs)
if as_dict:
return [dict(zip(fargs, [sympify(xi) for xi in x]))]
return Matrix(x)
def _invert(eq, *symbols, **kwargs):
"""
Return tuple (i, d) where ``i`` is independent of *symbols* and ``d``
contains symbols.
Explanation
===========
``i`` and ``d`` are obtained after recursively using algebraic inversion
until an uninvertible ``d`` remains. If there are no free symbols then
``d`` will be zero. Some (but not necessarily all) solutions to the
expression ``i - d`` will be related to the solutions of the original
expression.
Examples
========
>>> from sympy.solvers.solvers import _invert as invert
>>> from sympy import sqrt, cos
>>> from sympy.abc import x, y
>>> invert(x - 3)
(3, x)
>>> invert(3)
(3, 0)
>>> invert(2*cos(x) - 1)
(1/2, cos(x))
>>> invert(sqrt(x) - 3)
(3, sqrt(x))
>>> invert(sqrt(x) + y, x)
(-y, sqrt(x))
>>> invert(sqrt(x) + y, y)
(-sqrt(x), y)
>>> invert(sqrt(x) + y, x, y)
(0, sqrt(x) + y)
If there is more than one symbol in a power's base and the exponent
is not an Integer, then the principal root will be used for the
inversion:
>>> invert(sqrt(x + y) - 2)
(4, x + y)
>>> invert(sqrt(x + y) - 2)
(4, x + y)
If the exponent is an Integer, setting ``integer_power`` to True
will force the principal root to be selected:
>>> invert(x**2 - 4, integer_power=True)
(2, x)
"""
eq = sympify(eq)
if eq.args:
# make sure we are working with flat eq
eq = eq.func(*eq.args)
free = eq.free_symbols
if not symbols:
symbols = free
if not free & set(symbols):
return eq, S.Zero
dointpow = bool(kwargs.get('integer_power', False))
lhs = eq
rhs = S.Zero
while True:
was = lhs
while True:
indep, dep = lhs.as_independent(*symbols)
# dep + indep == rhs
if lhs.is_Add:
# this indicates we have done it all
if indep.is_zero:
break
lhs = dep
rhs -= indep
# dep * indep == rhs
else:
# this indicates we have done it all
if indep is S.One:
break
lhs = dep
rhs /= indep
# collect like-terms in symbols
if lhs.is_Add:
terms = {}
for a in lhs.args:
i, d = a.as_independent(*symbols)
terms.setdefault(d, []).append(i)
if any(len(v) > 1 for v in terms.values()):
args = []
for d, i in terms.items():
if len(i) > 1:
args.append(Add(*i)*d)
else:
args.append(i[0]*d)
lhs = Add(*args)
# if it's a two-term Add with rhs = 0 and two powers we can get the
# dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3
if lhs.is_Add and not rhs and len(lhs.args) == 2 and \
not lhs.is_polynomial(*symbols):
a, b = ordered(lhs.args)
ai, ad = a.as_independent(*symbols)
bi, bd = b.as_independent(*symbols)
if any(_ispow(i) for i in (ad, bd)):
a_base, a_exp = ad.as_base_exp()
b_base, b_exp = bd.as_base_exp()
if a_base == b_base:
# a = -b
lhs = powsimp(powdenest(ad/bd))
rhs = -bi/ai
else:
rat = ad/bd
_lhs = powsimp(ad/bd)
if _lhs != rat:
lhs = _lhs
rhs = -bi/ai
elif ai == -bi:
if isinstance(ad, Function) and ad.func == bd.func:
if len(ad.args) == len(bd.args) == 1:
lhs = ad.args[0] - bd.args[0]
elif len(ad.args) == len(bd.args):
# should be able to solve
# f(x, y) - f(2 - x, 0) == 0 -> x == 1
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
elif lhs.is_Mul and any(_ispow(a) for a in lhs.args):
lhs = powsimp(powdenest(lhs))
if lhs.is_Function:
if hasattr(lhs, 'inverse') and lhs.inverse() is not None and len(lhs.args) == 1:
# -1
# f(x) = g -> x = f (g)
#
# /!\ inverse should not be defined if there are multiple values
# for the function -- these are handled in _tsolve
#
rhs = lhs.inverse()(rhs)
lhs = lhs.args[0]
elif isinstance(lhs, atan2):
y, x = lhs.args
lhs = 2*atan(y/(sqrt(x**2 + y**2) + x))
elif lhs.func == rhs.func:
if len(lhs.args) == len(rhs.args) == 1:
lhs = lhs.args[0]
rhs = rhs.args[0]
elif len(lhs.args) == len(rhs.args):
# should be able to solve
# f(x, y) == f(2, 3) -> x == 2
# f(x, x + y) == f(2, 3) -> x == 2
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0:
lhs = 1/lhs
rhs = 1/rhs
# base**a = b -> base = b**(1/a) if
# a is an Integer and dointpow=True (this gives real branch of root)
# a is not an Integer and the equation is multivariate and the
# base has more than 1 symbol in it
# The rationale for this is that right now the multi-system solvers
# doesn't try to resolve generators to see, for example, if the whole
# system is written in terms of sqrt(x + y) so it will just fail, so we
# do that step here.
if lhs.is_Pow and (
lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and
len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1):
rhs = rhs**(1/lhs.exp)
lhs = lhs.base
if lhs == was:
break
return rhs, lhs
def unrad(eq, *syms, **flags):
"""
Remove radicals with symbolic arguments and return (eq, cov),
None, or raise an error.
Explanation
===========
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be
removed or if the relationship between the original symbols and the
change of variable needed to rewrite the system as a polynomial cannot
be solved.
Otherwise the tuple, ``(eq, cov)``, is returned where:
*eq*, ``cov``
*eq* is an equation without radicals (in the symbol(s) of
interest) whose solutions are a superset of the solutions to the
original expression. *eq* might be rewritten in terms of a new
variable; the relationship to the original variables is given by
``cov`` which is a list containing ``v`` and ``v**p - b`` where
``p`` is the power needed to clear the radical and ``b`` is the
radical now expressed as a polynomial in the symbols of interest.
For example, for sqrt(2 - x) the tuple would be
``(c, c**2 - 2 + x)``. The solutions of *eq* will contain
solutions to the original equation (if there are any).
*syms*
An iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared. All free symbols are used if *syms* is not
set.
*flags* are used internally for communication during recursive calls.
Two options are also recognized:
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
Radicals can be removed from an expression if:
* All bases of the radicals are the same; a change of variables is
done in this case.
* If all radicals appear in one term of the expression.
* There are only four terms with sqrt() factors or there are less than
four terms having sqrt() factors.
* There are only two terms with radicals.
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational, root
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(-x**3 + x**2 + 2*x + 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
"""
uflags = dict(check=False, simplify=False)
def _cov(p, e):
if cov:
# XXX - uncovered
oldp, olde = cov
if Poly(e, p).degree(p) in (1, 2):
cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])]
else:
raise NotImplementedError
else:
cov[:] = [p, e]
def _canonical(eq, cov):
if cov:
# change symbol to vanilla so no solutions are eliminated
p, e = cov
rep = {p: Dummy(p.name)}
eq = eq.xreplace(rep)
cov = [p.xreplace(rep), e.xreplace(rep)]
# remove constants and powers of factors since these don't change
# the location of the root; XXX should factor or factor_terms be used?
eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True)
if eq.is_Mul:
args = []
for f in eq.args:
if f.is_number:
continue
if f.is_Pow:
args.append(f.base)
else:
args.append(f)
eq = Mul(*args) # leave as Mul for more efficient solving
# make the sign canonical
margs = list(Mul.make_args(eq))
changed = False
for i, m in enumerate(margs):
if m.could_extract_minus_sign():
margs[i] = -m
changed = True
if changed:
eq = Mul(*margs, evaluate=False)
return eq, cov
def _Q(pow):
# return leading Rational of denominator of Pow's exponent
c = pow.as_base_exp()[1].as_coeff_Mul()[0]
if not c.is_Rational:
return S.One
return c.q
# define the _take method that will determine whether a term is of interest
def _take(d):
# return True if coefficient of any factor's exponent's den is not 1
for pow in Mul.make_args(d):
if not pow.is_Pow:
continue
if _Q(pow) == 1:
continue
if pow.free_symbols & syms:
return True
return False
_take = flags.setdefault('_take', _take)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs # XXX legacy Eq as Eqn support
elif not isinstance(eq, Expr):
return
cov, nwas, rpt = [flags.setdefault(k, v) for k, v in
sorted(dict(cov=[], n=None, rpt=0).items())]
# preconditioning
eq = powdenest(factor_terms(eq, radical=True, clear=True))
eq = eq.as_numer_denom()[0]
eq = _mexpand(eq, recursive=True)
if eq.is_number:
return
# see if there are radicals in symbols of interest
syms = set(syms) or eq.free_symbols # _take uses this
poly = eq.as_poly()
gens = [g for g in poly.gens if _take(g)]
if not gens:
return
# recast poly in terms of eigen-gens
poly = eq.as_poly(*gens)
# not a polynomial e.g. 1 + sqrt(x)*exp(sqrt(x)) with gen sqrt(x)
if poly is None:
return
# - an exponent has a symbol of interest (don't handle)
if any(g.exp.has(*syms) for g in gens):
return
def _rads_bases_lcm(poly):
# if all the bases are the same or all the radicals are in one
# term, `lcm` will be the lcm of the denominators of the
# exponents of the radicals
lcm = 1
rads = set()
bases = set()
for g in poly.gens:
q = _Q(g)
if q != 1:
rads.add(g)
lcm = ilcm(lcm, q)
bases.add(g.base)
return rads, bases, lcm
rads, bases, lcm = _rads_bases_lcm(poly)
covsym = Dummy('p', nonnegative=True)
# only keep in syms symbols that actually appear in radicals;
# and update gens
newsyms = set()
for r in rads:
newsyms.update(syms & r.free_symbols)
if newsyms != syms:
syms = newsyms
# get terms together that have common generators
drad = dict(list(zip(rads, list(range(len(rads))))))
rterms = {(): []}
args = Add.make_args(poly.as_expr())
for t in args:
if _take(t):
common = set(t.as_poly().gens).intersection(rads)
key = tuple(sorted([drad[i] for i in common]))
else:
key = ()
rterms.setdefault(key, []).append(t)
others = Add(*rterms.pop(()))
rterms = [Add(*rterms[k]) for k in rterms.keys()]
# the output will depend on the order terms are processed, so
# make it canonical quickly
rterms = list(reversed(list(ordered(rterms))))
ok = False # we don't have a solution yet
depth = sqrt_depth(eq)
if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2):
eq = rterms[0]**lcm - ((-others)**lcm)
ok = True
else:
if len(rterms) == 1 and rterms[0].is_Add:
rterms = list(rterms[0].args)
if len(bases) == 1:
b = bases.pop()
if len(syms) > 1:
x = b.free_symbols
else:
x = syms
x = list(ordered(x))[0]
try:
inv = _solve(covsym**lcm - b, x, **uflags)
if not inv:
raise NotImplementedError
eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0])
_cov(covsym, covsym**lcm - b)
return _canonical(eq, cov)
except NotImplementedError:
pass
if len(rterms) == 2:
if not others:
eq = rterms[0]**lcm - (-rterms[1])**lcm
ok = True
elif not log(lcm, 2).is_Integer:
# the lcm-is-power-of-two case is handled below
r0, r1 = rterms
if flags.get('_reverse', False):
r1, r0 = r0, r1
i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly())
i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly())
for reverse in range(2):
if reverse:
i0, i1 = i1, i0
r0, r1 = r1, r0
_rads1, _, lcm1 = i1
_rads1 = Mul(*_rads1)
t1 = _rads1**lcm1
c = covsym**lcm1 - t1
for x in syms:
try:
sol = _solve(c, x, **uflags)
if not sol:
raise NotImplementedError
neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \
others
tmp = unrad(neweq, covsym)
if tmp:
eq, newcov = tmp
if newcov:
newp, newc = newcov
_cov(newp, c.subs(covsym,
_solve(newc, covsym, **uflags)[0]))
else:
_cov(covsym, c)
else:
eq = neweq
_cov(covsym, c)
ok = True
break
except NotImplementedError:
if reverse:
raise NotImplementedError(
'no successful change of variable found')
else:
pass
if ok:
break
elif len(rterms) == 3:
# two cube roots and another with order less than 5
# (so an analytical solution can be found) or a base
# that matches one of the cube root bases
info = [_rads_bases_lcm(i.as_poly()) for i in rterms]
RAD = 0
BASES = 1
LCM = 2
if info[0][LCM] != 3:
info.append(info.pop(0))
rterms.append(rterms.pop(0))
elif info[1][LCM] != 3:
info.append(info.pop(1))
rterms.append(rterms.pop(1))
if info[0][LCM] == info[1][LCM] == 3:
if info[1][BASES] != info[2][BASES]:
info[0], info[1] = info[1], info[0]
rterms[0], rterms[1] = rterms[1], rterms[0]
if info[1][BASES] == info[2][BASES]:
eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3
ok = True
elif info[2][LCM] < 5:
# a*root(A, 3) + b*root(B, 3) + others = c
a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB']
# zz represents the unraded expression into which the
# specifics for this case are substituted
zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 -
3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 +
3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 -
63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 -
21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d +
45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 -
18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 +
9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 +
3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 -
60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 +
3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 -
126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 -
9*c*d**8 + d**9)
def _t(i):
b = Mul(*info[i][RAD])
return cancel(rterms[i]/b), Mul(*info[i][BASES])
aa, AA = _t(0)
bb, BB = _t(1)
cc = -rterms[2]
dd = others
eq = zz.xreplace(dict(zip(
(a, A, b, B, c, d),
(aa, AA, bb, BB, cc, dd))))
ok = True
# handle power-of-2 cases
if not ok:
if log(lcm, 2).is_Integer and (not others and
len(rterms) == 4 or len(rterms) < 4):
def _norm2(a, b):
return a**2 + b**2 + 2*a*b
if len(rterms) == 4:
# (r0+r1)**2 - (r2+r3)**2
r0, r1, r2, r3 = rterms
eq = _norm2(r0, r1) - _norm2(r2, r3)
ok = True
elif len(rterms) == 3:
# (r1+r2)**2 - (r0+others)**2
r0, r1, r2 = rterms
eq = _norm2(r1, r2) - _norm2(r0, others)
ok = True
elif len(rterms) == 2:
# r0**2 - (r1+others)**2
r0, r1 = rterms
eq = r0**2 - _norm2(r1, others)
ok = True
new_depth = sqrt_depth(eq) if ok else depth
rpt += 1 # XXX how many repeats with others unchanging is enough?
if not ok or (
nwas is not None and len(rterms) == nwas and
new_depth is not None and new_depth == depth and
rpt > 3):
raise NotImplementedError('Cannot remove all radicals')
flags.update(dict(cov=cov, n=len(rterms), rpt=rpt))
neq = unrad(eq, *syms, **flags)
if neq:
eq, cov = neq
eq, cov = _canonical(eq, cov)
return eq, cov
# Delayed imports
from sympy.solvers.bivariate import (
bivariate_type, _solve_lambert, _filtered_gens)
|
1b059ce22a65a04ee8812f4b4ce9248ec8a3d666cf310c5b576fe9bcdae261b1 | from .cartan_type import CartanType
from sympy.core.basic import Atom
class RootSystem(Atom):
"""Represent the root system of a simple Lie algebra
Every simple Lie algebra has a unique root system. To find the root
system, we first consider the Cartan subalgebra of g, which is the maximal
abelian subalgebra, and consider the adjoint action of g on this
subalgebra. There is a root system associated with this action. Now, a
root system over a vector space V is a set of finite vectors Phi (called
roots), which satisfy:
1. The roots span V
2. The only scalar multiples of x in Phi are x and -x
3. For every x in Phi, the set Phi is closed under reflection
through the hyperplane perpendicular to x.
4. If x and y are roots in Phi, then the projection of y onto
the line through x is a half-integral multiple of x.
Now, there is a subset of Phi, which we will call Delta, such that:
1. Delta is a basis of V
2. Each root x in Phi can be written x = sum k_y y for y in Delta
The elements of Delta are called the simple roots.
Therefore, we see that the simple roots span the root space of a given
simple Lie algebra.
References
==========
.. [1] https://en.wikipedia.org/wiki/Root_system
.. [2] Lie Algebras and Representation Theory - Humphreys
"""
def __new__(cls, cartantype):
"""Create a new RootSystem object
This method assigns an attribute called cartan_type to each instance of
a RootSystem object. When an instance of RootSystem is called, it
needs an argument, which should be an instance of a simple Lie algebra.
We then take the CartanType of this argument and set it as the
cartan_type attribute of the RootSystem instance.
"""
obj = Atom.__new__(cls)
obj.cartan_type = CartanType(cartantype)
return obj
def simple_roots(self):
"""Generate the simple roots of the Lie algebra
The rank of the Lie algebra determines the number of simple roots that
it has. This method obtains the rank of the Lie algebra, and then uses
the simple_root method from the Lie algebra classes to generate all the
simple roots.
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> roots = c.simple_roots()
>>> roots
{1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
"""
n = self.cartan_type.rank()
roots = {}
for i in range(1, n+1):
root = self.cartan_type.simple_root(i)
roots[i] = root
return roots
def all_roots(self):
"""Generate all the roots of a given root system
The result is a dictionary where the keys are integer numbers. It
generates the roots by getting the dictionary of all positive roots
from the bases classes, and then taking each root, and multiplying it
by -1 and adding it to the dictionary. In this way all the negative
roots are generated.
"""
alpha = self.cartan_type.positive_roots()
keys = list(alpha.keys())
k = max(keys)
for val in keys:
k += 1
root = alpha[val]
newroot = [-x for x in root]
alpha[k] = newroot
return alpha
def root_space(self):
"""Return the span of the simple roots
The root space is the vector space spanned by the simple roots, i.e. it
is a vector space with a distinguished basis, the simple roots. This
method returns a string that represents the root space as the span of
the simple roots, alpha[1],...., alpha[n].
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.root_space()
'alpha[1] + alpha[2] + alpha[3]'
"""
n = self.cartan_type.rank()
rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1))
return rs
def add_simple_roots(self, root1, root2):
"""Add two simple roots together
The function takes as input two integers, root1 and root2. It then
uses these integers as keys in the dictionary of simple roots, and gets
the corresponding simple roots, and then adds them together.
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> newroot = c.add_simple_roots(1, 2)
>>> newroot
[1, 0, -1, 0]
"""
alpha = self.simple_roots()
if root1 > len(alpha) or root2 > len(alpha):
raise ValueError("You've used a root that doesn't exist!")
a1 = alpha[root1]
a2 = alpha[root2]
newroot = [_a1 + _a2 for _a1, _a2 in zip(a1, a2)]
return newroot
def add_as_roots(self, root1, root2):
"""Add two roots together if and only if their sum is also a root
It takes as input two vectors which should be roots. It then computes
their sum and checks if it is in the list of all possible roots. If it
is, it returns the sum. Otherwise it returns a string saying that the
sum is not a root.
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
[1, 0, 0, -1]
>>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
'The sum of these two roots is not a root'
"""
alpha = self.all_roots()
newroot = [r1 + r2 for r1, r2 in zip(root1, root2)]
if newroot in alpha.values():
return newroot
else:
return "The sum of these two roots is not a root"
def cartan_matrix(self):
"""Cartan matrix of Lie algebra associated with this root system
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> c.cartan_matrix()
Matrix([
[ 2, -1, 0],
[-1, 2, -1],
[ 0, -1, 2]])
"""
return self.cartan_type.cartan_matrix()
def dynkin_diagram(self):
"""Dynkin diagram of the Lie algebra associated with this root system
Examples
========
>>> from sympy.liealgebras.root_system import RootSystem
>>> c = RootSystem("A3")
>>> print(c.dynkin_diagram())
0---0---0
1 2 3
"""
return self.cartan_type.dynkin_diagram()
|
5fba992791a61e51caa24514305a1a42aaea5f68cb46ae1bed6d86e5a5a7b733 | """
Finite difference weights
=========================
This module implements an algorithm for efficient generation of finite
difference weights for ordinary differentials of functions for
derivatives from 0 (interpolation) up to arbitrary order.
The core algorithm is provided in the finite difference weight generating
function (``finite_diff_weights``), and two convenience functions are provided
for:
- estimating a derivative (or interpolate) directly from a series of points
is also provided (``apply_finite_diff``).
- differentiating by using finite difference approximations
(``differentiate_finite``).
"""
from sympy.core.function import Derivative
from sympy.core.singleton import S
from sympy.core.function import Subs
from sympy.core.traversal import preorder_traversal
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import iterable
def finite_diff_weights(order, x_list, x0=S.One):
"""
Calculates the finite difference weights for an arbitrarily spaced
one-dimensional grid (``x_list``) for derivatives at ``x0`` of order
0, 1, ..., up to ``order`` using a recursive formula. Order of accuracy
is at least ``len(x_list) - order``, if ``x_list`` is defined correctly.
Parameters
==========
order: int
Up to what derivative order weights should be calculated.
0 corresponds to interpolation.
x_list: sequence
Sequence of (unique) values for the independent variable.
It is useful (but not necessary) to order ``x_list`` from
nearest to furthest from ``x0``; see examples below.
x0: Number or Symbol
Root or value of the independent variable for which the finite
difference weights should be generated. Default is ``S.One``.
Returns
=======
list
A list of sublists, each corresponding to coefficients for
increasing derivative order, and each containing lists of
coefficients for increasing subsets of x_list.
Examples
========
>>> from sympy import finite_diff_weights, S
>>> res = finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0)
>>> res
[[[1, 0, 0, 0],
[1/2, 1/2, 0, 0],
[3/8, 3/4, -1/8, 0],
[5/16, 15/16, -5/16, 1/16]],
[[0, 0, 0, 0],
[-1, 1, 0, 0],
[-1, 1, 0, 0],
[-23/24, 7/8, 1/8, -1/24]]]
>>> res[0][-1] # FD weights for 0th derivative, using full x_list
[5/16, 15/16, -5/16, 1/16]
>>> res[1][-1] # FD weights for 1st derivative
[-23/24, 7/8, 1/8, -1/24]
>>> res[1][-2] # FD weights for 1st derivative, using x_list[:-1]
[-1, 1, 0, 0]
>>> res[1][-1][0] # FD weight for 1st deriv. for x_list[0]
-23/24
>>> res[1][-1][1] # FD weight for 1st deriv. for x_list[1], etc.
7/8
Each sublist contains the most accurate formula at the end.
Note, that in the above example ``res[1][1]`` is the same as ``res[1][2]``.
Since res[1][2] has an order of accuracy of
``len(x_list[:3]) - order = 3 - 1 = 2``, the same is true for ``res[1][1]``!
>>> res = finite_diff_weights(1, [S(0), S(1), -S(1), S(2), -S(2)], 0)[1]
>>> res
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[0, 1/2, -1/2, 0, 0],
[-1/2, 1, -1/3, -1/6, 0],
[0, 2/3, -2/3, -1/12, 1/12]]
>>> res[0] # no approximation possible, using x_list[0] only
[0, 0, 0, 0, 0]
>>> res[1] # classic forward step approximation
[-1, 1, 0, 0, 0]
>>> res[2] # classic centered approximation
[0, 1/2, -1/2, 0, 0]
>>> res[3:] # higher order approximations
[[-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]]
Let us compare this to a differently defined ``x_list``. Pay attention to
``foo[i][k]`` corresponding to the gridpoint defined by ``x_list[k]``.
>>> foo = finite_diff_weights(1, [-S(2), -S(1), S(0), S(1), S(2)], 0)[1]
>>> foo
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[1/2, -2, 3/2, 0, 0],
[1/6, -1, 1/2, 1/3, 0],
[1/12, -2/3, 0, 2/3, -1/12]]
>>> foo[1] # not the same and of lower accuracy as res[1]!
[-1, 1, 0, 0, 0]
>>> foo[2] # classic double backward step approximation
[1/2, -2, 3/2, 0, 0]
>>> foo[4] # the same as res[4]
[1/12, -2/3, 0, 2/3, -1/12]
Note that, unless you plan on using approximations based on subsets of
``x_list``, the order of gridpoints does not matter.
The capability to generate weights at arbitrary points can be
used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:
>>> from sympy import cos, symbols, pi, simplify
>>> N, (h, x) = 4, symbols('h x')
>>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes
>>> print(x_list)
[-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
>>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
>>> [simplify(c) for c in mycoeffs] #doctest: +NORMALIZE_WHITESPACE
[(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
(-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(6*h**2*x - 8*x**3)/h**4,
(sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]
Notes
=====
If weights for a finite difference approximation of 3rd order
derivative is wanted, weights for 0th, 1st and 2nd order are
calculated "for free", so are formulae using subsets of ``x_list``.
This is something one can take advantage of to save computational cost.
Be aware that one should define ``x_list`` from nearest to furthest from
``x0``. If not, subsets of ``x_list`` will yield poorer approximations,
which might not grand an order of accuracy of ``len(x_list) - order``.
See also
========
sympy.calculus.finite_diff.apply_finite_diff
References
==========
.. [1] Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids, Bengt Fornberg; Mathematics of computation; 51; 184;
(1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0
"""
# The notation below closely corresponds to the one used in the paper.
order = S(order)
if not order.is_number:
raise ValueError("Cannot handle symbolic order.")
if order < 0:
raise ValueError("Negative derivative order illegal.")
if int(order) != order:
raise ValueError("Non-integer order illegal")
M = order
N = len(x_list) - 1
delta = [[[0 for nu in range(N+1)] for n in range(N+1)] for
m in range(M+1)]
delta[0][0][0] = S.One
c1 = S.One
for n in range(1, N+1):
c2 = S.One
for nu in range(n):
c3 = x_list[n] - x_list[nu]
c2 = c2 * c3
if n <= M:
delta[n][n-1][nu] = 0
for m in range(min(n, M)+1):
delta[m][n][nu] = (x_list[n]-x0)*delta[m][n-1][nu] -\
m*delta[m-1][n-1][nu]
delta[m][n][nu] /= c3
for m in range(min(n, M)+1):
delta[m][n][n] = c1/c2*(m*delta[m-1][n-1][n-1] -
(x_list[n-1]-x0)*delta[m][n-1][n-1])
c1 = c2
return delta
def apply_finite_diff(order, x_list, y_list, x0=S.Zero):
"""
Calculates the finite difference approximation of
the derivative of requested order at ``x0`` from points
provided in ``x_list`` and ``y_list``.
Parameters
==========
order: int
order of derivative to approximate. 0 corresponds to interpolation.
x_list: sequence
Sequence of (unique) values for the independent variable.
y_list: sequence
The function value at corresponding values for the independent
variable in x_list.
x0: Number or Symbol
At what value of the independent variable the derivative should be
evaluated. Defaults to 0.
Returns
=======
sympy.core.add.Add or sympy.core.numbers.Number
The finite difference expression approximating the requested
derivative order at ``x0``.
Examples
========
>>> from sympy import apply_finite_diff
>>> cube = lambda arg: (1.0*arg)**3
>>> xlist = range(-3,3+1)
>>> apply_finite_diff(2, xlist, map(cube, xlist), 2) - 12 # doctest: +SKIP
-3.55271367880050e-15
we see that the example above only contain rounding errors.
apply_finite_diff can also be used on more abstract objects:
>>> from sympy import IndexedBase, Idx
>>> x, y = map(IndexedBase, 'xy')
>>> i = Idx('i')
>>> x_list, y_list = zip(*[(x[i+j], y[i+j]) for j in range(-1,2)])
>>> apply_finite_diff(1, x_list, y_list, x[i])
((x[i + 1] - x[i])/(-x[i - 1] + x[i]) - 1)*y[i]/(x[i + 1] - x[i]) -
(x[i + 1] - x[i])*y[i - 1]/((x[i + 1] - x[i - 1])*(-x[i - 1] + x[i])) +
(-x[i - 1] + x[i])*y[i + 1]/((x[i + 1] - x[i - 1])*(x[i + 1] - x[i]))
Notes
=====
Order = 0 corresponds to interpolation.
Only supply so many points you think makes sense
to around x0 when extracting the derivative (the function
need to be well behaved within that region). Also beware
of Runge's phenomenon.
See also
========
sympy.calculus.finite_diff.finite_diff_weights
References
==========
Fortran 90 implementation with Python interface for numerics: finitediff_
.. _finitediff: https://github.com/bjodah/finitediff
"""
# In the original paper the following holds for the notation:
# M = order
# N = len(x_list) - 1
N = len(x_list) - 1
if len(x_list) != len(y_list):
raise ValueError("x_list and y_list not equal in length.")
delta = finite_diff_weights(order, x_list, x0)
derivative = 0
for nu in range(len(x_list)):
derivative += delta[order][N][nu]*y_list[nu]
return derivative
def _as_finite_diff(derivative, points=1, x0=None, wrt=None):
"""
Returns an approximation of a derivative of a function in
the form of a finite difference formula. The expression is a
weighted sum of the function at a number of discrete values of
(one of) the independent variable(s).
Parameters
==========
derivative: a Derivative instance
points: sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. default: 1 (step-size 1)
x0: number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt: Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the Derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> from sympy.calculus.finite_diff import _as_finite_diff
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> _as_finite_diff(f(x).diff(x))
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and ``order + 1``
respectively. We can change the step size by passing a symbol
as a parameter:
>>> _as_finite_diff(f(x).diff(x), h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a sequence:
>>> _as_finite_diff(f(x).diff(x), [x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> _as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2)
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/((-h + E*h)*(h + E*h)) +
(-(-sqrt(2)*h + h)/(2*h) - (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) +
(-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h)
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> _as_finite_diff(d2fdxdy, wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.finite_diff_weights
"""
if derivative.is_Derivative:
pass
elif derivative.is_Atom:
return derivative
else:
return derivative.fromiter(
[_as_finite_diff(ar, points, x0, wrt) for ar
in derivative.args], **derivative.assumptions0)
if wrt is None:
old = None
for v in derivative.variables:
if old is v:
continue
derivative = _as_finite_diff(derivative, points, x0, v)
old = v
return derivative
order = derivative.variables.count(wrt)
if x0 is None:
x0 = wrt
if not iterable(points):
if getattr(points, 'is_Function', False) and wrt in points.args:
points = points.subs(wrt, x0)
# points is simply the step-size, let's make it a
# equidistant sequence centered around x0
if order % 2 == 0:
# even order => odd number of points, grid point included
points = [x0 + points*i for i
in range(-order//2, order//2 + 1)]
else:
# odd order => even number of points, half-way wrt grid point
points = [x0 + points*S(i)/2 for i
in range(-order, order + 1, 2)]
others = [wrt, 0]
for v in set(derivative.variables):
if v == wrt:
continue
others += [v, derivative.variables.count(v)]
if len(points) < order+1:
raise ValueError("Too few points for order %d" % order)
return apply_finite_diff(order, points, [
Derivative(derivative.expr.subs({wrt: x}), *others) for
x in points], x0)
def differentiate_finite(expr, *symbols,
points=1, x0=None, wrt=None, evaluate=False):
r""" Differentiate expr and replace Derivatives with finite differences.
Parameters
==========
expr : expression
\*symbols : differentiate with respect to symbols
points: sequence, coefficient or undefined function, optional
see ``Derivative.as_finite_difference``
x0: number or Symbol, optional
see ``Derivative.as_finite_difference``
wrt: Symbol, optional
see ``Derivative.as_finite_difference``
Examples
========
>>> from sympy import sin, Function, differentiate_finite
>>> from sympy.abc import x, y, h
>>> f, g = Function('f'), Function('g')
>>> differentiate_finite(f(x)*g(x), x, points=[x-h, x+h])
-f(-h + x)*g(-h + x)/(2*h) + f(h + x)*g(h + x)/(2*h)
``differentiate_finite`` works on any expression, including the expressions
with embedded derivatives:
>>> differentiate_finite(f(x) + sin(x), x, 2)
-2*f(x) + f(x - 1) + f(x + 1) - 2*sin(x) + sin(x - 1) + sin(x + 1)
>>> differentiate_finite(f(x, y), x, y)
f(x - 1/2, y - 1/2) - f(x - 1/2, y + 1/2) - f(x + 1/2, y - 1/2) + f(x + 1/2, y + 1/2)
>>> differentiate_finite(f(x)*g(x).diff(x), x)
(-g(x) + g(x + 1))*f(x + 1/2) - (g(x) - g(x - 1))*f(x - 1/2)
To make finite difference with non-constant discretization step use
undefined functions:
>>> dx = Function('dx')
>>> differentiate_finite(f(x)*g(x).diff(x), points=dx(x))
-(-g(x - dx(x)/2 - dx(x - dx(x)/2)/2)/dx(x - dx(x)/2) +
g(x - dx(x)/2 + dx(x - dx(x)/2)/2)/dx(x - dx(x)/2))*f(x - dx(x)/2)/dx(x) +
(-g(x + dx(x)/2 - dx(x + dx(x)/2)/2)/dx(x + dx(x)/2) +
g(x + dx(x)/2 + dx(x + dx(x)/2)/2)/dx(x + dx(x)/2))*f(x + dx(x)/2)/dx(x)
"""
if any(term.is_Derivative for term in list(preorder_traversal(expr))):
evaluate = False
Dexpr = expr.diff(*symbols, evaluate=evaluate)
if evaluate:
sympy_deprecation_warning("""
The evaluate flag to differentiate_finite() is deprecated.
evaluate=True expands the intermediate derivatives before computing
differences, but this usually not what you want, as it does not
satisfy the product rule.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-differentiate_finite-evaluate",
)
return Dexpr.replace(
lambda arg: arg.is_Derivative,
lambda arg: arg.as_finite_difference(points=points, x0=x0, wrt=wrt))
else:
DFexpr = Dexpr.as_finite_difference(points=points, x0=x0, wrt=wrt)
return DFexpr.replace(
lambda arg: isinstance(arg, Subs),
lambda arg: arg.expr.as_finite_difference(
points=points, x0=arg.point[0], wrt=arg.variables[0]))
|
650ed7a17b794891ffb6b09dc61c1fd1d9d01ee26399a72641b37d8b6ec31909 | from .accumulationbounds import AccumBounds, AccumulationBounds # noqa: F401
from .singularities import singularities
from sympy.core import Pow, S
from sympy.core.function import diff, expand_mul
from sympy.core.kind import NumberKind
from sympy.core.mod import Mod
from sympy.core.relational import Relational
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, sin, cos, csc, sec)
from sympy.polys.polytools import degree, lcm_list
from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union,
Complement)
from sympy.sets.fancysets import ImageSet
from sympy.utilities import filldedent
from sympy.utilities.iterables import iterable
def continuous_domain(f, symbol, domain):
"""
Returns the intervals in the given domain for which the function
is continuous.
This method is limited by the ability to determine the various
singularities and discontinuities of the given function.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the intervals are to be determined.
domain : :py:class:`~.Interval`
The domain over which the continuity of the symbol has to be checked.
Examples
========
>>> from sympy import Interval, Symbol, S, tan, log, pi, sqrt
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> continuous_domain(tan(x), x, Interval(0, pi))
Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
Interval(2, 5)
>>> continuous_domain(log(2*x - 1), x, S.Reals)
Interval.open(1/2, oo)
Returns
=======
:py:class:`~.Interval`
Union of all intervals where the function is continuous.
Raises
======
NotImplementedError
If the method to determine continuity of such a function
has not yet been developed.
"""
from sympy.solvers.inequalities import solve_univariate_inequality
if domain.is_subset(S.Reals):
constrained_interval = domain
for atom in f.atoms(Pow):
den = atom.exp.as_numer_denom()[1]
if den.is_even and den.is_nonzero:
constraint = solve_univariate_inequality(atom.base >= 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
for atom in f.atoms(log):
constraint = solve_univariate_inequality(atom.args[0] > 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
return constrained_interval - singularities(f, symbol, domain)
def function_range(f, symbol, domain):
"""
Finds the range of a function in a given domain.
This method is limited by the ability to determine the singularities and
determine limits.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the range of function is to be determined.
domain : :py:class:`~.Interval`
The domain under which the range of the function has to be found.
Examples
========
>>> from sympy import Interval, Symbol, S, exp, log, pi, sqrt, sin, tan
>>> from sympy.calculus.util import function_range
>>> x = Symbol('x')
>>> function_range(sin(x), x, Interval(0, 2*pi))
Interval(-1, 1)
>>> function_range(tan(x), x, Interval(-pi/2, pi/2))
Interval(-oo, oo)
>>> function_range(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> function_range(exp(x), x, S.Reals)
Interval.open(0, oo)
>>> function_range(log(x), x, S.Reals)
Interval(-oo, oo)
>>> function_range(sqrt(x), x, Interval(-5, 9))
Interval(0, 3)
Returns
=======
:py:class:`~.Interval`
Union of all ranges for all intervals under domain where function is
continuous.
Raises
======
NotImplementedError
If any of the intervals, in the given domain, for which function
is continuous are not finite or real,
OR if the critical points of the function on the domain cannot be found.
"""
if domain is S.EmptySet:
return S.EmptySet
period = periodicity(f, symbol)
if period == S.Zero:
# the expression is constant wrt symbol
return FiniteSet(f.expand())
from sympy.series.limits import limit
from sympy.solvers.solveset import solveset
if period is not None:
if isinstance(domain, Interval):
if (domain.inf - domain.sup).is_infinite:
domain = Interval(0, period)
elif isinstance(domain, Union):
for sub_dom in domain.args:
if isinstance(sub_dom, Interval) and \
((sub_dom.inf - sub_dom.sup).is_infinite):
domain = Interval(0, period)
intervals = continuous_domain(f, symbol, domain)
range_int = S.EmptySet
if isinstance(intervals,(Interval, FiniteSet)):
interval_iter = (intervals,)
elif isinstance(intervals, Union):
interval_iter = intervals.args
else:
raise NotImplementedError(filldedent('''
Unable to find range for the given domain.
'''))
for interval in interval_iter:
if isinstance(interval, FiniteSet):
for singleton in interval:
if singleton in domain:
range_int += FiniteSet(f.subs(symbol, singleton))
elif isinstance(interval, Interval):
vals = S.EmptySet
critical_points = S.EmptySet
critical_values = S.EmptySet
bounds = ((interval.left_open, interval.inf, '+'),
(interval.right_open, interval.sup, '-'))
for is_open, limit_point, direction in bounds:
if is_open:
critical_values += FiniteSet(limit(f, symbol, limit_point, direction))
vals += critical_values
else:
vals += FiniteSet(f.subs(symbol, limit_point))
solution = solveset(f.diff(symbol), symbol, interval)
if not iterable(solution):
raise NotImplementedError(
'Unable to find critical points for {}'.format(f))
if isinstance(solution, ImageSet):
raise NotImplementedError(
'Infinite number of critical points for {}'.format(f))
critical_points += solution
for critical_point in critical_points:
vals += FiniteSet(f.subs(symbol, critical_point))
left_open, right_open = False, False
if critical_values is not S.EmptySet:
if critical_values.inf == vals.inf:
left_open = True
if critical_values.sup == vals.sup:
right_open = True
range_int += Interval(vals.inf, vals.sup, left_open, right_open)
else:
raise NotImplementedError(filldedent('''
Unable to find range for the given domain.
'''))
return range_int
def not_empty_in(finset_intersection, *syms):
"""
Finds the domain of the functions in ``finset_intersection`` in which the
``finite_set`` is not-empty
Parameters
==========
finset_intersection : Intersection of FiniteSet
The unevaluated intersection of FiniteSet containing
real-valued functions with Union of Sets
syms : Tuple of symbols
Symbol for which domain is to be found
Raises
======
NotImplementedError
The algorithms to find the non-emptiness of the given FiniteSet are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report it to the github issue tracker
(https://github.com/sympy/sympy/issues).
Examples
========
>>> from sympy import FiniteSet, Interval, not_empty_in, oo
>>> from sympy.abc import x
>>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x)
Interval(0, 2)
>>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x)
Union(Interval(1, 2), Interval(-sqrt(2), -1))
>>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x)
Union(Interval.Lopen(-2, -1), Interval(2, oo))
"""
# TODO: handle piecewise defined functions
# TODO: handle transcendental functions
# TODO: handle multivariate functions
if len(syms) == 0:
raise ValueError("One or more symbols must be given in syms.")
if finset_intersection is S.EmptySet:
return S.EmptySet
if isinstance(finset_intersection, Union):
elm_in_sets = finset_intersection.args[0]
return Union(not_empty_in(finset_intersection.args[1], *syms),
elm_in_sets)
if isinstance(finset_intersection, FiniteSet):
finite_set = finset_intersection
_sets = S.Reals
else:
finite_set = finset_intersection.args[1]
_sets = finset_intersection.args[0]
if not isinstance(finite_set, FiniteSet):
raise ValueError('A FiniteSet must be given, not %s: %s' %
(type(finite_set), finite_set))
if len(syms) == 1:
symb = syms[0]
else:
raise NotImplementedError('more than one variables %s not handled' %
(syms,))
def elm_domain(expr, intrvl):
""" Finds the domain of an expression in any given interval """
from sympy.solvers.solveset import solveset
_start = intrvl.start
_end = intrvl.end
_singularities = solveset(expr.as_numer_denom()[1], symb,
domain=S.Reals)
if intrvl.right_open:
if _end is S.Infinity:
_domain1 = S.Reals
else:
_domain1 = solveset(expr < _end, symb, domain=S.Reals)
else:
_domain1 = solveset(expr <= _end, symb, domain=S.Reals)
if intrvl.left_open:
if _start is S.NegativeInfinity:
_domain2 = S.Reals
else:
_domain2 = solveset(expr > _start, symb, domain=S.Reals)
else:
_domain2 = solveset(expr >= _start, symb, domain=S.Reals)
# domain in the interval
expr_with_sing = Intersection(_domain1, _domain2)
expr_domain = Complement(expr_with_sing, _singularities)
return expr_domain
if isinstance(_sets, Interval):
return Union(*[elm_domain(element, _sets) for element in finite_set])
if isinstance(_sets, Union):
_domain = S.EmptySet
for intrvl in _sets.args:
_domain_element = Union(*[elm_domain(element, intrvl)
for element in finite_set])
_domain = Union(_domain, _domain_element)
return _domain
def periodicity(f, symbol, check=False):
"""
Tests the given function for periodicity in the given symbol.
Parameters
==========
f : :py:class:`~.Expr`.
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the period is to be determined.
check : bool, optional
The flag to verify whether the value being returned is a period or not.
Returns
=======
period
The period of the function is returned.
``None`` is returned when the function is aperiodic or has a complex period.
The value of $0$ is returned as the period of a constant function.
Raises
======
NotImplementedError
The value of the period computed cannot be verified.
Notes
=====
Currently, we do not support functions with a complex period.
The period of functions having complex periodic values such
as ``exp``, ``sinh`` is evaluated to ``None``.
The value returned might not be the "fundamental" period of the given
function i.e. it may not be the smallest periodic value of the function.
The verification of the period through the ``check`` flag is not reliable
due to internal simplification of the given expression. Hence, it is set
to ``False`` by default.
Examples
========
>>> from sympy import periodicity, Symbol, sin, cos, tan, exp
>>> x = Symbol('x')
>>> f = sin(x) + sin(2*x) + sin(3*x)
>>> periodicity(f, x)
2*pi
>>> periodicity(sin(x)*cos(x), x)
pi
>>> periodicity(exp(tan(2*x) - 1), x)
pi/2
>>> periodicity(sin(4*x)**cos(2*x), x)
pi
>>> periodicity(exp(x), x)
"""
if symbol.kind is not NumberKind:
raise NotImplementedError("Cannot use symbol of kind %s" % symbol.kind)
temp = Dummy('x', real=True)
f = f.subs(symbol, temp)
symbol = temp
def _check(orig_f, period):
'''Return the checked period or raise an error.'''
new_f = orig_f.subs(symbol, symbol + period)
if new_f.equals(orig_f):
return period
else:
raise NotImplementedError(filldedent('''
The period of the given function cannot be verified.
When `%s` was replaced with `%s + %s` in `%s`, the result
was `%s` which was not recognized as being the same as
the original function.
So either the period was wrong or the two forms were
not recognized as being equal.
Set check=False to obtain the value.''' %
(symbol, symbol, period, orig_f, new_f)))
orig_f = f
period = None
if isinstance(f, Relational):
f = f.lhs - f.rhs
f = f.simplify()
if symbol not in f.free_symbols:
return S.Zero
if isinstance(f, TrigonometricFunction):
try:
period = f.period(symbol)
except NotImplementedError:
pass
if isinstance(f, Abs):
arg = f.args[0]
if isinstance(arg, (sec, csc, cos)):
# all but tan and cot might have a
# a period that is half as large
# so recast as sin
arg = sin(arg.args[0])
period = periodicity(arg, symbol)
if period is not None and isinstance(arg, sin):
# the argument of Abs was a trigonometric other than
# cot or tan; test to see if the half-period
# is valid. Abs(arg) has behaviour equivalent to
# orig_f, so use that for test:
orig_f = Abs(arg)
try:
return _check(orig_f, period/2)
except NotImplementedError as err:
if check:
raise NotImplementedError(err)
# else let new orig_f and period be
# checked below
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
f = Pow(S.Exp1, expand_mul(f.exp))
if im(f) != 0:
period_real = periodicity(re(f), symbol)
period_imag = periodicity(im(f), symbol)
if period_real is not None and period_imag is not None:
period = lcim([period_real, period_imag])
if f.is_Pow and f.base != S.Exp1:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if base_has_sym and not expo_has_sym:
period = periodicity(base, symbol)
elif expo_has_sym and not base_has_sym:
period = periodicity(expo, symbol)
else:
period = _periodicity(f.args, symbol)
elif f.is_Mul:
coeff, g = f.as_independent(symbol, as_Add=False)
if isinstance(g, TrigonometricFunction) or coeff != 1:
period = periodicity(g, symbol)
else:
period = _periodicity(g.args, symbol)
elif f.is_Add:
k, g = f.as_independent(symbol)
if k is not S.Zero:
return periodicity(g, symbol)
period = _periodicity(g.args, symbol)
elif isinstance(f, Mod):
a, n = f.args
if a == symbol:
period = n
elif isinstance(a, TrigonometricFunction):
period = periodicity(a, symbol)
#check if 'f' is linear in 'symbol'
elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and
symbol not in n.free_symbols):
period = Abs(n / a.diff(symbol))
elif isinstance(f, Piecewise):
pass # not handling Piecewise yet as the return type is not favorable
elif period is None:
from sympy.solvers.decompogen import compogen, decompogen
g_s = decompogen(f, symbol)
num_of_gs = len(g_s)
if num_of_gs > 1:
for index, g in enumerate(reversed(g_s)):
start_index = num_of_gs - 1 - index
g = compogen(g_s[start_index:], symbol)
if g not in (orig_f, f): # Fix for issue 12620
period = periodicity(g, symbol)
if period is not None:
break
if period is not None:
if check:
return _check(orig_f, period)
return period
return None
def _periodicity(args, symbol):
"""
Helper for `periodicity` to find the period of a list of simpler
functions.
It uses the `lcim` method to find the least common period of
all the functions.
Parameters
==========
args : Tuple of :py:class:`~.Symbol`
All the symbols present in a function.
symbol : :py:class:`~.Symbol`
The symbol over which the function is to be evaluated.
Returns
=======
period
The least common period of the function for all the symbols
of the function.
``None`` if for at least one of the symbols the function is aperiodic.
"""
periods = []
for f in args:
period = periodicity(f, symbol)
if period is None:
return None
if period is not S.Zero:
periods.append(period)
if len(periods) > 1:
return lcim(periods)
if periods:
return periods[0]
def lcim(numbers):
"""Returns the least common integral multiple of a list of numbers.
The numbers can be rational or irrational or a mixture of both.
`None` is returned for incommensurable numbers.
Parameters
==========
numbers : list
Numbers (rational and/or irrational) for which lcim is to be found.
Returns
=======
number
lcim if it exists, otherwise ``None`` for incommensurable numbers.
Examples
========
>>> from sympy.calculus.util import lcim
>>> from sympy import S, pi
>>> lcim([S(1)/2, S(3)/4, S(5)/6])
15/2
>>> lcim([2*pi, 3*pi, pi, pi/2])
6*pi
>>> lcim([S(1), 2*pi])
"""
result = None
if all(num.is_irrational for num in numbers):
factorized_nums = list(map(lambda num: num.factor(), numbers))
factors_num = list(
map(lambda num: num.as_coeff_Mul(),
factorized_nums))
term = factors_num[0][1]
if all(factor == term for coeff, factor in factors_num):
common_term = term
coeffs = [coeff for coeff, factor in factors_num]
result = lcm_list(coeffs) * common_term
elif all(num.is_rational for num in numbers):
result = lcm_list(numbers)
else:
pass
return result
def is_convex(f, *syms, domain=S.Reals):
r"""Determines the convexity of the function passed in the argument.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
syms : Tuple of :py:class:`~.Symbol`
The variables with respect to which the convexity is to be determined.
domain : :py:class:`~.Interval`, optional
The domain over which the convexity of the function has to be checked.
If unspecified, S.Reals will be the default domain.
Returns
=======
bool
The method returns ``True`` if the function is convex otherwise it
returns ``False``.
Raises
======
NotImplementedError
The check for the convexity of multivariate functions is not implemented yet.
Notes
=====
To determine concavity of a function pass `-f` as the concerned function.
To determine logarithmic convexity of a function pass `\log(f)` as
concerned function.
To determine logarithmic concavity of a function pass `-\log(f)` as
concerned function.
Currently, convexity check of multivariate functions is not handled.
Examples
========
>>> from sympy import is_convex, symbols, exp, oo, Interval
>>> x = symbols('x')
>>> is_convex(exp(x), x)
True
>>> is_convex(x**3, x, domain = Interval(-1, oo))
False
>>> is_convex(1/x**2, x, domain=Interval.open(0, oo))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Convex_function
.. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf
.. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function
.. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function
.. [5] https://en.wikipedia.org/wiki/Concave_function
"""
if len(syms) > 1:
raise NotImplementedError(
"The check for the convexity of multivariate functions is not implemented yet.")
from sympy.solvers.inequalities import solve_univariate_inequality
f = _sympify(f)
var = syms[0]
if any(s in domain for s in singularities(f, var)):
return False
condition = f.diff(var, 2) < 0
if solve_univariate_inequality(condition, var, False, domain):
return False
return True
def stationary_points(f, symbol, domain=S.Reals):
"""
Returns the stationary points of a function (where derivative of the
function is 0) in the given domain.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the stationary points are to be determined.
domain : :py:class:`~.Interval`
The domain over which the stationary points have to be checked.
If unspecified, ``S.Reals`` will be the default domain.
Returns
=======
Set
A set of stationary points for the function. If there are no
stationary point, an :py:class:`~.EmptySet` is returned.
Examples
========
>>> from sympy import Interval, Symbol, S, sin, pi, pprint, stationary_points
>>> x = Symbol('x')
>>> stationary_points(1/x, x, S.Reals)
EmptySet
>>> pprint(stationary_points(sin(x), x), use_unicode=False)
pi 3*pi
{2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers}
2 2
>>> stationary_points(sin(x),x, Interval(0, 4*pi))
{pi/2, 3*pi/2, 5*pi/2, 7*pi/2}
"""
from sympy.solvers.solveset import solveset
if domain is S.EmptySet:
return S.EmptySet
domain = continuous_domain(f, symbol, domain)
set = solveset(diff(f, symbol), symbol, domain)
return set
def maximum(f, symbol, domain=S.Reals):
"""
Returns the maximum value of a function in the given domain.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for maximum value needs to be determined.
domain : :py:class:`~.Interval`
The domain over which the maximum have to be checked.
If unspecified, then the global maximum is returned.
Returns
=======
number
Maximum value of the function in given domain.
Examples
========
>>> from sympy import Interval, Symbol, S, sin, cos, pi, maximum
>>> x = Symbol('x')
>>> f = -x**2 + 2*x + 5
>>> maximum(f, x, S.Reals)
6
>>> maximum(sin(x), x, Interval(-pi, pi/4))
sqrt(2)/2
>>> maximum(sin(x)*cos(x), x)
1/2
"""
if isinstance(symbol, Symbol):
if domain is S.EmptySet:
raise ValueError("Maximum value not defined for empty domain.")
return function_range(f, symbol, domain).sup
else:
raise ValueError("%s is not a valid symbol." % symbol)
def minimum(f, symbol, domain=S.Reals):
"""
Returns the minimum value of a function in the given domain.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for minimum value needs to be determined.
domain : :py:class:`~.Interval`
The domain over which the minimum have to be checked.
If unspecified, then the global minimum is returned.
Returns
=======
number
Minimum value of the function in the given domain.
Examples
========
>>> from sympy import Interval, Symbol, S, sin, cos, minimum
>>> x = Symbol('x')
>>> f = x**2 + 2*x + 5
>>> minimum(f, x, S.Reals)
4
>>> minimum(sin(x), x, Interval(2, 3))
sin(3)
>>> minimum(sin(x)*cos(x), x)
-1/2
"""
if isinstance(symbol, Symbol):
if domain is S.EmptySet:
raise ValueError("Minimum value not defined for empty domain.")
return function_range(f, symbol, domain).inf
else:
raise ValueError("%s is not a valid symbol." % symbol)
|
870af5ad92d9eca53d5df91b6790100ffab78a75d25b7f9c7ff3ec53ae01cf81 | """Module for compiling codegen output, and wrap the binary for use in
python.
.. note:: To use the autowrap module it must first be imported
>>> from sympy.utilities.autowrap import autowrap
This module provides a common interface for different external backends, such
as f2py, fwrap, Cython, SWIG(?) etc. (Currently only f2py and Cython are
implemented) The goal is to provide access to compiled binaries of acceptable
performance with a one-button user interface, e.g.,
>>> from sympy.abc import x,y
>>> expr = (x - y)**25
>>> flat = expr.expand()
>>> binary_callable = autowrap(flat)
>>> binary_callable(2, 3)
-1.0
Although a SymPy user might primarily be interested in working with
mathematical expressions and not in the details of wrapping tools
needed to evaluate such expressions efficiently in numerical form,
the user cannot do so without some understanding of the
limits in the target language. For example, the expanded expression
contains large coefficients which result in loss of precision when
computing the expression:
>>> binary_callable(3, 2)
0.0
>>> binary_callable(4, 5), binary_callable(5, 4)
(-22925376.0, 25165824.0)
Wrapping the unexpanded expression gives the expected behavior:
>>> e = autowrap(expr)
>>> e(4, 5), e(5, 4)
(-1.0, 1.0)
The callable returned from autowrap() is a binary Python function, not a
SymPy object. If it is desired to use the compiled function in symbolic
expressions, it is better to use binary_function() which returns a SymPy
Function object. The binary callable is attached as the _imp_ attribute and
invoked when a numerical evaluation is requested with evalf(), or with
lambdify().
>>> from sympy.utilities.autowrap import binary_function
>>> f = binary_function('f', expr)
>>> 2*f(x, y) + y
y + 2*f(x, y)
>>> (2*f(x, y) + y).evalf(2, subs={x: 1, y:2})
0.e-110
When is this useful?
1) For computations on large arrays, Python iterations may be too slow,
and depending on the mathematical expression, it may be difficult to
exploit the advanced index operations provided by NumPy.
2) For *really* long expressions that will be called repeatedly, the
compiled binary should be significantly faster than SymPy's .evalf()
3) If you are generating code with the codegen utility in order to use
it in another project, the automatic Python wrappers let you test the
binaries immediately from within SymPy.
4) To create customized ufuncs for use with numpy arrays.
See *ufuncify*.
When is this module NOT the best approach?
1) If you are really concerned about speed or memory optimizations,
you will probably get better results by working directly with the
wrapper tools and the low level code. However, the files generated
by this utility may provide a useful starting point and reference
code. Temporary files will be left intact if you supply the keyword
tempdir="path/to/files/".
2) If the array computation can be handled easily by numpy, and you
do not need the binaries for another project.
"""
import sys
import os
import shutil
import tempfile
from subprocess import STDOUT, CalledProcessError, check_output
from string import Template
from warnings import warn
from sympy.core.cache import cacheit
from sympy.core.function import Lambda
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy, Symbol
from sympy.tensor.indexed import Idx, IndexedBase
from sympy.utilities.codegen import (make_routine, get_code_generator,
OutputArgument, InOutArgument,
InputArgument, CodeGenArgumentListError,
Result, ResultBase, C99CodeGen)
from sympy.utilities.iterables import iterable
from sympy.utilities.lambdify import implemented_function
from sympy.utilities.decorator import doctest_depends_on
_doctest_depends_on = {'exe': ('f2py', 'gfortran', 'gcc'),
'modules': ('numpy',)}
class CodeWrapError(Exception):
pass
class CodeWrapper:
"""Base Class for code wrappers"""
_filename = "wrapped_code"
_module_basename = "wrapper_module"
_module_counter = 0
@property
def filename(self):
return "%s_%s" % (self._filename, CodeWrapper._module_counter)
@property
def module_name(self):
return "%s_%s" % (self._module_basename, CodeWrapper._module_counter)
def __init__(self, generator, filepath=None, flags=[], verbose=False):
"""
generator -- the code generator to use
"""
self.generator = generator
self.filepath = filepath
self.flags = flags
self.quiet = not verbose
@property
def include_header(self):
return bool(self.filepath)
@property
def include_empty(self):
return bool(self.filepath)
def _generate_code(self, main_routine, routines):
routines.append(main_routine)
self.generator.write(
routines, self.filename, True, self.include_header,
self.include_empty)
def wrap_code(self, routine, helpers=None):
helpers = helpers or []
if self.filepath:
workdir = os.path.abspath(self.filepath)
else:
workdir = tempfile.mkdtemp("_sympy_compile")
if not os.access(workdir, os.F_OK):
os.mkdir(workdir)
oldwork = os.getcwd()
os.chdir(workdir)
try:
sys.path.append(workdir)
self._generate_code(routine, helpers)
self._prepare_files(routine)
self._process_files(routine)
mod = __import__(self.module_name)
finally:
sys.path.remove(workdir)
CodeWrapper._module_counter += 1
os.chdir(oldwork)
if not self.filepath:
try:
shutil.rmtree(workdir)
except OSError:
# Could be some issues on Windows
pass
return self._get_wrapped_function(mod, routine.name)
def _process_files(self, routine):
command = self.command
command.extend(self.flags)
try:
retoutput = check_output(command, stderr=STDOUT)
except CalledProcessError as e:
raise CodeWrapError(
"Error while executing command: %s. Command output is:\n%s" % (
" ".join(command), e.output.decode('utf-8')))
if not self.quiet:
print(retoutput)
class DummyWrapper(CodeWrapper):
"""Class used for testing independent of backends """
template = """# dummy module for testing of SymPy
def %(name)s():
return "%(expr)s"
%(name)s.args = "%(args)s"
%(name)s.returns = "%(retvals)s"
"""
def _prepare_files(self, routine):
return
def _generate_code(self, routine, helpers):
with open('%s.py' % self.module_name, 'w') as f:
printed = ", ".join(
[str(res.expr) for res in routine.result_variables])
# convert OutputArguments to return value like f2py
args = filter(lambda x: not isinstance(
x, OutputArgument), routine.arguments)
retvals = []
for val in routine.result_variables:
if isinstance(val, Result):
retvals.append('nameless')
else:
retvals.append(val.result_var)
print(DummyWrapper.template % {
'name': routine.name,
'expr': printed,
'args': ", ".join([str(a.name) for a in args]),
'retvals': ", ".join([str(val) for val in retvals])
}, end="", file=f)
def _process_files(self, routine):
return
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name)
class CythonCodeWrapper(CodeWrapper):
"""Wrapper that uses Cython"""
setup_template = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {cythonize_options}
{np_import}
ext_mods = [Extension(
{ext_args},
include_dirs={include_dirs},
library_dirs={library_dirs},
libraries={libraries},
extra_compile_args={extra_compile_args},
extra_link_args={extra_link_args}
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
"""
_cythonize_options = {'compiler_directives':{'language_level' : "3"}}
pyx_imports = (
"import numpy as np\n"
"cimport numpy as np\n\n")
pyx_header = (
"cdef extern from '{header_file}.h':\n"
" {prototype}\n\n")
pyx_func = (
"def {name}_c({arg_string}):\n"
"\n"
"{declarations}"
"{body}")
std_compile_flag = '-std=c99'
def __init__(self, *args, **kwargs):
"""Instantiates a Cython code wrapper.
The following optional parameters get passed to ``distutils.Extension``
for building the Python extension module. Read its documentation to
learn more.
Parameters
==========
include_dirs : [list of strings]
A list of directories to search for C/C++ header files (in Unix
form for portability).
library_dirs : [list of strings]
A list of directories to search for C/C++ libraries at link time.
libraries : [list of strings]
A list of library names (not filenames or paths) to link against.
extra_compile_args : [list of strings]
Any extra platform- and compiler-specific information to use when
compiling the source files in 'sources'. For platforms and
compilers where "command line" makes sense, this is typically a
list of command-line arguments, but for other platforms it could be
anything. Note that the attribute ``std_compile_flag`` will be
appended to this list.
extra_link_args : [list of strings]
Any extra platform- and compiler-specific information to use when
linking object files together to create the extension (or to create
a new static Python interpreter). Similar interpretation as for
'extra_compile_args'.
cythonize_options : [dictionary]
Keyword arguments passed on to cythonize.
"""
self._include_dirs = kwargs.pop('include_dirs', [])
self._library_dirs = kwargs.pop('library_dirs', [])
self._libraries = kwargs.pop('libraries', [])
self._extra_compile_args = kwargs.pop('extra_compile_args', [])
self._extra_compile_args.append(self.std_compile_flag)
self._extra_link_args = kwargs.pop('extra_link_args', [])
self._cythonize_options = kwargs.pop('cythonize_options', self._cythonize_options)
self._need_numpy = False
super().__init__(*args, **kwargs)
@property
def command(self):
command = [sys.executable, "setup.py", "build_ext", "--inplace"]
return command
def _prepare_files(self, routine, build_dir=os.curdir):
# NOTE : build_dir is used for testing purposes.
pyxfilename = self.module_name + '.pyx'
codefilename = "%s.%s" % (self.filename, self.generator.code_extension)
# pyx
with open(os.path.join(build_dir, pyxfilename), 'w') as f:
self.dump_pyx([routine], f, self.filename)
# setup.py
ext_args = [repr(self.module_name), repr([pyxfilename, codefilename])]
if self._need_numpy:
np_import = 'import numpy as np\n'
self._include_dirs.append('np.get_include()')
else:
np_import = ''
with open(os.path.join(build_dir, 'setup.py'), 'w') as f:
includes = str(self._include_dirs).replace("'np.get_include()'",
'np.get_include()')
f.write(self.setup_template.format(
ext_args=", ".join(ext_args),
np_import=np_import,
include_dirs=includes,
library_dirs=self._library_dirs,
libraries=self._libraries,
extra_compile_args=self._extra_compile_args,
extra_link_args=self._extra_link_args,
cythonize_options=self._cythonize_options
))
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name + '_c')
def dump_pyx(self, routines, f, prefix):
"""Write a Cython file with Python wrappers
This file contains all the definitions of the routines in c code and
refers to the header file.
Arguments
---------
routines
List of Routine instances
f
File-like object to write the file to
prefix
The filename prefix, used to refer to the proper header file.
Only the basename of the prefix is used.
"""
headers = []
functions = []
for routine in routines:
prototype = self.generator.get_prototype(routine)
# C Function Header Import
headers.append(self.pyx_header.format(header_file=prefix,
prototype=prototype))
# Partition the C function arguments into categories
py_rets, py_args, py_loc, py_inf = self._partition_args(routine.arguments)
# Function prototype
name = routine.name
arg_string = ", ".join(self._prototype_arg(arg) for arg in py_args)
# Local Declarations
local_decs = []
for arg, val in py_inf.items():
proto = self._prototype_arg(arg)
mat, ind = [self._string_var(v) for v in val]
local_decs.append(" cdef {} = {}.shape[{}]".format(proto, mat, ind))
local_decs.extend([" cdef {}".format(self._declare_arg(a)) for a in py_loc])
declarations = "\n".join(local_decs)
if declarations:
declarations = declarations + "\n"
# Function Body
args_c = ", ".join([self._call_arg(a) for a in routine.arguments])
rets = ", ".join([self._string_var(r.name) for r in py_rets])
if routine.results:
body = ' return %s(%s)' % (routine.name, args_c)
if rets:
body = body + ', ' + rets
else:
body = ' %s(%s)\n' % (routine.name, args_c)
body = body + ' return ' + rets
functions.append(self.pyx_func.format(name=name, arg_string=arg_string,
declarations=declarations, body=body))
# Write text to file
if self._need_numpy:
# Only import numpy if required
f.write(self.pyx_imports)
f.write('\n'.join(headers))
f.write('\n'.join(functions))
def _partition_args(self, args):
"""Group function arguments into categories."""
py_args = []
py_returns = []
py_locals = []
py_inferred = {}
for arg in args:
if isinstance(arg, OutputArgument):
py_returns.append(arg)
py_locals.append(arg)
elif isinstance(arg, InOutArgument):
py_returns.append(arg)
py_args.append(arg)
else:
py_args.append(arg)
# Find arguments that are array dimensions. These can be inferred
# locally in the Cython code.
if isinstance(arg, (InputArgument, InOutArgument)) and arg.dimensions:
dims = [d[1] + 1 for d in arg.dimensions]
sym_dims = [(i, d) for (i, d) in enumerate(dims) if
isinstance(d, Symbol)]
for (i, d) in sym_dims:
py_inferred[d] = (arg.name, i)
for arg in args:
if arg.name in py_inferred:
py_inferred[arg] = py_inferred.pop(arg.name)
# Filter inferred arguments from py_args
py_args = [a for a in py_args if a not in py_inferred]
return py_returns, py_args, py_locals, py_inferred
def _prototype_arg(self, arg):
mat_dec = "np.ndarray[{mtype}, ndim={ndim}] {name}"
np_types = {'double': 'np.double_t',
'int': 'np.int_t'}
t = arg.get_datatype('c')
if arg.dimensions:
self._need_numpy = True
ndim = len(arg.dimensions)
mtype = np_types[t]
return mat_dec.format(mtype=mtype, ndim=ndim, name=self._string_var(arg.name))
else:
return "%s %s" % (t, self._string_var(arg.name))
def _declare_arg(self, arg):
proto = self._prototype_arg(arg)
if arg.dimensions:
shape = '(' + ','.join(self._string_var(i[1] + 1) for i in arg.dimensions) + ')'
return proto + " = np.empty({shape})".format(shape=shape)
else:
return proto + " = 0"
def _call_arg(self, arg):
if arg.dimensions:
t = arg.get_datatype('c')
return "<{}*> {}.data".format(t, self._string_var(arg.name))
elif isinstance(arg, ResultBase):
return "&{}".format(self._string_var(arg.name))
else:
return self._string_var(arg.name)
def _string_var(self, var):
printer = self.generator.printer.doprint
return printer(var)
class F2PyCodeWrapper(CodeWrapper):
"""Wrapper that uses f2py"""
def __init__(self, *args, **kwargs):
ext_keys = ['include_dirs', 'library_dirs', 'libraries',
'extra_compile_args', 'extra_link_args']
msg = ('The compilation option kwarg {} is not supported with the f2py '
'backend.')
for k in ext_keys:
if k in kwargs.keys():
warn(msg.format(k))
kwargs.pop(k, None)
super().__init__(*args, **kwargs)
@property
def command(self):
filename = self.filename + '.' + self.generator.code_extension
args = ['-c', '-m', self.module_name, filename]
command = [sys.executable, "-c", "import numpy.f2py as f2py2e;f2py2e.main()"]+args
return command
def _prepare_files(self, routine):
pass
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name)
# Here we define a lookup of backends -> tuples of languages. For now, each
# tuple is of length 1, but if a backend supports more than one language,
# the most preferable language is listed first.
_lang_lookup = {'CYTHON': ('C99', 'C89', 'C'),
'F2PY': ('F95',),
'NUMPY': ('C99', 'C89', 'C'),
'DUMMY': ('F95',)} # Dummy here just for testing
def _infer_language(backend):
"""For a given backend, return the top choice of language"""
langs = _lang_lookup.get(backend.upper(), False)
if not langs:
raise ValueError("Unrecognized backend: " + backend)
return langs[0]
def _validate_backend_language(backend, language):
"""Throws error if backend and language are incompatible"""
langs = _lang_lookup.get(backend.upper(), False)
if not langs:
raise ValueError("Unrecognized backend: " + backend)
if language.upper() not in langs:
raise ValueError(("Backend {} and language {} are "
"incompatible").format(backend, language))
@cacheit
@doctest_depends_on(exe=('f2py', 'gfortran'), modules=('numpy',))
def autowrap(expr, language=None, backend='f2py', tempdir=None, args=None,
flags=None, verbose=False, helpers=None, code_gen=None, **kwargs):
"""Generates Python callable binaries based on the math expression.
Parameters
==========
expr
The SymPy expression that should be wrapped as a binary routine.
language : string, optional
If supplied, (options: 'C' or 'F95'), specifies the language of the
generated code. If ``None`` [default], the language is inferred based
upon the specified backend.
backend : string, optional
Backend used to wrap the generated code. Either 'f2py' [default],
or 'cython'.
tempdir : string, optional
Path to directory for temporary files. If this argument is supplied,
the generated code and the wrapper input files are left intact in the
specified path.
args : iterable, optional
An ordered iterable of symbols. Specifies the argument sequence for the
function.
flags : iterable, optional
Additional option flags that will be passed to the backend.
verbose : bool, optional
If True, autowrap will not mute the command line backends. This can be
helpful for debugging.
helpers : 3-tuple or iterable of 3-tuples, optional
Used to define auxiliary expressions needed for the main expr. If the
main expression needs to call a specialized function it should be
passed in via ``helpers``. Autowrap will then make sure that the
compiled main expression can link to the helper routine. Items should
be 3-tuples with (<function_name>, <sympy_expression>,
<argument_tuple>). It is mandatory to supply an argument sequence to
helper routines.
code_gen : CodeGen instance
An instance of a CodeGen subclass. Overrides ``language``.
include_dirs : [string]
A list of directories to search for C/C++ header files (in Unix form
for portability).
library_dirs : [string]
A list of directories to search for C/C++ libraries at link time.
libraries : [string]
A list of library names (not filenames or paths) to link against.
extra_compile_args : [string]
Any extra platform- and compiler-specific information to use when
compiling the source files in 'sources'. For platforms and compilers
where "command line" makes sense, this is typically a list of
command-line arguments, but for other platforms it could be anything.
extra_link_args : [string]
Any extra platform- and compiler-specific information to use when
linking object files together to create the extension (or to create a
new static Python interpreter). Similar interpretation as for
'extra_compile_args'.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.autowrap import autowrap
>>> expr = ((x - y + z)**(13)).expand()
>>> binary_func = autowrap(expr)
>>> binary_func(1, 4, 2)
-1.0
"""
if language:
if not isinstance(language, type):
_validate_backend_language(backend, language)
else:
language = _infer_language(backend)
# two cases 1) helpers is an iterable of 3-tuples and 2) helpers is a
# 3-tuple
if iterable(helpers) and len(helpers) != 0 and iterable(helpers[0]):
helpers = helpers if helpers else ()
else:
helpers = [helpers] if helpers else ()
args = list(args) if iterable(args, exclude=set) else args
if code_gen is None:
code_gen = get_code_generator(language, "autowrap")
CodeWrapperClass = {
'F2PY': F2PyCodeWrapper,
'CYTHON': CythonCodeWrapper,
'DUMMY': DummyWrapper
}[backend.upper()]
code_wrapper = CodeWrapperClass(code_gen, tempdir, flags if flags else (),
verbose, **kwargs)
helps = []
for name_h, expr_h, args_h in helpers:
helps.append(code_gen.routine(name_h, expr_h, args_h))
for name_h, expr_h, args_h in helpers:
if expr.has(expr_h):
name_h = binary_function(name_h, expr_h, backend='dummy')
expr = expr.subs(expr_h, name_h(*args_h))
try:
routine = code_gen.routine('autofunc', expr, args)
except CodeGenArgumentListError as e:
# if all missing arguments are for pure output, we simply attach them
# at the end and try again, because the wrappers will silently convert
# them to return values anyway.
new_args = []
for missing in e.missing_args:
if not isinstance(missing, OutputArgument):
raise
new_args.append(missing.name)
routine = code_gen.routine('autofunc', expr, args + new_args)
return code_wrapper.wrap_code(routine, helpers=helps)
@doctest_depends_on(exe=('f2py', 'gfortran'), modules=('numpy',))
def binary_function(symfunc, expr, **kwargs):
"""Returns a SymPy function with expr as binary implementation
This is a convenience function that automates the steps needed to
autowrap the SymPy expression and attaching it to a Function object
with implemented_function().
Parameters
==========
symfunc : SymPy Function
The function to bind the callable to.
expr : SymPy Expression
The expression used to generate the function.
kwargs : dict
Any kwargs accepted by autowrap.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.utilities.autowrap import binary_function
>>> expr = ((x - y)**(25)).expand()
>>> f = binary_function('f', expr)
>>> type(f)
<class 'sympy.core.function.UndefinedFunction'>
>>> 2*f(x, y)
2*f(x, y)
>>> f(x, y).evalf(2, subs={x: 1, y: 2})
-1.0
"""
binary = autowrap(expr, **kwargs)
return implemented_function(symfunc, binary)
#################################################################
# UFUNCIFY #
#################################################################
_ufunc_top = Template("""\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include ${include_file}
static PyMethodDef ${module}Methods[] = {
{NULL, NULL, 0, NULL}
};""")
_ufunc_outcalls = Template("*((double *)out${outnum}) = ${funcname}(${call_args});")
_ufunc_body = Template("""\
static void ${funcname}_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
${declare_args}
${declare_steps}
for (i = 0; i < n; i++) {
${outcalls}
${step_increments}
}
}
PyUFuncGenericFunction ${funcname}_funcs[1] = {&${funcname}_ufunc};
static char ${funcname}_types[${n_types}] = ${types}
static void *${funcname}_data[1] = {NULL};""")
_ufunc_bottom = Template("""\
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"${module}",
NULL,
-1,
${module}Methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_${module}(void)
{
PyObject *m, *d;
${function_creation}
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
${ufunc_init}
return m;
}
#else
PyMODINIT_FUNC init${module}(void)
{
PyObject *m, *d;
${function_creation}
m = Py_InitModule("${module}", ${module}Methods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
${ufunc_init}
}
#endif\
""")
_ufunc_init_form = Template("""\
ufunc${ind} = PyUFunc_FromFuncAndData(${funcname}_funcs, ${funcname}_data, ${funcname}_types, 1, ${n_in}, ${n_out},
PyUFunc_None, "${module}", ${docstring}, 0);
PyDict_SetItemString(d, "${funcname}", ufunc${ind});
Py_DECREF(ufunc${ind});""")
_ufunc_setup = Template("""\
def configuration(parent_package='', top_path=None):
import numpy
from numpy.distutils.misc_util import Configuration
config = Configuration('',
parent_package,
top_path)
config.add_extension('${module}', sources=['${module}.c', '${filename}.c'])
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
setup(configuration=configuration)""")
class UfuncifyCodeWrapper(CodeWrapper):
"""Wrapper for Ufuncify"""
def __init__(self, *args, **kwargs):
ext_keys = ['include_dirs', 'library_dirs', 'libraries',
'extra_compile_args', 'extra_link_args']
msg = ('The compilation option kwarg {} is not supported with the numpy'
' backend.')
for k in ext_keys:
if k in kwargs.keys():
warn(msg.format(k))
kwargs.pop(k, None)
super().__init__(*args, **kwargs)
@property
def command(self):
command = [sys.executable, "setup.py", "build_ext", "--inplace"]
return command
def wrap_code(self, routines, helpers=None):
# This routine overrides CodeWrapper because we can't assume funcname == routines[0].name
# Therefore we have to break the CodeWrapper private API.
# There isn't an obvious way to extend multi-expr support to
# the other autowrap backends, so we limit this change to ufuncify.
helpers = helpers if helpers is not None else []
# We just need a consistent name
funcname = 'wrapped_' + str(id(routines) + id(helpers))
workdir = self.filepath or tempfile.mkdtemp("_sympy_compile")
if not os.access(workdir, os.F_OK):
os.mkdir(workdir)
oldwork = os.getcwd()
os.chdir(workdir)
try:
sys.path.append(workdir)
self._generate_code(routines, helpers)
self._prepare_files(routines, funcname)
self._process_files(routines)
mod = __import__(self.module_name)
finally:
sys.path.remove(workdir)
CodeWrapper._module_counter += 1
os.chdir(oldwork)
if not self.filepath:
try:
shutil.rmtree(workdir)
except OSError:
# Could be some issues on Windows
pass
return self._get_wrapped_function(mod, funcname)
def _generate_code(self, main_routines, helper_routines):
all_routines = main_routines + helper_routines
self.generator.write(
all_routines, self.filename, True, self.include_header,
self.include_empty)
def _prepare_files(self, routines, funcname):
# C
codefilename = self.module_name + '.c'
with open(codefilename, 'w') as f:
self.dump_c(routines, f, self.filename, funcname=funcname)
# setup.py
with open('setup.py', 'w') as f:
self.dump_setup(f)
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name)
def dump_setup(self, f):
setup = _ufunc_setup.substitute(module=self.module_name,
filename=self.filename)
f.write(setup)
def dump_c(self, routines, f, prefix, funcname=None):
"""Write a C file with Python wrappers
This file contains all the definitions of the routines in c code.
Arguments
---------
routines
List of Routine instances
f
File-like object to write the file to
prefix
The filename prefix, used to name the imported module.
funcname
Name of the main function to be returned.
"""
if funcname is None:
if len(routines) == 1:
funcname = routines[0].name
else:
msg = 'funcname must be specified for multiple output routines'
raise ValueError(msg)
functions = []
function_creation = []
ufunc_init = []
module = self.module_name
include_file = "\"{}.h\"".format(prefix)
top = _ufunc_top.substitute(include_file=include_file, module=module)
name = funcname
# Partition the C function arguments into categories
# Here we assume all routines accept the same arguments
r_index = 0
py_in, _ = self._partition_args(routines[0].arguments)
n_in = len(py_in)
n_out = len(routines)
# Declare Args
form = "char *{0}{1} = args[{2}];"
arg_decs = [form.format('in', i, i) for i in range(n_in)]
arg_decs.extend([form.format('out', i, i+n_in) for i in range(n_out)])
declare_args = '\n '.join(arg_decs)
# Declare Steps
form = "npy_intp {0}{1}_step = steps[{2}];"
step_decs = [form.format('in', i, i) for i in range(n_in)]
step_decs.extend([form.format('out', i, i+n_in) for i in range(n_out)])
declare_steps = '\n '.join(step_decs)
# Call Args
form = "*(double *)in{0}"
call_args = ', '.join([form.format(a) for a in range(n_in)])
# Step Increments
form = "{0}{1} += {0}{1}_step;"
step_incs = [form.format('in', i) for i in range(n_in)]
step_incs.extend([form.format('out', i, i) for i in range(n_out)])
step_increments = '\n '.join(step_incs)
# Types
n_types = n_in + n_out
types = "{" + ', '.join(["NPY_DOUBLE"]*n_types) + "};"
# Docstring
docstring = '"Created in SymPy with Ufuncify"'
# Function Creation
function_creation.append("PyObject *ufunc{};".format(r_index))
# Ufunc initialization
init_form = _ufunc_init_form.substitute(module=module,
funcname=name,
docstring=docstring,
n_in=n_in, n_out=n_out,
ind=r_index)
ufunc_init.append(init_form)
outcalls = [_ufunc_outcalls.substitute(
outnum=i, call_args=call_args, funcname=routines[i].name) for i in
range(n_out)]
body = _ufunc_body.substitute(module=module, funcname=name,
declare_args=declare_args,
declare_steps=declare_steps,
call_args=call_args,
step_increments=step_increments,
n_types=n_types, types=types,
outcalls='\n '.join(outcalls))
functions.append(body)
body = '\n\n'.join(functions)
ufunc_init = '\n '.join(ufunc_init)
function_creation = '\n '.join(function_creation)
bottom = _ufunc_bottom.substitute(module=module,
ufunc_init=ufunc_init,
function_creation=function_creation)
text = [top, body, bottom]
f.write('\n\n'.join(text))
def _partition_args(self, args):
"""Group function arguments into categories."""
py_in = []
py_out = []
for arg in args:
if isinstance(arg, OutputArgument):
py_out.append(arg)
elif isinstance(arg, InOutArgument):
raise ValueError("Ufuncify doesn't support InOutArguments")
else:
py_in.append(arg)
return py_in, py_out
@cacheit
@doctest_depends_on(exe=('f2py', 'gfortran', 'gcc'), modules=('numpy',))
def ufuncify(args, expr, language=None, backend='numpy', tempdir=None,
flags=None, verbose=False, helpers=None, **kwargs):
"""Generates a binary function that supports broadcasting on numpy arrays.
Parameters
==========
args : iterable
Either a Symbol or an iterable of symbols. Specifies the argument
sequence for the function.
expr
A SymPy expression that defines the element wise operation.
language : string, optional
If supplied, (options: 'C' or 'F95'), specifies the language of the
generated code. If ``None`` [default], the language is inferred based
upon the specified backend.
backend : string, optional
Backend used to wrap the generated code. Either 'numpy' [default],
'cython', or 'f2py'.
tempdir : string, optional
Path to directory for temporary files. If this argument is supplied,
the generated code and the wrapper input files are left intact in
the specified path.
flags : iterable, optional
Additional option flags that will be passed to the backend.
verbose : bool, optional
If True, autowrap will not mute the command line backends. This can
be helpful for debugging.
helpers : iterable, optional
Used to define auxiliary expressions needed for the main expr. If
the main expression needs to call a specialized function it should
be put in the ``helpers`` iterable. Autowrap will then make sure
that the compiled main expression can link to the helper routine.
Items should be tuples with (<funtion_name>, <sympy_expression>,
<arguments>). It is mandatory to supply an argument sequence to
helper routines.
kwargs : dict
These kwargs will be passed to autowrap if the `f2py` or `cython`
backend is used and ignored if the `numpy` backend is used.
Notes
=====
The default backend ('numpy') will create actual instances of
``numpy.ufunc``. These support ndimensional broadcasting, and implicit type
conversion. Use of the other backends will result in a "ufunc-like"
function, which requires equal length 1-dimensional arrays for all
arguments, and will not perform any type conversions.
References
==========
.. [1] http://docs.scipy.org/doc/numpy/reference/ufuncs.html
Examples
========
>>> from sympy.utilities.autowrap import ufuncify
>>> from sympy.abc import x, y
>>> import numpy as np
>>> f = ufuncify((x, y), y + x**2)
>>> type(f)
<class 'numpy.ufunc'>
>>> f([1, 2, 3], 2)
array([ 3., 6., 11.])
>>> f(np.arange(5), 3)
array([ 3., 4., 7., 12., 19.])
For the 'f2py' and 'cython' backends, inputs are required to be equal length
1-dimensional arrays. The 'f2py' backend will perform type conversion, but
the Cython backend will error if the inputs are not of the expected type.
>>> f_fortran = ufuncify((x, y), y + x**2, backend='f2py')
>>> f_fortran(1, 2)
array([ 3.])
>>> f_fortran(np.array([1, 2, 3]), np.array([1.0, 2.0, 3.0]))
array([ 2., 6., 12.])
>>> f_cython = ufuncify((x, y), y + x**2, backend='Cython')
>>> f_cython(1, 2) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: Argument '_x' has incorrect type (expected numpy.ndarray, got int)
>>> f_cython(np.array([1.0]), np.array([2.0]))
array([ 3.])
"""
if isinstance(args, Symbol):
args = (args,)
else:
args = tuple(args)
if language:
_validate_backend_language(backend, language)
else:
language = _infer_language(backend)
helpers = helpers if helpers else ()
flags = flags if flags else ()
if backend.upper() == 'NUMPY':
# maxargs is set by numpy compile-time constant NPY_MAXARGS
# If a future version of numpy modifies or removes this restriction
# this variable should be changed or removed
maxargs = 32
helps = []
for name, expr, args in helpers:
helps.append(make_routine(name, expr, args))
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"), tempdir,
flags, verbose)
if not isinstance(expr, (list, tuple)):
expr = [expr]
if len(expr) == 0:
raise ValueError('Expression iterable has zero length')
if len(expr) + len(args) > maxargs:
msg = ('Cannot create ufunc with more than {0} total arguments: '
'got {1} in, {2} out')
raise ValueError(msg.format(maxargs, len(args), len(expr)))
routines = [make_routine('autofunc{}'.format(idx), exprx, args) for
idx, exprx in enumerate(expr)]
return code_wrapper.wrap_code(routines, helpers=helps)
else:
# Dummies are used for all added expressions to prevent name clashes
# within the original expression.
y = IndexedBase(Dummy('y'))
m = Dummy('m', integer=True)
i = Idx(Dummy('i', integer=True), m)
f_dummy = Dummy('f')
f = implemented_function('%s_%d' % (f_dummy.name, f_dummy.dummy_index), Lambda(args, expr))
# For each of the args create an indexed version.
indexed_args = [IndexedBase(Dummy(str(a))) for a in args]
# Order the arguments (out, args, dim)
args = [y] + indexed_args + [m]
args_with_indices = [a[i] for a in indexed_args]
return autowrap(Eq(y[i], f(*args_with_indices)), language, backend,
tempdir, args, flags, verbose, helpers, **kwargs)
|
61b298e8270dfb0be3b20e77cd43cbd8199fbf26fad873385b8c63b6f3342f9b | """
This module provides convenient functions to transform SymPy expressions to
lambda functions which can be used to calculate numerical values very fast.
"""
from typing import Any, Dict as tDict
import builtins
import inspect
import keyword
import textwrap
import linecache
# Required despite static analysis claiming it is not used
from sympy.external import import_module # noqa:F401
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import (is_sequence, iterable,
NotIterable, flatten)
from sympy.utilities.misc import filldedent
__doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']}
# Default namespaces, letting us define translations that can't be defined
# by simple variable maps, like I => 1j
MATH_DEFAULT = {} # type: tDict[str, Any]
MPMATH_DEFAULT = {} # type: tDict[str, Any]
NUMPY_DEFAULT = {"I": 1j} # type: tDict[str, Any]
SCIPY_DEFAULT = {"I": 1j} # type: tDict[str, Any]
CUPY_DEFAULT = {"I": 1j} # type: tDict[str, Any]
JAX_DEFAULT = {"I": 1j} # type: tDict[str, Any]
TENSORFLOW_DEFAULT = {} # type: tDict[str, Any]
SYMPY_DEFAULT = {} # type: tDict[str, Any]
NUMEXPR_DEFAULT = {} # type: tDict[str, Any]
# These are the namespaces the lambda functions will use.
# These are separate from the names above because they are modified
# throughout this file, whereas the defaults should remain unmodified.
MATH = MATH_DEFAULT.copy()
MPMATH = MPMATH_DEFAULT.copy()
NUMPY = NUMPY_DEFAULT.copy()
SCIPY = SCIPY_DEFAULT.copy()
CUPY = CUPY_DEFAULT.copy()
JAX = JAX_DEFAULT.copy()
TENSORFLOW = TENSORFLOW_DEFAULT.copy()
SYMPY = SYMPY_DEFAULT.copy()
NUMEXPR = NUMEXPR_DEFAULT.copy()
# Mappings between SymPy and other modules function names.
MATH_TRANSLATIONS = {
"ceiling": "ceil",
"E": "e",
"ln": "log",
}
# NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses
# of Function to automatically evalf.
MPMATH_TRANSLATIONS = {
"Abs": "fabs",
"elliptic_k": "ellipk",
"elliptic_f": "ellipf",
"elliptic_e": "ellipe",
"elliptic_pi": "ellippi",
"ceiling": "ceil",
"chebyshevt": "chebyt",
"chebyshevu": "chebyu",
"E": "e",
"I": "j",
"ln": "log",
#"lowergamma":"lower_gamma",
"oo": "inf",
#"uppergamma":"upper_gamma",
"LambertW": "lambertw",
"MutableDenseMatrix": "matrix",
"ImmutableDenseMatrix": "matrix",
"conjugate": "conj",
"dirichlet_eta": "altzeta",
"Ei": "ei",
"Shi": "shi",
"Chi": "chi",
"Si": "si",
"Ci": "ci",
"RisingFactorial": "rf",
"FallingFactorial": "ff",
"betainc_regularized": "betainc",
}
NUMPY_TRANSLATIONS = {
"Heaviside": "heaviside",
} # type: tDict[str, str]
SCIPY_TRANSLATIONS = {} # type: tDict[str, str]
CUPY_TRANSLATIONS = {} # type: tDict[str, str]
JAX_TRANSLATIONS = {} # type: tDict[str, str]
TENSORFLOW_TRANSLATIONS = {} # type: tDict[str, str]
NUMEXPR_TRANSLATIONS = {} # type: tDict[str, str]
# Available modules:
MODULES = {
"math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)),
"mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)),
"numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)),
"scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import scipy; import numpy; from scipy import *; from scipy.special import *",)),
"cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)),
"jax": (JAX, JAX_DEFAULT, JAX_TRANSLATIONS, ("import jax",)),
"tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)),
"sympy": (SYMPY, SYMPY_DEFAULT, {}, (
"from sympy.functions import *",
"from sympy.matrices import *",
"from sympy import Integral, pi, oo, nan, zoo, E, I",)),
"numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS,
("import_module('numexpr')", )),
}
def _import(module, reload=False):
"""
Creates a global translation dictionary for module.
The argument module has to be one of the following strings: "math",
"mpmath", "numpy", "sympy", "tensorflow", "jax".
These dictionaries map names of Python functions to their equivalent in
other modules.
"""
try:
namespace, namespace_default, translations, import_commands = MODULES[
module]
except KeyError:
raise NameError(
"'%s' module cannot be used for lambdification" % module)
# Clear namespace or exit
if namespace != namespace_default:
# The namespace was already generated, don't do it again if not forced.
if reload:
namespace.clear()
namespace.update(namespace_default)
else:
return
for import_command in import_commands:
if import_command.startswith('import_module'):
module = eval(import_command)
if module is not None:
namespace.update(module.__dict__)
continue
else:
try:
exec(import_command, {}, namespace)
continue
except ImportError:
pass
raise ImportError(
"Cannot import '%s' with '%s' command" % (module, import_command))
# Add translated names to namespace
for sympyname, translation in translations.items():
namespace[sympyname] = namespace[translation]
# For computing the modulus of a SymPy expression we use the builtin abs
# function, instead of the previously used fabs function for all
# translation modules. This is because the fabs function in the math
# module does not accept complex valued arguments. (see issue 9474). The
# only exception, where we don't use the builtin abs function is the
# mpmath translation module, because mpmath.fabs returns mpf objects in
# contrast to abs().
if 'Abs' not in namespace:
namespace['Abs'] = abs
# Used for dynamically generated filenames that are inserted into the
# linecache.
_lambdify_generated_counter = 1
@doctest_depends_on(modules=('numpy', 'scipy', 'tensorflow',), python_version=(3,))
def lambdify(args, expr, modules=None, printer=None, use_imps=True,
dummify=False, cse=False):
"""Convert a SymPy expression into a function that allows for fast
numeric evaluation.
.. warning::
This function uses ``exec``, and thus should not be used on
unsanitized input.
.. deprecated:: 1.7
Passing a set for the *args* parameter is deprecated as sets are
unordered. Use an ordered iterable such as a list or tuple.
Explanation
===========
For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an
equivalent NumPy function that numerically evaluates it:
>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> expr = sin(x) + cos(x)
>>> expr
sin(x) + cos(x)
>>> f = lambdify(x, expr, 'numpy')
>>> a = np.array([1, 2])
>>> f(a)
[1.38177329 0.49315059]
The primary purpose of this function is to provide a bridge from SymPy
expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath,
and tensorflow. In general, SymPy functions do not work with objects from
other libraries, such as NumPy arrays, and functions from numeric
libraries like NumPy or mpmath do not work on SymPy expressions.
``lambdify`` bridges the two by converting a SymPy expression to an
equivalent numeric function.
The basic workflow with ``lambdify`` is to first create a SymPy expression
representing whatever mathematical function you wish to evaluate. This
should be done using only SymPy functions and expressions. Then, use
``lambdify`` to convert this to an equivalent function for numerical
evaluation. For instance, above we created ``expr`` using the SymPy symbol
``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an
equivalent NumPy function ``f``, and called it on a NumPy array ``a``.
Parameters
==========
args : List[Symbol]
A variable or a list of variables whose nesting represents the
nesting of the arguments that will be passed to the function.
Variables can be symbols, undefined functions, or matrix symbols.
>>> from sympy import Eq
>>> from sympy.abc import x, y, z
The list of variables should match the structure of how the
arguments will be passed to the function. Simply enclose the
parameters as they will be passed in a list.
To call a function like ``f(x)`` then ``[x]``
should be the first argument to ``lambdify``; for this
case a single ``x`` can also be used:
>>> f = lambdify(x, x + 1)
>>> f(1)
2
>>> f = lambdify([x], x + 1)
>>> f(1)
2
To call a function like ``f(x, y)`` then ``[x, y]`` will
be the first argument of the ``lambdify``:
>>> f = lambdify([x, y], x + y)
>>> f(1, 1)
2
To call a function with a single 3-element tuple like
``f((x, y, z))`` then ``[(x, y, z)]`` will be the first
argument of the ``lambdify``:
>>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2))
>>> f((3, 4, 5))
True
If two args will be passed and the first is a scalar but
the second is a tuple with two arguments then the items
in the list should match that structure:
>>> f = lambdify([x, (y, z)], x + y + z)
>>> f(1, (2, 3))
6
expr : Expr
An expression, list of expressions, or matrix to be evaluated.
Lists may be nested.
If the expression is a list, the output will also be a list.
>>> f = lambdify(x, [x, [x + 1, x + 2]])
>>> f(1)
[1, [2, 3]]
If it is a matrix, an array will be returned (for the NumPy module).
>>> from sympy import Matrix
>>> f = lambdify(x, Matrix([x, x + 1]))
>>> f(1)
[[1]
[2]]
Note that the argument order here (variables then expression) is used
to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works
(roughly) like ``lambda x: expr``
(see :ref:`lambdify-how-it-works` below).
modules : str, optional
Specifies the numeric library to use.
If not specified, *modules* defaults to:
- ``["scipy", "numpy"]`` if SciPy is installed
- ``["numpy"]`` if only NumPy is installed
- ``["math", "mpmath", "sympy"]`` if neither is installed.
That is, SymPy functions are replaced as far as possible by
either ``scipy`` or ``numpy`` functions if available, and Python's
standard library ``math``, or ``mpmath`` functions otherwise.
*modules* can be one of the following types:
- The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``,
``"scipy"``, ``"sympy"``, or ``"tensorflow"`` or ``"jax"``. This uses the
corresponding printer and namespace mapping for that module.
- A module (e.g., ``math``). This uses the global namespace of the
module. If the module is one of the above known modules, it will
also use the corresponding printer and namespace mapping
(i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``).
- A dictionary that maps names of SymPy functions to arbitrary
functions
(e.g., ``{'sin': custom_sin}``).
- A list that contains a mix of the arguments above, with higher
priority given to entries appearing first
(e.g., to use the NumPy module but override the ``sin`` function
with a custom version, you can use
``[{'sin': custom_sin}, 'numpy']``).
dummify : bool, optional
Whether or not the variables in the provided expression that are not
valid Python identifiers are substituted with dummy symbols.
This allows for undefined functions like ``Function('f')(t)`` to be
supplied as arguments. By default, the variables are only dummified
if they are not valid Python identifiers.
Set ``dummify=True`` to replace all arguments with dummy symbols
(if ``args`` is not a string) - for example, to ensure that the
arguments do not redefine any built-in names.
cse : bool, or callable, optional
Large expressions can be computed more efficiently when
common subexpressions are identified and precomputed before
being used multiple time. Finding the subexpressions will make
creation of the 'lambdify' function slower, however.
When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default)
the user may pass a function matching the ``cse`` signature.
Examples
========
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import sqrt, sin, Matrix
>>> from sympy import Function
>>> from sympy.abc import w, x, y, z
>>> f = lambdify(x, x**2)
>>> f(2)
4
>>> f = lambdify((x, y, z), [z, y, x])
>>> f(1,2,3)
[3, 2, 1]
>>> f = lambdify(x, sqrt(x))
>>> f(4)
2.0
>>> f = lambdify((x, y), sin(x*y)**2)
>>> f(0, 5)
0.0
>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy')
>>> row(1, 2)
Matrix([[1, 3]])
``lambdify`` can be used to translate SymPy expressions into mpmath
functions. This may be preferable to using ``evalf`` (which uses mpmath on
the backend) in some cases.
>>> f = lambdify(x, sin(x), 'mpmath')
>>> f(1)
0.8414709848078965
Tuple arguments are handled and the lambdified function should
be called with the same type of arguments as were used to create
the function:
>>> f = lambdify((x, (y, z)), x + y)
>>> f(1, (2, 4))
3
The ``flatten`` function can be used to always work with flattened
arguments:
>>> from sympy.utilities.iterables import flatten
>>> args = w, (x, (y, z))
>>> vals = 1, (2, (3, 4))
>>> f = lambdify(flatten(args), w + x + y + z)
>>> f(*flatten(vals))
10
Functions present in ``expr`` can also carry their own numerical
implementations, in a callable attached to the ``_imp_`` attribute. This
can be used with undefined functions using the ``implemented_function``
factory:
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5
``lambdify`` always prefers ``_imp_`` implementations to implementations
in other namespaces, unless the ``use_imps`` input parameter is False.
Usage with Tensorflow:
>>> import tensorflow as tf
>>> from sympy import Max, sin, lambdify
>>> from sympy.abc import x
>>> f = Max(x, sin(x))
>>> func = lambdify(x, f, 'tensorflow')
After tensorflow v2, eager execution is enabled by default.
If you want to get the compatible result across tensorflow v1 and v2
as same as this tutorial, run this line.
>>> tf.compat.v1.enable_eager_execution()
If you have eager execution enabled, you can get the result out
immediately as you can use numpy.
If you pass tensorflow objects, you may get an ``EagerTensor``
object instead of value.
>>> result = func(tf.constant(1.0))
>>> print(result)
tf.Tensor(1.0, shape=(), dtype=float32)
>>> print(result.__class__)
<class 'tensorflow.python.framework.ops.EagerTensor'>
You can use ``.numpy()`` to get the numpy value of the tensor.
>>> result.numpy()
1.0
>>> var = tf.Variable(2.0)
>>> result = func(var) # also works for tf.Variable and tf.Placeholder
>>> result.numpy()
2.0
And it works with any shape array.
>>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> result = func(tensor)
>>> result.numpy()
[[1. 2.]
[3. 4.]]
Notes
=====
- For functions involving large array calculations, numexpr can provide a
significant speedup over numpy. Please note that the available functions
for numexpr are more limited than numpy but can be expanded with
``implemented_function`` and user defined subclasses of Function. If
specified, numexpr may be the only option in modules. The official list
of numexpr functions can be found at:
https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions
- In the above examples, the generated functions can accept scalar
values or numpy arrays as arguments. However, in some cases
the generated function relies on the input being a numpy array:
>>> import numpy
>>> from sympy import Piecewise
>>> from sympy.testing.pytest import ignore_warnings
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy")
>>> with ignore_warnings(RuntimeWarning):
... f(numpy.array([-1, 0, 1, 2]))
[-1. 0. 1. 0.5]
>>> f(0)
Traceback (most recent call last):
...
ZeroDivisionError: division by zero
In such cases, the input should be wrapped in a numpy array:
>>> with ignore_warnings(RuntimeWarning):
... float(f(numpy.array([0])))
0.0
Or if numpy functionality is not required another module can be used:
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math")
>>> f(0)
0
.. _lambdify-how-it-works:
How it works
============
When using this function, it helps a great deal to have an idea of what it
is doing. At its core, lambdify is nothing more than a namespace
translation, on top of a special printer that makes some corner cases work
properly.
To understand lambdify, first we must properly understand how Python
namespaces work. Say we had two files. One called ``sin_cos_sympy.py``,
with
.. code:: python
# sin_cos_sympy.py
from sympy.functions.elementary.trigonometric import (cos, sin)
def sin_cos(x):
return sin(x) + cos(x)
and one called ``sin_cos_numpy.py`` with
.. code:: python
# sin_cos_numpy.py
from numpy import sin, cos
def sin_cos(x):
return sin(x) + cos(x)
The two files define an identical function ``sin_cos``. However, in the
first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and
``cos``. In the second, they are defined as the NumPy versions.
If we were to import the first file and use the ``sin_cos`` function, we
would get something like
>>> from sin_cos_sympy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
cos(1) + sin(1)
On the other hand, if we imported ``sin_cos`` from the second file, we
would get
>>> from sin_cos_numpy import sin_cos # doctest: +SKIP
>>> sin_cos(1) # doctest: +SKIP
1.38177329068
In the first case we got a symbolic output, because it used the symbolic
``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric
result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions
from NumPy. But notice that the versions of ``sin`` and ``cos`` that were
used was not inherent to the ``sin_cos`` function definition. Both
``sin_cos`` definitions are exactly the same. Rather, it was based on the
names defined at the module where the ``sin_cos`` function was defined.
The key point here is that when function in Python references a name that
is not defined in the function, that name is looked up in the "global"
namespace of the module where that function is defined.
Now, in Python, we can emulate this behavior without actually writing a
file to disk using the ``exec`` function. ``exec`` takes a string
containing a block of Python code, and a dictionary that should contain
the global variables of the module. It then executes the code "in" that
dictionary, as if it were the module globals. The following is equivalent
to the ``sin_cos`` defined in ``sin_cos_sympy.py``:
>>> import sympy
>>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
cos(1) + sin(1)
and similarly with ``sin_cos_numpy``:
>>> import numpy
>>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos}
>>> exec('''
... def sin_cos(x):
... return sin(x) + cos(x)
... ''', module_dictionary)
>>> sin_cos = module_dictionary['sin_cos']
>>> sin_cos(1)
1.38177329068
So now we can get an idea of how ``lambdify`` works. The name "lambdify"
comes from the fact that we can think of something like ``lambdify(x,
sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where
``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why
the symbols argument is first in ``lambdify``, as opposed to most SymPy
functions where it comes after the expression: to better mimic the
``lambda`` keyword.
``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and
1. Converts it to a string
2. Creates a module globals dictionary based on the modules that are
passed in (by default, it uses the NumPy module)
3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the
list of variables separated by commas, and ``{expr}`` is the string
created in step 1., then ``exec``s that string with the module globals
namespace and returns ``func``.
In fact, functions returned by ``lambdify`` support inspection. So you can
see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you
are using IPython or the Jupyter notebook.
>>> f = lambdify(x, sin(x) + cos(x))
>>> import inspect
>>> print(inspect.getsource(f))
def _lambdifygenerated(x):
return sin(x) + cos(x)
This shows us the source code of the function, but not the namespace it
was defined in. We can inspect that by looking at the ``__globals__``
attribute of ``f``:
>>> f.__globals__['sin']
<ufunc 'sin'>
>>> f.__globals__['cos']
<ufunc 'cos'>
>>> f.__globals__['sin'] is numpy.sin
True
This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be
``numpy.sin`` and ``numpy.cos``.
Note that there are some convenience layers in each of these steps, but at
the core, this is how ``lambdify`` works. Step 1 is done using the
``LambdaPrinter`` printers defined in the printing module (see
:mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions
to define how they should be converted to a string for different modules.
You can change which printer ``lambdify`` uses by passing a custom printer
in to the ``printer`` argument.
Step 2 is augmented by certain translations. There are default
translations for each module, but you can provide your own by passing a
list to the ``modules`` argument. For instance,
>>> def mysin(x):
... print('taking the sin of', x)
... return numpy.sin(x)
...
>>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy'])
>>> f(1)
taking the sin of 1
0.8414709848078965
The globals dictionary is generated from the list by merging the
dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The
merging is done so that earlier items take precedence, which is why
``mysin`` is used above instead of ``numpy.sin``.
If you want to modify the way ``lambdify`` works for a given function, it
is usually easiest to do so by modifying the globals dictionary as such.
In more complicated cases, it may be necessary to create and pass in a
custom printer.
Finally, step 3 is augmented with certain convenience operations, such as
the addition of a docstring.
Understanding how ``lambdify`` works can make it easier to avoid certain
gotchas when using it. For instance, a common mistake is to create a
lambdified function for one module (say, NumPy), and pass it objects from
another (say, a SymPy expression).
For instance, say we create
>>> from sympy.abc import x
>>> f = lambdify(x, x + 1, 'numpy')
Now if we pass in a NumPy array, we get that array plus 1
>>> import numpy
>>> a = numpy.array([1, 2])
>>> f(a)
[2 3]
But what happens if you make the mistake of passing in a SymPy expression
instead of a NumPy array:
>>> f(x + 1)
x + 2
This worked, but it was only by accident. Now take a different lambdified
function:
>>> from sympy import sin
>>> g = lambdify(x, x + sin(x), 'numpy')
This works as expected on NumPy arrays:
>>> g(a)
[1.84147098 2.90929743]
But if we try to pass in a SymPy expression, it fails
>>> try:
... g(x + 1)
... # NumPy release after 1.17 raises TypeError instead of
... # AttributeError
... except (AttributeError, TypeError):
... raise AttributeError() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
AttributeError:
Now, let's look at what happened. The reason this fails is that ``g``
calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not
know how to operate on a SymPy object. **As a general rule, NumPy
functions do not know how to operate on SymPy expressions, and SymPy
functions do not know how to operate on NumPy arrays. This is why lambdify
exists: to provide a bridge between SymPy and NumPy.**
However, why is it that ``f`` did work? That's because ``f`` does not call
any functions, it only adds 1. So the resulting function that is created,
``def _lambdifygenerated(x): return x + 1`` does not depend on the globals
namespace it is defined in. Thus it works, but only by accident. A future
version of ``lambdify`` may remove this behavior.
Be aware that certain implementation details described here may change in
future versions of SymPy. The API of passing in custom modules and
printers will not change, but the details of how a lambda function is
created may change. However, the basic idea will remain the same, and
understanding it will be helpful to understanding the behavior of
lambdify.
**In general: you should create lambdified functions for one module (say,
NumPy), and only pass it input types that are compatible with that module
(say, NumPy arrays).** Remember that by default, if the ``module``
argument is not provided, ``lambdify`` creates functions using the NumPy
and SciPy namespaces.
"""
from sympy.core.symbol import Symbol
from sympy.core.expr import Expr
# If the user hasn't specified any modules, use what is available.
if modules is None:
try:
_import("scipy")
except ImportError:
try:
_import("numpy")
except ImportError:
# Use either numpy (if available) or python.math where possible.
# XXX: This leads to different behaviour on different systems and
# might be the reason for irreproducible errors.
modules = ["math", "mpmath", "sympy"]
else:
modules = ["numpy"]
else:
modules = ["numpy", "scipy"]
# Get the needed namespaces.
namespaces = []
# First find any function implementations
if use_imps:
namespaces.append(_imp_namespace(expr))
# Check for dict before iterating
if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'):
namespaces.append(modules)
else:
# consistency check
if _module_present('numexpr', modules) and len(modules) > 1:
raise TypeError("numexpr must be the only item in 'modules'")
namespaces += list(modules)
# fill namespace with first having highest priority
namespace = {} # type: tDict[str, Any]
for m in namespaces[::-1]:
buf = _get_namespace(m)
namespace.update(buf)
if hasattr(expr, "atoms"):
#Try if you can extract symbols from the expression.
#Move on if expr.atoms in not implemented.
syms = expr.atoms(Symbol)
for term in syms:
namespace.update({str(term): term})
if printer is None:
if _module_present('mpmath', namespaces):
from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore
elif _module_present('scipy', namespaces):
from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore
elif _module_present('numpy', namespaces):
from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore
elif _module_present('cupy', namespaces):
from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore
elif _module_present('jax', namespaces):
from sympy.printing.numpy import JaxPrinter as Printer # type: ignore
elif _module_present('numexpr', namespaces):
from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore
elif _module_present('tensorflow', namespaces):
from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore
elif _module_present('sympy', namespaces):
from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore
else:
from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore
user_functions = {}
for m in namespaces[::-1]:
if isinstance(m, dict):
for k in m:
user_functions[k] = k
printer = Printer({'fully_qualified_modules': False, 'inline': True,
'allow_unknown_functions': True,
'user_functions': user_functions})
if isinstance(args, set):
sympy_deprecation_warning(
"""
Passing the function arguments to lambdify() as a set is deprecated. This
leads to unpredictable results since sets are unordered. Instead, use a list
or tuple for the function arguments.
""",
deprecated_since_version="1.6.3",
active_deprecations_target="deprecated-lambdify-arguments-set",
)
# Get the names of the args, for creating a docstring
iterable_args = (args,) if isinstance(args, Expr) else args
names = []
# Grab the callers frame, for getting the names by inspection (if needed)
callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore
for n, var in enumerate(iterable_args):
if hasattr(var, 'name'):
names.append(var.name)
else:
# It's an iterable. Try to get name by inspection of calling frame.
name_list = [var_name for var_name, var_val in callers_local_vars
if var_val is var]
if len(name_list) == 1:
names.append(name_list[0])
else:
# Cannot infer name with certainty. arg_# will have to do.
names.append('arg_' + str(n))
# Create the function definition code and execute it
funcname = '_lambdifygenerated'
if _module_present('tensorflow', namespaces):
funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) # type: _EvaluatorPrinter
else:
funcprinter = _EvaluatorPrinter(printer, dummify)
if cse == True:
from sympy.simplify.cse_main import cse as _cse
cses, _expr = _cse(expr, list=False)
elif callable(cse):
cses, _expr = cse(expr)
else:
cses, _expr = (), expr
funcstr = funcprinter.doprint(funcname, iterable_args, _expr, cses=cses)
# Collect the module imports from the code printers.
imp_mod_lines = []
for mod, keys in (getattr(printer, 'module_imports', None) or {}).items():
for k in keys:
if k not in namespace:
ln = "from %s import %s" % (mod, k)
try:
exec(ln, {}, namespace)
except ImportError:
# Tensorflow 2.0 has issues with importing a specific
# function from its submodule.
# https://github.com/tensorflow/tensorflow/issues/33022
ln = "%s = %s.%s" % (k, mod, k)
exec(ln, {}, namespace)
imp_mod_lines.append(ln)
# Provide lambda expression with builtins, and compatible implementation of range
namespace.update({'builtins':builtins, 'range':range})
funclocals = {} # type: tDict[str, Any]
global _lambdify_generated_counter
filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter
_lambdify_generated_counter += 1
c = compile(funcstr, filename, 'exec')
exec(c, namespace, funclocals)
# mtime has to be None or else linecache.checkcache will remove it
linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore
func = funclocals[funcname]
# Apply the docstring
sig = "func({})".format(", ".join(str(i) for i in names))
sig = textwrap.fill(sig, subsequent_indent=' '*8)
expr_str = str(expr)
if len(expr_str) > 78:
expr_str = textwrap.wrap(expr_str, 75)[0] + '...'
func.__doc__ = (
"Created with lambdify. Signature:\n\n"
"{sig}\n\n"
"Expression:\n\n"
"{expr}\n\n"
"Source code:\n\n"
"{src}\n\n"
"Imported modules:\n\n"
"{imp_mods}"
).format(sig=sig, expr=expr_str, src=funcstr, imp_mods='\n'.join(imp_mod_lines))
return func
def _module_present(modname, modlist):
if modname in modlist:
return True
for m in modlist:
if hasattr(m, '__name__') and m.__name__ == modname:
return True
return False
def _get_namespace(m):
"""
This is used by _lambdify to parse its arguments.
"""
if isinstance(m, str):
_import(m)
return MODULES[m][0]
elif isinstance(m, dict):
return m
elif hasattr(m, "__dict__"):
return m.__dict__
else:
raise TypeError("Argument must be either a string, dict or module but it is: %s" % m)
def _recursive_to_string(doprint, arg):
"""Functions in lambdify accept both SymPy types and non-SymPy types such as python
lists and tuples. This method ensures that we only call the doprint method of the
printer with SymPy types (so that the printer safely can use SymPy-methods)."""
from sympy.matrices.common import MatrixOperations
from sympy.core.basic import Basic
if isinstance(arg, (Basic, MatrixOperations)):
return doprint(arg)
elif iterable(arg):
if isinstance(arg, list):
left, right = "[", "]"
elif isinstance(arg, tuple):
left, right = "(", ",)"
else:
raise NotImplementedError("unhandled type: %s, %s" % (type(arg), arg))
return left +', '.join(_recursive_to_string(doprint, e) for e in arg) + right
elif isinstance(arg, str):
return arg
else:
return doprint(arg)
def lambdastr(args, expr, printer=None, dummify=None):
"""
Returns a string that can be evaluated to a lambda function.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.lambdify import lambdastr
>>> lambdastr(x, x**2)
'lambda x: (x**2)'
>>> lambdastr((x,y,z), [z,y,x])
'lambda x,y,z: ([z, y, x])'
Although tuples may not appear as arguments to lambda in Python 3,
lambdastr will create a lambda function that will unpack the original
arguments so that nested arguments can be handled:
>>> lambdastr((x, (y, z)), x + y)
'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])'
"""
# Transforming everything to strings.
from sympy.matrices import DeferredVector
from sympy.core.basic import Basic
from sympy.core.function import (Derivative, Function)
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
if printer is not None:
if inspect.isfunction(printer):
lambdarepr = printer
else:
if inspect.isclass(printer):
lambdarepr = lambda expr: printer().doprint(expr)
else:
lambdarepr = lambda expr: printer.doprint(expr)
else:
#XXX: This has to be done here because of circular imports
from sympy.printing.lambdarepr import lambdarepr
def sub_args(args, dummies_dict):
if isinstance(args, str):
return args
elif isinstance(args, DeferredVector):
return str(args)
elif iterable(args):
dummies = flatten([sub_args(a, dummies_dict) for a in args])
return ",".join(str(a) for a in dummies)
else:
# replace these with Dummy symbols
if isinstance(args, (Function, Symbol, Derivative)):
dummies = Dummy()
dummies_dict.update({args : dummies})
return str(dummies)
else:
return str(args)
def sub_expr(expr, dummies_dict):
expr = sympify(expr)
# dict/tuple are sympified to Basic
if isinstance(expr, Basic):
expr = expr.xreplace(dummies_dict)
# list is not sympified to Basic
elif isinstance(expr, list):
expr = [sub_expr(a, dummies_dict) for a in expr]
return expr
# Transform args
def isiter(l):
return iterable(l, exclude=(str, DeferredVector, NotIterable))
def flat_indexes(iterable):
n = 0
for el in iterable:
if isiter(el):
for ndeep in flat_indexes(el):
yield (n,) + ndeep
else:
yield (n,)
n += 1
if dummify is None:
dummify = any(isinstance(a, Basic) and
a.atoms(Function, Derivative) for a in (
args if isiter(args) else [args]))
if isiter(args) and any(isiter(i) for i in args):
dum_args = [str(Dummy(str(i))) for i in range(len(args))]
indexed_args = ','.join([
dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]])
for ind in flat_indexes(args)])
lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify)
return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args)
dummies_dict = {}
if dummify:
args = sub_args(args, dummies_dict)
else:
if isinstance(args, str):
pass
elif iterable(args, exclude=DeferredVector):
args = ",".join(str(a) for a in args)
# Transform expr
if dummify:
if isinstance(expr, str):
pass
else:
expr = sub_expr(expr, dummies_dict)
expr = _recursive_to_string(lambdarepr, expr)
return "lambda %s: (%s)" % (args, expr)
class _EvaluatorPrinter:
def __init__(self, printer=None, dummify=False):
self._dummify = dummify
#XXX: This has to be done here because of circular imports
from sympy.printing.lambdarepr import LambdaPrinter
if printer is None:
printer = LambdaPrinter()
if inspect.isfunction(printer):
self._exprrepr = printer
else:
if inspect.isclass(printer):
printer = printer()
self._exprrepr = printer.doprint
#if hasattr(printer, '_print_Symbol'):
# symbolrepr = printer._print_Symbol
#if hasattr(printer, '_print_Dummy'):
# dummyrepr = printer._print_Dummy
# Used to print the generated function arguments in a standard way
self._argrepr = LambdaPrinter().doprint
def doprint(self, funcname, args, expr, *, cses=()):
"""
Returns the function definition code as a string.
"""
from sympy.core.symbol import Dummy
funcbody = []
if not iterable(args):
args = [args]
if cses:
subvars, subexprs = zip(*cses)
try:
exprs = expr + list(subexprs)
except TypeError:
try:
exprs = expr + tuple(subexprs)
except TypeError:
expr = [expr]
exprs = expr + list(subexprs)
argstrs, exprs = self._preprocess(args, exprs)
expr, subexprs = exprs[:len(expr)], exprs[len(expr):]
cses = zip(subvars, subexprs)
else:
argstrs, expr = self._preprocess(args, expr)
# Generate argument unpacking and final argument list
funcargs = []
unpackings = []
for argstr in argstrs:
if iterable(argstr):
funcargs.append(self._argrepr(Dummy()))
unpackings.extend(self._print_unpacking(argstr, funcargs[-1]))
else:
funcargs.append(argstr)
funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs))
# Wrap input arguments before unpacking
funcbody.extend(self._print_funcargwrapping(funcargs))
funcbody.extend(unpackings)
for s, e in cses:
if e is None:
funcbody.append('del {}'.format(s))
else:
funcbody.append('{} = {}'.format(s, self._exprrepr(e)))
str_expr = _recursive_to_string(self._exprrepr, expr)
if '\n' in str_expr:
str_expr = '({})'.format(str_expr)
funcbody.append('return {}'.format(str_expr))
funclines = [funcsig]
funclines.extend([' ' + line for line in funcbody])
return '\n'.join(funclines) + '\n'
@classmethod
def _is_safe_ident(cls, ident):
return isinstance(ident, str) and ident.isidentifier() \
and not keyword.iskeyword(ident)
def _preprocess(self, args, expr):
"""Preprocess args, expr to replace arguments that do not map
to valid Python identifiers.
Returns string form of args, and updated expr.
"""
from sympy.core.basic import Basic
from sympy.core.sorting import ordered
from sympy.core.function import (Derivative, Function)
from sympy.core.symbol import Dummy, uniquely_named_symbol
from sympy.matrices import DeferredVector
from sympy.core.expr import Expr
# Args of type Dummy can cause name collisions with args
# of type Symbol. Force dummify of everything in this
# situation.
dummify = self._dummify or any(
isinstance(arg, Dummy) for arg in flatten(args))
argstrs = [None]*len(args)
for arg, i in reversed(list(ordered(zip(args, range(len(args)))))):
if iterable(arg):
s, expr = self._preprocess(arg, expr)
elif isinstance(arg, DeferredVector):
s = str(arg)
elif isinstance(arg, Basic) and arg.is_symbol:
s = self._argrepr(arg)
if dummify or not self._is_safe_ident(s):
dummy = Dummy()
if isinstance(expr, Expr):
dummy = uniquely_named_symbol(
dummy.name, expr, modify=lambda s: '_' + s)
s = self._argrepr(dummy)
expr = self._subexpr(expr, {arg: dummy})
elif dummify or isinstance(arg, (Function, Derivative)):
dummy = Dummy()
s = self._argrepr(dummy)
expr = self._subexpr(expr, {arg: dummy})
else:
s = str(arg)
argstrs[i] = s
return argstrs, expr
def _subexpr(self, expr, dummies_dict):
from sympy.matrices import DeferredVector
from sympy.core.sympify import sympify
expr = sympify(expr)
xreplace = getattr(expr, 'xreplace', None)
if xreplace is not None:
expr = xreplace(dummies_dict)
else:
if isinstance(expr, DeferredVector):
pass
elif isinstance(expr, dict):
k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()]
v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()]
expr = dict(zip(k, v))
elif isinstance(expr, tuple):
expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr)
elif isinstance(expr, list):
expr = [self._subexpr(sympify(a), dummies_dict) for a in expr]
return expr
def _print_funcargwrapping(self, args):
"""Generate argument wrapping code.
args is the argument list of the generated function (strings).
Return value is a list of lines of code that will be inserted at
the beginning of the function definition.
"""
return []
def _print_unpacking(self, unpackto, arg):
"""Generate argument unpacking code.
arg is the function argument to be unpacked (a string), and
unpackto is a list or nested lists of the variable names (strings) to
unpack to.
"""
def unpack_lhs(lvalues):
return '[{}]'.format(', '.join(
unpack_lhs(val) if iterable(val) else val for val in lvalues))
return ['{} = {}'.format(unpack_lhs(unpackto), arg)]
class _TensorflowEvaluatorPrinter(_EvaluatorPrinter):
def _print_unpacking(self, lvalues, rvalue):
"""Generate argument unpacking code.
This method is used when the input value is not interable,
but can be indexed (see issue #14655).
"""
def flat_indexes(elems):
n = 0
for el in elems:
if iterable(el):
for ndeep in flat_indexes(el):
yield (n,) + ndeep
else:
yield (n,)
n += 1
indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind)))
for ind in flat_indexes(lvalues))
return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)]
def _imp_namespace(expr, namespace=None):
""" Return namespace dict with function implementations
We need to search for functions in anything that can be thrown at
us - that is - anything that could be passed as ``expr``. Examples
include SymPy expressions, as well as tuples, lists and dicts that may
contain SymPy expressions.
Parameters
----------
expr : object
Something passed to lambdify, that will generate valid code from
``str(expr)``.
namespace : None or mapping
Namespace to fill. None results in new empty dict
Returns
-------
namespace : dict
dict with keys of implemented function names within ``expr`` and
corresponding values being the numerical implementation of
function
Examples
========
>>> from sympy.abc import x
>>> from sympy.utilities.lambdify import implemented_function, _imp_namespace
>>> from sympy import Function
>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> g = implemented_function(Function('g'), lambda x: x*10)
>>> namespace = _imp_namespace(f(g(x)))
>>> sorted(namespace.keys())
['f', 'g']
"""
# Delayed import to avoid circular imports
from sympy.core.function import FunctionClass
if namespace is None:
namespace = {}
# tuples, lists, dicts are valid expressions
if is_sequence(expr):
for arg in expr:
_imp_namespace(arg, namespace)
return namespace
elif isinstance(expr, dict):
for key, val in expr.items():
# functions can be in dictionary keys
_imp_namespace(key, namespace)
_imp_namespace(val, namespace)
return namespace
# SymPy expressions may be Functions themselves
func = getattr(expr, 'func', None)
if isinstance(func, FunctionClass):
imp = getattr(func, '_imp_', None)
if imp is not None:
name = expr.func.__name__
if name in namespace and namespace[name] != imp:
raise ValueError('We found more than one '
'implementation with name '
'"%s"' % name)
namespace[name] = imp
# and / or they may take Functions as arguments
if hasattr(expr, 'args'):
for arg in expr.args:
_imp_namespace(arg, namespace)
return namespace
def implemented_function(symfunc, implementation):
""" Add numerical ``implementation`` to function ``symfunc``.
``symfunc`` can be an ``UndefinedFunction`` instance, or a name string.
In the latter case we create an ``UndefinedFunction`` instance with that
name.
Be aware that this is a quick workaround, not a general method to create
special symbolic functions. If you want to create a symbolic function to be
used by all the machinery of SymPy you should subclass the ``Function``
class.
Parameters
----------
symfunc : ``str`` or ``UndefinedFunction`` instance
If ``str``, then create new ``UndefinedFunction`` with this as
name. If ``symfunc`` is an Undefined function, create a new function
with the same name and the implemented function attached.
implementation : callable
numerical implementation to be called by ``evalf()`` or ``lambdify``
Returns
-------
afunc : sympy.FunctionClass instance
function with attached implementation
Examples
========
>>> from sympy.abc import x
>>> from sympy.utilities.lambdify import implemented_function
>>> from sympy import lambdify
>>> f = implemented_function('f', lambda x: x+1)
>>> lam_f = lambdify(x, f(x))
>>> lam_f(4)
5
"""
# Delayed import to avoid circular imports
from sympy.core.function import UndefinedFunction
# if name, create function to hold implementation
kwargs = {}
if isinstance(symfunc, UndefinedFunction):
kwargs = symfunc._kwargs
symfunc = symfunc.__name__
if isinstance(symfunc, str):
# Keyword arguments to UndefinedFunction are added as attributes to
# the created class.
symfunc = UndefinedFunction(
symfunc, _imp_=staticmethod(implementation), **kwargs)
elif not isinstance(symfunc, UndefinedFunction):
raise ValueError(filldedent('''
symfunc should be either a string or
an UndefinedFunction instance.'''))
return symfunc
|
f8d4217fe45be611d2878aa3f9a57058ce30b9a60c60ad07005261dfc281f600 | from collections import defaultdict, OrderedDict
from itertools import (
chain, combinations, combinations_with_replacement, cycle, islice,
permutations, product
)
# For backwards compatibility
from itertools import product as cartes # noqa: F401
from operator import gt
# this is the logical location of these functions
from sympy.utilities.enumerative import (
multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser)
from sympy.utilities.misc import as_int
from sympy.utilities.decorator import deprecated
def is_palindromic(s, i=0, j=None):
"""
Return True if the sequence is the same from left to right as it
is from right to left in the whole sequence (default) or in the
Python slice ``s[i: j]``; else False.
Examples
========
>>> from sympy.utilities.iterables import is_palindromic
>>> is_palindromic([1, 0, 1])
True
>>> is_palindromic('abcbb')
False
>>> is_palindromic('abcbb', 1)
False
Normal Python slicing is performed in place so there is no need to
create a slice of the sequence for testing:
>>> is_palindromic('abcbb', 1, -1)
True
>>> is_palindromic('abcbb', -4, -1)
True
See Also
========
sympy.ntheory.digits.is_palindromic: tests integers
"""
i, j, _ = slice(i, j).indices(len(s))
m = (j - i)//2
# if length is odd, middle element will be ignored
return all(s[i + k] == s[j - 1 - k] for k in range(m))
def flatten(iterable, levels=None, cls=None): # noqa: F811
"""
Recursively denest iterable containers.
>>> from sympy import flatten
>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten([1, 2, [3]])
[1, 2, 3]
>>> flatten([1, [2, 3], [4, 5]])
[1, 2, 3, 4, 5]
>>> flatten([1.0, 2, (1, None)])
[1.0, 2, 1, None]
If you want to denest only a specified number of levels of
nested containers, then set ``levels`` flag to the desired
number of levels::
>>> ls = [[(-2, -1), (1, 2)], [(0, 0)]]
>>> flatten(ls, levels=1)
[(-2, -1), (1, 2), (0, 0)]
If cls argument is specified, it will only flatten instances of that
class, for example:
>>> from sympy import Basic, S
>>> class MyOp(Basic):
... pass
...
>>> flatten([MyOp(S(1), MyOp(S(2), S(3)))], cls=MyOp)
[1, 2, 3]
adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
"""
from sympy.tensor.array import NDimArray
if levels is not None:
if not levels:
return iterable
elif levels > 0:
levels -= 1
else:
raise ValueError(
"expected non-negative number of levels, got %s" % levels)
if cls is None:
reducible = lambda x: is_sequence(x, set)
else:
reducible = lambda x: isinstance(x, cls)
result = []
for el in iterable:
if reducible(el):
if hasattr(el, 'args') and not isinstance(el, NDimArray):
el = el.args
result.extend(flatten(el, levels=levels, cls=cls))
else:
result.append(el)
return result
def unflatten(iter, n=2):
"""Group ``iter`` into tuples of length ``n``. Raise an error if
the length of ``iter`` is not a multiple of ``n``.
"""
if n < 1 or len(iter) % n:
raise ValueError('iter length is not a multiple of %i' % n)
return list(zip(*(iter[i::n] for i in range(n))))
def reshape(seq, how):
"""Reshape the sequence according to the template in ``how``.
Examples
========
>>> from sympy.utilities import reshape
>>> seq = list(range(1, 9))
>>> reshape(seq, [4]) # lists of 4
[[1, 2, 3, 4], [5, 6, 7, 8]]
>>> reshape(seq, (4,)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, 2)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, [2])) # (i, i, [i, i])
[(1, 2, [3, 4]), (5, 6, [7, 8])]
>>> reshape(seq, ((2,), [2])) # etc....
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
>>> reshape(seq, (1, [2], 1))
[(1, [2, 3], 4), (5, [6, 7], 8)]
>>> reshape(tuple(seq), ([[1], 1, (2,)],))
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
>>> reshape(tuple(seq), ([1], 1, (2,)))
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
>>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)])
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
"""
m = sum(flatten(how))
n, rem = divmod(len(seq), m)
if m < 0 or rem:
raise ValueError('template must sum to positive number '
'that divides the length of the sequence')
i = 0
container = type(how)
rv = [None]*n
for k in range(len(rv)):
_rv = []
for hi in how:
if isinstance(hi, int):
_rv.extend(seq[i: i + hi])
i += hi
else:
n = sum(flatten(hi))
hi_type = type(hi)
_rv.append(hi_type(reshape(seq[i: i + n], hi)[0]))
i += n
rv[k] = container(_rv)
return type(seq)(rv)
def group(seq, multiple=True):
"""
Splits a sequence into a list of lists of equal, adjacent elements.
Examples
========
>>> from sympy import group
>>> group([1, 1, 1, 2, 2, 3])
[[1, 1, 1], [2, 2], [3]]
>>> group([1, 1, 1, 2, 2, 3], multiple=False)
[(1, 3), (2, 2), (3, 1)]
>>> group([1, 1, 3, 2, 2, 1], multiple=False)
[(1, 2), (3, 1), (2, 2), (1, 1)]
See Also
========
multiset
"""
if not seq:
return []
current, groups = [seq[0]], []
for elem in seq[1:]:
if elem == current[-1]:
current.append(elem)
else:
groups.append(current)
current = [elem]
groups.append(current)
if multiple:
return groups
for i, current in enumerate(groups):
groups[i] = (current[0], len(current))
return groups
def _iproduct2(iterable1, iterable2):
'''Cartesian product of two possibly infinite iterables'''
it1 = iter(iterable1)
it2 = iter(iterable2)
elems1 = []
elems2 = []
sentinel = object()
def append(it, elems):
e = next(it, sentinel)
if e is not sentinel:
elems.append(e)
n = 0
append(it1, elems1)
append(it2, elems2)
while n <= len(elems1) + len(elems2):
for m in range(n-len(elems1)+1, len(elems2)):
yield (elems1[n-m], elems2[m])
n += 1
append(it1, elems1)
append(it2, elems2)
def iproduct(*iterables):
'''
Cartesian product of iterables.
Generator of the Cartesian product of iterables. This is analogous to
itertools.product except that it works with infinite iterables and will
yield any item from the infinite product eventually.
Examples
========
>>> from sympy.utilities.iterables import iproduct
>>> sorted(iproduct([1,2], [3,4]))
[(1, 3), (1, 4), (2, 3), (2, 4)]
With an infinite iterator:
>>> from sympy import S
>>> (3,) in iproduct(S.Integers)
True
>>> (3, 4) in iproduct(S.Integers, S.Integers)
True
.. seealso::
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
'''
if len(iterables) == 0:
yield ()
return
elif len(iterables) == 1:
for e in iterables[0]:
yield (e,)
elif len(iterables) == 2:
yield from _iproduct2(*iterables)
else:
first, others = iterables[0], iterables[1:]
for ef, eo in _iproduct2(first, iproduct(*others)):
yield (ef,) + eo
def multiset(seq):
"""Return the hashable sequence in multiset form with values being the
multiplicity of the item in the sequence.
Examples
========
>>> from sympy.utilities.iterables import multiset
>>> multiset('mississippi')
{'i': 4, 'm': 1, 'p': 2, 's': 4}
See Also
========
group
"""
rv = defaultdict(int)
for s in seq:
rv[s] += 1
return dict(rv)
def ibin(n, bits=None, str=False):
"""Return a list of length ``bits`` corresponding to the binary value
of ``n`` with small bits to the right (last). If bits is omitted, the
length will be the number required to represent ``n``. If the bits are
desired in reversed order, use the ``[::-1]`` slice of the returned list.
If a sequence of all bits-length lists starting from ``[0, 0,..., 0]``
through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g.
``'all'``.
If the bit *string* is desired pass ``str=True``.
Examples
========
>>> from sympy.utilities.iterables import ibin
>>> ibin(2)
[1, 0]
>>> ibin(2, 4)
[0, 0, 1, 0]
If all lists corresponding to 0 to 2**n - 1, pass a non-integer
for bits:
>>> bits = 2
>>> for i in ibin(2, 'all'):
... print(i)
(0, 0)
(0, 1)
(1, 0)
(1, 1)
If a bit string is desired of a given length, use str=True:
>>> n = 123
>>> bits = 10
>>> ibin(n, bits, str=True)
'0001111011'
>>> ibin(n, bits, str=True)[::-1] # small bits left
'1101111000'
>>> list(ibin(3, 'all', str=True))
['000', '001', '010', '011', '100', '101', '110', '111']
"""
if n < 0:
raise ValueError("negative numbers are not allowed")
n = as_int(n)
if bits is None:
bits = 0
else:
try:
bits = as_int(bits)
except ValueError:
bits = -1
else:
if n.bit_length() > bits:
raise ValueError(
"`bits` must be >= {}".format(n.bit_length()))
if not str:
if bits >= 0:
return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")]
else:
return variations(list(range(2)), n, repetition=True)
else:
if bits >= 0:
return bin(n)[2:].rjust(bits, "0")
else:
return (bin(i)[2:].rjust(n, "0") for i in range(2**n))
def variations(seq, n, repetition=False):
r"""Returns an iterator over the n-sized variations of ``seq`` (size N).
``repetition`` controls whether items in ``seq`` can appear more than once;
Examples
========
``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without
repetition of ``seq``'s elements:
>>> from sympy import variations
>>> list(variations([1, 2], 2))
[(1, 2), (2, 1)]
``variations(seq, n, True)`` will return the `N^n` permutations obtained
by allowing repetition of elements:
>>> list(variations([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 1), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(variations([0, 1], 3, repetition=False))
[]
>>> list(variations([0, 1], 3, repetition=True))[:4]
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]
.. seealso::
`itertools.permutations <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_,
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
"""
if not repetition:
seq = tuple(seq)
if len(seq) < n:
return iter(()) # 0 length iterator
return permutations(seq, n)
else:
if n == 0:
return iter(((),)) # yields 1 empty tuple
else:
return product(seq, repeat=n)
def subsets(seq, k=None, repetition=False):
r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``.
A `k`-subset of an `n`-element set is any subset of length exactly `k`. The
number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``,
whereas there are `2^n` subsets all together. If `k` is ``None`` then all
`2^n` subsets will be returned from shortest to longest.
Examples
========
>>> from sympy import subsets
``subsets(seq, k)`` will return the `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations)
without repetition, i.e. once an item has been removed, it can no
longer be "taken":
>>> list(subsets([1, 2], 2))
[(1, 2)]
>>> list(subsets([1, 2]))
[(), (1,), (2,), (1, 2)]
>>> list(subsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
``subsets(seq, k, repetition=True)`` will return the `\frac{(n - 1 + k)!}{k!(n - 1)!}`
combinations *with* repetition:
>>> list(subsets([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(subsets([0, 1], 3, repetition=False))
[]
>>> list(subsets([0, 1], 3, repetition=True))
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]
"""
if k is None:
if not repetition:
return chain.from_iterable((combinations(seq, k)
for k in range(len(seq) + 1)))
else:
return chain.from_iterable((combinations_with_replacement(seq, k)
for k in range(len(seq) + 1)))
else:
if not repetition:
return combinations(seq, k)
else:
return combinations_with_replacement(seq, k)
def filter_symbols(iterator, exclude):
"""
Only yield elements from `iterator` that do not occur in `exclude`.
Parameters
==========
iterator : iterable
iterator to take elements from
exclude : iterable
elements to exclude
Returns
=======
iterator : iterator
filtered iterator
"""
exclude = set(exclude)
for s in iterator:
if s not in exclude:
yield s
def numbered_symbols(prefix='x', cls=None, start=0, exclude=(), *args, **assumptions):
"""
Generate an infinite stream of Symbols consisting of a prefix and
increasing subscripts provided that they do not occur in ``exclude``.
Parameters
==========
prefix : str, optional
The prefix to use. By default, this function will generate symbols of
the form "x0", "x1", etc.
cls : class, optional
The class to use. By default, it uses ``Symbol``, but you can also use ``Wild`` or ``Dummy``.
start : int, optional
The start number. By default, it is 0.
Returns
=======
sym : Symbol
The subscripted symbols.
"""
exclude = set(exclude or [])
if cls is None:
# We can't just make the default cls=Symbol because it isn't
# imported yet.
from sympy.core import Symbol
cls = Symbol
while True:
name = '%s%s' % (prefix, start)
s = cls(name, *args, **assumptions)
if s not in exclude:
yield s
start += 1
def capture(func):
"""Return the printed output of func().
``func`` should be a function without arguments that produces output with
print statements.
>>> from sympy.utilities.iterables import capture
>>> from sympy import pprint
>>> from sympy.abc import x
>>> def foo():
... print('hello world!')
...
>>> 'hello' in capture(foo) # foo, not foo()
True
>>> capture(lambda: pprint(2/x))
'2\\n-\\nx\\n'
"""
from io import StringIO
import sys
stdout = sys.stdout
sys.stdout = file = StringIO()
try:
func()
finally:
sys.stdout = stdout
return file.getvalue()
def sift(seq, keyfunc, binary=False):
"""
Sift the sequence, ``seq`` according to ``keyfunc``.
Returns
=======
When ``binary`` is ``False`` (default), the output is a dictionary
where elements of ``seq`` are stored in a list keyed to the value
of keyfunc for that element. If ``binary`` is True then a tuple
with lists ``T`` and ``F`` are returned where ``T`` is a list
containing elements of seq for which ``keyfunc`` was ``True`` and
``F`` containing those elements for which ``keyfunc`` was ``False``;
a ValueError is raised if the ``keyfunc`` is not binary.
Examples
========
>>> from sympy.utilities import sift
>>> from sympy.abc import x, y
>>> from sympy import sqrt, exp, pi, Tuple
>>> sift(range(5), lambda x: x % 2)
{0: [0, 2, 4], 1: [1, 3]}
sift() returns a defaultdict() object, so any key that has no matches will
give [].
>>> sift([x], lambda x: x.is_commutative)
{True: [x]}
>>> _[False]
[]
Sometimes you will not know how many keys you will get:
>>> sift([sqrt(x), exp(x), (y**x)**2],
... lambda x: x.as_base_exp()[0])
{E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]}
Sometimes you expect the results to be binary; the
results can be unpacked by setting ``binary`` to True:
>>> sift(range(4), lambda x: x % 2, binary=True)
([1, 3], [0, 2])
>>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True)
([1], [pi])
A ValueError is raised if the predicate was not actually binary
(which is a good test for the logic where sifting is used and
binary results were expected):
>>> unknown = exp(1) - pi # the rationality of this is unknown
>>> args = Tuple(1, pi, unknown)
>>> sift(args, lambda x: x.is_rational, binary=True)
Traceback (most recent call last):
...
ValueError: keyfunc gave non-binary output
The non-binary sifting shows that there were 3 keys generated:
>>> set(sift(args, lambda x: x.is_rational).keys())
{None, False, True}
If you need to sort the sifted items it might be better to use
``ordered`` which can economically apply multiple sort keys
to a sequence while sorting.
See Also
========
ordered
"""
if not binary:
m = defaultdict(list)
for i in seq:
m[keyfunc(i)].append(i)
return m
sift = F, T = [], []
for i in seq:
try:
sift[keyfunc(i)].append(i)
except (IndexError, TypeError):
raise ValueError('keyfunc gave non-binary output')
return T, F
def take(iter, n):
"""Return ``n`` items from ``iter`` iterator. """
return [ value for _, value in zip(range(n), iter) ]
def dict_merge(*dicts):
"""Merge dictionaries into a single dictionary. """
merged = {}
for dict in dicts:
merged.update(dict)
return merged
def common_prefix(*seqs):
"""Return the subsequence that is a common start of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_prefix
>>> common_prefix(list(range(3)))
[0, 1, 2]
>>> common_prefix(list(range(3)), list(range(4)))
[0, 1, 2]
>>> common_prefix([1, 2, 3], [1, 2, 5])
[1, 2]
>>> common_prefix([1, 2, 3], [1, 3, 5])
[1]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(min(len(s) for s in seqs)):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i += 1
return seqs[0][:i]
def common_suffix(*seqs):
"""Return the subsequence that is a common ending of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_suffix
>>> common_suffix(list(range(3)))
[0, 1, 2]
>>> common_suffix(list(range(3)), list(range(4)))
[]
>>> common_suffix([1, 2, 3], [9, 2, 3])
[2, 3]
>>> common_suffix([1, 2, 3], [9, 7, 3])
[3]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(-1, -min(len(s) for s in seqs) - 1, -1):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i -= 1
if i == -1:
return []
else:
return seqs[0][i + 1:]
def prefixes(seq):
"""
Generate all prefixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import prefixes
>>> list(prefixes([1,2,3,4]))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[:i + 1]
def postfixes(seq):
"""
Generate all postfixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import postfixes
>>> list(postfixes([1,2,3,4]))
[[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[n - i - 1:]
def topological_sort(graph, key=None):
r"""
Topological sort of graph's vertices.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph to be sorted topologically.
key : callable[T] (optional)
Ordering key for vertices on the same level. By default the natural
(e.g. lexicographic) ordering is used (in this case the base type
must implement ordering relations).
Examples
========
Consider a graph::
+---+ +---+ +---+
| 7 |\ | 5 | | 3 |
+---+ \ +---+ +---+
| _\___/ ____ _/ |
| / \___/ \ / |
V V V V |
+----+ +---+ |
| 11 | | 8 | |
+----+ +---+ |
| | \____ ___/ _ |
| \ \ / / \ |
V \ V V / V V
+---+ \ +---+ | +----+
| 2 | | | 9 | | | 10 |
+---+ | +---+ | +----+
\________/
where vertices are integers. This graph can be encoded using
elementary Python's data structures as follows::
>>> V = [2, 3, 5, 7, 8, 9, 10, 11]
>>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
... (11, 2), (11, 9), (11, 10), (8, 9)]
To compute a topological sort for graph ``(V, E)`` issue::
>>> from sympy.utilities.iterables import topological_sort
>>> topological_sort((V, E))
[3, 5, 7, 8, 11, 2, 9, 10]
If specific tie breaking approach is needed, use ``key`` parameter::
>>> topological_sort((V, E), key=lambda v: -v)
[7, 5, 11, 3, 10, 8, 9, 2]
Only acyclic graphs can be sorted. If the input graph has a cycle,
then ``ValueError`` will be raised::
>>> topological_sort((V, E + [(10, 7)]))
Traceback (most recent call last):
...
ValueError: cycle detected
References
==========
.. [1] https://en.wikipedia.org/wiki/Topological_sorting
"""
V, E = graph
L = []
S = set(V)
E = list(E)
for v, u in E:
S.discard(u)
if key is None:
key = lambda value: value
S = sorted(S, key=key, reverse=True)
while S:
node = S.pop()
L.append(node)
for u, v in list(E):
if u == node:
E.remove((u, v))
for _u, _v in E:
if v == _v:
break
else:
kv = key(v)
for i, s in enumerate(S):
ks = key(s)
if kv > ks:
S.insert(i, v)
break
else:
S.append(v)
if E:
raise ValueError("cycle detected")
else:
return L
def strongly_connected_components(G):
r"""
Strongly connected components of a directed graph in reverse topological
order.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose strongly connected components are to be found.
Examples
========
Consider a directed graph (in dot notation)::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
.. graphviz::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
where vertices are the letters A, B, C and D. This graph can be encoded
using Python's elementary data structures as follows::
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')]
The strongly connected components of this graph can be computed as
>>> from sympy.utilities.iterables import strongly_connected_components
>>> strongly_connected_components((V, E))
[['D'], ['B', 'C'], ['A']]
This also gives the components in reverse topological order.
Since the subgraph containing B and C has a cycle they must be together in
a strongly connected component. A and D are connected to the rest of the
graph but not in a cyclic manner so they appear as their own strongly
connected components.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the strongly connected
components in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Strongly_connected_component
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.connected_components
"""
# Map from a vertex to its neighbours
V, E = G
Gmap = {vi: [] for vi in V}
for v1, v2 in E:
Gmap[v1].append(v2)
return _strongly_connected_components(V, Gmap)
def _strongly_connected_components(V, Gmap):
"""More efficient internal routine for strongly_connected_components"""
#
# Here V is an iterable of vertices and Gmap is a dict mapping each vertex
# to a list of neighbours e.g.:
#
# V = [0, 1, 2, 3]
# Gmap = {0: [2, 3], 1: [0]}
#
# For a large graph these data structures can often be created more
# efficiently then those expected by strongly_connected_components() which
# in this case would be
#
# V = [0, 1, 2, 3]
# Gmap = [(0, 2), (0, 3), (1, 0)]
#
# XXX: Maybe this should be the recommended function to use instead...
#
# Non-recursive Tarjan's algorithm:
lowlink = {}
indices = {}
stack = OrderedDict()
callstack = []
components = []
nomore = object()
def start(v):
index = len(stack)
indices[v] = lowlink[v] = index
stack[v] = None
callstack.append((v, iter(Gmap[v])))
def finish(v1):
# Finished a component?
if lowlink[v1] == indices[v1]:
component = [stack.popitem()[0]]
while component[-1] is not v1:
component.append(stack.popitem()[0])
components.append(component[::-1])
v2, _ = callstack.pop()
if callstack:
v1, _ = callstack[-1]
lowlink[v1] = min(lowlink[v1], lowlink[v2])
for v in V:
if v in indices:
continue
start(v)
while callstack:
v1, it1 = callstack[-1]
v2 = next(it1, nomore)
# Finished children of v1?
if v2 is nomore:
finish(v1)
# Recurse on v2
elif v2 not in indices:
start(v2)
elif v2 in stack:
lowlink[v1] = min(lowlink[v1], indices[v2])
# Reverse topological sort order:
return components
def connected_components(G):
r"""
Connected components of an undirected graph or weakly connected components
of a directed graph.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose connected components are to be found.
Examples
========
Given an undirected graph::
graph {
A -- B
C -- D
}
.. graphviz::
graph {
A -- B
C -- D
}
We can find the connected components using this function if we include
each edge in both directions::
>>> from sympy.utilities.iterables import connected_components
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')]
>>> connected_components((V, E))
[['A', 'B'], ['C', 'D']]
The weakly connected components of a directed graph can found the same
way.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the connected components
in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.strongly_connected_components
"""
# Duplicate edges both ways so that the graph is effectively undirected
# and return the strongly connected components:
V, E = G
E_undirected = []
for v1, v2 in E:
E_undirected.extend([(v1, v2), (v2, v1)])
return strongly_connected_components((V, E_undirected))
def rotate_left(x, y):
"""
Left rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_left
>>> a = [0, 1, 2]
>>> rotate_left(a, 1)
[1, 2, 0]
"""
if len(x) == 0:
return []
y = y % len(x)
return x[y:] + x[:y]
def rotate_right(x, y):
"""
Right rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_right
>>> a = [0, 1, 2]
>>> rotate_right(a, 1)
[2, 0, 1]
"""
if len(x) == 0:
return []
y = len(x) - y % len(x)
return x[y:] + x[:y]
def least_rotation(x, key=None):
'''
Returns the number of steps of left rotation required to
obtain lexicographically minimal string/list/tuple, etc.
Examples
========
>>> from sympy.utilities.iterables import least_rotation, rotate_left
>>> a = [3, 1, 5, 1, 2]
>>> least_rotation(a)
3
>>> rotate_left(a, _)
[1, 2, 3, 1, 5]
References
==========
.. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
'''
from sympy.functions.elementary.miscellaneous import Id
if key is None: key = Id
S = x + x # Concatenate string to it self to avoid modular arithmetic
f = [-1] * len(S) # Failure function
k = 0 # Least rotation of string found so far
for j in range(1,len(S)):
sj = S[j]
i = f[j-k-1]
while i != -1 and sj != S[k+i+1]:
if key(sj) < key(S[k+i+1]):
k = j-i-1
i = f[i]
if sj != S[k+i+1]:
if key(sj) < key(S[k]):
k = j
f[j-k] = -1
else:
f[j-k] = i+1
return k
def multiset_combinations(m, n, g=None):
"""
Return the unique combinations of size ``n`` from multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_combinations
>>> from itertools import combinations
>>> [''.join(i) for i in multiset_combinations('baby', 3)]
['abb', 'aby', 'bby']
>>> def count(f, s): return len(list(f(s, 3)))
The number of combinations depends on the number of letters; the
number of unique combinations depends on how the letters are
repeated.
>>> s1 = 'abracadabra'
>>> s2 = 'banana tree'
>>> count(combinations, s1), count(multiset_combinations, s1)
(165, 23)
>>> count(combinations, s2), count(multiset_combinations, s2)
(165, 54)
"""
from sympy.core.sorting import ordered
if g is None:
if isinstance(m, dict):
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
N = sum(m.values())
if n > N:
return
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(m)
N = len(m)
if n > N:
return
try:
m = multiset(m)
g = [(k, m[k]) for k in ordered(m)]
except TypeError:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
else:
# not checking counts since g is intended for internal use
N = sum(v for k, v in g)
if n > N or not n:
yield []
else:
for i, (k, v) in enumerate(g):
if v >= n:
yield [k]*n
v = n - 1
for v in range(min(n, v), 0, -1):
for j in multiset_combinations(None, n - v, g[i + 1:]):
rv = [k]*v + j
if len(rv) == n:
yield rv
def multiset_permutations(m, size=None, g=None):
"""
Return the unique permutations of multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_permutations
>>> from sympy import factorial
>>> [''.join(i) for i in multiset_permutations('aab')]
['aab', 'aba', 'baa']
>>> factorial(len('banana'))
720
>>> len(list(multiset_permutations('banana')))
60
"""
from sympy.core.sorting import ordered
if g is None:
if isinstance(m, dict):
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
do = [gi for gi in g if gi[1] > 0]
SUM = sum([gi[1] for gi in do])
if not do or size is not None and (size > SUM or size < 1):
if not do and size is None or size == 0:
yield []
return
elif size == 1:
for k, v in do:
yield [k]
elif len(do) == 1:
k, v = do[0]
v = v if size is None else (size if size <= v else 0)
yield [k for i in range(v)]
elif all(v == 1 for k, v in do):
for p in permutations([k for k, v in do], size):
yield list(p)
else:
size = size if size is not None else SUM
for i, (k, v) in enumerate(do):
do[i][1] -= 1
for j in multiset_permutations(None, size - 1, do):
if j:
yield [k] + j
do[i][1] += 1
def _partition(seq, vector, m=None):
"""
Return the partition of seq as specified by the partition vector.
Examples
========
>>> from sympy.utilities.iterables import _partition
>>> _partition('abcde', [1, 0, 1, 2, 0])
[['b', 'e'], ['a', 'c'], ['d']]
Specifying the number of bins in the partition is optional:
>>> _partition('abcde', [1, 0, 1, 2, 0], 3)
[['b', 'e'], ['a', 'c'], ['d']]
The output of _set_partitions can be passed as follows:
>>> output = (3, [1, 0, 1, 2, 0])
>>> _partition('abcde', *output)
[['b', 'e'], ['a', 'c'], ['d']]
See Also
========
combinatorics.partitions.Partition.from_rgs
"""
if m is None:
m = max(vector) + 1
elif isinstance(vector, int): # entered as m, vector
vector, m = m, vector
p = [[] for i in range(m)]
for i, v in enumerate(vector):
p[v].append(seq[i])
return p
def _set_partitions(n):
"""Cycle through all partions of n elements, yielding the
current number of partitions, ``m``, and a mutable list, ``q``
such that ``element[i]`` is in part ``q[i]`` of the partition.
NOTE: ``q`` is modified in place and generally should not be changed
between function calls.
Examples
========
>>> from sympy.utilities.iterables import _set_partitions, _partition
>>> for m, q in _set_partitions(3):
... print('%s %s %s' % (m, q, _partition('abc', q, m)))
1 [0, 0, 0] [['a', 'b', 'c']]
2 [0, 0, 1] [['a', 'b'], ['c']]
2 [0, 1, 0] [['a', 'c'], ['b']]
2 [0, 1, 1] [['a'], ['b', 'c']]
3 [0, 1, 2] [['a'], ['b'], ['c']]
Notes
=====
This algorithm is similar to, and solves the same problem as,
Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer
Programming. Knuth uses the term "restricted growth string" where
this code refers to a "partition vector". In each case, the meaning is
the same: the value in the ith element of the vector specifies to
which part the ith set element is to be assigned.
At the lowest level, this code implements an n-digit big-endian
counter (stored in the array q) which is incremented (with carries) to
get the next partition in the sequence. A special twist is that a
digit is constrained to be at most one greater than the maximum of all
the digits to the left of it. The array p maintains this maximum, so
that the code can efficiently decide when a digit can be incremented
in place or whether it needs to be reset to 0 and trigger a carry to
the next digit. The enumeration starts with all the digits 0 (which
corresponds to all the set elements being assigned to the same 0th
part), and ends with 0123...n, which corresponds to each set element
being assigned to a different, singleton, part.
This routine was rewritten to use 0-based lists while trying to
preserve the beauty and efficiency of the original algorithm.
References
==========
.. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms,
2nd Ed, p 91, algorithm "nexequ". Available online from
https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed
November 17, 2012).
"""
p = [0]*n
q = [0]*n
nc = 1
yield nc, q
while nc != n:
m = n
while 1:
m -= 1
i = q[m]
if p[i] != 1:
break
q[m] = 0
i += 1
q[m] = i
m += 1
nc += m - n
p[0] += n - m
if i == nc:
p[nc] = 0
nc += 1
p[i - 1] -= 1
p[i] += 1
yield nc, q
def multiset_partitions(multiset, m=None):
"""
Return unique partitions of the given multiset (in list form).
If ``m`` is None, all multisets will be returned, otherwise only
partitions with ``m`` parts will be returned.
If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
will be supplied.
Examples
========
>>> from sympy.utilities.iterables import multiset_partitions
>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
Only unique partitions are returned and these will be returned in a
canonical order regardless of the order of the input:
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) ==
... list(multiset_partitions(sorted(a))))
True
If m is omitted then all partitions will be returned:
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
Counting
========
The number of partitions of a set is given by the bell number:
>>> from sympy import bell
>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
The number of partitions of length k from a set of size n is given by the
Stirling Number of the 2nd kind:
>>> from sympy.functions.combinatorial.numbers import stirling
>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
These comments on counting apply to *sets*, not multisets.
Notes
=====
When all the elements are the same in the multiset, the order
of the returned partitions is determined by the ``partitions``
routine. If one is counting partitions then it is better to use
the ``nT`` function.
See Also
========
partitions
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
sympy.functions.combinatorial.numbers.nT
"""
# This function looks at the supplied input and dispatches to
# several special-case routines as they apply.
if isinstance(multiset, int):
n = multiset
if m and m > n:
return
multiset = list(range(n))
if m == 1:
yield [multiset[:]]
return
# If m is not None, it can sometimes be faster to use
# MultisetPartitionTraverser.enum_range() even for inputs
# which are sets. Since the _set_partitions code is quite
# fast, this is only advantageous when the overall set
# partitions outnumber those with the desired number of parts
# by a large factor. (At least 60.) Such a switch is not
# currently implemented.
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(multiset[i])
yield rv
return
if len(multiset) == 1 and isinstance(multiset, str):
multiset = [multiset]
if not has_variety(multiset):
# Only one component, repeated n times. The resulting
# partitions correspond to partitions of integer n.
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
x = multiset[:1]
for size, p in partitions(n, m, size=True):
if m is None or size == m:
rv = []
for k in sorted(p):
rv.extend([x*k]*p[k])
yield rv
else:
from sympy.core.sorting import ordered
multiset = list(ordered(multiset))
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
# Split the information of the multiset into two lists -
# one of the elements themselves, and one (of the same length)
# giving the number of repeats for the corresponding element.
elements, multiplicities = zip(*group(multiset, False))
if len(elements) < len(multiset):
# General case - multiset with more than one distinct element
# and at least one element repeated more than once.
if m:
mpt = MultisetPartitionTraverser()
for state in mpt.enum_range(multiplicities, m-1, m):
yield list_visitor(state, elements)
else:
for state in multiset_partitions_taocp(multiplicities):
yield list_visitor(state, elements)
else:
# Set partitions case - no repeated elements. Pretty much
# same as int argument case above, with same possible, but
# currently unimplemented optimization for some cases when
# m is not None
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(i)
yield [[multiset[j] for j in i] for i in rv]
def partitions(n, m=None, k=None, size=False):
"""Generate all partitions of positive integer, n.
Parameters
==========
m : integer (default gives partitions of all sizes)
limits number of parts in partition (mnemonic: m, maximum parts)
k : integer (default gives partitions number from 1 through n)
limits the numbers that are kept in the partition (mnemonic: k, keys)
size : bool (default False, only partition is returned)
when ``True`` then (M, P) is returned where M is the sum of the
multiplicities and P is the generated partition.
Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, "4: one of them".
Examples
========
>>> from sympy.utilities.iterables import partitions
The numbers appearing in the partition (the key of the returned dict)
are limited with k:
>>> for p in partitions(6, k=2): # doctest: +SKIP
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
The maximum number of parts in the partition (the sum of the values in
the returned dict) are limited with m (default value, None, gives
partitions from 1 through n):
>>> for p in partitions(6, m=2): # doctest: +SKIP
... print(p)
...
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
References
==========
.. [1] modified from Tim Peter's version to allow for k and m values:
http://code.activestate.com/recipes/218332-generator-for-integer-partitions/
See Also
========
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
"""
if (n <= 0 or
m is not None and m < 1 or
k is not None and k < 1 or
m and k and m*k < n):
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
if size:
yield 0, {}
else:
yield {}
return
if m is None:
m = n
else:
m = min(m, n)
k = min(k or n, n)
n, m, k = as_int(n), as_int(m), as_int(k)
q, r = divmod(n, k)
ms = {k: q}
keys = [k] # ms.keys(), from largest to smallest
if r:
ms[r] = 1
keys.append(r)
room = m - q - bool(r)
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
while keys != [1]:
# Reuse any 1's.
if keys[-1] == 1:
del keys[-1]
reuse = ms.pop(1)
room += reuse
else:
reuse = 0
while 1:
# Let i be the smallest key larger than 1. Reuse one
# instance of i.
i = keys[-1]
newcount = ms[i] = ms[i] - 1
reuse += i
if newcount == 0:
del keys[-1], ms[i]
room += 1
# Break the remainder into pieces of size i-1.
i -= 1
q, r = divmod(reuse, i)
need = q + bool(r)
if need > room:
if not keys:
return
continue
ms[i] = q
keys.append(i)
if r:
ms[r] = 1
keys.append(r)
break
room -= need
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
def ordered_partitions(n, m=None, sort=True):
"""Generates ordered partitions of integer ``n``.
Parameters
==========
m : integer (default None)
The default value gives partitions of all sizes else only
those with size m. In addition, if ``m`` is not None then
partitions are generated *in place* (see examples).
sort : bool (default True)
Controls whether partitions are
returned in sorted order when ``m`` is not None; when False,
the partitions are returned as fast as possible with elements
sorted, but when m|n the partitions will not be in
ascending lexicographical order.
Examples
========
>>> from sympy.utilities.iterables import ordered_partitions
All partitions of 5 in ascending lexicographical:
>>> for p in ordered_partitions(5):
... print(p)
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 3]
[1, 2, 2]
[1, 4]
[2, 3]
[5]
Only partitions of 5 with two parts:
>>> for p in ordered_partitions(5, 2):
... print(p)
[1, 4]
[2, 3]
When ``m`` is given, a given list objects will be used more than
once for speed reasons so you will not see the correct partitions
unless you make a copy of each as it is generated:
>>> [p for p in ordered_partitions(7, 3)]
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
>>> [list(p) for p in ordered_partitions(7, 3)]
[[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]
When ``n`` is a multiple of ``m``, the elements are still sorted
but the partitions themselves will be *unordered* if sort is False;
the default is to return them in ascending lexicographical order.
>>> for p in ordered_partitions(6, 2):
... print(p)
[1, 5]
[2, 4]
[3, 3]
But if speed is more important than ordering, sort can be set to
False:
>>> for p in ordered_partitions(6, 2, sort=False):
... print(p)
[1, 5]
[3, 3]
[2, 4]
References
==========
.. [1] Generating Integer Partitions, [online],
Available: https://jeromekelleher.net/generating-integer-partitions.html
.. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All
Partitions: A Comparison Of Two Encodings", [online],
Available: https://arxiv.org/pdf/0909.2331v2.pdf
"""
if n < 1 or m is not None and m < 1:
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
yield []
return
if m is None:
# The list `a`'s leading elements contain the partition in which
# y is the biggest element and x is either the same as y or the
# 2nd largest element; v and w are adjacent element indices
# to which x and y are being assigned, respectively.
a = [1]*n
y = -1
v = n
while v > 0:
v -= 1
x = a[v] + 1
while y >= 2 * x:
a[v] = x
y -= x
v += 1
w = v + 1
while x <= y:
a[v] = x
a[w] = y
yield a[:w + 1]
x += 1
y -= 1
a[v] = x + y
y = a[v] - 1
yield a[:w]
elif m == 1:
yield [n]
elif n == m:
yield [1]*n
else:
# recursively generate partitions of size m
for b in range(1, n//m + 1):
a = [b]*m
x = n - b*m
if not x:
if sort:
yield a
elif not sort and x <= m:
for ax in ordered_partitions(x, sort=False):
mi = len(ax)
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
else:
for mi in range(1, m):
for ax in ordered_partitions(x, mi, sort=True):
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
def binary_partitions(n):
"""
Generates the binary partition of n.
A binary partition consists only of numbers that are
powers of two. Each step reduces a `2^{k+1}` to `2^k` and
`2^k`. Thus 16 is converted to 8 and 8.
Examples
========
>>> from sympy.utilities.iterables import binary_partitions
>>> for i in binary_partitions(5):
... print(i)
...
[4, 1]
[2, 2, 1]
[2, 1, 1, 1]
[1, 1, 1, 1, 1]
References
==========
.. [1] TAOCP 4, section 7.2.1.5, problem 64
"""
from math import ceil, log
power = int(2**(ceil(log(n, 2))))
acc = 0
partition = []
while power:
if acc + power <= n:
partition.append(power)
acc += power
power >>= 1
last_num = len(partition) - 1 - (n & 1)
while last_num >= 0:
yield partition
if partition[last_num] == 2:
partition[last_num] = 1
partition.append(1)
last_num -= 1
continue
partition.append(1)
partition[last_num] >>= 1
x = partition[last_num + 1] = partition[last_num]
last_num += 1
while x > 1:
if x <= len(partition) - last_num - 1:
del partition[-x + 1:]
last_num += 1
partition[last_num] = x
else:
x >>= 1
yield [1]*n
def has_dups(seq):
"""Return True if there are any duplicate elements in ``seq``.
Examples
========
>>> from sympy import has_dups, Dict, Set
>>> has_dups((1, 2, 1))
True
>>> has_dups(range(3))
False
>>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict()))
True
"""
from sympy.core.containers import Dict
from sympy.sets.sets import Set
if isinstance(seq, (dict, set, Dict, Set)):
return False
unique = set()
try:
return any(True for s in seq if s in unique or unique.add(s))
except TypeError:
return len(seq) != len(list(uniq(seq)))
def has_variety(seq):
"""Return True if there are any different elements in ``seq``.
Examples
========
>>> from sympy import has_variety
>>> has_variety((1, 2, 1))
True
>>> has_variety((1, 1, 1))
False
"""
for i, s in enumerate(seq):
if i == 0:
sentinel = s
else:
if s != sentinel:
return True
return False
def uniq(seq, result=None):
"""
Yield unique elements from ``seq`` as an iterator. The second
parameter ``result`` is used internally; it is not necessary
to pass anything for this.
Note: changing the sequence during iteration will raise a
RuntimeError if the size of the sequence is known; if you pass
an iterator and advance the iterator you will change the
output of this routine but there will be no warning.
Examples
========
>>> from sympy.utilities.iterables import uniq
>>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
>>> type(uniq(dat)) in (list, tuple)
False
>>> list(uniq(dat))
[1, 4, 5, 2]
>>> list(uniq(x for x in dat))
[1, 4, 5, 2]
>>> list(uniq([[1], [2, 1], [1]]))
[[1], [2, 1]]
"""
try:
n = len(seq)
except TypeError:
n = None
def check():
# check that size of seq did not change during iteration;
# if n == None the object won't support size changing, e.g.
# an iterator can't be changed
if n is not None and len(seq) != n:
raise RuntimeError('sequence changed size during iteration')
try:
seen = set()
result = result or []
for i, s in enumerate(seq):
if not (s in seen or seen.add(s)):
yield s
check()
except TypeError:
if s not in result:
yield s
check()
result.append(s)
if hasattr(seq, '__getitem__'):
yield from uniq(seq[i + 1:], result)
else:
yield from uniq(seq, result)
def generate_bell(n):
"""Return permutations of [0, 1, ..., n - 1] such that each permutation
differs from the last by the exchange of a single pair of neighbors.
The ``n!`` permutations are returned as an iterator. In order to obtain
the next permutation from a random starting permutation, use the
``next_trotterjohnson`` method of the Permutation class (which generates
the same sequence in a different manner).
Examples
========
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
This is the sort of permutation used in the ringing of physical bells,
and does not produce permutations in lexicographical order. Rather, the
permutations differ from each other by exactly one inversion, and the
position at which the swapping occurs varies periodically in a simple
fashion. Consider the first few permutations of 4 elements generated
by ``permutations`` and ``generate_bell``:
>>> list(permutations(range(4)))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
>>> list(generate_bell(4))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
Notice how the 2nd and 3rd lexicographical permutations have 3 elements
out of place whereas each "bell" permutation always has only two
elements out of place relative to the previous permutation (and so the
signature (+/-1) of a permutation is opposite of the signature of the
previous permutation).
How the position of inversion varies across the elements can be seen
by tracing out where the largest number appears in the permutations:
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[ XXXXXX XXXXXX XXXXXX ]
See Also
========
sympy.combinatorics.permutations.Permutation.next_trotterjohnson
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_ringing
.. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018
.. [3] http://programminggeeks.com/bell-algorithm-for-permutation/
.. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
.. [5] Generating involutions, derangements, and relatives by ECO
Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010
"""
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
if n == 1:
yield (0,)
elif n == 2:
yield (0, 1)
yield (1, 0)
elif n == 3:
yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
else:
m = n - 1
op = [0] + [-1]*m
l = list(range(n))
while True:
yield tuple(l)
# find biggest element with op
big = None, -1 # idx, value
for i in range(n):
if op[i] and l[i] > big[1]:
big = i, l[i]
i, _ = big
if i is None:
break # there are no ops left
# swap it with neighbor in the indicated direction
j = i + op[i]
l[i], l[j] = l[j], l[i]
op[i], op[j] = op[j], op[i]
# if it landed at the end or if the neighbor in the same
# direction is bigger then turn off op
if j == 0 or j == m or l[j + op[j]] > l[j]:
op[j] = 0
# any element bigger to the left gets +1 op
for i in range(j):
if l[i] > l[j]:
op[i] = 1
# any element bigger to the right gets -1 op
for i in range(j + 1, n):
if l[i] > l[j]:
op[i] = -1
def generate_involutions(n):
"""
Generates involutions.
An involution is a permutation that when multiplied
by itself equals the identity permutation. In this
implementation the involutions are generated using
Fixed Points.
Alternatively, an involution can be considered as
a permutation that does not contain any cycles with
a length that is greater than two.
Examples
========
>>> from sympy.utilities.iterables import generate_involutions
>>> list(generate_involutions(3))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
>>> len(list(generate_involutions(4)))
10
References
==========
.. [1] http://mathworld.wolfram.com/PermutationInvolution.html
"""
idx = list(range(n))
for p in permutations(idx):
for i in idx:
if p[p[i]] != i:
break
else:
yield p
def multiset_derangements(s):
"""Generate derangements of the elements of s *in place*.
Examples
========
>>> from sympy.utilities.iterables import multiset_derangements, uniq
Because the derangements of multisets (not sets) are generated
in place, copies of the return value must be made if a collection
of derangements is desired or else all values will be the same:
>>> list(uniq([i for i in multiset_derangements('1233')]))
[[None, None, None, None]]
>>> [i.copy() for i in multiset_derangements('1233')]
[['3', '3', '1', '2'], ['3', '3', '2', '1']]
>>> [''.join(i) for i in multiset_derangements('1233')]
['3312', '3321']
"""
from sympy.core.sorting import ordered
# create multiset dictionary of hashable elements or else
# remap elements to integers
try:
ms = multiset(s)
except TypeError:
# give each element a canonical integer value
key = dict(enumerate(ordered(uniq(s))))
h = []
for si in s:
for k in key:
if key[k] == si:
h.append(k)
break
for i in multiset_derangements(h):
yield [key[j] for j in i]
return
mx = max(ms.values()) # max repetition of any element
n = len(s) # the number of elements
## special cases
# 1) one element has more than half the total cardinality of s: no
# derangements are possible.
if mx*2 > n:
return
# 2) all elements appear once: singletons
if len(ms) == n:
yield from _set_derangements(s)
return
# find the first element that is repeated the most to place
# in the following two special cases where the selection
# is unambiguous: either there are two elements with multiplicity
# of mx or else there is only one with multiplicity mx
for M in ms:
if ms[M] == mx:
break
inonM = [i for i in range(n) if s[i] != M] # location of non-M
iM = [i for i in range(n) if s[i] == M] # locations of M
rv = [None]*n
# 3) half are the same
if 2*mx == n:
# M goes into non-M locations
for i in inonM:
rv[i] = M
# permutations of non-M go to M locations
for p in multiset_permutations([s[i] for i in inonM]):
for i, pi in zip(iM, p):
rv[i] = pi
yield rv
# clean-up (and encourages proper use of routine)
rv[:] = [None]*n
return
# 4) single repeat covers all but 1 of the non-repeats:
# if there is one repeat then the multiset of the values
# of ms would be {mx: 1, 1: n - mx}, i.e. there would
# be n - mx + 1 values with the condition that n - 2*mx = 1
if n - 2*mx == 1 and len(ms.values()) == n - mx + 1:
for i, i1 in enumerate(inonM):
ifill = inonM[:i] + inonM[i+1:]
for j in ifill:
rv[j] = M
for p in permutations([s[j] for j in ifill]):
rv[i1] = s[i1]
for j, pi in zip(iM, p):
rv[j] = pi
k = i1
for j in iM:
rv[j], rv[k] = rv[k], rv[j]
yield rv
k = j
# clean-up (and encourages proper use of routine)
rv[:] = [None]*n
return
## general case is handled with 3 helpers:
# 1) `finish_derangements` will place the last two elements
# which have arbitrary multiplicities, e.g. for multiset
# {c: 3, a: 2, b: 2}, the last two elements are a and b
# 2) `iopen` will tell where a given element can be placed
# 3) `do` will recursively place elements into subsets of
# valid locations
def finish_derangements():
"""Place the last two elements into the partially completed
derangement, and yield the results.
"""
a = take[1][0] # penultimate element
a_ct = take[1][1]
b = take[0][0] # last element to be placed
b_ct = take[0][1]
# split the indexes of the not-already-assigned elemements of rv into
# three categories
forced_a = [] # positions which must have an a
forced_b = [] # positions which must have a b
open_free = [] # positions which could take either
for i in range(len(s)):
if rv[i] is None:
if s[i] == a:
forced_b.append(i)
elif s[i] == b:
forced_a.append(i)
else:
open_free.append(i)
if len(forced_a) > a_ct or len(forced_b) > b_ct:
# No derangement possible
return
for i in forced_a:
rv[i] = a
for i in forced_b:
rv[i] = b
for a_place in combinations(open_free, a_ct - len(forced_a)):
for a_pos in a_place:
rv[a_pos] = a
for i in open_free:
if rv[i] is None: # anything not in the subset is set to b
rv[i] = b
yield rv
# Clean up/undo the final placements
for i in open_free:
rv[i] = None
# additional cleanup - clear forced_a, forced_b
for i in forced_a:
rv[i] = None
for i in forced_b:
rv[i] = None
def iopen(v):
# return indices at which element v can be placed in rv:
# locations which are not already occupied if that location
# does not already contain v in the same location of s
return [i for i in range(n) if rv[i] is None and s[i] != v]
def do(j):
if j == 1:
# handle the last two elements (regardless of multiplicity)
# with a special method
yield from finish_derangements()
else:
# place the mx elements of M into a subset of places
# into which it can be replaced
M, mx = take[j]
for i in combinations(iopen(M), mx):
# place M
for ii in i:
rv[ii] = M
# recursively place the next element
yield from do(j - 1)
# mark positions where M was placed as once again
# open for placement of other elements
for ii in i:
rv[ii] = None
# process elements in order of canonically decreasing multiplicity
take = sorted(ms.items(), key=lambda x:(x[1], x[0]))
yield from do(len(take) - 1)
rv[:] = [None]*n
def random_derangement(t, choice=None, strict=True):
"""Return a list of elements in which none are in the same positions
as they were originally. If an element fills more than half of the positions
then an error will be raised since no derangement is possible. To obtain
a derangement of as many items as possible--with some of the most numerous
remaining in their original positions--pass `strict=False`. To produce a
pseudorandom derangment, pass a pseudorandom selector like `choice` (see
below).
Examples
========
>>> from sympy.utilities.iterables import random_derangement
>>> t = 'SymPy: a CAS in pure Python'
>>> d = random_derangement(t)
>>> all(i != j for i, j in zip(d, t))
True
A predictable result can be obtained by using a pseudorandom
generator for the choice:
>>> from sympy.core.random import seed, choice as c
>>> seed(1)
>>> d = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert len(set(d)) != 1 # we got different values
By reseeding, the same sequence can be obtained:
>>> seed(1)
>>> d2 = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert d == d2
"""
if choice is None:
import secrets
choice = secrets.choice
def shuffle(rv):
'''Knuth shuffle'''
for i in range(len(rv) - 1, 0, -1):
x = choice(rv[:i + 1])
j = rv.index(x)
rv[i], rv[j] = rv[j], rv[i]
def pick(rv, n):
'''shuffle rv and return the first n values
'''
shuffle(rv)
return rv[:n]
ms = multiset(t)
tot = len(t)
ms = sorted(ms.items(), key=lambda x: x[1])
# if there are not enough spaces for the most
# plentiful element to move to then some of them
# will have to stay in place
M, mx = ms[-1]
n = len(t)
xs = 2*mx - tot
if xs > 0:
if strict:
raise ValueError('no derangement possible')
opts = [i for (i, c) in enumerate(t) if c == ms[-1][0]]
pick(opts, xs)
stay = sorted(opts[:xs])
rv = list(t)
for i in reversed(stay):
rv.pop(i)
rv = random_derangement(rv, choice)
for i in stay:
rv.insert(i, ms[-1][0])
return ''.join(rv) if type(t) is str else rv
# the normal derangement calculated from here
if n == len(ms):
# approx 1/3 will succeed
rv = list(t)
while True:
shuffle(rv)
if all(i != j for i,j in zip(rv, t)):
break
else:
# general case
rv = [None]*n
while True:
j = 0
while j > -len(ms): # do most numerous first
j -= 1
e, c = ms[j]
opts = [i for i in range(n) if rv[i] is None and t[i] != e]
if len(opts) < c:
for i in range(n):
rv[i] = None
break # try again
pick(opts, c)
for i in range(c):
rv[opts[i]] = e
else:
return rv
return rv
def _set_derangements(s):
"""
yield derangements of items in ``s`` which are assumed to contain
no repeated elements
"""
if len(s) < 2:
return
if len(s) == 2:
yield [s[1], s[0]]
return
if len(s) == 3:
yield [s[1], s[2], s[0]]
yield [s[2], s[0], s[1]]
return
for p in permutations(s):
if not any(i == j for i, j in zip(p, s)):
yield list(p)
def generate_derangements(s):
"""
Return unique derangements of the elements of iterable ``s``.
Examples
========
>>> from sympy.utilities.iterables import generate_derangements
>>> list(generate_derangements([0, 1, 2]))
[[1, 2, 0], [2, 0, 1]]
>>> list(generate_derangements([0, 1, 2, 2]))
[[2, 2, 0, 1], [2, 2, 1, 0]]
>>> list(generate_derangements([0, 1, 1]))
[]
See Also
========
sympy.functions.combinatorial.factorials.subfactorial
"""
if not has_dups(s):
yield from _set_derangements(s)
else:
for p in multiset_derangements(s):
yield list(p)
def necklaces(n, k, free=False):
"""
A routine to generate necklaces that may (free=True) or may not
(free=False) be turned over to be viewed. The "necklaces" returned
are comprised of ``n`` integers (beads) with ``k`` different
values (colors). Only unique necklaces are returned.
Examples
========
>>> from sympy.utilities.iterables import necklaces, bracelets
>>> def show(s, i):
... return ''.join(s[j] for j in i)
The "unrestricted necklace" is sometimes also referred to as a
"bracelet" (an object that can be turned over, a sequence that can
be reversed) and the term "necklace" is used to imply a sequence
that cannot be reversed. So ACB == ABC for a bracelet (rotate and
reverse) while the two are different for a necklace since rotation
alone cannot make the two sequences the same.
(mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)
>>> B = [show('ABC', i) for i in bracelets(3, 3)]
>>> N = [show('ABC', i) for i in necklaces(3, 3)]
>>> set(N) - set(B)
{'ACB'}
>>> list(necklaces(4, 2))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]
>>> [show('.o', i) for i in bracelets(4, 2)]
['....', '...o', '..oo', '.o.o', '.ooo', 'oooo']
References
==========
.. [1] http://mathworld.wolfram.com/Necklace.html
"""
return uniq(minlex(i, directed=not free) for i in
variations(list(range(k)), n, repetition=True))
def bracelets(n, k):
"""Wrapper to necklaces to return a free (unrestricted) necklace."""
return necklaces(n, k, free=True)
def generate_oriented_forest(n):
"""
This algorithm generates oriented forests.
An oriented graph is a directed graph having no symmetric pair of directed
edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can
also be described as a disjoint union of trees, which are graphs in which
any two vertices are connected by exactly one simple path.
Examples
========
>>> from sympy.utilities.iterables import generate_oriented_forest
>>> list(generate_oriented_forest(4))
[[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \
[0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]
References
==========
.. [1] T. Beyer and S.M. Hedetniemi: constant time generation of
rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980
.. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python
"""
P = list(range(-1, n))
while True:
yield P[1:]
if P[n] > 0:
P[n] = P[P[n]]
else:
for p in range(n - 1, 0, -1):
if P[p] != 0:
target = P[p] - 1
for q in range(p - 1, 0, -1):
if P[q] == target:
break
offset = p - q
for i in range(p, n + 1):
P[i] = P[i - offset]
break
else:
break
def minlex(seq, directed=True, key=None):
r"""
Return the rotation of the sequence in which the lexically smallest
elements appear first, e.g. `cba \rightarrow acb`.
The sequence returned is a tuple, unless the input sequence is a string
in which case a string is returned.
If ``directed`` is False then the smaller of the sequence and the
reversed sequence is returned, e.g. `cba \rightarrow abc`.
If ``key`` is not None then it is used to extract a comparison key from each element in iterable.
Examples
========
>>> from sympy.combinatorics.polyhedron import minlex
>>> minlex((1, 2, 0))
(0, 1, 2)
>>> minlex((1, 0, 2))
(0, 2, 1)
>>> minlex((1, 0, 2), directed=False)
(0, 1, 2)
>>> minlex('11010011000', directed=True)
'00011010011'
>>> minlex('11010011000', directed=False)
'00011001011'
>>> minlex(('bb', 'aaa', 'c', 'a'))
('a', 'bb', 'aaa', 'c')
>>> minlex(('bb', 'aaa', 'c', 'a'), key=len)
('c', 'a', 'bb', 'aaa')
"""
from sympy.functions.elementary.miscellaneous import Id
if key is None: key = Id
best = rotate_left(seq, least_rotation(seq, key=key))
if not directed:
rseq = seq[::-1]
rbest = rotate_left(rseq, least_rotation(rseq, key=key))
best = min(best, rbest, key=key)
# Convert to tuple, unless we started with a string.
return tuple(best) if not isinstance(seq, str) else best
def runs(seq, op=gt):
"""Group the sequence into lists in which successive elements
all compare the same with the comparison operator, ``op``:
op(seq[i + 1], seq[i]) is True from all elements in a run.
Examples
========
>>> from sympy.utilities.iterables import runs
>>> from operator import ge
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
[[0, 1, 2], [2], [1, 4], [3], [2], [2]]
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge)
[[0, 1, 2, 2], [1, 4], [3], [2, 2]]
"""
cycles = []
seq = iter(seq)
try:
run = [next(seq)]
except StopIteration:
return []
while True:
try:
ei = next(seq)
except StopIteration:
break
if op(ei, run[-1]):
run.append(ei)
continue
else:
cycles.append(run)
run = [ei]
if run:
cycles.append(run)
return cycles
def kbins(l, k, ordered=None):
"""
Return sequence ``l`` partitioned into ``k`` bins.
Examples
========
The default is to give the items in the same order, but grouped
into k partitions without any reordering:
>>> from sympy.utilities.iterables import kbins
>>> for p in kbins(list(range(5)), 2):
... print(p)
...
[[0], [1, 2, 3, 4]]
[[0, 1], [2, 3, 4]]
[[0, 1, 2], [3, 4]]
[[0, 1, 2, 3], [4]]
The ``ordered`` flag is either None (to give the simple partition
of the elements) or is a 2 digit integer indicating whether the order of
the bins and the order of the items in the bins matters. Given::
A = [[0], [1, 2]]
B = [[1, 2], [0]]
C = [[2, 1], [0]]
D = [[0], [2, 1]]
the following values for ``ordered`` have the shown meanings::
00 means A == B == C == D
01 means A == B
10 means A == D
11 means A == A
>>> for ordered_flag in [None, 0, 1, 10, 11]:
... print('ordered = %s' % ordered_flag)
... for p in kbins(list(range(3)), 2, ordered=ordered_flag):
... print(' %s' % p)
...
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]
See Also
========
partitions, multiset_partitions
"""
def partition(lista, bins):
# EnricoGiampieri's partition generator from
# https://stackoverflow.com/questions/13131491/
# partition-n-items-into-k-bins-in-python-lazily
if len(lista) == 1 or bins == 1:
yield [lista]
elif len(lista) > 1 and bins > 1:
for i in range(1, len(lista)):
for part in partition(lista[i:], bins - 1):
if len([lista[:i]] + part) == bins:
yield [lista[:i]] + part
if ordered is None:
yield from partition(l, k)
elif ordered == 11:
for pl in multiset_permutations(l):
pl = list(pl)
yield from partition(pl, k)
elif ordered == 00:
yield from multiset_partitions(l, k)
elif ordered == 10:
for p in multiset_partitions(l, k):
for perm in permutations(p):
yield list(perm)
elif ordered == 1:
for kgot, p in partitions(len(l), k, size=True):
if kgot != k:
continue
for li in multiset_permutations(l):
rv = []
i = j = 0
li = list(li)
for size, multiplicity in sorted(p.items()):
for m in range(multiplicity):
j = i + size
rv.append(li[i: j])
i = j
yield rv
else:
raise ValueError(
'ordered must be one of 00, 01, 10 or 11, not %s' % ordered)
def permute_signs(t):
"""Return iterator in which the signs of non-zero elements
of t are permuted.
Examples
========
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]
"""
for signs in product(*[(1, -1)]*(len(t) - t.count(0))):
signs = list(signs)
yield type(t)([i*signs.pop() if i else i for i in t])
def signed_permutations(t):
"""Return iterator in which the signs of non-zero elements
of t and the order of the elements are permuted.
Examples
========
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
(0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
(1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
(-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
(2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]
"""
return (type(t)(i) for j in permutations(t)
for i in permute_signs(j))
def rotations(s, dir=1):
"""Return a generator giving the items in s as list where
each subsequent list has the items rotated to the left (default)
or right (``dir=-1``) relative to the previous list.
Examples
========
>>> from sympy import rotations
>>> list(rotations([1,2,3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]
>>> list(rotations([1,2,3], -1))
[[1, 2, 3], [3, 1, 2], [2, 3, 1]]
"""
seq = list(s)
for i in range(len(seq)):
yield seq
seq = rotate_left(seq, dir)
def roundrobin(*iterables):
"""roundrobin recipe taken from itertools documentation:
https://docs.python.org/3/library/itertools.html#recipes
roundrobin('ABC', 'D', 'EF') --> A D E B F C
Recipe credited to George Sakkis
"""
nexts = cycle(iter(it).__next__ for it in iterables)
pending = len(iterables)
while pending:
try:
for nxt in nexts:
yield nxt()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
class NotIterable:
"""
Use this as mixin when creating a class which is not supposed to
return true when iterable() is called on its instances because
calling list() on the instance, for example, would result in
an infinite loop.
"""
pass
def iterable(i, exclude=(str, dict, NotIterable)):
"""
Return a boolean indicating whether ``i`` is SymPy iterable.
True also indicates that the iterator is finite, e.g. you can
call list(...) on the instance.
When SymPy is working with iterables, it is almost always assuming
that the iterable is not a string or a mapping, so those are excluded
by default. If you want a pure Python definition, make exclude=None. To
exclude multiple items, pass them as a tuple.
You can also set the _iterable attribute to True or False on your class,
which will override the checks here, including the exclude test.
As a rule of thumb, some SymPy functions use this to check if they should
recursively map over an object. If an object is technically iterable in
the Python sense but does not desire this behavior (e.g., because its
iteration is not finite, or because iteration might induce an unwanted
computation), it should disable it by setting the _iterable attribute to False.
See also: is_sequence
Examples
========
>>> from sympy.utilities.iterables import iterable
>>> from sympy import Tuple
>>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1]
>>> for i in things:
... print('%s %s' % (iterable(i), type(i)))
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'sympy.core.containers.Tuple'>
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable("no", exclude=str)
False
"""
if hasattr(i, '_iterable'):
return i._iterable
try:
iter(i)
except TypeError:
return False
if exclude:
return not isinstance(i, exclude)
return True
def is_sequence(i, include=None):
"""
Return a boolean indicating whether ``i`` is a sequence in the SymPy
sense. If anything that fails the test below should be included as
being a sequence for your application, set 'include' to that object's
type; multiple types should be passed as a tuple of types.
Note: although generators can generate a sequence, they often need special
handling to make sure their elements are captured before the generator is
exhausted, so these are not included by default in the definition of a
sequence.
See also: iterable
Examples
========
>>> from sympy.utilities.iterables import is_sequence
>>> from types import GeneratorType
>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is_sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
"""
return (hasattr(i, '__getitem__') and
iterable(i) or
bool(include) and
isinstance(i, include))
@deprecated(
"""
Using postorder_traversal from the sympy.utilities.iterables submodule is
deprecated.
Instead, use postorder_traversal from the top-level sympy namespace, like
sympy.postorder_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved")
def postorder_traversal(node, keys=None):
from sympy.core.traversal import postorder_traversal as _postorder_traversal
return _postorder_traversal(node, keys=keys)
@deprecated(
"""
Using interactive_traversal from the sympy.utilities.iterables submodule
is deprecated.
Instead, use interactive_traversal from the top-level sympy namespace,
like
sympy.interactive_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved")
def interactive_traversal(expr):
from sympy.interactive.traversal import interactive_traversal as _interactive_traversal
return _interactive_traversal(expr)
@deprecated(
"""
Importing default_sort_key from sympy.utilities.iterables is deprecated.
Use from sympy import default_sort_key instead.
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def default_sort_key(*args, **kwargs):
from sympy import default_sort_key as _default_sort_key
return _default_sort_key(*args, **kwargs)
@deprecated(
"""
Importing default_sort_key from sympy.utilities.iterables is deprecated.
Use from sympy import default_sort_key instead.
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def ordered(*args, **kwargs):
from sympy import ordered as _ordered
return _ordered(*args, **kwargs)
|
96b2d8e581d3f4d24c621cb149cfe243d641c593de3a52d92070eca65f4c6847 | from sympy.core import S
from sympy.core.function import Lambda
from sympy.core.power import Pow
from .pycode import PythonCodePrinter, _known_functions_math, _print_known_const, _print_known_func, _unpack_integral_limits, ArrayPrinter
from .codeprinter import CodePrinter
_not_in_numpy = 'erf erfc factorial gamma loggamma'.split()
_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy]
_known_functions_numpy = dict(_in_numpy, **{
'acos': 'arccos',
'acosh': 'arccosh',
'asin': 'arcsin',
'asinh': 'arcsinh',
'atan': 'arctan',
'atan2': 'arctan2',
'atanh': 'arctanh',
'exp2': 'exp2',
'sign': 'sign',
'logaddexp': 'logaddexp',
'logaddexp2': 'logaddexp2',
})
_known_constants_numpy = {
'Exp1': 'e',
'Pi': 'pi',
'EulerGamma': 'euler_gamma',
'NaN': 'nan',
'Infinity': 'PINF',
'NegativeInfinity': 'NINF'
}
_numpy_known_functions = {k: 'numpy.' + v for k, v in _known_functions_numpy.items()}
_numpy_known_constants = {k: 'numpy.' + v for k, v in _known_constants_numpy.items()}
class NumPyPrinter(ArrayPrinter, PythonCodePrinter):
"""
Numpy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = 'numpy'
_kf = _numpy_known_functions
_kc = _numpy_known_constants
def __init__(self, settings=None):
"""
`settings` is passed to CodePrinter.__init__()
`module` specifies the array module to use, currently 'NumPy', 'CuPy'
or 'JAX'.
"""
self.language = "Python with {}".format(self._module)
self.printmethod = "_{}code".format(self._module)
self._kf = {**PythonCodePrinter._kf, **self._kf}
super().__init__(settings=settings)
def _print_seq(self, seq):
"General sequence printer: converts to tuple"
# Print tuples here instead of lists because numba supports
# tuples in nopython mode.
delimiter=', '
return '({},)'.format(delimiter.join(self._print(item) for item in seq))
def _print_MatMul(self, expr):
"Matrix multiplication printer"
if expr.as_coeff_matrices()[0] is not S.One:
expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])]
return '({})'.format(').dot('.join(self._print(i) for i in expr_list))
return '({})'.format(').dot('.join(self._print(i) for i in expr.args))
def _print_MatPow(self, expr):
"Matrix power printer"
return '{}({}, {})'.format(self._module_format(self._module + '.linalg.matrix_power'),
self._print(expr.args[0]), self._print(expr.args[1]))
def _print_Inverse(self, expr):
"Matrix inverse printer"
return '{}({})'.format(self._module_format(self._module + '.linalg.inv'),
self._print(expr.args[0]))
def _print_DotProduct(self, expr):
# DotProduct allows any shape order, but numpy.dot does matrix
# multiplication, so we have to make sure it gets 1 x n by n x 1.
arg1, arg2 = expr.args
if arg1.shape[0] != 1:
arg1 = arg1.T
if arg2.shape[1] != 1:
arg2 = arg2.T
return "%s(%s, %s)" % (self._module_format(self._module + '.dot'),
self._print(arg1),
self._print(arg2))
def _print_MatrixSolve(self, expr):
return "%s(%s, %s)" % (self._module_format(self._module + '.linalg.solve'),
self._print(expr.matrix),
self._print(expr.vector))
def _print_ZeroMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.zeros'),
self._print(expr.shape))
def _print_OneMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.ones'),
self._print(expr.shape))
def _print_FunctionMatrix(self, expr):
from sympy.abc import i, j
lamda = expr.lamda
if not isinstance(lamda, Lambda):
lamda = Lambda((i, j), lamda(i, j))
return '{}(lambda {}: {}, {})'.format(self._module_format(self._module + '.fromfunction'),
', '.join(self._print(arg) for arg in lamda.args[0]),
self._print(lamda.args[1]), self._print(expr.shape))
def _print_HadamardProduct(self, expr):
func = self._module_format(self._module + '.multiply')
return ''.join('{}({}, '.format(func, self._print(arg)) \
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
')' * (len(expr.args) - 1))
def _print_KroneckerProduct(self, expr):
func = self._module_format(self._module + '.kron')
return ''.join('{}({}, '.format(func, self._print(arg)) \
for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]),
')' * (len(expr.args) - 1))
def _print_Adjoint(self, expr):
return '{}({}({}))'.format(
self._module_format(self._module + '.conjugate'),
self._module_format(self._module + '.transpose'),
self._print(expr.args[0]))
def _print_DiagonalOf(self, expr):
vect = '{}({})'.format(
self._module_format(self._module + '.diag'),
self._print(expr.arg))
return '{}({}, (-1, 1))'.format(
self._module_format(self._module + '.reshape'), vect)
def _print_DiagMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.diagflat'),
self._print(expr.args[0]))
def _print_DiagonalMatrix(self, expr):
return '{}({}, {}({}, {}))'.format(self._module_format(self._module + '.multiply'),
self._print(expr.arg), self._module_format(self._module + '.eye'),
self._print(expr.shape[0]), self._print(expr.shape[1]))
def _print_Piecewise(self, expr):
"Piecewise function printer"
from sympy.logic.boolalg import ITE, simplify_logic
def print_cond(cond):
""" Problem having an ITE in the cond. """
if cond.has(ITE):
return self._print(simplify_logic(cond))
else:
return self._print(cond)
exprs = '[{}]'.format(','.join(self._print(arg.expr) for arg in expr.args))
conds = '[{}]'.format(','.join(print_cond(arg.cond) for arg in expr.args))
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
# it will behave the same as passing the 'default' kwarg to select()
# *as long as* it is the last element in expr.args.
# If this is not the case, it may be triggered prematurely.
return '{}({}, {}, default={})'.format(
self._module_format(self._module + '.select'), conds, exprs,
self._print(S.NaN))
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '{op}({lhs}, {rhs})'.format(op=self._module_format(self._module + '.'+op[expr.rel_op]),
lhs=lhs, rhs=rhs)
return super()._print_Relational(expr)
def _print_And(self, expr):
"Logical And printer"
# We have to override LambdaPrinter because it uses Python 'and' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_and' to NUMPY_TRANSLATIONS.
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_and'), ','.join(self._print(i) for i in expr.args))
def _print_Or(self, expr):
"Logical Or printer"
# We have to override LambdaPrinter because it uses Python 'or' keyword.
# If LambdaPrinter didn't define it, we could use StrPrinter's
# version of the function and add 'logical_or' to NUMPY_TRANSLATIONS.
return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_or'), ','.join(self._print(i) for i in expr.args))
def _print_Not(self, expr):
"Logical Not printer"
# We have to override LambdaPrinter because it uses Python 'not' keyword.
# If LambdaPrinter didn't define it, we would still have to define our
# own because StrPrinter doesn't define it.
return '{}({})'.format(self._module_format(self._module + '.logical_not'), ','.join(self._print(i) for i in expr.args))
def _print_Pow(self, expr, rational=False):
# XXX Workaround for negative integer power error
if expr.exp.is_integer and expr.exp.is_negative:
expr = Pow(expr.base, expr.exp.evalf(), evaluate=False)
return self._hprint_Pow(expr, rational=rational, sqrt=self._module + '.sqrt')
def _print_Min(self, expr):
return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amin'), ','.join(self._print(i) for i in expr.args))
def _print_Max(self, expr):
return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amax'), ','.join(self._print(i) for i in expr.args))
def _print_arg(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.angle'), self._print(expr.args[0]))
def _print_im(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.imag'), self._print(expr.args[0]))
def _print_Mod(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.mod'), ', '.join(
map(lambda arg: self._print(arg), expr.args)))
def _print_re(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.real'), self._print(expr.args[0]))
def _print_sinc(self, expr):
return "%s(%s)" % (self._module_format(self._module + '.sinc'), self._print(expr.args[0]/S.Pi))
def _print_MatrixBase(self, expr):
func = self.known_functions.get(expr.__class__.__name__, None)
if func is None:
func = self._module_format(self._module + '.array')
return "%s(%s)" % (func, self._print(expr.tolist()))
def _print_Identity(self, expr):
shape = expr.shape
if all(dim.is_Integer for dim in shape):
return "%s(%s)" % (self._module_format(self._module + '.eye'), self._print(expr.shape[0]))
else:
raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices")
def _print_BlockMatrix(self, expr):
return '{}({})'.format(self._module_format(self._module + '.block'),
self._print(expr.args[0].tolist()))
def _print_NDimArray(self, expr):
if len(expr.shape) == 1:
return self._module + '.array(' + self._print(expr.args[0]) + ')'
if len(expr.shape) == 2:
return self._print(expr.tomatrix())
# Should be possible to extend to more dimensions
return CodePrinter._print_not_supported(self, expr)
_add = "add"
_einsum = "einsum"
_transpose = "transpose"
_ones = "ones"
_zeros = "zeros"
_print_lowergamma = CodePrinter._print_not_supported
_print_uppergamma = CodePrinter._print_not_supported
_print_fresnelc = CodePrinter._print_not_supported
_print_fresnels = CodePrinter._print_not_supported
for func in _numpy_known_functions:
setattr(NumPyPrinter, f'_print_{func}', _print_known_func)
for const in _numpy_known_constants:
setattr(NumPyPrinter, f'_print_{const}', _print_known_const)
_known_functions_scipy_special = {
'erf': 'erf',
'erfc': 'erfc',
'besselj': 'jv',
'bessely': 'yv',
'besseli': 'iv',
'besselk': 'kv',
'cosm1': 'cosm1',
'factorial': 'factorial',
'gamma': 'gamma',
'loggamma': 'gammaln',
'digamma': 'psi',
'RisingFactorial': 'poch',
'jacobi': 'eval_jacobi',
'gegenbauer': 'eval_gegenbauer',
'chebyshevt': 'eval_chebyt',
'chebyshevu': 'eval_chebyu',
'legendre': 'eval_legendre',
'hermite': 'eval_hermite',
'laguerre': 'eval_laguerre',
'assoc_laguerre': 'eval_genlaguerre',
'beta': 'beta',
'LambertW' : 'lambertw',
}
_known_constants_scipy_constants = {
'GoldenRatio': 'golden_ratio',
'Pi': 'pi',
}
_scipy_known_functions = {k : "scipy.special." + v for k, v in _known_functions_scipy_special.items()}
_scipy_known_constants = {k : "scipy.constants." + v for k, v in _known_constants_scipy_constants.items()}
class SciPyPrinter(NumPyPrinter):
_kf = {**NumPyPrinter._kf, **_scipy_known_functions}
_kc = {**NumPyPrinter._kc, **_scipy_known_constants}
def __init__(self, settings=None):
super().__init__(settings=settings)
self.language = "Python with SciPy and NumPy"
def _print_SparseRepMatrix(self, expr):
i, j, data = [], [], []
for (r, c), v in expr.todok().items():
i.append(r)
j.append(c)
data.append(v)
return "{name}(({data}, ({i}, {j})), shape={shape})".format(
name=self._module_format('scipy.sparse.coo_matrix'),
data=data, i=i, j=j, shape=expr.shape
)
_print_ImmutableSparseMatrix = _print_SparseRepMatrix
# SciPy's lpmv has a different order of arguments from assoc_legendre
def _print_assoc_legendre(self, expr):
return "{0}({2}, {1}, {3})".format(
self._module_format('scipy.special.lpmv'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]))
def _print_lowergamma(self, expr):
return "{0}({2})*{1}({2}, {3})".format(
self._module_format('scipy.special.gamma'),
self._module_format('scipy.special.gammainc'),
self._print(expr.args[0]),
self._print(expr.args[1]))
def _print_uppergamma(self, expr):
return "{0}({2})*{1}({2}, {3})".format(
self._module_format('scipy.special.gamma'),
self._module_format('scipy.special.gammaincc'),
self._print(expr.args[0]),
self._print(expr.args[1]))
def _print_betainc(self, expr):
betainc = self._module_format('scipy.special.betainc')
beta = self._module_format('scipy.special.beta')
args = [self._print(arg) for arg in expr.args]
return f"({betainc}({args[0]}, {args[1]}, {args[3]}) - {betainc}({args[0]}, {args[1]}, {args[2]})) \
* {beta}({args[0]}, {args[1]})"
def _print_betainc_regularized(self, expr):
return "{0}({1}, {2}, {4}) - {0}({1}, {2}, {3})".format(
self._module_format('scipy.special.betainc'),
self._print(expr.args[0]),
self._print(expr.args[1]),
self._print(expr.args[2]),
self._print(expr.args[3]))
def _print_fresnels(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.fresnel"),
self._print(expr.args[0]))
def _print_fresnelc(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.fresnel"),
self._print(expr.args[0]))
def _print_airyai(self, expr):
return "{}({})[0]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airyaiprime(self, expr):
return "{}({})[1]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airybi(self, expr):
return "{}({})[2]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_airybiprime(self, expr):
return "{}({})[3]".format(
self._module_format("scipy.special.airy"),
self._print(expr.args[0]))
def _print_Integral(self, e):
integration_vars, limits = _unpack_integral_limits(e)
if len(limits) == 1:
# nicer (but not necessary) to prefer quad over nquad for 1D case
module_str = self._module_format("scipy.integrate.quad")
limit_str = "%s, %s" % tuple(map(self._print, limits[0]))
else:
module_str = self._module_format("scipy.integrate.nquad")
limit_str = "({})".format(", ".join(
"(%s, %s)" % tuple(map(self._print, l)) for l in limits))
return "{}(lambda {}: {}, {})[0]".format(
module_str,
", ".join(map(self._print, integration_vars)),
self._print(e.args[0]),
limit_str)
for func in _scipy_known_functions:
setattr(SciPyPrinter, f'_print_{func}', _print_known_func)
for const in _scipy_known_constants:
setattr(SciPyPrinter, f'_print_{const}', _print_known_const)
_cupy_known_functions = {k : "cupy." + v for k, v in _known_functions_numpy.items()}
_cupy_known_constants = {k : "cupy." + v for k, v in _known_constants_numpy.items()}
class CuPyPrinter(NumPyPrinter):
"""
CuPy printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = 'cupy'
_kf = _cupy_known_functions
_kc = _cupy_known_constants
def __init__(self, settings=None):
super().__init__(settings=settings)
for func in _cupy_known_functions:
setattr(CuPyPrinter, f'_print_{func}', _print_known_func)
for const in _cupy_known_constants:
setattr(CuPyPrinter, f'_print_{const}', _print_known_const)
_jax_known_functions = {k: 'jax.numpy.' + v for k, v in _known_functions_numpy.items()}
_jax_known_constants = {k: 'jax.numpy.' + v for k, v in _known_constants_numpy.items()}
class JaxPrinter(NumPyPrinter):
"""
JAX printer which handles vectorized piecewise functions,
logical operators, etc.
"""
_module = "jax.numpy"
_kf = _jax_known_functions
_kc = _jax_known_constants
def __init__(self, settings=None):
super().__init__(settings=settings)
# These need specific override to allow for the lack of "jax.numpy.reduce"
def _print_And(self, expr):
"Logical And printer"
return "{}({}.asarray([{}]), axis=0)".format(
self._module_format(self._module + ".all"),
self._module_format(self._module),
",".join(self._print(i) for i in expr.args),
)
def _print_Or(self, expr):
"Logical Or printer"
return "{}({}.asarray([{}]), axis=0)".format(
self._module_format(self._module + ".any"),
self._module_format(self._module),
",".join(self._print(i) for i in expr.args),
)
for func in _jax_known_functions:
setattr(JaxPrinter, f'_print_{func}', _print_known_func)
for const in _jax_known_constants:
setattr(JaxPrinter, f'_print_{const}', _print_known_const)
|
44caeab532cc47f87902b2ecf1421c2b805715f6dfb953b3c1b17bc1abaf9ee5 | """
Python code printers
This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code.
"""
from collections import defaultdict
from itertools import chain
from sympy.core import S
from sympy.core.mod import Mod
from .precedence import precedence
from .codeprinter import CodePrinter
_kw = {
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in',
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield', 'None', 'False', 'nonlocal', 'True'
}
_known_functions = {
'Abs': 'abs',
'Min': 'min',
'Max': 'max',
}
_known_functions_math = {
'acos': 'acos',
'acosh': 'acosh',
'asin': 'asin',
'asinh': 'asinh',
'atan': 'atan',
'atan2': 'atan2',
'atanh': 'atanh',
'ceiling': 'ceil',
'cos': 'cos',
'cosh': 'cosh',
'erf': 'erf',
'erfc': 'erfc',
'exp': 'exp',
'expm1': 'expm1',
'factorial': 'factorial',
'floor': 'floor',
'gamma': 'gamma',
'hypot': 'hypot',
'loggamma': 'lgamma',
'log': 'log',
'ln': 'log',
'log10': 'log10',
'log1p': 'log1p',
'log2': 'log2',
'sin': 'sin',
'sinh': 'sinh',
'Sqrt': 'sqrt',
'tan': 'tan',
'tanh': 'tanh'
} # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf
# radians trunc fmod fsum gcd degrees fabs]
_known_constants_math = {
'Exp1': 'e',
'Pi': 'pi',
'E': 'e',
'Infinity': 'inf',
'NaN': 'nan',
'ComplexInfinity': 'nan'
}
def _print_known_func(self, expr):
known = self.known_functions[expr.__class__.__name__]
return '{name}({args})'.format(name=self._module_format(known),
args=', '.join(map(lambda arg: self._print(arg), expr.args)))
def _print_known_const(self, expr):
known = self.known_constants[expr.__class__.__name__]
return self._module_format(known)
class AbstractPythonCodePrinter(CodePrinter):
printmethod = "_pythoncode"
language = "Python"
reserved_words = _kw
modules = None # initialized to a set in __init__
tab = ' '
_kf = dict(chain(
_known_functions.items(),
[(k, 'math.' + v) for k, v in _known_functions_math.items()]
))
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()}
_operators = {'and': 'and', 'or': 'or', 'not': 'not'}
_default_settings = dict(
CodePrinter._default_settings,
user_functions={},
precision=17,
inline=True,
fully_qualified_modules=True,
contract=False,
standard='python3',
)
def __init__(self, settings=None):
super().__init__(settings)
# Python standard handler
std = self._settings['standard']
if std is None:
import sys
std = 'python{}'.format(sys.version_info.major)
if std != 'python3':
raise ValueError('Only Python 3 is supported.')
self.standard = std
self.module_imports = defaultdict(set)
# Known functions and constants handler
self.known_functions = dict(self._kf, **(settings or {}).get(
'user_functions', {}))
self.known_constants = dict(self._kc, **(settings or {}).get(
'user_constants', {}))
def _declare_number_const(self, name, value):
return "%s = %s" % (name, value)
def _module_format(self, fqn, register=True):
parts = fqn.split('.')
if register and len(parts) > 1:
self.module_imports['.'.join(parts[:-1])].add(parts[-1])
if self._settings['fully_qualified_modules']:
return fqn
else:
return fqn.split('(')[0].split('[')[0].split('.')[-1]
def _format_code(self, lines):
return lines
def _get_statement(self, codestring):
return "{}".format(codestring)
def _get_comment(self, text):
return " # {}".format(text)
def _expand_fold_binary_op(self, op, args):
"""
This method expands a fold on binary operations.
``functools.reduce`` is an example of a folded operation.
For example, the expression
`A + B + C + D`
is folded into
`((A + B) + C) + D`
"""
if len(args) == 1:
return self._print(args[0])
else:
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_fold_binary_op(op, args[:-1]),
self._print(args[-1]),
)
def _expand_reduce_binary_op(self, op, args):
"""
This method expands a reductin on binary operations.
Notice: this is NOT the same as ``functools.reduce``.
For example, the expression
`A + B + C + D`
is reduced into:
`(A + B) + (C + D)`
"""
if len(args) == 1:
return self._print(args[0])
else:
N = len(args)
Nhalf = N // 2
return "%s(%s, %s)" % (
self._module_format(op),
self._expand_reduce_binary_op(args[:Nhalf]),
self._expand_reduce_binary_op(args[Nhalf:]),
)
def _print_NaN(self, expr):
return "float('nan')"
def _print_Infinity(self, expr):
return "float('inf')"
def _print_NegativeInfinity(self, expr):
return "float('-inf')"
def _print_ComplexInfinity(self, expr):
return self._print_NaN(expr)
def _print_Mod(self, expr):
PREC = precedence(expr)
return ('{} % {}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args)))
def _print_Piecewise(self, expr):
result = []
i = 0
for arg in expr.args:
e = arg.expr
c = arg.cond
if i == 0:
result.append('(')
result.append('(')
result.append(self._print(e))
result.append(')')
result.append(' if ')
result.append(self._print(c))
result.append(' else ')
i += 1
result = result[:-1]
if result[-1] == 'True':
result = result[:-2]
result.append(')')
else:
result.append(' else None)')
return ''.join(result)
def _print_Relational(self, expr):
"Relational printer for Equality and Unequality"
op = {
'==' :'equal',
'!=' :'not_equal',
'<' :'less',
'<=' :'less_equal',
'>' :'greater',
'>=' :'greater_equal',
}
if expr.rel_op in op:
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs)
return super()._print_Relational(expr)
def _print_ITE(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(expr.rewrite(Piecewise))
def _print_Sum(self, expr):
loops = (
'for {i} in range({a}, {b}+1)'.format(
i=self._print(i),
a=self._print(a),
b=self._print(b))
for i, a, b in expr.limits)
return '(builtins.sum({function} {loops}))'.format(
function=self._print(expr.function),
loops=' '.join(loops))
def _print_ImaginaryUnit(self, expr):
return '1j'
def _print_KroneckerDelta(self, expr):
a, b = expr.args
return '(1 if {a} == {b} else 0)'.format(
a = self._print(a),
b = self._print(b)
)
def _print_MatrixBase(self, expr):
name = expr.__class__.__name__
func = self.known_functions.get(name, name)
return "%s(%s)" % (func, self._print(expr.tolist()))
_print_SparseRepMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
lambda self, expr: self._print_MatrixBase(expr)
def _indent_codestring(self, codestring):
return '\n'.join([self.tab + line for line in codestring.split('\n')])
def _print_FunctionDefinition(self, fd):
body = '\n'.join(map(lambda arg: self._print(arg), fd.body))
return "def {name}({parameters}):\n{body}".format(
name=self._print(fd.name),
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]),
body=self._indent_codestring(body)
)
def _print_While(self, whl):
body = '\n'.join(map(lambda arg: self._print(arg), whl.body))
return "while {cond}:\n{body}".format(
cond=self._print(whl.condition),
body=self._indent_codestring(body)
)
def _print_Declaration(self, decl):
return '%s = %s' % (
self._print(decl.variable.symbol),
self._print(decl.variable.value)
)
def _print_Return(self, ret):
arg, = ret.args
return 'return %s' % self._print(arg)
def _print_Print(self, prnt):
print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args))
if prnt.format_string != None: # Must be '!= None', cannot be 'is not None'
print_args = '{} % ({})'.format(
self._print(prnt.format_string), print_args)
if prnt.file != None: # Must be '!= None', cannot be 'is not None'
print_args += ', file=%s' % self._print(prnt.file)
return 'print(%s)' % print_args
def _print_Stream(self, strm):
if str(strm.name) == 'stdout':
return self._module_format('sys.stdout')
elif str(strm.name) == 'stderr':
return self._module_format('sys.stderr')
else:
return self._print(strm.name)
def _print_NoneToken(self, arg):
return 'None'
def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'):
"""Printing helper function for ``Pow``
Notes
=====
This preprocesses the ``sqrt`` as math formatter and prints division
Examples
========
>>> from sympy import sqrt
>>> from sympy.printing.pycode import PythonCodePrinter
>>> from sympy.abc import x
Python code printer automatically looks up ``math.sqrt``.
>>> printer = PythonCodePrinter()
>>> printer._hprint_Pow(sqrt(x), rational=True)
'x**(1/2)'
>>> printer._hprint_Pow(sqrt(x), rational=False)
'math.sqrt(x)'
>>> printer._hprint_Pow(1/sqrt(x), rational=True)
'x**(-1/2)'
>>> printer._hprint_Pow(1/sqrt(x), rational=False)
'1/math.sqrt(x)'
>>> printer._hprint_Pow(1/x, rational=False)
'1/x'
>>> printer._hprint_Pow(1/x, rational=True)
'x**(-1)'
Using sqrt from numpy or mpmath
>>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt')
'numpy.sqrt(x)'
>>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt')
'mpmath.sqrt(x)'
See Also
========
sympy.printing.str.StrPrinter._print_Pow
"""
PREC = precedence(expr)
if expr.exp == S.Half and not rational:
func = self._module_format(sqrt)
arg = self._print(expr.base)
return '{func}({arg})'.format(func=func, arg=arg)
if expr.is_commutative and not rational:
if -expr.exp is S.Half:
func = self._module_format(sqrt)
num = self._print(S.One)
arg = self._print(expr.base)
return f"{num}/{func}({arg})"
if expr.exp is S.NegativeOne:
num = self._print(S.One)
arg = self.parenthesize(expr.base, PREC, strict=False)
return f"{num}/{arg}"
base_str = self.parenthesize(expr.base, PREC, strict=False)
exp_str = self.parenthesize(expr.exp, PREC, strict=False)
return "{}**{}".format(base_str, exp_str)
class ArrayPrinter:
def _arrayify(self, indexed):
from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array
try:
return convert_indexed_to_array(indexed)
except Exception:
return indexed
def _get_einsum_string(self, subranks, contraction_indices):
letters = self._get_letter_generator_for_einsum()
contraction_string = ""
counter = 0
d = {j: min(i) for i in contraction_indices for j in i}
indices = []
for rank_arg in subranks:
lindices = []
for i in range(rank_arg):
if counter in d:
lindices.append(d[counter])
else:
lindices.append(counter)
counter += 1
indices.append(lindices)
mapping = {}
letters_free = []
letters_dum = []
for i in indices:
for j in i:
if j not in mapping:
l = next(letters)
mapping[j] = l
else:
l = mapping[j]
contraction_string += l
if j in d:
if l not in letters_dum:
letters_dum.append(l)
else:
letters_free.append(l)
contraction_string += ","
contraction_string = contraction_string[:-1]
return contraction_string, letters_free, letters_dum
def _get_letter_generator_for_einsum(self):
for i in range(97, 123):
yield chr(i)
for i in range(65, 91):
yield chr(i)
raise ValueError("out of letters")
def _print_ArrayTensorProduct(self, expr):
letters = self._get_letter_generator_for_einsum()
contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks])
return '%s("%s", %s)' % (
self._module_format(self._module + "." + self._einsum),
contraction_string,
", ".join([self._print(arg) for arg in expr.args])
)
def _print_ArrayContraction(self, expr):
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
base = expr.expr
contraction_indices = expr.contraction_indices
if isinstance(base, ArrayTensorProduct):
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args])
ranks = base.subranks
else:
elems = self._print(base)
ranks = [len(base.shape)]
contraction_string, letters_free, letters_dum = self._get_einsum_string(ranks, contraction_indices)
if not contraction_indices:
return self._print(base)
if isinstance(base, ArrayTensorProduct):
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args])
else:
elems = self._print(base)
return "%s(\"%s\", %s)" % (
self._module_format(self._module + "." + self._einsum),
"{}->{}".format(contraction_string, "".join(sorted(letters_free))),
elems,
)
def _print_ArrayDiagonal(self, expr):
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
diagonal_indices = list(expr.diagonal_indices)
if isinstance(expr.expr, ArrayTensorProduct):
subranks = expr.expr.subranks
elems = expr.expr.args
else:
subranks = expr.subranks
elems = [expr.expr]
diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices)
elems = [self._print(i) for i in elems]
return '%s("%s", %s)' % (
self._module_format(self._module + "." + self._einsum),
"{}->{}".format(diagonal_string, "".join(letters_free+letters_dum)),
", ".join(elems)
)
def _print_PermuteDims(self, expr):
return "%s(%s, %s)" % (
self._module_format(self._module + "." + self._transpose),
self._print(expr.expr),
self._print(expr.permutation.array_form),
)
def _print_ArrayAdd(self, expr):
return self._expand_fold_binary_op(self._module + "." + self._add, expr.args)
def _print_OneArray(self, expr):
return "%s((%s,))" % (
self._module_format(self._module+ "." + self._ones),
','.join(map(self._print,expr.args))
)
def _print_ZeroArray(self, expr):
return "%s((%s,))" % (
self._module_format(self._module+ "." + self._zeros),
','.join(map(self._print,expr.args))
)
def _print_Assignment(self, expr):
#XXX: maybe this needs to happen at a higher level e.g. at _print or
#doprint?
lhs = self._print(self._arrayify(expr.lhs))
rhs = self._print(self._arrayify(expr.rhs))
return "%s = %s" % ( lhs, rhs )
def _print_IndexedBase(self, expr):
return self._print_ArraySymbol(expr)
class PythonCodePrinter(AbstractPythonCodePrinter):
def _print_sign(self, e):
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format(
f=self._module_format('math.copysign'), e=self._print(e.args[0]))
def _print_Not(self, expr):
PREC = precedence(expr)
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
def _print_Indexed(self, expr):
base = expr.args[0]
index = expr.args[1:]
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index]))
def _print_Pow(self, expr, rational=False):
return self._hprint_Pow(expr, rational=rational)
def _print_Rational(self, expr):
return '{}/{}'.format(expr.p, expr.q)
def _print_Half(self, expr):
return self._print_Rational(expr)
def _print_frac(self, expr):
return self._print_Mod(Mod(expr.args[0], 1))
def _print_Symbol(self, expr):
name = super()._print_Symbol(expr)
if name in self.reserved_words:
if self._settings['error_on_reserved']:
msg = ('This expression includes the symbol "{}" which is a '
'reserved keyword in this language.')
raise ValueError(msg.format(name))
return name + self._settings['reserved_word_suffix']
elif '{' in name: # Remove curly braces from subscripted variables
return name.replace('{', '').replace('}', '')
else:
return name
_print_lowergamma = CodePrinter._print_not_supported
_print_uppergamma = CodePrinter._print_not_supported
_print_fresnelc = CodePrinter._print_not_supported
_print_fresnels = CodePrinter._print_not_supported
for k in PythonCodePrinter._kf:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_math:
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const)
def pycode(expr, **settings):
""" Converts an expr to a string of Python code
Parameters
==========
expr : Expr
A SymPy expression.
fully_qualified_modules : bool
Whether or not to write out full module names of functions
(``math.sin`` vs. ``sin``). default: ``True``.
standard : str or None, optional
Only 'python3' (default) is supported.
This parameter may be removed in the future.
Examples
========
>>> from sympy import pycode, tan, Symbol
>>> pycode(tan(Symbol('x')) + 1)
'math.tan(x) + 1'
"""
return PythonCodePrinter(settings).doprint(expr)
_not_in_mpmath = 'log1p log2'.split()
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath]
_known_functions_mpmath = dict(_in_mpmath, **{
'beta': 'beta',
'frac': 'frac',
'fresnelc': 'fresnelc',
'fresnels': 'fresnels',
'sign': 'sign',
'loggamma': 'loggamma',
'hyper': 'hyper',
'meijerg': 'meijerg',
'besselj': 'besselj',
'bessely': 'bessely',
'besseli': 'besseli',
'besselk': 'besselk',
})
_known_constants_mpmath = {
'Exp1': 'e',
'Pi': 'pi',
'GoldenRatio': 'phi',
'EulerGamma': 'euler',
'Catalan': 'catalan',
'NaN': 'nan',
'Infinity': 'inf',
'NegativeInfinity': 'ninf'
}
def _unpack_integral_limits(integral_expr):
""" helper function for _print_Integral that
- accepts an Integral expression
- returns a tuple of
- a list variables of integration
- a list of tuples of the upper and lower limits of integration
"""
integration_vars = []
limits = []
for integration_range in integral_expr.limits:
if len(integration_range) == 3:
integration_var, lower_limit, upper_limit = integration_range
else:
raise NotImplementedError("Only definite integrals are supported")
integration_vars.append(integration_var)
limits.append((lower_limit, upper_limit))
return integration_vars, limits
class MpmathPrinter(PythonCodePrinter):
"""
Lambda printer for mpmath which maintains precision for floats
"""
printmethod = "_mpmathcode"
language = "Python with mpmath"
_kf = dict(chain(
_known_functions.items(),
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()]
))
_kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()}
def _print_Float(self, e):
# XXX: This does not handle setting mpmath.mp.dps. It is assumed that
# the caller of the lambdified function will have set it to sufficient
# precision to match the Floats in the expression.
# Remove 'mpz' if gmpy is installed.
args = str(tuple(map(int, e._mpf_)))
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args)
def _print_Rational(self, e):
return "{func}({p})/{func}({q})".format(
func=self._module_format('mpmath.mpf'),
q=self._print(e.q),
p=self._print(e.p)
)
def _print_Half(self, e):
return self._print_Rational(e)
def _print_uppergamma(self, e):
return "{}({}, {}, {})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]),
self._module_format('mpmath.inf'))
def _print_lowergamma(self, e):
return "{}({}, 0, {})".format(
self._module_format('mpmath.gammainc'),
self._print(e.args[0]),
self._print(e.args[1]))
def _print_log2(self, e):
return '{0}({1})/{0}(2)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
def _print_log1p(self, e):
return '{}({}+1)'.format(
self._module_format('mpmath.log'), self._print(e.args[0]))
def _print_Pow(self, expr, rational=False):
return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt')
def _print_Integral(self, e):
integration_vars, limits = _unpack_integral_limits(e)
return "{}(lambda {}: {}, {})".format(
self._module_format("mpmath.quad"),
", ".join(map(self._print, integration_vars)),
self._print(e.args[0]),
", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits))
for k in MpmathPrinter._kf:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func)
for k in _known_constants_mpmath:
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const)
class SymPyPrinter(AbstractPythonCodePrinter):
language = "Python with SymPy"
def _print_Function(self, expr):
mod = expr.func.__module__ or ''
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__),
', '.join(map(lambda arg: self._print(arg), expr.args)))
def _print_Pow(self, expr, rational=False):
return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
|
a4ed5f8020ffe12fb90bc5d0248bde0f0be913ffc6ae692276b437f2d25e7ba6 | """
A Printer for generating readable representation of most SymPy classes.
"""
from typing import Any, Dict as tDict
from sympy.core import S, Rational, Pow, Basic, Mul, Number, Add
from sympy.core.mul import _keep_coeff
from sympy.core.relational import Relational
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import SympifyError
from sympy.utilities.iterables import sift
from .precedence import precedence, PRECEDENCE
from .printer import Printer, print_function
from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
class StrPrinter(Printer):
printmethod = "_sympystr"
_default_settings = {
"order": None,
"full_prec": "auto",
"sympy_integers": False,
"abbrev": False,
"perm_cyclic": True,
"min": None,
"max": None,
} # type: tDict[str, Any]
_relationals = {} # type: tDict[str, str]
def parenthesize(self, item, level, strict=False):
if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
return "(%s)" % self._print(item)
else:
return self._print(item)
def stringify(self, args, sep, level=0):
return sep.join([self.parenthesize(item, level) for item in args])
def emptyPrinter(self, expr):
if isinstance(expr, str):
return expr
elif isinstance(expr, Basic):
return repr(expr)
else:
return str(expr)
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
PREC = precedence(expr)
l = []
for term in terms:
t = self._print(term)
if t.startswith('-'):
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < PREC or isinstance(term, Add):
l.extend([sign, "(%s)" % t])
else:
l.extend([sign, t])
sign = l.pop(0)
if sign == '+':
sign = ""
return sign + ' '.join(l)
def _print_BooleanTrue(self, expr):
return "True"
def _print_BooleanFalse(self, expr):
return "False"
def _print_Not(self, expr):
return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
def _print_And(self, expr):
args = list(expr.args)
for j, i in enumerate(args):
if isinstance(i, Relational) and (
i.canonical.rhs is S.NegativeInfinity):
args.insert(0, args.pop(j))
return self.stringify(args, " & ", PRECEDENCE["BitwiseAnd"])
def _print_Or(self, expr):
return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
def _print_Xor(self, expr):
return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"])
def _print_AppliedPredicate(self, expr):
return '%s(%s)' % (
self._print(expr.function), self.stringify(expr.arguments, ", "))
def _print_Basic(self, expr):
l = [self._print(o) for o in expr.args]
return expr.__class__.__name__ + "(%s)" % ", ".join(l)
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_Catalan(self, expr):
return 'Catalan'
def _print_ComplexInfinity(self, expr):
return 'zoo'
def _print_ConditionSet(self, s):
args = tuple([self._print(i) for i in (s.sym, s.condition)])
if s.base_set is S.UniversalSet:
return 'ConditionSet(%s, %s)' % args
args += (self._print(s.base_set),)
return 'ConditionSet(%s, %s, %s)' % args
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars))
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
item = "%s: %s" % (self._print(key), self._print(d[key]))
items.append(item)
return "{%s}" % ", ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return 'Domain: ' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('Domain: ' + self._print(d.symbols) + ' in ' +
self._print(d.set))
else:
return 'Domain on ' + self._print(d.symbols)
def _print_Dummy(self, expr):
return '_' + expr.name
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Exp1(self, expr):
return 'E'
def _print_ExprCondPair(self, expr):
return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
def _print_Function(self, expr):
return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_Heaviside(self, expr):
# Same as _print_Function but uses pargs to suppress default 1/2 for
# 2nd args
return expr.func.__name__ + "(%s)" % self.stringify(expr.pargs, ", ")
def _print_TribonacciConstant(self, expr):
return 'TribonacciConstant'
def _print_ImaginaryUnit(self, expr):
return 'I'
def _print_Infinity(self, expr):
return 'oo'
def _print_Integral(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Integral(%s, %s)' % (self._print(expr.function), L)
def _print_Interval(self, i):
fin = 'Interval{m}({a}, {b})'
a, b, l, r = i.args
if a.is_infinite and b.is_infinite:
m = ''
elif a.is_infinite and not r:
m = ''
elif b.is_infinite and not l:
m = ''
elif not l and not r:
m = ''
elif l and r:
m = '.open'
elif l:
m = '.Lopen'
else:
m = '.Ropen'
return fin.format(**{'a': a, 'b': b, 'm': m})
def _print_AccumulationBounds(self, i):
return "AccumBounds(%s, %s)" % (self._print(i.min),
self._print(i.max))
def _print_Inverse(self, I):
return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
def _print_Lambda(self, obj):
expr = obj.expr
sig = obj.signature
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
return "Lambda(%s, %s)" % (self._print(sig), self._print(expr))
def _print_LatticeOp(self, expr):
args = sorted(expr.args, key=default_sort_key)
return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
if str(dir) == "+":
return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0)))
else:
return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print,
(e, z, z0, dir)))
def _print_list(self, expr):
return "[%s]" % self.stringify(expr, ", ")
def _print_List(self, expr):
return self._print_list(expr)
def _print_MatrixBase(self, expr):
return expr._format_str(self)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def strslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return ':'.join(map(lambda arg: self._print(arg), x))
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' +
strslice(expr.rowslice, expr.parent.rows) + ', ' +
strslice(expr.colslice, expr.parent.cols) + ']')
def _print_DeferredVector(self, expr):
return expr.name
def _print_Mul(self, expr):
prec = precedence(expr)
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = expr.args
if args[0] is S.One or any(
isinstance(a, Number) or
a.is_Pow and all(ai.is_Integer for ai in a.args)
for a in args[1:]):
d, n = sift(args, lambda x:
isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0),
binary=True)
for i, di in enumerate(d):
if di.exp.is_Number:
e = -di.exp
else:
dargs = list(di.exp.args)
dargs[0] = -dargs[0]
e = Mul._from_args(dargs)
d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base
pre = []
# don't parenthesize first factor if negative
if n and n[0].could_extract_minus_sign():
pre = [str(n.pop(0))]
nfactors = pre + [self.parenthesize(a, prec, strict=False)
for a in n]
if not nfactors:
nfactors = ['1']
# don't parenthesize first of denominator unless singleton
if len(d) > 1 and d[0].could_extract_minus_sign():
pre = [str(d.pop(0))]
else:
pre = []
dfactors = pre + [self.parenthesize(a, prec, strict=False)
for a in d]
n = '*'.join(nfactors)
d = '*'.join(dfactors)
if len(dfactors) > 1:
return '%s/(%s)' % (n, d)
elif dfactors:
return '%s/%s' % (n, d)
return n
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
def apow(i):
b, e = i.as_base_exp()
eargs = list(Mul.make_args(e))
if eargs[0] is S.NegativeOne:
eargs = eargs[1:]
else:
eargs[0] = -eargs[0]
e = Mul._from_args(eargs)
if isinstance(i, Pow):
return i.func(b, e, evaluate=False)
return i.func(e, evaluate=False)
for item in args:
if (item.is_commutative and
isinstance(item, Pow) and
bool(item.exp.as_coeff_Mul()[0] < 0)):
if item.exp is not S.NegativeOne:
b.append(apow(item))
else:
if (len(item.args[0].args) != 1 and
isinstance(item.base, (Mul, Pow))):
# To avoid situations like #14160
pow_paren.append(item)
b.append(item.base)
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
b_str = [self.parenthesize(x, prec, strict=False) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_MatMul(self, expr):
c, m = expr.as_coeff_mmul()
sign = ""
if c.is_number:
re, im = c.as_real_imag()
if im.is_zero and re.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
elif re.is_zero and im.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
return sign + '*'.join(
[self.parenthesize(arg, precedence(expr)) for arg in expr.args]
)
def _print_ElementwiseApplyFunction(self, expr):
return "{}.({})".format(
expr.function,
self._print(expr.expr),
)
def _print_NaN(self, expr):
return 'nan'
def _print_NegativeInfinity(self, expr):
return '-oo'
def _print_Order(self, expr):
if not expr.variables or all(p is S.Zero for p in expr.point):
if len(expr.variables) <= 1:
return 'O(%s)' % self._print(expr.expr)
else:
return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
else:
return 'O(%s)' % self.stringify(expr.args, ', ', 0)
def _print_Ordinal(self, expr):
return expr.__str__()
def _print_Cycle(self, expr):
return expr.__str__()
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
from sympy.utilities.exceptions import sympy_deprecation_warning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
sympy_deprecation_warning(
f"""
Setting Permutation.print_cyclic is deprecated. Instead use
init_printing(perm_cyclic={perm_cyclic}).
""",
deprecated_since_version="1.6",
active_deprecations_target="deprecated-permutation-print_cyclic",
stacklevel=7,
)
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
if not expr.size:
return '()'
# before taking Cycle notation, see if the last element is
# a singleton and move it to the head of the string
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
last = s.rfind('(')
if not last == 0 and ',' not in s[last:]:
s = s[last:] + s[:last]
s = s.replace(',', '')
return s
else:
s = expr.support()
if not s:
if expr.size < 5:
return 'Permutation(%s)' % self._print(expr.array_form)
return 'Permutation([], size=%s)' % self._print(expr.size)
trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
use = full = self._print(expr.array_form)
if len(trim) < len(full):
use = trim
return 'Permutation(%s)' % use
def _print_Subs(self, obj):
expr, old, new = obj.args
if len(obj.point) == 1:
old = old[0]
new = new[0]
return "Subs(%s, %s, %s)" % (
self._print(expr), self._print(old), self._print(new))
def _print_TensorIndex(self, expr):
return expr._print()
def _print_TensorHead(self, expr):
return expr._print()
def _print_Tensor(self, expr):
return expr._print()
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "*".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
return expr._print()
def _print_ArraySymbol(self, expr):
return self._print(expr.name)
def _print_ArrayElement(self, expr):
return "%s[%s]" % (
self.parenthesize(expr.name, PRECEDENCE["Func"], True), ", ".join([self._print(i) for i in expr.indices]))
def _print_PermutationGroup(self, expr):
p = [' %s' % self._print(a) for a in expr.args]
return 'PermutationGroup([\n%s])' % ',\n'.join(p)
def _print_Pi(self, expr):
return 'pi'
def _print_PolyRing(self, ring):
return "Polynomial ring in %s over %s with %s order" % \
(", ".join(map(lambda rs: self._print(rs), ring.symbols)),
self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "Rational function field in %s over %s with %s order" % \
(", ".join(map(lambda fs: self._print(fs), field.symbols)),
self._print(field.domain), self._print(field.order))
def _print_FreeGroupElement(self, elm):
return elm.__str__()
def _print_GaussianElement(self, poly):
return "(%s + %s*I)" % (poly.x, poly.y)
def _print_PolyElement(self, poly):
return poly.str(self, PRECEDENCE, "%s**%s", "*")
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
return numer + "/" + denom
def _print_Poly(self, expr):
ATOM_PREC = PRECEDENCE["Atom"] - 1
terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
for monom, coeff in expr.terms():
s_monom = []
for i, e in enumerate(monom):
if e > 0:
if e == 1:
s_monom.append(gens[i])
else:
s_monom.append(gens[i] + "**%d" % e)
s_monom = "*".join(s_monom)
if coeff.is_Add:
if s_monom:
s_coeff = "(" + self._print(coeff) + ")"
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + "*" + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ('-', '+'):
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
format = expr.__class__.__name__ + "(%s, %s"
from sympy.polys.polyerrors import PolynomialError
try:
format += ", modulus=%s" % expr.get_modulus()
except PolynomialError:
format += ", domain='%s'" % expr.get_domain()
format += ")"
for index, item in enumerate(gens):
if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
gens[index] = item[1:len(item) - 1]
return format % (' '.join(terms), ', '.join(gens))
def _print_UniversalSet(self, p):
return 'UniversalSet'
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_Pow(self, expr, rational=False):
"""Printing helper function for ``Pow``
Parameters
==========
rational : bool, optional
If ``True``, it will not attempt printing ``sqrt(x)`` or
``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)``
instead.
See examples for additional details
Examples
========
>>> from sympy import sqrt, StrPrinter
>>> from sympy.abc import x
How ``rational`` keyword works with ``sqrt``:
>>> printer = StrPrinter()
>>> printer._print_Pow(sqrt(x), rational=True)
'x**(1/2)'
>>> printer._print_Pow(sqrt(x), rational=False)
'sqrt(x)'
>>> printer._print_Pow(1/sqrt(x), rational=True)
'x**(-1/2)'
>>> printer._print_Pow(1/sqrt(x), rational=False)
'1/sqrt(x)'
Notes
=====
``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy,
so there is no need of defining a separate printer for ``sqrt``.
Instead, it should be handled here as well.
"""
PREC = precedence(expr)
if expr.exp is S.Half and not rational:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if -expr.exp is S.Half and not rational:
# Note: Don't test "expr.exp == -S.Half" here, because that will
# match -0.5, which we don't want.
return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base)))
if expr.exp is -S.One:
# Similarly to the S.Half case, don't test with "==" here.
return '%s/%s' % (self._print(S.One),
self.parenthesize(expr.base, PREC, strict=False))
e = self.parenthesize(expr.exp, PREC, strict=False)
if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
# the parenthesized exp should be '(Rational(a, b))' so strip parens,
# but just check to be sure.
if e.startswith('(Rational'):
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
self.parenthesize(expr.exp, PREC, strict=False))
def _print_Integer(self, expr):
if self._settings.get("sympy_integers", False):
return "S(%s)" % (expr)
return str(expr.p)
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Rationals(self, expr):
return 'Rationals'
def _print_Reals(self, expr):
return 'Reals'
def _print_Complexes(self, expr):
return 'Complexes'
def _print_EmptySet(self, expr):
return 'EmptySet'
def _print_EmptySequence(self, expr):
return 'EmptySequence'
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_Rational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
if self._settings.get("sympy_integers", False):
return "S(%s)/%s" % (expr.p, expr.q)
return "%s/%s" % (expr.p, expr.q)
def _print_PythonRational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
return "%d/%d" % (expr.p, expr.q)
def _print_Fraction(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_mpq(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_Float(self, expr):
prec = expr._prec
if prec < 5:
dps = 0
else:
dps = prec_to_dps(expr._prec)
if self._settings["full_prec"] is True:
strip = False
elif self._settings["full_prec"] is False:
strip = True
elif self._settings["full_prec"] == "auto":
strip = self._print_level > 1
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
if rv.startswith('-.0'):
rv = '-0.' + rv[3:]
elif rv.startswith('.0'):
rv = '0.' + rv[2:]
if rv.startswith('+'):
# e.g., +inf -> inf
rv = rv[1:]
return rv
def _print_Relational(self, expr):
charmap = {
"==": "Eq",
"!=": "Ne",
":=": "Assignment",
'+=': "AddAugmentedAssignment",
"-=": "SubAugmentedAssignment",
"*=": "MulAugmentedAssignment",
"/=": "DivAugmentedAssignment",
"%=": "ModAugmentedAssignment",
}
if expr.rel_op in charmap:
return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
self._print(expr.rhs))
return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
self._relationals.get(expr.rel_op) or expr.rel_op,
self.parenthesize(expr.rhs, precedence(expr)))
def _print_ComplexRootOf(self, expr):
return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
expr.index)
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
return "RootSum(%s)" % ", ".join(args)
def _print_GroebnerBasis(self, basis):
cls = basis.__class__.__name__
exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
exprs = "[%s]" % ", ".join(exprs)
gens = [ self._print(gen) for gen in basis.gens ]
domain = "domain='%s'" % self._print(basis.domain)
order = "order='%s'" % self._print(basis.order)
args = [exprs] + gens + [domain, order]
return "%s(%s)" % (cls, ", ".join(args))
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if not args:
return "set()"
return '{%s}' % args
def _print_FiniteSet(self, s):
from sympy.sets.sets import FiniteSet
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if any(item.has(FiniteSet) for item in items):
return 'FiniteSet({})'.format(args)
return '{{{}}}'.format(args)
def _print_Partition(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(arg) for arg in items)
return 'Partition({})'.format(args)
def _print_frozenset(self, s):
if not s:
return "frozenset()"
return "frozenset(%s)" % self._print_set(s)
def _print_Sum(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Sum(%s, %s)' % (self._print(expr.function), L)
def _print_Symbol(self, expr):
return expr.name
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Identity(self, expr):
return "I"
def _print_ZeroMatrix(self, expr):
return "0"
def _print_OneMatrix(self, expr):
return "1"
def _print_Predicate(self, expr):
return "Q.%s" % expr.name
def _print_str(self, expr):
return str(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_Transpose(self, T):
return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
def _print_Uniform(self, expr):
return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
def _print_Quantity(self, expr):
if self._settings.get("abbrev", False):
return "%s" % expr.abbrev
return "%s" % expr.name
def _print_Quaternion(self, expr):
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_Dimension(self, expr):
return str(expr)
def _print_Wild(self, expr):
return expr.name + '_'
def _print_WildFunction(self, expr):
return expr.name + '_'
def _print_WildDot(self, expr):
return expr.name
def _print_WildPlus(self, expr):
return expr.name
def _print_WildStar(self, expr):
return expr.name
def _print_Zero(self, expr):
if self._settings.get("sympy_integers", False):
return "S(0)"
return "0"
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
ring = self._print(p.ring)
return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
def _print_DMF(self, expr):
return self._print_DMP(expr)
def _print_Object(self, obj):
return 'Object("%s")' % obj.name
def _print_IdentityMorphism(self, morphism):
return 'IdentityMorphism(%s)' % morphism.domain
def _print_NamedMorphism(self, morphism):
return 'NamedMorphism(%s, %s, "%s")' % \
(morphism.domain, morphism.codomain, morphism.name)
def _print_Category(self, category):
return 'Category("%s")' % category.name
def _print_Manifold(self, manifold):
return manifold.name.name
def _print_Patch(self, patch):
return patch.name.name
def _print_CoordSystem(self, coords):
return coords.name.name
def _print_BaseScalarField(self, field):
return field._coord_sys.symbols[field._index].name
def _print_BaseVectorField(self, field):
return 'e_%s' % field._coord_sys.symbols[field._index].name
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
return 'd%s' % field._coord_sys.symbols[field._index].name
else:
return 'd(%s)' % self._print(field)
def _print_Tr(self, expr):
#TODO : Handle indices
return "%s(%s)" % ("Tr", self._print(expr.args[0]))
def _print_Str(self, s):
return self._print(s.name)
def _print_AppliedBinaryRelation(self, expr):
rel = expr.function
return '%s(%s, %s)' % (self._print(rel),
self._print(expr.lhs),
self._print(expr.rhs))
@print_function(StrPrinter)
def sstr(expr, **settings):
"""Returns the expression as a string.
For large expressions where speed is a concern, use the setting
order='none'. If abbrev=True setting is used then units are printed in
abbreviated form.
Examples
========
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'Eq(a + b, 0)'
"""
p = StrPrinter(settings)
s = p.doprint(expr)
return s
class StrReprPrinter(StrPrinter):
"""(internal) -- see sstrrepr"""
def _print_str(self, s):
return repr(s)
def _print_Str(self, s):
# Str does not to be printed same as str here
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
@print_function(StrReprPrinter)
def sstrrepr(expr, **settings):
"""return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else
is returned in str form.
This function could be useful for hooking into sys.displayhook
"""
p = StrReprPrinter(settings)
s = p.doprint(expr)
return s
|
c1adf6945e76e7800e3e76d5f45e4ebd04ddd473a4d2b7cdf8751e91c3751e62 | '''
Use llvmlite to create executable functions from SymPy expressions
This module requires llvmlite (https://github.com/numba/llvmlite).
'''
import ctypes
from sympy.external import import_module
from sympy.printing.printer import Printer
from sympy.core.singleton import S
from sympy.tensor.indexed import IndexedBase
from sympy.utilities.decorator import doctest_depends_on
llvmlite = import_module('llvmlite')
if llvmlite:
ll = import_module('llvmlite.ir').ir
llvm = import_module('llvmlite.binding').binding
llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()
__doctest_requires__ = {('llvm_callable'): ['llvmlite']}
class LLVMJitPrinter(Printer):
'''Convert expressions to LLVM IR'''
def __init__(self, module, builder, fn, *args, **kwargs):
self.func_arg_map = kwargs.pop("func_arg_map", {})
if not llvmlite:
raise ImportError("llvmlite is required for LLVMJITPrinter")
super().__init__(*args, **kwargs)
self.fp_type = ll.DoubleType()
self.module = module
self.builder = builder
self.fn = fn
self.ext_fn = {} # keep track of wrappers to external functions
self.tmp_var = {}
def _add_tmp_var(self, name, value):
self.tmp_var[name] = value
def _print_Number(self, n):
return ll.Constant(self.fp_type, float(n))
def _print_Integer(self, expr):
return ll.Constant(self.fp_type, float(expr.p))
def _print_Symbol(self, s):
val = self.tmp_var.get(s)
if not val:
# look up parameter with name s
val = self.func_arg_map.get(s)
if not val:
raise LookupError("Symbol not found: %s" % s)
return val
def _print_Pow(self, expr):
base0 = self._print(expr.base)
if expr.exp == S.NegativeOne:
return self.builder.fdiv(ll.Constant(self.fp_type, 1.0), base0)
if expr.exp == S.Half:
fn = self.ext_fn.get("sqrt")
if not fn:
fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
fn = ll.Function(self.module, fn_type, "sqrt")
self.ext_fn["sqrt"] = fn
return self.builder.call(fn, [base0], "sqrt")
if expr.exp == 2:
return self.builder.fmul(base0, base0)
exp0 = self._print(expr.exp)
fn = self.ext_fn.get("pow")
if not fn:
fn_type = ll.FunctionType(self.fp_type, [self.fp_type, self.fp_type])
fn = ll.Function(self.module, fn_type, "pow")
self.ext_fn["pow"] = fn
return self.builder.call(fn, [base0, exp0], "pow")
def _print_Mul(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
for node in nodes[1:]:
e = self.builder.fmul(e, node)
return e
def _print_Add(self, expr):
nodes = [self._print(a) for a in expr.args]
e = nodes[0]
for node in nodes[1:]:
e = self.builder.fadd(e, node)
return e
# TODO - assumes all called functions take one double precision argument.
# Should have a list of math library functions to validate this.
def _print_Function(self, expr):
name = expr.func.__name__
e0 = self._print(expr.args[0])
fn = self.ext_fn.get(name)
if not fn:
fn_type = ll.FunctionType(self.fp_type, [self.fp_type])
fn = ll.Function(self.module, fn_type, name)
self.ext_fn[name] = fn
return self.builder.call(fn, [e0], name)
def emptyPrinter(self, expr):
raise TypeError("Unsupported type for LLVM JIT conversion: %s"
% type(expr))
# Used when parameters are passed by array. Often used in callbacks to
# handle a variable number of parameters.
class LLVMJitCallbackPrinter(LLVMJitPrinter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _print_Indexed(self, expr):
array, idx = self.func_arg_map[expr.base]
offset = int(expr.indices[0].evalf())
array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), offset)])
fp_array_ptr = self.builder.bitcast(array_ptr, ll.PointerType(self.fp_type))
value = self.builder.load(fp_array_ptr)
return value
def _print_Symbol(self, s):
val = self.tmp_var.get(s)
if val:
return val
array, idx = self.func_arg_map.get(s, [None, 0])
if not array:
raise LookupError("Symbol not found: %s" % s)
array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), idx)])
fp_array_ptr = self.builder.bitcast(array_ptr,
ll.PointerType(self.fp_type))
value = self.builder.load(fp_array_ptr)
return value
# ensure lifetime of the execution engine persists (else call to compiled
# function will seg fault)
exe_engines = []
# ensure names for generated functions are unique
link_names = set()
current_link_suffix = 0
class LLVMJitCode:
def __init__(self, signature):
self.signature = signature
self.fp_type = ll.DoubleType()
self.module = ll.Module('mod1')
self.fn = None
self.llvm_arg_types = []
self.llvm_ret_type = self.fp_type
self.param_dict = {} # map symbol name to LLVM function argument
self.link_name = ''
def _from_ctype(self, ctype):
if ctype == ctypes.c_int:
return ll.IntType(32)
if ctype == ctypes.c_double:
return self.fp_type
if ctype == ctypes.POINTER(ctypes.c_double):
return ll.PointerType(self.fp_type)
if ctype == ctypes.c_void_p:
return ll.PointerType(ll.IntType(32))
if ctype == ctypes.py_object:
return ll.PointerType(ll.IntType(32))
print("Unhandled ctype = %s" % str(ctype))
def _create_args(self, func_args):
"""Create types for function arguments"""
self.llvm_ret_type = self._from_ctype(self.signature.ret_type)
self.llvm_arg_types = \
[self._from_ctype(a) for a in self.signature.arg_ctypes]
def _create_function_base(self):
"""Create function with name and type signature"""
global link_names, current_link_suffix
default_link_name = 'jit_func'
current_link_suffix += 1
self.link_name = default_link_name + str(current_link_suffix)
link_names.add(self.link_name)
fn_type = ll.FunctionType(self.llvm_ret_type, self.llvm_arg_types)
self.fn = ll.Function(self.module, fn_type, name=self.link_name)
def _create_param_dict(self, func_args):
"""Mapping of symbolic values to function arguments"""
for i, a in enumerate(func_args):
self.fn.args[i].name = str(a)
self.param_dict[a] = self.fn.args[i]
def _create_function(self, expr):
"""Create function body and return LLVM IR"""
bb_entry = self.fn.append_basic_block('entry')
builder = ll.IRBuilder(bb_entry)
lj = LLVMJitPrinter(self.module, builder, self.fn,
func_arg_map=self.param_dict)
ret = self._convert_expr(lj, expr)
lj.builder.ret(self._wrap_return(lj, ret))
strmod = str(self.module)
return strmod
def _wrap_return(self, lj, vals):
# Return a single double if there is one return value,
# else return a tuple of doubles.
# Don't wrap return value in this case
if self.signature.ret_type == ctypes.c_double:
return vals[0]
# Use this instead of a real PyObject*
void_ptr = ll.PointerType(ll.IntType(32))
# Create a wrapped double: PyObject* PyFloat_FromDouble(double v)
wrap_type = ll.FunctionType(void_ptr, [self.fp_type])
wrap_fn = ll.Function(lj.module, wrap_type, "PyFloat_FromDouble")
wrapped_vals = [lj.builder.call(wrap_fn, [v]) for v in vals]
if len(vals) == 1:
final_val = wrapped_vals[0]
else:
# Create a tuple: PyObject* PyTuple_Pack(Py_ssize_t n, ...)
# This should be Py_ssize_t
tuple_arg_types = [ll.IntType(32)]
tuple_arg_types.extend([void_ptr]*len(vals))
tuple_type = ll.FunctionType(void_ptr, tuple_arg_types)
tuple_fn = ll.Function(lj.module, tuple_type, "PyTuple_Pack")
tuple_args = [ll.Constant(ll.IntType(32), len(wrapped_vals))]
tuple_args.extend(wrapped_vals)
final_val = lj.builder.call(tuple_fn, tuple_args)
return final_val
def _convert_expr(self, lj, expr):
try:
# Match CSE return data structure.
if len(expr) == 2:
tmp_exprs = expr[0]
final_exprs = expr[1]
if len(final_exprs) != 1 and self.signature.ret_type == ctypes.c_double:
raise NotImplementedError("Return of multiple expressions not supported for this callback")
for name, e in tmp_exprs:
val = lj._print(e)
lj._add_tmp_var(name, val)
except TypeError:
final_exprs = [expr]
vals = [lj._print(e) for e in final_exprs]
return vals
def _compile_function(self, strmod):
global exe_engines
llmod = llvm.parse_assembly(strmod)
pmb = llvm.create_pass_manager_builder()
pmb.opt_level = 2
pass_manager = llvm.create_module_pass_manager()
pmb.populate(pass_manager)
pass_manager.run(llmod)
target_machine = \
llvm.Target.from_default_triple().create_target_machine()
exe_eng = llvm.create_mcjit_compiler(llmod, target_machine)
exe_eng.finalize_object()
exe_engines.append(exe_eng)
if False:
print("Assembly")
print(target_machine.emit_assembly(llmod))
fptr = exe_eng.get_function_address(self.link_name)
return fptr
class LLVMJitCodeCallback(LLVMJitCode):
def __init__(self, signature):
super().__init__(signature)
def _create_param_dict(self, func_args):
for i, a in enumerate(func_args):
if isinstance(a, IndexedBase):
self.param_dict[a] = (self.fn.args[i], i)
self.fn.args[i].name = str(a)
else:
self.param_dict[a] = (self.fn.args[self.signature.input_arg],
i)
def _create_function(self, expr):
"""Create function body and return LLVM IR"""
bb_entry = self.fn.append_basic_block('entry')
builder = ll.IRBuilder(bb_entry)
lj = LLVMJitCallbackPrinter(self.module, builder, self.fn,
func_arg_map=self.param_dict)
ret = self._convert_expr(lj, expr)
if self.signature.ret_arg:
output_fp_ptr = builder.bitcast(self.fn.args[self.signature.ret_arg],
ll.PointerType(self.fp_type))
for i, val in enumerate(ret):
index = ll.Constant(ll.IntType(32), i)
output_array_ptr = builder.gep(output_fp_ptr, [index])
builder.store(val, output_array_ptr)
builder.ret(ll.Constant(ll.IntType(32), 0)) # return success
else:
lj.builder.ret(self._wrap_return(lj, ret))
strmod = str(self.module)
return strmod
class CodeSignature:
def __init__(self, ret_type):
self.ret_type = ret_type
self.arg_ctypes = []
# Input argument array element index
self.input_arg = 0
# For the case output value is referenced through a parameter rather
# than the return value
self.ret_arg = None
def _llvm_jit_code(args, expr, signature, callback_type):
"""Create a native code function from a SymPy expression"""
if callback_type is None:
jit = LLVMJitCode(signature)
else:
jit = LLVMJitCodeCallback(signature)
jit._create_args(args)
jit._create_function_base()
jit._create_param_dict(args)
strmod = jit._create_function(expr)
if False:
print("LLVM IR")
print(strmod)
fptr = jit._compile_function(strmod)
return fptr
@doctest_depends_on(modules=('llvmlite', 'scipy'))
def llvm_callable(args, expr, callback_type=None):
'''Compile function from a SymPy expression
Expressions are evaluated using double precision arithmetic.
Some single argument math functions (exp, sin, cos, etc.) are supported
in expressions.
Parameters
==========
args : List of Symbol
Arguments to the generated function. Usually the free symbols in
the expression. Currently each one is assumed to convert to
a double precision scalar.
expr : Expr, or (Replacements, Expr) as returned from 'cse'
Expression to compile.
callback_type : string
Create function with signature appropriate to use as a callback.
Currently supported:
'scipy.integrate'
'scipy.integrate.test'
'cubature'
Returns
=======
Compiled function that can evaluate the expression.
Examples
========
>>> import sympy.printing.llvmjitcode as jit
>>> from sympy.abc import a
>>> e = a*a + a + 1
>>> e1 = jit.llvm_callable([a], e)
>>> e.subs(a, 1.1) # Evaluate via substitution
3.31000000000000
>>> e1(1.1) # Evaluate using JIT-compiled code
3.3100000000000005
Callbacks for integration functions can be JIT compiled.
>>> import sympy.printing.llvmjitcode as jit
>>> from sympy.abc import a
>>> from sympy import integrate
>>> from scipy.integrate import quad
>>> e = a*a
>>> e1 = jit.llvm_callable([a], e, callback_type='scipy.integrate')
>>> integrate(e, (a, 0.0, 2.0))
2.66666666666667
>>> quad(e1, 0.0, 2.0)[0]
2.66666666666667
The 'cubature' callback is for the Python wrapper around the
cubature package ( https://github.com/saullocastro/cubature )
and ( http://ab-initio.mit.edu/wiki/index.php/Cubature )
There are two signatures for the SciPy integration callbacks.
The first ('scipy.integrate') is the function to be passed to the
integration routine, and will pass the signature checks.
The second ('scipy.integrate.test') is only useful for directly calling
the function using ctypes variables. It will not pass the signature checks
for scipy.integrate.
The return value from the cse module can also be compiled. This
can improve the performance of the compiled function. If multiple
expressions are given to cse, the compiled function returns a tuple.
The 'cubature' callback handles multiple expressions (set `fdim`
to match in the integration call.)
>>> import sympy.printing.llvmjitcode as jit
>>> from sympy import cse
>>> from sympy.abc import x,y
>>> e1 = x*x + y*y
>>> e2 = 4*(x*x + y*y) + 8.0
>>> after_cse = cse([e1,e2])
>>> after_cse
([(x0, x**2), (x1, y**2)], [x0 + x1, 4*x0 + 4*x1 + 8.0])
>>> j1 = jit.llvm_callable([x,y], after_cse)
>>> j1(1.0, 2.0)
(5.0, 28.0)
'''
if not llvmlite:
raise ImportError("llvmlite is required for llvmjitcode")
signature = CodeSignature(ctypes.py_object)
arg_ctypes = []
if callback_type is None:
for _ in args:
arg_ctype = ctypes.c_double
arg_ctypes.append(arg_ctype)
elif callback_type in ('scipy.integrate', 'scipy.integrate.test'):
signature.ret_type = ctypes.c_double
arg_ctypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_double)]
arg_ctypes_formal = [ctypes.c_int, ctypes.c_double]
signature.input_arg = 1
elif callback_type == 'cubature':
arg_ctypes = [ctypes.c_int,
ctypes.POINTER(ctypes.c_double),
ctypes.c_void_p,
ctypes.c_int,
ctypes.POINTER(ctypes.c_double)
]
signature.ret_type = ctypes.c_int
signature.input_arg = 1
signature.ret_arg = 4
else:
raise ValueError("Unknown callback type: %s" % callback_type)
signature.arg_ctypes = arg_ctypes
fptr = _llvm_jit_code(args, expr, signature, callback_type)
if callback_type and callback_type == 'scipy.integrate':
arg_ctypes = arg_ctypes_formal
# PYFUNCTYPE holds the GIL which is needed to prevent a segfault when
# calling PyFloat_FromDouble on Python 3.10. Probably it is better to use
# ctypes.c_double when returning a float rather than using ctypes.py_object
# and returning a PyFloat from inside the jitted function (i.e. let ctypes
# handle the conversion from double to PyFloat).
if signature.ret_type == ctypes.py_object:
FUNCTYPE = ctypes.PYFUNCTYPE
else:
FUNCTYPE = ctypes.CFUNCTYPE
cfunc = FUNCTYPE(signature.ret_type, *arg_ctypes)(fptr)
return cfunc
|
534b127150e35342e1d521723de47c1a9a0e7b7fd7ad7d0f54cb1f177468316b | """
A Printer which converts an expression into its LaTeX equivalent.
"""
from __future__ import annotations
from typing import Any, Callable, TYPE_CHECKING
import itertools
from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol, Expr
from sympy.core.alphabets import greeks
from sympy.core.containers import Tuple
from sympy.core.function import Function, AppliedUndef, Derivative
from sympy.core.operations import AssocOp
from sympy.core.power import Pow
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import SympifyError
from sympy.logic.boolalg import true, BooleanTrue, BooleanFalse
from sympy.tensor.array import NDimArray
# sympy.printing imports
from sympy.printing.precedence import precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence, PRECEDENCE
from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str
from sympy.utilities.iterables import has_variety, sift
import re
if TYPE_CHECKING:
from sympy.vector.basisdependent import BasisDependent
# Hand-picked functions which can be used directly in both LaTeX and MathJax
# Complete list at
# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
# This variable only contains those functions which SymPy uses.
accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan',
'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec',
'csc', 'cot', 'coth', 're', 'im', 'frac', 'root',
'arg',
]
tex_greek_dictionary = {
'Alpha': r'\mathrm{A}',
'Beta': r'\mathrm{B}',
'Gamma': r'\Gamma',
'Delta': r'\Delta',
'Epsilon': r'\mathrm{E}',
'Zeta': r'\mathrm{Z}',
'Eta': r'\mathrm{H}',
'Theta': r'\Theta',
'Iota': r'\mathrm{I}',
'Kappa': r'\mathrm{K}',
'Lambda': r'\Lambda',
'Mu': r'\mathrm{M}',
'Nu': r'\mathrm{N}',
'Xi': r'\Xi',
'omicron': 'o',
'Omicron': r'\mathrm{O}',
'Pi': r'\Pi',
'Rho': r'\mathrm{P}',
'Sigma': r'\Sigma',
'Tau': r'\mathrm{T}',
'Upsilon': r'\Upsilon',
'Phi': r'\Phi',
'Chi': r'\mathrm{X}',
'Psi': r'\Psi',
'Omega': r'\Omega',
'lamda': r'\lambda',
'Lamda': r'\Lambda',
'khi': r'\chi',
'Khi': r'\mathrm{X}',
'varepsilon': r'\varepsilon',
'varkappa': r'\varkappa',
'varphi': r'\varphi',
'varpi': r'\varpi',
'varrho': r'\varrho',
'varsigma': r'\varsigma',
'vartheta': r'\vartheta',
}
other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar',
'hslash', 'mho', 'wp'}
# Variable name modifiers
modifier_dict: dict[str, Callable[[str], str]] = {
# Accents
'mathring': lambda s: r'\mathring{'+s+r'}',
'ddddot': lambda s: r'\ddddot{'+s+r'}',
'dddot': lambda s: r'\dddot{'+s+r'}',
'ddot': lambda s: r'\ddot{'+s+r'}',
'dot': lambda s: r'\dot{'+s+r'}',
'check': lambda s: r'\check{'+s+r'}',
'breve': lambda s: r'\breve{'+s+r'}',
'acute': lambda s: r'\acute{'+s+r'}',
'grave': lambda s: r'\grave{'+s+r'}',
'tilde': lambda s: r'\tilde{'+s+r'}',
'hat': lambda s: r'\hat{'+s+r'}',
'bar': lambda s: r'\bar{'+s+r'}',
'vec': lambda s: r'\vec{'+s+r'}',
'prime': lambda s: "{"+s+"}'",
'prm': lambda s: "{"+s+"}'",
# Faces
'bold': lambda s: r'\boldsymbol{'+s+r'}',
'bm': lambda s: r'\boldsymbol{'+s+r'}',
'cal': lambda s: r'\mathcal{'+s+r'}',
'scr': lambda s: r'\mathscr{'+s+r'}',
'frak': lambda s: r'\mathfrak{'+s+r'}',
# Brackets
'norm': lambda s: r'\left\|{'+s+r'}\right\|',
'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle',
'abs': lambda s: r'\left|{'+s+r'}\right|',
'mag': lambda s: r'\left|{'+s+r'}\right|',
}
greek_letters_set = frozenset(greeks)
_between_two_numbers_p = (
re.compile(r'[0-9][} ]*$'), # search
re.compile(r'[0-9]'), # match
)
def latex_escape(s: str) -> str:
"""
Escape a string such that latex interprets it as plaintext.
We cannot use verbatim easily with mathjax, so escaping is easier.
Rules from https://tex.stackexchange.com/a/34586/41112.
"""
s = s.replace('\\', r'\textbackslash')
for c in '&%$#_{}':
s = s.replace(c, '\\' + c)
s = s.replace('~', r'\textasciitilde')
s = s.replace('^', r'\textasciicircum')
return s
class LatexPrinter(Printer):
printmethod = "_latex"
_default_settings: dict[str, Any] = {
"full_prec": False,
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"itex": False,
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_str": None,
"mode": "plain",
"mul_symbol": None,
"order": None,
"symbol_names": {},
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"gothic_re_im": False,
"decimal_separator": "period",
"perm_cyclic": True,
"parenthesize_super": True,
"min": None,
"max": None,
"diff_operator": "d",
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if 'mode' in self._settings:
valid_modes = ['inline', 'plain', 'equation',
'equation*']
if self._settings['mode'] not in valid_modes:
raise ValueError("'mode' must be one of 'inline', 'plain', "
"'equation' or 'equation*'")
if self._settings['fold_short_frac'] is None and \
self._settings['mode'] == 'inline':
self._settings['fold_short_frac'] = True
mul_symbol_table = {
None: r" ",
"ldot": r" \,.\, ",
"dot": r" \cdot ",
"times": r" \times "
}
try:
self._settings['mul_symbol_latex'] = \
mul_symbol_table[self._settings['mul_symbol']]
except KeyError:
self._settings['mul_symbol_latex'] = \
self._settings['mul_symbol']
try:
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table[self._settings['mul_symbol'] or 'dot']
except KeyError:
if (self._settings['mul_symbol'].strip() in
['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']):
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table['dot']
else:
self._settings['mul_symbol_latex_numbers'] = \
self._settings['mul_symbol']
self._delim_dict = {'(': ')', '[': ']'}
imaginary_unit_table = {
None: r"i",
"i": r"i",
"ri": r"\mathrm{i}",
"ti": r"\text{i}",
"j": r"j",
"rj": r"\mathrm{j}",
"tj": r"\text{j}",
}
imag_unit = self._settings['imaginary_unit']
self._settings['imaginary_unit_latex'] = imaginary_unit_table.get(imag_unit, imag_unit)
diff_operator_table = {
None: r"d",
"d": r"d",
"rd": r"\mathrm{d}",
"td": r"\text{d}",
}
diff_operator = self._settings['diff_operator']
self._settings["diff_operator_latex"] = diff_operator_table.get(diff_operator, diff_operator)
def _add_parens(self, s) -> str:
return r"\left({}\right)".format(s)
# TODO: merge this with the above, which requires a lot of test changes
def _add_parens_lspace(self, s) -> str:
return r"\left( {}\right)".format(s)
def parenthesize(self, item, level, is_neg=False, strict=False) -> str:
prec_val = precedence_traditional(item)
if is_neg and strict:
return self._add_parens(self._print(item))
if (prec_val < level) or ((not strict) and prec_val <= level):
return self._add_parens(self._print(item))
else:
return self._print(item)
def parenthesize_super(self, s):
"""
Protect superscripts in s
If the parenthesize_super option is set, protect with parentheses, else
wrap in braces.
"""
if "^" in s:
if self._settings['parenthesize_super']:
return self._add_parens(s)
else:
return "{{{}}}".format(s)
return s
def doprint(self, expr) -> str:
tex = Printer.doprint(self, expr)
if self._settings['mode'] == 'plain':
return tex
elif self._settings['mode'] == 'inline':
return r"$%s$" % tex
elif self._settings['itex']:
return r"$$%s$$" % tex
else:
env_str = self._settings['mode']
return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str)
def _needs_brackets(self, expr) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
printed, False otherwise. For example: a + b => True; a => False;
10 => False; -10 => True.
"""
return not ((expr.is_Integer and expr.is_nonnegative)
or (expr.is_Atom and (expr is not S.NegativeOne
and expr.is_Rational is False)))
def _needs_function_brackets(self, expr) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
passed as an argument to a function, False otherwise. This is a more
liberal version of _needs_brackets, in that many expressions which need
to be wrapped in brackets when added/subtracted/raised to a power do
not need them when passed to a function. Such an example is a*b.
"""
if not self._needs_brackets(expr):
return False
else:
# Muls of the form a*b*c... can be folded
if expr.is_Mul and not self._mul_is_clean(expr):
return True
# Pows which don't need brackets can be folded
elif expr.is_Pow and not self._pow_is_clean(expr):
return True
# Add and Function always need brackets
elif expr.is_Add or expr.is_Function:
return True
else:
return False
def _needs_mul_brackets(self, expr, first=False, last=False) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
``first=True`` specifies that this expr is the first to appear in
a Mul.
"""
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.integrals.integrals import Integral
if expr.is_Mul:
if not first and expr.could_extract_minus_sign():
return True
elif precedence_traditional(expr) < PRECEDENCE["Mul"]:
return True
elif expr.is_Relational:
return True
if expr.is_Piecewise:
return True
if any(expr.has(x) for x in (Mod,)):
return True
if (not last and
any(expr.has(x) for x in (Integral, Product, Sum))):
return True
return False
def _needs_add_brackets(self, expr) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of an Add, False otherwise. This is False for most
things.
"""
if expr.is_Relational:
return True
if any(expr.has(x) for x in (Mod,)):
return True
if expr.is_Add:
return True
return False
def _mul_is_clean(self, expr) -> bool:
for arg in expr.args:
if arg.is_Function:
return False
return True
def _pow_is_clean(self, expr) -> bool:
return not self._needs_brackets(expr.base)
def _do_exponent(self, expr: str, exp):
if exp is not None:
return r"\left(%s\right)^{%s}" % (expr, exp)
else:
return expr
def _print_Basic(self, expr):
name = self._deal_with_super_sub(expr.__class__.__name__)
if expr.args:
ls = [self._print(o) for o in expr.args]
s = r"\operatorname{{{}}}\left({}\right)"
return s.format(name, ", ".join(ls))
else:
return r"\text{{{}}}".format(name)
def _print_bool(self, e: bool | BooleanTrue | BooleanFalse):
return r"\text{%s}" % e
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
return r"\text{%s}" % e
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
tex = ""
for i, term in enumerate(terms):
if i == 0:
pass
elif term.could_extract_minus_sign():
tex += " - "
term = -term
else:
tex += " + "
term_tex = self._print(term)
if self._needs_add_brackets(term):
term_tex = r"\left(%s\right)" % term_tex
tex += term_tex
return tex
def _print_Cycle(self, expr):
from sympy.combinatorics.permutations import Permutation
if expr.size == 0:
return r"\left( \right)"
expr = Permutation(expr)
expr_perm = expr.cyclic_form
siz = expr.size
if expr.array_form[-1] == siz - 1:
expr_perm = expr_perm + [[siz - 1]]
term_tex = ''
for i in expr_perm:
term_tex += str(i).replace(',', r"\;")
term_tex = term_tex.replace('[', r"\left( ")
term_tex = term_tex.replace(']', r"\right)")
return term_tex
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation
from sympy.utilities.exceptions import sympy_deprecation_warning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
sympy_deprecation_warning(
f"""
Setting Permutation.print_cyclic is deprecated. Instead use
init_printing(perm_cyclic={perm_cyclic}).
""",
deprecated_since_version="1.6",
active_deprecations_target="deprecated-permutation-print_cyclic",
stacklevel=8,
)
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(expr)
if expr.size == 0:
return r"\left( \right)"
lower = [self._print(arg) for arg in expr.array_form]
upper = [self._print(arg) for arg in range(len(lower))]
row1 = " & ".join(upper)
row2 = " & ".join(lower)
mat = r" \\ ".join((row1, row2))
return r"\begin{pmatrix} %s \end{pmatrix}" % mat
def _print_AppliedPermutation(self, expr):
perm, var = expr.args
return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var))
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
strip = False if self._settings['full_prec'] else True
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_latex_numbers']
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
if self._settings['decimal_separator'] == 'comma':
mant = mant.replace('.','{,}')
return r"%s%s10^{%s}" % (mant, separator, exp)
elif str_real == "+inf":
return r"\infty"
elif str_real == "-inf":
return r"- \infty"
else:
if self._settings['decimal_separator'] == 'comma':
str_real = str_real.replace('.','{,}')
return str_real
def _print_Cross(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Curl(self, expr):
vec = expr._expr
return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Divergence(self, expr):
vec = expr._expr
return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Dot(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Gradient(self, expr):
func = expr._expr
return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Laplacian(self, expr):
func = expr._expr
return r"\Delta %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Mul(self, expr: Expr):
from sympy.physics.units import Quantity
from sympy.physics.units.prefixes import Prefix
from sympy.simplify import fraction
separator: str = self._settings['mul_symbol_latex']
numbersep: str = self._settings['mul_symbol_latex_numbers']
def convert(expr) -> str:
if not expr.is_Mul:
return str(self._print(expr))
else:
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
args = list(expr.args)
# If quantities are present append them at the back
units, nonunits = sift(args, lambda x: isinstance(x, (Quantity, Prefix)) or
(isinstance(x, Pow) and
isinstance(x.base, Quantity)), binary=True)
prefixes, units = sift(units, lambda x: isinstance(x, Prefix), binary=True)
return convert_args(nonunits + prefixes + units)
def convert_args(args) -> str:
_tex = last_term_tex = ""
for i, term in enumerate(args):
term_tex = self._print(term)
if not isinstance(term, (Quantity, Prefix)):
if self._needs_mul_brackets(term, first=(i == 0),
last=(i == len(args) - 1)):
term_tex = r"\left(%s\right)" % term_tex
if _between_two_numbers_p[0].search(last_term_tex) and \
_between_two_numbers_p[1].match(str(term)):
# between two numbers
_tex += numbersep
elif _tex:
_tex += separator
elif _tex:
_tex += separator
_tex += term_tex
last_term_tex = term_tex
return _tex
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
# XXX: _print_Pow calls this routine with instances of Pow...
if isinstance(expr, Mul):
args = expr.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
return convert_args(args)
include_parens = False
if expr.could_extract_minus_sign():
expr = -expr
tex = "- "
if expr.is_Add:
tex += "("
include_parens = True
else:
tex = ""
numer, denom = fraction(expr, exact=True)
if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args:
# use the original expression here, since fraction() may have
# altered it when producing numer and denom
tex += convert(expr)
else:
snumer = convert(numer)
sdenom = convert(denom)
ldenom = len(sdenom.split())
ratio = self._settings['long_frac_ratio']
if self._settings['fold_short_frac'] and ldenom <= 2 and \
"^" not in sdenom:
# handle short fractions
if self._needs_mul_brackets(numer, last=False):
tex += r"\left(%s\right) / %s" % (snumer, sdenom)
else:
tex += r"%s / %s" % (snumer, sdenom)
elif ratio is not None and \
len(snumer.split()) > ratio*ldenom:
# handle long fractions
if self._needs_mul_brackets(numer, last=True):
tex += r"\frac{1}{%s}%s\left(%s\right)" \
% (sdenom, separator, snumer)
elif numer.is_Mul:
# split a long numerator
a = S.One
b = S.One
for x in numer.args:
if self._needs_mul_brackets(x, last=False) or \
len(convert(a*x).split()) > ratio*ldenom or \
(b.is_commutative is x.is_commutative is False):
b *= x
else:
a *= x
if self._needs_mul_brackets(b, last=True):
tex += r"\frac{%s}{%s}%s\left(%s\right)" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{%s}{%s}%s%s" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer)
else:
tex += r"\frac{%s}{%s}" % (snumer, sdenom)
if include_parens:
tex += ")"
return tex
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_PrimeIdeal(self, expr):
p = self._print(expr.p)
if expr.is_inert:
return rf'\left({p}\right)'
alpha = self._print(expr.alpha.as_expr())
return rf'\left({p}, {alpha}\right)'
def _print_Pow(self, expr: Pow):
# Treat x**Rational(1,n) as special case
if expr.exp.is_Rational:
p: int = expr.exp.p # type: ignore
q: int = expr.exp.q # type: ignore
if abs(p) == 1 and q != 1 and self._settings['root_notation']:
base = self._print(expr.base)
if q == 2:
tex = r"\sqrt{%s}" % base
elif self._settings['itex']:
tex = r"\root{%d}{%s}" % (q, base)
else:
tex = r"\sqrt[%d]{%s}" % (q, base)
if expr.exp.is_negative:
return r"\frac{1}{%s}" % tex
else:
return tex
elif self._settings['fold_frac_powers'] and q != 1:
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
# issue #12886: add parentheses for superscripts raised to powers
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
if expr.base.is_Function:
return self._print(expr.base, exp="%s/%s" % (p, q))
return r"%s^{%s/%s}" % (base, p, q)
elif expr.exp.is_negative and expr.base.is_commutative:
# special case for 1^(-x), issue 9216
if expr.base == 1:
return r"%s^{%s}" % (expr.base, expr.exp)
# special case for (1/x)^(-y) and (-1/-x)^(-y), issue 20252
if expr.base.is_Rational:
base_p: int = expr.base.p # type: ignore
base_q: int = expr.base.q # type: ignore
if base_p * base_q == abs(base_q):
if expr.exp == -1:
return r"\frac{1}{\frac{%s}{%s}}" % (base_p, base_q)
else:
return r"\frac{1}{(\frac{%s}{%s})^{%s}}" % (base_p, base_q, abs(expr.exp))
# things like 1/x
return self._print_Mul(expr)
if expr.base.is_Function:
return self._print(expr.base, exp=self._print(expr.exp))
tex = r"%s^{%s}"
return self._helper_print_standard_power(expr, tex)
def _helper_print_standard_power(self, expr, template: str) -> str:
exp = self._print(expr.exp)
# issue #12886: add parentheses around superscripts raised
# to powers
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
elif (isinstance(expr.base, Derivative)
and base.startswith(r'\left(')
and re.match(r'\\left\(\\d?d?dot', base)
and base.endswith(r'\right)')):
# don't use parentheses around dotted derivative
base = base[6: -7] # remove outermost added parens
return template % (base, exp)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_Sum(self, expr):
if len(expr.limits) == 1:
tex = r"\sum_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\sum_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_Product(self, expr):
if len(expr.limits) == 1:
tex = r"\prod_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\prod_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_BasisDependent(self, expr: 'BasisDependent'):
from sympy.vector import Vector
o1: list[str] = []
if expr == expr.zero:
return expr.zero._latex_form
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key=lambda x: x[0].__str__())
for k, v in inneritems:
if v == 1:
o1.append(' + ' + k._latex_form)
elif v == -1:
o1.append(' - ' + k._latex_form)
else:
arg_str = r'\left(' + self._print(v) + r'\right)'
o1.append(' + ' + arg_str + k._latex_form)
outstr = (''.join(o1))
if outstr[1] != '-':
outstr = outstr[3:]
else:
outstr = outstr[1:]
return outstr
def _print_Indexed(self, expr):
tex_base = self._print(expr.base)
tex = '{'+tex_base+'}'+'_{%s}' % ','.join(
map(self._print, expr.indices))
return tex
def _print_IndexedBase(self, expr):
return self._print(expr.label)
def _print_Idx(self, expr):
label = self._print(expr.label)
if expr.upper is not None:
upper = self._print(expr.upper)
if expr.lower is not None:
lower = self._print(expr.lower)
else:
lower = self._print(S.Zero)
interval = '{lower}\\mathrel{{..}}\\nobreak {upper}'.format(
lower = lower, upper = upper)
return '{{{label}}}_{{{interval}}}'.format(
label = label, interval = interval)
#if no bounds are defined this just prints the label
return label
def _print_Derivative(self, expr):
if requires_partial(expr.expr):
diff_symbol = r'\partial'
else:
diff_symbol = self._settings["diff_operator_latex"]
tex = ""
dim = 0
for x, num in reversed(expr.variable_count):
dim += num
if num == 1:
tex += r"%s %s" % (diff_symbol, self._print(x))
else:
tex += r"%s %s^{%s}" % (diff_symbol,
self.parenthesize_super(self._print(x)),
self._print(num))
if dim == 1:
tex = r"\frac{%s}{%s}" % (diff_symbol, tex)
else:
tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex)
if any(i.could_extract_minus_sign() for i in expr.args):
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=True,
strict=True))
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=False,
strict=True))
def _print_Subs(self, subs):
expr, old, new = subs.args
latex_expr = self._print(expr)
latex_old = (self._print(e) for e in old)
latex_new = (self._print(e) for e in new)
latex_subs = r'\\ '.join(
e[0] + '=' + e[1] for e in zip(latex_old, latex_new))
return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr,
latex_subs)
def _print_Integral(self, expr):
tex, symbols = "", []
diff_symbol = self._settings["diff_operator_latex"]
# Only up to \iiiint exists
if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits):
# Use len(expr.limits)-1 so that syntax highlighters don't think
# \" is an escaped quote
tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt"
symbols = [r"\, %s%s" % (diff_symbol, self._print(symbol[0]))
for symbol in expr.limits]
else:
for lim in reversed(expr.limits):
symbol = lim[0]
tex += r"\int"
if len(lim) > 1:
if self._settings['mode'] != 'inline' \
and not self._settings['itex']:
tex += r"\limits"
if len(lim) == 3:
tex += "_{%s}^{%s}" % (self._print(lim[1]),
self._print(lim[2]))
if len(lim) == 2:
tex += "^{%s}" % (self._print(lim[1]))
symbols.insert(0, r"\, %s%s" % (diff_symbol, self._print(symbol)))
return r"%s %s%s" % (tex, self.parenthesize(expr.function,
PRECEDENCE["Mul"],
is_neg=any(i.could_extract_minus_sign() for i in expr.args),
strict=True),
"".join(symbols))
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
tex = r"\lim_{%s \to " % self._print(z)
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
tex += r"%s}" % self._print(z0)
else:
tex += r"%s^%s}" % (self._print(z0), self._print(dir))
if isinstance(e, AssocOp):
return r"%s\left(%s\right)" % (tex, self._print(e))
else:
return r"%s %s" % (tex, self._print(e))
def _hprint_Function(self, func: str) -> str:
r'''
Logic to decide how to render a function to latex
- if it is a recognized latex name, use the appropriate latex command
- if it is a single letter, excluding sub- and superscripts, just use that letter
- if it is a longer name, then put \operatorname{} around it and be
mindful of undercores in the name
'''
func = self._deal_with_super_sub(func)
superscriptidx = func.find("^")
subscriptidx = func.find("_")
if func in accepted_latex_functions:
name = r"\%s" % func
elif len(func) == 1 or func.startswith('\\') or subscriptidx == 1 or superscriptidx == 1:
name = func
else:
if superscriptidx > 0 and subscriptidx > 0:
name = r"\operatorname{%s}%s" %(
func[:min(subscriptidx,superscriptidx)],
func[min(subscriptidx,superscriptidx):])
elif superscriptidx > 0:
name = r"\operatorname{%s}%s" %(
func[:superscriptidx],
func[superscriptidx:])
elif subscriptidx > 0:
name = r"\operatorname{%s}%s" %(
func[:subscriptidx],
func[subscriptidx:])
else:
name = r"\operatorname{%s}" % func
return name
def _print_Function(self, expr: Function, exp=None) -> str:
r'''
Render functions to LaTeX, handling functions that LaTeX knows about
e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...).
For single-letter function names, render them as regular LaTeX math
symbols. For multi-letter function names that LaTeX does not know
about, (e.g., Li, sech) use \operatorname{} so that the function name
is rendered in Roman font and LaTeX handles spacing properly.
expr is the expression involving the function
exp is an exponent
'''
func = expr.func.__name__
if hasattr(self, '_print_' + func) and \
not isinstance(expr, AppliedUndef):
return getattr(self, '_print_' + func)(expr, exp)
else:
args = [str(self._print(arg)) for arg in expr.args]
# How inverse trig functions should be displayed, formats are:
# abbreviated: asin, full: arcsin, power: sin^-1
inv_trig_style = self._settings['inv_trig_style']
# If we are dealing with a power-style inverse trig function
inv_trig_power_case = False
# If it is applicable to fold the argument brackets
can_fold_brackets = self._settings['fold_func_brackets'] and \
len(args) == 1 and \
not self._needs_function_brackets(expr.args[0])
inv_trig_table = [
"asin", "acos", "atan",
"acsc", "asec", "acot",
"asinh", "acosh", "atanh",
"acsch", "asech", "acoth",
]
# If the function is an inverse trig function, handle the style
if func in inv_trig_table:
if inv_trig_style == "abbreviated":
pass
elif inv_trig_style == "full":
func = ("ar" if func[-1] == "h" else "arc") + func[1:]
elif inv_trig_style == "power":
func = func[1:]
inv_trig_power_case = True
# Can never fold brackets if we're raised to a power
if exp is not None:
can_fold_brackets = False
if inv_trig_power_case:
if func in accepted_latex_functions:
name = r"\%s^{-1}" % func
else:
name = r"\operatorname{%s}^{-1}" % func
elif exp is not None:
func_tex = self._hprint_Function(func)
func_tex = self.parenthesize_super(func_tex)
name = r'%s^{%s}' % (func_tex, exp)
else:
name = self._hprint_Function(func)
if can_fold_brackets:
if func in accepted_latex_functions:
# Wrap argument safely to avoid parse-time conflicts
# with the function name itself
name += r" {%s}"
else:
name += r"%s"
else:
name += r"{\left(%s \right)}"
if inv_trig_power_case and exp is not None:
name += r"^{%s}" % exp
return name % ",".join(args)
def _print_UndefinedFunction(self, expr):
return self._hprint_Function(str(expr))
def _print_ElementwiseApplyFunction(self, expr):
return r"{%s}_{\circ}\left({%s}\right)" % (
self._print(expr.function),
self._print(expr.expr),
)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: r'\delta',
gamma: r'\Gamma',
lowergamma: r'\gamma',
beta: r'\operatorname{B}',
DiracDelta: r'\delta',
Chi: r'\operatorname{Chi}'}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
return self._special_function_classes[cls]
return self._hprint_Function(str(expr))
def _print_Lambda(self, expr):
symbols, expr = expr.args
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(tuple(symbols))
tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr))
return tex
def _print_IdentityFunction(self, expr):
return r"\left( x \mapsto x \right)"
def _hprint_variadic_function(self, expr, exp=None) -> str:
args = sorted(expr.args, key=default_sort_key)
texargs = [r"%s" % self._print(symbol) for symbol in args]
tex = r"\%s\left(%s\right)" % (str(expr.func).lower(),
", ".join(texargs))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Min = _print_Max = _hprint_variadic_function
def _print_floor(self, expr, exp=None):
tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_ceiling(self, expr, exp=None):
tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_log(self, expr, exp=None):
if not self._settings["ln_notation"]:
tex = r"\log{\left(%s \right)}" % self._print(expr.args[0])
else:
tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_Abs(self, expr, exp=None):
tex = r"\left|{%s}\right|" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_re(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_im(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_Not(self, e):
from sympy.logic.boolalg import (Equivalent, Implies)
if isinstance(e.args[0], Equivalent):
return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow")
if isinstance(e.args[0], Implies):
return self._print_Implies(e.args[0], r"\not\Rightarrow")
if (e.args[0].is_Boolean):
return r"\neg \left(%s\right)" % self._print(e.args[0])
else:
return r"\neg %s" % self._print(e.args[0])
def _print_LogOp(self, args, char):
arg = args[0]
if arg.is_Boolean and not arg.is_Not:
tex = r"\left(%s\right)" % self._print(arg)
else:
tex = r"%s" % self._print(arg)
for arg in args[1:]:
if arg.is_Boolean and not arg.is_Not:
tex += r" %s \left(%s\right)" % (char, self._print(arg))
else:
tex += r" %s %s" % (char, self._print(arg))
return tex
def _print_And(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\wedge")
def _print_Or(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\vee")
def _print_Xor(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\veebar")
def _print_Implies(self, e, altchar=None):
return self._print_LogOp(e.args, altchar or r"\Rightarrow")
def _print_Equivalent(self, e, altchar=None):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, altchar or r"\Leftrightarrow")
def _print_conjugate(self, expr, exp=None):
tex = r"\overline{%s}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_polar_lift(self, expr, exp=None):
func = r"\operatorname{polar\_lift}"
arg = r"{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (func, exp, arg)
else:
return r"%s%s" % (func, arg)
def _print_ExpBase(self, expr, exp=None):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
tex = r"e^{%s}" % self._print(expr.args[0])
return self._do_exponent(tex, exp)
def _print_Exp1(self, expr, exp=None):
return "e"
def _print_elliptic_k(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"K^{%s}%s" % (exp, tex)
else:
return r"K%s" % tex
def _print_elliptic_f(self, expr, exp=None):
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"F^{%s}%s" % (exp, tex)
else:
return r"F%s" % tex
def _print_elliptic_e(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"E^{%s}%s" % (exp, tex)
else:
return r"E%s" % tex
def _print_elliptic_pi(self, expr, exp=None):
if len(expr.args) == 3:
tex = r"\left(%s; %s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]),
self._print(expr.args[2]))
else:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"\Pi^{%s}%s" % (exp, tex)
else:
return r"\Pi%s" % tex
def _print_beta(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\operatorname{B}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{B}%s" % tex
def _print_betainc(self, expr, exp=None, operator='B'):
largs = [self._print(arg) for arg in expr.args]
tex = r"\left(%s, %s\right)" % (largs[0], largs[1])
if exp is not None:
return r"\operatorname{%s}_{(%s, %s)}^{%s}%s" % (operator, largs[2], largs[3], exp, tex)
else:
return r"\operatorname{%s}_{(%s, %s)}%s" % (operator, largs[2], largs[3], tex)
def _print_betainc_regularized(self, expr, exp=None):
return self._print_betainc(expr, exp, operator='I')
def _print_uppergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\Gamma^{%s}%s" % (exp, tex)
else:
return r"\Gamma%s" % tex
def _print_lowergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\gamma^{%s}%s" % (exp, tex)
else:
return r"\gamma%s" % tex
def _hprint_one_arg_func(self, expr, exp=None) -> str:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (self._print(expr.func), exp, tex)
else:
return r"%s%s" % (self._print(expr.func), tex)
_print_gamma = _hprint_one_arg_func
def _print_Chi(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\operatorname{Chi}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{Chi}%s" % tex
def _print_expint(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[1])
nu = self._print(expr.args[0])
if exp is not None:
return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex)
else:
return r"\operatorname{E}_{%s}%s" % (nu, tex)
def _print_fresnels(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"S^{%s}%s" % (exp, tex)
else:
return r"S%s" % tex
def _print_fresnelc(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"C^{%s}%s" % (exp, tex)
else:
return r"C%s" % tex
def _print_subfactorial(self, expr, exp=None):
tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"\left(%s\right)^{%s}" % (tex, exp)
else:
return tex
def _print_factorial(self, expr, exp=None):
tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_factorial2(self, expr, exp=None):
tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_binomial(self, expr, exp=None):
tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_RisingFactorial(self, expr, exp=None):
n, k = expr.args
base = r"%s" % self.parenthesize(n, PRECEDENCE['Func'])
tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k))
return self._do_exponent(tex, exp)
def _print_FallingFactorial(self, expr, exp=None):
n, k = expr.args
sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func'])
tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub)
return self._do_exponent(tex, exp)
def _hprint_BesselBase(self, expr, exp, sym: str) -> str:
tex = r"%s" % (sym)
need_exp = False
if exp is not None:
if tex.find('^') == -1:
tex = r"%s^{%s}" % (tex, exp)
else:
need_exp = True
tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order),
self._print(expr.argument))
if need_exp:
tex = self._do_exponent(tex, exp)
return tex
def _hprint_vec(self, vec) -> str:
if not vec:
return ""
s = ""
for i in vec[:-1]:
s += "%s, " % self._print(i)
s += self._print(vec[-1])
return s
def _print_besselj(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'J')
def _print_besseli(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'I')
def _print_besselk(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'K')
def _print_bessely(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'Y')
def _print_yn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'y')
def _print_jn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'j')
def _print_hankel1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(1)}')
def _print_hankel2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(2)}')
def _print_hn1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(1)}')
def _print_hn2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(2)}')
def _hprint_airy(self, expr, exp=None, notation="") -> str:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (notation, exp, tex)
else:
return r"%s%s" % (notation, tex)
def _hprint_airy_prime(self, expr, exp=None, notation="") -> str:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"{%s^\prime}^{%s}%s" % (notation, exp, tex)
else:
return r"%s^\prime%s" % (notation, tex)
def _print_airyai(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Ai')
def _print_airybi(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Bi')
def _print_airyaiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Ai')
def _print_airybiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Bi')
def _print_hyper(self, expr, exp=None):
tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \
r"\middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._hprint_vec(expr.ap), self._hprint_vec(expr.bq),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_meijerg(self, expr, exp=None):
tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \
r"%s & %s \end{matrix} \middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._print(len(expr.bm)), self._print(len(expr.an)),
self._hprint_vec(expr.an), self._hprint_vec(expr.aother),
self._hprint_vec(expr.bm), self._hprint_vec(expr.bother),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_dirichlet_eta(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\eta^{%s}%s" % (exp, tex)
return r"\eta%s" % tex
def _print_zeta(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\zeta^{%s}%s" % (exp, tex)
return r"\zeta%s" % tex
def _print_stieltjes(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"_{%s}" % self._print(expr.args[0])
if exp is not None:
return r"\gamma%s^{%s}" % (tex, exp)
return r"\gamma%s" % tex
def _print_lerchphi(self, expr, exp=None):
tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args))
if exp is None:
return r"\Phi%s" % tex
return r"\Phi^{%s}%s" % (exp, tex)
def _print_polylog(self, expr, exp=None):
s, z = map(self._print, expr.args)
tex = r"\left(%s\right)" % z
if exp is None:
return r"\operatorname{Li}_{%s}%s" % (s, tex)
return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex)
def _print_jacobi(self, expr, exp=None):
n, a, b, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_gegenbauer(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevt(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"T_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevu(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"U_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_legendre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"P_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_legendre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_hermite(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"H_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_laguerre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"L_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_laguerre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Ynm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Znm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def __print_mathieu_functions(self, character, args, prime=False, exp=None):
a, q, z = map(self._print, args)
sup = r"^{\prime}" if prime else ""
exp = "" if not exp else "^{%s}" % exp
return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp)
def _print_mathieuc(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, exp=exp)
def _print_mathieus(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, exp=exp)
def _print_mathieucprime(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp)
def _print_mathieusprime(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp)
def _print_Rational(self, expr):
if expr.q != 1:
sign = ""
p = expr.p
if expr.p < 0:
sign = "- "
p = -p
if self._settings['fold_short_frac']:
return r"%s%d / %d" % (sign, p, expr.q)
return r"%s\frac{%d}{%d}" % (sign, p, expr.q)
else:
return self._print(expr.p)
def _print_Order(self, expr):
s = self._print(expr.expr)
if expr.point and any(p != S.Zero for p in expr.point) or \
len(expr.variables) > 1:
s += '; '
if len(expr.variables) > 1:
s += self._print(expr.variables)
elif expr.variables:
s += self._print(expr.variables[0])
s += r'\rightarrow '
if len(expr.point) > 1:
s += self._print(expr.point)
else:
s += self._print(expr.point[0])
return r"O\left(%s\right)" % s
def _print_Symbol(self, expr: Symbol, style='plain'):
name: str = self._settings['symbol_names'].get(expr)
if name is not None:
return name
return self._deal_with_super_sub(expr.name, style=style)
_print_RandomSymbol = _print_Symbol
def _deal_with_super_sub(self, string: str, style='plain') -> str:
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
# apply the style only to the name
if style == 'bold':
name = "\\mathbf{{{}}}".format(name)
# glue all items together:
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Relational(self, expr):
if self._settings['itex']:
gt = r"\gt"
lt = r"\lt"
else:
gt = ">"
lt = "<"
charmap = {
"==": "=",
">": gt,
"<": lt,
">=": r"\geq",
"<=": r"\leq",
"!=": r"\neq",
}
return "%s %s %s" % (self._print(expr.lhs),
charmap[expr.rel_op], self._print(expr.rhs))
def _print_Piecewise(self, expr):
ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c))
for e, c in expr.args[:-1]]
if expr.args[-1].cond == true:
ecpairs.append(r"%s & \text{otherwise}" %
self._print(expr.args[-1].expr))
else:
ecpairs.append(r"%s & \text{for}\: %s" %
(self._print(expr.args[-1].expr),
self._print(expr.args[-1].cond)))
tex = r"\begin{cases} %s \end{cases}"
return tex % r" \\".join(ecpairs)
def _print_matrix_contents(self, expr):
lines = []
for line in range(expr.rows): # horrible, should be 'rows'
lines.append(" & ".join([self._print(i) for i in expr[line, :]]))
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.cols <= 10) is True:
mat_str = 'matrix'
else:
mat_str = 'array'
out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
out_str = out_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s')
return out_str % r"\\".join(lines)
def _print_MatrixBase(self, expr):
out_str = self._print_matrix_contents(expr)
if self._settings['mat_delim']:
left_delim: str = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
out_str = r'\left' + left_delim + out_str + \
r'\right' + right_delim
return out_str
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\
+ '_{%s, %s}' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def latexslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = None
if x[1] == dim:
x[1] = None
return ':'.join(self._print(xi) if xi is not None else '' for xi in x)
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' +
latexslice(expr.rowslice, expr.parent.rows) + ', ' +
latexslice(expr.colslice, expr.parent.cols) + r'\right]')
def _print_BlockMatrix(self, expr):
return self._print(expr.blocks)
def _print_Transpose(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol, BlockMatrix
if (not isinstance(mat, MatrixSymbol) and
not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
return r"\left(%s\right)^{T}" % self._print(mat)
else:
s = self.parenthesize(mat, precedence_traditional(expr), True)
if '^' in s:
return r"\left(%s\right)^{T}" % s
else:
return "%s^{T}" % s
def _print_Trace(self, expr):
mat = expr.arg
return r"\operatorname{tr}\left(%s \right)" % self._print(mat)
def _print_Adjoint(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol, BlockMatrix
if (not isinstance(mat, MatrixSymbol) and
not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
return r"\left(%s\right)^{\dagger}" % self._print(mat)
else:
s = self.parenthesize(mat, precedence_traditional(expr), True)
if '^' in s:
return r"\left(%s\right)^{\dagger}" % s
else:
return r"%s^{\dagger}" % s
def _print_MatMul(self, expr):
from sympy import MatMul
# Parenthesize nested MatMul but not other types of Mul objects:
parens = lambda x: self._print(x) if isinstance(x, Mul) and not isinstance(x, MatMul) else \
self.parenthesize(x, precedence_traditional(expr), False)
args = list(expr.args)
if expr.could_extract_minus_sign():
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
return '- ' + ' '.join(map(parens, args))
else:
return ' '.join(map(parens, args))
def _print_Determinant(self, expr):
mat = expr.arg
if mat.is_MatrixExpr:
from sympy.matrices.expressions.blockmatrix import BlockMatrix
if isinstance(mat, BlockMatrix):
return r"\left|{%s}\right|" % self._print_matrix_contents(mat.blocks)
return r"\left|{%s}\right|" % self._print(mat)
return r"\left|{%s}\right|" % self._print_matrix_contents(mat)
def _print_Mod(self, expr, exp=None):
if exp is not None:
return r'\left(%s \bmod %s\right)^{%s}' % \
(self.parenthesize(expr.args[0], PRECEDENCE['Mul'],
strict=True),
self.parenthesize(expr.args[1], PRECEDENCE['Mul'],
strict=True),
exp)
return r'%s \bmod %s' % (self.parenthesize(expr.args[0],
PRECEDENCE['Mul'],
strict=True),
self.parenthesize(expr.args[1],
PRECEDENCE['Mul'],
strict=True))
def _print_HadamardProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \circ '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_HadamardPower(self, expr):
if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]:
template = r"%s^{\circ \left({%s}\right)}"
else:
template = r"%s^{\circ {%s}}"
return self._helper_print_standard_power(expr, template)
def _print_KroneckerProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \otimes '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_MatPow(self, expr):
base, exp = expr.base, expr.exp
from sympy.matrices import MatrixSymbol
if not isinstance(base, MatrixSymbol) and base.is_MatrixExpr:
return "\\left(%s\\right)^{%s}" % (self._print(base),
self._print(exp))
else:
base_str = self._print(base)
if '^' in base_str:
return r"\left(%s\right)^{%s}" % (base_str, self._print(exp))
else:
return "%s^{%s}" % (base_str, self._print(exp))
def _print_MatrixSymbol(self, expr):
return self._print_Symbol(expr, style=self._settings[
'mat_symbol_style'])
def _print_ZeroMatrix(self, Z):
return "0" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{0}"
def _print_OneMatrix(self, O):
return "1" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{1}"
def _print_Identity(self, I):
return r"\mathbb{I}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{I}"
def _print_PermutationMatrix(self, P):
perm_str = self._print(P.args[0])
return "P_{%s}" % perm_str
def _print_NDimArray(self, expr: NDimArray):
if expr.rank() == 0:
return self._print(expr[()])
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.rank() == 0) or (expr.shape[-1] <= 10):
mat_str = 'matrix'
else:
mat_str = 'array'
block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
block_str = block_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
block_str= block_str.replace('%s','{}%s')
if self._settings['mat_delim']:
left_delim: str = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
block_str = r'\left' + left_delim + block_str + \
r'\right' + right_delim
if expr.rank() == 0:
return block_str % ""
level_str: list[list[str]] = [[] for i in range(expr.rank() + 1)]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(self._print(expr[outer_i]))
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(
r" & ".join(level_str[back_outer_i+1]))
else:
level_str[back_outer_i].append(
block_str % (r"\\".join(level_str[back_outer_i+1])))
if len(level_str[back_outer_i+1]) == 1:
level_str[back_outer_i][-1] = r"\left[" + \
level_str[back_outer_i][-1] + r"\right]"
even = not even
level_str[back_outer_i+1] = []
out_str = level_str[0][0]
if expr.rank() % 2 == 1:
out_str = block_str % out_str
return out_str
def _printer_tensor_indices(self, name, indices, index_map: dict):
out_str = self._print(name)
last_valence = None
prev_map = None
for index in indices:
new_valence = index.is_up
if ((index in index_map) or prev_map) and \
last_valence == new_valence:
out_str += ","
if last_valence != new_valence:
if last_valence is not None:
out_str += "}"
if index.is_up:
out_str += "{}^{"
else:
out_str += "{}_{"
out_str += self._print(index.args[0])
if index in index_map:
out_str += "="
out_str += self._print(index_map[index])
prev_map = True
else:
prev_map = False
last_valence = new_valence
if last_valence is not None:
out_str += "}"
return out_str
def _print_Tensor(self, expr):
name = expr.args[0].args[0]
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices, {})
def _print_TensorElement(self, expr):
name = expr.expr.args[0].args[0]
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
a = []
args = expr.args
for x in args:
a.append(self.parenthesize(x, precedence(expr)))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _print_TensorIndex(self, expr):
return "{}%s{%s}" % (
"^" if expr.is_up else "_",
self._print(expr.args[0])
)
def _print_PartialDerivative(self, expr):
if len(expr.variables) == 1:
return r"\frac{\partial}{\partial {%s}}{%s}" % (
self._print(expr.variables[0]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
else:
return r"\frac{\partial^{%s}}{%s}{%s}" % (
len(expr.variables),
" ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
def _print_ArraySymbol(self, expr):
return self._print(expr.name)
def _print_ArrayElement(self, expr):
return "{{%s}_{%s}}" % (
self.parenthesize(expr.name, PRECEDENCE["Func"], True),
", ".join([f"{self._print(i)}" for i in expr.indices]))
def _print_UniversalSet(self, expr):
return r"\mathbb{U}"
def _print_frac(self, expr, exp=None):
if exp is None:
return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0])
else:
return r"\operatorname{frac}{\left(%s\right)}^{%s}" % (
self._print(expr.args[0]), exp)
def _print_tuple(self, expr):
if self._settings['decimal_separator'] == 'comma':
sep = ";"
elif self._settings['decimal_separator'] == 'period':
sep = ","
else:
raise ValueError('Unknown Decimal Separator')
if len(expr) == 1:
# 1-tuple needs a trailing separator
return self._add_parens_lspace(self._print(expr[0]) + sep)
else:
return self._add_parens_lspace(
(sep + r" \ ").join([self._print(i) for i in expr]))
def _print_TensorProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \otimes '.join(elements)
def _print_WedgeProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \wedge '.join(elements)
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_list(self, expr):
if self._settings['decimal_separator'] == 'comma':
return r"\left[ %s\right]" % \
r"; \ ".join([self._print(i) for i in expr])
elif self._settings['decimal_separator'] == 'period':
return r"\left[ %s\right]" % \
r", \ ".join([self._print(i) for i in expr])
else:
raise ValueError('Unknown Decimal Separator')
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
val = d[key]
items.append("%s : %s" % (self._print(key), self._print(val)))
return r"\left\{ %s\right\}" % r", \ ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_DiracDelta(self, expr, exp=None):
if len(expr.args) == 1 or expr.args[1] == 0:
tex = r"\delta\left(%s\right)" % self._print(expr.args[0])
else:
tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (
self._print(expr.args[1]), self._print(expr.args[0]))
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_SingularityFunction(self, expr, exp=None):
shift = self._print(expr.args[0] - expr.args[1])
power = self._print(expr.args[2])
tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power)
if exp is not None:
tex = r"{\left({\langle %s \rangle}^{%s}\right)}^{%s}" % (shift, power, exp)
return tex
def _print_Heaviside(self, expr, exp=None):
pargs = ', '.join(self._print(arg) for arg in expr.pargs)
tex = r"\theta\left(%s\right)" % pargs
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_KroneckerDelta(self, expr, exp=None):
i = self._print(expr.args[0])
j = self._print(expr.args[1])
if expr.args[0].is_Atom and expr.args[1].is_Atom:
tex = r'\delta_{%s %s}' % (i, j)
else:
tex = r'\delta_{%s, %s}' % (i, j)
if exp is not None:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_LeviCivita(self, expr, exp=None):
indices = map(self._print, expr.args)
if all(x.is_Atom for x in expr.args):
tex = r'\varepsilon_{%s}' % " ".join(indices)
else:
tex = r'\varepsilon_{%s}' % ", ".join(indices)
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return '\\text{Domain: }' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('\\text{Domain: }' + self._print(d.symbols) + ' \\in ' +
self._print(d.set))
elif hasattr(d, 'symbols'):
return '\\text{Domain on }' + self._print(d.symbols)
else:
return self._print(None)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_set(items)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
if self._settings['decimal_separator'] == 'comma':
items = "; ".join(map(self._print, items))
elif self._settings['decimal_separator'] == 'period':
items = ", ".join(map(self._print, items))
else:
raise ValueError('Unknown Decimal Separator')
return r"\left\{%s\right\}" % items
_print_frozenset = _print_set
def _print_Range(self, s):
def _print_symbolic_range():
# Symbolic Range that cannot be resolved
if s.args[0] == 0:
if s.args[2] == 1:
cont = self._print(s.args[1])
else:
cont = ", ".join(self._print(arg) for arg in s.args)
else:
if s.args[2] == 1:
cont = ", ".join(self._print(arg) for arg in s.args[:2])
else:
cont = ", ".join(self._print(arg) for arg in s.args)
return(f"\\text{{Range}}\\left({cont}\\right)")
dots = object()
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif s.is_empty is not None:
if (s.size < 4) == True:
printset = tuple(s)
elif s.is_iterable:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
return _print_symbolic_range()
else:
return _print_symbolic_range()
return (r"\left\{" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right\}")
def __print_number_polynomial(self, expr, letter, exp=None):
if len(expr.args) == 2:
if exp is not None:
return r"%s_{%s}^{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), exp,
self._print(expr.args[1]))
return r"%s_{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), self._print(expr.args[1]))
tex = r"%s_{%s}" % (letter, self._print(expr.args[0]))
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_bernoulli(self, expr, exp=None):
return self.__print_number_polynomial(expr, "B", exp)
def _print_bell(self, expr, exp=None):
if len(expr.args) == 3:
tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for
el in expr.args[2])
if exp is not None:
tex = r"%s^{%s}%s" % (tex1, exp, tex2)
else:
tex = tex1 + tex2
return tex
return self.__print_number_polynomial(expr, "B", exp)
def _print_fibonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "F", exp)
def _print_lucas(self, expr, exp=None):
tex = r"L_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_tribonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "T", exp)
def _print_SeqFormula(self, s):
dots = object()
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
return r"\left\{%s\right\}_{%s=%s}^{%s}" % (
self._print(s.formula),
self._print(s.variables[0]),
self._print(s.start),
self._print(s.stop)
)
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
else:
printset = tuple(s)
return (r"\left[" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right]")
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_Interval(self, i):
if i.start == i.end:
return r"\left\{%s\right\}" % self._print(i.start)
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return r"\left%s%s, %s\right%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_AccumulationBounds(self, i):
return r"\left\langle %s, %s\right\rangle" % \
(self._print(i.min), self._print(i.max))
def _print_Union(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cup ".join(args_str)
def _print_Complement(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \setminus ".join(args_str)
def _print_Intersection(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cap ".join(args_str)
def _print_SymmetricDifference(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \triangle ".join(args_str)
def _print_ProductSet(self, p):
prec = precedence_traditional(p)
if len(p.sets) >= 1 and not has_variety(p.sets):
return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets)
return r" \times ".join(
self.parenthesize(set, prec) for set in p.sets)
def _print_EmptySet(self, e):
return r"\emptyset"
def _print_Naturals(self, n):
return r"\mathbb{N}"
def _print_Naturals0(self, n):
return r"\mathbb{N}_0"
def _print_Integers(self, i):
return r"\mathbb{Z}"
def _print_Rationals(self, i):
return r"\mathbb{Q}"
def _print_Reals(self, i):
return r"\mathbb{R}"
def _print_Complexes(self, i):
return r"\mathbb{C}"
def _print_ImageSet(self, s):
expr = s.lamda.expr
sig = s.lamda.signature
xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets))
xinys = r", ".join(r"%s \in %s" % xy for xy in xys)
return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys)
def _print_ConditionSet(self, s):
vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)])
if s.base_set is S.UniversalSet:
return r"\left\{%s\; \middle|\; %s \right\}" % \
(vars_print, self._print(s.condition))
return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % (
vars_print,
vars_print,
self._print(s.base_set),
self._print(s.condition))
def _print_PowerSet(self, expr):
arg_print = self._print(expr.args[0])
return r"\mathcal{{P}}\left({}\right)".format(arg_print)
def _print_ComplexRegion(self, s):
vars_print = ', '.join([self._print(var) for var in s.variables])
return r"\left\{%s\; \middle|\; %s \in %s \right\}" % (
self._print(s.expr),
vars_print,
self._print(s.sets))
def _print_Contains(self, e):
return r"%s \in %s" % tuple(self._print(a) for a in e.args)
def _print_FourierSeries(self, s):
if s.an.formula is S.Zero and s.bn.formula is S.Zero:
return self._print(s.a0)
return self._print_Add(s.truncate()) + r' + \ldots'
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_FiniteField(self, expr):
return r"\mathbb{F}_{%s}" % expr.mod
def _print_IntegerRing(self, expr):
return r"\mathbb{Z}"
def _print_RationalField(self, expr):
return r"\mathbb{Q}"
def _print_RealField(self, expr):
return r"\mathbb{R}"
def _print_ComplexField(self, expr):
return r"\mathbb{C}"
def _print_PolynomialRing(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left[%s\right]" % (domain, symbols)
def _print_FractionField(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left(%s\right)" % (domain, symbols)
def _print_PolynomialRingBase(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
inv = ""
if not expr.is_Poly:
inv = r"S_<^{-1}"
return r"%s%s\left[%s\right]" % (inv, domain, symbols)
def _print_Poly(self, poly):
cls = poly.__class__.__name__
terms = []
for monom, coeff in poly.terms():
s_monom = ''
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom += self._print(poly.gens[i])
else:
s_monom += self._print(pow(poly.gens[i], exp))
if coeff.is_Add:
if s_monom:
s_coeff = r"\left(%s\right)" % self._print(coeff)
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + " " + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ('-', '+'):
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
expr = ' '.join(terms)
gens = list(map(self._print, poly.gens))
domain = "domain=%s" % self._print(poly.get_domain())
args = ", ".join([expr] + gens + [domain])
if cls in accepted_latex_functions:
tex = r"\%s {\left(%s \right)}" % (cls, args)
else:
tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args)
return tex
def _print_ComplexRootOf(self, root):
cls = root.__class__.__name__
if cls == "ComplexRootOf":
cls = "CRootOf"
expr = self._print(root.expr)
index = root.index
if cls in accepted_latex_functions:
return r"\%s {\left(%s, %d\right)}" % (cls, expr, index)
else:
return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr,
index)
def _print_RootSum(self, expr):
cls = expr.__class__.__name__
args = [self._print(expr.expr)]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
if cls in accepted_latex_functions:
return r"\%s {\left(%s\right)}" % (cls, ", ".join(args))
else:
return r"\operatorname{%s} {\left(%s\right)}" % (cls,
", ".join(args))
def _print_OrdinalOmega(self, expr):
return r"\omega"
def _print_OmegaPower(self, expr):
exp, mul = expr.args
if mul != 1:
if exp != 1:
return r"{} \omega^{{{}}}".format(mul, exp)
else:
return r"{} \omega".format(mul)
else:
if exp != 1:
return r"\omega^{{{}}}".format(exp)
else:
return r"\omega"
def _print_Ordinal(self, expr):
return " + ".join([self._print(arg) for arg in expr.args])
def _print_PolyElement(self, poly):
mul_symbol = self._settings['mul_symbol_latex']
return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol)
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self._print(frac.numer)
denom = self._print(frac.denom)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_euler(self, expr, exp=None):
m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args
tex = r"E_{%s}" % self._print(m)
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
if x is not None:
tex = r"%s\left(%s\right)" % (tex, self._print(x))
return tex
def _print_catalan(self, expr, exp=None):
tex = r"C_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_UnifiedTransform(self, expr, s, inverse=False):
return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2]))
def _print_MellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M')
def _print_InverseMellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M', True)
def _print_LaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L')
def _print_InverseLaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L', True)
def _print_FourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F')
def _print_InverseFourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F', True)
def _print_SineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN')
def _print_InverseSineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN', True)
def _print_CosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS')
def _print_InverseCosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS', True)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(Symbol(object.name))
def _print_LambertW(self, expr, exp=None):
arg0 = self._print(expr.args[0])
exp = r"^{%s}" % (exp,) if exp is not None else ""
if len(expr.args) == 1:
result = r"W%s\left(%s\right)" % (exp, arg0)
else:
arg1 = self._print(expr.args[1])
result = "W{0}_{{{1}}}\\left({2}\\right)".format(exp, arg1, arg0)
return result
def _print_Expectation(self, expr):
return r"\operatorname{{E}}\left[{}\right]".format(self._print(expr.args[0]))
def _print_Variance(self, expr):
return r"\operatorname{{Var}}\left({}\right)".format(self._print(expr.args[0]))
def _print_Covariance(self, expr):
return r"\operatorname{{Cov}}\left({}\right)".format(", ".join(self._print(arg) for arg in expr.args))
def _print_Probability(self, expr):
return r"\operatorname{{P}}\left({}\right)".format(self._print(expr.args[0]))
def _print_Morphism(self, morphism):
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
return "%s\\rightarrow %s" % (domain, codomain)
def _print_TransferFunction(self, expr):
num, den = self._print(expr.num), self._print(expr.den)
return r"\frac{%s}{%s}" % (num, den)
def _print_Series(self, expr):
args = list(expr.args)
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
return ' '.join(map(parens, args))
def _print_MIMOSeries(self, expr):
from sympy.physics.control.lti import MIMOParallel
args = list(expr.args)[::-1]
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False) if isinstance(x, MIMOParallel) else self._print(x)
return r"\cdot".join(map(parens, args))
def _print_Parallel(self, expr):
return ' + '.join(map(self._print, expr.args))
def _print_MIMOParallel(self, expr):
return ' + '.join(map(self._print, expr.args))
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Series
num, tf = expr.sys1, TransferFunction(1, 1, expr.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.sys2.args) if \
isinstance(expr.sys2, Series) else [expr.sys2]
den_term_1 = tf
if isinstance(num, Series) and isinstance(expr.sys2, Series):
den_term_2 = Series(*num_arg_list, *den_arg_list)
elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction):
if expr.sys2 == tf:
den_term_2 = Series(*num_arg_list)
else:
den_term_2 = tf, Series(*num_arg_list, expr.sys2)
elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series):
if num == tf:
den_term_2 = Series(*den_arg_list)
else:
den_term_2 = Series(num, *den_arg_list)
else:
if num == tf:
den_term_2 = Series(*den_arg_list)
elif expr.sys2 == tf:
den_term_2 = Series(*num_arg_list)
else:
den_term_2 = Series(*num_arg_list, *den_arg_list)
numer = self._print(num)
denom_1 = self._print(den_term_1)
denom_2 = self._print(den_term_2)
_sign = "+" if expr.sign == -1 else "-"
return r"\frac{%s}{%s %s %s}" % (numer, denom_1, _sign, denom_2)
def _print_MIMOFeedback(self, expr):
from sympy.physics.control import MIMOSeries
inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1))
sys1 = self._print(expr.sys1)
_sign = "+" if expr.sign == -1 else "-"
return r"\left(I_{\tau} %s %s\right)^{-1} \cdot %s" % (_sign, inv_mat, sys1)
def _print_TransferFunctionMatrix(self, expr):
mat = self._print(expr._expr_mat)
return r"%s_\tau" % mat
def _print_DFT(self, expr):
return r"\text{{{}}}_{{{}}}".format(expr.__class__.__name__, expr.n)
_print_IDFT = _print_DFT
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(Symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return "%s:%s" % (pretty_name, pretty_morphism)
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(NamedMorphism(
morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [self._print(Symbol(component.name)) for
component in morphism.components]
component_names_list.reverse()
component_names = "\\circ ".join(component_names_list) + ":"
pretty_morphism = self._print_Morphism(morphism)
return component_names + pretty_morphism
def _print_Category(self, morphism):
return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name)))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
latex_result = self._print(diagram.premises)
if diagram.conclusions:
latex_result += "\\Longrightarrow %s" % \
self._print(diagram.conclusions)
return latex_result
def _print_DiagramGrid(self, grid):
latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width)
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
latex_result += latex(grid[i, j])
latex_result += " "
if j != grid.width - 1:
latex_result += "& "
if i != grid.height - 1:
latex_result += "\\\\"
latex_result += "\n"
latex_result += "\\end{array}\n"
return latex_result
def _print_FreeModule(self, M):
return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank))
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return r"\left[ {} \right]".format(",".join(
'{' + self._print(x) + '}' for x in m))
def _print_SubModule(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for x in m.gens))
def _print_ModuleImplementedIdeal(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for [x] in m._module.gens))
def _print_Quaternion(self, expr):
# TODO: This expression is potentially confusing,
# shall we print it as `Quaternion( ... )`?
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True)
for i in expr.args]
a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_QuotientRing(self, R):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(R.ring),
self._print(R.base_ideal))
def _print_QuotientRingElement(self, x):
return r"{{{}}} + {{{}}}".format(self._print(x.data),
self._print(x.ring.base_ideal))
def _print_QuotientModuleElement(self, m):
return r"{{{}}} + {{{}}}".format(self._print(m.data),
self._print(m.module.killed_module))
def _print_QuotientModule(self, M):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(M.base),
self._print(M.killed_module))
def _print_MatrixHomomorphism(self, h):
return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()),
self._print(h.domain), self._print(h.codomain))
def _print_Manifold(self, manifold):
string = manifold.name.name
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
name = r'\text{%s}' % name
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Patch(self, patch):
return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold))
def _print_CoordSystem(self, coordsys):
return r'\text{%s}^{\text{%s}}_{%s}' % (
self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold)
)
def _print_CovarDerivativeOp(self, cvd):
return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\mathbf{{{}}}'.format(self._print(Symbol(string)))
def _print_BaseVectorField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\partial_{{{}}}'.format(self._print(Symbol(string)))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return r'\operatorname{{d}}{}'.format(self._print(Symbol(string)))
else:
string = self._print(field)
return r'\operatorname{{d}}\left({}\right)'.format(string)
def _print_Tr(self, p):
# TODO: Handle indices
contents = self._print(p.args[0])
return r'\operatorname{{tr}}\left({}\right)'.format(contents)
def _print_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\phi\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\phi\left(%s\right)' % self._print(expr.args[0])
def _print_reduced_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\lambda\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\lambda\left(%s\right)' % self._print(expr.args[0])
def _print_divisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^{%s}%s" % (exp, tex)
return r"\sigma%s" % tex
def _print_udivisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^*^{%s}%s" % (exp, tex)
return r"\sigma^*%s" % tex
def _print_primenu(self, expr, exp=None):
if exp is not None:
return r'\left(\nu\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\nu\left(%s\right)' % self._print(expr.args[0])
def _print_primeomega(self, expr, exp=None):
if exp is not None:
return r'\left(\Omega\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\Omega\left(%s\right)' % self._print(expr.args[0])
def _print_Str(self, s):
return str(s.name)
def _print_float(self, expr):
return self._print(Float(expr))
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_mpq(self, expr):
return str(expr)
def _print_Predicate(self, expr):
return r"\operatorname{{Q}}_{{\text{{{}}}}}".format(latex_escape(str(expr.name)))
def _print_AppliedPredicate(self, expr):
pred = expr.function
args = expr.arguments
pred_latex = self._print(pred)
args_latex = ', '.join([self._print(a) for a in args])
return '%s(%s)' % (pred_latex, args_latex)
def emptyPrinter(self, expr):
# default to just printing as monospace, like would normally be shown
s = super().emptyPrinter(expr)
return r"\mathtt{\text{%s}}" % latex_escape(s)
def translate(s: str) -> str:
r'''
Check for a modifier ending the string. If present, convert the
modifier to latex and translate the rest recursively.
Given a description of a Greek letter or other special character,
return the appropriate latex.
Let everything else pass as given.
>>> from sympy.printing.latex import translate
>>> translate('alphahatdotprime')
"{\\dot{\\hat{\\alpha}}}'"
'''
# Process the rest
tex = tex_greek_dictionary.get(s)
if tex:
return tex
elif s.lower() in greek_letters_set:
return "\\" + s.lower()
elif s in other_symbols:
return "\\" + s
else:
# Process modifiers, if any, and recurse
for key in sorted(modifier_dict.keys(), key=len, reverse=True):
if s.lower().endswith(key) and len(s) > len(key):
return modifier_dict[key](translate(s[:-len(key)]))
return s
@print_function(LatexPrinter)
def latex(expr, **settings):
r"""Convert the given expression to LaTeX string representation.
Parameters
==========
full_prec: boolean, optional
If set to True, a floating point number is printed with full precision.
fold_frac_powers : boolean, optional
Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers.
fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is
simple enough (at most two terms and no powers). The default value is
``True`` for inline mode, ``False`` otherwise.
inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
``'abbreviated'``, ``'full'``, or ``'power'``. Defaults to
``'abbreviated'``.
itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
``$$...$$``.
ln_notation : boolean, optional
If set to ``True``, ``\ln`` is used instead of default ``\log``.
long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the
denominator before the printer breaks off long fractions. If ``None``
(the default value), long fractions are not broken up.
mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of ``'['``, ``'('``,
or the empty string ``''``. Defaults to ``'['``.
mat_str : string, optional
Which matrix environment string to emit. ``'smallmatrix'``,
``'matrix'``, ``'array'``, etc. Defaults to ``'smallmatrix'`` for
inline mode, ``'matrix'`` for matrices of no more than 10 columns, and
``'array'`` otherwise.
mode: string, optional
Specifies how the generated code will be delimited. ``mode`` can be one
of ``'plain'``, ``'inline'``, ``'equation'`` or ``'equation*'``. If
``mode`` is set to ``'plain'``, then the resulting code will not be
delimited at all (this is the default). If ``mode`` is set to
``'inline'`` then inline LaTeX ``$...$`` will be used. If ``mode`` is
set to ``'equation'`` or ``'equation*'``, the resulting code will be
enclosed in the ``equation`` or ``equation*`` environment (remember to
import ``amsmath`` for ``equation*``), unless the ``itex`` option is
set. In the latter case, the ``$$...$$`` syntax is used.
mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of ``None``,
``'ldot'``, ``'dot'``, or ``'times'``.
order: string, optional
Any of the supported monomial orderings (currently ``'lex'``,
``'grlex'``, or ``'grevlex'``), ``'old'``, and ``'none'``. This
parameter does nothing for `~.Mul` objects. Setting order to ``'old'``
uses the compatibility ordering for ``~.Add`` defined in Printer. For
very large expressions, set the ``order`` keyword to ``'none'`` if
speed is a concern.
symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to ``False``, exponents of the form 1/n are printed in fractonal
form. Default is ``True``, to print exponent in root form.
mat_symbol_style : string, optional
Can be either ``'plain'`` (default) or ``'bold'``. If set to
``'bold'``, a `~.MatrixSymbol` A will be printed as ``\mathbf{A}``,
otherwise as ``A``.
imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are ``'i'``
(default) and ``'j'``. Adding ``r`` or ``t`` in front gives ``\mathrm``
or ``\text``, so ``'ri'`` leads to ``\mathrm{i}`` which gives
`\mathrm{i}`.
gothic_re_im : boolean, optional
If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively.
The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`.
decimal_separator : string, optional
Specifies what separator to use to separate the whole and fractional parts of a
floating point number as in `2.5` for the default, ``period`` or `2{,}5`
when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon
separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when
``comma`` is chosen and [1,2,3] for when ``period`` is chosen.
parenthesize_super : boolean, optional
If set to ``False``, superscripted expressions will not be parenthesized when
powered. Default is ``True``, which parenthesizes the expression when powered.
min: Integer or None, optional
Sets the lower bound for the exponent to print floating point numbers in
fixed-point format.
max: Integer or None, optional
Sets the upper bound for the exponent to print floating point numbers in
fixed-point format.
diff_operator: string, optional
String to use for differential operator. Default is ``'d'``, to print in italic
form. ``'rd'``, ``'td'`` are shortcuts for ``\mathrm{d}`` and ``\text{d}``.
Notes
=====
Not using a print statement for printing, results in double backslashes for
latex commands since that's the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
========
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
``mode`` and ``itex`` options:
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
>>> print(latex((2*tau)**sin(Rational(7,2))))
\left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
>>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
\left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="power"))
\sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left[\begin{array}{c}x\\y\end{array}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
\left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
Logarithms:
>>> print(latex(log(10)))
\log{\left(10 \right)}
>>> print(latex(log(10), ln_notation=True))
\ln{\left(10 \right)}
``latex()`` also supports the builtin container types :class:`list`,
:class:`tuple`, and :class:`dict`:
>>> print(latex([2/x, y], mode='inline'))
$\left[ 2 / x, \ y\right]$
Unsupported types are rendered as monospaced plaintext:
>>> print(latex(int))
\mathtt{\text{<class 'int'>}}
>>> print(latex("plain % text"))
\mathtt{\text{plain \% text}}
See :ref:`printer_method_example` for an example of how to override
this behavior for your own types by implementing ``_latex``.
.. versionchanged:: 1.7.0
Unsupported types no longer have their ``str`` representation treated as valid latex.
"""
return LatexPrinter(settings).doprint(expr)
def print_latex(expr, **settings):
"""Prints LaTeX representation of the given expression. Takes the same
settings as ``latex()``."""
print(latex(expr, **settings))
def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings):
r"""
This function generates a LaTeX equation with a multiline right-hand side
in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment.
Parameters
==========
lhs : Expr
Left-hand side of equation
rhs : Expr
Right-hand side of equation
terms_per_line : integer, optional
Number of terms per line to print. Default is 1.
environment : "string", optional
Which LaTeX wnvironment to use for the output. Options are "align*"
(default), "eqnarray", and "IEEEeqnarray".
use_dots : boolean, optional
If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``.
Examples
========
>>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I
>>> x, y, alpha = symbols('x y alpha')
>>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y))
>>> print(multiline_latex(x, expr))
\begin{align*}
x = & e^{i \alpha} \\
& + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using at most two terms per line:
>>> print(multiline_latex(x, expr, 2))
\begin{align*}
x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using ``eqnarray`` and dots:
>>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True))
\begin{eqnarray}
x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{eqnarray}
Using ``IEEEeqnarray``:
>>> print(multiline_latex(x, expr, environment="IEEEeqnarray"))
\begin{IEEEeqnarray}{rCl}
x & = & e^{i \alpha} \nonumber\\
& & + \sin{\left(\alpha y \right)} \nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{IEEEeqnarray}
Notes
=====
All optional parameters from ``latex`` can also be used.
"""
# Based on code from https://github.com/sympy/sympy/issues/3001
l = LatexPrinter(**settings)
if environment == "eqnarray":
result = r'\begin{eqnarray}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{eqnarray}'
doubleet = True
elif environment == "IEEEeqnarray":
result = r'\begin{IEEEeqnarray}{rCl}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{IEEEeqnarray}'
doubleet = True
elif environment == "align*":
result = r'\begin{align*}' + '\n'
first_term = '= &'
nonumber = ''
end_term = '\n\\end{align*}'
doubleet = False
else:
raise ValueError("Unknown environment: {}".format(environment))
dots = ''
if use_dots:
dots=r'\dots'
terms = rhs.as_ordered_terms()
n_terms = len(terms)
term_count = 1
for i in range(n_terms):
term = terms[i]
term_start = ''
term_end = ''
sign = '+'
if term_count > terms_per_line:
if doubleet:
term_start = '& & '
else:
term_start = '& '
term_count = 1
if term_count == terms_per_line:
# End of line
if i < n_terms-1:
# There are terms remaining
term_end = dots + nonumber + r'\\' + '\n'
else:
term_end = ''
if term.as_ordered_factors()[0] == -1:
term = -1*term
sign = r'-'
if i == 0: # beginning
if sign == '+':
sign = ''
result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs),
first_term, sign, l.doprint(term), term_end)
else:
result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign,
l.doprint(term), term_end)
term_count += 1
result += end_term
return result
|
0bfe5c79f8497d3dd1272c31a9e979090be25180a45470c6cd8beeda6238cc78 | """Printing subsystem driver
SymPy's printing system works the following way: Any expression can be
passed to a designated Printer who then is responsible to return an
adequate representation of that expression.
**The basic concept is the following:**
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
Which Method is Responsible for Printing?
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The whole printing process is started by calling ``.doprint(expr)`` on the printer
which you want to use. This method looks for an appropriate method which can
print the given expression in the given style that the printer defines.
While looking for the method, it follows these steps:
1. **Let the object print itself if it knows how.**
The printer looks for a specific method in every object. The name of that method
depends on the specific printer and is defined under ``Printer.printmethod``.
For example, StrPrinter calls ``_sympystr`` and LatexPrinter calls ``_latex``.
Look at the documentation of the printer that you want to use.
The name of the method is specified there.
This was the original way of doing printing in sympy. Every class had
its own latex, mathml, str and repr methods, but it turned out that it
is hard to produce a high quality printer, if all the methods are spread
out that far. Therefore all printing code was combined into the different
printers, which works great for built-in SymPy objects, but not that
good for user defined classes where it is inconvenient to patch the
printers.
2. **Take the best fitting method defined in the printer.**
The printer loops through expr classes (class + its bases), and tries
to dispatch the work to ``_print_<EXPR_CLASS>``
e.g., suppose we have the following class hierarchy::
Basic
|
Atom
|
Number
|
Rational
then, for ``expr=Rational(...)``, the Printer will try
to call printer methods in the order as shown in the figure below::
p._print(expr)
|
|-- p._print_Rational(expr)
|
|-- p._print_Number(expr)
|
|-- p._print_Atom(expr)
|
`-- p._print_Basic(expr)
if ``._print_Rational`` method exists in the printer, then it is called,
and the result is returned back. Otherwise, the printer tries to call
``._print_Number`` and so on.
3. **As a fall-back use the emptyPrinter method for the printer.**
As fall-back ``self.emptyPrinter`` will be called with the expression. If
not defined in the Printer subclass this will be the same as ``str(expr)``.
.. _printer_example:
Example of Custom Printer
^^^^^^^^^^^^^^^^^^^^^^^^^
In the example below, we have a printer which prints the derivative of a function
in a shorter form.
.. code-block:: python
from sympy.core.symbol import Symbol
from sympy.printing.latex import LatexPrinter, print_latex
from sympy.core.function import UndefinedFunction, Function
class MyLatexPrinter(LatexPrinter):
\"\"\"Print derivative of a function of symbols in a shorter form.
\"\"\"
def _print_Derivative(self, expr):
function, *vars = expr.args
if not isinstance(type(function), UndefinedFunction) or \\
not all(isinstance(i, Symbol) for i in vars):
return super()._print_Derivative(expr)
# If you want the printer to work correctly for nested
# expressions then use self._print() instead of str() or latex().
# See the example of nested modulo below in the custom printing
# method section.
return "{}_{{{}}}".format(
self._print(Symbol(function.func.__name__)),
''.join(self._print(i) for i in vars))
def print_my_latex(expr):
\"\"\" Most of the printers define their own wrappers for print().
These wrappers usually take printer settings. Our printer does not have
any settings.
\"\"\"
print(MyLatexPrinter().doprint(expr))
y = Symbol("y")
x = Symbol("x")
f = Function("f")
expr = f(x, y).diff(x, y)
# Print the expression using the normal latex printer and our custom
# printer.
print_latex(expr)
print_my_latex(expr)
The output of the code above is::
\\frac{\\partial^{2}}{\\partial x\\partial y} f{\\left(x,y \\right)}
f_{xy}
.. _printer_method_example:
Example of Custom Printing Method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the example below, the latex printing of the modulo operator is modified.
This is done by overriding the method ``_latex`` of ``Mod``.
>>> from sympy import Symbol, Mod, Integer, print_latex
>>> # Always use printer._print()
>>> class ModOp(Mod):
... def _latex(self, printer):
... a, b = [printer._print(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
Comparing the output of our custom operator to the builtin one:
>>> x = Symbol('x')
>>> m = Symbol('m')
>>> print_latex(Mod(x, m))
x \\bmod m
>>> print_latex(ModOp(x, m))
\\operatorname{Mod}{\\left(x, m\\right)}
Common mistakes
~~~~~~~~~~~~~~~
It's important to always use ``self._print(obj)`` to print subcomponents of
an expression when customizing a printer. Mistakes include:
1. Using ``self.doprint(obj)`` instead:
>>> # This example does not work properly, as only the outermost call may use
>>> # doprint.
>>> class ModOpModeWrong(Mod):
... def _latex(self, printer):
... a, b = [printer.doprint(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
This fails when the ``mode`` argument is passed to the printer:
>>> print_latex(ModOp(x, m), mode='inline') # ok
$\\operatorname{Mod}{\\left(x, m\\right)}$
>>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad
$\\operatorname{Mod}{\\left($x$, $m$\\right)}$
2. Using ``str(obj)`` instead:
>>> class ModOpNestedWrong(Mod):
... def _latex(self, printer):
... a, b = [str(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
This fails on nested objects:
>>> # Nested modulo.
>>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok
\\operatorname{Mod}{\\left(\\operatorname{Mod}{\\left(x, m\\right)}, 7\\right)}
>>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad
\\operatorname{Mod}{\\left(ModOpNestedWrong(x, m), 7\\right)}
3. Using ``LatexPrinter()._print(obj)`` instead.
>>> from sympy.printing.latex import LatexPrinter
>>> class ModOpSettingsWrong(Mod):
... def _latex(self, printer):
... a, b = [LatexPrinter()._print(i) for i in self.args]
... return r"\\operatorname{Mod}{\\left(%s, %s\\right)}" % (a, b)
This causes all the settings to be discarded in the subobjects. As an
example, the ``full_prec`` setting which shows floats to full precision is
ignored:
>>> from sympy import Float
>>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok
\\operatorname{Mod}{\\left(1.00000000000000 x, m\\right)}
>>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad
\\operatorname{Mod}{\\left(1.0 x, m\\right)}
"""
import sys
from typing import Any, Dict as tDict, Type
import inspect
from contextlib import contextmanager
from functools import cmp_to_key, update_wrapper
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.core import BasicMeta
from sympy.core.function import AppliedUndef, UndefinedFunction, Function
@contextmanager
def printer_context(printer, **kwargs):
original = printer._context.copy()
try:
printer._context.update(kwargs)
yield
finally:
printer._context = original
class Printer:
""" Generic printer
Its job is to provide infrastructure for implementing new printers easily.
If you want to define your custom Printer or your custom printing method
for your custom class then see the example above: printer_example_ .
"""
_global_settings = {} # type: tDict[str, Any]
_default_settings = {} # type: tDict[str, Any]
printmethod = None # type: str
@classmethod
def _get_initial_settings(cls):
settings = cls._default_settings.copy()
for key, val in cls._global_settings.items():
if key in cls._default_settings:
settings[key] = val
return settings
def __init__(self, settings=None):
self._str = str
self._settings = self._get_initial_settings()
self._context = {} # mutable during printing
if settings is not None:
self._settings.update(settings)
if len(self._settings) > len(self._default_settings):
for key in self._settings:
if key not in self._default_settings:
raise TypeError("Unknown setting '%s'." % key)
# _print_level is the number of times self._print() was recursively
# called. See StrPrinter._print_Float() for an example of usage
self._print_level = 0
@classmethod
def set_global_settings(cls, **settings):
"""Set system-wide printing settings. """
for key, val in settings.items():
if val is not None:
cls._global_settings[key] = val
@property
def order(self):
if 'order' in self._settings:
return self._settings['order']
else:
raise AttributeError("No order defined.")
def doprint(self, expr):
"""Returns printer's representation for expr (as a string)"""
return self._str(self._print(expr))
def _print(self, expr, **kwargs) -> str:
"""Internal dispatcher
Tries the following concepts to print an expression:
1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
"""
self._print_level += 1
try:
# If the printer defines a name for a printing method
# (Printer.printmethod) and the object knows for itself how it
# should be printed, use that method.
if (self.printmethod and hasattr(expr, self.printmethod)
and not isinstance(expr, BasicMeta)):
return getattr(expr, self.printmethod)(self, **kwargs)
# See if the class of expr is known, or if one of its super
# classes is known, and use that print function
# Exception: ignore the subclasses of Undefined, so that, e.g.,
# Function('gamma') does not get dispatched to _print_gamma
classes = type(expr).__mro__
if AppliedUndef in classes:
classes = classes[classes.index(AppliedUndef):]
if UndefinedFunction in classes:
classes = classes[classes.index(UndefinedFunction):]
# Another exception: if someone subclasses a known function, e.g.,
# gamma, and changes the name, then ignore _print_gamma
if Function in classes:
i = classes.index(Function)
classes = tuple(c for c in classes[:i] if \
c.__name__ == classes[0].__name__ or \
c.__name__.endswith("Base")) + classes[i:]
for cls in classes:
printmethodname = '_print_' + cls.__name__
printmethod = getattr(self, printmethodname, None)
if printmethod is not None:
return printmethod(expr, **kwargs)
# Unknown object, fall back to the emptyPrinter.
return self.emptyPrinter(expr)
finally:
self._print_level -= 1
def emptyPrinter(self, expr):
return str(expr)
def _as_ordered_terms(self, expr, order=None):
"""A compatibility function for ordering terms in Add. """
order = order or self.order
if order == 'old':
return sorted(Add.make_args(expr), key=cmp_to_key(Basic._compare_pretty))
elif order == 'none':
return list(expr.args)
else:
return expr.as_ordered_terms(order=order)
class _PrintFunction:
"""
Function wrapper to replace ``**settings`` in the signature with printer defaults
"""
def __init__(self, f, print_cls: Type[Printer]):
# find all the non-setting arguments
params = list(inspect.signature(f).parameters.values())
assert params.pop(-1).kind == inspect.Parameter.VAR_KEYWORD
self.__other_params = params
self.__print_cls = print_cls
update_wrapper(self, f)
def __reduce__(self):
# Since this is used as a decorator, it replaces the original function.
# The default pickling will try to pickle self.__wrapped__ and fail
# because the wrapped function can't be retrieved by name.
return self.__wrapped__.__qualname__
def __call__(self, *args, **kwargs):
return self.__wrapped__(*args, **kwargs)
@property
def __signature__(self) -> inspect.Signature:
settings = self.__print_cls._get_initial_settings()
return inspect.Signature(
parameters=self.__other_params + [
inspect.Parameter(k, inspect.Parameter.KEYWORD_ONLY, default=v)
for k, v in settings.items()
],
return_annotation=self.__wrapped__.__annotations__.get('return', inspect.Signature.empty) # type:ignore
)
def print_function(print_cls):
""" A decorator to replace kwargs with the printer settings in __signature__ """
def decorator(f):
if sys.version_info < (3, 9):
# We have to create a subclass so that `help` actually shows the docstring in older Python versions.
# IPython and Sphinx do not need this, only a raw Python console.
cls = type(f'{f.__qualname__}_PrintFunction', (_PrintFunction,), dict(__doc__=f.__doc__))
else:
cls = _PrintFunction
return cls(f, print_cls)
return decorator
|
042c78792746f0c43c652515d655847770b36d9e0888c89df934f13e857a1475 | from .pycode import (
PythonCodePrinter,
MpmathPrinter,
)
from .numpy import NumPyPrinter # NumPyPrinter is imported for backward compatibility
from sympy.core.sorting import default_sort_key
__all__ = [
'PythonCodePrinter',
'MpmathPrinter', # MpmathPrinter is published for backward compatibility
'NumPyPrinter',
'LambdaPrinter',
'NumPyPrinter',
'IntervalPrinter',
'lambdarepr',
]
class LambdaPrinter(PythonCodePrinter):
"""
This printer converts expressions into strings that can be used by
lambdify.
"""
printmethod = "_lambdacode"
def _print_And(self, expr):
result = ['(']
for arg in sorted(expr.args, key=default_sort_key):
result.extend(['(', self._print(arg), ')'])
result.append(' and ')
result = result[:-1]
result.append(')')
return ''.join(result)
def _print_Or(self, expr):
result = ['(']
for arg in sorted(expr.args, key=default_sort_key):
result.extend(['(', self._print(arg), ')'])
result.append(' or ')
result = result[:-1]
result.append(')')
return ''.join(result)
def _print_Not(self, expr):
result = ['(', 'not (', self._print(expr.args[0]), '))']
return ''.join(result)
def _print_BooleanTrue(self, expr):
return "True"
def _print_BooleanFalse(self, expr):
return "False"
def _print_ITE(self, expr):
result = [
'((', self._print(expr.args[1]),
') if (', self._print(expr.args[0]),
') else (', self._print(expr.args[2]), '))'
]
return ''.join(result)
def _print_NumberSymbol(self, expr):
return str(expr)
def _print_Pow(self, expr, **kwargs):
# XXX Temporary workaround. Should Python math printer be
# isolated from PythonCodePrinter?
return super(PythonCodePrinter, self)._print_Pow(expr, **kwargs)
# numexpr works by altering the string passed to numexpr.evaluate
# rather than by populating a namespace. Thus a special printer...
class NumExprPrinter(LambdaPrinter):
# key, value pairs correspond to SymPy name and numexpr name
# functions not appearing in this dict will raise a TypeError
printmethod = "_numexprcode"
_numexpr_functions = {
'sin' : 'sin',
'cos' : 'cos',
'tan' : 'tan',
'asin': 'arcsin',
'acos': 'arccos',
'atan': 'arctan',
'atan2' : 'arctan2',
'sinh' : 'sinh',
'cosh' : 'cosh',
'tanh' : 'tanh',
'asinh': 'arcsinh',
'acosh': 'arccosh',
'atanh': 'arctanh',
'ln' : 'log',
'log': 'log',
'exp': 'exp',
'sqrt' : 'sqrt',
'Abs' : 'abs',
'conjugate' : 'conj',
'im' : 'imag',
're' : 'real',
'where' : 'where',
'complex' : 'complex',
'contains' : 'contains',
}
module = 'numexpr'
def _print_ImaginaryUnit(self, expr):
return '1j'
def _print_seq(self, seq, delimiter=', '):
# simplified _print_seq taken from pretty.py
s = [self._print(item) for item in seq]
if s:
return delimiter.join(s)
else:
return ""
def _print_Function(self, e):
func_name = e.func.__name__
nstr = self._numexpr_functions.get(func_name, None)
if nstr is None:
# check for implemented_function
if hasattr(e, '_imp_'):
return "(%s)" % self._print(e._imp_(*e.args))
else:
raise TypeError("numexpr does not support function '%s'" %
func_name)
return "%s(%s)" % (nstr, self._print_seq(e.args))
def _print_Piecewise(self, expr):
"Piecewise function printer"
exprs = [self._print(arg.expr) for arg in expr.args]
conds = [self._print(arg.cond) for arg in expr.args]
# If [default_value, True] is a (expr, cond) sequence in a Piecewise object
# it will behave the same as passing the 'default' kwarg to select()
# *as long as* it is the last element in expr.args.
# If this is not the case, it may be triggered prematurely.
ans = []
parenthesis_count = 0
is_last_cond_True = False
for cond, expr in zip(conds, exprs):
if cond == 'True':
ans.append(expr)
is_last_cond_True = True
break
else:
ans.append('where(%s, %s, ' % (cond, expr))
parenthesis_count += 1
if not is_last_cond_True:
# See https://github.com/pydata/numexpr/issues/298
#
# simplest way to put a nan but raises
# 'RuntimeWarning: invalid value encountered in log'
#
# There are other ways to do this such as
#
# >>> import numexpr as ne
# >>> nan = float('nan')
# >>> ne.evaluate('where(x < 0, -1, nan)', {'x': [-1, 2, 3], 'nan':nan})
# array([-1., nan, nan])
#
# That needs to be handled in the lambdified function though rather
# than here in the printer.
ans.append('log(-1)')
return ''.join(ans) + ')' * parenthesis_count
def _print_ITE(self, expr):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(expr.rewrite(Piecewise))
def blacklisted(self, expr):
raise TypeError("numexpr cannot be used with %s" %
expr.__class__.__name__)
# blacklist all Matrix printing
_print_SparseRepMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
blacklisted
# blacklist some Python expressions
_print_list = \
_print_tuple = \
_print_Tuple = \
_print_dict = \
_print_Dict = \
blacklisted
def _print_NumExprEvaluate(self, expr):
evaluate = self._module_format(self.module +".evaluate")
return "%s('%s', truediv=True)" % (evaluate, self._print(expr.expr))
def doprint(self, expr):
from sympy.codegen.ast import CodegenAST
from sympy.codegen.pynodes import NumExprEvaluate
if not isinstance(expr, CodegenAST):
expr = NumExprEvaluate(expr)
return super().doprint(expr)
def _print_Return(self, expr):
from sympy.codegen.pynodes import NumExprEvaluate
r, = expr.args
if not isinstance(r, NumExprEvaluate):
expr = expr.func(NumExprEvaluate(r))
return super()._print_Return(expr)
def _print_Assignment(self, expr):
from sympy.codegen.pynodes import NumExprEvaluate
lhs, rhs, *args = expr.args
if not isinstance(rhs, NumExprEvaluate):
expr = expr.func(lhs, NumExprEvaluate(rhs), *args)
return super()._print_Assignment(expr)
def _print_CodeBlock(self, expr):
from sympy.codegen.ast import CodegenAST
from sympy.codegen.pynodes import NumExprEvaluate
args = [ arg if isinstance(arg, CodegenAST) else NumExprEvaluate(arg) for arg in expr.args ]
return super()._print_CodeBlock(self, expr.func(*args))
class IntervalPrinter(MpmathPrinter, LambdaPrinter):
"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
def _print_Integer(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Integer(expr)
def _print_Rational(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
def _print_Half(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
def _print_Pow(self, expr):
return super(MpmathPrinter, self)._print_Pow(expr, rational=True)
for k in NumExprPrinter._numexpr_functions:
setattr(NumExprPrinter, '_print_%s' % k, NumExprPrinter._print_Function)
def lambdarepr(expr, **settings):
"""
Returns a string usable for lambdifying.
"""
return LambdaPrinter(settings).doprint(expr)
|
91debb502e4d6085a28a9477cb2a2a8115958041ba3e52332c2a9da5389bc32b | from typing import Any, Dict as tDict, Set as tSet, Tuple as tTuple
from functools import wraps
from sympy.core import Add, Expr, Mul, Pow, S, sympify, Float
from sympy.core.basic import Basic
from sympy.core.expr import UnevaluatedExpr
from sympy.core.function import Lambda
from sympy.core.mul import _keep_coeff
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import re
from sympy.printing.str import StrPrinter
from sympy.printing.precedence import precedence, PRECEDENCE
class requires:
""" Decorator for registering requirements on print methods. """
def __init__(self, **kwargs):
self._req = kwargs
def __call__(self, method):
def _method_wrapper(self_, *args, **kwargs):
for k, v in self._req.items():
getattr(self_, k).update(v)
return method(self_, *args, **kwargs)
return wraps(method)(_method_wrapper)
class AssignmentError(Exception):
"""
Raised if an assignment variable for a loop is missing.
"""
pass
def _convert_python_lists(arg):
if isinstance(arg, list):
from sympy.codegen.abstract_nodes import List
return List(*(_convert_python_lists(e) for e in arg))
elif isinstance(arg, tuple):
return tuple(_convert_python_lists(e) for e in arg)
else:
return arg
class CodePrinter(StrPrinter):
"""
The base class for code-printing subclasses.
"""
_operators = {
'and': '&&',
'or': '||',
'not': '!',
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'error_on_reserved': False,
'reserved_word_suffix': '_',
'human': True,
'inline': False,
'allow_unknown_functions': False,
} # type: tDict[str, Any]
# Functions which are "simple" to rewrite to other functions that
# may be supported
# function_to_rewrite : (function_to_rewrite_to, iterable_with_other_functions_required)
_rewriteable_functions = {
'cot': ('tan', []),
'csc': ('sin', []),
'sec': ('cos', []),
'acot': ('atan', []),
'acsc': ('asin', []),
'asec': ('acos', []),
'coth': ('exp', []),
'csch': ('exp', []),
'sech': ('exp', []),
'acoth': ('log', []),
'acsch': ('log', []),
'asech': ('log', []),
'catalan': ('gamma', []),
'fibonacci': ('sqrt', []),
'lucas': ('sqrt', []),
'beta': ('gamma', []),
'sinc': ('sin', ['Piecewise']),
'Mod': ('floor', []),
'factorial': ('gamma', []),
'factorial2': ('gamma', ['Piecewise']),
'subfactorial': ('uppergamma', []),
'RisingFactorial': ('gamma', ['Piecewise']),
'FallingFactorial': ('gamma', ['Piecewise']),
'binomial': ('gamma', []),
'frac': ('floor', []),
'Max': ('Piecewise', []),
'Min': ('Piecewise', []),
'Heaviside': ('Piecewise', []),
'erf2': ('erf', []),
'erfc': ('erf', []),
'Li': ('li', []),
'Ei': ('li', []),
'dirichlet_eta': ('zeta', []),
'riemann_xi': ('zeta', ['gamma']),
}
def __init__(self, settings=None):
super().__init__(settings=settings)
if not hasattr(self, 'reserved_words'):
self.reserved_words = set()
def _handle_UnevaluatedExpr(self, expr):
return expr.replace(re, lambda arg: arg if isinstance(
arg, UnevaluatedExpr) and arg.args[0].is_real else re(arg))
def doprint(self, expr, assign_to=None):
"""
Print the expression as code.
Parameters
----------
expr : Expression
The expression to be printed.
assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional)
If provided, the printed code will set the expression to a variable or multiple variables
with the name or names given in ``assign_to``.
"""
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.codegen.ast import CodeBlock, Assignment
def _handle_assign_to(expr, assign_to):
if assign_to is None:
return sympify(expr)
if isinstance(assign_to, (list, tuple)):
if len(expr) != len(assign_to):
raise ValueError('Failed to assign an expression of length {} to {} variables'.format(len(expr), len(assign_to)))
return CodeBlock(*[_handle_assign_to(lhs, rhs) for lhs, rhs in zip(expr, assign_to)])
if isinstance(assign_to, str):
if expr.is_Matrix:
assign_to = MatrixSymbol(assign_to, *expr.shape)
else:
assign_to = Symbol(assign_to)
elif not isinstance(assign_to, Basic):
raise TypeError("{} cannot assign to object of type {}".format(
type(self).__name__, type(assign_to)))
return Assignment(assign_to, expr)
expr = _convert_python_lists(expr)
expr = _handle_assign_to(expr, assign_to)
# Remove re(...) nodes due to UnevaluatedExpr.is_real always is None:
expr = self._handle_UnevaluatedExpr(expr)
# keep a set of expressions that are not strictly translatable to Code
# and number constants that must be declared and initialized
self._not_supported = set()
self._number_symbols = set() # type: tSet[tTuple[Expr, Float]]
lines = self._print(expr).splitlines()
# format the output
if self._settings["human"]:
frontlines = []
if self._not_supported:
frontlines.append(self._get_comment(
"Not supported in {}:".format(self.language)))
for expr in sorted(self._not_supported, key=str):
frontlines.append(self._get_comment(type(expr).__name__))
for name, value in sorted(self._number_symbols, key=str):
frontlines.append(self._declare_number_const(name, value))
lines = frontlines + lines
lines = self._format_code(lines)
result = "\n".join(lines)
else:
lines = self._format_code(lines)
num_syms = {(k, self._print(v)) for k, v in self._number_symbols}
result = (num_syms, self._not_supported, "\n".join(lines))
self._not_supported = set()
self._number_symbols = set()
return result
def _doprint_loops(self, expr, assign_to=None):
# Here we print an expression that contains Indexed objects, they
# correspond to arrays in the generated code. The low-level implementation
# involves looping over array elements and possibly storing results in temporary
# variables or accumulate it in the assign_to object.
if self._settings.get('contract', True):
from sympy.tensor import get_contraction_structure
# Setup loops over non-dummy indices -- all terms need these
indices = self._get_expression_indices(expr, assign_to)
# Setup loops over dummy indices -- each term needs separate treatment
dummies = get_contraction_structure(expr)
else:
indices = []
dummies = {None: (expr,)}
openloop, closeloop = self._get_loop_opening_ending(indices)
# terms with no summations first
if None in dummies:
text = StrPrinter.doprint(self, Add(*dummies[None]))
else:
# If all terms have summations we must initialize array to Zero
text = StrPrinter.doprint(self, 0)
# skip redundant assignments (where lhs == rhs)
lhs_printed = self._print(assign_to)
lines = []
if text != lhs_printed:
lines.extend(openloop)
if assign_to is not None:
text = self._get_statement("%s = %s" % (lhs_printed, text))
lines.append(text)
lines.extend(closeloop)
# then terms with summations
for d in dummies:
if isinstance(d, tuple):
indices = self._sort_optimized(d, expr)
openloop_d, closeloop_d = self._get_loop_opening_ending(
indices)
for term in dummies[d]:
if term in dummies and not ([list(f.keys()) for f in dummies[term]]
== [[None] for f in dummies[term]]):
# If one factor in the term has it's own internal
# contractions, those must be computed first.
# (temporary variables?)
raise NotImplementedError(
"FIXME: no support for contractions in factor yet")
else:
# We need the lhs expression as an accumulator for
# the loops, i.e
#
# for (int d=0; d < dim; d++){
# lhs[] = lhs[] + term[][d]
# } ^.................. the accumulator
#
# We check if the expression already contains the
# lhs, and raise an exception if it does, as that
# syntax is currently undefined. FIXME: What would be
# a good interpretation?
if assign_to is None:
raise AssignmentError(
"need assignment variable for loops")
if term.has(assign_to):
raise ValueError("FIXME: lhs present in rhs,\
this is undefined in CodePrinter")
lines.extend(openloop)
lines.extend(openloop_d)
text = "%s = %s" % (lhs_printed, StrPrinter.doprint(
self, assign_to + term))
lines.append(self._get_statement(text))
lines.extend(closeloop_d)
lines.extend(closeloop)
return "\n".join(lines)
def _get_expression_indices(self, expr, assign_to):
from sympy.tensor import get_indices
rinds, junk = get_indices(expr)
linds, junk = get_indices(assign_to)
# support broadcast of scalar
if linds and not rinds:
rinds = linds
if rinds != linds:
raise ValueError("lhs indices must match non-dummy"
" rhs indices in %s" % expr)
return self._sort_optimized(rinds, assign_to)
def _sort_optimized(self, indices, expr):
from sympy.tensor.indexed import Indexed
if not indices:
return []
# determine optimized loop order by giving a score to each index
# the index with the highest score are put in the innermost loop.
score_table = {}
for i in indices:
score_table[i] = 0
arrays = expr.atoms(Indexed)
for arr in arrays:
for p, ind in enumerate(arr.indices):
try:
score_table[ind] += self._rate_index_position(p)
except KeyError:
pass
return sorted(indices, key=lambda x: score_table[x])
def _rate_index_position(self, p):
"""function to calculate score based on position among indices
This method is used to sort loops in an optimized order, see
CodePrinter._sort_optimized()
"""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _get_statement(self, codestring):
"""Formats a codestring with the proper line ending."""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _get_comment(self, text):
"""Formats a text string as a comment."""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _declare_number_const(self, name, value):
"""Declare a numeric constant at the top of a function"""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _format_code(self, lines):
"""Take in a list of lines of code, and format them accordingly.
This may include indenting, wrapping long lines, etc..."""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _get_loop_opening_ending(self, indices):
"""Returns a tuple (open_lines, close_lines) containing lists
of codelines"""
raise NotImplementedError("This function must be implemented by "
"subclass of CodePrinter.")
def _print_Dummy(self, expr):
if expr.name.startswith('Dummy_'):
return '_' + expr.name
else:
return '%s_%d' % (expr.name, expr.dummy_index)
def _print_CodeBlock(self, expr):
return '\n'.join([self._print(i) for i in expr.args])
def _print_String(self, string):
return str(string)
def _print_QuotedString(self, arg):
return '"%s"' % arg.text
def _print_Comment(self, string):
return self._get_comment(str(string))
def _print_Assignment(self, expr):
from sympy.codegen.ast import Assignment
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.tensor.indexed import IndexedBase
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
elif isinstance(lhs, MatrixSymbol):
# Here we form an Assignment for each element in the array,
# printing each one.
lines = []
for (i, j) in self._traverse_matrix_indices(lhs):
temp = Assignment(lhs[i, j], rhs[i, j])
code0 = self._print(temp)
lines.append(code0)
return "\n".join(lines)
elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_AugmentedAssignment(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
return self._get_statement("{} {} {}".format(
*map(lambda arg: self._print(arg),
[lhs_code, expr.op, rhs_code])))
def _print_FunctionCall(self, expr):
return '%s(%s)' % (
expr.name,
', '.join(map(lambda arg: self._print(arg),
expr.function_args)))
def _print_Variable(self, expr):
return self._print(expr.symbol)
def _print_Symbol(self, expr):
name = super()._print_Symbol(expr)
if name in self.reserved_words:
if self._settings['error_on_reserved']:
msg = ('This expression includes the symbol "{}" which is a '
'reserved keyword in this language.')
raise ValueError(msg.format(name))
return name + self._settings['reserved_word_suffix']
else:
return name
def _can_print(self, name):
""" Check if function ``name`` is either a known function or has its own
printing method. Used to check if rewriting is possible."""
return name in self.known_functions or getattr(self, '_print_{}'.format(name), False)
def _print_Function(self, expr):
if expr.func.__name__ in self.known_functions:
cond_func = self.known_functions[expr.func.__name__]
func = None
if isinstance(cond_func, str):
func = cond_func
else:
for cond, func in cond_func:
if cond(*expr.args):
break
if func is not None:
try:
return func(*[self.parenthesize(item, 0) for item in expr.args])
except TypeError:
return "%s(%s)" % (func, self.stringify(expr.args, ", "))
elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
# inlined function
return self._print(expr._imp_(*expr.args))
elif expr.func.__name__ in self._rewriteable_functions:
# Simple rewrite to supported function possible
target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
return self._print(expr.rewrite(target_f))
if expr.is_Function and self._settings.get('allow_unknown_functions', False):
return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args)))
else:
return self._print_not_supported(expr)
_print_Expr = _print_Function
# Don't inherit the str-printer method for Heaviside to the code printers
_print_Heaviside = None
def _print_NumberSymbol(self, expr):
if self._settings.get("inline", False):
return self._print(Float(expr.evalf(self._settings["precision"])))
else:
# A Number symbol that is not implemented here or with _printmethod
# is registered and evaluated
self._number_symbols.add((expr,
Float(expr.evalf(self._settings["precision"]))))
return str(expr)
def _print_Catalan(self, expr):
return self._print_NumberSymbol(expr)
def _print_EulerGamma(self, expr):
return self._print_NumberSymbol(expr)
def _print_GoldenRatio(self, expr):
return self._print_NumberSymbol(expr)
def _print_TribonacciConstant(self, expr):
return self._print_NumberSymbol(expr)
def _print_Exp1(self, expr):
return self._print_NumberSymbol(expr)
def _print_Pi(self, expr):
return self._print_NumberSymbol(expr)
def _print_And(self, expr):
PREC = precedence(expr)
return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC)
for a in sorted(expr.args, key=default_sort_key))
def _print_Or(self, expr):
PREC = precedence(expr)
return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC)
for a in sorted(expr.args, key=default_sort_key))
def _print_Xor(self, expr):
if self._operators.get('xor') is None:
return self._print(expr.to_nnf())
PREC = precedence(expr)
return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC)
for a in expr.args)
def _print_Equivalent(self, expr):
if self._operators.get('equivalent') is None:
return self._print(expr.to_nnf())
PREC = precedence(expr)
return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC)
for a in expr.args)
def _print_Not(self, expr):
PREC = precedence(expr)
return self._operators['not'] + self.parenthesize(expr.args[0], PREC)
def _print_BooleanFunction(self, expr):
return self._print(expr.to_nnf())
def _print_Mul(self, expr):
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
else:
a.append(item)
a = a or [S.One]
if len(a) == 1 and sign == "-":
# Unary minus does not have a SymPy class, and hence there's no
# precedence weight associated with it, Python's unary minus has
# an operator precedence between multiplication and exponentiation,
# so we use this to compute a weight.
a_str = [self.parenthesize(a[0], 0.5*(PRECEDENCE["Pow"]+PRECEDENCE["Mul"]))]
else:
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_not_supported(self, expr):
try:
self._not_supported.add(expr)
except TypeError:
# not hashable
pass
return self.emptyPrinter(expr)
# The following can not be simply translated into C or Fortran
_print_Basic = _print_not_supported
_print_ComplexInfinity = _print_not_supported
_print_Derivative = _print_not_supported
_print_ExprCondPair = _print_not_supported
_print_GeometryEntity = _print_not_supported
_print_Infinity = _print_not_supported
_print_Integral = _print_not_supported
_print_Interval = _print_not_supported
_print_AccumulationBounds = _print_not_supported
_print_Limit = _print_not_supported
_print_MatrixBase = _print_not_supported
_print_DeferredVector = _print_not_supported
_print_NaN = _print_not_supported
_print_NegativeInfinity = _print_not_supported
_print_Order = _print_not_supported
_print_RootOf = _print_not_supported
_print_RootsOf = _print_not_supported
_print_RootSum = _print_not_supported
_print_Uniform = _print_not_supported
_print_Unit = _print_not_supported
_print_Wild = _print_not_supported
_print_WildFunction = _print_not_supported
_print_Relational = _print_not_supported
# Code printer functions. These are included in this file so that they can be
# imported in the top-level __init__.py without importing the sympy.codegen
# module.
def ccode(expr, assign_to=None, standard='c99', **settings):
"""Converts an expr to a string of c code
Parameters
==========
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
line-wrapping, or for expressions that generate multi-line statements.
standard : str, optional
String specifying the standard. If your compiler supports a more modern
standard you may set this to 'c99' to allow the printer to use more math
functions. [default='c89'].
precision : integer, optional
The precision for numbers such as pi [default=17].
user_functions : dict, optional
A dictionary where the keys are string representations of either
``FunctionClass`` or ``UndefinedFunction`` instances and the values
are their desired C string representations. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
cfunction_string)] or [(argument_test, cfunction_formater)]. See below
for examples.
dereference : iterable, optional
An iterable of symbols that should be dereferenced in the printed code
expression. These would be values passed by address to the function.
For example, if ``dereference=[a]``, the resulting code would print
``(*a)`` instead of ``a``.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
Examples
========
>>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function
>>> x, tau = symbols("x, tau")
>>> expr = (2*tau)**Rational(7, 2)
>>> ccode(expr)
'8*M_SQRT2*pow(tau, 7.0/2.0)'
>>> ccode(expr, math_macros={})
'8*sqrt(2)*pow(tau, 7.0/2.0)'
>>> ccode(sin(x), assign_to="s")
's = sin(x);'
>>> from sympy.codegen.ast import real, float80
>>> ccode(expr, type_aliases={real: float80})
'8*M_SQRT2l*powl(tau, 7.0L/2.0L)'
Simple custom printing can be defined for certain types by passing a
dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
Alternatively, the dictionary value can be a list of tuples i.e.
[(argument_test, cfunction_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "Abs": [(lambda x: not x.is_integer, "fabs"),
... (lambda x: x.is_integer, "ABS")],
... "func": "f"
... }
>>> func = Function('func')
>>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions)
'f(fabs(x) + CEIL(x))'
or if the C-function takes a subset of the original arguments:
>>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [
... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
... (lambda b, e: b != 2, 'pow')]})
'exp2(x) + pow(3, x)'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(ccode(expr, tau, standard='C89'))
if (x > 0) {
tau = x + 1;
}
else {
tau = x;
}
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89')
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
must be provided to ``assign_to``. Note that any expression that can be
generated normally can also exist inside a Matrix:
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(ccode(mat, A, standard='C89'))
A[0] = pow(x, 2);
if (x > 0) {
A[1] = x + 1;
}
else {
A[1] = x;
}
A[2] = sin(x);
"""
from sympy.printing.c import c_code_printers
return c_code_printers[standard.lower()](settings).doprint(expr, assign_to)
def print_ccode(expr, **settings):
"""Prints C representation of the given expression."""
print(ccode(expr, **settings))
def fcode(expr, assign_to=None, **settings):
"""Converts an expr to a string of fortran code
Parameters
==========
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
line-wrapping, or for expressions that generate multi-line statements.
precision : integer, optional
DEPRECATED. Use type_mappings instead. The precision for numbers such
as pi [default=17].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See below
for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
source_format : optional
The source format can be either 'fixed' or 'free'. [default='fixed']
standard : integer, optional
The Fortran standard to be followed. This is specified as an integer.
Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77.
Note that currently the only distinction internally is between
standards before 95, and those 95 and after. This may change later as
more features are added.
name_mangling : bool, optional
If True, then the variables that would become identical in
case-insensitive Fortran are mangled by appending different number
of ``_`` at the end. If False, SymPy Will not interfere with naming of
variables. [default=True]
Examples
========
>>> from sympy import fcode, symbols, Rational, sin, ceiling, floor
>>> x, tau = symbols("x, tau")
>>> fcode((2*tau)**Rational(7, 2))
' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'
>>> fcode(sin(x), assign_to="s")
' s = sin(x)'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
cfunction_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "floor": [(lambda x: not x.is_integer, "FLOOR1"),
... (lambda x: x.is_integer, "FLOOR2")]
... }
>>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
' CEIL(x) + FLOOR1(x)'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(fcode(expr, tau))
if (x > 0) then
tau = x + 1
else
tau = x
end if
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> fcode(e.rhs, assign_to=e.lhs, contract=False)
' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
must be provided to ``assign_to``. Note that any expression that can be
generated normally can also exist inside a Matrix:
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(fcode(mat, A))
A(1, 1) = x**2
if (x > 0) then
A(2, 1) = x + 1
else
A(2, 1) = x
end if
A(3, 1) = sin(x)
"""
from sympy.printing.fortran import FCodePrinter
return FCodePrinter(settings).doprint(expr, assign_to)
def print_fcode(expr, **settings):
"""Prints the Fortran representation of the given expression.
See fcode for the meaning of the optional arguments.
"""
print(fcode(expr, **settings))
def cxxcode(expr, assign_to=None, standard='c++11', **settings):
""" C++ equivalent of :func:`~.ccode`. """
from sympy.printing.cxx import cxx_code_printers
return cxx_code_printers[standard.lower()](settings).doprint(expr, assign_to)
|
8bdd32900c49c7c5787fe6a960ad367c186105686877f212463b2348fe895537 | """
Maple code printer
The MapleCodePrinter converts single SymPy expressions into single
Maple expressions, using the functions defined in the Maple objects where possible.
FIXME: This module is still under actively developed. Some functions may be not completed.
"""
from sympy.core import S
from sympy.core.numbers import Integer, IntegerConstant
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
import sympy
_known_func_same_name = (
'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinh', 'cosh', 'tanh', 'sech',
'csch', 'coth', 'exp', 'floor', 'factorial', 'bernoulli', 'euler',
'fibonacci', 'gcd', 'lcm', 'conjugate', 'Ci', 'Chi', 'Ei', 'Li', 'Si', 'Shi',
'erf', 'erfc', 'harmonic', 'LambertW',
'sqrt', # For automatic rewrites
)
known_functions = {
# SymPy -> Maple
'Abs': 'abs',
'log': 'ln',
'asin': 'arcsin',
'acos': 'arccos',
'atan': 'arctan',
'asec': 'arcsec',
'acsc': 'arccsc',
'acot': 'arccot',
'asinh': 'arcsinh',
'acosh': 'arccosh',
'atanh': 'arctanh',
'asech': 'arcsech',
'acsch': 'arccsch',
'acoth': 'arccoth',
'ceiling': 'ceil',
'Max' : 'max',
'Min' : 'min',
'factorial2': 'doublefactorial',
'RisingFactorial': 'pochhammer',
'besseli': 'BesselI',
'besselj': 'BesselJ',
'besselk': 'BesselK',
'bessely': 'BesselY',
'hankelh1': 'HankelH1',
'hankelh2': 'HankelH2',
'airyai': 'AiryAi',
'airybi': 'AiryBi',
'appellf1': 'AppellF1',
'fresnelc': 'FresnelC',
'fresnels': 'FresnelS',
'lerchphi' : 'LerchPhi',
}
for _func in _known_func_same_name:
known_functions[_func] = _func
number_symbols = {
# SymPy -> Maple
S.Pi: 'Pi',
S.Exp1: 'exp(1)',
S.Catalan: 'Catalan',
S.EulerGamma: 'gamma',
S.GoldenRatio: '(1/2 + (1/2)*sqrt(5))'
}
spec_relational_ops = {
# SymPy -> Maple
'==': '=',
'!=': '<>'
}
not_supported_symbol = [
S.ComplexInfinity
]
class MapleCodePrinter(CodePrinter):
"""
Printer which converts a SymPy expression into a maple code.
"""
printmethod = "_maple"
language = "maple"
_default_settings = {
'order': None,
'full_prec': 'auto',
'human': True,
'inline': True,
'allow_unknown_functions': True,
}
def __init__(self, settings=None):
if settings is None:
settings = {}
super().__init__(settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "# {}".format(text)
def _declare_number_const(self, name, value):
return "{} := {};".format(name,
value.evalf(self._settings['precision']))
def _format_code(self, lines):
return lines
def _print_tuple(self, expr):
return self._print(list(expr))
def _print_Tuple(self, expr):
return self._print(list(expr))
def _print_Assignment(self, expr):
lhs = self._print(expr.lhs)
rhs = self._print(expr.rhs)
return "{lhs} := {rhs}".format(lhs=lhs, rhs=rhs)
def _print_Pow(self, expr, **kwargs):
PREC = precedence(expr)
if expr.exp == -1:
return '1/%s' % (self.parenthesize(expr.base, PREC))
elif expr.exp in (0.5, S.Half):
return 'sqrt(%s)' % self._print(expr.base)
elif expr.exp in (-0.5, -S.Half):
return '1/sqrt(%s)' % self._print(expr.base)
else:
return '{base}^{exp}'.format(
base=self.parenthesize(expr.base, PREC),
exp=self.parenthesize(expr.exp, PREC))
def _print_Piecewise(self, expr):
if (expr.args[-1].cond is not True) and (expr.args[-1].cond != S.BooleanTrue):
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
_coup_list = [
("{c}, {e}".format(c=self._print(c),
e=self._print(e)) if c is not True and c is not S.BooleanTrue else "{e}".format(
e=self._print(e)))
for e, c in expr.args]
_inbrace = ', '.join(_coup_list)
return 'piecewise({_inbrace})'.format(_inbrace=_inbrace)
def _print_Rational(self, expr):
p, q = int(expr.p), int(expr.q)
return "{p}/{q}".format(p=str(p), q=str(q))
def _print_Relational(self, expr):
PREC=precedence(expr)
lhs_code = self.parenthesize(expr.lhs, PREC)
rhs_code = self.parenthesize(expr.rhs, PREC)
op = expr.rel_op
if op in spec_relational_ops:
op = spec_relational_ops[op]
return "{lhs} {rel_op} {rhs}".format(lhs=lhs_code, rel_op=op, rhs=rhs_code)
def _print_NumberSymbol(self, expr):
return number_symbols[expr]
def _print_NegativeInfinity(self, expr):
return '-infinity'
def _print_Infinity(self, expr):
return 'infinity'
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_bool(self, expr):
return 'true' if expr else 'false'
def _print_NaN(self, expr):
return 'undefined'
def _get_matrix(self, expr, sparse=False):
if S.Zero in expr.shape:
_strM = 'Matrix([], storage = {storage})'.format(
storage='sparse' if sparse else 'rectangular')
else:
_strM = 'Matrix({list}, storage = {storage})'.format(
list=self._print(expr.tolist()),
storage='sparse' if sparse else 'rectangular')
return _strM
def _print_MatrixElement(self, expr):
return "{parent}[{i_maple}, {j_maple}]".format(
parent=self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True),
i_maple=self._print(expr.i + 1),
j_maple=self._print(expr.j + 1))
def _print_MatrixBase(self, expr):
return self._get_matrix(expr, sparse=False)
def _print_SparseRepMatrix(self, expr):
return self._get_matrix(expr, sparse=True)
def _print_Identity(self, expr):
if isinstance(expr.rows, (Integer, IntegerConstant)):
return self._print(sympy.SparseMatrix(expr))
else:
return "Matrix({var_size}, shape = identity)".format(var_size=self._print(expr.rows))
def _print_MatMul(self, expr):
PREC=precedence(expr)
_fact_list = list(expr.args)
_const = None
if not isinstance(_fact_list[0], (sympy.MatrixBase, sympy.MatrixExpr,
sympy.MatrixSlice, sympy.MatrixSymbol)):
_const, _fact_list = _fact_list[0], _fact_list[1:]
if _const is None or _const == 1:
return '.'.join(self.parenthesize(_m, PREC) for _m in _fact_list)
else:
return '{c}*{m}'.format(c=_const, m='.'.join(self.parenthesize(_m, PREC) for _m in _fact_list))
def _print_MatPow(self, expr):
# This function requires LinearAlgebra Function in Maple
return 'MatrixPower({A}, {n})'.format(A=self._print(expr.base), n=self._print(expr.exp))
def _print_HadamardProduct(self, expr):
PREC = precedence(expr)
_fact_list = list(expr.args)
return '*'.join(self.parenthesize(_m, PREC) for _m in _fact_list)
def _print_Derivative(self, expr):
_f, (_var, _order) = expr.args
if _order != 1:
_second_arg = '{var}${order}'.format(var=self._print(_var),
order=self._print(_order))
else:
_second_arg = '{var}'.format(var=self._print(_var))
return 'diff({func_expr}, {sec_arg})'.format(func_expr=self._print(_f), sec_arg=_second_arg)
def maple_code(expr, assign_to=None, **settings):
r"""Converts ``expr`` to a string of Maple code.
Parameters
==========
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
inline: bool, optional
If True, we try to create single-statement code instead of multiple
statements. [default=True].
"""
return MapleCodePrinter(settings).doprint(expr, assign_to)
def print_maple_code(expr, **settings):
"""Prints the Maple representation of the given expression.
See :func:`maple_code` for the meaning of the optional arguments.
Examples
========
>>> from sympy import print_maple_code, symbols
>>> x, y = symbols('x y')
>>> print_maple_code(x, assign_to=y)
y := x
"""
print(maple_code(expr, **settings))
|
815887c3bcb9abfe945773184c707732368eea4e621056220f351c1f2a82f27a | from typing import Any, Dict as tDict
from sympy.external import import_module
from sympy.printing.printer import Printer
from sympy.utilities.iterables import is_sequence
import sympy
from functools import partial
aesara = import_module('aesara')
if aesara:
aes = aesara.scalar
aet = aesara.tensor
from aesara.tensor import nlinalg
from aesara.tensor.elemwise import Elemwise
from aesara.tensor.elemwise import DimShuffle
mapping = {
sympy.Add: aet.add,
sympy.Mul: aet.mul,
sympy.Abs: aet.abs_,
sympy.sign: aet.sgn,
sympy.ceiling: aet.ceil,
sympy.floor: aet.floor,
sympy.log: aet.log,
sympy.exp: aet.exp,
sympy.sqrt: aet.sqrt,
sympy.cos: aet.cos,
sympy.acos: aet.arccos,
sympy.sin: aet.sin,
sympy.asin: aet.arcsin,
sympy.tan: aet.tan,
sympy.atan: aet.arctan,
sympy.atan2: aet.arctan2,
sympy.cosh: aet.cosh,
sympy.acosh: aet.arccosh,
sympy.sinh: aet.sinh,
sympy.asinh: aet.arcsinh,
sympy.tanh: aet.tanh,
sympy.atanh: aet.arctanh,
sympy.re: aet.real,
sympy.im: aet.imag,
sympy.arg: aet.angle,
sympy.erf: aet.erf,
sympy.gamma: aet.gamma,
sympy.loggamma: aet.gammaln,
sympy.Pow: aet.pow,
sympy.Eq: aet.eq,
sympy.StrictGreaterThan: aet.gt,
sympy.StrictLessThan: aet.lt,
sympy.LessThan: aet.le,
sympy.GreaterThan: aet.ge,
sympy.And: aet.and_, # bitwise
sympy.Or: aet.or_, # bitwise
sympy.Not: aet.invert, # bitwise
sympy.Xor: aet.xor, # bitwise
sympy.Max: aet.maximum, # Sympy accept >2 inputs, Aesara only 2
sympy.Min: aet.minimum, # Sympy accept >2 inputs, Aesara only 2
sympy.conjugate: aet.conj,
sympy.core.numbers.ImaginaryUnit: lambda:aet.complex(0,1),
# Matrices
sympy.MatAdd: Elemwise(aes.add),
sympy.HadamardProduct: Elemwise(aes.mul),
sympy.Trace: nlinalg.trace,
sympy.Determinant : nlinalg.det,
sympy.Inverse: nlinalg.matrix_inverse,
sympy.Transpose: DimShuffle((False, False), [1, 0]),
}
class AesaraPrinter(Printer):
""" Code printer which creates Aesara symbolic expression graphs.
Parameters
==========
cache : dict
Cache dictionary to use. If None (default) will use
the global cache. To create a printer which does not depend on or alter
global state pass an empty dictionary. Note: the dictionary is not
copied on initialization of the printer and will be updated in-place,
so using the same dict object when creating multiple printers or making
multiple calls to :func:`.aesara_code` or :func:`.aesara_function` means
the cache is shared between all these applications.
Attributes
==========
cache : dict
A cache of Aesara variables which have been created for SymPy
symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
:class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
ensure that all references to a given symbol in an expression (or
multiple expressions) are printed as the same Aesara variable, which is
created only once. Symbols are differentiated only by name and type. The
format of the cache's contents should be considered opaque to the user.
"""
printmethod = "_aesara"
def __init__(self, *args, **kwargs):
self.cache = kwargs.pop('cache', {})
super().__init__(*args, **kwargs)
def _get_key(self, s, name=None, dtype=None, broadcastable=None):
""" Get the cache key for a SymPy object.
Parameters
==========
s : sympy.core.basic.Basic
SymPy object to get key for.
name : str
Name of object, if it does not have a ``name`` attribute.
"""
if name is None:
name = s.name
return (name, type(s), s.args, dtype, broadcastable)
def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
"""
Get the Aesara variable for a SymPy symbol from the cache, or create it
if it does not exist.
"""
# Defaults
if name is None:
name = s.name
if dtype is None:
dtype = 'floatX'
if broadcastable is None:
broadcastable = ()
key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)
if key in self.cache:
return self.cache[key]
value = aet.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
self.cache[key] = value
return value
def _print_Symbol(self, s, **kwargs):
dtype = kwargs.get('dtypes', {}).get(s)
bc = kwargs.get('broadcastables', {}).get(s)
return self._get_or_create(s, dtype=dtype, broadcastable=bc)
def _print_AppliedUndef(self, s, **kwargs):
name = str(type(s)) + '_' + str(s.args[0])
dtype = kwargs.get('dtypes', {}).get(s)
bc = kwargs.get('broadcastables', {}).get(s)
return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)
def _print_Basic(self, expr, **kwargs):
op = mapping[type(expr)]
children = [self._print(arg, **kwargs) for arg in expr.args]
return op(*children)
def _print_Number(self, n, **kwargs):
# Integers already taken care of below, interpret as float
return float(n.evalf())
def _print_MatrixSymbol(self, X, **kwargs):
dtype = kwargs.get('dtypes', {}).get(X)
return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))
def _print_DenseMatrix(self, X, **kwargs):
if not hasattr(aet, 'stacklists'):
raise NotImplementedError(
"Matrix translation not yet supported in this version of Aesara")
return aet.stacklists([
[self._print(arg, **kwargs) for arg in L]
for L in X.tolist()
])
_print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix
def _print_MatMul(self, expr, **kwargs):
children = [self._print(arg, **kwargs) for arg in expr.args]
result = children[0]
for child in children[1:]:
result = aet.dot(result, child)
return result
def _print_MatPow(self, expr, **kwargs):
children = [self._print(arg, **kwargs) for arg in expr.args]
result = 1
if isinstance(children[1], int) and children[1] > 0:
for i in range(children[1]):
result = aet.dot(result, children[0])
else:
raise NotImplementedError('''Only non-negative integer
powers of matrices can be handled by Aesara at the moment''')
return result
def _print_MatrixSlice(self, expr, **kwargs):
parent = self._print(expr.parent, **kwargs)
rowslice = self._print(slice(*expr.rowslice), **kwargs)
colslice = self._print(slice(*expr.colslice), **kwargs)
return parent[rowslice, colslice]
def _print_BlockMatrix(self, expr, **kwargs):
nrows, ncols = expr.blocks.shape
blocks = [[self._print(expr.blocks[r, c], **kwargs)
for c in range(ncols)]
for r in range(nrows)]
return aet.join(0, *[aet.join(1, *row) for row in blocks])
def _print_slice(self, expr, **kwargs):
return slice(*[self._print(i, **kwargs)
if isinstance(i, sympy.Basic) else i
for i in (expr.start, expr.stop, expr.step)])
def _print_Pi(self, expr, **kwargs):
return 3.141592653589793
def _print_Piecewise(self, expr, **kwargs):
import numpy as np
e, cond = expr.args[0].args # First condition and corresponding value
# Print conditional expression and value for first condition
p_cond = self._print(cond, **kwargs)
p_e = self._print(e, **kwargs)
# One condition only
if len(expr.args) == 1:
# Return value if condition else NaN
return aet.switch(p_cond, p_e, np.nan)
# Return value_1 if condition_1 else evaluate remaining conditions
p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
return aet.switch(p_cond, p_e, p_remaining)
def _print_Rational(self, expr, **kwargs):
return aet.true_div(self._print(expr.p, **kwargs),
self._print(expr.q, **kwargs))
def _print_Integer(self, expr, **kwargs):
return expr.p
def _print_factorial(self, expr, **kwargs):
return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)
def _print_Derivative(self, deriv, **kwargs):
from aesara.gradient import Rop
rv = self._print(deriv.expr, **kwargs)
for var in deriv.variables:
var = self._print(var, **kwargs)
rv = Rop(rv, var, aet.ones_like(var))
return rv
def emptyPrinter(self, expr):
return expr
def doprint(self, expr, dtypes=None, broadcastables=None):
""" Convert a SymPy expression to a Aesara graph variable.
The ``dtypes`` and ``broadcastables`` arguments are used to specify the
data type, dimension, and broadcasting behavior of the Aesara variables
corresponding to the free symbols in ``expr``. Each is a mapping from
SymPy symbols to the value of the corresponding argument to
``aesara.tensor.var.TensorVariable``.
See the corresponding `documentation page`__ for more information on
broadcasting in Aesara.
.. __: https://aesara.readthedocs.io/en/latest/tutorial/broadcasting.html
Parameters
==========
expr : sympy.core.expr.Expr
SymPy expression to print.
dtypes : dict
Mapping from SymPy symbols to Aesara datatypes to use when creating
new Aesara variables for those symbols. Corresponds to the ``dtype``
argument to ``aesara.tensor.var.TensorVariable``. Defaults to ``'floatX'``
for symbols not included in the mapping.
broadcastables : dict
Mapping from SymPy symbols to the value of the ``broadcastable``
argument to ``aesara.tensor.var.TensorVariable`` to use when creating Aesara
variables for those symbols. Defaults to the empty tuple for symbols
not included in the mapping (resulting in a scalar).
Returns
=======
aesara.graph.basic.Variable
A variable corresponding to the expression's value in a Aesara
symbolic expression graph.
"""
if dtypes is None:
dtypes = {}
if broadcastables is None:
broadcastables = {}
return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)
global_cache = {} # type: tDict[Any, Any]
def aesara_code(expr, cache=None, **kwargs):
"""
Convert a SymPy expression into a Aesara graph variable.
Parameters
==========
expr : sympy.core.expr.Expr
SymPy expression object to convert.
cache : dict
Cached Aesara variables (see :class:`AesaraPrinter.cache
<AesaraPrinter>`). Defaults to the module-level global cache.
dtypes : dict
Passed to :meth:`.AesaraPrinter.doprint`.
broadcastables : dict
Passed to :meth:`.AesaraPrinter.doprint`.
Returns
=======
aesara.graph.basic.Variable
A variable corresponding to the expression's value in a Aesara symbolic
expression graph.
"""
if not aesara:
raise ImportError("aesara is required for aesara_code")
if cache is None:
cache = global_cache
return AesaraPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
r"""
Get value of ``broadcastables`` argument to :func:`.aesara_code` from
keyword arguments to :func:`.aesara_function`.
Included for backwards compatibility.
Parameters
==========
inputs
Sequence of input symbols.
dim : int
Common number of dimensions for all inputs. Overrides other arguments
if given.
dims : dict
Mapping from input symbols to number of dimensions. Overrides
``broadcastables`` argument if given.
broadcastables : dict
Explicit value of ``broadcastables`` argument to
:meth:`.AesaraPrinter.doprint`. If not None function will return this value unchanged.
Returns
=======
dict
Dictionary mapping elements of ``inputs`` to their "broadcastable"
values (tuple of ``bool``\ s).
"""
if dim is not None:
return {s: (False,) * dim for s in inputs}
if dims is not None:
maxdim = max(dims.values())
return {
s: (False,) * d + (True,) * (maxdim - d)
for s, d in dims.items()
}
if broadcastables is not None:
return broadcastables
return {}
def aesara_function(inputs, outputs, scalar=False, *,
dim=None, dims=None, broadcastables=None, **kwargs):
"""
Create a Aesara function from SymPy expressions.
The inputs and outputs are converted to Aesara variables using
:func:`.aesara_code` and then passed to ``aesara.function``.
Parameters
==========
inputs
Sequence of symbols which constitute the inputs of the function.
outputs
Sequence of expressions which constitute the outputs(s) of the
function. The free symbols of each expression must be a subset of
``inputs``.
scalar : bool
Convert 0-dimensional arrays in output to scalars. This will return a
Python wrapper function around the Aesara function object.
cache : dict
Cached Aesara variables (see :class:`AesaraPrinter.cache
<AesaraPrinter>`). Defaults to the module-level global cache.
dtypes : dict
Passed to :meth:`.AesaraPrinter.doprint`.
broadcastables : dict
Passed to :meth:`.AesaraPrinter.doprint`.
dims : dict
Alternative to ``broadcastables`` argument. Mapping from elements of
``inputs`` to integers indicating the dimension of their associated
arrays/tensors. Overrides ``broadcastables`` argument if given.
dim : int
Another alternative to the ``broadcastables`` argument. Common number of
dimensions to use for all arrays/tensors.
``aesara_function([x, y], [...], dim=2)`` is equivalent to using
``broadcastables={x: (False, False), y: (False, False)}``.
Returns
=======
callable
A callable object which takes values of ``inputs`` as positional
arguments and returns an output array for each of the expressions
in ``outputs``. If ``outputs`` is a single expression the function will
return a Numpy array, if it is a list of multiple expressions the
function will return a list of arrays. See description of the ``squeeze``
argument above for the behavior when a single output is passed in a list.
The returned object will either be an instance of
``aesara.compile.function.types.Function`` or a Python wrapper
function around one. In both cases, the returned value will have a
``aesara_function`` attribute which points to the return value of
``aesara.function``.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.printing.aesaracode import aesara_function
A simple function with one input and one output:
>>> f1 = aesara_function([x], [x**2 - 1], scalar=True)
>>> f1(3)
8.0
A function with multiple inputs and one output:
>>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
>>> f2(3, 4, 2)
5.0
A function with multiple inputs and multiple outputs:
>>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
>>> f3(2, 3)
[13.0, -5.0]
See also
========
dim_handling
"""
if not aesara:
raise ImportError("Aesara is required for aesara_function")
# Pop off non-aesara keyword args
cache = kwargs.pop('cache', {})
dtypes = kwargs.pop('dtypes', {})
broadcastables = dim_handling(
inputs, dim=dim, dims=dims, broadcastables=broadcastables,
)
# Print inputs/outputs
code = partial(aesara_code, cache=cache, dtypes=dtypes,
broadcastables=broadcastables)
tinputs = list(map(code, inputs))
toutputs = list(map(code, outputs))
#fix constant expressions as variables
toutputs = [output if isinstance(output, aesara.graph.basic.Variable) else aet.as_tensor_variable(output) for output in toutputs]
if len(toutputs) == 1:
toutputs = toutputs[0]
# Compile aesara func
func = aesara.function(tinputs, toutputs, **kwargs)
is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]
# No wrapper required
if not scalar or not any(is_0d):
func.aesara_function = func
return func
# Create wrapper to convert 0-dimensional outputs to scalars
def wrapper(*args):
out = func(*args)
# out can be array(1.0) or [array(1.0), array(2.0)]
if is_sequence(out):
return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
else:
return out[()]
wrapper.__wrapped__ = func
wrapper.__doc__ = func.__doc__
wrapper.aesara_function = func
return wrapper
|
5b427bf7c67105d9497ab71f7c11a73434e9ec9dad31d21842413f2888b28b7b | from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.symbol import Symbol
from sympy.core.numbers import Integer, Rational, Float
from sympy.printing.repr import srepr
__all__ = ['dotprint']
default_styles = (
(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})
)
slotClasses = (Symbol, Integer, Rational, Float)
def purestr(x, with_args=False):
"""A string that follows ```obj = type(obj)(*obj.args)``` exactly.
Parameters
==========
with_args : boolean, optional
If ``True``, there will be a second argument for the return
value, which is a tuple containing ``purestr`` applied to each
of the subnodes.
If ``False``, there will not be a second argument for the
return.
Default is ``False``
Examples
========
>>> from sympy import Float, Symbol, MatrixSymbol
>>> from sympy import Integer # noqa: F401
>>> from sympy.core.symbol import Str # noqa: F401
>>> from sympy.printing.dot import purestr
Applying ``purestr`` for basic symbolic object:
>>> code = purestr(Symbol('x'))
>>> code
"Symbol('x')"
>>> eval(code) == Symbol('x')
True
For basic numeric object:
>>> purestr(Float(2))
"Float('2.0', precision=53)"
For matrix symbol:
>>> code = purestr(MatrixSymbol('x', 2, 2))
>>> code
"MatrixSymbol(Str('x'), Integer(2), Integer(2))"
>>> eval(code) == MatrixSymbol('x', 2, 2)
True
With ``with_args=True``:
>>> purestr(Float(2), with_args=True)
("Float('2.0', precision=53)", ())
>>> purestr(MatrixSymbol('x', 2, 2), with_args=True)
("MatrixSymbol(Str('x'), Integer(2), Integer(2))",
("Str('x')", 'Integer(2)', 'Integer(2)'))
"""
sargs = ()
if not isinstance(x, Basic):
rv = str(x)
elif not x.args:
rv = srepr(x)
else:
args = x.args
sargs = tuple(map(purestr, args))
rv = "%s(%s)"%(type(x).__name__, ', '.join(sargs))
if with_args:
rv = rv, sargs
return rv
def styleof(expr, styles=default_styles):
""" Merge style dictionaries in order
Examples
========
>>> from sympy import Symbol, Basic, Expr, S
>>> from sympy.printing.dot import styleof
>>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}),
... (Expr, {'color': 'black'})]
>>> styleof(Basic(S(1)), styles)
{'color': 'blue', 'shape': 'ellipse'}
>>> x = Symbol('x')
>>> styleof(x + 1, styles) # this is an Expr
{'color': 'black', 'shape': 'ellipse'}
"""
style = {}
for typ, sty in styles:
if isinstance(expr, typ):
style.update(sty)
return style
def attrprint(d, delimiter=', '):
""" Print a dictionary of attributes
Examples
========
>>> from sympy.printing.dot import attrprint
>>> print(attrprint({'color': 'blue', 'shape': 'ellipse'}))
"color"="blue", "shape"="ellipse"
"""
return delimiter.join('"%s"="%s"'%item for item in sorted(d.items()))
def dotnode(expr, styles=default_styles, labelfunc=str, pos=(), repeat=True):
""" String defining a node
Examples
========
>>> from sympy.printing.dot import dotnode
>>> from sympy.abc import x
>>> print(dotnode(x))
"Symbol('x')_()" ["color"="black", "label"="x", "shape"="ellipse"];
"""
style = styleof(expr, styles)
if isinstance(expr, Basic) and not expr.is_Atom:
label = str(expr.__class__.__name__)
else:
label = labelfunc(expr)
style['label'] = label
expr_str = purestr(expr)
if repeat:
expr_str += '_%s' % str(pos)
return '"%s" [%s];' % (expr_str, attrprint(style))
def dotedges(expr, atom=lambda x: not isinstance(x, Basic), pos=(), repeat=True):
""" List of strings for all expr->expr.arg pairs
See the docstring of dotprint for explanations of the options.
Examples
========
>>> from sympy.printing.dot import dotedges
>>> from sympy.abc import x
>>> for e in dotedges(x+2):
... print(e)
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
"""
if atom(expr):
return []
else:
expr_str, arg_strs = purestr(expr, with_args=True)
if repeat:
expr_str += '_%s' % str(pos)
arg_strs = ['%s_%s' % (a, str(pos + (i,)))
for i, a in enumerate(arg_strs)]
return ['"%s" -> "%s";' % (expr_str, a) for a in arg_strs]
template = \
"""digraph{
# Graph style
%(graphstyle)s
#########
# Nodes #
#########
%(nodes)s
#########
# Edges #
#########
%(edges)s
}"""
_graphstyle = {'rankdir': 'TD', 'ordering': 'out'}
def dotprint(expr,
styles=default_styles, atom=lambda x: not isinstance(x, Basic),
maxdepth=None, repeat=True, labelfunc=str, **kwargs):
"""DOT description of a SymPy expression tree
Parameters
==========
styles : list of lists composed of (Class, mapping), optional
Styles for different classes.
The default is
.. code-block:: python
(
(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})
)
atom : function, optional
Function used to determine if an arg is an atom.
A good choice is ``lambda x: not x.args``.
The default is ``lambda x: not isinstance(x, Basic)``.
maxdepth : integer, optional
The maximum depth.
The default is ``None``, meaning no limit.
repeat : boolean, optional
Whether to use different nodes for common subexpressions.
The default is ``True``.
For example, for ``x + x*y`` with ``repeat=True``, it will have
two nodes for ``x``; with ``repeat=False``, it will have one
node.
.. warning::
Even if a node appears twice in the same object like ``x`` in
``Pow(x, x)``, it will still only appear once.
Hence, with ``repeat=False``, the number of arrows out of an
object might not equal the number of args it has.
labelfunc : function, optional
A function to create a label for a given leaf node.
The default is ``str``.
Another good option is ``srepr``.
For example with ``str``, the leaf nodes of ``x + 1`` are labeled,
``x`` and ``1``. With ``srepr``, they are labeled ``Symbol('x')``
and ``Integer(1)``.
**kwargs : optional
Additional keyword arguments are included as styles for the graph.
Examples
========
>>> from sympy import dotprint
>>> from sympy.abc import x
>>> print(dotprint(x+2)) # doctest: +NORMALIZE_WHITESPACE
digraph{
<BLANKLINE>
# Graph style
"ordering"="out"
"rankdir"="TD"
<BLANKLINE>
#########
# Nodes #
#########
<BLANKLINE>
"Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"];
"Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
"Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];
<BLANKLINE>
#########
# Edges #
#########
<BLANKLINE>
"Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)";
"Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)";
}
"""
# repeat works by adding a signature tuple to the end of each node for its
# position in the graph. For example, for expr = Add(x, Pow(x, 2)), the x in the
# Pow will have the tuple (1, 0), meaning it is expr.args[1].args[0].
graphstyle = _graphstyle.copy()
graphstyle.update(kwargs)
nodes = []
edges = []
def traverse(e, depth, pos=()):
nodes.append(dotnode(e, styles, labelfunc=labelfunc, pos=pos, repeat=repeat))
if maxdepth and depth >= maxdepth:
return
edges.extend(dotedges(e, atom=atom, pos=pos, repeat=repeat))
[traverse(arg, depth+1, pos + (i,)) for i, arg in enumerate(e.args) if not atom(arg)]
traverse(expr, 0)
return template%{'graphstyle': attrprint(graphstyle, delimiter='\n'),
'nodes': '\n'.join(nodes),
'edges': '\n'.join(edges)}
|
07e8c20064ef1ffbee1368cf5b75e6e3a98716e0c67f322e57e9a24b5ad1120c | import os
from os.path import join
import shutil
import tempfile
try:
from subprocess import STDOUT, CalledProcessError, check_output
except ImportError:
pass
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.misc import debug
from .latex import latex
__doctest_requires__ = {('preview',): ['pyglet']}
def _check_output_no_window(*args, **kwargs):
# Avoid showing a cmd.exe window when running this
# on Windows
if os.name == 'nt':
creation_flag = 0x08000000 # CREATE_NO_WINDOW
else:
creation_flag = 0 # Default value
return check_output(*args, creationflags=creation_flag, **kwargs)
def system_default_viewer(fname, fmt):
""" Open fname with the default system viewer.
In practice, it is impossible for python to know when the system viewer is
done. For this reason, we ensure the passed file will not be deleted under
it, and this function does not attempt to block.
"""
# copy to a new temporary file that will not be deleted
with tempfile.NamedTemporaryFile(prefix='sympy-preview-',
suffix=os.path.splitext(fname)[1],
delete=False) as temp_f:
with open(fname, 'rb') as f:
shutil.copyfileobj(f, temp_f)
import platform
if platform.system() == 'Darwin':
import subprocess
subprocess.call(('open', temp_f.name))
elif platform.system() == 'Windows':
os.startfile(temp_f.name)
else:
import subprocess
subprocess.call(('xdg-open', temp_f.name))
def pyglet_viewer(fname, fmt):
try:
from pyglet import window, image, gl
from pyglet.window import key
from pyglet.image.codecs import ImageDecodeException
except ImportError:
raise ImportError("pyglet is required for preview.\n visit http://www.pyglet.org/")
try:
img = image.load(fname)
except ImageDecodeException:
raise ValueError("pyglet preview does not work for '{}' files.".format(fmt))
offset = 25
config = gl.Config(double_buffer=False)
win = window.Window(
width=img.width + 2*offset,
height=img.height + 2*offset,
caption="SymPy",
resizable=False,
config=config
)
win.set_vsync(False)
try:
def on_close():
win.has_exit = True
win.on_close = on_close
def on_key_press(symbol, modifiers):
if symbol in [key.Q, key.ESCAPE]:
on_close()
win.on_key_press = on_key_press
def on_expose():
gl.glClearColor(1.0, 1.0, 1.0, 1.0)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
img.blit(
(win.width - img.width) / 2,
(win.height - img.height) / 2
)
win.on_expose = on_expose
while not win.has_exit:
win.dispatch_events()
win.flip()
except KeyboardInterrupt:
pass
win.close()
def _get_latex_main(expr, *, preamble=None, packages=(), extra_preamble=None,
euler=True, fontsize=None, **latex_settings):
"""
Generate string of a LaTeX document rendering ``expr``.
"""
if preamble is None:
actual_packages = packages + ("amsmath", "amsfonts")
if euler:
actual_packages += ("euler",)
package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p
for p in actual_packages])
if extra_preamble:
package_includes += extra_preamble
if not fontsize:
fontsize = "12pt"
elif isinstance(fontsize, int):
fontsize = "{}pt".format(fontsize)
preamble = r"""\documentclass[varwidth,%s]{standalone}
%s
\begin{document}
""" % (fontsize, package_includes)
else:
if packages or extra_preamble:
raise ValueError("The \"packages\" or \"extra_preamble\" keywords"
"must not be set if a "
"custom LaTeX preamble was specified")
if isinstance(expr, str):
latex_string = expr
else:
latex_string = ('$\\displaystyle ' +
latex(expr, mode='plain', **latex_settings) +
'$')
return preamble + '\n' + latex_string + '\n\n' + r"\end{document}"
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',),
disable_viewers=('evince', 'gimp', 'superior-dvi-viewer'))
def preview(expr, output='png', viewer=None, euler=True, packages=(),
filename=None, outputbuffer=None, preamble=None, dvioptions=None,
outputTexFile=None, extra_preamble=None, fontsize=None,
**latex_settings):
r"""
View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.
If the expr argument is an expression, it will be exported to LaTeX and
then compiled using the available TeX distribution. The first argument,
'expr', may also be a LaTeX string. The function will then run the
appropriate viewer for the given output format or use the user defined
one. By default png output is generated.
By default pretty Euler fonts are used for typesetting (they were used to
typeset the well known "Concrete Mathematics" book). For that to work, you
need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the
texlive-fonts-extra package). If you prefer default AMS fonts or your
system lacks 'eulervm' LaTeX package then unset the 'euler' keyword
argument.
To use viewer auto-detection, lets say for 'png' output, issue
>>> from sympy import symbols, preview, Symbol
>>> x, y = symbols("x,y")
>>> preview(x + y, output='png')
This will choose 'pyglet' by default. To select a different one, do
>>> preview(x + y, output='png', viewer='gimp')
The 'png' format is considered special. For all other formats the rules
are slightly different. As an example we will take 'dvi' output format. If
you would run
>>> preview(x + y, output='dvi')
then 'view' will look for available 'dvi' viewers on your system
(predefined in the function, so it will try evince, first, then kdvi and
xdvi). If nothing is found, it will fall back to using a system file
association (via ``open`` and ``xdg-open``). To always use your system file
association without searching for the above readers, use
>>> from sympy.printing.preview import system_default_viewer
>>> preview(x + y, output='dvi', viewer=system_default_viewer)
If this still does not find the viewer you want, it can be set explicitly.
>>> preview(x + y, output='dvi', viewer='superior-dvi-viewer')
This will skip auto-detection and will run user specified
'superior-dvi-viewer'. If ``view`` fails to find it on your system it will
gracefully raise an exception.
You may also enter ``'file'`` for the viewer argument. Doing so will cause
this function to return a file object in read-only mode, if ``filename``
is unset. However, if it was set, then 'preview' writes the genereted
file to this filename instead.
There is also support for writing to a ``io.BytesIO`` like object, which
needs to be passed to the ``outputbuffer`` argument.
>>> from io import BytesIO
>>> obj = BytesIO()
>>> preview(x + y, output='png', viewer='BytesIO',
... outputbuffer=obj)
The LaTeX preamble can be customized by setting the 'preamble' keyword
argument. This can be used, e.g., to set a different font size, use a
custom documentclass or import certain set of LaTeX packages.
>>> preamble = "\\documentclass[10pt]{article}\n" \
... "\\usepackage{amsmath,amsfonts}\\begin{document}"
>>> preview(x + y, output='png', preamble=preamble)
It is also possible to use the standard preamble and provide additional
information to the preamble using the ``extra_preamble`` keyword argument.
>>> from sympy import sin
>>> extra_preamble = "\\renewcommand{\\sin}{\\cos}"
>>> preview(sin(x), output='png', extra_preamble=extra_preamble)
If the value of 'output' is different from 'dvi' then command line
options can be set ('dvioptions' argument) for the execution of the
'dvi'+output conversion tool. These options have to be in the form of a
list of strings (see ``subprocess.Popen``).
Additional keyword args will be passed to the :func:`~sympy.printing.latex.latex` call,
e.g., the ``symbol_names`` flag.
>>> phidd = Symbol('phidd')
>>> preview(phidd, symbol_names={phidd: r'\ddot{\varphi}'})
For post-processing the generated TeX File can be written to a file by
passing the desired filename to the 'outputTexFile' keyword
argument. To write the TeX code to a file named
``"sample.tex"`` and run the default png viewer to display the resulting
bitmap, do
>>> preview(x + y, outputTexFile="sample.tex")
"""
# pyglet is the default for png
if viewer is None and output == "png":
try:
import pyglet # noqa: F401
except ImportError:
pass
else:
viewer = pyglet_viewer
# look up a known application
if viewer is None:
# sorted in order from most pretty to most ugly
# very discussable, but indeed 'gv' looks awful :)
candidates = {
"dvi": [ "evince", "okular", "kdvi", "xdvi" ],
"ps": [ "evince", "okular", "gsview", "gv" ],
"pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ],
}
for candidate in candidates.get(output, []):
path = shutil.which(candidate)
if path is not None:
viewer = path
break
# otherwise, use the system default for file association
if viewer is None:
viewer = system_default_viewer
if viewer == "file":
if filename is None:
raise ValueError("filename has to be specified if viewer=\"file\"")
elif viewer == "BytesIO":
if outputbuffer is None:
raise ValueError("outputbuffer has to be a BytesIO "
"compatible object if viewer=\"BytesIO\"")
elif not callable(viewer) and not shutil.which(viewer):
raise OSError("Unrecognized viewer: %s" % viewer)
latex_main = _get_latex_main(expr, preamble=preamble, packages=packages,
euler=euler, extra_preamble=extra_preamble,
fontsize=fontsize, **latex_settings)
debug("Latex code:")
debug(latex_main)
with tempfile.TemporaryDirectory() as workdir:
with open(join(workdir, 'texput.tex'), 'w', encoding='utf-8') as fh:
fh.write(latex_main)
if outputTexFile is not None:
shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile)
if not shutil.which('latex'):
raise RuntimeError("latex program is not installed")
try:
_check_output_no_window(
['latex', '-halt-on-error', '-interaction=nonstopmode',
'texput.tex'],
cwd=workdir,
stderr=STDOUT)
except CalledProcessError as e:
raise RuntimeError(
"'latex' exited abnormally with the following output:\n%s" %
e.output)
src = "texput.%s" % (output)
if output != "dvi":
# in order of preference
commandnames = {
"ps": ["dvips"],
"pdf": ["dvipdfmx", "dvipdfm", "dvipdf"],
"png": ["dvipng"],
"svg": ["dvisvgm"],
}
try:
cmd_variants = commandnames[output]
except KeyError:
raise ValueError("Invalid output format: %s" % output) from None
# find an appropriate command
for cmd_variant in cmd_variants:
cmd_path = shutil.which(cmd_variant)
if cmd_path:
cmd = [cmd_path]
break
else:
if len(cmd_variants) > 1:
raise RuntimeError("None of %s are installed" % ", ".join(cmd_variants))
else:
raise RuntimeError("%s is not installed" % cmd_variants[0])
defaultoptions = {
"dvipng": ["-T", "tight", "-z", "9", "--truecolor"],
"dvisvgm": ["--no-fonts"],
}
commandend = {
"dvips": ["-o", src, "texput.dvi"],
"dvipdf": ["texput.dvi", src],
"dvipdfm": ["-o", src, "texput.dvi"],
"dvipdfmx": ["-o", src, "texput.dvi"],
"dvipng": ["-o", src, "texput.dvi"],
"dvisvgm": ["-o", src, "texput.dvi"],
}
if dvioptions is not None:
cmd.extend(dvioptions)
else:
cmd.extend(defaultoptions.get(cmd_variant, []))
cmd.extend(commandend[cmd_variant])
try:
_check_output_no_window(cmd, cwd=workdir, stderr=STDOUT)
except CalledProcessError as e:
raise RuntimeError(
"'%s' exited abnormally with the following output:\n%s" %
(' '.join(cmd), e.output))
if viewer == "file":
shutil.move(join(workdir, src), filename)
elif viewer == "BytesIO":
with open(join(workdir, src), 'rb') as fh:
outputbuffer.write(fh.read())
elif callable(viewer):
viewer(join(workdir, src), fmt=output)
else:
try:
_check_output_no_window(
[viewer, src], cwd=workdir, stderr=STDOUT)
except CalledProcessError as e:
raise RuntimeError(
"'%s %s' exited abnormally with the following output:\n%s" %
(viewer, src, e.output))
|
b650e92af44fce269d8e569ddbfae1b88c844d21c0c665f1a89fa54c36f9ceb1 | """
Julia code printer
The `JuliaCodePrinter` converts SymPy expressions into Julia expressions.
A complete code generator, which uses `julia_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.
"""
from typing import Any, Dict as tDict
from sympy.core import Mul, Pow, S, Rational
from sympy.core.mul import _keep_coeff
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from re import search
# List of known functions. First, those that have the same name in
# SymPy and Julia. This is almost certainly incomplete!
known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc",
"asin", "acos", "atan", "acot", "asec", "acsc",
"sinh", "cosh", "tanh", "coth", "sech", "csch",
"asinh", "acosh", "atanh", "acoth", "asech", "acsch",
"sinc", "atan2", "sign", "floor", "log", "exp",
"cbrt", "sqrt", "erf", "erfc", "erfi",
"factorial", "gamma", "digamma", "trigamma",
"polygamma", "beta",
"airyai", "airyaiprime", "airybi", "airybiprime",
"besselj", "bessely", "besseli", "besselk",
"erfinv", "erfcinv"]
# These functions have different names ("SymPy": "Julia"), more
# generally a mapping to (argument_conditions, julia_function).
known_fcns_src2 = {
"Abs": "abs",
"ceiling": "ceil",
"conjugate": "conj",
"hankel1": "hankelh1",
"hankel2": "hankelh2",
"im": "imag",
"re": "real"
}
class JuliaCodePrinter(CodePrinter):
"""
A printer to convert expressions to strings of Julia code.
"""
printmethod = "_julia"
language = "Julia"
_operators = {
'and': '&&',
'or': '||',
'not': '!',
}
_default_settings = {
'order': None,
'full_prec': 'auto',
'precision': 17,
'user_functions': {},
'human': True,
'allow_unknown_functions': False,
'contract': True,
'inline': True,
} # type: tDict[str, Any]
# Note: contract is for expressing tensors as loops (if True), or just
# assignment (if False). FIXME: this should be looked a more carefully
# for Julia.
def __init__(self, settings={}):
super().__init__(settings)
self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1))
self.known_functions.update(dict(known_fcns_src2))
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s" % codestring
def _get_comment(self, text):
return "# {}".format(text)
def _declare_number_const(self, name, value):
return "const {} = {}".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def _traverse_matrix_indices(self, mat):
# Julia uses Fortran order (column-major)
rows, cols = mat.shape
return ((i, j) for j in range(cols) for i in range(rows))
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
for i in indices:
# Julia arrays start at 1 and end at dimension
var, start, stop = map(self._print,
[i.label, i.lower + 1, i.upper + 1])
open_lines.append("for %s = %s:%s" % (var, start, stop))
close_lines.append("end")
return open_lines, close_lines
def _print_Mul(self, expr):
# print complex numbers nicely in Julia
if (expr.is_number and expr.is_imaginary and
expr.as_coeff_Mul()[0].is_integer):
return "%sim" % self._print(-S.ImaginaryUnit*expr)
# cribbed from str.py
prec = precedence(expr)
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
for item in args:
if (item.is_commutative and item.is_Pow and item.exp.is_Rational
and item.exp.is_negative):
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160
pow_paren.append(item)
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity and item.p == 1:
# Save the Rational type in julia Unless the numerator is 1.
# For example:
# julia_code(Rational(3, 7)*x) --> (3 // 7) * x
# julia_code(x/3) --> x / 3 but not x * (1 // 3)
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec) for x in a]
b_str = [self.parenthesize(x, prec) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
# from here it differs from str.py to deal with "*" and ".*"
def multjoin(a, a_str):
# here we probably are assuming the constants will come first
r = a_str[0]
for i in range(1, len(a)):
mulsym = '*' if a[i-1].is_number else '.*'
r = "%s %s %s" % (r, mulsym, a_str[i])
return r
if not b:
return sign + multjoin(a, a_str)
elif len(b) == 1:
divsym = '/' if b[0].is_number else './'
return "%s %s %s" % (sign+multjoin(a, a_str), divsym, b_str[0])
else:
divsym = '/' if all(bi.is_number for bi in b) else './'
return "%s %s (%s)" % (sign + multjoin(a, a_str), divsym, multjoin(b, b_str))
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return "{} {} {}".format(lhs_code, op, rhs_code)
def _print_Pow(self, expr):
powsymbol = '^' if all(x.is_number for x in expr.args) else '.^'
PREC = precedence(expr)
if expr.exp == S.Half:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if expr.exp == -S.Half:
sym = '/' if expr.base.is_number else './'
return "1 %s sqrt(%s)" % (sym, self._print(expr.base))
if expr.exp == -S.One:
sym = '/' if expr.base.is_number else './'
return "1 %s %s" % (sym, self.parenthesize(expr.base, PREC))
return '%s %s %s' % (self.parenthesize(expr.base, PREC), powsymbol,
self.parenthesize(expr.exp, PREC))
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s ^ %s' % (self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC))
def _print_Pi(self, expr):
if self._settings["inline"]:
return "pi"
else:
return super()._print_NumberSymbol(expr)
def _print_ImaginaryUnit(self, expr):
return "im"
def _print_Exp1(self, expr):
if self._settings["inline"]:
return "e"
else:
return super()._print_NumberSymbol(expr)
def _print_EulerGamma(self, expr):
if self._settings["inline"]:
return "eulergamma"
else:
return super()._print_NumberSymbol(expr)
def _print_Catalan(self, expr):
if self._settings["inline"]:
return "catalan"
else:
return super()._print_NumberSymbol(expr)
def _print_GoldenRatio(self, expr):
if self._settings["inline"]:
return "golden"
else:
return super()._print_NumberSymbol(expr)
def _print_Assignment(self, expr):
from sympy.codegen.ast import Assignment
from sympy.functions.elementary.piecewise import Piecewise
from sympy.tensor.indexed import IndexedBase
# Copied from codeprinter, but remove special MatrixSymbol treatment
lhs = expr.lhs
rhs = expr.rhs
# We special case assignments that take multiple lines
if not self._settings["inline"] and isinstance(expr.rhs, Piecewise):
# Here we modify Piecewise so each expression is now
# an Assignment, and then continue on the print.
expressions = []
conditions = []
for (e, c) in rhs.args:
expressions.append(Assignment(lhs, e))
conditions.append(c)
temp = Piecewise(*zip(expressions, conditions))
return self._print(temp)
if self._settings["contract"] and (lhs.has(IndexedBase) or
rhs.has(IndexedBase)):
# Here we check if there is looping to be done, and if so
# print the required loops.
return self._doprint_loops(rhs, lhs)
else:
lhs_code = self._print(lhs)
rhs_code = self._print(rhs)
return self._get_statement("%s = %s" % (lhs_code, rhs_code))
def _print_Infinity(self, expr):
return 'Inf'
def _print_NegativeInfinity(self, expr):
return '-Inf'
def _print_NaN(self, expr):
return 'NaN'
def _print_list(self, expr):
return 'Any[' + ', '.join(self._print(a) for a in expr) + ']'
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
_print_Tuple = _print_tuple
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
def _print_bool(self, expr):
return str(expr).lower()
# Could generate quadrature code for definite Integrals?
#_print_Integral = _print_not_supported
def _print_MatrixBase(self, A):
# Handle zero dimensions:
if S.Zero in A.shape:
return 'zeros(%s, %s)' % (A.rows, A.cols)
elif (A.rows, A.cols) == (1, 1):
return "[%s]" % A[0, 0]
elif A.rows == 1:
return "[%s]" % A.table(self, rowstart='', rowend='', colsep=' ')
elif A.cols == 1:
# note .table would unnecessarily equispace the rows
return "[%s]" % ", ".join([self._print(a) for a in A])
return "[%s]" % A.table(self, rowstart='', rowend='',
rowsep=';\n', colsep=' ')
def _print_SparseRepMatrix(self, A):
from sympy.matrices import Matrix
L = A.col_list();
# make row vectors of the indices and entries
I = Matrix([k[0] + 1 for k in L])
J = Matrix([k[1] + 1 for k in L])
AIJ = Matrix([k[2] for k in L])
return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J),
self._print(AIJ), A.rows, A.cols)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s,%s]' % (expr.i + 1, expr.j + 1)
def _print_MatrixSlice(self, expr):
def strslice(x, lim):
l = x[0] + 1
h = x[1]
step = x[2]
lstr = self._print(l)
hstr = 'end' if h == lim else self._print(h)
if step == 1:
if l == 1 and h == lim:
return ':'
if l == h:
return lstr
else:
return lstr + ':' + hstr
else:
return ':'.join((lstr, self._print(step), hstr))
return (self._print(expr.parent) + '[' +
strslice(expr.rowslice, expr.parent.shape[0]) + ',' +
strslice(expr.colslice, expr.parent.shape[1]) + ']')
def _print_Indexed(self, expr):
inds = [ self._print(i) for i in expr.indices ]
return "%s[%s]" % (self._print(expr.base.label), ",".join(inds))
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_Identity(self, expr):
return "eye(%s)" % self._print(expr.shape[0])
def _print_HadamardProduct(self, expr):
return ' .* '.join([self.parenthesize(arg, precedence(expr))
for arg in expr.args])
def _print_HadamardPower(self, expr):
PREC = precedence(expr)
return '.**'.join([
self.parenthesize(expr.base, PREC),
self.parenthesize(expr.exp, PREC)
])
def _print_Rational(self, expr):
if expr.q == 1:
return str(expr.p)
return "%s // %s" % (expr.p, expr.q)
# Note: as of 2022, Julia doesn't have spherical Bessel functions
def _print_jn(self, expr):
from sympy.functions import sqrt, besselj
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x)
return self._print(expr2)
def _print_yn(self, expr):
from sympy.functions import sqrt, bessely
x = expr.argument
expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x)
return self._print(expr2)
def _print_Piecewise(self, expr):
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if self._settings["inline"]:
# Express each (cond, expr) pair in a nested Horner form:
# (condition) .* (expr) + (not cond) .* (<others>)
# Expressions that result in multiple statements won't work here.
ecpairs = ["({}) ? ({}) :".format
(self._print(c), self._print(e))
for e, c in expr.args[:-1]]
elast = " (%s)" % self._print(expr.args[-1].expr)
pw = "\n".join(ecpairs) + elast
# Note: current need these outer brackets for 2*pw. Would be
# nicer to teach parenthesize() to do this for us when needed!
return "(" + pw + ")"
else:
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s)" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else")
else:
lines.append("elseif (%s)" % self._print(c))
code0 = self._print(e)
lines.append(code0)
if i == len(expr.args) - 1:
lines.append("end")
return "\n".join(lines)
def _print_MatMul(self, expr):
c, m = expr.as_coeff_mmul()
sign = ""
if c.is_number:
re, im = c.as_real_imag()
if im.is_zero and re.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
elif re.is_zero and im.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
return sign + ' * '.join(
(self.parenthesize(arg, precedence(expr)) for arg in expr.args)
)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
# code mostly copied from ccode
if isinstance(code, str):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ')
dec_regex = ('^end$', '^elseif ', '^else$')
# pre-strip left-space from the code
code = [ line.lstrip(' \t') for line in code ]
increase = [ int(any(search(re, line) for re in inc_regex))
for line in code ]
decrease = [ int(any(search(re, line) for re in dec_regex))
for line in code ]
pretty = []
level = 0
for n, line in enumerate(code):
if line in ('', '\n'):
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def julia_code(expr, assign_to=None, **settings):
r"""Converts `expr` to a string of Julia code.
Parameters
==========
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which
the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol``, or ``Indexed`` type. This can be helpful for
expressions that generate multi-line statements.
precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, cfunction_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
inline: bool, optional
If True, we try to create single-statement code instead of multiple
statements. [default=True].
Examples
========
>>> from sympy import julia_code, symbols, sin, pi
>>> x = symbols('x')
>>> julia_code(sin(x).series(x).removeO())
'x .^ 5 / 120 - x .^ 3 / 6 + x'
>>> from sympy import Rational, ceiling
>>> x, y, tau = symbols("x, y, tau")
>>> julia_code((2*tau)**Rational(7, 2))
'8 * sqrt(2) * tau .^ (7 // 2)'
Note that element-wise (Hadamard) operations are used by default between
symbols. This is because its possible in Julia to write "vectorized"
code. It is harmless if the values are scalars.
>>> julia_code(sin(pi*x*y), assign_to="s")
's = sin(pi * x .* y)'
If you need a matrix product "*" or matrix power "^", you can specify the
symbol as a ``MatrixSymbol``.
>>> from sympy import Symbol, MatrixSymbol
>>> n = Symbol('n', integer=True, positive=True)
>>> A = MatrixSymbol('A', n, n)
>>> julia_code(3*pi*A**3)
'(3 * pi) * A ^ 3'
This class uses several rules to decide which symbol to use a product.
Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*".
A HadamardProduct can be used to specify componentwise multiplication ".*"
of two MatrixSymbols. There is currently there is no easy way to specify
scalar symbols, so sometimes the code might have some minor cosmetic
issues. For example, suppose x and y are scalars and A is a Matrix, then
while a human programmer might write "(x^2*y)*A^3", we generate:
>>> julia_code(x**2*y*A**3)
'(x .^ 2 .* y) * A ^ 3'
Matrices are supported using Julia inline notation. When using
``assign_to`` with matrices, the name can be specified either as a string
or as a ``MatrixSymbol``. The dimensions must align in the latter case.
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([[x**2, sin(x), ceiling(x)]])
>>> julia_code(mat, assign_to='A')
'A = [x .^ 2 sin(x) ceil(x)]'
``Piecewise`` expressions are implemented with logical masking by default.
Alternatively, you can pass "inline=False" to use if-else conditionals.
Note that if the ``Piecewise`` lacks a default term, represented by
``(expr, True)`` then an error will be thrown. This is to prevent
generating an expression that may not evaluate to anything.
>>> from sympy import Piecewise
>>> pw = Piecewise((x + 1, x > 0), (x, True))
>>> julia_code(pw, assign_to=tau)
'tau = ((x > 0) ? (x + 1) : (x))'
Note that any expression that can be generated normally can also exist
inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]])
>>> julia_code(mat, assign_to='A')
'A = [x .^ 2 ((x > 0) ? (x + 1) : (x)) sin(x)]'
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e., [(argument_test,
cfunction_string)]. This can be used to call a custom Julia function.
>>> from sympy import Function
>>> f = Function('f')
>>> g = Function('g')
>>> custom_functions = {
... "f": "existing_julia_fcn",
... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
... (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> julia_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i]) ./ (t[i + 1] - t[i])'
"""
return JuliaCodePrinter(settings).doprint(expr, assign_to)
def print_julia_code(expr, **settings):
"""Prints the Julia representation of the given expression.
See `julia_code` for the meaning of the optional arguments.
"""
print(julia_code(expr, **settings))
|
3cc0a86a0184244da05c2741d7ea4bec37e51c0a3a9656f7e526718a8f749df7 | """Integration method that emulates by-hand techniques.
This module also provides functionality to get the steps used to evaluate a
particular integral, in the ``integral_steps`` function. This will return
nested namedtuples representing the integration rules used. The
``manualintegrate`` function computes the integral using those steps given
an integrand; given the steps, ``_manualintegrate`` will evaluate them.
The integrator can be extended with new heuristics and evaluation
techniques. To do so, write a function that accepts an ``IntegralInfo``
object and returns either a namedtuple representing a rule or
``None``. Then, write another function that accepts the namedtuple's fields
and returns the antiderivative, and decorate it with
``@evaluates(namedtuple_type)``. If the new technique requires a new
match, add the key and call to the antiderivative function to integral_steps.
To enable simple substitutions, add the match to find_substitutions.
"""
from __future__ import annotations
from typing import NamedTuple, Type, Callable
from collections import namedtuple, defaultdict
from collections.abc import Mapping
from functools import reduce
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.function import Derivative
from sympy.core.logic import fuzzy_not
from sympy.core.mul import Mul
from sympy.core.numbers import Integer, Number, E
from sympy.core.power import Pow
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, Wild
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction, csch,
cosh, coth, sech, sinh, tanh, asinh, atanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
cos, sin, tan, cot, csc, sec, acos, asin, atan, acot, acsc, asec)
from sympy.functions.special.delta_functions import Heaviside, DiracDelta
from sympy.functions.special.error_functions import (erf, erfi, fresnelc,
fresnels, Ci, Chi, Si, Shi, Ei, li)
from sympy.functions.special.gamma_functions import uppergamma
from sympy.functions.special.elliptic_integrals import elliptic_e, elliptic_f
from sympy.functions.special.polynomials import (chebyshevt, chebyshevu,
legendre, hermite, laguerre, assoc_laguerre, gegenbauer, jacobi,
OrthogonalPolynomial)
from sympy.functions.special.zeta_functions import polylog
from .integrals import Integral
from sympy.logic.boolalg import And
from sympy.ntheory.factor_ import primefactors
from sympy.polys.polytools import degree, lcm_list, gcd_list, Poly
from sympy.simplify.radsimp import fraction
from sympy.simplify.simplify import simplify
from sympy.solvers.solvers import solve
from sympy.strategies.core import switch, do_one, null_safe, condition
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import debug
def Rule(name, props=""):
# GOTCHA: namedtuple class name not considered!
def __eq__(self, other):
return self.__class__ == other.__class__ and tuple.__eq__(self, other)
__neq__ = lambda self, other: not __eq__(self, other)
cls = namedtuple(name, props + " context symbol")
cls.__eq__ = __eq__
cls.__ne__ = __neq__
return cls
ConstantRule = Rule("ConstantRule", "constant")
ConstantTimesRule = Rule("ConstantTimesRule", "constant other substep")
PowerRule = Rule("PowerRule", "base exp")
AddRule = Rule("AddRule", "substeps")
URule = Rule("URule", "u_var u_func constant substep")
PartsRule = Rule("PartsRule", "u dv v_step second_step")
CyclicPartsRule = Rule("CyclicPartsRule", "parts_rules coefficient")
TrigRule = Rule("TrigRule", "func arg")
HyperbolicRule = Rule("HyperbolicRule", "func arg")
ExpRule = Rule("ExpRule", "base exp")
ReciprocalRule = Rule("ReciprocalRule", "func")
ArcsinRule = Rule("ArcsinRule")
ArcsinhRule = Rule("ArcsinhRule")
ReciprocalSqrtQuadraticRule = Rule("ReciprocalSqrtQuadraticRule", "a b c")
SqrtQuadraticDenomRule = Rule("SqrtQuadraticDenomRule", "a b c coeffs")
SqrtQuadraticRule = Rule("SqrtQuadraticRule", "a b c")
AlternativeRule = Rule("AlternativeRule", "alternatives")
DontKnowRule = Rule("DontKnowRule")
DerivativeRule = Rule("DerivativeRule")
RewriteRule = Rule("RewriteRule", "rewritten substep")
CompleteSquareRule = Rule("CompleteSquareRule", "rewritten substep")
PiecewiseRule = Rule("PiecewiseRule", "subfunctions")
HeavisideRule = Rule("HeavisideRule", "harg ibnd substep")
DiracDeltaRule = Rule("DiracDeltaRule", "n a b")
TrigSubstitutionRule = Rule("TrigSubstitutionRule",
"theta func rewritten substep restriction")
ArctanRule = Rule("ArctanRule", "a b c")
ArctanhRule = Rule("ArctanhRule", "a b c")
JacobiRule = Rule("JacobiRule", "n a b")
GegenbauerRule = Rule("GegenbauerRule", "n a")
ChebyshevTRule = Rule("ChebyshevTRule", "n")
ChebyshevURule = Rule("ChebyshevURule", "n")
LegendreRule = Rule("LegendreRule", "n")
HermiteRule = Rule("HermiteRule", "n")
LaguerreRule = Rule("LaguerreRule", "n")
AssocLaguerreRule = Rule("AssocLaguerreRule", "n a")
CiRule = Rule("CiRule", "a b")
ChiRule = Rule("ChiRule", "a b")
EiRule = Rule("EiRule", "a b")
SiRule = Rule("SiRule", "a b")
ShiRule = Rule("ShiRule", "a b")
ErfRule = Rule("ErfRule", "a b c")
FresnelCRule = Rule("FresnelCRule", "a b c")
FresnelSRule = Rule("FresnelSRule", "a b c")
LiRule = Rule("LiRule", "a b")
PolylogRule = Rule("PolylogRule", "a b")
UpperGammaRule = Rule("UpperGammaRule", "a e")
EllipticFRule = Rule("EllipticFRule", "a d")
EllipticERule = Rule("EllipticERule", "a d")
class IntegralInfo(NamedTuple):
integrand: Expr
symbol: Symbol
evaluators = {}
def evaluates(rule):
def _evaluates(func):
func.rule = rule
evaluators[rule] = func
return func
return _evaluates
def contains_dont_know(rule):
if isinstance(rule, DontKnowRule):
return True
if not isinstance(rule, tuple):
return False
for val in rule:
if isinstance(val, tuple):
if contains_dont_know(val):
return True
elif isinstance(val, list):
if any(contains_dont_know(i) for i in val):
return True
return False
def manual_diff(f, symbol):
"""Derivative of f in form expected by find_substitutions
SymPy's derivatives for some trig functions (like cot) are not in a form
that works well with finding substitutions; this replaces the
derivatives for those particular forms with something that works better.
"""
if f.args:
arg = f.args[0]
if isinstance(f, tan):
return arg.diff(symbol) * sec(arg)**2
elif isinstance(f, cot):
return -arg.diff(symbol) * csc(arg)**2
elif isinstance(f, sec):
return arg.diff(symbol) * sec(arg) * tan(arg)
elif isinstance(f, csc):
return -arg.diff(symbol) * csc(arg) * cot(arg)
elif isinstance(f, Add):
return sum([manual_diff(arg, symbol) for arg in f.args])
elif isinstance(f, Mul):
if len(f.args) == 2 and isinstance(f.args[0], Number):
return f.args[0] * manual_diff(f.args[1], symbol)
return f.diff(symbol)
def manual_subs(expr, *args):
"""
A wrapper for `expr.subs(*args)` with additional logic for substitution
of invertible functions.
"""
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, (Dict, Mapping)):
sequence = sequence.items()
elif not iterable(sequence):
raise ValueError("Expected an iterable of (old, new) pairs")
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
new_subs = []
for old, new in sequence:
if isinstance(old, log):
# If log(x) = y, then exp(a*log(x)) = exp(a*y)
# that is, x**a = exp(a*y). Replace nontrivial powers of x
# before subs turns them into `exp(y)**a`, but
# do not replace x itself yet, to avoid `log(exp(y))`.
x0 = old.args[0]
expr = expr.replace(lambda x: x.is_Pow and x.base == x0,
lambda x: exp(x.exp*new))
new_subs.append((x0, exp(new)))
return expr.subs(list(sequence) + new_subs)
# Method based on that on SIN, described in "Symbolic Integration: The
# Stormy Decade"
inverse_trig_functions = (atan, asin, acos, acot, acsc, asec)
def find_substitutions(integrand, symbol, u_var):
results = []
def test_subterm(u, u_diff):
if u_diff == 0:
return False
substituted = integrand / u_diff
debug("substituted: {}, u: {}, u_var: {}".format(substituted, u, u_var))
substituted = manual_subs(substituted, u, u_var).cancel()
if symbol in substituted.free_symbols:
return False
# avoid increasing the degree of a rational function
if integrand.is_rational_function(symbol) and substituted.is_rational_function(u_var):
deg_before = max([degree(t, symbol) for t in integrand.as_numer_denom()])
deg_after = max([degree(t, u_var) for t in substituted.as_numer_denom()])
if deg_after > deg_before:
return False
return substituted.as_independent(u_var, as_Add=False)
def exp_subterms(term: Expr):
linear_coeffs = []
terms = []
n = Wild('n', properties=[lambda n: n.is_Integer])
for exp_ in term.find(exp):
arg = exp_.args[0]
if symbol not in arg.free_symbols:
continue
match = arg.match(n*symbol)
if match:
linear_coeffs.append(match[n])
else:
terms.append(exp_)
if linear_coeffs:
terms.append(exp(gcd_list(linear_coeffs)*symbol))
return terms
def possible_subterms(term):
if isinstance(term, (TrigonometricFunction, HyperbolicFunction,
*inverse_trig_functions,
exp, log, Heaviside)):
return [term.args[0]]
elif isinstance(term, (chebyshevt, chebyshevu,
legendre, hermite, laguerre)):
return [term.args[1]]
elif isinstance(term, (gegenbauer, assoc_laguerre)):
return [term.args[2]]
elif isinstance(term, jacobi):
return [term.args[3]]
elif isinstance(term, Mul):
r = []
for u in term.args:
r.append(u)
r.extend(possible_subterms(u))
return r
elif isinstance(term, Pow):
r = [arg for arg in term.args if arg.has(symbol)]
if term.exp.is_Integer:
r.extend([term.base**d for d in primefactors(term.exp)
if 1 < d < abs(term.args[1])])
if term.base.is_Add:
r.extend([t for t in possible_subterms(term.base)
if t.is_Pow])
return r
elif isinstance(term, Add):
r = []
for arg in term.args:
r.append(arg)
r.extend(possible_subterms(arg))
return r
return []
for u in list(dict.fromkeys(possible_subterms(integrand) + exp_subterms(integrand))):
if u == symbol:
continue
u_diff = manual_diff(u, symbol)
new_integrand = test_subterm(u, u_diff)
if new_integrand is not False:
constant, new_integrand = new_integrand
if new_integrand == integrand.subs(symbol, u_var):
continue
substitution = (u, constant, new_integrand)
if substitution not in results:
results.append(substitution)
return results
def rewriter(condition, rewrite):
"""Strategy that rewrites an integrand."""
def _rewriter(integral):
integrand, symbol = integral
debug("Integral: {} is rewritten with {} on symbol: {}".format(integrand, rewrite, symbol))
if condition(*integral):
rewritten = rewrite(*integral)
if rewritten != integrand:
substep = integral_steps(rewritten, symbol)
if not isinstance(substep, DontKnowRule) and substep:
return RewriteRule(
rewritten,
substep,
integrand, symbol)
return _rewriter
def proxy_rewriter(condition, rewrite):
"""Strategy that rewrites an integrand based on some other criteria."""
def _proxy_rewriter(criteria):
criteria, integral = criteria
integrand, symbol = integral
debug("Integral: {} is rewritten with {} on symbol: {} and criteria: {}".format(integrand, rewrite, symbol, criteria))
args = criteria + list(integral)
if condition(*args):
rewritten = rewrite(*args)
if rewritten != integrand:
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol)
return _proxy_rewriter
def multiplexer(conditions):
"""Apply the rule that matches the condition, else None"""
def multiplexer_rl(expr):
for key, rule in conditions.items():
if key(expr):
return rule(expr)
return multiplexer_rl
def alternatives(*rules):
"""Strategy that makes an AlternativeRule out of multiple possible results."""
def _alternatives(integral):
alts = []
count = 0
debug("List of Alternative Rules")
for rule in rules:
count = count + 1
debug("Rule {}: {}".format(count, rule))
result = rule(integral)
if (result and not isinstance(result, DontKnowRule) and
result != integral and result not in alts):
alts.append(result)
if len(alts) == 1:
return alts[0]
elif alts:
doable = [rule for rule in alts if not contains_dont_know(rule)]
if doable:
return AlternativeRule(doable, *integral)
else:
return AlternativeRule(alts, *integral)
return _alternatives
def constant_rule(integral):
return ConstantRule(integral.integrand, *integral)
def power_rule(integral):
integrand, symbol = integral
base, expt = integrand.as_base_exp()
if symbol not in expt.free_symbols and isinstance(base, Symbol):
if simplify(expt + 1) == 0:
return ReciprocalRule(base, integrand, symbol)
return PowerRule(base, expt, integrand, symbol)
elif symbol not in base.free_symbols and isinstance(expt, Symbol):
rule = ExpRule(base, expt, integrand, symbol)
if fuzzy_not(log(base).is_zero):
return rule
elif log(base).is_zero:
return ConstantRule(1, 1, symbol)
return PiecewiseRule([
(rule, Ne(log(base), 0)),
(ConstantRule(1, 1, symbol), True)
], integrand, symbol)
def exp_rule(integral):
integrand, symbol = integral
if isinstance(integrand.args[0], Symbol):
return ExpRule(E, integrand.args[0], integrand, symbol)
def orthogonal_poly_rule(integral):
orthogonal_poly_classes = {
jacobi: JacobiRule,
gegenbauer: GegenbauerRule,
chebyshevt: ChebyshevTRule,
chebyshevu: ChebyshevURule,
legendre: LegendreRule,
hermite: HermiteRule,
laguerre: LaguerreRule,
assoc_laguerre: AssocLaguerreRule
}
orthogonal_poly_var_index = {
jacobi: 3,
gegenbauer: 2,
assoc_laguerre: 2
}
integrand, symbol = integral
for klass in orthogonal_poly_classes:
if isinstance(integrand, klass):
var_index = orthogonal_poly_var_index.get(klass, 1)
if (integrand.args[var_index] is symbol and not
any(v.has(symbol) for v in integrand.args[:var_index])):
args = integrand.args[:var_index] + (integrand, symbol)
return orthogonal_poly_classes[klass](*args)
_special_function_patterns: list[tuple[Type, Expr, Callable | None, tuple]] = []
_wilds = []
_symbol = Dummy('x')
def special_function_rule(integral):
integrand, symbol = integral
if not _special_function_patterns:
a = Wild('a', exclude=[_symbol], properties=[lambda x: not x.is_zero])
b = Wild('b', exclude=[_symbol])
c = Wild('c', exclude=[_symbol])
d = Wild('d', exclude=[_symbol], properties=[lambda x: not x.is_zero])
e = Wild('e', exclude=[_symbol], properties=[
lambda x: not (x.is_nonnegative and x.is_integer)])
_wilds.extend((a, b, c, d, e))
# patterns consist of a SymPy class, a wildcard expr, an optional
# condition coded as a lambda (when Wild properties are not enough),
# followed by an applicable rule
linear_pattern = a*_symbol + b
quadratic_pattern = a*_symbol**2 + b*_symbol + c
_special_function_patterns.extend((
(Mul, exp(linear_pattern, evaluate=False)/_symbol, None, EiRule),
(Mul, cos(linear_pattern, evaluate=False)/_symbol, None, CiRule),
(Mul, cosh(linear_pattern, evaluate=False)/_symbol, None, ChiRule),
(Mul, sin(linear_pattern, evaluate=False)/_symbol, None, SiRule),
(Mul, sinh(linear_pattern, evaluate=False)/_symbol, None, ShiRule),
(Pow, 1/log(linear_pattern, evaluate=False), None, LiRule),
(exp, exp(quadratic_pattern, evaluate=False), None, ErfRule),
(sin, sin(quadratic_pattern, evaluate=False), None, FresnelSRule),
(cos, cos(quadratic_pattern, evaluate=False), None, FresnelCRule),
(Mul, _symbol**e*exp(a*_symbol, evaluate=False), None, UpperGammaRule),
(Mul, polylog(b, a*_symbol, evaluate=False)/_symbol, None, PolylogRule),
(Pow, 1/sqrt(a - d*sin(_symbol, evaluate=False)**2),
lambda a, d: a != d, EllipticFRule),
(Pow, sqrt(a - d*sin(_symbol, evaluate=False)**2),
lambda a, d: a != d, EllipticERule),
))
_integrand = integrand.subs(symbol, _symbol)
for type_, pattern, constraint, rule in _special_function_patterns:
if isinstance(_integrand, type_):
match = _integrand.match(pattern)
if match:
wild_vals = tuple(match.get(w) for w in _wilds
if match.get(w) is not None)
if constraint is None or constraint(*wild_vals):
args = wild_vals + (integrand, symbol)
return rule(*args)
def _add_degenerate_step(generic_cond, generic_step, degenerate_step):
if degenerate_step is None:
return generic_step
if isinstance(generic_step, PiecewiseRule):
subfunctions = [(substep, (cond & generic_cond).simplify())
for substep, cond in generic_step.subfunctions]
else:
subfunctions = [(generic_step, generic_cond)]
if isinstance(degenerate_step, PiecewiseRule):
subfunctions += degenerate_step.subfunctions
else:
subfunctions.append((degenerate_step, S.true))
return PiecewiseRule(subfunctions, generic_step.context, generic_step.symbol)
def inverse_trig_rule(integral: IntegralInfo, degenerate=True):
"""
Set degenerate=False on recursive call where coefficient of quadratic term
is assumed non-zero.
"""
integrand, symbol = integral
base, exp = integrand.as_base_exp()
a = Wild('a', exclude=[symbol])
b = Wild('b', exclude=[symbol])
c = Wild('c', exclude=[symbol, 0])
match = base.match(a + b*symbol + c*symbol**2)
if not match:
return
def make_inverse_trig(RuleClass, a, sign_a, c, sign_c, h):
u_var = Dummy("u")
rewritten = 1/sqrt(sign_a*a + sign_c*c*(symbol-h)**2) # a>0, c>0
quadratic_base = sqrt(c/a)*(symbol-h)
constant = 1/sqrt(c)
u_func = None
if quadratic_base is not symbol:
u_func = quadratic_base
quadratic_base = u_var
standard_form = 1/sqrt(sign_a + sign_c*quadratic_base**2)
substep = RuleClass(standard_form, quadratic_base)
if constant != 1:
substep = ConstantTimesRule(constant, standard_form, substep, constant*standard_form, symbol)
if u_func is not None:
substep = URule(u_var, u_func, None, substep, rewritten, symbol)
if h != 0:
substep = CompleteSquareRule(rewritten, substep, integrand, symbol)
return substep
a, b, c = [match.get(i, S.Zero) for i in (a, b, c)]
generic_cond = Ne(c, 0)
if not degenerate or generic_cond is S.true:
degenerate_step = None
elif b.is_zero:
degenerate_step = ConstantRule(a ** exp, a ** exp, symbol)
else:
degenerate_step = sqrt_linear_rule(IntegralInfo((a + b * symbol) ** exp, symbol))
if simplify(2*exp + 1) == 0:
h, k = -b/(2*c), a - b**2/(4*c) # rewrite base to k + c*(symbol-h)**2
step = general_rule = ReciprocalSqrtQuadraticRule(a, b, c, integrand, symbol)
if k.is_real and c.is_real:
# list of ((rule, base_exp, a, sign_a, b, sign_b), condition)
possibilities = []
for args, cond in ( # don't apply ArccoshRule to x**2-1
((ArcsinRule, k, 1, -c, -1, h), And(k > 0, c < 0)), # 1-x**2
((ArcsinhRule, k, 1, c, 1, h), And(k > 0, c > 0)), # 1+x**2
):
if cond is S.true:
return make_inverse_trig(*args)
if cond is not S.false:
possibilities.append((args, cond))
if possibilities:
rules = [(make_inverse_trig(*args), cond) for args, cond in possibilities]
if not k.is_positive: # conditions are not thorough, need fall back rule
rules.append((general_rule, S.true))
step = PiecewiseRule(rules, integrand, symbol)
else:
step = general_rule
return _add_degenerate_step(generic_cond, step, degenerate_step)
if exp == S.Half:
step = SqrtQuadraticRule(a, b, c, integrand, symbol)
return _add_degenerate_step(generic_cond, step, degenerate_step)
def add_rule(integral):
integrand, symbol = integral
results = [integral_steps(g, symbol)
for g in integrand.as_ordered_terms()]
return None if None in results else AddRule(results, integrand, symbol)
def mul_rule(integral: IntegralInfo):
integrand, symbol = integral
# Constant times function case
coeff, f = integrand.as_independent(symbol)
if coeff != 1:
next_step = integral_steps(f, symbol)
if next_step is not None:
return ConstantTimesRule(coeff, f, next_step, integrand, symbol)
def _parts_rule(integrand, symbol):
# LIATE rule:
# log, inverse trig, algebraic, trigonometric, exponential
def pull_out_algebraic(integrand):
integrand = integrand.cancel().together()
# iterating over Piecewise args would not work here
algebraic = ([] if isinstance(integrand, Piecewise) or not integrand.is_Mul
else [arg for arg in integrand.args if arg.is_algebraic_expr(symbol)])
if algebraic:
u = Mul(*algebraic)
dv = (integrand / u).cancel()
return u, dv
def pull_out_u(*functions):
def pull_out_u_rl(integrand):
if any(integrand.has(f) for f in functions):
args = [arg for arg in integrand.args
if any(isinstance(arg, cls) for cls in functions)]
if args:
u = reduce(lambda a,b: a*b, args)
dv = integrand / u
return u, dv
return pull_out_u_rl
liate_rules = [pull_out_u(log), pull_out_u(*inverse_trig_functions),
pull_out_algebraic, pull_out_u(sin, cos),
pull_out_u(exp)]
dummy = Dummy("temporary")
# we can integrate log(x) and atan(x) by setting dv = 1
if isinstance(integrand, (log, *inverse_trig_functions)):
integrand = dummy * integrand
for index, rule in enumerate(liate_rules):
result = rule(integrand)
if result:
u, dv = result
# Don't pick u to be a constant if possible
if symbol not in u.free_symbols and not u.has(dummy):
return
u = u.subs(dummy, 1)
dv = dv.subs(dummy, 1)
# Don't pick a non-polynomial algebraic to be differentiated
if rule == pull_out_algebraic and not u.is_polynomial(symbol):
return
# Don't trade one logarithm for another
if isinstance(u, log):
rec_dv = 1/dv
if (rec_dv.is_polynomial(symbol) and
degree(rec_dv, symbol) == 1):
return
# Can integrate a polynomial times OrthogonalPolynomial
if rule == pull_out_algebraic:
if dv.is_Derivative or dv.has(TrigonometricFunction) or \
isinstance(dv, OrthogonalPolynomial):
v_step = integral_steps(dv, symbol)
if contains_dont_know(v_step):
return
else:
du = u.diff(symbol)
v = _manualintegrate(v_step)
return u, dv, v, du, v_step
# make sure dv is amenable to integration
accept = False
if index < 2: # log and inverse trig are usually worth trying
accept = True
elif (rule == pull_out_algebraic and dv.args and
all(isinstance(a, (sin, cos, exp))
for a in dv.args)):
accept = True
else:
for lrule in liate_rules[index + 1:]:
r = lrule(integrand)
if r and r[0].subs(dummy, 1).equals(dv):
accept = True
break
if accept:
du = u.diff(symbol)
v_step = integral_steps(simplify(dv), symbol)
if not contains_dont_know(v_step):
v = _manualintegrate(v_step)
return u, dv, v, du, v_step
def parts_rule(integral):
integrand, symbol = integral
constant, integrand = integrand.as_coeff_Mul()
result = _parts_rule(integrand, symbol)
steps = []
if result:
u, dv, v, du, v_step = result
debug("u : {}, dv : {}, v : {}, du : {}, v_step: {}".format(u, dv, v, du, v_step))
steps.append(result)
if isinstance(v, Integral):
return
# Set a limit on the number of times u can be used
if isinstance(u, (sin, cos, exp, sinh, cosh)):
cachekey = u.xreplace({symbol: _cache_dummy})
if _parts_u_cache[cachekey] > 2:
return
_parts_u_cache[cachekey] += 1
# Try cyclic integration by parts a few times
for _ in range(4):
debug("Cyclic integration {} with v: {}, du: {}, integrand: {}".format(_, v, du, integrand))
coefficient = ((v * du) / integrand).cancel()
if coefficient == 1:
break
if symbol not in coefficient.free_symbols:
rule = CyclicPartsRule(
[PartsRule(u, dv, v_step, None, None, None)
for (u, dv, v, du, v_step) in steps],
(-1) ** len(steps) * coefficient,
integrand, symbol
)
if (constant != 1) and rule:
rule = ConstantTimesRule(constant, integrand, rule,
constant * integrand, symbol)
return rule
# _parts_rule is sensitive to constants, factor it out
next_constant, next_integrand = (v * du).as_coeff_Mul()
result = _parts_rule(next_integrand, symbol)
if result:
u, dv, v, du, v_step = result
u *= next_constant
du *= next_constant
steps.append((u, dv, v, du, v_step))
else:
break
def make_second_step(steps, integrand):
if steps:
u, dv, v, du, v_step = steps[0]
return PartsRule(u, dv, v_step,
make_second_step(steps[1:], v * du),
integrand, symbol)
return integral_steps(integrand, symbol)
if steps:
u, dv, v, du, v_step = steps[0]
rule = PartsRule(u, dv, v_step,
make_second_step(steps[1:], v * du),
integrand, symbol)
if (constant != 1) and rule:
rule = ConstantTimesRule(constant, integrand, rule,
constant * integrand, symbol)
return rule
def trig_rule(integral):
integrand, symbol = integral
if isinstance(integrand, (sin, cos)):
arg = integrand.args[0]
if not isinstance(arg, Symbol):
return # perhaps a substitution can deal with it
if isinstance(integrand, sin):
func = 'sin'
else:
func = 'cos'
return TrigRule(func, arg, integrand, symbol)
if integrand == sec(symbol)**2:
return TrigRule('sec**2', symbol, integrand, symbol)
elif integrand == csc(symbol)**2:
return TrigRule('csc**2', symbol, integrand, symbol)
if isinstance(integrand, tan):
rewritten = sin(*integrand.args) / cos(*integrand.args)
elif isinstance(integrand, cot):
rewritten = cos(*integrand.args) / sin(*integrand.args)
elif isinstance(integrand, sec):
arg = integrand.args[0]
rewritten = ((sec(arg)**2 + tan(arg) * sec(arg)) /
(sec(arg) + tan(arg)))
elif isinstance(integrand, csc):
arg = integrand.args[0]
rewritten = ((csc(arg)**2 + cot(arg) * csc(arg)) /
(csc(arg) + cot(arg)))
else:
return
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol
)
def trig_product_rule(integral):
integrand, symbol = integral
sectan = sec(symbol) * tan(symbol)
q = integrand / sectan
if symbol not in q.free_symbols:
rule = TrigRule('sec*tan', symbol, sectan, symbol)
if q != 1 and rule:
rule = ConstantTimesRule(q, sectan, rule, integrand, symbol)
return rule
csccot = -csc(symbol) * cot(symbol)
q = integrand / csccot
if symbol not in q.free_symbols:
rule = TrigRule('csc*cot', symbol, csccot, symbol)
if q != 1 and rule:
rule = ConstantTimesRule(q, csccot, rule, integrand, symbol)
return rule
def quadratic_denom_rule(integral):
integrand, symbol = integral
a = Wild('a', exclude=[symbol])
b = Wild('b', exclude=[symbol])
c = Wild('c', exclude=[symbol])
match = integrand.match(a / (b * symbol ** 2 + c))
if match:
a, b, c = match[a], match[b], match[c]
general_rule = ArctanRule(a, b, c, integrand, symbol)
if b.is_extended_real and c.is_extended_real:
positive_cond = c/b > 0
if positive_cond is S.true:
return general_rule
coeff = a/(2*sqrt(-c)*sqrt(b))
constant = sqrt(-c/b)
r1 = 1/(symbol-constant)
r2 = 1/(symbol+constant)
log_steps = [ReciprocalRule(symbol-constant, r1, symbol),
ConstantTimesRule(-1, r2, ReciprocalRule(symbol+constant, r2, symbol), -r2, symbol)]
rewritten = sub = r1 - r2
negative_step = AddRule(log_steps, sub, symbol)
if coeff != 1:
rewritten = Mul(coeff, sub, evaluate=False)
negative_step = ConstantTimesRule(coeff, sub, negative_step, rewritten, symbol)
negative_step = RewriteRule(rewritten, negative_step, integrand, symbol)
if positive_cond is S.false:
return negative_step
return PiecewiseRule([(general_rule, positive_cond), (negative_step, S.true)], integrand, symbol)
return general_rule
d = Wild('d', exclude=[symbol])
match2 = integrand.match(a / (b * symbol ** 2 + c * symbol + d))
if match2:
b, c = match2[b], match2[c]
if b.is_zero:
return
u = Dummy('u')
u_func = symbol + c/(2*b)
integrand2 = integrand.subs(symbol, u - c / (2*b))
next_step = integral_steps(integrand2, u)
if next_step:
return URule(u, u_func, None, next_step, integrand2, symbol)
else:
return
e = Wild('e', exclude=[symbol])
match3 = integrand.match((a* symbol + b) / (c * symbol ** 2 + d * symbol + e))
if match3:
a, b, c, d, e = match3[a], match3[b], match3[c], match3[d], match3[e]
if c.is_zero:
return
denominator = c * symbol**2 + d * symbol + e
const = a/(2*c)
numer1 = (2*c*symbol+d)
numer2 = - const*d + b
u = Dummy('u')
step1 = URule(u,
denominator,
const,
integral_steps(u**(-1), u),
integrand,
symbol)
if const != 1:
step1 = ConstantTimesRule(const,
numer1/denominator,
step1,
const*numer1/denominator,
symbol)
if numer2.is_zero:
return step1
step2 = integral_steps(numer2/denominator, symbol)
substeps = AddRule([step1, step2], integrand, symbol)
rewriten = const*numer1/denominator+numer2/denominator
return RewriteRule(rewriten, substeps, integrand, symbol)
return
def sqrt_linear_rule(integral: IntegralInfo):
"""
Substitute common (a+b*x)**(1/n)
"""
integrand, x = integral
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x, 0])
a0 = b0 = 0
bases, qs, bs = [], [], []
for pow_ in integrand.find(Pow): # collect all (a+b*x)**(p/q)
base, exp_ = pow_.base, pow_.exp
if exp_.is_Integer or x not in base.free_symbols: # skip 1/x and sqrt(2)
continue
if not exp_.is_Rational: # exclude x**pi
return
match = base.match(a+b*x)
if not match: # skip non-linear
continue # for sqrt(x+sqrt(x)), although base is non-linear, we can still substitute sqrt(x)
a1, b1 = match[a], match[b]
if a0*b1 != a1*b0 or not (b0/b1).is_nonnegative: # cannot transform sqrt(x) to sqrt(x+1) or sqrt(-x)
return
if b0 == 0 or (b0/b1 > 1) is S.true: # choose the latter of sqrt(2*x) and sqrt(x) as representative
a0, b0 = a1, b1
bases.append(base)
bs.append(b1)
qs.append(exp_.q)
if b0 == 0: # no such pattern found
return
q0: Integer = lcm_list(qs)
u_x = (a0 + b0*x)**(1/q0)
u = Dummy("u")
substituted = integrand.subs({base**(S.One/q): (b/b0)**(S.One/q)*u**(q0/q)
for base, b, q in zip(bases, bs, qs)}).subs(x, (u**q0-a0)/b0)
substep = integral_steps(substituted*u**(q0-1)*q0/b0, u)
if not contains_dont_know(substep):
step = URule(u, u_x, None, substep, integrand, x)
generic_cond = Ne(b0, 0)
if generic_cond is not S.true: # possible degenerate case
simplified = integrand.subs({b: 0 for b in bs})
degenerate_step = integral_steps(simplified, x)
step = PiecewiseRule([(step, generic_cond), (degenerate_step, S.true)], integrand, x)
return step
def sqrt_quadratic_rule(integral: IntegralInfo, degenerate=True):
integrand, x = integral
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x, 0])
f = Wild('f')
n = Wild('n', properties=[lambda n: n.is_Integer and n.is_odd])
match = integrand.match(f*sqrt(a+b*x+c*x**2)**n)
if not match:
return
a, b, c, f, n = match[a], match[b], match[c], match[f], match[n]
f_poly = f.as_poly(x)
if f_poly is None:
return
generic_cond = Ne(c, 0)
if not degenerate or generic_cond is S.true:
degenerate_step = None
elif b.is_zero:
degenerate_step = integral_steps(f*sqrt(a)**n, x)
else:
degenerate_step = sqrt_linear_rule(IntegralInfo(f*sqrt(a+b*x)**n, x))
def sqrt_quadratic_denom_rule(numer_poly: Poly, integrand: Expr):
denom = sqrt(a+b*x+c*x**2)
deg = numer_poly.degree()
if deg <= 1:
# integrand == (d+e*x)/sqrt(a+b*x+c*x**2)
e, d = numer_poly.all_coeffs() if deg == 1 else (S.Zero, numer_poly.as_expr())
# rewrite numerator to A*(2*c*x+b) + B
A = e/(2*c)
B = d-A*b
pre_substitute = (2*c*x+b)/denom
constant_step = linear_step = None
if A != 0:
u = Dummy("u")
pow_rule = PowerRule(u, -S.Half, 1/sqrt(u), u)
linear_step = URule(u, a+b*x+c*x**2, None, pow_rule, pre_substitute, x)
if A != 1:
linear_step = ConstantTimesRule(A, pre_substitute, linear_step, A*pre_substitute, x)
if B != 0:
constant_step = inverse_trig_rule(IntegralInfo(1/denom, x), degenerate=False)
if B != 1:
constant_step = ConstantTimesRule(B, 1/denom, constant_step, B/denom, x)
if linear_step and constant_step:
add = Add(A*pre_substitute, B/denom, evaluate=False)
step = RewriteRule(add, AddRule([linear_step, constant_step], add, x), integrand, x)
else:
step = linear_step or constant_step
else:
coeffs = numer_poly.all_coeffs()
step = SqrtQuadraticDenomRule(a, b, c, coeffs, integrand, x)
return step
if n > 0: # rewrite poly * sqrt(s)**(2*k-1) to poly*s**k / sqrt(s)
numer_poly = f_poly * (a+b*x+c*x**2)**((n+1)/2)
rewritten = numer_poly.as_expr()/sqrt(a+b*x+c*x**2)
substep = sqrt_quadratic_denom_rule(numer_poly, rewritten)
generic_step = RewriteRule(rewritten, substep, integrand, x)
elif n == -1:
generic_step = sqrt_quadratic_denom_rule(f_poly, integrand)
else:
return # todo: handle n < -1 case
return _add_degenerate_step(generic_cond, generic_step, degenerate_step)
def hyperbolic_rule(integral: tuple[Expr, Symbol]):
integrand, symbol = integral
if isinstance(integrand, HyperbolicFunction) and integrand.args[0] == symbol:
if integrand.func == sinh:
return HyperbolicRule('sinh', symbol, integrand, symbol)
if integrand.func == cosh:
return HyperbolicRule('cosh', symbol, integrand, symbol)
u = Dummy('u')
if integrand.func == tanh:
rewritten = sinh(symbol)/cosh(symbol)
return RewriteRule(rewritten,
URule(u, cosh(symbol), None,
ReciprocalRule(u, 1/u, u), rewritten, symbol), integrand, symbol)
if integrand.func == coth:
rewritten = cosh(symbol)/sinh(symbol)
return RewriteRule(rewritten,
URule(u, sinh(symbol), None,
ReciprocalRule(u, 1/u, u), rewritten, symbol), integrand, symbol)
else:
rewritten = integrand.rewrite(tanh)
if integrand.func == sech:
return RewriteRule(rewritten,
URule(u, tanh(symbol/2), None,
ArctanRule(S(2), S.One, S.One, 2/(u**2 + 1), u), rewritten, symbol), integrand, symbol)
if integrand.func == csch:
return RewriteRule(rewritten,
URule(u, tanh(symbol/2), None,
ReciprocalRule(u, 1/u, u), rewritten, symbol), integrand, symbol)
@cacheit
def make_wilds(symbol):
a = Wild('a', exclude=[symbol])
b = Wild('b', exclude=[symbol])
m = Wild('m', exclude=[symbol], properties=[lambda n: isinstance(n, Integer)])
n = Wild('n', exclude=[symbol], properties=[lambda n: isinstance(n, Integer)])
return a, b, m, n
@cacheit
def sincos_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = sin(a*symbol)**m * cos(b*symbol)**n
return pattern, a, b, m, n
@cacheit
def tansec_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = tan(a*symbol)**m * sec(b*symbol)**n
return pattern, a, b, m, n
@cacheit
def cotcsc_pattern(symbol):
a, b, m, n = make_wilds(symbol)
pattern = cot(a*symbol)**m * csc(b*symbol)**n
return pattern, a, b, m, n
@cacheit
def heaviside_pattern(symbol):
m = Wild('m', exclude=[symbol])
b = Wild('b', exclude=[symbol])
g = Wild('g')
pattern = Heaviside(m*symbol + b) * g
return pattern, m, b, g
def uncurry(func):
def uncurry_rl(args):
return func(*args)
return uncurry_rl
def trig_rewriter(rewrite):
def trig_rewriter_rl(args):
a, b, m, n, integrand, symbol = args
rewritten = rewrite(a, b, m, n, integrand, symbol)
if rewritten != integrand:
return RewriteRule(
rewritten,
integral_steps(rewritten, symbol),
integrand, symbol)
return trig_rewriter_rl
sincos_botheven_condition = uncurry(
lambda a, b, m, n, i, s: m.is_even and n.is_even and
m.is_nonnegative and n.is_nonnegative)
sincos_botheven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (((1 - cos(2*a*symbol)) / 2) ** (m / 2)) *
(((1 + cos(2*b*symbol)) / 2) ** (n / 2)) ))
sincos_sinodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd and m >= 3)
sincos_sinodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 - cos(a*symbol)**2)**((m - 1) / 2) *
sin(a*symbol) *
cos(b*symbol) ** n))
sincos_cosodd_condition = uncurry(lambda a, b, m, n, i, s: n.is_odd and n >= 3)
sincos_cosodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 - sin(b*symbol)**2)**((n - 1) / 2) *
cos(b*symbol) *
sin(a*symbol) ** m))
tansec_seceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
tansec_seceven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 + tan(b*symbol)**2) ** (n/2 - 1) *
sec(b*symbol)**2 *
tan(a*symbol) ** m ))
tansec_tanodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
tansec_tanodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (sec(a*symbol)**2 - 1) ** ((m - 1) / 2) *
tan(a*symbol) *
sec(b*symbol) ** n ))
tan_tansquared_condition = uncurry(lambda a, b, m, n, i, s: m == 2 and n == 0)
tan_tansquared = trig_rewriter(
lambda a, b, m, n, i, symbol: ( sec(a*symbol)**2 - 1))
cotcsc_csceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
cotcsc_csceven = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (1 + cot(b*symbol)**2) ** (n/2 - 1) *
csc(b*symbol)**2 *
cot(a*symbol) ** m ))
cotcsc_cotodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
cotcsc_cotodd = trig_rewriter(
lambda a, b, m, n, i, symbol: ( (csc(a*symbol)**2 - 1) ** ((m - 1) / 2) *
cot(a*symbol) *
csc(b*symbol) ** n ))
def trig_sincos_rule(integral):
integrand, symbol = integral
if any(integrand.has(f) for f in (sin, cos)):
pattern, a, b, m, n = sincos_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
sincos_botheven_condition: sincos_botheven,
sincos_sinodd_condition: sincos_sinodd,
sincos_cosodd_condition: sincos_cosodd
})(tuple(
[match.get(i, S.Zero) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_tansec_rule(integral):
integrand, symbol = integral
integrand = integrand.subs({
1 / cos(symbol): sec(symbol)
})
if any(integrand.has(f) for f in (tan, sec)):
pattern, a, b, m, n = tansec_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
tansec_tanodd_condition: tansec_tanodd,
tansec_seceven_condition: tansec_seceven,
tan_tansquared_condition: tan_tansquared
})(tuple(
[match.get(i, S.Zero) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_cotcsc_rule(integral):
integrand, symbol = integral
integrand = integrand.subs({
1 / sin(symbol): csc(symbol),
1 / tan(symbol): cot(symbol),
cos(symbol) / tan(symbol): cot(symbol)
})
if any(integrand.has(f) for f in (cot, csc)):
pattern, a, b, m, n = cotcsc_pattern(symbol)
match = integrand.match(pattern)
if not match:
return
return multiplexer({
cotcsc_cotodd_condition: cotcsc_cotodd,
cotcsc_csceven_condition: cotcsc_csceven
})(tuple(
[match.get(i, S.Zero) for i in (a, b, m, n)] +
[integrand, symbol]))
def trig_sindouble_rule(integral):
integrand, symbol = integral
a = Wild('a', exclude=[sin(2*symbol)])
match = integrand.match(sin(2*symbol)*a)
if match:
sin_double = 2*sin(symbol)*cos(symbol)/sin(2*symbol)
return integral_steps(integrand * sin_double, symbol)
def trig_powers_products_rule(integral):
return do_one(null_safe(trig_sincos_rule),
null_safe(trig_tansec_rule),
null_safe(trig_cotcsc_rule),
null_safe(trig_sindouble_rule))(integral)
def trig_substitution_rule(integral):
integrand, symbol = integral
A = Wild('a', exclude=[0, symbol])
B = Wild('b', exclude=[0, symbol])
theta = Dummy("theta")
target_pattern = A + B*symbol**2
matches = integrand.find(target_pattern)
for expr in matches:
match = expr.match(target_pattern)
a = match.get(A, S.Zero)
b = match.get(B, S.Zero)
a_positive = ((a.is_number and a > 0) or a.is_positive)
b_positive = ((b.is_number and b > 0) or b.is_positive)
a_negative = ((a.is_number and a < 0) or a.is_negative)
b_negative = ((b.is_number and b < 0) or b.is_negative)
x_func = None
if a_positive and b_positive:
# a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2
x_func = (sqrt(a)/sqrt(b)) * tan(theta)
# Do not restrict the domain: tan(theta) takes on any real
# value on the interval -pi/2 < theta < pi/2 so x takes on
# any value
restriction = True
elif a_positive and b_negative:
# a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2
constant = sqrt(a)/sqrt(-b)
x_func = constant * sin(theta)
restriction = And(symbol > -constant, symbol < constant)
elif a_negative and b_positive:
# b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi
constant = sqrt(-a)/sqrt(b)
x_func = constant * sec(theta)
restriction = And(symbol > -constant, symbol < constant)
if x_func:
# Manually simplify sqrt(trig(theta)**2) to trig(theta)
# Valid due to assumed domain restriction
substitutions = {}
for f in [sin, cos, tan,
sec, csc, cot]:
substitutions[sqrt(f(theta)**2)] = f(theta)
substitutions[sqrt(f(theta)**(-2))] = 1/f(theta)
replaced = integrand.subs(symbol, x_func).trigsimp()
replaced = manual_subs(replaced, substitutions)
if not replaced.has(symbol):
replaced *= manual_diff(x_func, theta)
replaced = replaced.trigsimp()
secants = replaced.find(1/cos(theta))
if secants:
replaced = replaced.xreplace({
1/cos(theta): sec(theta)
})
substep = integral_steps(replaced, theta)
if not contains_dont_know(substep):
return TrigSubstitutionRule(
theta, x_func, replaced, substep, restriction,
integrand, symbol)
def heaviside_rule(integral):
integrand, symbol = integral
pattern, m, b, g = heaviside_pattern(symbol)
match = integrand.match(pattern)
if match and 0 != match[g]:
# f = Heaviside(m*x + b)*g
v_step = integral_steps(match[g], symbol)
result = _manualintegrate(v_step)
m, b = match[m], match[b]
return HeavisideRule(m*symbol + b, -b/m, result, integrand, symbol)
def dirac_delta_rule(integral: IntegralInfo):
integrand, x = integral
if len(integrand.args) == 1:
n = S.Zero
else:
n = integrand.args[1]
if not n.is_Integer or n < 0:
return
a, b = Wild('a', exclude=[x]), Wild('b', exclude=[x, 0])
match = integrand.args[0].match(a+b*x)
if not match:
return
a, b = match[a], match[b]
generic_cond = Ne(b, 0)
if generic_cond is S.true:
degenerate_step = None
else:
degenerate_step = ConstantRule(DiracDelta(a, n), integrand, x)
generic_step = DiracDeltaRule(n, a, b, integrand, x)
return _add_degenerate_step(generic_cond, generic_step, degenerate_step)
def substitution_rule(integral):
integrand, symbol = integral
u_var = Dummy("u")
substitutions = find_substitutions(integrand, symbol, u_var)
count = 0
if substitutions:
debug("List of Substitution Rules")
ways = []
for u_func, c, substituted in substitutions:
subrule = integral_steps(substituted, u_var)
count = count + 1
debug("Rule {}: {}".format(count, subrule))
if contains_dont_know(subrule):
continue
if simplify(c - 1) != 0:
_, denom = c.as_numer_denom()
if subrule:
subrule = ConstantTimesRule(c, substituted, subrule, c * substituted, u_var)
if denom.free_symbols:
piecewise = []
could_be_zero = []
if isinstance(denom, Mul):
could_be_zero = denom.args
else:
could_be_zero.append(denom)
for expr in could_be_zero:
if not fuzzy_not(expr.is_zero):
substep = integral_steps(manual_subs(integrand, expr, 0), symbol)
if substep:
piecewise.append((
substep,
Eq(expr, 0)
))
piecewise.append((subrule, True))
subrule = PiecewiseRule(piecewise, substituted, symbol)
ways.append(URule(u_var, u_func, c,
subrule,
integrand, symbol))
if len(ways) > 1:
return AlternativeRule(ways, integrand, symbol)
elif ways:
return ways[0]
partial_fractions_rule = rewriter(
lambda integrand, symbol: integrand.is_rational_function(),
lambda integrand, symbol: integrand.apart(symbol))
cancel_rule = rewriter(
# lambda integrand, symbol: integrand.is_algebraic_expr(),
# lambda integrand, symbol: isinstance(integrand, Mul),
lambda integrand, symbol: True,
lambda integrand, symbol: integrand.cancel())
distribute_expand_rule = rewriter(
lambda integrand, symbol: (
all(arg.is_Pow or arg.is_polynomial(symbol) for arg in integrand.args)
or isinstance(integrand, Pow)
or isinstance(integrand, Mul)),
lambda integrand, symbol: integrand.expand())
trig_expand_rule = rewriter(
# If there are trig functions with different arguments, expand them
lambda integrand, symbol: (
len({a.args[0] for a in integrand.atoms(TrigonometricFunction)}) > 1),
lambda integrand, symbol: integrand.expand(trig=True))
def derivative_rule(integral):
integrand = integral[0]
diff_variables = integrand.variables
undifferentiated_function = integrand.expr
integrand_variables = undifferentiated_function.free_symbols
if integral.symbol in integrand_variables:
if integral.symbol in diff_variables:
return DerivativeRule(*integral)
else:
return DontKnowRule(integrand, integral.symbol)
else:
return ConstantRule(integral.integrand, *integral)
def rewrites_rule(integral):
integrand, symbol = integral
if integrand.match(1/cos(symbol)):
rewritten = integrand.subs(1/cos(symbol), sec(symbol))
return RewriteRule(rewritten, integral_steps(rewritten, symbol), integrand, symbol)
def fallback_rule(integral):
return DontKnowRule(*integral)
# Cache is used to break cyclic integrals.
# Need to use the same dummy variable in cached expressions for them to match.
# Also record "u" of integration by parts, to avoid infinite repetition.
_integral_cache: dict[Expr, Expr | None] = {}
_parts_u_cache: dict[Expr, int] = defaultdict(int)
_cache_dummy = Dummy("z")
def integral_steps(integrand, symbol, **options):
"""Returns the steps needed to compute an integral.
Explanation
===========
This function attempts to mirror what a student would do by hand as
closely as possible.
SymPy Gamma uses this to provide a step-by-step explanation of an
integral. The code it uses to format the results of this function can be
found at
https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py.
Examples
========
>>> from sympy import exp, sin
>>> from sympy.integrals.manualintegrate import integral_steps
>>> from sympy.abc import x
>>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \
# doctest: +NORMALIZE_WHITESPACE
URule(u_var=_u, u_func=exp(x), constant=1,
substep=ArctanRule(a=1, b=1, c=1, context=1/(_u**2 + 1), symbol=_u),
context=exp(x)/(exp(2*x) + 1), symbol=x)
>>> print(repr(integral_steps(sin(x), x))) \
# doctest: +NORMALIZE_WHITESPACE
TrigRule(func='sin', arg=x, context=sin(x), symbol=x)
>>> print(repr(integral_steps((x**2 + 3)**2, x))) \
# doctest: +NORMALIZE_WHITESPACE
RewriteRule(rewritten=x**4 + 6*x**2 + 9,
substep=AddRule(substeps=[PowerRule(base=x, exp=4, context=x**4, symbol=x),
ConstantTimesRule(constant=6, other=x**2,
substep=PowerRule(base=x, exp=2, context=x**2, symbol=x),
context=6*x**2, symbol=x),
ConstantRule(constant=9, context=9, symbol=x)],
context=x**4 + 6*x**2 + 9, symbol=x), context=(x**2 + 3)**2, symbol=x)
Returns
=======
rule : namedtuple
The first step; most rules have substeps that must also be
considered. These substeps can be evaluated using ``manualintegrate``
to obtain a result.
"""
cachekey = integrand.xreplace({symbol: _cache_dummy})
if cachekey in _integral_cache:
if _integral_cache[cachekey] is None:
# Stop this attempt, because it leads around in a loop
return DontKnowRule(integrand, symbol)
else:
# TODO: This is for future development, as currently
# _integral_cache gets no values other than None
return (_integral_cache[cachekey].xreplace(_cache_dummy, symbol),
symbol)
else:
_integral_cache[cachekey] = None
integral = IntegralInfo(integrand, symbol)
def key(integral):
integrand = integral.integrand
if symbol not in integrand.free_symbols:
return Number
for cls in (Symbol, TrigonometricFunction, OrthogonalPolynomial):
if isinstance(integrand, cls):
return cls
return type(integrand)
def integral_is_subclass(*klasses):
def _integral_is_subclass(integral):
k = key(integral)
return k and issubclass(k, klasses)
return _integral_is_subclass
result = do_one(
null_safe(special_function_rule),
null_safe(switch(key, {
Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule),
null_safe(sqrt_linear_rule),
null_safe(quadratic_denom_rule)),
Symbol: power_rule,
exp: exp_rule,
Add: add_rule,
Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule),
null_safe(heaviside_rule), null_safe(quadratic_denom_rule),
null_safe(sqrt_linear_rule),
null_safe(sqrt_quadratic_rule)),
Derivative: derivative_rule,
TrigonometricFunction: trig_rule,
Heaviside: heaviside_rule,
DiracDelta: dirac_delta_rule,
OrthogonalPolynomial: orthogonal_poly_rule,
Number: constant_rule
})),
do_one(
null_safe(trig_rule),
null_safe(hyperbolic_rule),
null_safe(alternatives(
rewrites_rule,
substitution_rule,
condition(
integral_is_subclass(Mul, Pow),
partial_fractions_rule),
condition(
integral_is_subclass(Mul, Pow),
cancel_rule),
condition(
integral_is_subclass(Mul, log,
*inverse_trig_functions),
parts_rule),
condition(
integral_is_subclass(Mul, Pow),
distribute_expand_rule),
trig_powers_products_rule,
trig_expand_rule
)),
null_safe(trig_substitution_rule)
),
fallback_rule)(integral)
del _integral_cache[cachekey]
return result
@evaluates(ConstantRule)
def eval_constant(constant, integrand, symbol):
return constant * symbol
@evaluates(ConstantTimesRule)
def eval_constanttimes(constant, other, substep, integrand, symbol):
return constant * _manualintegrate(substep)
@evaluates(PowerRule)
def eval_power(base, exp, integrand, symbol):
return Piecewise(
((base**(exp + 1))/(exp + 1), Ne(exp, -1)),
(log(base), True),
)
@evaluates(ExpRule)
def eval_exp(base, exp, integrand, symbol):
return integrand / log(base)
@evaluates(AddRule)
def eval_add(substeps, integrand, symbol):
return sum(map(_manualintegrate, substeps))
@evaluates(URule)
def eval_u(u_var, u_func, constant, substep, integrand, symbol):
result = _manualintegrate(substep)
if u_func.is_Pow and u_func.exp == -1:
# avoid needless -log(1/x) from substitution
result = result.subs(log(u_var), -log(u_func.base))
return result.subs(u_var, u_func)
@evaluates(PartsRule)
def eval_parts(u, dv, v_step, second_step, integrand, symbol):
v = _manualintegrate(v_step)
return u * v - _manualintegrate(second_step)
@evaluates(CyclicPartsRule)
def eval_cyclicparts(parts_rules, coefficient, integrand, symbol):
coefficient = 1 - coefficient
result = []
sign = 1
for rule in parts_rules:
result.append(sign * rule.u * _manualintegrate(rule.v_step))
sign *= -1
return Add(*result) / coefficient
@evaluates(TrigRule)
def eval_trig(func, arg, integrand, symbol):
if func == 'sin':
return -cos(arg)
elif func == 'cos':
return sin(arg)
elif func == 'sec*tan':
return sec(arg)
elif func == 'csc*cot':
return csc(arg)
elif func == 'sec**2':
return tan(arg)
elif func == 'csc**2':
return -cot(arg)
@evaluates(HyperbolicRule)
def eval_hyperbolic(func: str, arg: Expr, integrand, symbol):
if func == 'sinh':
return cosh(arg)
if func == 'cosh':
return sinh(arg)
@evaluates(ArctanRule)
def eval_arctan(a, b, c, integrand, symbol):
return a / b * 1 / sqrt(c / b) * atan(symbol / sqrt(c / b))
@evaluates(ArctanhRule)
def eval_arctanh(a, b, c, integrand, symbol):
return - a / b * 1 / sqrt(-c / b) * atanh(symbol / sqrt(-c / b))
@evaluates(ReciprocalRule)
def eval_reciprocal(func, integrand, symbol):
return log(func)
@evaluates(ArcsinRule)
def eval_arcsin(integrand, symbol):
return asin(symbol)
@evaluates(ArcsinhRule)
def eval_arcsinh(integrand, x):
return asinh(x)
@evaluates(ReciprocalSqrtQuadraticRule)
def eval_reciprocal_sqrt_quadratic(a, b, c, integrand, x):
return log(2*sqrt(c)*sqrt(a+b*x+c*x**2)+b+2*c*x)/sqrt(c)
@evaluates(SqrtQuadraticDenomRule)
def eval_sqrt_quadratic_denom(a, b, c, coeffs: list[Expr], integrand, x):
# Integrate poly/sqrt(a+b*x+c*x**2) using recursion.
# coeffs are coefficients of the polynomial.
# Let I_n = x**n/sqrt(a+b*x+c*x**2), then
# I_n = A * x**(n-1)*sqrt(a+b*x+c*x**2) - B * I_{n-1} - C * I_{n-2}
# where A = 1/(n*c), B = (2*n-1)*b/(2*n*c), C = (n-1)*a/(n*c)
# See https://github.com/sympy/sympy/pull/23608 for proof.
result_coeffs = []
coeffs = coeffs.copy()
for i in range(len(coeffs)-2):
n = len(coeffs)-1-i
coeff = coeffs[i]/(c*n)
result_coeffs.append(coeff)
coeffs[i+1] -= (2*n-1)*b/2*coeff
coeffs[i+2] -= (n-1)*a*coeff
d, e = coeffs[-1], coeffs[-2]
s = sqrt(a+b*x+c*x**2)
constant = d-b*e/(2*c)
if constant == 0:
I0 = 0
else:
step = inverse_trig_rule(IntegralInfo(1/s, x), degenerate=False)
I0 = constant*_manualintegrate(step)
return Add(*(result_coeffs[i]*x**(len(coeffs)-2-i)
for i in range(len(result_coeffs))), e/c)*s + I0
@evaluates(SqrtQuadraticRule)
def eval_sqrt_quadratic(a, b, c, integrand, x):
step = sqrt_quadratic_rule(IntegralInfo(integrand, x), degenerate=False)
return _manualintegrate(step)
@evaluates(AlternativeRule)
def eval_alternative(alternatives, integrand, symbol):
return _manualintegrate(alternatives[0])
@evaluates(CompleteSquareRule)
@evaluates(RewriteRule)
def eval_rewrite(rewritten, substep, integrand, symbol):
return _manualintegrate(substep)
@evaluates(PiecewiseRule)
def eval_piecewise(substeps, integrand, symbol):
return Piecewise(*[(_manualintegrate(substep), cond)
for substep, cond in substeps])
@evaluates(TrigSubstitutionRule)
def eval_trigsubstitution(theta, func, rewritten, substep, restriction, integrand, symbol):
func = func.subs(sec(theta), 1/cos(theta))
func = func.subs(csc(theta), 1/sin(theta))
func = func.subs(cot(theta), 1/tan(theta))
trig_function = list(func.find(TrigonometricFunction))
assert len(trig_function) == 1
trig_function = trig_function[0]
relation = solve(symbol - func, trig_function)
assert len(relation) == 1
numer, denom = fraction(relation[0])
if isinstance(trig_function, sin):
opposite = numer
hypotenuse = denom
adjacent = sqrt(denom**2 - numer**2)
inverse = asin(relation[0])
elif isinstance(trig_function, cos):
adjacent = numer
hypotenuse = denom
opposite = sqrt(denom**2 - numer**2)
inverse = acos(relation[0])
elif isinstance(trig_function, tan):
opposite = numer
adjacent = denom
hypotenuse = sqrt(denom**2 + numer**2)
inverse = atan(relation[0])
substitution = [
(sin(theta), opposite/hypotenuse),
(cos(theta), adjacent/hypotenuse),
(tan(theta), opposite/adjacent),
(theta, inverse)
]
return Piecewise(
(_manualintegrate(substep).subs(substitution).trigsimp(), restriction)
)
@evaluates(DerivativeRule)
def eval_derivativerule(integrand, symbol):
# isinstance(integrand, Derivative) should be True
variable_count = list(integrand.variable_count)
for i, (var, count) in enumerate(variable_count):
if var == symbol:
variable_count[i] = (var, count-1)
break
return Derivative(integrand.expr, *variable_count)
@evaluates(HeavisideRule)
def eval_heaviside(harg, ibnd, substep, integrand, symbol):
# If we are integrating over x and the integrand has the form
# Heaviside(m*x+b)*g(x) == Heaviside(harg)*g(symbol)
# then there needs to be continuity at -b/m == ibnd,
# so we subtract the appropriate term.
return Heaviside(harg)*(substep - substep.subs(symbol, ibnd))
@evaluates(DiracDeltaRule)
def eval_dirac_delta(n, a, b, integrand, x):
if n == 0:
return Heaviside(a+b*x)/b
return DiracDelta(a+b*x, n-1)/b
@evaluates(JacobiRule)
def eval_jacobi(n, a, b, integrand, symbol):
return Piecewise(
(2*jacobi(n + 1, a - 1, b - 1, symbol)/(n + a + b), Ne(n + a + b, 0)),
(symbol, Eq(n, 0)),
((a + b + 2)*symbol**2/4 + (a - b)*symbol/2, Eq(n, 1)))
@evaluates(GegenbauerRule)
def eval_gegenbauer(n, a, integrand, symbol):
return Piecewise(
(gegenbauer(n + 1, a - 1, symbol)/(2*(a - 1)), Ne(a, 1)),
(chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)),
(S.Zero, True))
@evaluates(ChebyshevTRule)
def eval_chebyshevt(n, integrand, symbol):
return Piecewise(((chebyshevt(n + 1, symbol)/(n + 1) -
chebyshevt(n - 1, symbol)/(n - 1))/2, Ne(Abs(n), 1)),
(symbol**2/2, True))
@evaluates(ChebyshevURule)
def eval_chebyshevu(n, integrand, symbol):
return Piecewise(
(chebyshevt(n + 1, symbol)/(n + 1), Ne(n, -1)),
(S.Zero, True))
@evaluates(LegendreRule)
def eval_legendre(n, integrand, symbol):
return (legendre(n + 1, symbol) - legendre(n - 1, symbol))/(2*n + 1)
@evaluates(HermiteRule)
def eval_hermite(n, integrand, symbol):
return hermite(n + 1, symbol)/(2*(n + 1))
@evaluates(LaguerreRule)
def eval_laguerre(n, integrand, symbol):
return laguerre(n, symbol) - laguerre(n + 1, symbol)
@evaluates(AssocLaguerreRule)
def eval_assoclaguerre(n, a, integrand, symbol):
return -assoc_laguerre(n + 1, a - 1, symbol)
@evaluates(CiRule)
def eval_ci(a, b, integrand, symbol):
return cos(b)*Ci(a*symbol) - sin(b)*Si(a*symbol)
@evaluates(ChiRule)
def eval_chi(a, b, integrand, symbol):
return cosh(b)*Chi(a*symbol) + sinh(b)*Shi(a*symbol)
@evaluates(EiRule)
def eval_ei(a, b, integrand, symbol):
return exp(b)*Ei(a*symbol)
@evaluates(SiRule)
def eval_si(a, b, integrand, symbol):
return sin(b)*Ci(a*symbol) + cos(b)*Si(a*symbol)
@evaluates(ShiRule)
def eval_shi(a, b, integrand, symbol):
return sinh(b)*Chi(a*symbol) + cosh(b)*Shi(a*symbol)
@evaluates(ErfRule)
def eval_erf(a, b, c, integrand, symbol):
if a.is_extended_real:
return Piecewise(
(sqrt(S.Pi/(-a))/2 * exp(c - b**2/(4*a)) *
erf((-2*a*symbol - b)/(2*sqrt(-a))), a < 0),
(sqrt(S.Pi/a)/2 * exp(c - b**2/(4*a)) *
erfi((2*a*symbol + b)/(2*sqrt(a))), True))
else:
return sqrt(S.Pi/a)/2 * exp(c - b**2/(4*a)) * \
erfi((2*a*symbol + b)/(2*sqrt(a)))
@evaluates(FresnelCRule)
def eval_fresnelc(a, b, c, integrand, symbol):
return sqrt(S.Pi/(2*a)) * (
cos(b**2/(4*a) - c)*fresnelc((2*a*symbol + b)/sqrt(2*a*S.Pi)) +
sin(b**2/(4*a) - c)*fresnels((2*a*symbol + b)/sqrt(2*a*S.Pi)))
@evaluates(FresnelSRule)
def eval_fresnels(a, b, c, integrand, symbol):
return sqrt(S.Pi/(2*a)) * (
cos(b**2/(4*a) - c)*fresnels((2*a*symbol + b)/sqrt(2*a*S.Pi)) -
sin(b**2/(4*a) - c)*fresnelc((2*a*symbol + b)/sqrt(2*a*S.Pi)))
@evaluates(LiRule)
def eval_li(a, b, integrand, symbol):
return li(a*symbol + b)/a
@evaluates(PolylogRule)
def eval_polylog(a, b, integrand, symbol):
return polylog(b + 1, a*symbol)
@evaluates(UpperGammaRule)
def eval_uppergamma(a, e, integrand, symbol):
return symbol**e * (-a*symbol)**(-e) * uppergamma(e + 1, -a*symbol)/a
@evaluates(EllipticFRule)
def eval_elliptic_f(a, d, integrand, symbol):
return elliptic_f(symbol, d/a)/sqrt(a)
@evaluates(EllipticERule)
def eval_elliptic_e(a, d, integrand, symbol):
return elliptic_e(symbol, d/a)*sqrt(a)
@evaluates(DontKnowRule)
def eval_dontknowrule(integrand, symbol):
return Integral(integrand, symbol)
def _manualintegrate(rule):
evaluator = evaluators.get(rule.__class__)
if not evaluator:
raise ValueError("Cannot evaluate rule %s" % repr(rule))
return evaluator(*rule)
def manualintegrate(f, var):
"""manualintegrate(f, var)
Explanation
===========
Compute indefinite integral of a single variable using an algorithm that
resembles what a student would do by hand.
Unlike :func:`~.integrate`, var can only be a single symbol.
Examples
========
>>> from sympy import sin, cos, tan, exp, log, integrate
>>> from sympy.integrals.manualintegrate import manualintegrate
>>> from sympy.abc import x
>>> manualintegrate(1 / x, x)
log(x)
>>> integrate(1/x)
log(x)
>>> manualintegrate(log(x), x)
x*log(x) - x
>>> integrate(log(x))
x*log(x) - x
>>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
atan(exp(x))
>>> integrate(exp(x) / (1 + exp(2 * x)))
RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))
>>> manualintegrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5
>>> integrate(cos(x)**4 * sin(x), x)
-cos(x)**5/5
>>> manualintegrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5
>>> integrate(cos(x)**4 * sin(x)**3, x)
cos(x)**7/7 - cos(x)**5/5
>>> manualintegrate(tan(x), x)
-log(cos(x))
>>> integrate(tan(x), x)
-log(cos(x))
See Also
========
sympy.integrals.integrals.integrate
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
"""
result = _manualintegrate(integral_steps(f, var))
# Clear the cache of u-parts
_parts_u_cache.clear()
# If we got Piecewise with two parts, put generic first
if isinstance(result, Piecewise) and len(result.args) == 2:
cond = result.args[0][1]
if isinstance(cond, Eq) and result.args[1][1] == True:
result = result.func(
(result.args[1][0], Ne(*cond.args)),
(result.args[0][0], True))
return result
|
05e814729516f7a158f5ff189f48c78cad0b8c290cdbc3670958394bd7135b05 | from sympy.functions import SingularityFunction, DiracDelta
from sympy.integrals import integrate
def singularityintegrate(f, x):
"""
This function handles the indefinite integrations of Singularity functions.
The ``integrate`` function calls this function internally whenever an
instance of SingularityFunction is passed as argument.
Explanation
===========
The idea for integration is the following:
- If we are dealing with a SingularityFunction expression,
i.e. ``SingularityFunction(x, a, n)``, we just return
``SingularityFunction(x, a, n + 1)/(n + 1)`` if ``n >= 0`` and
``SingularityFunction(x, a, n + 1)`` if ``n < 0``.
- If the node is a multiplication or power node having a
SingularityFunction term we rewrite the whole expression in terms of
Heaviside and DiracDelta and then integrate the output. Lastly, we
rewrite the output of integration back in terms of SingularityFunction.
- If none of the above case arises, we return None.
Examples
========
>>> from sympy.integrals.singularityfunctions import singularityintegrate
>>> from sympy import SingularityFunction, symbols, Function
>>> x, a, n, y = symbols('x a n y')
>>> f = Function('f')
>>> singularityintegrate(SingularityFunction(x, a, 3), x)
SingularityFunction(x, a, 4)/4
>>> singularityintegrate(5*SingularityFunction(x, 5, -2), x)
5*SingularityFunction(x, 5, -1)
>>> singularityintegrate(6*SingularityFunction(x, 5, -1), x)
6*SingularityFunction(x, 5, 0)
>>> singularityintegrate(x*SingularityFunction(x, 0, -1), x)
0
>>> singularityintegrate(SingularityFunction(x, 1, -1) * f(x), x)
f(1)*SingularityFunction(x, 1, 0)
"""
if not f.has(SingularityFunction):
return None
if isinstance(f, SingularityFunction):
x, a, n = f.args
if n.is_positive or n.is_zero:
return SingularityFunction(x, a, n + 1)/(n + 1)
elif n in (-1, -2):
return SingularityFunction(x, a, n + 1)
if f.is_Mul or f.is_Pow:
expr = f.rewrite(DiracDelta)
expr = integrate(expr, x)
return expr.rewrite(SingularityFunction)
return None
|
e199fddb8fef1f36a0905bcc2ca1dde669fb44d73c84103b5d973723b475c4cf | """ Integral Transforms """
from functools import reduce, wraps
from itertools import repeat
from sympy.core import S, pi, I
from sympy.core.add import Add
from sympy.core.function import (AppliedUndef, count_ops, Derivative, expand,
expand_complex, expand_mul, Function, Lambda,
WildFunction)
from sympy.core.mul import Mul
from sympy.core.numbers import igcd, ilcm
from sympy.core.relational import _canonical, Ge, Gt, Lt, Unequality, Eq
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Dummy, symbols, Wild
from sympy.core.traversal import postorder_traversal
from sympy.functions.combinatorial.factorials import factorial, rf
from sympy.functions.elementary.complexes import (re, arg, Abs, polar_lift,
periodic_argument)
from sympy.functions.elementary.exponential import exp, log, exp_polar
from sympy.functions.elementary.hyperbolic import cosh, coth, sinh, tanh, asinh
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
from sympy.functions.elementary.trigonometric import cos, cot, sin, tan, atan
from sympy.functions.special.bessel import besseli, besselj, besselk, bessely
from sympy.functions.special.delta_functions import DiracDelta, Heaviside
from sympy.functions.special.error_functions import erf, erfc, Ei
from sympy.functions.special.gamma_functions import digamma, gamma, lowergamma
from sympy.functions.special.hyper import meijerg
from sympy.integrals import integrate, Integral
from sympy.integrals.meijerint import _dummy
from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And
from sympy.matrices.matrices import MatrixBase
from sympy.polys.matrices.linsolve import _lin_eq2dict, PolyNonlinearError
from sympy.polys.polyroots import roots
from sympy.polys.polytools import factor, Poly
from sympy.polys.rationaltools import together
from sympy.polys.rootoftools import CRootOf, RootSum
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import debug
##########################################################################
# Helpers / Utilities
##########################################################################
class IntegralTransformError(NotImplementedError):
"""
Exception raised in relation to problems computing transforms.
Explanation
===========
This class is mostly used internally; if integrals cannot be computed
objects representing unevaluated transforms are usually returned.
The hint ``needeval=True`` can be used to disable returning transform
objects, and instead raise this exception if an integral cannot be
computed.
"""
def __init__(self, transform, function, msg):
super().__init__(
"%s Transform could not be computed: %s." % (transform, msg))
self.function = function
class IntegralTransform(Function):
"""
Base class for integral transforms.
Explanation
===========
This class represents unevaluated transforms.
To implement a concrete transform, derive from this class and implement
the ``_compute_transform(f, x, s, **hints)`` and ``_as_integral(f, x, s)``
functions. If the transform cannot be computed, raise :obj:`IntegralTransformError`.
Also set ``cls._name``. For instance,
>>> from sympy import LaplaceTransform
>>> LaplaceTransform._name
'Laplace'
Implement ``self._collapse_extra`` if your function returns more than just a
number and possibly a convergence condition.
"""
@property
def function(self):
""" The function to be transformed. """
return self.args[0]
@property
def function_variable(self):
""" The dependent variable of the function to be transformed. """
return self.args[1]
@property
def transform_variable(self):
""" The independent transform variable. """
return self.args[2]
@property
def free_symbols(self):
"""
This method returns the symbols that will exist when the transform
is evaluated.
"""
return self.function.free_symbols.union({self.transform_variable}) \
- {self.function_variable}
def _compute_transform(self, f, x, s, **hints):
raise NotImplementedError
def _as_integral(self, f, x, s):
raise NotImplementedError
def _collapse_extra(self, extra):
cond = And(*extra)
if cond == False:
raise IntegralTransformError(self.__class__.name, None, '')
return cond
def _try_directly(self, **hints):
T = None
try_directly = not any(func.has(self.function_variable)
for func in self.function.atoms(AppliedUndef))
if try_directly:
try:
T = self._compute_transform(self.function,
self.function_variable, self.transform_variable, **hints)
except IntegralTransformError:
T = None
fn = self.function
if not fn.is_Add:
fn = expand_mul(fn)
return fn, T
def doit(self, **hints):
"""
Try to evaluate the transform in closed form.
Explanation
===========
This general function handles linearity, but apart from that leaves
pretty much everything to _compute_transform.
Standard hints are the following:
- ``simplify``: whether or not to simplify the result
- ``noconds``: if True, do not return convergence conditions
- ``needeval``: if True, raise IntegralTransformError instead of
returning IntegralTransform objects
The default values of these hints depend on the concrete transform,
usually the default is
``(simplify, noconds, needeval) = (True, False, False)``.
"""
needeval = hints.pop('needeval', False)
simplify = hints.pop('simplify', True)
hints['simplify'] = simplify
fn, T = self._try_directly(**hints)
if T is not None:
return T
if fn.is_Add:
hints['needeval'] = needeval
res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints)
for x in fn.args]
extra = []
ress = []
for x in res:
if not isinstance(x, tuple):
x = [x]
ress.append(x[0])
if len(x) == 2:
# only a condition
extra.append(x[1])
elif len(x) > 2:
# some region parameters and a condition (Mellin, Laplace)
extra += [x[1:]]
if simplify==True:
res = Add(*ress).simplify()
else:
res = Add(*ress)
if not extra:
return res
try:
extra = self._collapse_extra(extra)
if iterable(extra):
return tuple([res]) + tuple(extra)
else:
return (res, extra)
except IntegralTransformError:
pass
if needeval:
raise IntegralTransformError(
self.__class__._name, self.function, 'needeval')
# TODO handle derivatives etc
# pull out constant coefficients
coeff, rest = fn.as_coeff_mul(self.function_variable)
return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:])))
@property
def as_integral(self):
return self._as_integral(self.function, self.function_variable,
self.transform_variable)
def _eval_rewrite_as_Integral(self, *args, **kwargs):
return self.as_integral
def _simplify(expr, doit):
if doit:
from sympy.simplify import simplify
from sympy.simplify.powsimp import powdenest
return simplify(powdenest(piecewise_fold(expr), polar=True))
return expr
def _noconds_(default):
"""
This is a decorator generator for dropping convergence conditions.
Explanation
===========
Suppose you define a function ``transform(*args)`` which returns a tuple of
the form ``(result, cond1, cond2, ...)``.
Decorating it ``@_noconds_(default)`` will add a new keyword argument
``noconds`` to it. If ``noconds=True``, the return value will be altered to
be only ``result``, whereas if ``noconds=False`` the return value will not
be altered.
The default value of the ``noconds`` keyword will be ``default`` (i.e. the
argument of this function).
"""
def make_wrapper(func):
@wraps(func)
def wrapper(*args, noconds=default, **kwargs):
res = func(*args, **kwargs)
if noconds:
return res[0]
return res
return wrapper
return make_wrapper
_noconds = _noconds_(False)
##########################################################################
# Mellin Transform
##########################################################################
def _default_integrator(f, x):
return integrate(f, (x, S.Zero, S.Infinity))
@_noconds
def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True):
""" Backend function to compute Mellin transforms. """
# We use a fresh dummy, because assumptions on s might drop conditions on
# convergence of the integral.
s = _dummy('s', 'mellin-transform', f)
F = integrator(x**(s - 1) * f, x)
if not F.has(Integral):
return _simplify(F.subs(s, s_), simplify), (S.NegativeInfinity, S.Infinity), S.true
if not F.is_Piecewise: # XXX can this work if integration gives continuous result now?
raise IntegralTransformError('Mellin', f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(
'Mellin', f, 'integral in unexpected form')
def process_conds(cond):
"""
Turn ``cond`` into a strip (a, b), and auxiliary conditions.
"""
from sympy.solvers.inequalities import _solve_inequality
a = S.NegativeInfinity
b = S.Infinity
aux = S.true
conds = conjuncts(to_cnf(cond))
t = Dummy('t', real=True)
for c in conds:
a_ = S.Infinity
b_ = S.NegativeInfinity
aux_ = []
for d in disjuncts(c):
d_ = d.replace(
re, lambda x: x.as_real_imag()[0]).subs(re(s), t)
if not d.is_Relational or \
d.rel_op in ('==', '!=') \
or d_.has(s) or not d_.has(t):
aux_ += [d]
continue
soln = _solve_inequality(d_, t)
if not soln.is_Relational or \
soln.rel_op in ('==', '!='):
aux_ += [d]
continue
if soln.lts == t:
b_ = Max(soln.gts, b_)
else:
a_ = Min(soln.lts, a_)
if a_ is not S.Infinity and a_ != b:
a = Max(a_, a)
elif b_ is not S.NegativeInfinity and b_ != a:
b = Min(b_, b)
else:
aux = And(aux, Or(*aux_))
return a, b, aux
conds = [process_conds(c) for c in disjuncts(cond)]
conds = [x for x in conds if x[2] != False]
conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2])))
if not conds:
raise IntegralTransformError('Mellin', f, 'no convergence found')
a, b, aux = conds[0]
return _simplify(F.subs(s, s_), simplify), (a, b), aux
class MellinTransform(IntegralTransform):
"""
Class representing unevaluated Mellin transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Mellin transforms, see the :func:`mellin_transform`
docstring.
"""
_name = 'Mellin'
def _compute_transform(self, f, x, s, **hints):
return _mellin_transform(f, x, s, **hints)
def _as_integral(self, f, x, s):
return Integral(f*x**(s - 1), (x, S.Zero, S.Infinity))
def _collapse_extra(self, extra):
a = []
b = []
cond = []
for (sa, sb), c in extra:
a += [sa]
b += [sb]
cond += [c]
res = (Max(*a), Min(*b)), And(*cond)
if (res[0][0] >= res[0][1]) == True or res[1] == False:
raise IntegralTransformError(
'Mellin', None, 'no combined convergence.')
return res
def mellin_transform(f, x, s, **hints):
r"""
Compute the Mellin transform `F(s)` of `f(x)`,
.. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x.
For all "sensible" functions, this converges absolutely in a strip
`a < \operatorname{Re}(s) < b`.
Explanation
===========
The Mellin transform is related via change of variables to the Fourier
transform, and also to the (bilateral) Laplace transform.
This function returns ``(F, (a, b), cond)``
where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip
(as above), and ``cond`` are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`MellinTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``,
then only `F` will be returned (i.e. not ``cond``, and also not the strip
``(a, b)``).
Examples
========
>>> from sympy import mellin_transform, exp
>>> from sympy.abc import x, s
>>> mellin_transform(exp(-x), x, s)
(gamma(s), (0, oo), True)
See Also
========
inverse_mellin_transform, laplace_transform, fourier_transform
hankel_transform, inverse_hankel_transform
"""
return MellinTransform(f, x, s).doit(**hints)
def _rewrite_sin(m_n, s, a, b):
"""
Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible
with the strip (a, b).
Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``.
Examples
========
>>> from sympy.integrals.transforms import _rewrite_sin
>>> from sympy import pi, S
>>> from sympy.abc import s
>>> _rewrite_sin((pi, 0), s, 0, 1)
(gamma(s), gamma(1 - s), pi)
>>> _rewrite_sin((pi, 0), s, 1, 0)
(gamma(s - 1), gamma(2 - s), -pi)
>>> _rewrite_sin((pi, 0), s, -1, 0)
(gamma(s + 1), gamma(-s), -pi)
>>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2)
(gamma(s - 1/2), gamma(3/2 - s), -pi)
>>> _rewrite_sin((pi, pi), s, 0, 1)
(gamma(s), gamma(1 - s), -pi)
>>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2)
(gamma(2*s), gamma(1 - 2*s), pi)
>>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1)
(gamma(2*s - 1), gamma(2 - 2*s), -pi)
"""
# (This is a separate function because it is moderately complicated,
# and I want to doctest it.)
# We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x).
# But there is one comlication: the gamma functions determine the
# inegration contour in the definition of the G-function. Usually
# it would not matter if this is slightly shifted, unless this way
# we create an undefined function!
# So we try to write this in such a way that the gammas are
# eminently on the right side of the strip.
m, n = m_n
m = expand_mul(m/pi)
n = expand_mul(n/pi)
r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand
return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi
class MellinTransformStripError(ValueError):
"""
Exception raised by _rewrite_gamma. Mainly for internal use.
"""
pass
def _rewrite_gamma(f, s, a, b):
"""
Try to rewrite the product f(s) as a product of gamma functions,
so that the inverse Mellin transform of f can be expressed as a meijer
G function.
Explanation
===========
Return (an, ap), (bm, bq), arg, exp, fac such that
G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s).
Raises IntegralTransformError or MellinTransformStripError on failure.
It is asserted that f has no poles in the fundamental strip designated by
(a, b). One of a and b is allowed to be None. The fundamental strip is
important, because it determines the inversion contour.
This function can handle exponentials, linear factors, trigonometric
functions.
This is a helper function for inverse_mellin_transform that will not
attempt any transformations on f.
Examples
========
>>> from sympy.integrals.transforms import _rewrite_gamma
>>> from sympy.abc import s
>>> from sympy import oo
>>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo)
(([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1)
>>> _rewrite_gamma((s-1)**2, s, -oo, oo)
(([], [1, 1]), ([2, 2], []), 1, 1, 1)
Importance of the fundamental strip:
>>> _rewrite_gamma(1/s, s, 0, oo)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, None, oo)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, 0, None)
(([1], []), ([], [0]), 1, 1, 1)
>>> _rewrite_gamma(1/s, s, -oo, 0)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(1/s, s, None, 0)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(1/s, s, -oo, None)
(([], [1]), ([0], []), 1, 1, -1)
>>> _rewrite_gamma(2**(-s+3), s, -oo, oo)
(([], []), ([], []), 1/2, 1, 8)
"""
# Our strategy will be as follows:
# 1) Guess a constant c such that the inversion integral should be
# performed wrt s'=c*s (instead of plain s). Write s for s'.
# 2) Process all factors, rewrite them independently as gamma functions in
# argument s, or exponentials of s.
# 3) Try to transform all gamma functions s.t. they have argument
# a+s or a-s.
# 4) Check that the resulting G function parameters are valid.
# 5) Combine all the exponentials.
a_, b_ = S([a, b])
def left(c, is_numer):
"""
Decide whether pole at c lies to the left of the fundamental strip.
"""
# heuristically, this is the best chance for us to solve the inequalities
c = expand(re(c))
if a_ is None and b_ is S.Infinity:
return True
if a_ is None:
return c < b_
if b_ is None:
return c <= a_
if (c >= b_) == True:
return False
if (c <= a_) == True:
return True
if is_numer:
return None
if a_.free_symbols or b_.free_symbols or c.free_symbols:
return None # XXX
#raise IntegralTransformError('Inverse Mellin', f,
# 'Could not determine position of singularity %s'
# ' relative to fundamental strip' % c)
raise MellinTransformStripError('Pole inside critical strip?')
# 1)
s_multipliers = []
for g in f.atoms(gamma):
if not g.has(s):
continue
arg = g.args[0]
if arg.is_Add:
arg = arg.as_independent(s)[1]
coeff, _ = arg.as_coeff_mul(s)
s_multipliers += [coeff]
for g in f.atoms(sin, cos, tan, cot):
if not g.has(s):
continue
arg = g.args[0]
if arg.is_Add:
arg = arg.as_independent(s)[1]
coeff, _ = arg.as_coeff_mul(s)
s_multipliers += [coeff/pi]
s_multipliers = [Abs(x) if x.is_extended_real else x for x in s_multipliers]
common_coefficient = S.One
for x in s_multipliers:
if not x.is_Rational:
common_coefficient = x
break
s_multipliers = [x/common_coefficient for x in s_multipliers]
if not (all(x.is_Rational for x in s_multipliers) and
common_coefficient.is_extended_real):
raise IntegralTransformError("Gamma", None, "Nonrational multiplier")
s_multiplier = common_coefficient/reduce(ilcm, [S(x.q)
for x in s_multipliers], S.One)
if s_multiplier == common_coefficient:
if len(s_multipliers) == 0:
s_multiplier = common_coefficient
else:
s_multiplier = common_coefficient \
*reduce(igcd, [S(x.p) for x in s_multipliers])
f = f.subs(s, s/s_multiplier)
fac = S.One/s_multiplier
exponent = S.One/s_multiplier
if a_ is not None:
a_ *= s_multiplier
if b_ is not None:
b_ *= s_multiplier
# 2)
numer, denom = f.as_numer_denom()
numer = Mul.make_args(numer)
denom = Mul.make_args(denom)
args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False)))
facs = []
dfacs = []
# *_gammas will contain pairs (a, c) representing Gamma(a*s + c)
numer_gammas = []
denom_gammas = []
# exponentials will contain bases for exponentials of s
exponentials = []
def exception(fact):
return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact)
while args:
fact, is_numer = args.pop()
if is_numer:
ugammas, lgammas = numer_gammas, denom_gammas
ufacs = facs
else:
ugammas, lgammas = denom_gammas, numer_gammas
ufacs = dfacs
def linear_arg(arg):
""" Test if arg is of form a*s+b, raise exception if not. """
if not arg.is_polynomial(s):
raise exception(fact)
p = Poly(arg, s)
if p.degree() != 1:
raise exception(fact)
return p.all_coeffs()
# constants
if not fact.has(s):
ufacs += [fact]
# exponentials
elif fact.is_Pow or isinstance(fact, exp):
if fact.is_Pow:
base = fact.base
exp_ = fact.exp
else:
base = exp_polar(1)
exp_ = fact.exp
if exp_.is_Integer:
cond = is_numer
if exp_ < 0:
cond = not cond
args += [(base, cond)]*Abs(exp_)
continue
elif not base.has(s):
a, b = linear_arg(exp_)
if not is_numer:
base = 1/base
exponentials += [base**a]
facs += [base**b]
else:
raise exception(fact)
# linear factors
elif fact.is_polynomial(s):
p = Poly(fact, s)
if p.degree() != 1:
# We completely factor the poly. For this we need the roots.
# Now roots() only works in some cases (low degree), and CRootOf
# only works without parameters. So try both...
coeff = p.LT()[1]
rs = roots(p, s)
if len(rs) != p.degree():
rs = CRootOf.all_roots(p)
ufacs += [coeff]
args += [(s - c, is_numer) for c in rs]
continue
a, c = p.all_coeffs()
ufacs += [a]
c /= -a
# Now need to convert s - c
if left(c, is_numer):
ugammas += [(S.One, -c + 1)]
lgammas += [(S.One, -c)]
else:
ufacs += [-1]
ugammas += [(S.NegativeOne, c + 1)]
lgammas += [(S.NegativeOne, c)]
elif isinstance(fact, gamma):
a, b = linear_arg(fact.args[0])
if is_numer:
if (a > 0 and (left(-b/a, is_numer) == False)) or \
(a < 0 and (left(-b/a, is_numer) == True)):
raise NotImplementedError(
'Gammas partially over the strip.')
ugammas += [(a, b)]
elif isinstance(fact, sin):
# We try to re-write all trigs as gammas. This is not in
# general the best strategy, since sometimes this is impossible,
# but rewriting as exponentials would work. However trig functions
# in inverse mellin transforms usually all come from simplifying
# gamma terms, so this should work.
a = fact.args[0]
if is_numer:
# No problem with the poles.
gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi
else:
gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_)
args += [(gamma1, not is_numer), (gamma2, not is_numer)]
ufacs += [fac_]
elif isinstance(fact, tan):
a = fact.args[0]
args += [(sin(a, evaluate=False), is_numer),
(sin(pi/2 - a, evaluate=False), not is_numer)]
elif isinstance(fact, cos):
a = fact.args[0]
args += [(sin(pi/2 - a, evaluate=False), is_numer)]
elif isinstance(fact, cot):
a = fact.args[0]
args += [(sin(pi/2 - a, evaluate=False), is_numer),
(sin(a, evaluate=False), not is_numer)]
else:
raise exception(fact)
fac *= Mul(*facs)/Mul(*dfacs)
# 3)
an, ap, bm, bq = [], [], [], []
for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True),
(denom_gammas, bq, ap, False)]:
while gammas:
a, c = gammas.pop()
if a != -1 and a != +1:
# We use the gamma function multiplication theorem.
p = Abs(S(a))
newa = a/p
newc = c/p
if not a.is_Integer:
raise TypeError("a is not an integer")
for k in range(p):
gammas += [(newa, newc + k/p)]
if is_numer:
fac *= (2*pi)**((1 - p)/2) * p**(c - S.Half)
exponentials += [p**a]
else:
fac /= (2*pi)**((1 - p)/2) * p**(c - S.Half)
exponentials += [p**(-a)]
continue
if a == +1:
plus.append(1 - c)
else:
minus.append(c)
# 4)
# TODO
# 5)
arg = Mul(*exponentials)
# for testability, sort the arguments
an.sort(key=default_sort_key)
ap.sort(key=default_sort_key)
bm.sort(key=default_sort_key)
bq.sort(key=default_sort_key)
return (an, ap), (bm, bq), arg, exponent, fac
@_noconds_(True)
def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False):
""" A helper for the real inverse_mellin_transform function, this one here
assumes x to be real and positive. """
x = _dummy('t', 'inverse-mellin-transform', F, positive=True)
# Actually, we won't try integration at all. Instead we use the definition
# of the Meijer G function as a fairly general inverse mellin transform.
F = F.rewrite(gamma)
for g in [factor(F), expand_mul(F), expand(F)]:
if g.is_Add:
# do all terms separately
ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg,
noconds=False)
for G in g.args]
conds = [p[1] for p in ress]
ress = [p[0] for p in ress]
res = Add(*ress)
if not as_meijerg:
res = factor(res, gens=res.atoms(Heaviside))
return res.subs(x, x_), And(*conds)
try:
a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1])
except IntegralTransformError:
continue
try:
G = meijerg(a, b, C/x**e)
except ValueError:
continue
if as_meijerg:
h = G
else:
try:
from sympy.simplify import hyperexpand
h = hyperexpand(G)
except NotImplementedError:
raise IntegralTransformError(
'Inverse Mellin', F, 'Could not calculate integral')
if h.is_Piecewise and len(h.args) == 3:
# XXX we break modularity here!
h = Heaviside(x - Abs(C))*h.args[0].args[0] \
+ Heaviside(Abs(C) - x)*h.args[1].args[0]
# We must ensure that the integral along the line we want converges,
# and return that value.
# See [L], 5.2
cond = [Abs(arg(G.argument)) < G.delta*pi]
# Note: we allow ">=" here, this corresponds to convergence if we let
# limits go to oo symmetrically. ">" corresponds to absolute convergence.
cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1),
Abs(arg(G.argument)) == G.delta*pi)]
cond = Or(*cond)
if cond == False:
raise IntegralTransformError(
'Inverse Mellin', F, 'does not converge')
return (h*fac).subs(x, x_), cond
raise IntegralTransformError('Inverse Mellin', F, '')
_allowed = None
class InverseMellinTransform(IntegralTransform):
"""
Class representing unevaluated inverse Mellin transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Mellin transforms, see the
:func:`inverse_mellin_transform` docstring.
"""
_name = 'Inverse Mellin'
_none_sentinel = Dummy('None')
_c = Dummy('c')
def __new__(cls, F, s, x, a, b, **opts):
if a is None:
a = InverseMellinTransform._none_sentinel
if b is None:
b = InverseMellinTransform._none_sentinel
return IntegralTransform.__new__(cls, F, s, x, a, b, **opts)
@property
def fundamental_strip(self):
a, b = self.args[3], self.args[4]
if a is InverseMellinTransform._none_sentinel:
a = None
if b is InverseMellinTransform._none_sentinel:
b = None
return a, b
def _compute_transform(self, F, s, x, **hints):
# IntegralTransform's doit will cause this hint to exist, but
# InverseMellinTransform should ignore it
hints.pop('simplify', True)
global _allowed
if _allowed is None:
_allowed = {
exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth,
factorial, rf}
for f in postorder_traversal(F):
if f.is_Function and f.has(s) and f.func not in _allowed:
raise IntegralTransformError('Inverse Mellin', F,
'Component %s not recognised.' % f)
strip = self.fundamental_strip
return _inverse_mellin_transform(F, s, x, strip, **hints)
def _as_integral(self, F, s, x):
c = self.__class__._c
return Integral(F*x**(-s), (s, c - S.ImaginaryUnit*S.Infinity, c +
S.ImaginaryUnit*S.Infinity))/(2*S.Pi*S.ImaginaryUnit)
def inverse_mellin_transform(F, s, x, strip, **hints):
r"""
Compute the inverse Mellin transform of `F(s)` over the fundamental
strip given by ``strip=(a, b)``.
Explanation
===========
This can be defined as
.. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s,
for any `c` in the fundamental strip. Under certain regularity
conditions on `F` and/or `f`,
this recovers `f` from its Mellin transform `F`
(and vice versa), for positive real `x`.
One of `a` or `b` may be passed as ``None``; a suitable `c` will be
inferred.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`InverseMellinTransform` object.
Note that this function will assume x to be positive and real, regardless
of the SymPy assumptions!
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Examples
========
>>> from sympy import inverse_mellin_transform, oo, gamma
>>> from sympy.abc import x, s
>>> inverse_mellin_transform(gamma(s), s, x, (0, oo))
exp(-x)
The fundamental strip matters:
>>> f = 1/(s**2 - 1)
>>> inverse_mellin_transform(f, s, x, (-oo, -1))
x*(1 - 1/x**2)*Heaviside(x - 1)/2
>>> inverse_mellin_transform(f, s, x, (-1, 1))
-x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x)
>>> inverse_mellin_transform(f, s, x, (1, oo))
(1/2 - x**2/2)*Heaviside(1 - x)/x
See Also
========
mellin_transform
hankel_transform, inverse_hankel_transform
"""
return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints)
##########################################################################
# Laplace Transform
##########################################################################
def _simplifyconds(expr, s, a):
r"""
Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`.
Examples
========
>>> from sympy.integrals.transforms import _simplifyconds as simp
>>> from sympy.abc import x
>>> from sympy import sympify as S
>>> simp(abs(x**2) < 1, x, 1)
False
>>> simp(abs(x**2) < 1, x, 2)
False
>>> simp(abs(x**2) < 1, x, 0)
Abs(x**2) < 1
>>> simp(abs(1/x**2) < 1, x, 1)
True
>>> simp(S(1) < abs(x), x, 1)
True
>>> simp(S(1) < abs(1/x), x, 1)
False
>>> from sympy import Ne
>>> simp(Ne(1, x**3), x, 1)
True
>>> simp(Ne(1, x**3), x, 2)
True
>>> simp(Ne(1, x**3), x, 0)
Ne(1, x**3)
"""
def power(ex):
if ex == s:
return 1
if ex.is_Pow and ex.base == s:
return ex.exp
return None
def bigger(ex1, ex2):
""" Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|.
Else return None. """
if ex1.has(s) and ex2.has(s):
return None
if isinstance(ex1, Abs):
ex1 = ex1.args[0]
if isinstance(ex2, Abs):
ex2 = ex2.args[0]
if ex1.has(s):
return bigger(1/ex2, 1/ex1)
n = power(ex2)
if n is None:
return None
try:
if n > 0 and (Abs(ex1) <= Abs(a)**n) == True:
return False
if n < 0 and (Abs(ex1) >= Abs(a)**n) == True:
return True
except TypeError:
pass
def replie(x, y):
""" simplify x < y """
if not (x.is_positive or isinstance(x, Abs)) \
or not (y.is_positive or isinstance(y, Abs)):
return (x < y)
r = bigger(x, y)
if r is not None:
return not r
return (x < y)
def replue(x, y):
b = bigger(x, y)
if b in (True, False):
return True
return Unequality(x, y)
def repl(ex, *args):
if ex in (True, False):
return bool(ex)
return ex.replace(*args)
from sympy.simplify.radsimp import collect_abs
expr = collect_abs(expr)
expr = repl(expr, Lt, replie)
expr = repl(expr, Gt, lambda x, y: replie(y, x))
expr = repl(expr, Unequality, replue)
return S(expr)
def expand_dirac_delta(expr):
"""
Expand an expression involving DiractDelta to get it as a linear
combination of DiracDelta functions.
"""
return _lin_eq2dict(expr, expr.atoms(DiracDelta))
@_noconds
def _laplace_transform(f, t, s_, simplify=True):
""" The backend function for Laplace transforms.
This backend assumes that the frontend has already split sums
such that `f` is to an addition anymore.
"""
s = Dummy('s')
a = Wild('a', exclude=[t])
deltazero = []
deltanonzero = []
try:
integratable, deltadict = expand_dirac_delta(f)
except PolyNonlinearError:
raise IntegralTransformError(
'Laplace', f, 'could not expand DiracDelta expressions')
for dirac_func, dirac_coeff in deltadict.items():
p = dirac_func.match(DiracDelta(a*t))
if p:
deltazero.append(dirac_coeff.subs(t,0)/p[a])
else:
if dirac_func.args[0].subs(t,0).is_zero:
raise IntegralTransformError('Laplace', f,\
'not implemented yet.')
else:
deltanonzero.append(dirac_func*dirac_coeff)
F = Add(integrate(exp(-s*t) * Add(integratable, *deltanonzero),
(t, S.Zero, S.Infinity)),
Add(*deltazero))
if not F.has(Integral):
return _simplify(F.subs(s, s_), simplify), S.NegativeInfinity, S.true
if not F.is_Piecewise:
raise IntegralTransformError(
'Laplace', f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(
'Laplace', f, 'integral in unexpected form')
def process_conds(conds):
""" Turn ``conds`` into a strip and auxiliary conditions. """
from sympy.solvers.inequalities import _solve_inequality
a = S.NegativeInfinity
aux = S.true
conds = conjuncts(to_cnf(conds))
p, q, w1, w2, w3, w4, w5 = symbols(
'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s])
patterns = (
p*Abs(arg((s + w3)*q)) < w2,
p*Abs(arg((s + w3)*q)) <= w2,
Abs(periodic_argument((s + w3)**p*q, w1)) < w2,
Abs(periodic_argument((s + w3)**p*q, w1)) <= w2,
Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) < w2,
Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) <= w2)
for c in conds:
a_ = S.Infinity
aux_ = []
for d in disjuncts(c):
if d.is_Relational and s in d.rhs.free_symbols:
d = d.reversed
if d.is_Relational and isinstance(d, (Ge, Gt)):
d = d.reversedsign
for pat in patterns:
m = d.match(pat)
if m:
break
if m:
if m[q].is_positive and m[w2]/m[p] == pi/2:
d = -re(s + m[w3]) < 0
m = d.match(p - cos(w1*Abs(arg(s*w5))*w2)*Abs(s**w3)**w4 < 0)
if not m:
m = d.match(
cos(p - Abs(periodic_argument(s**w1*w5, q))*w2)*Abs(s**w3)**w4 < 0)
if not m:
m = d.match(
p - cos(Abs(periodic_argument(polar_lift(s)**w1*w5, q))*w2
)*Abs(s**w3)**w4 < 0)
if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]):
d = re(s) > m[p]
d_ = d.replace(
re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t)
if not d.is_Relational or \
d.rel_op in ('==', '!=') \
or d_.has(s) or not d_.has(t):
aux_ += [d]
continue
soln = _solve_inequality(d_, t)
if not soln.is_Relational or \
soln.rel_op in ('==', '!='):
aux_ += [d]
continue
if soln.lts == t:
raise IntegralTransformError('Laplace', f,
'convergence not in half-plane?')
else:
a_ = Min(soln.lts, a_)
if a_ is not S.Infinity:
a = Max(a_, a)
else:
aux = And(aux, Or(*aux_))
return a, aux.canonical if aux.is_Relational else aux
conds = [process_conds(c) for c in disjuncts(cond)]
conds2 = [x for x in conds if x[1] != False and x[0] is not S.NegativeInfinity]
if not conds2:
conds2 = [x for x in conds if x[1] != False]
conds = list(ordered(conds2))
def cnt(expr):
if expr in (True, False):
return 0
return expr.count_ops()
conds.sort(key=lambda x: (-x[0], cnt(x[1])))
if not conds:
raise IntegralTransformError('Laplace', f, 'no convergence found')
a, aux = conds[0] # XXX is [0] always the right one?
def sbs(expr):
return expr.subs(s, s_)
if simplify:
F = _simplifyconds(F, s, a)
aux = _simplifyconds(aux, s, a)
return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux))
def _laplace_deep_collect(f, t):
"""
This is an internal helper function that traverses through the epression
tree of `f(t)` and collects arguments. The purpose of it is that
anything like `f(w*t-1*t-c)` will be written as `f((w-1)*t-c)` such that
it can match `f(a*t+b)`.
"""
func = f.func
args = list(f.args)
if len(f.args) == 0:
return f
else:
args = [_laplace_deep_collect(arg, t) for arg in args]
if func.is_Add:
return func(*args).collect(t)
else:
return func(*args)
def _laplace_build_rules(t, s):
"""
This is an internal helper function that returns the table of Laplace
transfrom rules in terms of the time variable `t` and the frequency
variable `s`. It is used by `_laplace_apply_rules`.
"""
a = Wild('a', exclude=[t])
b = Wild('b', exclude=[t])
n = Wild('n', exclude=[t])
tau = Wild('tau', exclude=[t])
omega = Wild('omega', exclude=[t])
dco = lambda f: _laplace_deep_collect(f,t)
laplace_transform_rules = [
# ( time domain,
# laplace domain,
# condition, convergence plane, preparation function )
#
# Catch constant (would otherwise be treated by 2.12)
(a, a/s, S.true, S.Zero, dco),
# DiracDelta rules
(DiracDelta(a*t-b),
exp(-s*b/a)/Abs(a),
Or(And(a>0, b>=0), And(a<0, b<=0)), S.Zero, dco),
(DiracDelta(a*t-b),
S(0),
Or(And(a<0, b>=0), And(a>0, b<=0)), S.Zero, dco),
# Rules from http://eqworld.ipmnet.ru/en/auxiliary/inttrans/
# 2.1
(1,
1/s,
S.true, S.Zero, dco),
# 2.2 expressed in terms of Heaviside
(Heaviside(a*t-b),
exp(-s*b/a)/s,
And(a>0, b>0), S.Zero, dco),
(Heaviside(a*t-b),
(1-exp(-s*b/a))/s,
And(a<0, b<0), S.Zero, dco),
(Heaviside(a*t-b),
1/s,
And(a>0, b<=0), S.Zero, dco),
(Heaviside(a*t-b),
0,
And(a<0, b>0), S.Zero, dco),
# 2.3
(t,
1/s**2,
S.true, S.Zero, dco),
# 2.4
(1/(a*t+b),
-exp(-b/a*s)*Ei(-b/a*s)/a,
a>0, S.Zero, dco),
# 2.5 and 2.6 are covered by 2.11
# 2.7
(1/sqrt(a*t+b),
sqrt(a*pi/s)*exp(b/a*s)*erfc(sqrt(b/a*s))/a,
a>0, S.Zero, dco),
# 2.8
(sqrt(t)/(t+b),
sqrt(pi/s)-pi*sqrt(b)*exp(b*s)*erfc(sqrt(b*s)),
S.true, S.Zero, dco),
# 2.9
((a*t+b)**(-S(3)/2),
2*b**(-S(1)/2)-2*(pi*s/a)**(S(1)/2)*exp(b/a*s)*erfc(sqrt(b/a*s))/a,
a>0, S.Zero, dco),
# 2.10
(t**(S(1)/2)*(t+a)**(-1),
(pi/s)**(S(1)/2)-pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)),
S.true, S.Zero, dco),
# 2.11
(1/(a*sqrt(t) + t**(3/2)),
pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)),
S.true, S.Zero, dco),
# 2.12
(t**n,
gamma(n+1)/s**(n+1),
n>-1, S.Zero, dco),
# 2.13
((a*t+b)**n,
lowergamma(n+1, b/a*s)*exp(-b/a*s)/s**(n+1)/a,
And(n>-1, a>0), S.Zero, dco),
# 2.14
(t**n/(t+a),
a**n*gamma(n+1)*lowergamma(-n,a*s),
n>-1, S.Zero, dco),
# 3.1
(exp(a*t-tau),
exp(-tau)/(s-a),
S.true, a, dco),
# 3.2
(t*exp(a*t-tau),
exp(-tau)/(s-a)**2,
S.true, a, dco),
# 3.3
(t**n*exp(a*t),
gamma(n+1)/(s-a)**(n+1),
n>-1, a, dco),
# 3.4 and 3.5 cannot be covered here because they are
# sums and only the individual sum terms will get here.
# 3.6
(exp(-a*t**2),
sqrt(pi/4/a)*exp(s**2/4/a)*erfc(s/sqrt(4*a)),
a>0, S.Zero, dco),
# 3.7
(t*exp(-a*t**2),
1/(2*a)-2/sqrt(pi)/(4*a)**(S(3)/2)*s*erfc(s/sqrt(4*a)),
S.true, S.Zero, dco),
# 3.8
(exp(-a/t),
2*sqrt(a/s)*besselk(1, 2*sqrt(a*s)),
a>=0, S.Zero, dco),
# 3.9
(sqrt(t)*exp(-a/t),
S(1)/2*sqrt(pi/s**3)*(1+2*sqrt(a*s))*exp(-2*sqrt(a*s)),
a>=0, S.Zero, dco),
# 3.10
(exp(-a/t)/sqrt(t),
sqrt(pi/s)*exp(-2*sqrt(a*s)),
a>=0, S.Zero, dco),
# 3.11
(exp(-a/t)/(t*sqrt(t)),
sqrt(pi/a)*exp(-2*sqrt(a*s)),
a>0, S.Zero, dco),
# 3.12
(t**n*exp(-a/t),
2*(a/s)**((n+1)/2)*besselk(n+1, 2*sqrt(a*s)),
a>0, S.Zero, dco),
# 3.13
(exp(-2*sqrt(a*t)),
s**(-1)-sqrt(pi*a)*s**(-S(3)/2)*exp(a/s)*erfc(sqrt(a/s)),
S.true, S.Zero, dco),
# 3.14
(exp(-2*sqrt(a*t))/sqrt(t),
(pi/s)**(S(1)/2)*exp(a/s)*erfc(sqrt(a/s)),
S.true, S.Zero, dco),
# 4.1
(sinh(a*t),
a/(s**2-a**2),
S.true, Abs(a), dco),
# 4.2
(sinh(a*t)**2,
2*a**2/(s**3-4*a**2*s**2),
S.true, Abs(2*a), dco),
# 4.3
(sinh(a*t)/t,
log((s+a)/(s-a))/2,
S.true, a, dco),
# 4.4
(t**n*sinh(a*t),
gamma(n+1)/2*((s-a)**(-n-1)-(s+a)**(-n-1)),
n>-2, Abs(a), dco),
# 4.5
(sinh(2*sqrt(a*t)),
sqrt(pi*a)/s/sqrt(s)*exp(a/s),
S.true, S.Zero, dco),
# 4.6
(sqrt(t)*sinh(2*sqrt(a*t)),
pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s)*erf(sqrt(a/s))-a**(S(1)/2)*s**(-2),
S.true, S.Zero, dco),
# 4.7
(sinh(2*sqrt(a*t))/sqrt(t),
pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s)*erf(sqrt(a/s)),
S.true, S.Zero, dco),
# 4.8
(sinh(sqrt(a*t))**2/sqrt(t),
pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)-1),
S.true, S.Zero, dco),
# 4.9
(cosh(a*t),
s/(s**2-a**2),
S.true, Abs(a), dco),
# 4.10
(cosh(a*t)**2,
(s**2-2*a**2)/(s**3-4*a**2*s**2),
S.true, Abs(2*a), dco),
# 4.11
(t**n*cosh(a*t),
gamma(n+1)/2*((s-a)**(-n-1)+(s+a)**(-n-1)),
n>-1, Abs(a), dco),
# 4.12
(cosh(2*sqrt(a*t)),
1/s+sqrt(pi*a)/s/sqrt(s)*exp(a/s)*erf(sqrt(a/s)),
S.true, S.Zero, dco),
# 4.13
(sqrt(t)*cosh(2*sqrt(a*t)),
pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s),
S.true, S.Zero, dco),
# 4.14
(cosh(2*sqrt(a*t))/sqrt(t),
pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s),
S.true, S.Zero, dco),
# 4.15
(cosh(sqrt(a*t))**2/sqrt(t),
pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)+1),
S.true, S.Zero, dco),
# 5.1
(log(a*t),
-log(s/a+S.EulerGamma)/s,
a>0, S.Zero, dco),
# 5.2
(log(1+a*t),
-exp(s/a)/s*Ei(-s/a),
S.true, S.Zero, dco),
# 5.3
(log(a*t+b),
(log(b)-exp(s/b/a)/s*a*Ei(-s/b))/s*a,
a>0, S.Zero, dco),
# 5.4 is covered by 5.7
# 5.5
(log(t)/sqrt(t),
-sqrt(pi/s)*(log(4*s)+S.EulerGamma),
S.true, S.Zero, dco),
# 5.6 is covered by 5.7
# 5.7
(t**n*log(t),
gamma(n+1)*s**(-n-1)*(digamma(n+1)-log(s)),
n>-1, S.Zero, dco),
# 5.8
(log(a*t)**2,
((log(s/a)+S.EulerGamma)**2+pi**2/6)/s,
a>0, S.Zero, dco),
# 5.9
(exp(-a*t)*log(t),
-(log(s+a)+S.EulerGamma)/(s+a),
S.true, -a, dco),
# 6.1
(sin(omega*t),
omega/(s**2+omega**2),
S.true, S.Zero, dco),
# 6.2
(Abs(sin(omega*t)),
omega/(s**2+omega**2)*coth(pi*s/2/omega),
omega>0, S.Zero, dco),
# 6.3 and 6.4 are covered by 1.8
# 6.5 is covered by 1.8 together with 2.5
# 6.6
(sin(omega*t)/t,
atan(omega/s),
S.true, S.Zero, dco),
# 6.7
(sin(omega*t)**2/t,
log(1+4*omega**2/s**2)/4,
S.true, S.Zero, dco),
# 6.8
(sin(omega*t)**2/t**2,
omega*atan(2*omega/s)-s*log(1+4*omega**2/s**2)/4,
S.true, S.Zero, dco),
# 6.9
(sin(2*sqrt(a*t)),
sqrt(pi*a)/s/sqrt(s)*exp(-a/s),
a>0, S.Zero, dco),
# 6.10
(sin(2*sqrt(a*t))/t,
pi*erf(sqrt(a/s)),
a>0, S.Zero, dco),
# 6.11
(cos(omega*t),
s/(s**2+omega**2),
S.true, S.Zero, dco),
# 6.12
(cos(omega*t)**2,
(s**2+2*omega**2)/(s**2+4*omega**2)/s,
S.true, S.Zero, dco),
# 6.13 is covered by 1.9 together with 2.5
# 6.14 and 6.15 cannot be done with this method, the respective sum
# parts do not converge. Solve elsewhere if really needed.
# 6.16
(sqrt(t)*cos(2*sqrt(a*t)),
sqrt(pi)/2*s**(-S(5)/2)*(s-2*a)*exp(-a/s),
a>0, S.Zero, dco),
# 6.17
(cos(2*sqrt(a*t))/sqrt(t),
sqrt(pi/s)*exp(-a/s),
a>0, S.Zero, dco),
# 6.18
(sin(a*t)*sin(b*t),
2*a*b*s/(s**2+(a+b)**2)/(s**2+(a-b)**2),
S.true, S.Zero, dco),
# 6.19
(cos(a*t)*sin(b*t),
b*(s**2-a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2),
S.true, S.Zero, dco),
# 6.20
(cos(a*t)*cos(b*t),
s*(s**2+a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2),
S.true, S.Zero, dco),
# 6.21
(exp(b*t)*sin(a*t),
a/((s-b)**2+a**2),
S.true, b, dco),
# 6.22
(exp(b*t)*cos(a*t),
(s-b)/((s-b)**2+a**2),
S.true, b, dco),
# 7.1
(erf(a*t),
exp(s**2/(2*a)**2)*erfc(s/(2*a))/s,
a>0, S.Zero, dco),
# 7.2
(erf(sqrt(a*t)),
sqrt(a)/sqrt(s+a)/s,
a>0, S.Zero, dco),
# 7.3
(exp(a*t)*erf(sqrt(a*t)),
sqrt(a)/sqrt(s)/(s-a),
a>0, a, dco),
# 7.4
(erf(sqrt(a/t)/2),
(1-exp(-sqrt(a*s)))/s,
a>0, S.Zero, dco),
# 7.5
(erfc(sqrt(a*t)),
(sqrt(s+a)-sqrt(a))/sqrt(s+a)/s,
a>0, S.Zero, dco),
# 7.6
(exp(a*t)*erfc(sqrt(a*t)),
1/(s+sqrt(a*s)),
a>0, S.Zero, dco),
# 7.7
(erfc(sqrt(a/t)/2),
exp(-sqrt(a*s))/s,
a>0, S.Zero, dco),
# 8.1, 8.2
(besselj(n, a*t),
a**n/(sqrt(s**2+a**2)*(s+sqrt(s**2+a**2))**n),
And(a>0, n>-1), S.Zero, dco),
# 8.3, 8.4
(t**b*besselj(n, a*t),
2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2+a**2)**(-n-S.Half),
And(And(a>0, n>-S.Half), Eq(b, n)), S.Zero, dco),
# 8.5
(t**b*besselj(n, a*t),
2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2+a**2)**(-n-S(3)/2),
And(And(a>0, n>-1), Eq(b, n+1)), S.Zero, dco),
# 8.6
(besselj(0, 2*sqrt(a*t)),
exp(-a/s)/s,
a>0, S.Zero, dco),
# 8.7, 8.8
(t**(b)*besselj(n, 2*sqrt(a*t)),
a**(n/2)*s**(-n-1)*exp(-a/s),
And(And(a>0, n>-1), Eq(b, n*S.Half)), S.Zero, dco),
# 8.9
(besselj(0, a*sqrt(t**2+b*t)),
exp(b*s-b*sqrt(s**2+a**2))/sqrt(s**2+a**2),
b>0, S.Zero, dco),
# 8.10, 8.11
(besseli(n, a*t),
a**n/(sqrt(s**2-a**2)*(s+sqrt(s**2-a**2))**n),
And(a>0, n>-1), Abs(a), dco),
# 8.12
(t**b*besseli(n, a*t),
2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2-a**2)**(-n-S.Half),
And(And(a>0, n>-S.Half), Eq(b, n)), Abs(a), dco),
# 8.13
(t**b*besseli(n, a*t),
2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2-a**2)**(-n-S(3)/2),
And(And(a>0, n>-1), Eq(b, n+1)), Abs(a), dco),
# 8.15, 8.16
(t**(b)*besseli(n, 2*sqrt(a*t)),
a**(n/2)*s**(-n-1)*exp(a/s),
And(And(a>0, n>-1), Eq(b, n*S.Half)), S.Zero, dco),
# 8.17
(bessely(0, a*t),
-2/pi*asinh(s/a)/sqrt(s**2+a**2),
a>0, S.Zero, dco),
# 8.18
(besselk(0, a*t),
(log(s+sqrt(s**2-a**2)))/(sqrt(s**2-a**2)),
a>0, Abs(a), dco)
]
return laplace_transform_rules
def _laplace_cr(f, a, c, **hints):
"""
Internal helper function that will return `(f, a, c)` unless `**hints`
contains `noconds=True`, in which case it will only return `f`.
"""
conds = not hints.get('noconds', False)
if conds:
return f, a, c
else:
return f
def _laplace_rule_timescale(f, t, s, doit=True, **hints):
r"""
This internal helper function tries to apply the time-scaling rule of the
Laplace transform and returns `None` if it cannot do it.
Time-scaling means the following: if $F(s)$ is the Laplace transform of,
$f(t)$, then, for any $a>0$, the Laplace transform of $f(at)$ will be
$\frac1a F(\frac{s}{a})$. This scaling will also affect the transform's
convergence plane.
"""
_simplify = hints.pop('simplify', True)
b = Wild('b', exclude=[t])
g = WildFunction('g', nargs=1)
k, func = f.as_independent(t, as_Add=False)
ma1 = func.match(g)
if ma1:
arg = ma1[g].args[0].collect(t)
ma2 = arg.match(b*t)
if ma2 and ma2[b]>0:
debug('_laplace_apply_rules match:')
debug(' f: %s ( %s, %s )'%(f, ma1, ma2))
debug(' rule: amplitude and time scaling (1.1, 1.2)')
if ma2[b]==1:
if doit==True and not any(func.has(t) for func
in ma1[g].atoms(AppliedUndef)):
return k*_laplace_transform(ma1[g].func(t), t, s,
simplify=_simplify)
else:
return k*LaplaceTransform(ma1[g].func(t), t, s, **hints)
else:
L = _laplace_apply_rules(ma1[g].func(t), t, s/ma2[b],
doit=doit, **hints)
try:
r, p, c = L
return (k/ma2[b]*r, p, c)
except TypeError:
return k/ma2[b]*L
return None
def _laplace_rule_heaviside(f, t, s, doit=True, **hints):
"""
This internal helper function tries to transform a product containing the
`Heaviside` function and returns `None` if it cannot do it.
"""
hints.pop('simplify', True)
a = Wild('a', exclude=[t])
b = Wild('b', exclude=[t])
y = Wild('y')
g = WildFunction('g', nargs=1)
k, func = f.as_independent(t, as_Add=False)
ma1 = func.match(Heaviside(y)*g)
if ma1:
ma2 = ma1[y].match(t-a)
ma3 = ma1[g].args[0].collect(t).match(t-b)
if ma2 and ma2[a]>0 and ma3 and ma2[a]==ma3[b]:
debug('_laplace_apply_rules match:')
debug(' f: %s ( %s, %s, %s )'%(f, ma1, ma2, ma3))
debug(' rule: time shift (1.3)')
L = _laplace_apply_rules(ma1[g].func(t), t, s, doit=doit, **hints)
try:
r, p, c = L
return (k*exp(-ma2[a]*s)*r, p, c)
except TypeError:
return k*exp(-ma2[a]*s)*L
return None
def _laplace_rule_exp(f, t, s, doit=True, **hints):
"""
This internal helper function tries to transform a product containing the
`exp` function and returns `None` if it cannot do it.
"""
hints.pop('simplify', True)
a = Wild('a', exclude=[t])
y = Wild('y')
z = Wild('z')
k, func = f.as_independent(t, as_Add=False)
ma1 = func.match(exp(y)*z)
if ma1:
ma2 = ma1[y].collect(t).match(a*t)
if ma2:
debug('_laplace_apply_rules match:')
debug(' f: %s ( %s, %s )'%(f, ma1, ma2))
debug(' rule: multiply with exp (1.5)')
L = _laplace_apply_rules(ma1[z], t, s-ma2[a], doit=doit, **hints)
try:
r, p, c = L
return (r, p+ma2[a], c)
except TypeError:
return L
return None
def _laplace_rule_trig(f, t, s, doit=True, **hints):
"""
This internal helper function tries to transform a product containing a
trigonometric function (`sin`, `cos`, `sinh`, `cosh`, ) and returns
`None` if it cannot do it.
"""
_simplify = hints.pop('simplify', True)
a = Wild('a', exclude=[t])
y = Wild('y')
z = Wild('z')
k, func = f.as_independent(t, as_Add=False)
# All of the rules have a very similar form: trig(y)*z is matched, and then
# two copies of the Laplace transform of z are shifted in the s Domain
# and added with a weight; see rules 1.6 to 1.9 in
# http://eqworld.ipmnet.ru/en/auxiliary/inttrans/laplace1.pdf
# The parameters in the tuples are (fm, nu, s1, s2, sd):
# fm: Function to match
# nu: Number of the rule, for debug purposes
# s1: weight of the sum, 'I' for sin and '1' for all others
# s2: sign of the second copy of the Laplace transform of z
# sd: shift direction; shift along real or imaginary axis if `1` or `I`
trigrules = [(sinh(y), '1.6', 1, -1, 1), (cosh(y), '1.7', 1, 1, 1),
(sin(y), '1.8', -I, -1, I), (cos(y), '1.9', 1, 1, I)]
for trigrule in trigrules:
fm, nu, s1, s2, sd = trigrule
ma1 = func.match(fm*z)
if ma1:
ma2 = ma1[y].collect(t).match(a*t)
if ma2:
debug('_laplace_apply_rules match:')
debug(' f: %s ( %s, %s )'%(f, ma1, ma2))
debug(' rule: multiply with %s (%s)'%(fm.func, nu))
L = _laplace_apply_rules(ma1[z], t, s, doit=doit, **hints)
try:
r, p, c = L
# The convergence plane changes only if the shift has been
# done along the real axis:
if sd==1:
cp_shift = Abs(ma2[a])
else:
cp_shift = 0
return ((s1*(r.subs(s, s-sd*ma2[a])+\
s2*r.subs(s, s+sd*ma2[a]))).simplify()/2,
p+cp_shift, c)
except TypeError:
if doit==True and _simplify==True:
return (s1*(L.subs(s, s-sd*ma2[a])+\
s2*L.subs(s, s+sd*ma2[a]))).simplify()/2
else:
return (s1*(L.subs(s, s-sd*ma2[a])+\
s2*L.subs(s, s+sd*ma2[a])))/2
return None
def _laplace_rule_diff(f, t, s, doit=True, **hints):
"""
This internal helper function tries to transform an expression containing
a derivative of an undefined function and returns `None` if it cannot
do it.
"""
hints.pop('simplify', True)
a = Wild('a', exclude=[t])
y = Wild('y')
n = Wild('n', exclude=[t])
g = WildFunction('g', nargs=1)
ma1 = f.match(a*Derivative(g, (t, n)))
if ma1 and ma1[g].args[0] == t and ma1[n].is_integer:
debug('_laplace_apply_rules match:')
debug(' f: %s'%(f,))
debug(' rule: time derivative (1.11, 1.12)')
d = []
for k in range(ma1[n]):
if k==0:
y = ma1[g].func(t).subs(t, 0)
else:
y = Derivative(ma1[g].func(t), (t, k)).subs(t, 0)
d.append(s**(ma1[n]-k-1)*y)
r = s**ma1[n]*_laplace_apply_rules(ma1[g].func(t), t, s, doit=doit,
**hints)
return ma1[a]*(r - Add(*d))
return None
def _laplace_apply_rules(f, t, s, doit=True, **hints):
"""
Helper function for the class LaplaceTransform.
This function does a Laplace transform based on rules and, after
applying the rules, hands the rest over to `_laplace_transform`, which
will attempt to integrate.
If it is called with `doit=False`, then it will instead return
`LaplaceTransform` objects.
"""
k, func = f.as_independent(t, as_Add=False)
simple_rules = _laplace_build_rules(t, s)
for t_dom, s_dom, check, plane, prep in simple_rules:
ma = prep(func).match(t_dom)
if ma:
debug('_laplace_apply_rules match:')
debug(' f: %s'%(func,))
debug(' rule: %s o---o %s'%(t_dom, s_dom))
try:
debug(' try %s'%(check,))
c = check.xreplace(ma)
debug(' check %s -> %s'%(check, c))
if c==True:
return _laplace_cr(k*s_dom.xreplace(ma),
plane.xreplace(ma), S.true, **hints)
except Exception:
debug('_laplace_apply_rules did not match.')
if f.has(DiracDelta):
return None
prog_rules = [_laplace_rule_timescale, _laplace_rule_heaviside,
_laplace_rule_exp, _laplace_rule_trig, _laplace_rule_diff]
for p_rule in prog_rules:
LT = p_rule(f, t, s, doit=doit, **hints)
if LT is not None:
return LT
return None
class LaplaceTransform(IntegralTransform):
"""
Class representing unevaluated Laplace transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Laplace transforms, see the :func:`laplace_transform`
docstring.
"""
_name = 'Laplace'
def _compute_transform(self, f, t, s, **hints):
LT = _laplace_apply_rules(f, t, s, **hints)
if LT is None:
_simplify = hints.pop('simplify', True)
debug('_laplace_apply_rules could not match function %s'%(f,))
debug(' hints: %s'%(hints,))
return _laplace_transform(f, t, s, simplify=_simplify, **hints)
else:
return LT
def _as_integral(self, f, t, s):
return Integral(f*exp(-s*t), (t, S.Zero, S.Infinity))
def _collapse_extra(self, extra):
conds = []
planes = []
for plane, cond in extra:
conds.append(cond)
planes.append(plane)
cond = And(*conds)
plane = Max(*planes)
if cond == False:
raise IntegralTransformError(
'Laplace', None, 'No combined convergence.')
return plane, cond
def _try_directly(self, **hints):
fn = self.function
debug('----> _try_directly: %s'%(fn, ))
t_ = self.function_variable
s_ = self.transform_variable
LT = None
if not fn.is_Add:
fn = expand_mul(fn)
try:
LT = self._compute_transform(fn, t_, s_, **hints)
except IntegralTransformError:
LT = None
return fn, LT
def laplace_transform(f, t, s, legacy_matrix=True, **hints):
r"""
Compute the Laplace Transform `F(s)` of `f(t)`,
.. math :: F(s) = \int_{0^{-}}^\infty e^{-st} f(t) \mathrm{d}t.
Explanation
===========
For all sensible functions, this converges absolutely in a
half-plane
.. math :: a < \operatorname{Re}(s)
This function returns ``(F, a, cond)`` where ``F`` is the Laplace
transform of ``f``, `a` is the half-plane of convergence, and `cond` are
auxiliary convergence conditions.
The implementation is rule-based, and if you are interested in which
rules are applied, and whether integration is attemped, you can switch
debug information on by setting ``sympy.SYMPY_DEBUG=True``.
The lower bound is `0-`, meaning that this bound should be approached
from the lower side. This is only necessary if distributions are involved.
At present, it is only done if `f(t)` contains ``DiracDelta``, in which
case the Laplace transform is computed implicitly as
.. math :: F(s) = \lim_{\tau\to 0^{-}} \int_{\tau}^\infty e^{-st} f(t) \mathrm{d}t
by applying rules.
If the integral cannot be fully computed in closed form, this function
returns an unevaluated :class:`LaplaceTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``,
only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``).
.. deprecated:: 1.9
Legacy behavior for matrices where ``laplace_transform`` with
``noconds=False`` (the default) returns a Matrix whose elements are
tuples. The behavior of ``laplace_transform`` for matrices will change
in a future release of SymPy to return a tuple of the transformed
Matrix and the convergence conditions for the matrix as a whole. Use
``legacy_matrix=False`` to enable the new behavior.
Examples
========
>>> from sympy import DiracDelta, exp, laplace_transform
>>> from sympy.abc import t, s, a
>>> laplace_transform(t**4, t, s)
(24/s**5, 0, True)
>>> laplace_transform(t**a, t, s)
(gamma(a + 1)/(s*s**a), 0, re(a) > -1)
>>> laplace_transform(DiracDelta(t)-a*exp(-a*t),t,s)
(s/(a + s), Max(0, -a), True)
See Also
========
inverse_laplace_transform, mellin_transform, fourier_transform
hankel_transform, inverse_hankel_transform
"""
debug('\n***** laplace_transform(%s, %s, %s)'%(f, t, s))
if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'):
conds = not hints.get('noconds', False)
if conds and legacy_matrix:
sympy_deprecation_warning(
"""
Calling laplace_transform() on a Matrix with noconds=False (the default) is
deprecated. Either noconds=True or use legacy_matrix=False to get the new
behavior.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-laplace-transform-matrix",
)
# Temporarily disable the deprecation warning for non-Expr objects
# in Matrix
with ignore_warnings(SymPyDeprecationWarning):
return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints))
else:
elements_trans = [laplace_transform(fij, t, s, **hints) for fij in f]
if conds:
elements, avals, conditions = zip(*elements_trans)
f_laplace = type(f)(*f.shape, elements)
return f_laplace, Max(*avals), And(*conditions)
else:
return type(f)(*f.shape, elements_trans)
return LaplaceTransform(f, t, s).doit(**hints)
@_noconds_(True)
def _inverse_laplace_transform(F, s, t_, plane, simplify=True):
""" The backend function for inverse Laplace transforms. """
from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp
# There are two strategies we can try:
# 1) Use inverse mellin transforms - related by a simple change of variables.
# 2) Use the inversion integral.
t = Dummy('t', real=True)
def pw_simp(*args):
""" Simplify a piecewise expression from hyperexpand. """
# XXX we break modularity here!
if len(args) != 3:
return Piecewise(*args)
arg = args[2].args[0].argument
coeff, exponent = _get_coeff_exp(arg, t)
e1 = args[0].args[0]
e2 = args[1].args[0]
return Heaviside(1/Abs(coeff) - t**exponent)*e1 \
+ Heaviside(t**exponent - 1/Abs(coeff))*e2
if F.is_rational_function(s):
F = F.apart(s)
if F.is_Add:
f = Add(*[_inverse_laplace_transform(X, s, t, plane, simplify)\
for X in F.args])
return _simplify(f.subs(t, t_), simplify), True
try:
f, cond = inverse_mellin_transform(F, s, exp(-t), (None, S.Infinity),
needeval=True, noconds=False)
except IntegralTransformError:
f = None
if f is None:
f = meijerint_inversion(F, s, t)
if f is None:
raise IntegralTransformError('Inverse Laplace', f, '')
if f.is_Piecewise:
f, cond = f.args[0]
if f.has(Integral):
raise IntegralTransformError('Inverse Laplace', f,
'inversion integral of unrecognised form.')
else:
cond = S.true
f = f.replace(Piecewise, pw_simp)
if f.is_Piecewise:
# many of the functions called below can't work with piecewise
# (b/c it has a bool in args)
return f.subs(t, t_), cond
u = Dummy('u')
def simp_heaviside(arg, H0=S.Half):
a = arg.subs(exp(-t), u)
if a.has(t):
return Heaviside(arg, H0)
from sympy.solvers.inequalities import _solve_inequality
rel = _solve_inequality(a > 0, u)
if rel.lts == u:
k = log(rel.gts)
return Heaviside(t + k, H0)
else:
k = log(rel.lts)
return Heaviside(-(t + k), H0)
f = f.replace(Heaviside, simp_heaviside)
def simp_exp(arg):
return expand_complex(exp(arg))
f = f.replace(exp, simp_exp)
# TODO it would be nice to fix cosh and sinh ... simplify messes these
# exponentials up
return _simplify(f.subs(t, t_), simplify), cond
class InverseLaplaceTransform(IntegralTransform):
"""
Class representing unevaluated inverse Laplace transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Laplace transforms, see the
:func:`inverse_laplace_transform` docstring.
"""
_name = 'Inverse Laplace'
_none_sentinel = Dummy('None')
_c = Dummy('c')
def __new__(cls, F, s, x, plane, **opts):
if plane is None:
plane = InverseLaplaceTransform._none_sentinel
return IntegralTransform.__new__(cls, F, s, x, plane, **opts)
@property
def fundamental_plane(self):
plane = self.args[3]
if plane is InverseLaplaceTransform._none_sentinel:
plane = None
return plane
def _compute_transform(self, F, s, t, **hints):
return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints)
def _as_integral(self, F, s, t):
c = self.__class__._c
return Integral(exp(s*t)*F, (s, c - S.ImaginaryUnit*S.Infinity,
c + S.ImaginaryUnit*S.Infinity))/(2*S.Pi*S.ImaginaryUnit)
def inverse_laplace_transform(F, s, t, plane=None, **hints):
r"""
Compute the inverse Laplace transform of `F(s)`, defined as
.. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s,
for `c` so large that `F(s)` has no singularites in the
half-plane `\operatorname{Re}(s) > c-\epsilon`.
Explanation
===========
The plane can be specified by
argument ``plane``, but will be inferred if passed as None.
Under certain regularity conditions, this recovers `f(t)` from its
Laplace Transform `F(s)`, for non-negative `t`, and vice
versa.
If the integral cannot be computed in closed form, this function returns
an unevaluated :class:`InverseLaplaceTransform` object.
Note that this function will always assume `t` to be real,
regardless of the SymPy assumption on `t`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Examples
========
>>> from sympy import inverse_laplace_transform, exp, Symbol
>>> from sympy.abc import s, t
>>> a = Symbol('a', positive=True)
>>> inverse_laplace_transform(exp(-a*s)/s, s, t)
Heaviside(-a + t)
See Also
========
laplace_transform, _fast_inverse_laplace
hankel_transform, inverse_hankel_transform
"""
if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'):
return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints))
return InverseLaplaceTransform(F, s, t, plane).doit(**hints)
def _fast_inverse_laplace(e, s, t):
"""Fast inverse Laplace transform of rational function including RootSum"""
a, b, n = symbols('a, b, n', cls=Wild, exclude=[s])
def _ilt(e):
if not e.has(s):
return e
elif e.is_Add:
return _ilt_add(e)
elif e.is_Mul:
return _ilt_mul(e)
elif e.is_Pow:
return _ilt_pow(e)
elif isinstance(e, RootSum):
return _ilt_rootsum(e)
else:
raise NotImplementedError
def _ilt_add(e):
return e.func(*map(_ilt, e.args))
def _ilt_mul(e):
coeff, expr = e.as_independent(s)
if expr.is_Mul:
raise NotImplementedError
return coeff * _ilt(expr)
def _ilt_pow(e):
match = e.match((a*s + b)**n)
if match is not None:
nm, am, bm = match[n], match[a], match[b]
if nm.is_Integer and nm < 0:
return t**(-nm-1)*exp(-(bm/am)*t)/(am**-nm*gamma(-nm))
if nm == 1:
return exp(-(bm/am)*t) / am
raise NotImplementedError
def _ilt_rootsum(e):
expr = e.fun.expr
[variable] = e.fun.variables
return RootSum(e.poly, Lambda(variable, together(_ilt(expr))))
return _ilt(e)
##########################################################################
# Fourier Transform
##########################################################################
@_noconds_(True)
def _fourier_transform(f, x, k, a, b, name, simplify=True):
r"""
Compute a general Fourier-type transform
.. math::
F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x)\, dx.
For suitable choice of *a* and *b*, this reduces to the standard Fourier
and inverse Fourier transforms.
"""
F = integrate(a*f*exp(b*S.ImaginaryUnit*x*k), (x, S.NegativeInfinity, S.Infinity))
if not F.has(Integral):
return _simplify(F, simplify), S.true
integral_f = integrate(f, (x, S.NegativeInfinity, S.Infinity))
if integral_f in (S.NegativeInfinity, S.Infinity, S.NaN) or integral_f.has(Integral):
raise IntegralTransformError(name, f, 'function not integrable on real axis')
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class FourierTypeTransform(IntegralTransform):
""" Base class for Fourier transforms."""
def a(self):
raise NotImplementedError(
"Class %s must implement a(self) but does not" % self.__class__)
def b(self):
raise NotImplementedError(
"Class %s must implement b(self) but does not" % self.__class__)
def _compute_transform(self, f, x, k, **hints):
return _fourier_transform(f, x, k,
self.a(), self.b(),
self.__class__._name, **hints)
def _as_integral(self, f, x, k):
a = self.a()
b = self.b()
return Integral(a*f*exp(b*S.ImaginaryUnit*x*k), (x, S.NegativeInfinity, S.Infinity))
class FourierTransform(FourierTypeTransform):
"""
Class representing unevaluated Fourier transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Fourier transforms, see the :func:`fourier_transform`
docstring.
"""
_name = 'Fourier'
def a(self):
return 1
def b(self):
return -2*S.Pi
def fourier_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency Fourier transform of ``f``, defined
as
.. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`FourierTransform` object.
For other Fourier transform conventions, see the function
:func:`sympy.integrals.transforms._fourier_transform`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import fourier_transform, exp
>>> from sympy.abc import x, k
>>> fourier_transform(exp(-x**2), x, k)
sqrt(pi)*exp(-pi**2*k**2)
>>> fourier_transform(exp(-x**2), x, k, noconds=False)
(sqrt(pi)*exp(-pi**2*k**2), True)
See Also
========
inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return FourierTransform(f, x, k).doit(**hints)
class InverseFourierTransform(FourierTypeTransform):
"""
Class representing unevaluated inverse Fourier transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Fourier transforms, see the
:func:`inverse_fourier_transform` docstring.
"""
_name = 'Inverse Fourier'
def a(self):
return 1
def b(self):
return 2*S.Pi
def inverse_fourier_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse Fourier transform of `F`,
defined as
.. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseFourierTransform` object.
For other Fourier transform conventions, see the function
:func:`sympy.integrals.transforms._fourier_transform`.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import inverse_fourier_transform, exp, sqrt, pi
>>> from sympy.abc import x, k
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x)
exp(-x**2)
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False)
(exp(-x**2), True)
See Also
========
fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseFourierTransform(F, k, x).doit(**hints)
##########################################################################
# Fourier Sine and Cosine Transform
##########################################################################
@_noconds_(True)
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
"""
Compute a general sine or cosine-type transform
F(k) = a int_0^oo b*sin(x*k) f(x) dx.
F(k) = a int_0^oo b*cos(x*k) f(x) dx.
For suitable choice of a and b, this reduces to the standard sine/cosine
and inverse sine/cosine transforms.
"""
F = integrate(a*f*K(b*x*k), (x, S.Zero, S.Infinity))
if not F.has(Integral):
return _simplify(F, simplify), S.true
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class SineCosineTypeTransform(IntegralTransform):
"""
Base class for sine and cosine transforms.
Specify cls._kern.
"""
def a(self):
raise NotImplementedError(
"Class %s must implement a(self) but does not" % self.__class__)
def b(self):
raise NotImplementedError(
"Class %s must implement b(self) but does not" % self.__class__)
def _compute_transform(self, f, x, k, **hints):
return _sine_cosine_transform(f, x, k,
self.a(), self.b(),
self.__class__._kern,
self.__class__._name, **hints)
def _as_integral(self, f, x, k):
a = self.a()
b = self.b()
K = self.__class__._kern
return Integral(a*f*K(b*x*k), (x, S.Zero, S.Infinity))
class SineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated sine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute sine transforms, see the :func:`sine_transform`
docstring.
"""
_name = 'Sine'
_kern = sin
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return S.One
def sine_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency sine transform of `f`, defined
as
.. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`SineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import sine_transform, exp
>>> from sympy.abc import x, k, a
>>> sine_transform(x*exp(-a*x**2), x, k)
sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2))
>>> sine_transform(x**(-a), x, k)
2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2)
See Also
========
fourier_transform, inverse_fourier_transform
inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return SineTransform(f, x, k).doit(**hints)
class InverseSineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated inverse sine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse sine transforms, see the
:func:`inverse_sine_transform` docstring.
"""
_name = 'Inverse Sine'
_kern = sin
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return S.One
def inverse_sine_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse sine transform of `F`,
defined as
.. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseSineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import inverse_sine_transform, exp, sqrt, gamma
>>> from sympy.abc import x, k, a
>>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)*
... gamma(-a/2 + 1)/gamma((a+1)/2), k, x)
x**(-a)
>>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x)
x*exp(-a*x**2)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseSineTransform(F, k, x).doit(**hints)
class CosineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated cosine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute cosine transforms, see the :func:`cosine_transform`
docstring.
"""
_name = 'Cosine'
_kern = cos
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return S.One
def cosine_transform(f, x, k, **hints):
r"""
Compute the unitary, ordinary-frequency cosine transform of `f`, defined
as
.. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`CosineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import cosine_transform, exp, sqrt, cos
>>> from sympy.abc import x, k, a
>>> cosine_transform(exp(-a*x), x, k)
sqrt(2)*a/(sqrt(pi)*(a**2 + k**2))
>>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k)
a*exp(-a**2/(2*k))/(2*k**(3/2))
See Also
========
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform
inverse_cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return CosineTransform(f, x, k).doit(**hints)
class InverseCosineTransform(SineCosineTypeTransform):
"""
Class representing unevaluated inverse cosine transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse cosine transforms, see the
:func:`inverse_cosine_transform` docstring.
"""
_name = 'Inverse Cosine'
_kern = cos
def a(self):
return sqrt(2)/sqrt(pi)
def b(self):
return S.One
def inverse_cosine_transform(F, k, x, **hints):
r"""
Compute the unitary, ordinary-frequency inverse cosine transform of `F`,
defined as
.. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseCosineTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import inverse_cosine_transform, sqrt, pi
>>> from sympy.abc import x, k, a
>>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x)
exp(-a*x)
>>> inverse_cosine_transform(1/sqrt(k), k, x)
1/sqrt(x)
See Also
========
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform
cosine_transform
hankel_transform, inverse_hankel_transform
mellin_transform, laplace_transform
"""
return InverseCosineTransform(F, k, x).doit(**hints)
##########################################################################
# Hankel Transform
##########################################################################
@_noconds_(True)
def _hankel_transform(f, r, k, nu, name, simplify=True):
r"""
Compute a general Hankel transform
.. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r.
"""
F = integrate(f*besselj(nu, k*r)*r, (r, S.Zero, S.Infinity))
if not F.has(Integral):
return _simplify(F, simplify), S.true
if not F.is_Piecewise:
raise IntegralTransformError(name, f, 'could not compute integral')
F, cond = F.args[0]
if F.has(Integral):
raise IntegralTransformError(name, f, 'integral in unexpected form')
return _simplify(F, simplify), cond
class HankelTypeTransform(IntegralTransform):
"""
Base class for Hankel transforms.
"""
def doit(self, **hints):
return self._compute_transform(self.function,
self.function_variable,
self.transform_variable,
self.args[3],
**hints)
def _compute_transform(self, f, r, k, nu, **hints):
return _hankel_transform(f, r, k, nu, self._name, **hints)
def _as_integral(self, f, r, k, nu):
return Integral(f*besselj(nu, k*r)*r, (r, S.Zero, S.Infinity))
@property
def as_integral(self):
return self._as_integral(self.function,
self.function_variable,
self.transform_variable,
self.args[3])
class HankelTransform(HankelTypeTransform):
"""
Class representing unevaluated Hankel transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute Hankel transforms, see the :func:`hankel_transform`
docstring.
"""
_name = 'Hankel'
def hankel_transform(f, r, k, nu, **hints):
r"""
Compute the Hankel transform of `f`, defined as
.. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`HankelTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import exp
>>> from sympy.abc import r, k, m, nu, a
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2))
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
inverse_hankel_transform
mellin_transform, laplace_transform
"""
return HankelTransform(f, r, k, nu).doit(**hints)
class InverseHankelTransform(HankelTypeTransform):
"""
Class representing unevaluated inverse Hankel transforms.
For usage of this class, see the :class:`IntegralTransform` docstring.
For how to compute inverse Hankel transforms, see the
:func:`inverse_hankel_transform` docstring.
"""
_name = 'Inverse Hankel'
def inverse_hankel_transform(F, k, r, nu, **hints):
r"""
Compute the inverse Hankel transform of `F` defined as
.. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k.
Explanation
===========
If the transform cannot be computed in closed form, this
function returns an unevaluated :class:`InverseHankelTransform` object.
For a description of possible hints, refer to the docstring of
:func:`sympy.integrals.transforms.IntegralTransform.doit`.
Note that for this transform, by default ``noconds=True``.
Examples
========
>>> from sympy import hankel_transform, inverse_hankel_transform
>>> from sympy import exp
>>> from sympy.abc import r, k, m, nu, a
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2))
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
>>> inverse_hankel_transform(ht, k, r, 0)
exp(-a*r)
See Also
========
fourier_transform, inverse_fourier_transform
sine_transform, inverse_sine_transform
cosine_transform, inverse_cosine_transform
hankel_transform
mellin_transform, laplace_transform
"""
return InverseHankelTransform(F, k, r, nu).doit(**hints)
|
49a92f770de6787746b96c8bdf795c5d9a14f979e705d13e5df9151f378d5b8c | """
Module to implement integration of uni/bivariate polynomials over
2D Polytopes and uni/bi/trivariate polynomials over 3D Polytopes.
Uses evaluation techniques as described in Chin et al. (2015) [1].
References
===========
.. [1] Chin, Eric B., Jean B. Lasserre, and N. Sukumar. "Numerical integration
of homogeneous functions on convex and nonconvex polygons and polyhedra."
Computational Mechanics 56.6 (2015): 967-981
PDF link : http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf
"""
from functools import cmp_to_key
from sympy.abc import x, y, z
from sympy.core import S, diff, Expr, Symbol
from sympy.core.sympify import _sympify
from sympy.geometry import Segment2D, Polygon, Point, Point2D
from sympy.polys.polytools import LC, gcd_list, degree_list, Poly
from sympy.simplify.simplify import nsimplify
def polytope_integrate(poly, expr=None, *, clockwise=False, max_degree=None):
"""Integrates polynomials over 2/3-Polytopes.
Explanation
===========
This function accepts the polytope in ``poly`` and the function in ``expr``
(uni/bi/trivariate polynomials are implemented) and returns
the exact integral of ``expr`` over ``poly``.
Parameters
==========
poly : The input Polygon.
expr : The input polynomial.
clockwise : Binary value to sort input points of 2-Polytope clockwise.(Optional)
max_degree : The maximum degree of any monomial of the input polynomial.(Optional)
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import Point, Polygon
>>> from sympy.integrals.intpoly import polytope_integrate
>>> polygon = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> polys = [1, x, y, x*y, x**2*y, x*y**2]
>>> expr = x*y
>>> polytope_integrate(polygon, expr)
1/4
>>> polytope_integrate(polygon, polys, max_degree=3)
{1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6}
"""
if clockwise:
if isinstance(poly, Polygon):
poly = Polygon(*point_sort(poly.vertices), evaluate=False)
else:
raise TypeError("clockwise=True works for only 2-Polytope"
"V-representation input")
if isinstance(poly, Polygon):
# For Vertex Representation(2D case)
hp_params = hyperplane_parameters(poly)
facets = poly.sides
elif len(poly[0]) == 2:
# For Hyperplane Representation(2D case)
plen = len(poly)
if len(poly[0][0]) == 2:
intersections = [intersection(poly[(i - 1) % plen], poly[i],
"plane2D")
for i in range(0, plen)]
hp_params = poly
lints = len(intersections)
facets = [Segment2D(intersections[i],
intersections[(i + 1) % lints])
for i in range(lints)]
else:
raise NotImplementedError("Integration for H-representation 3D"
"case not implemented yet.")
else:
# For Vertex Representation(3D case)
vertices = poly[0]
facets = poly[1:]
hp_params = hyperplane_parameters(facets, vertices)
if max_degree is None:
if expr is None:
raise TypeError('Input expression must be a valid SymPy expression')
return main_integrate3d(expr, facets, vertices, hp_params)
if max_degree is not None:
result = {}
if expr is not None:
f_expr = []
for e in expr:
_ = decompose(e)
if len(_) == 1 and not _.popitem()[0]:
f_expr.append(e)
elif Poly(e).total_degree() <= max_degree:
f_expr.append(e)
expr = f_expr
if not isinstance(expr, list) and expr is not None:
raise TypeError('Input polynomials must be list of expressions')
if len(hp_params[0][0]) == 3:
result_dict = main_integrate3d(0, facets, vertices, hp_params,
max_degree)
else:
result_dict = main_integrate(0, facets, hp_params, max_degree)
if expr is None:
return result_dict
for poly in expr:
poly = _sympify(poly)
if poly not in result:
if poly.is_zero:
result[S.Zero] = S.Zero
continue
integral_value = S.Zero
monoms = decompose(poly, separate=True)
for monom in monoms:
monom = nsimplify(monom)
coeff, m = strip(monom)
integral_value += result_dict[m] * coeff
result[poly] = integral_value
return result
if expr is None:
raise TypeError('Input expression must be a valid SymPy expression')
return main_integrate(expr, facets, hp_params)
def strip(monom):
if monom.is_zero:
return S.Zero, S.Zero
elif monom.is_number:
return monom, S.One
else:
coeff = LC(monom)
return coeff, monom / coeff
def _polynomial_integrate(polynomials, facets, hp_params):
dims = (x, y)
dim_length = len(dims)
integral_value = S.Zero
for deg in polynomials:
poly_contribute = S.Zero
facet_count = 0
for hp in hp_params:
value_over_boundary = integration_reduction(facets,
facet_count,
hp[0], hp[1],
polynomials[deg],
dims, deg)
poly_contribute += value_over_boundary * (hp[1] / norm(hp[0]))
facet_count += 1
poly_contribute /= (dim_length + deg)
integral_value += poly_contribute
return integral_value
def main_integrate3d(expr, facets, vertices, hp_params, max_degree=None):
"""Function to translate the problem of integrating uni/bi/tri-variate
polynomials over a 3-Polytope to integrating over its faces.
This is done using Generalized Stokes' Theorem and Euler's Theorem.
Parameters
==========
expr :
The input polynomial.
facets :
Faces of the 3-Polytope(expressed as indices of `vertices`).
vertices :
Vertices that constitute the Polytope.
hp_params :
Hyperplane Parameters of the facets.
max_degree : optional
Max degree of constituent monomial in given list of polynomial.
Examples
========
>>> from sympy.integrals.intpoly import main_integrate3d, \
hyperplane_parameters
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> vertices = cube[0]
>>> faces = cube[1:]
>>> hp_params = hyperplane_parameters(faces, vertices)
>>> main_integrate3d(1, faces, vertices, hp_params)
-125
"""
result = {}
dims = (x, y, z)
dim_length = len(dims)
if max_degree:
grad_terms = gradient_terms(max_degree, 3)
flat_list = [term for z_terms in grad_terms
for x_term in z_terms
for term in x_term]
for term in flat_list:
result[term[0]] = 0
for facet_count, hp in enumerate(hp_params):
a, b = hp[0], hp[1]
x0 = vertices[facets[facet_count][0]]
for i, monom in enumerate(flat_list):
# Every monomial is a tuple :
# (term, x_degree, y_degree, z_degree, value over boundary)
expr, x_d, y_d, z_d, z_index, y_index, x_index, _ = monom
degree = x_d + y_d + z_d
if b.is_zero:
value_over_face = S.Zero
else:
value_over_face = \
integration_reduction_dynamic(facets, facet_count, a,
b, expr, degree, dims,
x_index, y_index,
z_index, x0, grad_terms,
i, vertices, hp)
monom[7] = value_over_face
result[expr] += value_over_face * \
(b / norm(a)) / (dim_length + x_d + y_d + z_d)
return result
else:
integral_value = S.Zero
polynomials = decompose(expr)
for deg in polynomials:
poly_contribute = S.Zero
facet_count = 0
for i, facet in enumerate(facets):
hp = hp_params[i]
if hp[1].is_zero:
continue
pi = polygon_integrate(facet, hp, i, facets, vertices, expr, deg)
poly_contribute += pi *\
(hp[1] / norm(tuple(hp[0])))
facet_count += 1
poly_contribute /= (dim_length + deg)
integral_value += poly_contribute
return integral_value
def main_integrate(expr, facets, hp_params, max_degree=None):
"""Function to translate the problem of integrating univariate/bivariate
polynomials over a 2-Polytope to integrating over its boundary facets.
This is done using Generalized Stokes's Theorem and Euler's Theorem.
Parameters
==========
expr :
The input polynomial.
facets :
Facets(Line Segments) of the 2-Polytope.
hp_params :
Hyperplane Parameters of the facets.
max_degree : optional
The maximum degree of any monomial of the input polynomial.
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import main_integrate,\
hyperplane_parameters
>>> from sympy import Point, Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> hp_params = hyperplane_parameters(triangle)
>>> main_integrate(x**2 + y**2, facets, hp_params)
325/6
"""
dims = (x, y)
dim_length = len(dims)
result = {}
if max_degree:
grad_terms = [[0, 0, 0, 0]] + gradient_terms(max_degree)
for facet_count, hp in enumerate(hp_params):
a, b = hp[0], hp[1]
x0 = facets[facet_count].points[0]
for i, monom in enumerate(grad_terms):
# Every monomial is a tuple :
# (term, x_degree, y_degree, value over boundary)
m, x_d, y_d, _ = monom
value = result.get(m, None)
degree = S.Zero
if b.is_zero:
value_over_boundary = S.Zero
else:
degree = x_d + y_d
value_over_boundary = \
integration_reduction_dynamic(facets, facet_count, a,
b, m, degree, dims, x_d,
y_d, max_degree, x0,
grad_terms, i)
monom[3] = value_over_boundary
if value is not None:
result[m] += value_over_boundary * \
(b / norm(a)) / (dim_length + degree)
else:
result[m] = value_over_boundary * \
(b / norm(a)) / (dim_length + degree)
return result
else:
if not isinstance(expr, list):
polynomials = decompose(expr)
return _polynomial_integrate(polynomials, facets, hp_params)
else:
return {e: _polynomial_integrate(decompose(e), facets, hp_params) for e in expr}
def polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree):
"""Helper function to integrate the input uni/bi/trivariate polynomial
over a certain face of the 3-Polytope.
Parameters
==========
facet :
Particular face of the 3-Polytope over which ``expr`` is integrated.
index :
The index of ``facet`` in ``facets``.
facets :
Faces of the 3-Polytope(expressed as indices of `vertices`).
vertices :
Vertices that constitute the facet.
expr :
The input polynomial.
degree :
Degree of ``expr``.
Examples
========
>>> from sympy.integrals.intpoly import polygon_integrate
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> facet = cube[1]
>>> facets = cube[1:]
>>> vertices = cube[0]
>>> polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0)
-25
"""
expr = S(expr)
if expr.is_zero:
return S.Zero
result = S.Zero
x0 = vertices[facet[0]]
facet_len = len(facet)
for i, fac in enumerate(facet):
side = (vertices[fac], vertices[facet[(i + 1) % facet_len]])
result += distance_to_side(x0, side, hp_param[0]) *\
lineseg_integrate(facet, i, side, expr, degree)
if not expr.is_number:
expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\
diff(expr, z) * x0[2]
result += polygon_integrate(facet, hp_param, index, facets, vertices,
expr, degree - 1)
result /= (degree + 2)
return result
def distance_to_side(point, line_seg, A):
"""Helper function to compute the signed distance between given 3D point
and a line segment.
Parameters
==========
point : 3D Point
line_seg : Line Segment
Examples
========
>>> from sympy.integrals.intpoly import distance_to_side
>>> point = (0, 0, 0)
>>> distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0))
-sqrt(2)/2
"""
x1, x2 = line_seg
rev_normal = [-1 * S(i)/norm(A) for i in A]
vector = [x2[i] - x1[i] for i in range(0, 3)]
vector = [vector[i]/norm(vector) for i in range(0, 3)]
n_side = cross_product((0, 0, 0), rev_normal, vector)
vectorx0 = [line_seg[0][i] - point[i] for i in range(0, 3)]
dot_product = sum([vectorx0[i] * n_side[i] for i in range(0, 3)])
return dot_product
def lineseg_integrate(polygon, index, line_seg, expr, degree):
"""Helper function to compute the line integral of ``expr`` over ``line_seg``.
Parameters
===========
polygon :
Face of a 3-Polytope.
index :
Index of line_seg in polygon.
line_seg :
Line Segment.
Examples
========
>>> from sympy.integrals.intpoly import lineseg_integrate
>>> polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)]
>>> line_seg = [(0, 5, 0), (5, 5, 0)]
>>> lineseg_integrate(polygon, 0, line_seg, 1, 0)
5
"""
expr = _sympify(expr)
if expr.is_zero:
return S.Zero
result = S.Zero
x0 = line_seg[0]
distance = norm(tuple([line_seg[1][i] - line_seg[0][i] for i in
range(3)]))
if isinstance(expr, Expr):
expr_dict = {x: line_seg[1][0],
y: line_seg[1][1],
z: line_seg[1][2]}
result += distance * expr.subs(expr_dict)
else:
result += distance * expr
expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\
diff(expr, z) * x0[2]
result += lineseg_integrate(polygon, index, line_seg, expr, degree - 1)
result /= (degree + 1)
return result
def integration_reduction(facets, index, a, b, expr, dims, degree):
"""Helper method for main_integrate. Returns the value of the input
expression evaluated over the polytope facet referenced by a given index.
Parameters
===========
facets :
List of facets of the polytope.
index :
Index referencing the facet to integrate the expression over.
a :
Hyperplane parameter denoting direction.
b :
Hyperplane parameter denoting distance.
expr :
The expression to integrate over the facet.
dims :
List of symbols denoting axes.
degree :
Degree of the homogeneous polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import integration_reduction,\
hyperplane_parameters
>>> from sympy import Point, Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> a, b = hyperplane_parameters(triangle)[0]
>>> integration_reduction(facets, 0, a, b, 1, (x, y), 0)
5
"""
expr = _sympify(expr)
if expr.is_zero:
return expr
value = S.Zero
x0 = facets[index].points[0]
m = len(facets)
gens = (x, y)
inner_product = diff(expr, gens[0]) * x0[0] + diff(expr, gens[1]) * x0[1]
if inner_product != 0:
value += integration_reduction(facets, index, a, b,
inner_product, dims, degree - 1)
value += left_integral2D(m, index, facets, x0, expr, gens)
return value/(len(dims) + degree - 1)
def left_integral2D(m, index, facets, x0, expr, gens):
"""Computes the left integral of Eq 10 in Chin et al.
For the 2D case, the integral is just an evaluation of the polynomial
at the intersection of two facets which is multiplied by the distance
between the first point of facet and that intersection.
Parameters
==========
m :
No. of hyperplanes.
index :
Index of facet to find intersections with.
facets :
List of facets(Line Segments in 2D case).
x0 :
First point on facet referenced by index.
expr :
Input polynomial
gens :
Generators which generate the polynomial
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import left_integral2D
>>> from sympy import Point, Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> left_integral2D(3, 0, facets, facets[0].points[0], 1, (x, y))
5
"""
value = S.Zero
for j in range(m):
intersect = ()
if j in ((index - 1) % m, (index + 1) % m):
intersect = intersection(facets[index], facets[j], "segment2D")
if intersect:
distance_origin = norm(tuple(map(lambda x, y: x - y,
intersect, x0)))
if is_vertex(intersect):
if isinstance(expr, Expr):
if len(gens) == 3:
expr_dict = {gens[0]: intersect[0],
gens[1]: intersect[1],
gens[2]: intersect[2]}
else:
expr_dict = {gens[0]: intersect[0],
gens[1]: intersect[1]}
value += distance_origin * expr.subs(expr_dict)
else:
value += distance_origin * expr
return value
def integration_reduction_dynamic(facets, index, a, b, expr, degree, dims,
x_index, y_index, max_index, x0,
monomial_values, monom_index, vertices=None,
hp_param=None):
"""The same integration_reduction function which uses a dynamic
programming approach to compute terms by using the values of the integral
of previously computed terms.
Parameters
==========
facets :
Facets of the Polytope.
index :
Index of facet to find intersections with.(Used in left_integral()).
a, b :
Hyperplane parameters.
expr :
Input monomial.
degree :
Total degree of ``expr``.
dims :
Tuple denoting axes variables.
x_index :
Exponent of 'x' in ``expr``.
y_index :
Exponent of 'y' in ``expr``.
max_index :
Maximum exponent of any monomial in ``monomial_values``.
x0 :
First point on ``facets[index]``.
monomial_values :
List of monomial values constituting the polynomial.
monom_index :
Index of monomial whose integration is being found.
vertices : optional
Coordinates of vertices constituting the 3-Polytope.
hp_param : optional
Hyperplane Parameter of the face of the facets[index].
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import (integration_reduction_dynamic, \
hyperplane_parameters)
>>> from sympy import Point, Polygon
>>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1))
>>> facets = triangle.sides
>>> a, b = hyperplane_parameters(triangle)[0]
>>> x0 = facets[0].points[0]
>>> monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\
[y, 0, 1, 15], [x, 1, 0, None]]
>>> integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1, 0, 1,\
x0, monomial_values, 3)
25/2
"""
value = S.Zero
m = len(facets)
if expr == S.Zero:
return expr
if len(dims) == 2:
if not expr.is_number:
_, x_degree, y_degree, _ = monomial_values[monom_index]
x_index = monom_index - max_index + \
x_index - 2 if x_degree > 0 else 0
y_index = monom_index - 1 if y_degree > 0 else 0
x_value, y_value =\
monomial_values[x_index][3], monomial_values[y_index][3]
value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1]
value += left_integral2D(m, index, facets, x0, expr, dims)
else:
# For 3D use case the max_index contains the z_degree of the term
z_index = max_index
if not expr.is_number:
x_degree, y_degree, z_degree = y_index,\
z_index - x_index - y_index, x_index
x_value = monomial_values[z_index - 1][y_index - 1][x_index][7]\
if x_degree > 0 else 0
y_value = monomial_values[z_index - 1][y_index][x_index][7]\
if y_degree > 0 else 0
z_value = monomial_values[z_index - 1][y_index][x_index - 1][7]\
if z_degree > 0 else 0
value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] \
+ z_degree * z_value * x0[2]
value += left_integral3D(facets, index, expr,
vertices, hp_param, degree)
return value / (len(dims) + degree - 1)
def left_integral3D(facets, index, expr, vertices, hp_param, degree):
"""Computes the left integral of Eq 10 in Chin et al.
Explanation
===========
For the 3D case, this is the sum of the integral values over constituting
line segments of the face (which is accessed by facets[index]) multiplied
by the distance between the first point of facet and that line segment.
Parameters
==========
facets :
List of faces of the 3-Polytope.
index :
Index of face over which integral is to be calculated.
expr :
Input polynomial.
vertices :
List of vertices that constitute the 3-Polytope.
hp_param :
The hyperplane parameters of the face.
degree :
Degree of the ``expr``.
Examples
========
>>> from sympy.integrals.intpoly import left_integral3D
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> facets = cube[1:]
>>> vertices = cube[0]
>>> left_integral3D(facets, 3, 1, vertices, ([0, -1, 0], -5), 0)
-50
"""
value = S.Zero
facet = facets[index]
x0 = vertices[facet[0]]
facet_len = len(facet)
for i, fac in enumerate(facet):
side = (vertices[fac], vertices[facet[(i + 1) % facet_len]])
value += distance_to_side(x0, side, hp_param[0]) * \
lineseg_integrate(facet, i, side, expr, degree)
return value
def gradient_terms(binomial_power=0, no_of_gens=2):
"""Returns a list of all the possible monomials between
0 and y**binomial_power for 2D case and z**binomial_power
for 3D case.
Parameters
==========
binomial_power :
Power upto which terms are generated.
no_of_gens :
Denotes whether terms are being generated for 2D or 3D case.
Examples
========
>>> from sympy.integrals.intpoly import gradient_terms
>>> gradient_terms(2)
[[1, 0, 0, 0], [y, 0, 1, 0], [y**2, 0, 2, 0], [x, 1, 0, 0],
[x*y, 1, 1, 0], [x**2, 2, 0, 0]]
>>> gradient_terms(2, 3)
[[[[1, 0, 0, 0, 0, 0, 0, 0]]], [[[y, 0, 1, 0, 1, 0, 0, 0],
[z, 0, 0, 1, 1, 0, 1, 0]], [[x, 1, 0, 0, 1, 1, 0, 0]]],
[[[y**2, 0, 2, 0, 2, 0, 0, 0], [y*z, 0, 1, 1, 2, 0, 1, 0],
[z**2, 0, 0, 2, 2, 0, 2, 0]], [[x*y, 1, 1, 0, 2, 1, 0, 0],
[x*z, 1, 0, 1, 2, 1, 1, 0]], [[x**2, 2, 0, 0, 2, 2, 0, 0]]]]
"""
if no_of_gens == 2:
count = 0
terms = [None] * int((binomial_power ** 2 + 3 * binomial_power + 2) / 2)
for x_count in range(0, binomial_power + 1):
for y_count in range(0, binomial_power - x_count + 1):
terms[count] = [x**x_count*y**y_count,
x_count, y_count, 0]
count += 1
else:
terms = [[[[x ** x_count * y ** y_count *
z ** (z_count - y_count - x_count),
x_count, y_count, z_count - y_count - x_count,
z_count, x_count, z_count - y_count - x_count, 0]
for y_count in range(z_count - x_count, -1, -1)]
for x_count in range(0, z_count + 1)]
for z_count in range(0, binomial_power + 1)]
return terms
def hyperplane_parameters(poly, vertices=None):
"""A helper function to return the hyperplane parameters
of which the facets of the polytope are a part of.
Parameters
==========
poly :
The input 2/3-Polytope.
vertices :
Vertex indices of 3-Polytope.
Examples
========
>>> from sympy import Point, Polygon
>>> from sympy.integrals.intpoly import hyperplane_parameters
>>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)))
[((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)]
>>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\
(5, 0, 5), (5, 5, 0), (5, 5, 5)],\
[2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\
[3, 1, 0, 2], [0, 4, 6, 2]]
>>> hyperplane_parameters(cube[1:], cube[0])
[([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5),
([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)]
"""
if isinstance(poly, Polygon):
vertices = list(poly.vertices) + [poly.vertices[0]] # Close the polygon
params = [None] * (len(vertices) - 1)
for i in range(len(vertices) - 1):
v1 = vertices[i]
v2 = vertices[i + 1]
a1 = v1[1] - v2[1]
a2 = v2[0] - v1[0]
b = v2[0] * v1[1] - v2[1] * v1[0]
factor = gcd_list([a1, a2, b])
b = S(b) / factor
a = (S(a1) / factor, S(a2) / factor)
params[i] = (a, b)
else:
params = [None] * len(poly)
for i, polygon in enumerate(poly):
v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]]
normal = cross_product(v1, v2, v3)
b = sum([normal[j] * v1[j] for j in range(0, 3)])
fac = gcd_list(normal)
if fac.is_zero:
fac = 1
normal = [j / fac for j in normal]
b = b / fac
params[i] = (normal, b)
return params
def cross_product(v1, v2, v3):
"""Returns the cross-product of vectors (v2 - v1) and (v3 - v1)
That is : (v2 - v1) X (v3 - v1)
"""
v2 = [v2[j] - v1[j] for j in range(0, 3)]
v3 = [v3[j] - v1[j] for j in range(0, 3)]
return [v3[2] * v2[1] - v3[1] * v2[2],
v3[0] * v2[2] - v3[2] * v2[0],
v3[1] * v2[0] - v3[0] * v2[1]]
def best_origin(a, b, lineseg, expr):
"""Helper method for polytope_integrate. Currently not used in the main
algorithm.
Explanation
===========
Returns a point on the lineseg whose vector inner product with the
divergence of `expr` yields an expression with the least maximum
total power.
Parameters
==========
a :
Hyperplane parameter denoting direction.
b :
Hyperplane parameter denoting distance.
lineseg :
Line segment on which to find the origin.
expr :
The expression which determines the best point.
Algorithm(currently works only for 2D use case)
===============================================
1 > Firstly, check for edge cases. Here that would refer to vertical
or horizontal lines.
2 > If input expression is a polynomial containing more than one generator
then find out the total power of each of the generators.
x**2 + 3 + x*y + x**4*y**5 ---> {x: 7, y: 6}
If expression is a constant value then pick the first boundary point
of the line segment.
3 > First check if a point exists on the line segment where the value of
the highest power generator becomes 0. If not check if the value of
the next highest becomes 0. If none becomes 0 within line segment
constraints then pick the first boundary point of the line segment.
Actually, any point lying on the segment can be picked as best origin
in the last case.
Examples
========
>>> from sympy.integrals.intpoly import best_origin
>>> from sympy.abc import x, y
>>> from sympy import Point, Segment2D
>>> l = Segment2D(Point(0, 3), Point(1, 1))
>>> expr = x**3*y**7
>>> best_origin((2, 1), 3, l, expr)
(0, 3.0)
"""
a1, b1 = lineseg.points[0]
def x_axis_cut(ls):
"""Returns the point where the input line segment
intersects the x-axis.
Parameters
==========
ls :
Line segment
"""
p, q = ls.points
if p.y.is_zero:
return tuple(p)
elif q.y.is_zero:
return tuple(q)
elif p.y/q.y < S.Zero:
return p.y * (p.x - q.x)/(q.y - p.y) + p.x, S.Zero
else:
return ()
def y_axis_cut(ls):
"""Returns the point where the input line segment
intersects the y-axis.
Parameters
==========
ls :
Line segment
"""
p, q = ls.points
if p.x.is_zero:
return tuple(p)
elif q.x.is_zero:
return tuple(q)
elif p.x/q.x < S.Zero:
return S.Zero, p.x * (p.y - q.y)/(q.x - p.x) + p.y
else:
return ()
gens = (x, y)
power_gens = {}
for i in gens:
power_gens[i] = S.Zero
if len(gens) > 1:
# Special case for vertical and horizontal lines
if len(gens) == 2:
if a[0] == 0:
if y_axis_cut(lineseg):
return S.Zero, b/a[1]
else:
return a1, b1
elif a[1] == 0:
if x_axis_cut(lineseg):
return b/a[0], S.Zero
else:
return a1, b1
if isinstance(expr, Expr): # Find the sum total of power of each
if expr.is_Add: # generator and store in a dictionary.
for monomial in expr.args:
if monomial.is_Pow:
if monomial.args[0] in gens:
power_gens[monomial.args[0]] += monomial.args[1]
else:
for univariate in monomial.args:
term_type = len(univariate.args)
if term_type == 0 and univariate in gens:
power_gens[univariate] += 1
elif term_type == 2 and univariate.args[0] in gens:
power_gens[univariate.args[0]] +=\
univariate.args[1]
elif expr.is_Mul:
for term in expr.args:
term_type = len(term.args)
if term_type == 0 and term in gens:
power_gens[term] += 1
elif term_type == 2 and term.args[0] in gens:
power_gens[term.args[0]] += term.args[1]
elif expr.is_Pow:
power_gens[expr.args[0]] = expr.args[1]
elif expr.is_Symbol:
power_gens[expr] += 1
else: # If `expr` is a constant take first vertex of the line segment.
return a1, b1
# TODO : This part is quite hacky. Should be made more robust with
# TODO : respect to symbol names and scalable w.r.t higher dimensions.
power_gens = sorted(power_gens.items(), key=lambda k: str(k[0]))
if power_gens[0][1] >= power_gens[1][1]:
if y_axis_cut(lineseg):
x0 = (S.Zero, b / a[1])
elif x_axis_cut(lineseg):
x0 = (b / a[0], S.Zero)
else:
x0 = (a1, b1)
else:
if x_axis_cut(lineseg):
x0 = (b/a[0], S.Zero)
elif y_axis_cut(lineseg):
x0 = (S.Zero, b/a[1])
else:
x0 = (a1, b1)
else:
x0 = (b/a[0])
return x0
def decompose(expr, separate=False):
"""Decomposes an input polynomial into homogeneous ones of
smaller or equal degree.
Explanation
===========
Returns a dictionary with keys as the degree of the smaller
constituting polynomials. Values are the constituting polynomials.
Parameters
==========
expr : Expr
Polynomial(SymPy expression).
separate : bool
If True then simply return a list of the constituent monomials
If not then break up the polynomial into constituent homogeneous
polynomials.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.integrals.intpoly import decompose
>>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5)
{1: x + y, 2: x**2 + x*y, 5: x**3*y**2 + y**5}
>>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5, True)
{x, x**2, y, y**5, x*y, x**3*y**2}
"""
poly_dict = {}
if isinstance(expr, Expr) and not expr.is_number:
if expr.is_Symbol:
poly_dict[1] = expr
elif expr.is_Add:
symbols = expr.atoms(Symbol)
degrees = [(sum(degree_list(monom, *symbols)), monom)
for monom in expr.args]
if separate:
return {monom[1] for monom in degrees}
else:
for monom in degrees:
degree, term = monom
if poly_dict.get(degree):
poly_dict[degree] += term
else:
poly_dict[degree] = term
elif expr.is_Pow:
_, degree = expr.args
poly_dict[degree] = expr
else: # Now expr can only be of `Mul` type
degree = 0
for term in expr.args:
term_type = len(term.args)
if term_type == 0 and term.is_Symbol:
degree += 1
elif term_type == 2:
degree += term.args[1]
poly_dict[degree] = expr
else:
poly_dict[0] = expr
if separate:
return set(poly_dict.values())
return poly_dict
def point_sort(poly, normal=None, clockwise=True):
"""Returns the same polygon with points sorted in clockwise or
anti-clockwise order.
Note that it's necessary for input points to be sorted in some order
(clockwise or anti-clockwise) for the integration algorithm to work.
As a convention algorithm has been implemented keeping clockwise
orientation in mind.
Parameters
==========
poly:
2D or 3D Polygon.
normal : optional
The normal of the plane which the 3-Polytope is a part of.
clockwise : bool, optional
Returns points sorted in clockwise order if True and
anti-clockwise if False.
Examples
========
>>> from sympy.integrals.intpoly import point_sort
>>> from sympy import Point
>>> point_sort([Point(0, 0), Point(1, 0), Point(1, 1)])
[Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)]
"""
pts = poly.vertices if isinstance(poly, Polygon) else poly
n = len(pts)
if n < 2:
return list(pts)
order = S.One if clockwise else S.NegativeOne
dim = len(pts[0])
if dim == 2:
center = Point(sum(map(lambda vertex: vertex.x, pts)) / n,
sum(map(lambda vertex: vertex.y, pts)) / n)
else:
center = Point(sum(map(lambda vertex: vertex.x, pts)) / n,
sum(map(lambda vertex: vertex.y, pts)) / n,
sum(map(lambda vertex: vertex.z, pts)) / n)
def compare(a, b):
if a.x - center.x >= S.Zero and b.x - center.x < S.Zero:
return -order
elif a.x - center.x < 0 and b.x - center.x >= 0:
return order
elif a.x - center.x == 0 and b.x - center.x == 0:
if a.y - center.y >= 0 or b.y - center.y >= 0:
return -order if a.y > b.y else order
return -order if b.y > a.y else order
det = (a.x - center.x) * (b.y - center.y) -\
(b.x - center.x) * (a.y - center.y)
if det < 0:
return -order
elif det > 0:
return order
first = (a.x - center.x) * (a.x - center.x) +\
(a.y - center.y) * (a.y - center.y)
second = (b.x - center.x) * (b.x - center.x) +\
(b.y - center.y) * (b.y - center.y)
return -order if first > second else order
def compare3d(a, b):
det = cross_product(center, a, b)
dot_product = sum([det[i] * normal[i] for i in range(0, 3)])
if dot_product < 0:
return -order
elif dot_product > 0:
return order
return sorted(pts, key=cmp_to_key(compare if dim==2 else compare3d))
def norm(point):
"""Returns the Euclidean norm of a point from origin.
Parameters
==========
point:
This denotes a point in the dimension_al spac_e.
Examples
========
>>> from sympy.integrals.intpoly import norm
>>> from sympy import Point
>>> norm(Point(2, 7))
sqrt(53)
"""
half = S.Half
if isinstance(point, (list, tuple)):
return sum([coord ** 2 for coord in point]) ** half
elif isinstance(point, Point):
if isinstance(point, Point2D):
return (point.x ** 2 + point.y ** 2) ** half
else:
return (point.x ** 2 + point.y ** 2 + point.z) ** half
elif isinstance(point, dict):
return sum(i**2 for i in point.values()) ** half
def intersection(geom_1, geom_2, intersection_type):
"""Returns intersection between geometric objects.
Explanation
===========
Note that this function is meant for use in integration_reduction and
at that point in the calling function the lines denoted by the segments
surely intersect within segment boundaries. Coincident lines are taken
to be non-intersecting. Also, the hyperplane intersection for 2D case is
also implemented.
Parameters
==========
geom_1, geom_2:
The input line segments.
Examples
========
>>> from sympy.integrals.intpoly import intersection
>>> from sympy import Point, Segment2D
>>> l1 = Segment2D(Point(1, 1), Point(3, 5))
>>> l2 = Segment2D(Point(2, 0), Point(2, 5))
>>> intersection(l1, l2, "segment2D")
(2, 3)
>>> p1 = ((-1, 0), 0)
>>> p2 = ((0, 1), 1)
>>> intersection(p1, p2, "plane2D")
(0, 1)
"""
if intersection_type[:-2] == "segment":
if intersection_type == "segment2D":
x1, y1 = geom_1.points[0]
x2, y2 = geom_1.points[1]
x3, y3 = geom_2.points[0]
x4, y4 = geom_2.points[1]
elif intersection_type == "segment3D":
x1, y1, z1 = geom_1.points[0]
x2, y2, z2 = geom_1.points[1]
x3, y3, z3 = geom_2.points[0]
x4, y4, z4 = geom_2.points[1]
denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
if denom:
t1 = x1 * y2 - y1 * x2
t2 = x3 * y4 - x4 * y3
return (S(t1 * (x3 - x4) - t2 * (x1 - x2)) / denom,
S(t1 * (y3 - y4) - t2 * (y1 - y2)) / denom)
if intersection_type[:-2] == "plane":
if intersection_type == "plane2D": # Intersection of hyperplanes
a1x, a1y = geom_1[0]
a2x, a2y = geom_2[0]
b1, b2 = geom_1[1], geom_2[1]
denom = a1x * a2y - a2x * a1y
if denom:
return (S(b1 * a2y - b2 * a1y) / denom,
S(b2 * a1x - b1 * a2x) / denom)
def is_vertex(ent):
"""If the input entity is a vertex return True.
Parameter
=========
ent :
Denotes a geometric entity representing a point.
Examples
========
>>> from sympy import Point
>>> from sympy.integrals.intpoly import is_vertex
>>> is_vertex((2, 3))
True
>>> is_vertex((2, 3, 6))
True
>>> is_vertex(Point(2, 3))
True
"""
if isinstance(ent, tuple):
if len(ent) in [2, 3]:
return True
elif isinstance(ent, Point):
return True
return False
def plot_polytope(poly):
"""Plots the 2D polytope using the functions written in plotting
module which in turn uses matplotlib backend.
Parameter
=========
poly:
Denotes a 2-Polytope.
"""
from sympy.plotting.plot import Plot, List2DSeries
xl = list(map(lambda vertex: vertex.x, poly.vertices))
yl = list(map(lambda vertex: vertex.y, poly.vertices))
xl.append(poly.vertices[0].x) # Closing the polygon
yl.append(poly.vertices[0].y)
l2ds = List2DSeries(xl, yl)
p = Plot(l2ds, axes='label_axes=True')
p.show()
def plot_polynomial(expr):
"""Plots the polynomial using the functions written in
plotting module which in turn uses matplotlib backend.
Parameter
=========
expr:
Denotes a polynomial(SymPy expression).
"""
from sympy.plotting.plot import plot3d, plot
gens = expr.free_symbols
if len(gens) == 2:
plot3d(expr)
else:
plot(expr)
|
11096cfafd85bd85ccfa969481a734e6d7741f9e6f17597f8f5e46ded5727b20 | from typing import Dict as tDict, List
from itertools import permutations
from functools import reduce
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.mul import Mul
from sympy.core.symbol import Wild, Dummy, Symbol
from sympy.core.basic import sympify
from sympy.core.numbers import Rational, pi, I
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.traversal import iterfreeargs
from sympy.functions import exp, sin, cos, tan, cot, asin, atan
from sympy.functions import log, sinh, cosh, tanh, coth, asinh
from sympy.functions import sqrt, erf, erfi, li, Ei
from sympy.functions import besselj, bessely, besseli, besselk
from sympy.functions import hankel1, hankel2, jn, yn
from sympy.functions.elementary.complexes import Abs, re, im, sign, arg
from sympy.functions.elementary.exponential import LambertW
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.delta_functions import Heaviside, DiracDelta
from sympy.simplify.radsimp import collect
from sympy.logic.boolalg import And, Or
from sympy.utilities.iterables import uniq
from sympy.polys import quo, gcd, lcm, factor_list, cancel, PolynomialError
from sympy.polys.monomials import itermonomials
from sympy.polys.polyroots import root_factors
from sympy.polys.rings import PolyRing
from sympy.polys.solvers import solve_lin_sys
from sympy.polys.constructor import construct_domain
from sympy.integrals.integrals import integrate
def components(f, x):
"""
Returns a set of all functional components of the given expression
which includes symbols, function applications and compositions and
non-integer powers. Fractional powers are collected with
minimal, positive exponents.
Examples
========
>>> from sympy import cos, sin
>>> from sympy.abc import x
>>> from sympy.integrals.heurisch import components
>>> components(sin(x)*cos(x)**2, x)
{x, sin(x), cos(x)}
See Also
========
heurisch
"""
result = set()
if f.has_free(x):
if f.is_symbol and f.is_commutative:
result.add(f)
elif f.is_Function or f.is_Derivative:
for g in f.args:
result |= components(g, x)
result.add(f)
elif f.is_Pow:
result |= components(f.base, x)
if not f.exp.is_Integer:
if f.exp.is_Rational:
result.add(f.base**Rational(1, f.exp.q))
else:
result |= components(f.exp, x) | {f}
else:
for g in f.args:
result |= components(g, x)
return result
# name -> [] of symbols
_symbols_cache = {} # type: tDict[str, List[Dummy]]
# NB @cacheit is not convenient here
def _symbols(name, n):
"""get vector of symbols local to this module"""
try:
lsyms = _symbols_cache[name]
except KeyError:
lsyms = []
_symbols_cache[name] = lsyms
while len(lsyms) < n:
lsyms.append( Dummy('%s%i' % (name, len(lsyms))) )
return lsyms[:n]
def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None,
_try_heurisch=None):
"""
A wrapper around the heurisch integration algorithm.
Explanation
===========
This method takes the result from heurisch and checks for poles in the
denominator. For each of these poles, the integral is reevaluated, and
the final integration result is given in terms of a Piecewise.
Examples
========
>>> from sympy import cos, symbols
>>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper
>>> n, x = symbols('n x')
>>> heurisch(cos(n*x), x)
sin(n*x)/n
>>> heurisch_wrapper(cos(n*x), x)
Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True))
See Also
========
heurisch
"""
from sympy.solvers.solvers import solve, denoms
f = sympify(f)
if not f.has_free(x):
return f*x
res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset,
unnecessary_permutations, _try_heurisch)
if not isinstance(res, Basic):
return res
# We consider each denominator in the expression, and try to find
# cases where one or more symbolic denominator might be zero. The
# conditions for these cases are stored in the list slns.
#
# Since denoms returns a set we use ordered. This is important because the
# ordering of slns determines the order of the resulting Piecewise so we
# need a deterministic order here to make the output deterministic.
slns = []
for d in ordered(denoms(res)):
try:
slns += solve([d], dict=True, exclude=(x,))
except NotImplementedError:
pass
if not slns:
return res
slns = list(uniq(slns))
# Remove the solutions corresponding to poles in the original expression.
slns0 = []
for d in denoms(f):
try:
slns0 += solve([d], dict=True, exclude=(x,))
except NotImplementedError:
pass
slns = [s for s in slns if s not in slns0]
if not slns:
return res
if len(slns) > 1:
eqs = []
for sub_dict in slns:
eqs.extend([Eq(key, value) for key, value in sub_dict.items()])
slns = solve(eqs, dict=True, exclude=(x,)) + slns
# For each case listed in the list slns, we reevaluate the integral.
pairs = []
for sub_dict in slns:
expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations,
_try_heurisch)
cond = And(*[Eq(key, value) for key, value in sub_dict.items()])
generic = Or(*[Ne(key, value) for key, value in sub_dict.items()])
if expr is None:
expr = integrate(f.subs(sub_dict),x)
pairs.append((expr, cond))
# If there is one condition, put the generic case first. Otherwise,
# doing so may lead to longer Piecewise formulas
if len(pairs) == 1:
pairs = [(heurisch(f, x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations,
_try_heurisch),
generic),
(pairs[0][0], True)]
else:
pairs.append((heurisch(f, x, rewrite, hints, mappings, retries,
degree_offset, unnecessary_permutations,
_try_heurisch),
True))
return Piecewise(*pairs)
class BesselTable:
"""
Derivatives of Bessel functions of orders n and n-1
in terms of each other.
See the docstring of DiffCache.
"""
def __init__(self):
self.table = {}
self.n = Dummy('n')
self.z = Dummy('z')
self._create_table()
def _create_table(t):
table, n, z = t.table, t.n, t.z
for f in (besselj, bessely, hankel1, hankel2):
table[f] = (f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
f = besseli
table[f] = (f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z + f(n, z))
f = besselk
table[f] = (-f(n-1, z) - n*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
for f in (jn, yn):
table[f] = (f(n-1, z) - (n+1)*f(n, z)/z,
(n-1)*f(n-1, z)/z - f(n, z))
def diffs(t, f, n, z):
if f in t.table:
diff0, diff1 = t.table[f]
repl = [(t.n, n), (t.z, z)]
return (diff0.subs(repl), diff1.subs(repl))
def has(t, f):
return f in t.table
_bessel_table = None
class DiffCache:
"""
Store for derivatives of expressions.
Explanation
===========
The standard form of the derivative of a Bessel function of order n
contains two Bessel functions of orders n-1 and n+1, respectively.
Such forms cannot be used in parallel Risch algorithm, because
there is a linear recurrence relation between the three functions
while the algorithm expects that functions and derivatives are
represented in terms of algebraically independent transcendentals.
The solution is to take two of the functions, e.g., those of orders
n and n-1, and to express the derivatives in terms of the pair.
To guarantee that the proper form is used the two derivatives are
cached as soon as one is encountered.
Derivatives of other functions are also cached at no extra cost.
All derivatives are with respect to the same variable `x`.
"""
def __init__(self, x):
self.cache = {}
self.x = x
global _bessel_table
if not _bessel_table:
_bessel_table = BesselTable()
def get_diff(self, f):
cache = self.cache
if f in cache:
pass
elif (not hasattr(f, 'func') or
not _bessel_table.has(f.func)):
cache[f] = cancel(f.diff(self.x))
else:
n, z = f.args
d0, d1 = _bessel_table.diffs(f.func, n, z)
dz = self.get_diff(z)
cache[f] = d0*dz
cache[f.func(n-1, z)] = d1*dz
return cache[f]
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
degree_offset=0, unnecessary_permutations=None,
_try_heurisch=None):
"""
Compute indefinite integral using heuristic Risch algorithm.
Explanation
===========
This is a heuristic approach to indefinite integration in finite
terms using the extended heuristic (parallel) Risch algorithm, based
on Manuel Bronstein's "Poor Man's Integrator".
The algorithm supports various classes of functions including
transcendental elementary or special functions like Airy,
Bessel, Whittaker and Lambert.
Note that this algorithm is not a decision procedure. If it isn't
able to compute the antiderivative for a given function, then this is
not a proof that such a functions does not exist. One should use
recursive Risch algorithm in such case. It's an open question if
this algorithm can be made a full decision procedure.
This is an internal integrator procedure. You should use top level
'integrate' function in most cases, as this procedure needs some
preprocessing steps and otherwise may fail.
Specification
=============
heurisch(f, x, rewrite=False, hints=None)
where
f : expression
x : symbol
rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
hints -> a list of functions that may appear in anti-derivate
- hints = None --> no suggestions at all
- hints = [ ] --> try to figure out
- hints = [f1, ..., fn] --> we know better
Examples
========
>>> from sympy import tan
>>> from sympy.integrals.heurisch import heurisch
>>> from sympy.abc import x, y
>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
See Manuel Bronstein's "Poor Man's Integrator":
References
==========
.. [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html
For more information on the implemented algorithm refer to:
.. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
Method and its Implementation in Maple, Proceedings of
ISSAC'89, ACM Press, 212-217.
.. [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
.. [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.
.. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
Algorithm (II), ACM Transactions on Mathematical
Software 11 (1985), 356-362.
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
sympy.integrals.heurisch.components
"""
f = sympify(f)
# There are some functions that Heurisch cannot currently handle,
# so do not even try.
# Set _try_heurisch=True to skip this check
if _try_heurisch is not True:
if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg):
return
if not f.has_free(x):
return f*x
if not f.is_Add:
indep, f = f.as_independent(x)
else:
indep = S.One
rewritables = {
(sin, cos, cot): tan,
(sinh, cosh, coth): tanh,
}
if rewrite:
for candidates, rule in rewritables.items():
f = f.rewrite(candidates, rule)
else:
for candidates in rewritables.keys():
if f.has(*candidates):
break
else:
rewrite = True
terms = components(f, x)
dcache = DiffCache(x)
if hints is not None:
if not hints:
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
c = Wild('c', exclude=[x])
for g in set(terms): # using copy of terms
if g.is_Function:
if isinstance(g, li):
M = g.args[0].match(a*x**b)
if M is not None:
terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
#terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )
elif isinstance(g, exp):
M = g.args[0].match(a*x**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*x))
else: # M[a].is_negative or unknown
terms.add(erf(sqrt(-M[a])*x))
M = g.args[0].match(a*x**2 + b*x + c)
if M is not None:
if M[a].is_positive:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
elif M[a].is_negative:
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))
M = g.args[0].match(a*log(x)**2)
if M is not None:
if M[a].is_positive:
terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
if M[a].is_negative:
terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))
elif g.is_Pow:
if g.exp.is_Rational and g.exp.q == 2:
M = g.base.match(a*x**2 + b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
terms.add(asinh(sqrt(M[a]/M[b])*x))
elif M[a].is_negative:
terms.add(asin(sqrt(-M[a]/M[b])*x))
M = g.base.match(a*x**2 - b)
if M is not None and M[b].is_positive:
if M[a].is_positive:
dF = 1/sqrt(M[a]*x**2 - M[b])
F = log(2*sqrt(M[a])*sqrt(M[a]*x**2 - M[b]) + 2*M[a]*x)/sqrt(M[a])
dcache.cache[F] = dF # hack: F.diff(x) doesn't automatically simplify to f
terms.add(F)
elif M[a].is_negative:
terms.add(-M[b]/2*sqrt(-M[a])*
atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))
else:
terms |= set(hints)
for g in set(terms): # using copy of terms
terms |= components(dcache.get_diff(g), x)
# XXX: The commented line below makes heurisch more deterministic wrt
# PYTHONHASHSEED and the iteration order of sets. There are other places
# where sets are iterated over but this one is possibly the most important.
# Theoretically the order here should not matter but different orderings
# can expose potential bugs in the different code paths so potentially it
# is better to keep the non-determinism.
#
# terms = list(ordered(terms))
# TODO: caching is significant factor for why permutations work at all. Change this.
V = _symbols('x', len(terms))
# sort mapping expressions from largest to smallest (last is always x).
mapping = list(reversed(list(zip(*ordered( #
[(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) #
rev_mapping = {v: k for k, v in mapping} #
if mappings is None: #
# optimizing the number of permutations of mapping #
assert mapping[-1][0] == x # if not, find it and correct this comment
unnecessary_permutations = [mapping.pop(-1)]
mappings = permutations(mapping)
else:
unnecessary_permutations = unnecessary_permutations or []
def _substitute(expr):
return expr.subs(mapping)
for mapping in mappings:
mapping = list(mapping)
mapping = mapping + unnecessary_permutations
diffs = [ _substitute(dcache.get_diff(g)) for g in terms ]
denoms = [ g.as_numer_denom()[1] for g in diffs ]
if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
break
else:
if not rewrite:
result = heurisch(f, x, rewrite=True, hints=hints,
unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
numers = [ cancel(denom*g) for g in diffs ]
def _derivation(h):
return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])
def _deflation(p):
for y in V:
if not p.has(y):
continue
if _derivation(p) is not S.Zero:
c, q = p.as_poly(y).primitive()
return _deflation(c)*gcd(q, q.diff(y)).as_expr()
return p
def _splitter(p):
for y in V:
if not p.has(y):
continue
if _derivation(y) is not S.Zero:
c, q = p.as_poly(y).primitive()
q = q.as_expr()
h = gcd(q, _derivation(q), y)
s = quo(h, gcd(q, q.diff(y), y), y)
c_split = _splitter(c)
if s.as_poly(y).degree() == 0:
return (c_split[0], q * c_split[1])
q_split = _splitter(cancel(q / s))
return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
return (S.One, p)
special = {}
for term in terms:
if term.is_Function:
if isinstance(term, tan):
special[1 + _substitute(term)**2] = False
elif isinstance(term, tanh):
special[1 + _substitute(term)] = False
special[1 - _substitute(term)] = False
elif isinstance(term, LambertW):
special[_substitute(term)] = True
F = _substitute(f)
P, Q = F.as_numer_denom()
u_split = _splitter(denom)
v_split = _splitter(Q)
polys = set(list(v_split) + [ u_split[0] ] + list(special.keys()))
s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
polified = [ p.as_poly(*V) for p in [s, P, Q] ]
if None in polified:
return None
#--- definitions for _integrate
a, b, c = [ p.total_degree() for p in polified ]
poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()
def _exponent(g):
if g.is_Pow:
if g.exp.is_Rational and g.exp.q != 1:
if g.exp.p > 0:
return g.exp.p + g.exp.q - 1
else:
return abs(g.exp.p + g.exp.q)
else:
return 1
elif not g.is_Atom and g.args:
return max([ _exponent(h) for h in g.args ])
else:
return 1
A, B = _exponent(f), a + max(b, c)
if A > 1 and B > 1:
monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset)))
else:
monoms = tuple(ordered(itermonomials(V, A + B + degree_offset)))
poly_coeffs = _symbols('A', len(monoms))
poly_part = Add(*[ poly_coeffs[i]*monomial
for i, monomial in enumerate(monoms) ])
reducibles = set()
for poly in ordered(polys):
coeff, factors = factor_list(poly, *V)
reducibles.add(coeff)
for fact, mul in factors:
reducibles.add(fact)
def _integrate(field=None):
atans = set()
pairs = set()
if field == 'Q':
irreducibles = set(reducibles)
else:
setV = set(V)
irreducibles = set()
for poly in ordered(reducibles):
zV = setV & set(iterfreeargs(poly))
for z in ordered(zV):
s = set(root_factors(poly, z, filter=field))
irreducibles |= s
break
log_part, atan_part = [], []
for poly in ordered(irreducibles):
m = collect(poly, I, evaluate=False)
y = m.get(I, S.Zero)
if y:
x = m.get(S.One, S.Zero)
if x.has(I) or y.has(I):
continue # nontrivial x + I*y
pairs.add((x, y))
irreducibles.remove(poly)
while pairs:
x, y = pairs.pop()
if (x, -y) in pairs:
pairs.remove((x, -y))
# Choosing b with no minus sign
if y.could_extract_minus_sign():
y = -y
irreducibles.add(x*x + y*y)
atans.add(atan(x/y))
else:
irreducibles.add(x + I*y)
B = _symbols('B', len(irreducibles))
C = _symbols('C', len(atans))
# Note: the ordering matters here
for poly, b in reversed(list(zip(ordered(irreducibles), B))):
if poly.has(*V):
poly_coeffs.append(b)
log_part.append(b * log(poly))
for poly, c in reversed(list(zip(ordered(atans), C))):
if poly.has(*V):
poly_coeffs.append(c)
atan_part.append(c * poly)
# TODO: Currently it's better to use symbolic expressions here instead
# of rational functions, because it's simpler and FracElement doesn't
# give big speed improvement yet. This is because cancellation is slow
# due to slow polynomial GCD algorithms. If this gets improved then
# revise this code.
candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
h = F - _derivation(candidate) / denom
raw_numer = h.as_numer_denom()[0]
# Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
# that we have to determine. We can't use simply atoms() because log(3),
# sqrt(y) and similar expressions can appear, leading to non-trivial
# domains.
syms = set(poly_coeffs) | set(V)
non_syms = set()
def find_non_syms(expr):
if expr.is_Integer or expr.is_Rational:
pass # ignore trivial numbers
elif expr in syms:
pass # ignore variables
elif not expr.has_free(*syms):
non_syms.add(expr)
elif expr.is_Add or expr.is_Mul or expr.is_Pow:
list(map(find_non_syms, expr.args))
else:
# TODO: Non-polynomial expression. This should have been
# filtered out at an earlier stage.
raise PolynomialError
try:
find_non_syms(raw_numer)
except PolynomialError:
return None
else:
ground, _ = construct_domain(non_syms, field=True)
coeff_ring = PolyRing(poly_coeffs, ground)
ring = PolyRing(V, coeff_ring)
try:
numer = ring.from_expr(raw_numer)
except ValueError:
raise PolynomialError
solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)
if solution is None:
return None
else:
return candidate.xreplace(solution).xreplace(
dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
if all(isinstance(_, Symbol) for _ in V):
more_free = F.free_symbols - set(V)
else:
Fd = F.as_dummy()
more_free = Fd.xreplace(dict(zip(V, (Dummy() for _ in V)))
).free_symbols & Fd.free_symbols
if not more_free:
# all free generators are identified in V
solution = _integrate('Q')
if solution is None:
solution = _integrate()
else:
solution = _integrate()
if solution is not None:
antideriv = solution.subs(rev_mapping)
antideriv = cancel(antideriv).expand()
if antideriv.is_Add:
antideriv = antideriv.as_independent(x)[1]
return indep*antideriv
else:
if retries >= 0:
result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)
if result is not None:
return indep*result
return None
|
96b4b5d004deba766679f3843c334260f49b0e01087d8145ade1d1f043360331 | """
The Risch Algorithm for transcendental function integration.
The core algorithms for the Risch algorithm are here. The subproblem
algorithms are in the rde.py and prde.py files for the Risch
Differential Equation solver and the parametric problems solvers,
respectively. All important information concerning the differential extension
for an integrand is stored in a DifferentialExtension object, which in the code
is usually called DE. Throughout the code and Inside the DifferentialExtension
object, the conventions/attribute names are that the base domain is QQ and each
differential extension is x, t0, t1, ..., tn-1 = DE.t. DE.x is the variable of
integration (Dx == 1), DE.D is a list of the derivatives of
x, t1, t2, ..., tn-1 = t, DE.T is the list [x, t1, t2, ..., tn-1], DE.t is the
outer-most variable of the differential extension at the given level (the level
can be adjusted using DE.increment_level() and DE.decrement_level()),
k is the field C(x, t0, ..., tn-2), where C is the constant field. The
numerator of a fraction is denoted by a and the denominator by
d. If the fraction is named f, fa == numer(f) and fd == denom(f).
Fractions are returned as tuples (fa, fd). DE.d and DE.t are used to
represent the topmost derivation and extension variable, respectively.
The docstring of a function signifies whether an argument is in k[t], in
which case it will just return a Poly in t, or in k(t), in which case it
will return the fraction (fa, fd). Other variable names probably come
from the names used in Bronstein's book.
"""
from types import GeneratorType
from functools import reduce
from sympy.core.function import Lambda
from sympy.core.mul import Mul
from sympy.core.numbers import ilcm, I, oo
from sympy.core.power import Pow
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.symbol import Dummy, Symbol
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh,
tanh)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (atan, sin, cos,
tan, acot, cot, asin, acos)
from .integrals import integrate, Integral
from .heurisch import _symbols
from sympy.polys.polyerrors import DomainError, PolynomialError
from sympy.polys.polytools import (real_roots, cancel, Poly, gcd,
reduced)
from sympy.polys.rootoftools import RootSum
from sympy.utilities.iterables import numbered_symbols
def integer_powers(exprs):
"""
Rewrites a list of expressions as integer multiples of each other.
Explanation
===========
For example, if you have [x, x/2, x**2 + 1, 2*x/3], then you can rewrite
this as [(x/6) * 6, (x/6) * 3, (x**2 + 1) * 1, (x/6) * 4]. This is useful
in the Risch integration algorithm, where we must write exp(x) + exp(x/2)
as (exp(x/2))**2 + exp(x/2), but not as exp(x) + sqrt(exp(x)) (this is
because only the transcendental case is implemented and we therefore cannot
integrate algebraic extensions). The integer multiples returned by this
function for each term are the smallest possible (their content equals 1).
Returns a list of tuples where the first element is the base term and the
second element is a list of `(item, factor)` terms, where `factor` is the
integer multiplicative factor that must multiply the base term to obtain
the original item.
The easiest way to understand this is to look at an example:
>>> from sympy.abc import x
>>> from sympy.integrals.risch import integer_powers
>>> integer_powers([x, x/2, x**2 + 1, 2*x/3])
[(x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]), (x**2 + 1, [(x**2 + 1, 1)])]
We can see how this relates to the example at the beginning of the
docstring. It chose x/6 as the first base term. Then, x can be written as
(x/2) * 2, so we get (0, 2), and so on. Now only element (x**2 + 1)
remains, and there are no other terms that can be written as a rational
multiple of that, so we get that it can be written as (x**2 + 1) * 1.
"""
# Here is the strategy:
# First, go through each term and determine if it can be rewritten as a
# rational multiple of any of the terms gathered so far.
# cancel(a/b).is_Rational is sufficient for this. If it is a multiple, we
# add its multiple to the dictionary.
terms = {}
for term in exprs:
for trm, trm_list in terms.items():
a = cancel(term/trm)
if a.is_Rational:
trm_list.append((term, a))
break
else:
terms[term] = [(term, S.One)]
# After we have done this, we have all the like terms together, so we just
# need to find a common denominator so that we can get the base term and
# integer multiples such that each term can be written as an integer
# multiple of the base term, and the content of the integers is 1.
newterms = {}
for term, term_list in terms.items():
common_denom = reduce(ilcm, [i.as_numer_denom()[1] for _, i in
term_list])
newterm = term/common_denom
newmults = [(i, j*common_denom) for i, j in term_list]
newterms[newterm] = newmults
return sorted(iter(newterms.items()), key=lambda item: item[0].sort_key())
class DifferentialExtension:
"""
A container for all the information relating to a differential extension.
Explanation
===========
The attributes of this object are (see also the docstring of __init__):
- f: The original (Expr) integrand.
- x: The variable of integration.
- T: List of variables in the extension.
- D: List of derivations in the extension; corresponds to the elements of T.
- fa: Poly of the numerator of the integrand.
- fd: Poly of the denominator of the integrand.
- Tfuncs: Lambda() representations of each element of T (except for x).
For back-substitution after integration.
- backsubs: A (possibly empty) list of further substitutions to be made on
the final integral to make it look more like the integrand.
- exts:
- extargs:
- cases: List of string representations of the cases of T.
- t: The top level extension variable, as defined by the current level
(see level below).
- d: The top level extension derivation, as defined by the current
derivation (see level below).
- case: The string representation of the case of self.d.
(Note that self.T and self.D will always contain the complete extension,
regardless of the level. Therefore, you should ALWAYS use DE.t and DE.d
instead of DE.T[-1] and DE.D[-1]. If you want to have a list of the
derivations or variables only up to the current level, use
DE.D[:len(DE.D) + DE.level + 1] and DE.T[:len(DE.T) + DE.level + 1]. Note
that, in particular, the derivation() function does this.)
The following are also attributes, but will probably not be useful other
than in internal use:
- newf: Expr form of fa/fd.
- level: The number (between -1 and -len(self.T)) such that
self.T[self.level] == self.t and self.D[self.level] == self.d.
Use the methods self.increment_level() and self.decrement_level() to change
the current level.
"""
# __slots__ is defined mainly so we can iterate over all the attributes
# of the class easily (the memory use doesn't matter too much, since we
# only create one DifferentialExtension per integration). Also, it's nice
# to have a safeguard when debugging.
__slots__ = ('f', 'x', 'T', 'D', 'fa', 'fd', 'Tfuncs', 'backsubs',
'exts', 'extargs', 'cases', 'case', 't', 'd', 'newf', 'level',
'ts', 'dummy')
def __init__(self, f=None, x=None, handle_first='log', dummy=False, extension=None, rewrite_complex=None):
"""
Tries to build a transcendental extension tower from ``f`` with respect to ``x``.
Explanation
===========
If it is successful, creates a DifferentialExtension object with, among
others, the attributes fa, fd, D, T, Tfuncs, and backsubs such that
fa and fd are Polys in T[-1] with rational coefficients in T[:-1],
fa/fd == f, and D[i] is a Poly in T[i] with rational coefficients in
T[:i] representing the derivative of T[i] for each i from 1 to len(T).
Tfuncs is a list of Lambda objects for back replacing the functions
after integrating. Lambda() is only used (instead of lambda) to make
them easier to test and debug. Note that Tfuncs corresponds to the
elements of T, except for T[0] == x, but they should be back-substituted
in reverse order. backsubs is a (possibly empty) back-substitution list
that should be applied on the completed integral to make it look more
like the original integrand.
If it is unsuccessful, it raises NotImplementedError.
You can also create an object by manually setting the attributes as a
dictionary to the extension keyword argument. You must include at least
D. Warning, any attribute that is not given will be set to None. The
attributes T, t, d, cases, case, x, and level are set automatically and
do not need to be given. The functions in the Risch Algorithm will NOT
check to see if an attribute is None before using it. This also does not
check to see if the extension is valid (non-algebraic) or even if it is
self-consistent. Therefore, this should only be used for
testing/debugging purposes.
"""
# XXX: If you need to debug this function, set the break point here
if extension:
if 'D' not in extension:
raise ValueError("At least the key D must be included with "
"the extension flag to DifferentialExtension.")
for attr in extension:
setattr(self, attr, extension[attr])
self._auto_attrs()
return
elif f is None or x is None:
raise ValueError("Either both f and x or a manual extension must "
"be given.")
if handle_first not in ('log', 'exp'):
raise ValueError("handle_first must be 'log' or 'exp', not %s." %
str(handle_first))
# f will be the original function, self.f might change if we reset
# (e.g., we pull out a constant from an exponential)
self.f = f
self.x = x
# setting the default value 'dummy'
self.dummy = dummy
self.reset()
exp_new_extension, log_new_extension = True, True
# case of 'automatic' choosing
if rewrite_complex is None:
rewrite_complex = I in self.f.atoms()
if rewrite_complex:
rewritables = {
(sin, cos, cot, tan, sinh, cosh, coth, tanh): exp,
(asin, acos, acot, atan): log,
}
# rewrite the trigonometric components
for candidates, rule in rewritables.items():
self.newf = self.newf.rewrite(candidates, rule)
self.newf = cancel(self.newf)
else:
if any(i.has(x) for i in self.f.atoms(sin, cos, tan, atan, asin, acos)):
raise NotImplementedError("Trigonometric extensions are not "
"supported (yet!)")
exps = set()
pows = set()
numpows = set()
sympows = set()
logs = set()
symlogs = set()
while True:
if self.newf.is_rational_function(*self.T):
break
if not exp_new_extension and not log_new_extension:
# We couldn't find a new extension on the last pass, so I guess
# we can't do it.
raise NotImplementedError("Couldn't find an elementary "
"transcendental extension for %s. Try using a " % str(f) +
"manual extension with the extension flag.")
exps, pows, numpows, sympows, log_new_extension = \
self._rewrite_exps_pows(exps, pows, numpows, sympows, log_new_extension)
logs, symlogs = self._rewrite_logs(logs, symlogs)
if handle_first == 'exp' or not log_new_extension:
exp_new_extension = self._exp_part(exps)
if exp_new_extension is None:
# reset and restart
self.f = self.newf
self.reset()
exp_new_extension = True
continue
if handle_first == 'log' or not exp_new_extension:
log_new_extension = self._log_part(logs)
self.fa, self.fd = frac_in(self.newf, self.t)
self._auto_attrs()
return
def __getattr__(self, attr):
# Avoid AttributeErrors when debugging
if attr not in self.__slots__:
raise AttributeError("%s has no attribute %s" % (repr(self), repr(attr)))
return None
def _rewrite_exps_pows(self, exps, pows, numpows,
sympows, log_new_extension):
"""
Rewrite exps/pows for better processing.
"""
from .prde import is_deriv_k
# Pre-preparsing.
#################
# Get all exp arguments, so we can avoid ahead of time doing
# something like t1 = exp(x), t2 = exp(x/2) == sqrt(t1).
# Things like sqrt(exp(x)) do not automatically simplify to
# exp(x/2), so they will be viewed as algebraic. The easiest way
# to handle this is to convert all instances of exp(a)**Rational
# to exp(Rational*a) before doing anything else. Note that the
# _exp_part code can generate terms of this form, so we do need to
# do this at each pass (or else modify it to not do that).
ratpows = [i for i in self.newf.atoms(Pow)
if (isinstance(i.base, exp) and i.exp.is_Rational)]
ratpows_repl = [
(i, i.base.base**(i.exp*i.base.exp)) for i in ratpows]
self.backsubs += [(j, i) for i, j in ratpows_repl]
self.newf = self.newf.xreplace(dict(ratpows_repl))
# To make the process deterministic, the args are sorted
# so that functions with smaller op-counts are processed first.
# Ties are broken with the default_sort_key.
# XXX Although the method is deterministic no additional work
# has been done to guarantee that the simplest solution is
# returned and that it would be affected be using different
# variables. Though it is possible that this is the case
# one should know that it has not been done intentionally, so
# further improvements may be possible.
# TODO: This probably doesn't need to be completely recomputed at
# each pass.
exps = update_sets(exps, self.newf.atoms(exp),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
pows = update_sets(pows, self.newf.atoms(Pow),
lambda i: i.exp.is_rational_function(*self.T) and
i.exp.has(*self.T))
numpows = update_sets(numpows, set(pows),
lambda i: not i.base.has(*self.T))
sympows = update_sets(sympows, set(pows) - set(numpows),
lambda i: i.base.is_rational_function(*self.T) and
not i.exp.is_Integer)
# The easiest way to deal with non-base E powers is to convert them
# into base E, integrate, and then convert back.
for i in ordered(pows):
old = i
new = exp(i.exp*log(i.base))
# If exp is ever changed to automatically reduce exp(x*log(2))
# to 2**x, then this will break. The solution is to not change
# exp to do that :)
if i in sympows:
if i.exp.is_Rational:
raise NotImplementedError("Algebraic extensions are "
"not supported (%s)." % str(i))
# We can add a**b only if log(a) in the extension, because
# a**b == exp(b*log(a)).
basea, based = frac_in(i.base, self.t)
A = is_deriv_k(basea, based, self)
if A is None:
# Nonelementary monomial (so far)
# TODO: Would there ever be any benefit from just
# adding log(base) as a new monomial?
# ANSWER: Yes, otherwise we can't integrate x**x (or
# rather prove that it has no elementary integral)
# without first manually rewriting it as exp(x*log(x))
self.newf = self.newf.xreplace({old: new})
self.backsubs += [(new, old)]
log_new_extension = self._log_part([log(i.base)])
exps = update_sets(exps, self.newf.atoms(exp), lambda i:
i.exp.is_rational_function(*self.T) and i.exp.has(*self.T))
continue
ans, u, const = A
newterm = exp(i.exp*(log(const) + u))
# Under the current implementation, exp kills terms
# only if they are of the form a*log(x), where a is a
# Number. This case should have already been killed by the
# above tests. Again, if this changes to kill more than
# that, this will break, which maybe is a sign that you
# shouldn't be changing that. Actually, if anything, this
# auto-simplification should be removed. See
# http://groups.google.com/group/sympy/browse_thread/thread/a61d48235f16867f
self.newf = self.newf.xreplace({i: newterm})
elif i not in numpows:
continue
else:
# i in numpows
newterm = new
# TODO: Just put it in self.Tfuncs
self.backsubs.append((new, old))
self.newf = self.newf.xreplace({old: newterm})
exps.append(newterm)
return exps, pows, numpows, sympows, log_new_extension
def _rewrite_logs(self, logs, symlogs):
"""
Rewrite logs for better processing.
"""
atoms = self.newf.atoms(log)
logs = update_sets(logs, atoms,
lambda i: i.args[0].is_rational_function(*self.T) and
i.args[0].has(*self.T))
symlogs = update_sets(symlogs, atoms,
lambda i: i.has(*self.T) and i.args[0].is_Pow and
i.args[0].base.is_rational_function(*self.T) and
not i.args[0].exp.is_Integer)
# We can handle things like log(x**y) by converting it to y*log(x)
# This will fix not only symbolic exponents of the argument, but any
# non-Integer exponent, like log(sqrt(x)). The exponent can also
# depend on x, like log(x**x).
for i in ordered(symlogs):
# Unlike in the exponential case above, we do not ever
# potentially add new monomials (above we had to add log(a)).
# Therefore, there is no need to run any is_deriv functions
# here. Just convert log(a**b) to b*log(a) and let
# log_new_extension() handle it from there.
lbase = log(i.args[0].base)
logs.append(lbase)
new = i.args[0].exp*lbase
self.newf = self.newf.xreplace({i: new})
self.backsubs.append((new, i))
# remove any duplicates
logs = sorted(set(logs), key=default_sort_key)
return logs, symlogs
def _auto_attrs(self):
"""
Set attributes that are generated automatically.
"""
if not self.T:
# i.e., when using the extension flag and T isn't given
self.T = [i.gen for i in self.D]
if not self.x:
self.x = self.T[0]
self.cases = [get_case(d, t) for d, t in zip(self.D, self.T)]
self.level = -1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
def _exp_part(self, exps):
"""
Try to build an exponential extension.
Returns
=======
Returns True if there was a new extension, False if there was no new
extension but it was able to rewrite the given exponentials in terms
of the existing extension, and None if the entire extension building
process should be restarted. If the process fails because there is no
way around an algebraic extension (e.g., exp(log(x)/2)), it will raise
NotImplementedError.
"""
from .prde import is_log_deriv_k_t_radical
new_extension = False
restart = False
expargs = [i.exp for i in exps]
ip = integer_powers(expargs)
for arg, others in ip:
# Minimize potential problems with algebraic substitution
others.sort(key=lambda i: i[1])
arga, argd = frac_in(arg, self.t)
A = is_log_deriv_k_t_radical(arga, argd, self)
if A is not None:
ans, u, n, const = A
# if n is 1 or -1, it's algebraic, but we can handle it
if n == -1:
# This probably will never happen, because
# Rational.as_numer_denom() returns the negative term in
# the numerator. But in case that changes, reduce it to
# n == 1.
n = 1
u **= -1
const *= -1
ans = [(i, -j) for i, j in ans]
if n == 1:
# Example: exp(x + x**2) over QQ(x, exp(x), exp(x**2))
self.newf = self.newf.xreplace({exp(arg): exp(const)*Mul(*[
u**power for u, power in ans])})
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p) * Mul(*[u**power for u, power in ans])
for exparg, p in others})
# TODO: Add something to backsubs to put exp(const*p)
# back together.
continue
else:
# Bad news: we have an algebraic radical. But maybe we
# could still avoid it by choosing a different extension.
# For example, integer_powers() won't handle exp(x/2 + 1)
# over QQ(x, exp(x)), but if we pull out the exp(1), it
# will. Or maybe we have exp(x + x**2/2), over
# QQ(x, exp(x), exp(x**2)), which is exp(x)*sqrt(exp(x**2)),
# but if we use QQ(x, exp(x), exp(x**2/2)), then they will
# all work.
#
# So here is what we do: If there is a non-zero const, pull
# it out and retry. Also, if len(ans) > 1, then rewrite
# exp(arg) as the product of exponentials from ans, and
# retry that. If const == 0 and len(ans) == 1, then we
# assume that it would have been handled by either
# integer_powers() or n == 1 above if it could be handled,
# so we give up at that point. For example, you can never
# handle exp(log(x)/2) because it equals sqrt(x).
if const or len(ans) > 1:
rad = Mul(*[term**(power/n) for term, power in ans])
self.newf = self.newf.xreplace({exp(p*exparg):
exp(const*p)*rad for exparg, p in others})
self.newf = self.newf.xreplace(dict(list(zip(reversed(self.T),
reversed([f(self.x) for f in self.Tfuncs])))))
restart = True
break
else:
# TODO: give algebraic dependence in error string
raise NotImplementedError("Cannot integrate over "
"algebraic extensions.")
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darga, dargd = darga.cancel(dargd, include=True)
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('exp')
self.D.append(darg.as_poly(self.t, expand=False)*Poly(self.t,
self.t, expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, exp(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace(
{exp(exparg): self.t**p for exparg, p in others})
new_extension = True
if restart:
return None
return new_extension
def _log_part(self, logs):
"""
Try to build a logarithmic extension.
Returns
=======
Returns True if there was a new extension and False if there was no new
extension but it was able to rewrite the given logarithms in terms
of the existing extension. Unlike with exponential extensions, there
is no way that a logarithm is not transcendental over and cannot be
rewritten in terms of an already existing extension in a non-algebraic
way, so this function does not ever return None or raise
NotImplementedError.
"""
from .prde import is_deriv_k
new_extension = False
logargs = [i.args[0] for i in logs]
for arg in ordered(logargs):
# The log case is easier, because whenever a logarithm is algebraic
# over the base field, it is of the form a1*t1 + ... an*tn + c,
# which is a polynomial, so we can just replace it with that.
# In other words, we don't have to worry about radicals.
arga, argd = frac_in(arg, self.t)
A = is_deriv_k(arga, argd, self)
if A is not None:
ans, u, const = A
newterm = log(const) + u
self.newf = self.newf.xreplace({log(arg): newterm})
continue
else:
arga, argd = frac_in(arg, self.t)
darga = (argd*derivation(Poly(arga, self.t), self) -
arga*derivation(Poly(argd, self.t), self))
dargd = argd**2
darg = darga.as_expr()/dargd.as_expr()
self.t = next(self.ts)
self.T.append(self.t)
self.extargs.append(arg)
self.exts.append('log')
self.D.append(cancel(darg.as_expr()/arg).as_poly(self.t,
expand=False))
if self.dummy:
i = Dummy("i")
else:
i = Symbol('i')
self.Tfuncs += [Lambda(i, log(arg.subs(self.x, i)))]
self.newf = self.newf.xreplace({log(arg): self.t})
new_extension = True
return new_extension
@property
def _important_attrs(self):
"""
Returns some of the more important attributes of self.
Explanation
===========
Used for testing and debugging purposes.
The attributes are (fa, fd, D, T, Tfuncs, backsubs,
exts, extargs).
"""
return (self.fa, self.fd, self.D, self.T, self.Tfuncs,
self.backsubs, self.exts, self.extargs)
# NOTE: this printing doesn't follow the Python's standard
# eval(repr(DE)) == DE, where DE is the DifferentialExtension object,
# also this printing is supposed to contain all the important
# attributes of a DifferentialExtension object
def __repr__(self):
# no need to have GeneratorType object printed in it
r = [(attr, getattr(self, attr)) for attr in self.__slots__
if not isinstance(getattr(self, attr), GeneratorType)]
return self.__class__.__name__ + '(dict(%r))' % (r)
# fancy printing of DifferentialExtension object
def __str__(self):
return (self.__class__.__name__ + '({fa=%s, fd=%s, D=%s})' %
(self.fa, self.fd, self.D))
# should only be used for debugging purposes, internally
# f1 = f2 = log(x) at different places in code execution
# may return D1 != D2 as True, since 'level' or other attribute
# may differ
def __eq__(self, other):
for attr in self.__class__.__slots__:
d1, d2 = getattr(self, attr), getattr(other, attr)
if not (isinstance(d1, GeneratorType) or d1 == d2):
return False
return True
def reset(self):
"""
Reset self to an initial state. Used by __init__.
"""
self.t = self.x
self.T = [self.x]
self.D = [Poly(1, self.x)]
self.level = -1
self.exts = [None]
self.extargs = [None]
if self.dummy:
self.ts = numbered_symbols('t', cls=Dummy)
else:
# For testing
self.ts = numbered_symbols('t')
# For various things that we change to make things work that we need to
# change back when we are done.
self.backsubs = []
self.Tfuncs = []
self.newf = self.f
def indices(self, extension):
"""
Parameters
==========
extension : str
Represents a valid extension type.
Returns
=======
list: A list of indices of 'exts' where extension of
type 'extension' is present.
Examples
========
>>> from sympy.integrals.risch import DifferentialExtension
>>> from sympy import log, exp
>>> from sympy.abc import x
>>> DE = DifferentialExtension(log(x) + exp(x), x, handle_first='exp')
>>> DE.indices('log')
[2]
>>> DE.indices('exp')
[1]
"""
return [i for i, ext in enumerate(self.exts) if ext == extension]
def increment_level(self):
"""
Increment the level of self.
Explanation
===========
This makes the working differential extension larger. self.level is
given relative to the end of the list (-1, -2, etc.), so we do not need
do worry about it when building the extension.
"""
if self.level >= -1:
raise ValueError("The level of the differential extension cannot "
"be incremented any further.")
self.level += 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def decrement_level(self):
"""
Decrease the level of self.
Explanation
===========
This makes the working differential extension smaller. self.level is
given relative to the end of the list (-1, -2, etc.), so we do not need
do worry about it when building the extension.
"""
if self.level <= -len(self.T):
raise ValueError("The level of the differential extension cannot "
"be decremented any further.")
self.level -= 1
self.t = self.T[self.level]
self.d = self.D[self.level]
self.case = self.cases[self.level]
return None
def update_sets(seq, atoms, func):
s = set(seq)
s = atoms.intersection(s)
new = atoms - s
s.update(list(filter(func, new)))
return list(s)
class DecrementLevel:
"""
A context manager for decrementing the level of a DifferentialExtension.
"""
__slots__ = ('DE',)
def __init__(self, DE):
self.DE = DE
return
def __enter__(self):
self.DE.decrement_level()
def __exit__(self, exc_type, exc_value, traceback):
self.DE.increment_level()
class NonElementaryIntegralException(Exception):
"""
Exception used by subroutines within the Risch algorithm to indicate to one
another that the function being integrated does not have an elementary
integral in the given differential field.
"""
# TODO: Rewrite algorithms below to use this (?)
# TODO: Pass through information about why the integral was nonelementary,
# and store that in the resulting NonElementaryIntegral somehow.
pass
def gcdex_diophantine(a, b, c):
"""
Extended Euclidean Algorithm, Diophantine version.
Explanation
===========
Given ``a``, ``b`` in K[x] and ``c`` in (a, b), the ideal generated by ``a`` and
``b``, return (s, t) such that s*a + t*b == c and either s == 0 or s.degree()
< b.degree().
"""
# Extended Euclidean Algorithm (Diophantine Version) pg. 13
# TODO: This should go in densetools.py.
# XXX: Bettter name?
s, g = a.half_gcdex(b)
s *= c.exquo(g) # Inexact division means c is not in (a, b)
if s and s.degree() >= b.degree():
_, s = s.div(b)
t = (c - s*a).exquo(b)
return (s, t)
def frac_in(f, t, *, cancel=False, **kwargs):
"""
Returns the tuple (fa, fd), where fa and fd are Polys in t.
Explanation
===========
This is a common idiom in the Risch Algorithm functions, so we abstract
it out here. ``f`` should be a basic expression, a Poly, or a tuple (fa, fd),
where fa and fd are either basic expressions or Polys, and f == fa/fd.
**kwargs are applied to Poly.
"""
if isinstance(f, tuple):
fa, fd = f
f = fa.as_expr()/fd.as_expr()
fa, fd = f.as_expr().as_numer_denom()
fa, fd = fa.as_poly(t, **kwargs), fd.as_poly(t, **kwargs)
if cancel:
fa, fd = fa.cancel(fd, include=True)
if fa is None or fd is None:
raise ValueError("Could not turn %s into a fraction in %s." % (f, t))
return (fa, fd)
def as_poly_1t(p, t, z):
"""
(Hackish) way to convert an element ``p`` of K[t, 1/t] to K[t, z].
In other words, ``z == 1/t`` will be a dummy variable that Poly can handle
better.
See issue 5131.
Examples
========
>>> from sympy import random_poly
>>> from sympy.integrals.risch import as_poly_1t
>>> from sympy.abc import x, z
>>> p1 = random_poly(x, 10, -10, 10)
>>> p2 = random_poly(x, 10, -10, 10)
>>> p = p1 + p2.subs(x, 1/x)
>>> as_poly_1t(p, x, z).as_expr().subs(z, 1/x) == p
True
"""
# TODO: Use this on the final result. That way, we can avoid answers like
# (...)*exp(-x).
pa, pd = frac_in(p, t, cancel=True)
if not pd.is_monomial:
# XXX: Is there a better Poly exception that we could raise here?
# Either way, if you see this (from the Risch Algorithm) it indicates
# a bug.
raise PolynomialError("%s is not an element of K[%s, 1/%s]." % (p, t, t))
d = pd.degree(t)
one_t_part = pa.slice(0, d + 1)
r = pd.degree() - pa.degree()
t_part = pa - one_t_part
try:
t_part = t_part.to_field().exquo(pd)
except DomainError as e:
# issue 4950
raise NotImplementedError(e)
# Compute the negative degree parts.
one_t_part = Poly.from_list(reversed(one_t_part.rep.rep), *one_t_part.gens,
domain=one_t_part.domain)
if 0 < r < oo:
one_t_part *= Poly(t**r, t)
one_t_part = one_t_part.replace(t, z) # z will be 1/t
if pd.nth(d):
one_t_part *= Poly(1/pd.nth(d), z, expand=False)
ans = t_part.as_poly(t, z, expand=False) + one_t_part.as_poly(t, z,
expand=False)
return ans
def derivation(p, DE, coefficientD=False, basic=False):
"""
Computes Dp.
Explanation
===========
Given the derivation D with D = d/dx and p is a polynomial in t over
K(x), return Dp.
If coefficientD is True, it computes the derivation kD
(kappaD), which is defined as kD(sum(ai*Xi**i, (i, 0, n))) ==
sum(Dai*Xi**i, (i, 1, n)) (Definition 3.2.2, page 80). X in this case is
T[-1], so coefficientD computes the derivative just with respect to T[:-1],
with T[-1] treated as a constant.
If ``basic=True``, the returns a Basic expression. Elements of D can still be
instances of Poly.
"""
if basic:
r = 0
else:
r = Poly(0, DE.t)
t = DE.t
if coefficientD:
if DE.level <= -len(DE.T):
# 'base' case, the answer is 0.
return r
DE.decrement_level()
D = DE.D[:len(DE.D) + DE.level + 1]
T = DE.T[:len(DE.T) + DE.level + 1]
for d, v in zip(D, T):
pv = p.as_poly(v)
if pv is None or basic:
pv = p.as_expr()
if basic:
r += d.as_expr()*pv.diff(v)
else:
r += (d.as_expr()*pv.diff(v).as_expr()).as_poly(t)
if basic:
r = cancel(r)
if coefficientD:
DE.increment_level()
return r
def get_case(d, t):
"""
Returns the type of the derivation d.
Returns one of {'exp', 'tan', 'base', 'primitive', 'other_linear',
'other_nonlinear'}.
"""
if not d.expr.has(t):
if d.is_one:
return 'base'
return 'primitive'
if d.rem(Poly(t, t)).is_zero:
return 'exp'
if d.rem(Poly(1 + t**2, t)).is_zero:
return 'tan'
if d.degree(t) > 1:
return 'other_nonlinear'
return 'other_linear'
def splitfactor(p, DE, coefficientD=False, z=None):
"""
Splitting factorization.
Explanation
===========
Given a derivation D on k[t] and ``p`` in k[t], return (p_n, p_s) in
k[t] x k[t] such that p = p_n*p_s, p_s is special, and each square
factor of p_n is normal.
Page. 100
"""
kinv = [1/x for x in DE.T[:DE.level]]
if z:
kinv.append(z)
One = Poly(1, DE.t, domain=p.get_domain())
Dp = derivation(p, DE, coefficientD=coefficientD)
# XXX: Is this right?
if p.is_zero:
return (p, One)
if not p.expr.has(DE.t):
s = p.as_poly(*kinv).gcd(Dp.as_poly(*kinv)).as_poly(DE.t)
n = p.exquo(s)
return (n, s)
if not Dp.is_zero:
h = p.gcd(Dp).to_field()
g = p.gcd(p.diff(DE.t)).to_field()
s = h.exquo(g)
if s.degree(DE.t) == 0:
return (p, One)
q_split = splitfactor(p.exquo(s), DE, coefficientD=coefficientD)
return (q_split[0], q_split[1]*s)
else:
return (p, One)
def splitfactor_sqf(p, DE, coefficientD=False, z=None, basic=False):
"""
Splitting Square-free Factorization.
Explanation
===========
Given a derivation D on k[t] and ``p`` in k[t], returns (N1, ..., Nm)
and (S1, ..., Sm) in k[t]^m such that p =
(N1*N2**2*...*Nm**m)*(S1*S2**2*...*Sm**m) is a splitting
factorization of ``p`` and the Ni and Si are square-free and coprime.
"""
# TODO: This algorithm appears to be faster in every case
# TODO: Verify this and splitfactor() for multiple extensions
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if z:
kkinv = [z]
S = []
N = []
p_sqf = p.sqf_list_include()
if p.is_zero:
return (((p, 1),), ())
for pi, i in p_sqf:
Si = pi.as_poly(*kkinv).gcd(derivation(pi, DE,
coefficientD=coefficientD,basic=basic).as_poly(*kkinv)).as_poly(DE.t)
pi = Poly(pi, DE.t)
Si = Poly(Si, DE.t)
Ni = pi.exquo(Si)
if not Si.is_one:
S.append((Si, i))
if not Ni.is_one:
N.append((Ni, i))
return (tuple(N), tuple(S))
def canonical_representation(a, d, DE):
"""
Canonical Representation.
Explanation
===========
Given a derivation D on k[t] and f = a/d in k(t), return (f_p, f_s,
f_n) in k[t] x k(t) x k(t) such that f = f_p + f_s + f_n is the
canonical representation of f (f_p is a polynomial, f_s is reduced
(has a special denominator), and f_n is simple (has a normal
denominator).
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
q, r = a.div(d)
dn, ds = splitfactor(d, DE)
b, c = gcdex_diophantine(dn.as_poly(DE.t), ds.as_poly(DE.t), r.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
return (q, (b, ds), (c, dn))
def hermite_reduce(a, d, DE):
"""
Hermite Reduction - Mack's Linear Version.
Given a derivation D on k(t) and f = a/d in k(t), returns g, h, r in
k(t) such that f = Dg + h + r, h is simple, and r is reduced.
"""
# Make d monic
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
fp, fs, fn = canonical_representation(a, d, DE)
a, d = fn
l = Poly(1/d.LC(), DE.t)
a, d = a.mul(l), d.mul(l)
ga = Poly(0, DE.t)
gd = Poly(1, DE.t)
dd = derivation(d, DE)
dm = gcd(d.to_field(), dd.to_field()).as_poly(DE.t)
ds, _ = d.div(dm)
while dm.degree(DE.t) > 0:
ddm = derivation(dm, DE)
dm2 = gcd(dm.to_field(), ddm.to_field())
dms, _ = dm.div(dm2)
ds_ddm = ds.mul(ddm)
ds_ddm_dm, _ = ds_ddm.div(dm)
b, c = gcdex_diophantine(-ds_ddm_dm.as_poly(DE.t),
dms.as_poly(DE.t), a.as_poly(DE.t))
b, c = b.as_poly(DE.t), c.as_poly(DE.t)
db = derivation(b, DE).as_poly(DE.t)
ds_dms, _ = ds.div(dms)
a = c.as_poly(DE.t) - db.mul(ds_dms).as_poly(DE.t)
ga = ga*dm + b*gd
gd = gd*dm
ga, gd = ga.cancel(gd, include=True)
dm = dm2
q, r = a.div(ds)
ga, gd = ga.cancel(gd, include=True)
r, d = r.cancel(ds, include=True)
rra = q*fs[1] + fp*fs[1] + fs[0]
rrd = fs[1]
rra, rrd = rra.cancel(rrd, include=True)
return ((ga, gd), (r, d), (rra, rrd))
def polynomial_reduce(p, DE):
"""
Polynomial Reduction.
Explanation
===========
Given a derivation D on k(t) and p in k[t] where t is a nonlinear
monomial over k, return q, r in k[t] such that p = Dq + r, and
deg(r) < deg_t(Dt).
"""
q = Poly(0, DE.t)
while p.degree(DE.t) >= DE.d.degree(DE.t):
m = p.degree(DE.t) - DE.d.degree(DE.t) + 1
q0 = Poly(DE.t**m, DE.t).mul(Poly(p.as_poly(DE.t).LC()/
(m*DE.d.LC()), DE.t))
q += q0
p = p - derivation(q0, DE)
return (q, p)
def laurent_series(a, d, F, n, DE):
"""
Contribution of ``F`` to the full partial fraction decomposition of A/D.
Explanation
===========
Given a field K of characteristic 0 and ``A``,``D``,``F`` in K[x] with D monic,
nonzero, coprime with A, and ``F`` the factor of multiplicity n in the square-
free factorization of D, return the principal parts of the Laurent series of
A/D at all the zeros of ``F``.
"""
if F.degree()==0:
return 0
Z = _symbols('z', n)
z = Symbol('z')
Z.insert(0, z)
delta_a = Poly(0, DE.t)
delta_d = Poly(1, DE.t)
E = d.quo(F**n)
ha, hd = (a, E*Poly(z**n, DE.t))
dF = derivation(F,DE)
B, _ = gcdex_diophantine(E, F, Poly(1,DE.t))
C, _ = gcdex_diophantine(dF, F, Poly(1,DE.t))
# initialization
F_store = F
V, DE_D_list, H_list= [], [], []
for j in range(0, n):
# jth derivative of z would be substituted with dfnth/(j+1) where dfnth =(d^n)f/(dx)^n
F_store = derivation(F_store, DE)
v = (F_store.as_expr())/(j + 1)
V.append(v)
DE_D_list.append(Poly(Z[j + 1],Z[j]))
DE_new = DifferentialExtension(extension = {'D': DE_D_list}) #a differential indeterminate
for j in range(0, n):
zEha = Poly(z**(n + j), DE.t)*E**(j + 1)*ha
zEhd = hd
Pa, Pd = cancel((zEha, zEhd))[1], cancel((zEha, zEhd))[2]
Q = Pa.quo(Pd)
for i in range(0, j + 1):
Q = Q.subs(Z[i], V[i])
Dha = (hd*derivation(ha, DE, basic=True).as_poly(DE.t)
+ ha*derivation(hd, DE, basic=True).as_poly(DE.t)
+ hd*derivation(ha, DE_new, basic=True).as_poly(DE.t)
+ ha*derivation(hd, DE_new, basic=True).as_poly(DE.t))
Dhd = Poly(j + 1, DE.t)*hd**2
ha, hd = Dha, Dhd
Ff, _ = F.div(gcd(F, Q))
F_stara, F_stard = frac_in(Ff, DE.t)
if F_stara.degree(DE.t) - F_stard.degree(DE.t) > 0:
QBC = Poly(Q, DE.t)*B**(1 + j)*C**(n + j)
H = QBC
H_list.append(H)
H = (QBC*F_stard).rem(F_stara)
alphas = real_roots(F_stara)
for alpha in list(alphas):
delta_a = delta_a*Poly((DE.t - alpha)**(n - j), DE.t) + Poly(H.eval(alpha), DE.t)
delta_d = delta_d*Poly((DE.t - alpha)**(n - j), DE.t)
return (delta_a, delta_d, H_list)
def recognize_derivative(a, d, DE, z=None):
"""
Compute the squarefree factorization of the denominator of f
and for each Di the polynomial H in K[x] (see Theorem 2.7.1), using the
LaurentSeries algorithm. Write Di = GiEi where Gj = gcd(Hn, Di) and
gcd(Ei,Hn) = 1. Since the residues of f at the roots of Gj are all 0, and
the residue of f at a root alpha of Ei is Hi(a) != 0, f is the derivative of a
rational function if and only if Ei = 1 for each i, which is equivalent to
Di | H[-1] for each i.
"""
flag =True
a, d = a.cancel(d, include=True)
_, r = a.div(d)
Np, Sp = splitfactor_sqf(d, DE, coefficientD=True, z=z)
j = 1
for s, _ in Sp:
delta_a, delta_d, H = laurent_series(r, d, s, j, DE)
g = gcd(d, H[-1]).as_poly()
if g is not d:
flag = False
break
j = j + 1
return flag
def recognize_log_derivative(a, d, DE, z=None):
"""
There exists a v in K(x)* such that f = dv/v
where f a rational function if and only if f can be written as f = A/D
where D is squarefree,deg(A) < deg(D), gcd(A, D) = 1,
and all the roots of the Rothstein-Trager resultant are integers. In that case,
any of the Rothstein-Trager, Lazard-Rioboo-Trager or Czichowski algorithm
produces u in K(x) such that du/dx = uf.
"""
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
_, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
r, _ = d.resultant(q, includePRS=True)
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, _ in Sp:
# TODO also consider the complex roots which should
# turn the flag false
a = real_roots(s.as_poly(z))
if not all(j.is_Integer for j in a):
return False
return True
def residue_reduce(a, d, DE, z=None, invert=True):
"""
Lazard-Rioboo-Rothstein-Trager resultant reduction.
Explanation
===========
Given a derivation ``D`` on k(t) and f in k(t) simple, return g
elementary over k(t) and a Boolean b in {True, False} such that f -
Dg in k[t] if b == True or f + h and f + h - Dg do not have an
elementary integral over k(t) for any h in k<t> (reduced) if b ==
False.
Returns (G, b), where G is a tuple of tuples of the form (s_i, S_i),
such that g = Add(*[RootSum(s_i, lambda z: z*log(S_i(z, t))) for
S_i, s_i in G]). f - Dg is the remaining integral, which is elementary
only if b == True, and hence the integral of f is elementary only if
b == True.
f - Dg is not calculated in this function because that would require
explicitly calculating the RootSum. Use residue_reduce_derivation().
"""
# TODO: Use log_to_atan() from rationaltools.py
# If r = residue_reduce(...), then the logarithmic part is given by:
# sum([RootSum(a[0].as_poly(z), lambda i: i*log(a[1].as_expr()).subs(z,
# i)).subs(t, log(x)) for a in r[0]])
z = z or Dummy('z')
a, d = a.cancel(d, include=True)
a, d = a.to_field().mul_ground(1/d.LC()), d.to_field().mul_ground(1/d.LC())
kkinv = [1/x for x in DE.T[:DE.level]] + DE.T[:DE.level]
if a.is_zero:
return ([], True)
_, a = a.div(d)
pz = Poly(z, DE.t)
Dd = derivation(d, DE)
q = a - pz*Dd
if Dd.degree(DE.t) <= d.degree(DE.t):
r, R = d.resultant(q, includePRS=True)
else:
r, R = q.resultant(d, includePRS=True)
R_map, H = {}, []
for i in R:
R_map[i.degree()] = i
r = Poly(r, z)
Np, Sp = splitfactor_sqf(r, DE, coefficientD=True, z=z)
for s, i in Sp:
if i == d.degree(DE.t):
s = Poly(s, z).monic()
H.append((s, d))
else:
h = R_map.get(i)
if h is None:
continue
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True)
h_lc_sqf = h_lc.sqf_list_include(all=True)
for a, j in h_lc_sqf:
h = Poly(h, DE.t, field=True).exquo(Poly(gcd(a, s**j, *kkinv),
DE.t))
s = Poly(s, z).monic()
if invert:
h_lc = Poly(h.as_poly(DE.t).LC(), DE.t, field=True, expand=False)
inv, coeffs = h_lc.as_poly(z, field=True).invert(s), [S.One]
for coeff in h.coeffs()[1:]:
L = reduced(inv*coeff.as_poly(inv.gens), [s])[1]
coeffs.append(L.as_expr())
h = Poly(dict(list(zip(h.monoms(), coeffs))), DE.t)
H.append((s, h))
b = not any(cancel(i.as_expr()).has(DE.t, z) for i, _ in Np)
return (H, b)
def residue_reduce_to_basic(H, DE, z):
"""
Converts the tuple returned by residue_reduce() into a Basic expression.
"""
# TODO: check what Lambda does with RootOf
i = Dummy('i')
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
return sum(RootSum(a[0].as_poly(z), Lambda(i, i*log(a[1].as_expr()).subs(
{z: i}).subs(s))) for a in H)
def residue_reduce_derivation(H, DE, z):
"""
Computes the derivation of an expression returned by residue_reduce().
In general, this is a rational function in t, so this returns an
as_expr() result.
"""
# TODO: verify that this is correct for multiple extensions
i = Dummy('i')
return S(sum(RootSum(a[0].as_poly(z), Lambda(i, i*derivation(a[1],
DE).as_expr().subs(z, i)/a[1].as_expr().subs(z, i))) for a in H))
def integrate_primitive_polynomial(p, DE):
"""
Integration of primitive polynomials.
Explanation
===========
Given a primitive monomial t over k, and ``p`` in k[t], return q in k[t],
r in k, and a bool b in {True, False} such that r = p - Dq is in k if b is
True, or r = p - Dq does not have an elementary integral over k(t) if b is
False.
"""
Zero = Poly(0, DE.t)
q = Poly(0, DE.t)
if not p.expr.has(DE.t):
return (Zero, p, True)
from .prde import limited_integrate
while True:
if not p.expr.has(DE.t):
return (q, p, True)
Dta, Dtb = frac_in(DE.d, DE.T[DE.level - 1])
with DecrementLevel(DE): # We had better be integrating the lowest extension (x)
# with ratint().
a = p.LC()
aa, ad = frac_in(a, DE.t)
try:
rv = limited_integrate(aa, ad, [(Dta, Dtb)], DE)
if rv is None:
raise NonElementaryIntegralException
(ba, bd), c = rv
except NonElementaryIntegralException:
return (q, p, False)
m = p.degree(DE.t)
q0 = c[0].as_poly(DE.t)*Poly(DE.t**(m + 1)/(m + 1), DE.t) + \
(ba.as_expr()/bd.as_expr()).as_poly(DE.t)*Poly(DE.t**m, DE.t)
p = p - derivation(q0, DE)
q = q + q0
def integrate_primitive(a, d, DE, z=None):
"""
Integration of primitive functions.
Explanation
===========
Given a primitive monomial t over k and f in k(t), return g elementary over
k(t), i in k(t), and b in {True, False} such that i = f - Dg is in k if b
is True or i = f - Dg does not have an elementary integral over k(t) if b
is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
p = p.as_poly(DE.t)
q, i, b = integrate_primitive_polynomial(p, DE)
ret = ((g1[0].as_expr()/g1[1].as_expr() + q.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
if not b:
# TODO: This does not do the right thing when b is False
i = NonElementaryIntegral(cancel(i.as_expr()).subs(s), DE.x)
else:
i = cancel(i.as_expr())
return (ret, i, b)
def integrate_hyperexponential_polynomial(p, DE, z):
"""
Integration of hyperexponential polynomials.
Explanation
===========
Given a hyperexponential monomial t over k and ``p`` in k[t, 1/t], return q in
k[t, 1/t] and a bool b in {True, False} such that p - Dq in k if b is True,
or p - Dq does not have an elementary integral over k(t) if b is False.
"""
t1 = DE.t
dtt = DE.d.exquo(Poly(DE.t, DE.t))
qa = Poly(0, DE.t)
qd = Poly(1, DE.t)
b = True
if p.is_zero:
return(qa, qd, b)
from sympy.integrals.rde import rischDE
with DecrementLevel(DE):
for i in range(-p.degree(z), p.degree(t1) + 1):
if not i:
continue
elif i < 0:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
# But it shouldn't happen because p is already a Poly in t and z
a = p.as_poly(z, expand=False).nth(-i)
else:
# If you get AttributeError: 'NoneType' object has no attribute 'nth'
# then this should really not have expand=False
a = p.as_poly(t1, expand=False).nth(i)
aa, ad = frac_in(a, DE.t, field=True)
aa, ad = aa.cancel(ad, include=True)
iDt = Poly(i, t1)*dtt
iDta, iDtd = frac_in(iDt, DE.t, field=True)
try:
va, vd = rischDE(iDta, iDtd, Poly(aa, DE.t), Poly(ad, DE.t), DE)
va, vd = frac_in((va, vd), t1, cancel=True)
except NonElementaryIntegralException:
b = False
else:
qa = qa*vd + va*Poly(t1**i)*qd
qd *= vd
return (qa, qd, b)
def integrate_hyperexponential(a, d, DE, z=None, conds='piecewise'):
"""
Integration of hyperexponential functions.
Explanation
===========
Given a hyperexponential monomial t over k and f in k(t), return g
elementary over k(t), i in k(t), and a bool b in {True, False} such that
i = f - Dg is in k if b is True or i = f - Dg does not have an elementary
integral over k(t) if b is False.
This function returns a Basic expression for the first argument. If b is
True, the second argument is Basic expression in k to recursively integrate.
If b is False, the second argument is an unevaluated Integral, which has
been proven to be nonelementary.
"""
# XXX: a and d must be canceled, or this might return incorrect results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
i = cancel(a.as_expr()/d.as_expr() - (g1[1]*derivation(g1[0], DE) -
g1[0]*derivation(g1[1], DE)).as_expr()/(g1[1]**2).as_expr() -
residue_reduce_derivation(g2, DE, z))
i = NonElementaryIntegral(cancel(i.subs(s)), DE.x)
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), i, b)
# p should be a polynomial in t and 1/t, because Sirr == k[t, 1/t]
# h - Dg2 + r
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z) + r[0].as_expr()/r[1].as_expr())
pp = as_poly_1t(p, DE.t, z)
qa, qd, b = integrate_hyperexponential_polynomial(pp, DE, z)
i = pp.nth(0, 0)
ret = ((g1[0].as_expr()/g1[1].as_expr()).subs(s) \
+ residue_reduce_to_basic(g2, DE, z))
qas = qa.as_expr().subs(s)
qds = qd.as_expr().subs(s)
if conds == 'piecewise' and DE.x not in qds.free_symbols:
# We have to be careful if the exponent is S.Zero!
# XXX: Does qd = 0 always necessarily correspond to the exponential
# equaling 1?
ret += Piecewise(
(qas/qds, Ne(qds, 0)),
(integrate((p - i).subs(DE.t, 1).subs(s), DE.x), True)
)
else:
ret += qas/qds
if not b:
i = p - (qd*derivation(qa, DE) - qa*derivation(qd, DE)).as_expr()/\
(qd**2).as_expr()
i = NonElementaryIntegral(cancel(i).subs(s), DE.x)
return (ret, i, b)
def integrate_hypertangent_polynomial(p, DE):
"""
Integration of hypertangent polynomials.
Explanation
===========
Given a differential field k such that sqrt(-1) is not in k, a
hypertangent monomial t over k, and p in k[t], return q in k[t] and
c in k such that p - Dq - c*D(t**2 + 1)/(t**1 + 1) is in k and p -
Dq does not have an elementary integral over k(t) if Dc != 0.
"""
# XXX: Make sure that sqrt(-1) is not in k.
q, r = polynomial_reduce(p, DE)
a = DE.d.exquo(Poly(DE.t**2 + 1, DE.t))
c = Poly(r.nth(1)/(2*a.as_expr()), DE.t)
return (q, c)
def integrate_nonlinear_no_specials(a, d, DE, z=None):
"""
Integration of nonlinear monomials with no specials.
Explanation
===========
Given a nonlinear monomial t over k such that Sirr ({p in k[t] | p is
special, monic, and irreducible}) is empty, and f in k(t), returns g
elementary over k(t) and a Boolean b in {True, False} such that f - Dg is
in k if b == True, or f - Dg does not have an elementary integral over k(t)
if b == False.
This function is applicable to all nonlinear extensions, but in the case
where it returns b == False, it will only have proven that the integral of
f - Dg is nonelementary if Sirr is empty.
This function returns a Basic expression.
"""
# TODO: Integral from k?
# TODO: split out nonelementary integral
# XXX: a and d must be canceled, or this might not return correct results
z = z or Dummy("z")
s = list(zip(reversed(DE.T), reversed([f(DE.x) for f in DE.Tfuncs])))
g1, h, r = hermite_reduce(a, d, DE)
g2, b = residue_reduce(h[0], h[1], DE, z=z)
if not b:
return ((g1[0].as_expr()/g1[1].as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z), b)
# Because f has no specials, this should be a polynomial in t, or else
# there is a bug.
p = cancel(h[0].as_expr()/h[1].as_expr() - residue_reduce_derivation(g2,
DE, z).as_expr() + r[0].as_expr()/r[1].as_expr()).as_poly(DE.t)
q1, q2 = polynomial_reduce(p, DE)
if q2.expr.has(DE.t):
b = False
else:
b = True
ret = (cancel(g1[0].as_expr()/g1[1].as_expr() + q1.as_expr()).subs(s) +
residue_reduce_to_basic(g2, DE, z))
return (ret, b)
class NonElementaryIntegral(Integral):
"""
Represents a nonelementary Integral.
Explanation
===========
If the result of integrate() is an instance of this class, it is
guaranteed to be nonelementary. Note that integrate() by default will try
to find any closed-form solution, even in terms of special functions which
may themselves not be elementary. To make integrate() only give
elementary solutions, or, in the cases where it can prove the integral to
be nonelementary, instances of this class, use integrate(risch=True).
In this case, integrate() may raise NotImplementedError if it cannot make
such a determination.
integrate() uses the deterministic Risch algorithm to integrate elementary
functions or prove that they have no elementary integral. In some cases,
this algorithm can split an integral into an elementary and nonelementary
part, so that the result of integrate will be the sum of an elementary
expression and a NonElementaryIntegral.
Examples
========
>>> from sympy import integrate, exp, log, Integral
>>> from sympy.abc import x
>>> a = integrate(exp(-x**2), x, risch=True)
>>> print(a)
Integral(exp(-x**2), x)
>>> type(a)
<class 'sympy.integrals.risch.NonElementaryIntegral'>
>>> expr = (2*log(x)**2 - log(x) - x**2)/(log(x)**3 - x**2*log(x))
>>> b = integrate(expr, x, risch=True)
>>> print(b)
-log(-x + log(x))/2 + log(x + log(x))/2 + Integral(1/log(x), x)
>>> type(b.atoms(Integral).pop())
<class 'sympy.integrals.risch.NonElementaryIntegral'>
"""
# TODO: This is useful in and of itself, because isinstance(result,
# NonElementaryIntegral) will tell if the integral has been proven to be
# elementary. But should we do more? Perhaps a no-op .doit() if
# elementary=True? Or maybe some information on why the integral is
# nonelementary.
pass
def risch_integrate(f, x, extension=None, handle_first='log',
separate_integral=False, rewrite_complex=None,
conds='piecewise'):
r"""
The Risch Integration Algorithm.
Explanation
===========
Only transcendental functions are supported. Currently, only exponentials
and logarithms are supported, but support for trigonometric functions is
forthcoming.
If this function returns an unevaluated Integral in the result, it means
that it has proven that integral to be nonelementary. Any errors will
result in raising NotImplementedError. The unevaluated Integral will be
an instance of NonElementaryIntegral, a subclass of Integral.
handle_first may be either 'exp' or 'log'. This changes the order in
which the extension is built, and may result in a different (but
equivalent) solution (for an example of this, see issue 5109). It is also
possible that the integral may be computed with one but not the other,
because not all cases have been implemented yet. It defaults to 'log' so
that the outer extension is exponential when possible, because more of the
exponential case has been implemented.
If ``separate_integral`` is ``True``, the result is returned as a tuple (ans, i),
where the integral is ans + i, ans is elementary, and i is either a
NonElementaryIntegral or 0. This useful if you want to try further
integrating the NonElementaryIntegral part using other algorithms to
possibly get a solution in terms of special functions. It is False by
default.
Examples
========
>>> from sympy.integrals.risch import risch_integrate
>>> from sympy import exp, log, pprint
>>> from sympy.abc import x
First, we try integrating exp(-x**2). Except for a constant factor of
2/sqrt(pi), this is the famous error function.
>>> pprint(risch_integrate(exp(-x**2), x))
/
|
| 2
| -x
| e dx
|
/
The unevaluated Integral in the result means that risch_integrate() has
proven that exp(-x**2) does not have an elementary anti-derivative.
In many cases, risch_integrate() can split out the elementary
anti-derivative part from the nonelementary anti-derivative part.
For example,
>>> pprint(risch_integrate((2*log(x)**2 - log(x) - x**2)/(log(x)**3 -
... x**2*log(x)), x))
/
|
log(-x + log(x)) log(x + log(x)) | 1
- ---------------- + --------------- + | ------ dx
2 2 | log(x)
|
/
This means that it has proven that the integral of 1/log(x) is
nonelementary. This function is also known as the logarithmic integral,
and is often denoted as Li(x).
risch_integrate() currently only accepts purely transcendental functions
with exponentials and logarithms, though note that this can include
nested exponentials and logarithms, as well as exponentials with bases
other than E.
>>> pprint(risch_integrate(exp(x)*exp(exp(x)), x))
/ x\
\e /
e
>>> pprint(risch_integrate(exp(exp(x)), x))
/
|
| / x\
| \e /
| e dx
|
/
>>> pprint(risch_integrate(x*x**x*log(x) + x**x + x*x**x, x))
x
x*x
>>> pprint(risch_integrate(x**x, x))
/
|
| x
| x dx
|
/
>>> pprint(risch_integrate(-1/(x*log(x)*log(log(x))**2), x))
1
-----------
log(log(x))
"""
f = S(f)
DE = extension or DifferentialExtension(f, x, handle_first=handle_first,
dummy=True, rewrite_complex=rewrite_complex)
fa, fd = DE.fa, DE.fd
result = S.Zero
for case in reversed(DE.cases):
if not fa.expr.has(DE.t) and not fd.expr.has(DE.t) and not case == 'base':
DE.decrement_level()
fa, fd = frac_in((fa, fd), DE.t)
continue
fa, fd = fa.cancel(fd, include=True)
if case == 'exp':
ans, i, b = integrate_hyperexponential(fa, fd, DE, conds=conds)
elif case == 'primitive':
ans, i, b = integrate_primitive(fa, fd, DE)
elif case == 'base':
# XXX: We can't call ratint() directly here because it doesn't
# handle polynomials correctly.
ans = integrate(fa.as_expr()/fd.as_expr(), DE.x, risch=False)
b = False
i = S.Zero
else:
raise NotImplementedError("Only exponential and logarithmic "
"extensions are currently supported.")
result += ans
if b:
DE.decrement_level()
fa, fd = frac_in(i, DE.t)
else:
result = result.subs(DE.backsubs)
if not i.is_zero:
i = NonElementaryIntegral(i.function.subs(DE.backsubs),i.limits)
if not separate_integral:
result += i
return result
else:
if isinstance(i, NonElementaryIntegral):
return (result, i)
else:
return (result, 0)
|
ca3321e84065fe9f5c507251bfea9b897074e94c30030cacff8e092ad86da4a1 | """
Algorithms for solving Parametric Risch Differential Equations.
The methods used for solving Parametric Risch Differential Equations parallel
those for solving Risch Differential Equations. See the outline in the
docstring of rde.py for more information.
The Parametric Risch Differential Equation problem is, given f, g1, ..., gm in
K(t), to determine if there exist y in K(t) and c1, ..., cm in Const(K) such
that Dy + f*y == Sum(ci*gi, (i, 1, m)), and to find such y and ci if they exist.
For the algorithms here G is a list of tuples of factions of the terms on the
right hand side of the equation (i.e., gi in k(t)), and Q is a list of terms on
the right hand side of the equation (i.e., qi in k[t]). See the docstring of
each function for more information.
"""
import itertools
from functools import reduce
from sympy.core import Dummy, ilcm, Add, Mul, Pow, S
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
residue_reduce, splitfactor, residue_reduce_derivation, DecrementLevel,
recognize_log_derivative)
from sympy.polys import Poly, lcm, cancel, sqf_list
from sympy.polys.polymatrix import PolyMatrix as Matrix
from sympy.solvers import solve
zeros = Matrix.zeros
eye = Matrix.eye
def prde_normal_denom(fa, fd, G, DE):
"""
Parametric Risch Differential Equation - Normal part of the denominator.
Explanation
===========
Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly
normalized with respect to t, return the tuple (a, b, G, h) such that
a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution
c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)),
q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)).
"""
dn, ds = splitfactor(fd, DE)
Gas, Gds = list(zip(*G))
gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t))
en, es = splitfactor(gd, DE)
p = dn.gcd(en)
h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))
a = dn*h
c = a*h
ba = a*fa - dn*derivation(h, DE)*fd
ba, bd = ba.cancel(fd, include=True)
G = [(c*A).cancel(D, include=True) for A, D in G]
return (a, (ba, bd), G, h)
def real_imag(ba, bd, gen):
"""
Helper function, to get the real and imaginary part of a rational function
evaluated at sqrt(-1) without actually evaluating it at sqrt(-1).
Explanation
===========
Separates the even and odd power terms by checking the degree of terms wrt
mod 4. Returns a tuple (ba[0], ba[1], bd) where ba[0] is real part
of the numerator ba[1] is the imaginary part and bd is the denominator
of the rational function.
"""
bd = bd.as_poly(gen).as_dict()
ba = ba.as_poly(gen).as_dict()
denom_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in bd.items()]
denom_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in bd.items()]
bd_real = sum(r for r in denom_real)
bd_imag = sum(r for r in denom_imag)
num_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in ba.items()]
num_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in ba.items()]
ba_real = sum(r for r in num_real)
ba_imag = sum(r for r in num_imag)
ba = ((ba_real*bd_real + ba_imag*bd_imag).as_poly(gen), (ba_imag*bd_real - ba_real*bd_imag).as_poly(gen))
bd = (bd_real*bd_real + bd_imag*bd_imag).as_poly(gen)
return (ba[0], ba[1], bd)
def prde_special_denom(a, ba, bd, G, DE, case='auto'):
"""
Parametric Risch Differential Equation - Special part of the denominator.
Explanation
===========
Case is one of {'exp', 'tan', 'primitive'} for the hyperexponential,
hypertangent, and primitive cases, respectively. For the hyperexponential
(resp. hypertangent) case, given a derivation D on k[t] and a in k[t],
b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in
k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in
k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in
Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in
k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)).
For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this
case.
"""
# TODO: Merge this with the very similar special_denom() in rde.py
if case == 'auto':
case = DE.case
if case == 'exp':
p = Poly(DE.t, DE.t)
elif case == 'tan':
p = Poly(DE.t**2 + 1, DE.t)
elif case in ('primitive', 'base'):
B = ba.quo(bd)
return (a, B, G, Poly(1, DE.t))
else:
raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
"'base'}, not %s." % case)
nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])
n = min(0, nc - min(0, nb))
if not nb:
# Possible cancellation.
if case == 'exp':
dcoeff = DE.d.quo(Poly(DE.t, DE.t))
with DecrementLevel(DE): # We are guaranteed to not have problems,
# because case != 'base'.
alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
etaa, etad = frac_in(dcoeff, DE.t)
A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
if A is not None:
Q, m, z = A
if Q == 1:
n = min(n, m)
elif case == 'tan':
dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t))
with DecrementLevel(DE): # We are guaranteed to not have problems,
# because case != 'base'.
betaa, alphaa, alphad = real_imag(ba, bd*a, DE.t)
betad = alphad
etaa, etad = frac_in(dcoeff, DE.t)
if recognize_log_derivative(Poly(2, DE.t)*betaa, betad, DE):
A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
B = parametric_log_deriv(betaa, betad, etaa, etad, DE)
if A is not None and B is not None:
Q, s, z = A
# TODO: Add test
if Q == 1:
n = min(n, s/2)
N = max(0, -nb)
pN = p**N
pn = p**-n # This is 1/h
A = a*pN
B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G]
h = pn
# (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n)
return (A, B, G, h)
def prde_linear_constraints(a, b, G, DE):
"""
Parametric Risch Differential Equation - Generate linear constraints on the constants.
Explanation
===========
Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and
G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a
matrix M with entries in k(t) such that for any solution c1, ..., cm in
Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)),
(c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy
a*Dp + b*p == Sum(ci*qi, (i, 1, m)).
Because M has entries in k(t), and because Matrix does not play well with
Poly, M will be a Matrix of Basic expressions.
"""
m = len(G)
Gns, Gds = list(zip(*G))
d = reduce(lambda i, j: i.lcm(j), Gds)
d = Poly(d, field=True)
Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G]
if not all(ri.is_zero for _, ri in Q):
N = max(ri.degree(DE.t) for _, ri in Q)
M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i), DE.t)
else:
M = Matrix(0, m, [], DE.t) # No constraints, return the empty matrix.
qs, _ = list(zip(*Q))
return (qs, M)
def poly_linear_constraints(p, d):
"""
Given p = [p1, ..., pm] in k[t]^m and d in k[t], return
q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k such
that Sum(ci*pi, (i, 1, m)), for c1, ..., cm in k, is divisible
by d if and only if (c1, ..., cm) is a solution of Mx = 0, in
which case the quotient is Sum(ci*qi, (i, 1, m)).
"""
m = len(p)
q, r = zip(*[pi.div(d) for pi in p])
if not all(ri.is_zero for ri in r):
n = max(ri.degree() for ri in r)
M = Matrix(n + 1, m, lambda i, j: r[j].nth(i), d.gens)
else:
M = Matrix(0, m, [], d.gens) # No constraints.
return q, M
def constant_system(A, u, DE):
"""
Generate a system for the constant solutions.
Explanation
===========
Given a differential field (K, D) with constant field C = Const(K), a Matrix
A, and a vector (Matrix) u with coefficients in K, returns the tuple
(B, v, s), where B is a Matrix with coefficients in C and v is a vector
(Matrix) such that either v has coefficients in C, in which case s is True
and the solutions in C of Ax == u are exactly all the solutions of Bx == v,
or v has a non-constant coefficient, in which case s is False Ax == u has no
constant solution.
This algorithm is used both in solving parametric problems and in
determining if an element a of K is a derivative of an element of K or the
logarithmic derivative of a K-radical using the structure theorem approach.
Because Poly does not play well with Matrix yet, this algorithm assumes that
all matrix entries are Basic expressions.
"""
if not A:
return A, u
Au = A.row_join(u)
Au, _ = Au.rref()
# Warning: This will NOT return correct results if cancel() cannot reduce
# an identically zero expression to 0. The danger is that we might
# incorrectly prove that an integral is nonelementary (such as
# risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x).
# But this is a limitation in computer algebra in general, and implicit
# in the correctness of the Risch Algorithm is the computability of the
# constant field (actually, this same correctness problem exists in any
# algorithm that uses rref()).
#
# We therefore limit ourselves to constant fields that are computable
# via the cancel() function, in order to prevent a speed bottleneck from
# calling some more complex simplification function (rational function
# coefficients will fall into this class). Furthermore, (I believe) this
# problem will only crop up if the integral explicitly contains an
# expression in the constant field that is identically zero, but cannot
# be reduced to such by cancel(). Therefore, a careful user can avoid this
# problem entirely by being careful with the sorts of expressions that
# appear in his integrand in the variables other than the integration
# variable (the structure theorems should be able to completely decide these
# problems in the integration variable).
A, u = Au[:, :-1], Au[:, -1]
D = lambda x: derivation(x, DE, basic=True)
for j, i in itertools.product(range(A.cols), range(A.rows)):
if A[i, j].expr.has(*DE.T):
# This assumes that const(F(t0, ..., tn) == const(K) == F
Ri = A[i, :]
# Rm+1; m = A.rows
DAij = D(A[i, j])
Rm1 = Ri.applyfunc(lambda x: D(x) / DAij)
um1 = D(u[i]) / DAij
Aj = A[:, j]
A = A - Aj * Rm1
u = u - Aj * um1
A = A.col_join(Rm1)
u = u.col_join(Matrix([um1], u.gens))
return (A, u)
def prde_spde(a, b, Q, n, DE):
"""
Special Polynomial Differential Equation algorithm: Parametric Version.
Explanation
===========
Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t]
with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with
Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution
c1, ..., cm in Const(k) and q in k[t] of degree at most n of
a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has
degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m))
"""
R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q]))
A = a
B = b + derivation(a, DE)
Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)]
R = list(R)
n1 = n - a.degree(DE.t)
return (A, B, Qq, R, n1)
def prde_no_cancel_b_large(b, Q, n, DE):
"""
Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough.
Explanation
===========
Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns
h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
Dq + b*q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where
d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
"""
db = b.degree(DE.t)
m = len(Q)
H = [Poly(0, DE.t)]*m
for N, i in itertools.product(range(n, -1, -1), range(m)): # [n, ..., 0]
si = Q[i].nth(N + db)/b.LC()
sitn = Poly(si*DE.t**N, DE.t)
H[i] = H[i] + sitn
Q[i] = Q[i] - derivation(sitn, DE) - b*sitn
if all(qi.is_zero for qi in Q):
dc = -1
M = zeros(0, 2, DE.t)
else:
dc = max([qi.degree(DE.t) for qi in Q])
M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t)
A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE)
c = eye(m, DE.t)
A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c))
return (H, A)
def prde_no_cancel_b_small(b, Q, n, DE):
"""
Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough.
Explanation
===========
Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns
h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where
d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
"""
m = len(Q)
H = [Poly(0, DE.t)]*m
for N, i in itertools.product(range(n, 0, -1), range(m)): # [n, ..., 1]
si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC())
sitn = Poly(si*DE.t**N, DE.t)
H[i] = H[i] + sitn
Q[i] = Q[i] - derivation(sitn, DE) - b*sitn
if b.degree(DE.t) > 0:
for i in range(m):
si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t)
H[i] = H[i] + si
Q[i] = Q[i] - derivation(si, DE) - b*si
if all(qi.is_zero for qi in Q):
dc = -1
M = Matrix()
else:
dc = max([qi.degree(DE.t) for qi in Q])
M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t)
A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE)
c = eye(m, DE.t)
A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c))
return (H, A)
# else: b is in k, deg(qi) < deg(Dt)
t = DE.t
if DE.case != 'base':
with DecrementLevel(DE):
t0 = DE.t # k = k0(t0)
ba, bd = frac_in(b, t0, field=True)
Q0 = [frac_in(qi.TC(), t0, field=True) for qi in Q]
f, B = param_rischDE(ba, bd, Q0, DE)
# f = [f1, ..., fr] in k^r and B is a matrix with
# m + r columns and entries in Const(k) = Const(k0)
# such that Dy0 + b*y0 = Sum(ci*qi, (i, 1, m)) has
# a solution y0 in k with c1, ..., cm in Const(k)
# if and only y0 = Sum(dj*fj, (j, 1, r)) where
# d1, ..., dr ar in Const(k) and
# B*Matrix([c1, ..., cm, d1, ..., dr]) == 0.
# Transform fractions (fa, fd) in f into constant
# polynomials fa/fd in k[t].
# (Is there a better way?)
f = [Poly(fa.as_expr()/fd.as_expr(), t, field=True)
for fa, fd in f]
B = Matrix.from_Matrix(B.to_Matrix(), t)
else:
# Base case. Dy == 0 for all y in k and b == 0.
# Dy + b*y = Sum(ci*qi) is solvable if and only if
# Sum(ci*qi) == 0 in which case the solutions are
# y = d1*f1 for f1 = 1 and any d1 in Const(k) = k.
f = [Poly(1, t, field=True)] # r = 1
B = Matrix([[qi.TC() for qi in Q] + [S.Zero]], DE.t)
# The condition for solvability is
# B*Matrix([c1, ..., cm, d1]) == 0
# There are no constraints on d1.
# Coefficients of t^j (j > 0) in Sum(ci*qi) must be zero.
d = max([qi.degree(DE.t) for qi in Q])
if d > 0:
M = Matrix(d, m, lambda i, j: Q[j].nth(i + 1), DE.t)
A, _ = constant_system(M, zeros(d, 1, DE.t), DE)
else:
# No constraints on the hj.
A = Matrix(0, m, [], DE.t)
# Solutions of the original equation are
# y = Sum(dj*fj, (j, 1, r) + Sum(ei*hi, (i, 1, m)),
# where ei == ci (i = 1, ..., m), when
# A*Matrix([c1, ..., cm]) == 0 and
# B*Matrix([c1, ..., cm, d1, ..., dr]) == 0
# Build combined constraint matrix with m + r + m columns.
r = len(f)
I = eye(m, DE.t)
A = A.row_join(zeros(A.rows, r + m, DE.t))
B = B.row_join(zeros(B.rows, m, DE.t))
C = I.row_join(zeros(m, r, DE.t)).row_join(-I)
return f + H, A.col_join(B).col_join(C)
def prde_cancel_liouvillian(b, Q, n, DE):
"""
Pg, 237.
"""
H = []
# Why use DecrementLevel? Below line answers that:
# Assuming that we can solve such problems over 'k' (not k[t])
if DE.case == 'primitive':
with DecrementLevel(DE):
ba, bd = frac_in(b, DE.t, field=True)
for i in range(n, -1, -1):
if DE.case == 'exp': # this re-checking can be avoided
with DecrementLevel(DE):
ba, bd = frac_in(b + (i*(derivation(DE.t, DE)/DE.t)).as_poly(b.gens),
DE.t, field=True)
with DecrementLevel(DE):
Qy = [frac_in(q.nth(i), DE.t, field=True) for q in Q]
fi, Ai = param_rischDE(ba, bd, Qy, DE)
fi = [Poly(fa.as_expr()/fd.as_expr(), DE.t, field=True)
for fa, fd in fi]
Ai = Ai.set_gens(DE.t)
ri = len(fi)
if i == n:
M = Ai
else:
M = Ai.col_join(M.row_join(zeros(M.rows, ri, DE.t)))
Fi, hi = [None]*ri, [None]*ri
# from eq. on top of p.238 (unnumbered)
for j in range(ri):
hji = fi[j] * (DE.t**i).as_poly(fi[j].gens)
hi[j] = hji
# building up Sum(djn*(D(fjn*t^n) - b*fjnt^n))
Fi[j] = -(derivation(hji, DE) - b*hji)
H += hi
# in the next loop instead of Q it has
# to be Q + Fi taking its place
Q = Q + Fi
return (H, M)
def param_poly_rischDE(a, b, q, n, DE):
"""Polynomial solutions of a parametric Risch differential equation.
Explanation
===========
Given a derivation D in k[t], a, b in k[t] relatively prime, and q
= [q1, ..., qm] in k[t]^m, return h = [h1, ..., hr] in k[t]^r and
a matrix A with m + r columns and entries in Const(k) such that
a*Dp + b*p = Sum(ci*qi, (i, 1, m)) has a solution p of degree <= n
in k[t] with c1, ..., cm in Const(k) if and only if p = Sum(dj*hj,
(j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm,
d1, ..., dr) is a solution of Ax == 0.
"""
m = len(q)
if n < 0:
# Only the trivial zero solution is possible.
# Find relations between the qi.
if all(qi.is_zero for qi in q):
return [], zeros(1, m, DE.t) # No constraints.
N = max([qi.degree(DE.t) for qi in q])
M = Matrix(N + 1, m, lambda i, j: q[j].nth(i), DE.t)
A, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE)
return [], A
if a.is_ground:
# Normalization: a = 1.
a = a.LC()
b, q = b.quo_ground(a), [qi.quo_ground(a) for qi in q]
if not b.is_zero and (DE.case == 'base' or
b.degree() > max(0, DE.d.degree() - 1)):
return prde_no_cancel_b_large(b, q, n, DE)
elif ((b.is_zero or b.degree() < DE.d.degree() - 1)
and (DE.case == 'base' or DE.d.degree() >= 2)):
return prde_no_cancel_b_small(b, q, n, DE)
elif (DE.d.degree() >= 2 and
b.degree() == DE.d.degree() - 1 and
n > -b.as_poly().LC()/DE.d.as_poly().LC()):
raise NotImplementedError("prde_no_cancel_b_equal() is "
"not yet implemented.")
else:
# Liouvillian cases
if DE.case in ('primitive', 'exp'):
return prde_cancel_liouvillian(b, q, n, DE)
else:
raise NotImplementedError("non-linear and hypertangent "
"cases have not yet been implemented")
# else: deg(a) > 0
# Iterate SPDE as long as possible cumulating coefficient
# and terms for the recovery of original solutions.
alpha, beta = a.one, [a.zero]*m
while n >= 0: # and a, b relatively prime
a, b, q, r, n = prde_spde(a, b, q, n, DE)
beta = [betai + alpha*ri for betai, ri in zip(beta, r)]
alpha *= a
# Solutions p of a*Dp + b*p = Sum(ci*qi) correspond to
# solutions alpha*p + Sum(ci*betai) of the initial equation.
d = a.gcd(b)
if not d.is_ground:
break
# a*Dp + b*p = Sum(ci*qi) may have a polynomial solution
# only if the sum is divisible by d.
qq, M = poly_linear_constraints(q, d)
# qq = [qq1, ..., qqm] where qqi = qi.quo(d).
# M is a matrix with m columns an entries in k.
# Sum(fi*qi, (i, 1, m)), where f1, ..., fm are elements of k, is
# divisible by d if and only if M*Matrix([f1, ..., fm]) == 0,
# in which case the quotient is Sum(fi*qqi).
A, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE)
# A is a matrix with m columns and entries in Const(k).
# Sum(ci*qqi) is Sum(ci*qi).quo(d), and the remainder is zero
# for c1, ..., cm in Const(k) if and only if
# A*Matrix([c1, ...,cm]) == 0.
V = A.nullspace()
# V = [v1, ..., vu] where each vj is a column matrix with
# entries aj1, ..., ajm in Const(k).
# Sum(aji*qi) is divisible by d with exact quotient Sum(aji*qqi).
# Sum(ci*qi) is divisible by d if and only if ci = Sum(dj*aji)
# (i = 1, ..., m) for some d1, ..., du in Const(k).
# In that case, solutions of
# a*Dp + b*p = Sum(ci*qi) = Sum(dj*Sum(aji*qi))
# are the same as those of
# (a/d)*Dp + (b/d)*p = Sum(dj*rj)
# where rj = Sum(aji*qqi).
if not V: # No non-trivial solution.
return [], eye(m, DE.t) # Could return A, but this has
# the minimum number of rows.
Mqq = Matrix([qq]) # A single row.
r = [(Mqq*vj)[0] for vj in V] # [r1, ..., ru]
# Solutions of (a/d)*Dp + (b/d)*p = Sum(dj*rj) correspond to
# solutions alpha*p + Sum(Sum(dj*aji)*betai) of the initial
# equation. These are equal to alpha*p + Sum(dj*fj) where
# fj = Sum(aji*betai).
Mbeta = Matrix([beta])
f = [(Mbeta*vj)[0] for vj in V] # [f1, ..., fu]
#
# Solve the reduced equation recursively.
#
g, B = param_poly_rischDE(a.quo(d), b.quo(d), r, n, DE)
# g = [g1, ..., gv] in k[t]^v and and B is a matrix with u + v
# columns and entries in Const(k) such that
# (a/d)*Dp + (b/d)*p = Sum(dj*rj) has a solution p of degree <= n
# in k[t] if and only if p = Sum(ek*gk) where e1, ..., ev are in
# Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0.
# The solutions of the original equation are then
# Sum(dj*fj, (j, 1, u)) + alpha*Sum(ek*gk, (k, 1, v)).
# Collect solution components.
h = f + [alpha*gk for gk in g]
# Build combined relation matrix.
A = -eye(m, DE.t)
for vj in V:
A = A.row_join(vj)
A = A.row_join(zeros(m, len(g), DE.t))
A = A.col_join(zeros(B.rows, m, DE.t).row_join(B))
return h, A
def param_rischDE(fa, fd, G, DE):
"""
Solve a Parametric Risch Differential Equation: Dy + f*y == Sum(ci*Gi, (i, 1, m)).
Explanation
===========
Given a derivation D in k(t), f in k(t), and G
= [G1, ..., Gm] in k(t)^m, return h = [h1, ..., hr] in k(t)^r and
a matrix A with m + r columns and entries in Const(k) such that
Dy + f*y = Sum(ci*Gi, (i, 1, m)) has a solution y
in k(t) with c1, ..., cm in Const(k) if and only if y = Sum(dj*hj,
(j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm,
d1, ..., dr) is a solution of Ax == 0.
Elements of k(t) are tuples (a, d) with a and d in k[t].
"""
m = len(G)
q, (fa, fd) = weak_normalizer(fa, fd, DE)
# Solutions of the weakly normalized equation Dz + f*z = q*Sum(ci*Gi)
# correspond to solutions y = z/q of the original equation.
gamma = q
G = [(q*ga).cancel(gd, include=True) for ga, gd in G]
a, (ba, bd), G, hn = prde_normal_denom(fa, fd, G, DE)
# Solutions q in k<t> of a*Dq + b*q = Sum(ci*Gi) correspond
# to solutions z = q/hn of the weakly normalized equation.
gamma *= hn
A, B, G, hs = prde_special_denom(a, ba, bd, G, DE)
# Solutions p in k[t] of A*Dp + B*p = Sum(ci*Gi) correspond
# to solutions q = p/hs of the previous equation.
gamma *= hs
g = A.gcd(B)
a, b, g = A.quo(g), B.quo(g), [gia.cancel(gid*g, include=True) for
gia, gid in G]
# a*Dp + b*p = Sum(ci*gi) may have a polynomial solution
# only if the sum is in k[t].
q, M = prde_linear_constraints(a, b, g, DE)
# q = [q1, ..., qm] where qi in k[t] is the polynomial component
# of the partial fraction expansion of gi.
# M is a matrix with m columns and entries in k.
# Sum(fi*gi, (i, 1, m)), where f1, ..., fm are elements of k,
# is a polynomial if and only if M*Matrix([f1, ..., fm]) == 0,
# in which case the sum is equal to Sum(fi*qi).
M, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE)
# M is a matrix with m columns and entries in Const(k).
# Sum(ci*gi) is in k[t] for c1, ..., cm in Const(k)
# if and only if M*Matrix([c1, ..., cm]) == 0,
# in which case the sum is Sum(ci*qi).
## Reduce number of constants at this point
V = M.nullspace()
# V = [v1, ..., vu] where each vj is a column matrix with
# entries aj1, ..., ajm in Const(k).
# Sum(aji*gi) is in k[t] and equal to Sum(aji*qi) (j = 1, ..., u).
# Sum(ci*gi) is in k[t] if and only is ci = Sum(dj*aji)
# (i = 1, ..., m) for some d1, ..., du in Const(k).
# In that case,
# Sum(ci*gi) = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) = Sum(dj*rj)
# where rj = Sum(aji*qi) (j = 1, ..., u) in k[t].
if not V: # No non-trivial solution
return [], eye(m, DE.t)
Mq = Matrix([q]) # A single row.
r = [(Mq*vj)[0] for vj in V] # [r1, ..., ru]
# Solutions of a*Dp + b*p = Sum(dj*rj) correspond to solutions
# y = p/gamma of the initial equation with ci = Sum(dj*aji).
try:
# We try n=5. At least for prde_spde, it will always
# terminate no matter what n is.
n = bound_degree(a, b, r, DE, parametric=True)
except NotImplementedError:
# A temporary bound is set. Eventually, it will be removed.
# the currently added test case takes large time
# even with n=5, and much longer with large n's.
n = 5
h, B = param_poly_rischDE(a, b, r, n, DE)
# h = [h1, ..., hv] in k[t]^v and and B is a matrix with u + v
# columns and entries in Const(k) such that
# a*Dp + b*p = Sum(dj*rj) has a solution p of degree <= n
# in k[t] if and only if p = Sum(ek*hk) where e1, ..., ev are in
# Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0.
# The solutions of the original equation for ci = Sum(dj*aji)
# (i = 1, ..., m) are then y = Sum(ek*hk, (k, 1, v))/gamma.
## Build combined relation matrix with m + u + v columns.
A = -eye(m, DE.t)
for vj in V:
A = A.row_join(vj)
A = A.row_join(zeros(m, len(h), DE.t))
A = A.col_join(zeros(B.rows, m, DE.t).row_join(B))
## Eliminate d1, ..., du.
W = A.nullspace()
# W = [w1, ..., wt] where each wl is a column matrix with
# entries blk (k = 1, ..., m + u + v) in Const(k).
# The vectors (bl1, ..., blm) generate the space of those
# constant families (c1, ..., cm) for which a solution of
# the equation Dy + f*y == Sum(ci*Gi) exists. They generate
# the space and form a basis except possibly when Dy + f*y == 0
# is solvable in k(t}. The corresponding solutions are
# y = Sum(blk'*hk, (k, 1, v))/gamma, where k' = k + m + u.
v = len(h)
shape = (len(W), m+v)
elements = [wl[:m] + wl[-v:] for wl in W] # excise dj's.
items = [e for row in elements for e in row]
# Need to set the shape in case W is empty
M = Matrix(*shape, items, DE.t)
N = M.nullspace()
# N = [n1, ..., ns] where the ni in Const(k)^(m + v) are column
# vectors generating the space of linear relations between
# c1, ..., cm, e1, ..., ev.
C = Matrix([ni[:] for ni in N], DE.t) # rows n1, ..., ns.
return [hk.cancel(gamma, include=True) for hk in h], C
def limited_integrate_reduce(fa, fd, G, DE):
"""
Simpler version of step 1 & 2 for the limited integration problem.
Explanation
===========
Given a derivation D on k(t) and f, g1, ..., gn in k(t), return
(a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer,
g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t),
c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and
p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)). Furthermore,
if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian
over k, then deg(p) <= N.
So that the special part is always computed, this function calls the more
general prde_special_denom() automatically if it cannot determine that
S1irr == Sirr. Furthermore, it will automatically call bound_degree() when
t is linear and non-Liouvillian, which for the transcendental case, implies
that Dt == a*t + b with for some a, b in k*.
"""
dn, ds = splitfactor(fd, DE)
E = [splitfactor(gd, DE) for _, gd in G]
En, Es = list(zip(*E))
c = reduce(lambda i, j: i.lcm(j), (dn,) + En) # lcm(dn, en1, ..., enm)
hn = c.gcd(c.diff(DE.t))
a = hn
b = -derivation(hn, DE)
N = 0
# These are the cases where we know that S1irr = Sirr, but there could be
# others, and this algorithm will need to be extended to handle them.
if DE.case in ('base', 'primitive', 'exp', 'tan'):
hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es) # lcm(ds, es1, ..., esm)
a = hn*hs
b -= (hn*derivation(hs, DE)).quo(hs)
mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for
ga, gd in G]))
# So far, all the above are also nonlinear or Liouvillian, but if this
# changes, then this will need to be updated to call bound_degree()
# as per the docstring of this function (DE.case == 'other_linear').
N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu)
else:
# TODO: implement this
raise NotImplementedError
V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G]
return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V)
def limited_integrate(fa, fd, G, DE):
"""
Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n))
"""
fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic()
# interpreting limited integration problem as a
# parametric Risch DE problem
Fa = Poly(0, DE.t)
Fd = Poly(1, DE.t)
G = [(fa, fd)] + G
h, A = param_rischDE(Fa, Fd, G, DE)
V = A.nullspace()
V = [v for v in V if v[0] != 0]
if not V:
return None
else:
# we can take any vector from V, we take V[0]
c0 = V[0][0]
# v = [-1, c1, ..., cm, d1, ..., dr]
v = V[0]/(-c0)
r = len(h)
m = len(v) - r - 1
C = list(v[1: m + 1])
y = -sum([v[m + 1 + i]*h[i][0].as_expr()/h[i][1].as_expr() \
for i in range(r)])
y_num, y_den = y.as_numer_denom()
Ya, Yd = Poly(y_num, DE.t), Poly(y_den, DE.t)
Y = Ya*Poly(1/Yd.LC(), DE.t), Yd.monic()
return Y, C
def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None):
"""
Parametric logarithmic derivative heuristic.
Explanation
===========
Given a derivation D on k[t], f in k(t), and a hyperexponential monomial
theta over k(t), raises either NotImplementedError, in which case the
heuristic failed, or returns None, in which case it has proven that no
solution exists, or returns a solution (n, m, v) of the equation
n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0.
If this heuristic fails, the structure theorem approach will need to be
used.
The argument w == Dtheta/theta
"""
# TODO: finish writing this and write tests
c1 = c1 or Dummy('c1')
p, a = fa.div(fd)
q, b = wa.div(wd)
B = max(0, derivation(DE.t, DE).degree(DE.t) - 1)
C = max(p.degree(DE.t), q.degree(DE.t))
if q.degree(DE.t) > B:
eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)]
s = solve(eqs, c1)
if not s or not s[c1].is_Rational:
# deg(q) > B, no solution for c.
return None
M, N = s[c1].as_numer_denom()
M_poly = M.as_poly(q.gens)
N_poly = N.as_poly(q.gens)
nfmwa = N_poly*fa*wd - M_poly*wa*fd
nfmwd = fd*wd
Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE, 'auto')
if Qv is None:
# (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
return None
Q, v = Qv
if Q.is_zero or v.is_zero:
return None
return (Q*N, Q*M, v)
if p.degree(DE.t) > B:
return None
c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC())
l = fd.monic().lcm(wd.monic())*Poly(c, DE.t)
ln, ls = splitfactor(l, DE)
z = ls*ln.gcd(ln.diff(DE.t))
if not z.has(DE.t):
# TODO: We treat this as 'no solution', until the structure
# theorem version of parametric_log_deriv is implemented.
return None
u1, r1 = (fa*l.quo(fd)).div(z) # (l*f).div(z)
u2, r2 = (wa*l.quo(wd)).div(z) # (l*w).div(z)
eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))]
s = solve(eqs, c1)
if not s or not s[c1].is_Rational:
# deg(q) <= B, no solution for c.
return None
M, N = s[c1].as_numer_denom()
nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd
nfmwd = fd*wd
Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE)
if Qv is None:
# (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
return None
Q, v = Qv
if Q.is_zero or v.is_zero:
return None
return (Q*N, Q*M, v)
def parametric_log_deriv(fa, fd, wa, wd, DE):
# TODO: Write the full algorithm using the structure theorems.
# try:
A = parametric_log_deriv_heu(fa, fd, wa, wd, DE)
# except NotImplementedError:
# Heuristic failed, we have to use the full method.
# TODO: This could be implemented more efficiently.
# It isn't too worrisome, because the heuristic handles most difficult
# cases.
return A
def is_deriv_k(fa, fd, DE):
r"""
Checks if Df/f is the derivative of an element of k(t).
Explanation
===========
a in k(t) is the derivative of an element of k(t) if there exists b in k(t)
such that a = Db. Either returns (ans, u), such that Df/f == Du, or None,
which means that Df/f is not the derivative of an element of k(t). ans is
a list of tuples such that Add(*[i*j for i, j in ans]) == u. This is useful
for seeing exactly which elements of k(t) produce u.
This function uses the structure theorem approach, which says that for any
f in K, Df/f is the derivative of a element of K if and only if there are ri
in QQ such that::
--- --- Dt
\ r * Dt + \ r * i Df
/ i i / i --- = --.
--- --- t f
i in L i in E i
K/C(x) K/C(x)
Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
hyperexponential monomials of K over C(x)). If K is an elementary extension
over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
transcendence degree of K over C(x). Furthermore, because Const_D(K) ==
Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
and L_K/C(x) are disjoint.
The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
recursively using this same function. Therefore, it is required to pass
them as indices to D (or T). E_args are the arguments of the
hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] ==
exp(E_args[i])). This is needed to compute the final answer u such that
Df/f == Du.
log(f) will be the same as u up to a additive constant. This is because
they will both behave the same as monomials. For example, both log(x) and
log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant.
Therefore, the term const is returned. const is such that
log(const) + f == u. This is calculated by dividing the arguments of one
logarithm from the other. Therefore, it is necessary to pass the arguments
of the logarithmic terms in L_args.
To handle the case where we are given Df/f, not f, use is_deriv_k_in_field().
See also
========
is_log_deriv_k_t_radical_in_field, is_log_deriv_k_t_radical
"""
# Compute Df/f
dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd*fa
dfa, dfd = dfa.cancel(dfd, include=True)
# Our assumption here is that each monomial is recursively transcendental
if len(DE.exts) != len(DE.D):
if [i for i in DE.cases if i == 'tan'] or \
({i for i in DE.cases if i == 'primitive'} -
set(DE.indices('log'))):
raise NotImplementedError("Real version of the structure "
"theorems with hypertangent support is not yet implemented.")
# TODO: What should really be done in this case?
raise NotImplementedError("Nonelementary extensions not supported "
"in the structure theorems.")
E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')]
L_part = [DE.D[i].as_expr() for i in DE.indices('log')]
# The expression dfa/dfd might not be polynomial in any of its symbols so we
# use a Dummy as the generator for PolyMatrix.
dum = Dummy()
lhs = Matrix([E_part + L_part], dum)
rhs = Matrix([dfa.as_expr()/dfd.as_expr()], dum)
A, u = constant_system(lhs, rhs, DE)
u = u.to_Matrix() # Poly to Expr
if not A or not all(derivation(i, DE, basic=True).is_zero for i in u):
# If the elements of u are not all constant
# Note: See comment in constant_system
# Also note: derivation(basic=True) calls cancel()
return None
else:
if not all(i.is_Rational for i in u):
raise NotImplementedError("Cannot work with non-rational "
"coefficients in this case.")
else:
terms = ([DE.extargs[i] for i in DE.indices('exp')] +
[DE.T[i] for i in DE.indices('log')])
ans = list(zip(terms, u))
result = Add(*[Mul(i, j) for i, j in ans])
argterms = ([DE.T[i] for i in DE.indices('exp')] +
[DE.extargs[i] for i in DE.indices('log')])
l = []
ld = []
for i, j in zip(argterms, u):
# We need to get around things like sqrt(x**2) != x
# and also sqrt(x**2 + 2*x + 1) != x + 1
# Issue 10798: i need not be a polynomial
i, d = i.as_numer_denom()
icoeff, iterms = sqf_list(i)
l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms])))
dcoeff, dterms = sqf_list(d)
ld.append(Mul(*([Pow(dcoeff, j)] + [Pow(b, e*j) for b, e in dterms])))
const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l)*Mul(*ld))
return (ans, result, const)
def is_log_deriv_k_t_radical(fa, fd, DE, Df=True):
r"""
Checks if Df is the logarithmic derivative of a k(t)-radical.
Explanation
===========
b in k(t) can be written as the logarithmic derivative of a k(t) radical if
there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u.
Either returns (ans, u, n, const) or None, which means that Df cannot be
written as the logarithmic derivative of a k(t)-radical. ans is a list of
tuples such that Mul(*[i**j for i, j in ans]) == u. This is useful for
seeing exactly what elements of k(t) produce u.
This function uses the structure theorem approach, which says that for any
f in K, Df is the logarithmic derivative of a K-radical if and only if there
are ri in QQ such that::
--- --- Dt
\ r * Dt + \ r * i
/ i i / i --- = Df.
--- --- t
i in L i in E i
K/C(x) K/C(x)
Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
hyperexponential monomials of K over C(x)). If K is an elementary extension
over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
transcendence degree of K over C(x). Furthermore, because Const_D(K) ==
Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
and L_K/C(x) are disjoint.
The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
recursively using this same function. Therefore, it is required to pass
them as indices to D (or T). L_args are the arguments of the logarithms
indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])). This is
needed to compute the final answer u such that n*f == Du/u.
exp(f) will be the same as u up to a multiplicative constant. This is
because they will both behave the same as monomials. For example, both
exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const
is returned. const is such that exp(const)*f == u. This is calculated by
subtracting the arguments of one exponential from the other. Therefore, it
is necessary to pass the arguments of the exponential terms in E_args.
To handle the case where we are given Df, not f, use
is_log_deriv_k_t_radical_in_field().
See also
========
is_log_deriv_k_t_radical_in_field, is_deriv_k
"""
if Df:
dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2,
include=True)
else:
dfa, dfd = fa, fd
# Our assumption here is that each monomial is recursively transcendental
if len(DE.exts) != len(DE.D):
if [i for i in DE.cases if i == 'tan'] or \
({i for i in DE.cases if i == 'primitive'} -
set(DE.indices('log'))):
raise NotImplementedError("Real version of the structure "
"theorems with hypertangent support is not yet implemented.")
# TODO: What should really be done in this case?
raise NotImplementedError("Nonelementary extensions not supported "
"in the structure theorems.")
E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')]
L_part = [DE.D[i].as_expr() for i in DE.indices('log')]
# The expression dfa/dfd might not be polynomial in any of its symbols so we
# use a Dummy as the generator for PolyMatrix.
dum = Dummy()
lhs = Matrix([E_part + L_part], dum)
rhs = Matrix([dfa.as_expr()/dfd.as_expr()], dum)
A, u = constant_system(lhs, rhs, DE)
u = u.to_Matrix() # Poly to Expr
if not A or not all(derivation(i, DE, basic=True).is_zero for i in u):
# If the elements of u are not all constant
# Note: See comment in constant_system
# Also note: derivation(basic=True) calls cancel()
return None
else:
if not all(i.is_Rational for i in u):
# TODO: But maybe we can tell if they're not rational, like
# log(2)/log(3). Also, there should be an option to continue
# anyway, even if the result might potentially be wrong.
raise NotImplementedError("Cannot work with non-rational "
"coefficients in this case.")
else:
n = reduce(ilcm, [i.as_numer_denom()[1] for i in u])
u *= n
terms = ([DE.T[i] for i in DE.indices('exp')] +
[DE.extargs[i] for i in DE.indices('log')])
ans = list(zip(terms, u))
result = Mul(*[Pow(i, j) for i, j in ans])
# exp(f) will be the same as result up to a multiplicative
# constant. We now find the log of that constant.
argterms = ([DE.extargs[i] for i in DE.indices('exp')] +
[DE.T[i] for i in DE.indices('log')])
const = cancel(fa.as_expr()/fd.as_expr() -
Add(*[Mul(i, j/n) for i, j in zip(argterms, u)]))
return (ans, result, n, const)
def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None):
"""
Checks if f can be written as the logarithmic derivative of a k(t)-radical.
Explanation
===========
It differs from is_log_deriv_k_t_radical(fa, fd, DE, Df=False)
for any given fa, fd, DE in that it finds the solution in the
given field not in some (possibly unspecified extension) and
"in_field" with the function name is used to indicate that.
f in k(t) can be written as the logarithmic derivative of a k(t) radical if
there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u.
Either returns (n, u) or None, which means that f cannot be written as the
logarithmic derivative of a k(t)-radical.
case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive,
hyperexponential, and hypertangent cases, respectively. If case is 'auto',
it will attempt to determine the type of the derivation automatically.
See also
========
is_log_deriv_k_t_radical, is_deriv_k
"""
fa, fd = fa.cancel(fd, include=True)
# f must be simple
n, s = splitfactor(fd, DE)
if not s.is_one:
pass
z = z or Dummy('z')
H, b = residue_reduce(fa, fd, DE, z=z)
if not b:
# I will have to verify, but I believe that the answer should be
# None in this case. This should never happen for the
# functions given when solving the parametric logarithmic
# derivative problem when integration elementary functions (see
# Bronstein's book, page 255), so most likely this indicates a bug.
return None
roots = [(i, i.real_roots()) for i, _ in H]
if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for
i, j in roots):
# If f is the logarithmic derivative of a k(t)-radical, then all the
# roots of the resultant must be rational numbers.
return None
# [(a, i), ...], where i*log(a) is a term in the log-part of the integral
# of f
respolys, residues = list(zip(*roots)) or [[], []]
# Note: this might be empty, but everything below should work find in that
# case (it should be the same as if it were [[1, 1]])
residueterms = [(H[j][1].subs(z, i), i) for j in range(len(H)) for
i in residues[j]]
# TODO: finish writing this and write tests
p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z))
p = p.as_poly(DE.t)
if p is None:
# f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical
return None
if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)):
return None
if case == 'auto':
case = DE.case
if case == 'exp':
wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
with DecrementLevel(DE):
pa, pd = frac_in(p, DE.t, cancel=True)
wa, wd = frac_in((wa, wd), DE.t)
A = parametric_log_deriv(pa, pd, wa, wd, DE)
if A is None:
return None
n, e, u = A
u *= DE.t**e
elif case == 'primitive':
with DecrementLevel(DE):
pa, pd = frac_in(p, DE.t)
A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto')
if A is None:
return None
n, u = A
elif case == 'base':
# TODO: we can use more efficient residue reduction from ratint()
if not fd.is_sqf or fa.degree() >= fd.degree():
# f is the logarithmic derivative in the base case if and only if
# f = fa/fd, fd is square-free, deg(fa) < deg(fd), and
# gcd(fa, fd) == 1. The last condition is handled by cancel() above.
return None
# Note: if residueterms = [], returns (1, 1)
# f had better be 0 in that case.
n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S.One)
u = Mul(*[Pow(i, j*n) for i, j in residueterms])
return (n, u)
elif case == 'tan':
raise NotImplementedError("The hypertangent case is "
"not yet implemented for is_log_deriv_k_t_radical_in_field()")
elif case in ('other_linear', 'other_nonlinear'):
# XXX: If these are supported by the structure theorems, change to NotImplementedError.
raise ValueError("The %s case is not supported in this function." % case)
else:
raise ValueError("case must be one of {'primitive', 'exp', 'tan', "
"'base', 'auto'}, not %s" % case)
common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in
residueterms]] + [n], S.One)
residueterms = [(i, j*common_denom) for i, j in residueterms]
m = common_denom//n
if common_denom != n*m: # Verify exact division
raise ValueError("Inexact division")
u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms]))
return (common_denom, u)
|
590e8057412e57da2abaf499ce2b33db37a4c3b4fb1127156e139701d6f89ed3 | from sympy.core import cacheit, Dummy, Ne, Integer, Rational, S, Wild
from sympy.functions import binomial, sin, cos, Piecewise, Abs
from .integrals import integrate
# TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ?
# creating, each time, Wild's and sin/cos/Mul is expensive. Also, our match &
# subs are very slow when not cached, and if we create Wild each time, we
# effectively block caching.
#
# so we cache the pattern
# need to use a function instead of lamda since hash of lambda changes on
# each call to _pat_sincos
def _integer_instance(n):
return isinstance(n, Integer)
@cacheit
def _pat_sincos(x):
a = Wild('a', exclude=[x])
n, m = [Wild(s, exclude=[x], properties=[_integer_instance])
for s in 'nm']
pat = sin(a*x)**n * cos(a*x)**m
return pat, a, n, m
_u = Dummy('u')
def trigintegrate(f, x, conds='piecewise'):
"""
Integrate f = Mul(trig) over x.
Examples
========
>>> from sympy import sin, cos, tan, sec
>>> from sympy.integrals.trigonometry import trigintegrate
>>> from sympy.abc import x
>>> trigintegrate(sin(x)*cos(x), x)
sin(x)**2/2
>>> trigintegrate(sin(x)**2, x)
x/2 - sin(x)*cos(x)/2
>>> trigintegrate(tan(x)*sec(x), x)
1/cos(x)
>>> trigintegrate(sin(x)*tan(x), x)
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
References
==========
.. [1] http://en.wikibooks.org/wiki/Calculus/Integration_techniques
See Also
========
sympy.integrals.integrals.Integral.doit
sympy.integrals.integrals.Integral
"""
pat, a, n, m = _pat_sincos(x)
f = f.rewrite('sincos')
M = f.match(pat)
if M is None:
return
n, m = M[n], M[m]
if n.is_zero and m.is_zero:
return x
zz = x if n.is_zero else S.Zero
a = M[a]
if n.is_odd or m.is_odd:
u = _u
n_, m_ = n.is_odd, m.is_odd
# take smallest n or m -- to choose simplest substitution
if n_ and m_:
# Make sure to choose the positive one
# otherwise an incorrect integral can occur.
if n < 0 and m > 0:
m_ = True
n_ = False
elif m < 0 and n > 0:
n_ = True
m_ = False
# Both are negative so choose the smallest n or m
# in absolute value for simplest substitution.
elif (n < 0 and m < 0):
n_ = n > m
m_ = not (n > m)
# Both n and m are odd and positive
else:
n_ = (n < m) # NB: careful here, one of the
m_ = not (n < m) # conditions *must* be true
# n m u=C (n-1)/2 m
# S(x) * C(x) dx --> -(1-u^2) * u du
if n_:
ff = -(1 - u**2)**((n - 1)/2) * u**m
uu = cos(a*x)
# n m u=S n (m-1)/2
# S(x) * C(x) dx --> u * (1-u^2) du
elif m_:
ff = u**n * (1 - u**2)**((m - 1)/2)
uu = sin(a*x)
fi = integrate(ff, u) # XXX cyclic deps
fx = fi.subs(u, uu)
if conds == 'piecewise':
return Piecewise((fx / a, Ne(a, 0)), (zz, True))
return fx / a
# n & m are both even
#
# 2k 2m 2l 2l
# we transform S (x) * C (x) into terms with only S (x) or C (x)
#
# example:
# 100 4 100 2 2 100 4 2
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
#
# 104 102 100
# = S (x) - 2*S (x) + S (x)
# 2k
# then S is integrated with recursive formula
# take largest n or m -- to choose simplest substitution
n_ = (Abs(n) > Abs(m))
m_ = (Abs(m) > Abs(n))
res = S.Zero
if n_:
# 2k 2 k i 2i
# C = (1 - S ) = sum(i, (-) * B(k, i) * S )
if m > 0:
for i in range(0, m//2 + 1):
res += (S.NegativeOne**i * binomial(m//2, i) *
_sin_pow_integrate(n + 2*i, x))
elif m == 0:
res = _sin_pow_integrate(n, x)
else:
# m < 0 , |n| > |m|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# -1 m+1 n-1 n - 1 | m+2 n-2
# ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# m + 1 m + 1 |
# /
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
elif m_:
# 2k 2 k i 2i
# S = (1 - C ) = sum(i, (-) * B(k, i) * C )
if n > 0:
# / /
# | |
# | m n | -m n
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
# | |
# / /
#
# |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
# n 2
# sin (x) term is expanded here in terms of cos (x),
# and then integrated.
#
for i in range(0, n//2 + 1):
res += (S.NegativeOne**i * binomial(n//2, i) *
_cos_pow_integrate(m + 2*i, x))
elif n == 0:
# /
# |
# | 1
# | _ _ _
# | m
# | cos (x)
# /
#
res = _cos_pow_integrate(m, x)
else:
# n < 0 , |m| > |n|
# /
# |
# | m n
# | cos (x) sin (x) dx =
# |
# |
#/
# /
# |
# 1 m-1 n+1 m - 1 | m-2 n+2
# _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
# |
# n + 1 n + 1 |
# /
res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x))
else:
if m == n:
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
res = integrate((sin(2*x)*S.Half)**m, x)
elif (m == -n):
if n < 0:
# Same as the scheme described above.
# the function argument to integrate in the end will
# be 1, this cannot be integrated by trigintegrate.
# Hence use sympy.integrals.integrate.
res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
Rational(m - 1, n + 1) *
integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
else:
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
Rational(n - 1, m + 1) *
integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
if conds == 'piecewise':
return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True))
return res.subs(x, a*x) / a
def _sin_pow_integrate(n, x):
if n > 0:
if n == 1:
#Recursion break
return -cos(x)
# n > 0
# / /
# | |
# | n -1 n-1 n - 1 | n-2
# | sin (x) dx = ______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n n |
#/ /
#
#
return (Rational(-1, n) * cos(x) * sin(x)**(n - 1) +
Rational(n - 1, n) * _sin_pow_integrate(n - 2, x))
if n < 0:
if n == -1:
##Make sure this does not come back here again.
##Recursion breaks here or at n==0.
return trigintegrate(1/sin(x), x)
# n < 0
# / /
# | |
# | n 1 n+1 n + 2 | n+2
# | sin (x) dx = _______ cos (x) sin (x) + _______ | sin (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
return (Rational(1, n + 1) * cos(x) * sin(x)**(n + 1) +
Rational(n + 2, n + 1) * _sin_pow_integrate(n + 2, x))
else:
#n == 0
#Recursion break.
return x
def _cos_pow_integrate(n, x):
if n > 0:
if n == 1:
#Recursion break.
return sin(x)
# n > 0
# / /
# | |
# | n 1 n-1 n - 1 | n-2
# | sin (x) dx = ______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n n |
#/ /
#
return (Rational(1, n) * sin(x) * cos(x)**(n - 1) +
Rational(n - 1, n) * _cos_pow_integrate(n - 2, x))
if n < 0:
if n == -1:
##Recursion break
return trigintegrate(1/cos(x), x)
# n < 0
# / /
# | |
# | n -1 n+1 n + 2 | n+2
# | cos (x) dx = _______ sin (x) cos (x) + _______ | cos (x) dx
# | |
# | n + 1 n + 1 |
#/ /
#
return (Rational(-1, n + 1) * sin(x) * cos(x)**(n + 1) +
Rational(n + 2, n + 1) * _cos_pow_integrate(n + 2, x))
else:
# n == 0
#Recursion Break.
return x
|
2d84caadbc4593a4f43f315d891659fbb73159b7bcd533c5e9a3274e50d22b11 | """
Integrate functions by rewriting them as Meijer G-functions.
There are three user-visible functions that can be used by other parts of the
sympy library to solve various integration problems:
- meijerint_indefinite
- meijerint_definite
- meijerint_inversion
They can be used to compute, respectively, indefinite integrals, definite
integrals over intervals of the real line, and inverse laplace-type integrals
(from c-I*oo to c+I*oo). See the respective docstrings for details.
The main references for this are:
[L] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
[R] Kelly B. Roach. Meijer G Function Representations.
In: Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation, pages 205-211, New York, 1997. ACM.
[P] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
Integrals and Series: More Special Functions, Vol. 3,.
Gordon and Breach Science Publisher
"""
import itertools
from typing import Dict as tDict, Tuple as tTuple
from sympy import SYMPY_DEBUG
from sympy.core import S, Expr
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.function import (expand, expand_mul, expand_power_base,
expand_trig, Function)
from sympy.core.mul import Mul
from sympy.core.numbers import ilcm, Rational, pi
from sympy.core.relational import Eq, Ne, _canonical_coeff
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Dummy, symbols, Wild
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (re, im, arg, Abs, sign,
unpolarify, polarify, polar_lift, principal_branch, unbranched_argument,
periodic_argument)
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.hyperbolic import (cosh, sinh,
_rewrite_hyperbolics_as_exp, HyperbolicFunction)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
from sympy.functions.elementary.trigonometric import (cos, sin, sinc,
TrigonometricFunction)
from sympy.functions.special.bessel import besselj, bessely, besseli, besselk
from sympy.functions.special.delta_functions import DiracDelta, Heaviside
from sympy.functions.special.elliptic_integrals import elliptic_k, elliptic_e
from sympy.functions.special.error_functions import (erf, erfc, erfi, Ei,
expint, Si, Ci, Shi, Chi, fresnels, fresnelc)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper, meijerg
from sympy.functions.special.singularity_functions import SingularityFunction
from .integrals import Integral
from sympy.logic.boolalg import And, Or, BooleanAtom, Not, BooleanFunction
from sympy.polys import cancel, factor
from sympy.utilities.iterables import multiset_partitions
from sympy.utilities.misc import debug as _debug
# keep this at top for easy reference
z = Dummy('z')
def _has(res, *f):
# return True if res has f; in the case of Piecewise
# only return True if *all* pieces have f
res = piecewise_fold(res)
if getattr(res, 'is_Piecewise', False):
return all(_has(i, *f) for i in res.args)
return res.has(*f)
def _create_lookup_table(table):
""" Add formulae for the function -> meijerg lookup table. """
def wild(n):
return Wild(n, exclude=[z])
p, q, a, b, c = list(map(wild, 'pqabc'))
n = Wild('n', properties=[lambda x: x.is_Integer and x > 0])
t = p*z**q
def add(formula, an, ap, bm, bq, arg=t, fac=S.One, cond=True, hint=True):
table.setdefault(_mytype(formula, z), []).append((formula,
[(fac, meijerg(an, ap, bm, bq, arg))], cond, hint))
def addi(formula, inst, cond, hint=True):
table.setdefault(
_mytype(formula, z), []).append((formula, inst, cond, hint))
def constant(a):
return [(a, meijerg([1], [], [], [0], z)),
(a, meijerg([], [1], [0], [], z))]
table[()] = [(a, constant(a), True, True)]
# [P], Section 8.
class IsNonPositiveInteger(Function):
@classmethod
def eval(cls, arg):
arg = unpolarify(arg)
if arg.is_Integer is True:
return arg <= 0
# Section 8.4.2
# TODO this needs more polar_lift (c/f entry for exp)
add(Heaviside(t - b)*(t - b)**(a - 1), [a], [], [], [0], t/b,
gamma(a)*b**(a - 1), And(b > 0))
add(Heaviside(b - t)*(b - t)**(a - 1), [], [a], [0], [], t/b,
gamma(a)*b**(a - 1), And(b > 0))
add(Heaviside(z - (b/p)**(1/q))*(t - b)**(a - 1), [a], [], [], [0], t/b,
gamma(a)*b**(a - 1), And(b > 0))
add(Heaviside((b/p)**(1/q) - z)*(b - t)**(a - 1), [], [a], [0], [], t/b,
gamma(a)*b**(a - 1), And(b > 0))
add((b + t)**(-a), [1 - a], [], [0], [], t/b, b**(-a)/gamma(a),
hint=Not(IsNonPositiveInteger(a)))
add(Abs(b - t)**(-a), [1 - a], [(1 - a)/2], [0], [(1 - a)/2], t/b,
2*sin(pi*a/2)*gamma(1 - a)*Abs(b)**(-a), re(a) < 1)
add((t**a - b**a)/(t - b), [0, a], [], [0, a], [], t/b,
b**(a - 1)*sin(a*pi)/pi)
# 12
def A1(r, sign, nu):
return pi**Rational(-1, 2)*(-sign*nu/2)**(1 - 2*r)
def tmpadd(r, sgn):
# XXX the a**2 is bad for matching
add((sqrt(a**2 + t) + sgn*a)**b/(a**2 + t)**r,
[(1 + b)/2, 1 - 2*r + b/2], [],
[(b - sgn*b)/2], [(b + sgn*b)/2], t/a**2,
a**(b - 2*r)*A1(r, sgn, b))
tmpadd(0, 1)
tmpadd(0, -1)
tmpadd(S.Half, 1)
tmpadd(S.Half, -1)
# 13
def tmpadd(r, sgn):
add((sqrt(a + p*z**q) + sgn*sqrt(p)*z**(q/2))**b/(a + p*z**q)**r,
[1 - r + sgn*b/2], [1 - r - sgn*b/2], [0, S.Half], [],
p*z**q/a, a**(b/2 - r)*A1(r, sgn, b))
tmpadd(0, 1)
tmpadd(0, -1)
tmpadd(S.Half, 1)
tmpadd(S.Half, -1)
# (those after look obscure)
# Section 8.4.3
add(exp(polar_lift(-1)*t), [], [], [0], [])
# TODO can do sin^n, sinh^n by expansion ... where?
# 8.4.4 (hyperbolic functions)
add(sinh(t), [], [1], [S.Half], [1, 0], t**2/4, pi**Rational(3, 2))
add(cosh(t), [], [S.Half], [0], [S.Half, S.Half], t**2/4, pi**Rational(3, 2))
# Section 8.4.5
# TODO can do t + a. but can also do by expansion... (XXX not really)
add(sin(t), [], [], [S.Half], [0], t**2/4, sqrt(pi))
add(cos(t), [], [], [0], [S.Half], t**2/4, sqrt(pi))
# Section 8.4.6 (sinc function)
add(sinc(t), [], [], [0], [Rational(-1, 2)], t**2/4, sqrt(pi)/2)
# Section 8.5.5
def make_log1(subs):
N = subs[n]
return [(S.NegativeOne**N*factorial(N),
meijerg([], [1]*(N + 1), [0]*(N + 1), [], t))]
def make_log2(subs):
N = subs[n]
return [(factorial(N),
meijerg([1]*(N + 1), [], [], [0]*(N + 1), t))]
# TODO these only hold for positive p, and can be made more general
# but who uses log(x)*Heaviside(a-x) anyway ...
# TODO also it would be nice to derive them recursively ...
addi(log(t)**n*Heaviside(1 - t), make_log1, True)
addi(log(t)**n*Heaviside(t - 1), make_log2, True)
def make_log3(subs):
return make_log1(subs) + make_log2(subs)
addi(log(t)**n, make_log3, True)
addi(log(t + a),
constant(log(a)) + [(S.One, meijerg([1, 1], [], [1], [0], t/a))],
True)
addi(log(Abs(t - a)), constant(log(Abs(a))) +
[(pi, meijerg([1, 1], [S.Half], [1], [0, S.Half], t/a))],
True)
# TODO log(x)/(x+a) and log(x)/(x-1) can also be done. should they
# be derivable?
# TODO further formulae in this section seem obscure
# Sections 8.4.9-10
# TODO
# Section 8.4.11
addi(Ei(t),
constant(-S.ImaginaryUnit*pi) + [(S.NegativeOne, meijerg([], [1], [0, 0], [],
t*polar_lift(-1)))],
True)
# Section 8.4.12
add(Si(t), [1], [], [S.Half], [0, 0], t**2/4, sqrt(pi)/2)
add(Ci(t), [], [1], [0, 0], [S.Half], t**2/4, -sqrt(pi)/2)
# Section 8.4.13
add(Shi(t), [S.Half], [], [0], [Rational(-1, 2), Rational(-1, 2)], polar_lift(-1)*t**2/4,
t*sqrt(pi)/4)
add(Chi(t), [], [S.Half, 1], [0, 0], [S.Half, S.Half], t**2/4, -
pi**S('3/2')/2)
# generalized exponential integral
add(expint(a, t), [], [a], [a - 1, 0], [], t)
# Section 8.4.14
add(erf(t), [1], [], [S.Half], [0], t**2, 1/sqrt(pi))
# TODO exp(-x)*erf(I*x) does not work
add(erfc(t), [], [1], [0, S.Half], [], t**2, 1/sqrt(pi))
# This formula for erfi(z) yields a wrong(?) minus sign
#add(erfi(t), [1], [], [S.Half], [0], -t**2, I/sqrt(pi))
add(erfi(t), [S.Half], [], [0], [Rational(-1, 2)], -t**2, t/sqrt(pi))
# Fresnel Integrals
add(fresnels(t), [1], [], [Rational(3, 4)], [0, Rational(1, 4)], pi**2*t**4/16, S.Half)
add(fresnelc(t), [1], [], [Rational(1, 4)], [0, Rational(3, 4)], pi**2*t**4/16, S.Half)
##### bessel-type functions #####
# Section 8.4.19
add(besselj(a, t), [], [], [a/2], [-a/2], t**2/4)
# all of the following are derivable
#add(sin(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [(1+a)/2],
# [-a/2, a/2, (1-a)/2], t**2, 1/sqrt(2))
#add(cos(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [a/2],
# [-a/2, (1+a)/2, (1-a)/2], t**2, 1/sqrt(2))
#add(besselj(a, t)**2, [S.Half], [], [a], [-a, 0], t**2, 1/sqrt(pi))
#add(besselj(a, t)*besselj(b, t), [0, S.Half], [], [(a + b)/2],
# [-(a+b)/2, (a - b)/2, (b - a)/2], t**2, 1/sqrt(pi))
# Section 8.4.20
add(bessely(a, t), [], [-(a + 1)/2], [a/2, -a/2], [-(a + 1)/2], t**2/4)
# TODO all of the following should be derivable
#add(sin(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(1 - a - 1)/2],
# [(1 + a)/2, (1 - a)/2], [(1 - a - 1)/2, (1 - 1 - a)/2, (1 - 1 + a)/2],
# t**2, 1/sqrt(2))
#add(cos(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(0 - a - 1)/2],
# [(0 + a)/2, (0 - a)/2], [(0 - a - 1)/2, (1 - 0 - a)/2, (1 - 0 + a)/2],
# t**2, 1/sqrt(2))
#add(besselj(a, t)*bessely(b, t), [0, S.Half], [(a - b - 1)/2],
# [(a + b)/2, (a - b)/2], [(a - b - 1)/2, -(a + b)/2, (b - a)/2],
# t**2, 1/sqrt(pi))
#addi(bessely(a, t)**2,
# [(2/sqrt(pi), meijerg([], [S.Half, S.Half - a], [0, a, -a],
# [S.Half - a], t**2)),
# (1/sqrt(pi), meijerg([S.Half], [], [a], [-a, 0], t**2))],
# True)
#addi(bessely(a, t)*bessely(b, t),
# [(2/sqrt(pi), meijerg([], [0, S.Half, (1 - a - b)/2],
# [(a + b)/2, (a - b)/2, (b - a)/2, -(a + b)/2],
# [(1 - a - b)/2], t**2)),
# (1/sqrt(pi), meijerg([0, S.Half], [], [(a + b)/2],
# [-(a + b)/2, (a - b)/2, (b - a)/2], t**2))],
# True)
# Section 8.4.21 ?
# Section 8.4.22
add(besseli(a, t), [], [(1 + a)/2], [a/2], [-a/2, (1 + a)/2], t**2/4, pi)
# TODO many more formulas. should all be derivable
# Section 8.4.23
add(besselk(a, t), [], [], [a/2, -a/2], [], t**2/4, S.Half)
# TODO many more formulas. should all be derivable
# Complete elliptic integrals K(z) and E(z)
add(elliptic_k(t), [S.Half, S.Half], [], [0], [0], -t, S.Half)
add(elliptic_e(t), [S.Half, 3*S.Half], [], [0], [0], -t, Rational(-1, 2)/2)
####################################################################
# First some helper functions.
####################################################################
from sympy.utilities.timeutils import timethis
timeit = timethis('meijerg')
def _mytype(f, x):
""" Create a hashable entity describing the type of f. """
if x not in f.free_symbols:
return ()
elif f.is_Function:
return (type(f),)
else:
types = [_mytype(a, x) for a in f.args]
res = []
for t in types:
res += list(t)
res.sort()
return tuple(res)
class _CoeffExpValueError(ValueError):
"""
Exception raised by _get_coeff_exp, for internal use only.
"""
pass
def _get_coeff_exp(expr, x):
"""
When expr is known to be of the form c*x**b, with c and/or b possibly 1,
return c, b.
Examples
========
>>> from sympy.abc import x, a, b
>>> from sympy.integrals.meijerint import _get_coeff_exp
>>> _get_coeff_exp(a*x**b, x)
(a, b)
>>> _get_coeff_exp(x, x)
(1, 1)
>>> _get_coeff_exp(2*x, x)
(2, 1)
>>> _get_coeff_exp(x**3, x)
(1, 3)
"""
from sympy.simplify import powsimp
(c, m) = expand_power_base(powsimp(expr)).as_coeff_mul(x)
if not m:
return c, S.Zero
[m] = m
if m.is_Pow:
if m.base != x:
raise _CoeffExpValueError('expr not of form a*x**b')
return c, m.exp
elif m == x:
return c, S.One
else:
raise _CoeffExpValueError('expr not of form a*x**b: %s' % expr)
def _exponents(expr, x):
"""
Find the exponents of ``x`` (not including zero) in ``expr``.
Examples
========
>>> from sympy.integrals.meijerint import _exponents
>>> from sympy.abc import x, y
>>> from sympy import sin
>>> _exponents(x, x)
{1}
>>> _exponents(x**2, x)
{2}
>>> _exponents(x**2 + x, x)
{1, 2}
>>> _exponents(x**3*sin(x + x**y) + 1/x, x)
{-1, 1, 3, y}
"""
def _exponents_(expr, x, res):
if expr == x:
res.update([1])
return
if expr.is_Pow and expr.base == x:
res.update([expr.exp])
return
for argument in expr.args:
_exponents_(argument, x, res)
res = set()
_exponents_(expr, x, res)
return res
def _functions(expr, x):
""" Find the types of functions in expr, to estimate the complexity. """
return {e.func for e in expr.atoms(Function) if x in e.free_symbols}
def _find_splitting_points(expr, x):
"""
Find numbers a such that a linear substitution x -> x + a would
(hopefully) simplify expr.
Examples
========
>>> from sympy.integrals.meijerint import _find_splitting_points as fsp
>>> from sympy import sin
>>> from sympy.abc import x
>>> fsp(x, x)
{0}
>>> fsp((x-1)**3, x)
{1}
>>> fsp(sin(x+3)*x, x)
{-3, 0}
"""
p, q = [Wild(n, exclude=[x]) for n in 'pq']
def compute_innermost(expr, res):
if not isinstance(expr, Expr):
return
m = expr.match(p*x + q)
if m and m[p] != 0:
res.add(-m[q]/m[p])
return
if expr.is_Atom:
return
for argument in expr.args:
compute_innermost(argument, res)
innermost = set()
compute_innermost(expr, innermost)
return innermost
def _split_mul(f, x):
"""
Split expression ``f`` into fac, po, g, where fac is a constant factor,
po = x**s for some s independent of s, and g is "the rest".
Examples
========
>>> from sympy.integrals.meijerint import _split_mul
>>> from sympy import sin
>>> from sympy.abc import s, x
>>> _split_mul((3*x)**s*sin(x**2)*x, x)
(3**s, x*x**s, sin(x**2))
"""
fac = S.One
po = S.One
g = S.One
f = expand_power_base(f)
args = Mul.make_args(f)
for a in args:
if a == x:
po *= x
elif x not in a.free_symbols:
fac *= a
else:
if a.is_Pow and x not in a.exp.free_symbols:
c, t = a.base.as_coeff_mul(x)
if t != (x,):
c, t = expand_mul(a.base).as_coeff_mul(x)
if t == (x,):
po *= x**a.exp
fac *= unpolarify(polarify(c**a.exp, subs=False))
continue
g *= a
return fac, po, g
def _mul_args(f):
"""
Return a list ``L`` such that ``Mul(*L) == f``.
If ``f`` is not a ``Mul`` or ``Pow``, ``L=[f]``.
If ``f=g**n`` for an integer ``n``, ``L=[g]*n``.
If ``f`` is a ``Mul``, ``L`` comes from applying ``_mul_args`` to all factors of ``f``.
"""
args = Mul.make_args(f)
gs = []
for g in args:
if g.is_Pow and g.exp.is_Integer:
n = g.exp
base = g.base
if n < 0:
n = -n
base = 1/base
gs += [base]*n
else:
gs.append(g)
return gs
def _mul_as_two_parts(f):
"""
Find all the ways to split ``f`` into a product of two terms.
Return None on failure.
Explanation
===========
Although the order is canonical from multiset_partitions, this is
not necessarily the best order to process the terms. For example,
if the case of len(gs) == 2 is removed and multiset is allowed to
sort the terms, some tests fail.
Examples
========
>>> from sympy.integrals.meijerint import _mul_as_two_parts
>>> from sympy import sin, exp, ordered
>>> from sympy.abc import x
>>> list(ordered(_mul_as_two_parts(x*sin(x)*exp(x))))
[(x, exp(x)*sin(x)), (x*exp(x), sin(x)), (x*sin(x), exp(x))]
"""
gs = _mul_args(f)
if len(gs) < 2:
return None
if len(gs) == 2:
return [tuple(gs)]
return [(Mul(*x), Mul(*y)) for (x, y) in multiset_partitions(gs, 2)]
def _inflate_g(g, n):
""" Return C, h such that h is a G function of argument z**n and
g = C*h. """
# TODO should this be a method of meijerg?
# See: [L, page 150, equation (5)]
def inflate(params, n):
""" (a1, .., ak) -> (a1/n, (a1+1)/n, ..., (ak + n-1)/n) """
return [(a + i)/n for a, i in itertools.product(params, range(n))]
v = S(len(g.ap) - len(g.bq))
C = n**(1 + g.nu + v/2)
C /= (2*pi)**((n - 1)*g.delta)
return C, meijerg(inflate(g.an, n), inflate(g.aother, n),
inflate(g.bm, n), inflate(g.bother, n),
g.argument**n * n**(n*v))
def _flip_g(g):
""" Turn the G function into one of inverse argument
(i.e. G(1/x) -> G'(x)) """
# See [L], section 5.2
def tr(l):
return [1 - a for a in l]
return meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), 1/g.argument)
def _inflate_fox_h(g, a):
r"""
Let d denote the integrand in the definition of the G function ``g``.
Consider the function H which is defined in the same way, but with
integrand d/Gamma(a*s) (contour conventions as usual).
If ``a`` is rational, the function H can be written as C*G, for a constant C
and a G-function G.
This function returns C, G.
"""
if a < 0:
return _inflate_fox_h(_flip_g(g), -a)
p = S(a.p)
q = S(a.q)
# We use the substitution s->qs, i.e. inflate g by q. We are left with an
# extra factor of Gamma(p*s), for which we use Gauss' multiplication
# theorem.
D, g = _inflate_g(g, q)
z = g.argument
D /= (2*pi)**((1 - p)/2)*p**Rational(-1, 2)
z /= p**p
bs = [(n + 1)/p for n in range(p)]
return D, meijerg(g.an, g.aother, g.bm, list(g.bother) + bs, z)
_dummies = {} # type: tDict[tTuple[str, str], Dummy]
def _dummy(name, token, expr, **kwargs):
"""
Return a dummy. This will return the same dummy if the same token+name is
requested more than once, and it is not already in expr.
This is for being cache-friendly.
"""
d = _dummy_(name, token, **kwargs)
if d in expr.free_symbols:
return Dummy(name, **kwargs)
return d
def _dummy_(name, token, **kwargs):
"""
Return a dummy associated to name and token. Same effect as declaring
it globally.
"""
global _dummies
if not (name, token) in _dummies:
_dummies[(name, token)] = Dummy(name, **kwargs)
return _dummies[(name, token)]
def _is_analytic(f, x):
""" Check if f(x), when expressed using G functions on the positive reals,
will in fact agree with the G functions almost everywhere """
return not any(x in expr.free_symbols for expr in f.atoms(Heaviside, Abs))
def _condsimp(cond, first=True):
"""
Do naive simplifications on ``cond``.
Explanation
===========
Note that this routine is completely ad-hoc, simplification rules being
added as need arises rather than following any logical pattern.
Examples
========
>>> from sympy.integrals.meijerint import _condsimp as simp
>>> from sympy import Or, Eq
>>> from sympy.abc import x, y
>>> simp(Or(x < y, Eq(x, y)))
x <= y
"""
if first:
cond = cond.replace(lambda _: _.is_Relational, _canonical_coeff)
first = False
if not isinstance(cond, BooleanFunction):
return cond
p, q, r = symbols('p q r', cls=Wild)
# transforms tests use 0, 4, 5 and 11-14
# meijer tests use 0, 2, 11, 14
# joint_rv uses 6, 7
rules = [
(Or(p < q, Eq(p, q)), p <= q), # 0
# The next two obviously are instances of a general pattern, but it is
# easier to spell out the few cases we care about.
(And(Abs(arg(p)) <= pi, Abs(arg(p) - 2*pi) <= pi),
Eq(arg(p) - pi, 0)), # 1
(And(Abs(2*arg(p) + pi) <= pi, Abs(2*arg(p) - pi) <= pi),
Eq(arg(p), 0)), # 2
(And(Abs(2*arg(p) + pi) < pi, Abs(2*arg(p) - pi) <= pi),
S.false), # 3
(And(Abs(arg(p) - pi/2) <= pi/2, Abs(arg(p) + pi/2) <= pi/2),
Eq(arg(p), 0)), # 4
(And(Abs(arg(p) - pi/2) <= pi/2, Abs(arg(p) + pi/2) < pi/2),
S.false), # 5
(And(Abs(arg(p**2/2 + 1)) < pi, Ne(Abs(arg(p**2/2 + 1)), pi)),
S.true), # 6
(Or(Abs(arg(p**2/2 + 1)) < pi, Ne(1/(p**2/2 + 1), 0)),
S.true), # 7
(And(Abs(unbranched_argument(p)) <= pi,
Abs(unbranched_argument(exp_polar(-2*pi*S.ImaginaryUnit)*p)) <= pi),
Eq(unbranched_argument(exp_polar(-S.ImaginaryUnit*pi)*p), 0)), # 8
(And(Abs(unbranched_argument(p)) <= pi/2,
Abs(unbranched_argument(exp_polar(-pi*S.ImaginaryUnit)*p)) <= pi/2),
Eq(unbranched_argument(exp_polar(-S.ImaginaryUnit*pi/2)*p), 0)), # 9
(Or(p <= q, And(p < q, r)), p <= q), # 10
(Ne(p**2, 1) & (p**2 > 1), p**2 > 1), # 11
(Ne(1/p, 1) & (cos(Abs(arg(p)))*Abs(p) > 1), Abs(p) > 1), # 12
(Ne(p, 2) & (cos(Abs(arg(p)))*Abs(p) > 2), Abs(p) > 2), # 13
((Abs(arg(p)) < pi/2) & (cos(Abs(arg(p)))*sqrt(Abs(p**2)) > 1), p**2 > 1), # 14
]
cond = cond.func(*list(map(lambda _: _condsimp(_, first), cond.args)))
change = True
while change:
change = False
for irule, (fro, to) in enumerate(rules):
if fro.func != cond.func:
continue
for n, arg1 in enumerate(cond.args):
if r in fro.args[0].free_symbols:
m = arg1.match(fro.args[1])
num = 1
else:
num = 0
m = arg1.match(fro.args[0])
if not m:
continue
otherargs = [x.subs(m) for x in fro.args[:num] + fro.args[num + 1:]]
otherlist = [n]
for arg2 in otherargs:
for k, arg3 in enumerate(cond.args):
if k in otherlist:
continue
if arg2 == arg3:
otherlist += [k]
break
if isinstance(arg3, And) and arg2.args[1] == r and \
isinstance(arg2, And) and arg2.args[0] in arg3.args:
otherlist += [k]
break
if isinstance(arg3, And) and arg2.args[0] == r and \
isinstance(arg2, And) and arg2.args[1] in arg3.args:
otherlist += [k]
break
if len(otherlist) != len(otherargs) + 1:
continue
newargs = [arg_ for (k, arg_) in enumerate(cond.args)
if k not in otherlist] + [to.subs(m)]
if SYMPY_DEBUG:
if irule not in (0, 2, 4, 5, 6, 7, 11, 12, 13, 14):
print('used new rule:', irule)
cond = cond.func(*newargs)
change = True
break
# final tweak
def rel_touchup(rel):
if rel.rel_op != '==' or rel.rhs != 0:
return rel
# handle Eq(*, 0)
LHS = rel.lhs
m = LHS.match(arg(p)**q)
if not m:
m = LHS.match(unbranched_argument(polar_lift(p)**q))
if not m:
if isinstance(LHS, periodic_argument) and not LHS.args[0].is_polar \
and LHS.args[1] is S.Infinity:
return (LHS.args[0] > 0)
return rel
return (m[p] > 0)
cond = cond.replace(lambda _: _.is_Relational, rel_touchup)
if SYMPY_DEBUG:
print('_condsimp: ', cond)
return cond
def _eval_cond(cond):
""" Re-evaluate the conditions. """
if isinstance(cond, bool):
return cond
return _condsimp(cond.doit())
####################################################################
# Now the "backbone" functions to do actual integration.
####################################################################
def _my_principal_branch(expr, period, full_pb=False):
""" Bring expr nearer to its principal branch by removing superfluous
factors.
This function does *not* guarantee to yield the principal branch,
to avoid introducing opaque principal_branch() objects,
unless full_pb=True. """
res = principal_branch(expr, period)
if not full_pb:
res = res.replace(principal_branch, lambda x, y: x)
return res
def _rewrite_saxena_1(fac, po, g, x):
"""
Rewrite the integral fac*po*g dx, from zero to infinity, as
integral fac*G, where G has argument a*x. Note po=x**s.
Return fac, G.
"""
_, s = _get_coeff_exp(po, x)
a, b = _get_coeff_exp(g.argument, x)
period = g.get_period()
a = _my_principal_branch(a, period)
# We substitute t = x**b.
C = fac/(Abs(b)*a**((s + 1)/b - 1))
# Absorb a factor of (at)**((1 + s)/b - 1).
def tr(l):
return [a + (1 + s)/b - 1 for a in l]
return C, meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother),
a*x)
def _check_antecedents_1(g, x, helper=False):
r"""
Return a condition under which the mellin transform of g exists.
Any power of x has already been absorbed into the G function,
so this is just $\int_0^\infty g\, dx$.
See [L, section 5.6.1]. (Note that s=1.)
If ``helper`` is True, only check if the MT exists at infinity, i.e. if
$\int_1^\infty g\, dx$ exists.
"""
# NOTE if you update these conditions, please update the documentation as well
delta = g.delta
eta, _ = _get_coeff_exp(g.argument, x)
m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)])
if p > q:
def tr(l):
return [1 - x for x in l]
return _check_antecedents_1(meijerg(tr(g.bm), tr(g.bother),
tr(g.an), tr(g.aother), x/eta),
x)
tmp = [-re(b) < 1 for b in g.bm] + [1 < 1 - re(a) for a in g.an]
cond_3 = And(*tmp)
tmp += [-re(b) < 1 for b in g.bother]
tmp += [1 < 1 - re(a) for a in g.aother]
cond_3_star = And(*tmp)
cond_4 = (-re(g.nu) + (q + 1 - p)/2 > q - p)
def debug(*msg):
_debug(*msg)
debug('Checking antecedents for 1 function:')
debug(' delta=%s, eta=%s, m=%s, n=%s, p=%s, q=%s'
% (delta, eta, m, n, p, q))
debug(' ap = %s, %s' % (list(g.an), list(g.aother)))
debug(' bq = %s, %s' % (list(g.bm), list(g.bother)))
debug(' cond_3=%s, cond_3*=%s, cond_4=%s' % (cond_3, cond_3_star, cond_4))
conds = []
# case 1
case1 = []
tmp1 = [1 <= n, p < q, 1 <= m]
tmp2 = [1 <= p, 1 <= m, Eq(q, p + 1), Not(And(Eq(n, 0), Eq(m, p + 1)))]
tmp3 = [1 <= p, Eq(q, p)]
for k in range(ceiling(delta/2) + 1):
tmp3 += [Ne(Abs(unbranched_argument(eta)), (delta - 2*k)*pi)]
tmp = [delta > 0, Abs(unbranched_argument(eta)) < delta*pi]
extra = [Ne(eta, 0), cond_3]
if helper:
extra = []
for t in [tmp1, tmp2, tmp3]:
case1 += [And(*(t + tmp + extra))]
conds += case1
debug(' case 1:', case1)
# case 2
extra = [cond_3]
if helper:
extra = []
case2 = [And(Eq(n, 0), p + 1 <= m, m <= q,
Abs(unbranched_argument(eta)) < delta*pi, *extra)]
conds += case2
debug(' case 2:', case2)
# case 3
extra = [cond_3, cond_4]
if helper:
extra = []
case3 = [And(p < q, 1 <= m, delta > 0, Eq(Abs(unbranched_argument(eta)), delta*pi),
*extra)]
case3 += [And(p <= q - 2, Eq(delta, 0), Eq(Abs(unbranched_argument(eta)), 0), *extra)]
conds += case3
debug(' case 3:', case3)
# TODO altered cases 4-7
# extra case from wofram functions site:
# (reproduced verbatim from Prudnikov, section 2.24.2)
# http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/01/
case_extra = []
case_extra += [Eq(p, q), Eq(delta, 0), Eq(unbranched_argument(eta), 0), Ne(eta, 0)]
if not helper:
case_extra += [cond_3]
s = []
for a, b in zip(g.ap, g.bq):
s += [b - a]
case_extra += [re(Add(*s)) < 0]
case_extra = And(*case_extra)
conds += [case_extra]
debug(' extra case:', [case_extra])
case_extra_2 = [And(delta > 0, Abs(unbranched_argument(eta)) < delta*pi)]
if not helper:
case_extra_2 += [cond_3]
case_extra_2 = And(*case_extra_2)
conds += [case_extra_2]
debug(' second extra case:', [case_extra_2])
# TODO This leaves only one case from the three listed by Prudnikov.
# Investigate if these indeed cover everything; if so, remove the rest.
return Or(*conds)
def _int0oo_1(g, x):
r"""
Evaluate $\int_0^\infty g\, dx$ using G functions,
assuming the necessary conditions are fulfilled.
Examples
========
>>> from sympy.abc import a, b, c, d, x, y
>>> from sympy import meijerg
>>> from sympy.integrals.meijerint import _int0oo_1
>>> _int0oo_1(meijerg([a], [b], [c], [d], x*y), x)
gamma(-a)*gamma(c + 1)/(y*gamma(-d)*gamma(b + 1))
"""
from sympy.simplify import gammasimp
# See [L, section 5.6.1]. Note that s=1.
eta, _ = _get_coeff_exp(g.argument, x)
res = 1/eta
# XXX TODO we should reduce order first
for b in g.bm:
res *= gamma(b + 1)
for a in g.an:
res *= gamma(1 - a - 1)
for b in g.bother:
res /= gamma(1 - b - 1)
for a in g.aother:
res /= gamma(a + 1)
return gammasimp(unpolarify(res))
def _rewrite_saxena(fac, po, g1, g2, x, full_pb=False):
"""
Rewrite the integral ``fac*po*g1*g2`` from 0 to oo in terms of G
functions with argument ``c*x``.
Explanation
===========
Return C, f1, f2 such that integral C f1 f2 from 0 to infinity equals
integral fac ``po``, ``g1``, ``g2`` from 0 to infinity.
Examples
========
>>> from sympy.integrals.meijerint import _rewrite_saxena
>>> from sympy.abc import s, t, m
>>> from sympy import meijerg
>>> g1 = meijerg([], [], [0], [], s*t)
>>> g2 = meijerg([], [], [m/2], [-m/2], t**2/4)
>>> r = _rewrite_saxena(1, t**0, g1, g2, t)
>>> r[0]
s/(4*sqrt(pi))
>>> r[1]
meijerg(((), ()), ((-1/2, 0), ()), s**2*t/4)
>>> r[2]
meijerg(((), ()), ((m/2,), (-m/2,)), t/4)
"""
def pb(g):
a, b = _get_coeff_exp(g.argument, x)
per = g.get_period()
return meijerg(g.an, g.aother, g.bm, g.bother,
_my_principal_branch(a, per, full_pb)*x**b)
_, s = _get_coeff_exp(po, x)
_, b1 = _get_coeff_exp(g1.argument, x)
_, b2 = _get_coeff_exp(g2.argument, x)
if (b1 < 0) == True:
b1 = -b1
g1 = _flip_g(g1)
if (b2 < 0) == True:
b2 = -b2
g2 = _flip_g(g2)
if not b1.is_Rational or not b2.is_Rational:
return
m1, n1 = b1.p, b1.q
m2, n2 = b2.p, b2.q
tau = ilcm(m1*n2, m2*n1)
r1 = tau//(m1*n2)
r2 = tau//(m2*n1)
C1, g1 = _inflate_g(g1, r1)
C2, g2 = _inflate_g(g2, r2)
g1 = pb(g1)
g2 = pb(g2)
fac *= C1*C2
a1, b = _get_coeff_exp(g1.argument, x)
a2, _ = _get_coeff_exp(g2.argument, x)
# arbitrarily tack on the x**s part to g1
# TODO should we try both?
exp = (s + 1)/b - 1
fac = fac/(Abs(b) * a1**exp)
def tr(l):
return [a + exp for a in l]
g1 = meijerg(tr(g1.an), tr(g1.aother), tr(g1.bm), tr(g1.bother), a1*x)
g2 = meijerg(g2.an, g2.aother, g2.bm, g2.bother, a2*x)
from sympy.simplify import powdenest
return powdenest(fac, polar=True), g1, g2
def _check_antecedents(g1, g2, x):
""" Return a condition under which the integral theorem applies. """
# Yes, this is madness.
# XXX TODO this is a testing *nightmare*
# NOTE if you update these conditions, please update the documentation as well
# The following conditions are found in
# [P], Section 2.24.1
#
# They are also reproduced (verbatim!) at
# http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/
#
# Note: k=l=r=alpha=1
sigma, _ = _get_coeff_exp(g1.argument, x)
omega, _ = _get_coeff_exp(g2.argument, x)
s, t, u, v = S([len(g1.bm), len(g1.an), len(g1.ap), len(g1.bq)])
m, n, p, q = S([len(g2.bm), len(g2.an), len(g2.ap), len(g2.bq)])
bstar = s + t - (u + v)/2
cstar = m + n - (p + q)/2
rho = g1.nu + (u - v)/2 + 1
mu = g2.nu + (p - q)/2 + 1
phi = q - p - (v - u)
eta = 1 - (v - u) - mu - rho
psi = (pi*(q - m - n) + Abs(unbranched_argument(omega)))/(q - p)
theta = (pi*(v - s - t) + Abs(unbranched_argument(sigma)))/(v - u)
_debug('Checking antecedents:')
_debug(' sigma=%s, s=%s, t=%s, u=%s, v=%s, b*=%s, rho=%s'
% (sigma, s, t, u, v, bstar, rho))
_debug(' omega=%s, m=%s, n=%s, p=%s, q=%s, c*=%s, mu=%s,'
% (omega, m, n, p, q, cstar, mu))
_debug(' phi=%s, eta=%s, psi=%s, theta=%s' % (phi, eta, psi, theta))
def _c1():
for g in [g1, g2]:
for i, j in itertools.product(g.an, g.bm):
diff = i - j
if diff.is_integer and diff.is_positive:
return False
return True
c1 = _c1()
c2 = And(*[re(1 + i + j) > 0 for i in g1.bm for j in g2.bm])
c3 = And(*[re(1 + i + j) < 1 + 1 for i in g1.an for j in g2.an])
c4 = And(*[(p - q)*re(1 + i - 1) - re(mu) > Rational(-3, 2) for i in g1.an])
c5 = And(*[(p - q)*re(1 + i) - re(mu) > Rational(-3, 2) for i in g1.bm])
c6 = And(*[(u - v)*re(1 + i - 1) - re(rho) > Rational(-3, 2) for i in g2.an])
c7 = And(*[(u - v)*re(1 + i) - re(rho) > Rational(-3, 2) for i in g2.bm])
c8 = (Abs(phi) + 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu -
1)*(v - u)) > 0)
c9 = (Abs(phi) - 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu -
1)*(v - u)) > 0)
c10 = (Abs(unbranched_argument(sigma)) < bstar*pi)
c11 = Eq(Abs(unbranched_argument(sigma)), bstar*pi)
c12 = (Abs(unbranched_argument(omega)) < cstar*pi)
c13 = Eq(Abs(unbranched_argument(omega)), cstar*pi)
# The following condition is *not* implemented as stated on the wolfram
# function site. In the book of Prudnikov there is an additional part
# (the And involving re()). However, I only have this book in russian, and
# I don't read any russian. The following condition is what other people
# have told me it means.
# Worryingly, it is different from the condition implemented in REDUCE.
# The REDUCE implementation:
# https://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra/trunk/packages/defint/definta.red
# (search for tst14)
# The Wolfram alpha version:
# http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/03/0014/
z0 = exp(-(bstar + cstar)*pi*S.ImaginaryUnit)
zos = unpolarify(z0*omega/sigma)
zso = unpolarify(z0*sigma/omega)
if zos == 1/zso:
c14 = And(Eq(phi, 0), bstar + cstar <= 1,
Or(Ne(zos, 1), re(mu + rho + v - u) < 1,
re(mu + rho + q - p) < 1))
else:
def _cond(z):
'''Returns True if abs(arg(1-z)) < pi, avoiding arg(0).
Explanation
===========
If ``z`` is 1 then arg is NaN. This raises a
TypeError on `NaN < pi`. Previously this gave `False` so
this behavior has been hardcoded here but someone should
check if this NaN is more serious! This NaN is triggered by
test_meijerint() in test_meijerint.py:
`meijerint_definite(exp(x), x, 0, I)`
'''
return z != 1 and Abs(arg(1 - z)) < pi
c14 = And(Eq(phi, 0), bstar - 1 + cstar <= 0,
Or(And(Ne(zos, 1), _cond(zos)),
And(re(mu + rho + v - u) < 1, Eq(zos, 1))))
c14_alt = And(Eq(phi, 0), cstar - 1 + bstar <= 0,
Or(And(Ne(zso, 1), _cond(zso)),
And(re(mu + rho + q - p) < 1, Eq(zso, 1))))
# Since r=k=l=1, in our case there is c14_alt which is the same as calling
# us with (g1, g2) = (g2, g1). The conditions below enumerate all cases
# (i.e. we don't have to try arguments reversed by hand), and indeed try
# all symmetric cases. (i.e. whenever there is a condition involving c14,
# there is also a dual condition which is exactly what we would get when g1,
# g2 were interchanged, *but c14 was unaltered*).
# Hence the following seems correct:
c14 = Or(c14, c14_alt)
'''
When `c15` is NaN (e.g. from `psi` being NaN as happens during
'test_issue_4992' and/or `theta` is NaN as in 'test_issue_6253',
both in `test_integrals.py`) the comparison to 0 formerly gave False
whereas now an error is raised. To keep the old behavior, the value
of NaN is replaced with False but perhaps a closer look at this condition
should be made: XXX how should conditions leading to c15=NaN be handled?
'''
try:
lambda_c = (q - p)*Abs(omega)**(1/(q - p))*cos(psi) \
+ (v - u)*Abs(sigma)**(1/(v - u))*cos(theta)
# the TypeError might be raised here, e.g. if lambda_c is NaN
if _eval_cond(lambda_c > 0) != False:
c15 = (lambda_c > 0)
else:
def lambda_s0(c1, c2):
return c1*(q - p)*Abs(omega)**(1/(q - p))*sin(psi) \
+ c2*(v - u)*Abs(sigma)**(1/(v - u))*sin(theta)
lambda_s = Piecewise(
((lambda_s0(+1, +1)*lambda_s0(-1, -1)),
And(Eq(unbranched_argument(sigma), 0), Eq(unbranched_argument(omega), 0))),
(lambda_s0(sign(unbranched_argument(omega)), +1)*lambda_s0(sign(unbranched_argument(omega)), -1),
And(Eq(unbranched_argument(sigma), 0), Ne(unbranched_argument(omega), 0))),
(lambda_s0(+1, sign(unbranched_argument(sigma)))*lambda_s0(-1, sign(unbranched_argument(sigma))),
And(Ne(unbranched_argument(sigma), 0), Eq(unbranched_argument(omega), 0))),
(lambda_s0(sign(unbranched_argument(omega)), sign(unbranched_argument(sigma))), True))
tmp = [lambda_c > 0,
And(Eq(lambda_c, 0), Ne(lambda_s, 0), re(eta) > -1),
And(Eq(lambda_c, 0), Eq(lambda_s, 0), re(eta) > 0)]
c15 = Or(*tmp)
except TypeError:
c15 = False
for cond, i in [(c1, 1), (c2, 2), (c3, 3), (c4, 4), (c5, 5), (c6, 6),
(c7, 7), (c8, 8), (c9, 9), (c10, 10), (c11, 11),
(c12, 12), (c13, 13), (c14, 14), (c15, 15)]:
_debug(' c%s:' % i, cond)
# We will return Or(*conds)
conds = []
def pr(count):
_debug(' case %s:' % count, conds[-1])
conds += [And(m*n*s*t != 0, bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10,
c12)] # 1
pr(1)
conds += [And(Eq(u, v), Eq(bstar, 0), cstar.is_positive is True, sigma.is_positive is True, re(rho) < 1,
c1, c2, c3, c12)] # 2
pr(2)
conds += [And(Eq(p, q), Eq(cstar, 0), bstar.is_positive is True, omega.is_positive is True, re(mu) < 1,
c1, c2, c3, c10)] # 3
pr(3)
conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0),
sigma.is_positive is True, omega.is_positive is True, re(mu) < 1, re(rho) < 1,
Ne(sigma, omega), c1, c2, c3)] # 4
pr(4)
conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0),
sigma.is_positive is True, omega.is_positive is True, re(mu + rho) < 1,
Ne(omega, sigma), c1, c2, c3)] # 5
pr(5)
conds += [And(p > q, s.is_positive is True, bstar.is_positive is True, cstar >= 0,
c1, c2, c3, c5, c10, c13)] # 6
pr(6)
conds += [And(p < q, t.is_positive is True, bstar.is_positive is True, cstar >= 0,
c1, c2, c3, c4, c10, c13)] # 7
pr(7)
conds += [And(u > v, m.is_positive is True, cstar.is_positive is True, bstar >= 0,
c1, c2, c3, c7, c11, c12)] # 8
pr(8)
conds += [And(u < v, n.is_positive is True, cstar.is_positive is True, bstar >= 0,
c1, c2, c3, c6, c11, c12)] # 9
pr(9)
conds += [And(p > q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True,
re(rho) < 1, c1, c2, c3, c5, c13)] # 10
pr(10)
conds += [And(p < q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True,
re(rho) < 1, c1, c2, c3, c4, c13)] # 11
pr(11)
conds += [And(Eq(p, q), u > v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True,
re(mu) < 1, c1, c2, c3, c7, c11)] # 12
pr(12)
conds += [And(Eq(p, q), u < v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True,
re(mu) < 1, c1, c2, c3, c6, c11)] # 13
pr(13)
conds += [And(p < q, u > v, bstar >= 0, cstar >= 0,
c1, c2, c3, c4, c7, c11, c13)] # 14
pr(14)
conds += [And(p > q, u < v, bstar >= 0, cstar >= 0,
c1, c2, c3, c5, c6, c11, c13)] # 15
pr(15)
conds += [And(p > q, u > v, bstar >= 0, cstar >= 0,
c1, c2, c3, c5, c7, c8, c11, c13, c14)] # 16
pr(16)
conds += [And(p < q, u < v, bstar >= 0, cstar >= 0,
c1, c2, c3, c4, c6, c9, c11, c13, c14)] # 17
pr(17)
conds += [And(Eq(t, 0), s.is_positive is True, bstar.is_positive is True, phi.is_positive is True, c1, c2, c10)] # 18
pr(18)
conds += [And(Eq(s, 0), t.is_positive is True, bstar.is_positive is True, phi.is_negative is True, c1, c3, c10)] # 19
pr(19)
conds += [And(Eq(n, 0), m.is_positive is True, cstar.is_positive is True, phi.is_negative is True, c1, c2, c12)] # 20
pr(20)
conds += [And(Eq(m, 0), n.is_positive is True, cstar.is_positive is True, phi.is_positive is True, c1, c3, c12)] # 21
pr(21)
conds += [And(Eq(s*t, 0), bstar.is_positive is True, cstar.is_positive is True,
c1, c2, c3, c10, c12)] # 22
pr(22)
conds += [And(Eq(m*n, 0), bstar.is_positive is True, cstar.is_positive is True,
c1, c2, c3, c10, c12)] # 23
pr(23)
# The following case is from [Luke1969]. As far as I can tell, it is *not*
# covered by Prudnikov's.
# Let G1 and G2 be the two G-functions. Suppose the integral exists from
# 0 to a > 0 (this is easy the easy part), that G1 is exponential decay at
# infinity, and that the mellin transform of G2 exists.
# Then the integral exists.
mt1_exists = _check_antecedents_1(g1, x, helper=True)
mt2_exists = _check_antecedents_1(g2, x, helper=True)
conds += [And(mt2_exists, Eq(t, 0), u < s, bstar.is_positive is True, c10, c1, c2, c3)]
pr('E1')
conds += [And(mt2_exists, Eq(s, 0), v < t, bstar.is_positive is True, c10, c1, c2, c3)]
pr('E2')
conds += [And(mt1_exists, Eq(n, 0), p < m, cstar.is_positive is True, c12, c1, c2, c3)]
pr('E3')
conds += [And(mt1_exists, Eq(m, 0), q < n, cstar.is_positive is True, c12, c1, c2, c3)]
pr('E4')
# Let's short-circuit if this worked ...
# the rest is corner-cases and terrible to read.
r = Or(*conds)
if _eval_cond(r) != False:
return r
conds += [And(m + n > p, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar.is_negative is True,
Abs(unbranched_argument(omega)) < (m + n - p + 1)*pi,
c1, c2, c10, c14, c15)] # 24
pr(24)
conds += [And(m + n > q, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar.is_negative is True,
Abs(unbranched_argument(omega)) < (m + n - q + 1)*pi,
c1, c3, c10, c14, c15)] # 25
pr(25)
conds += [And(Eq(p, q - 1), Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True,
cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)),
c1, c2, c10, c14, c15)] # 26
pr(26)
conds += [And(Eq(p, q + 1), Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True,
cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)),
c1, c3, c10, c14, c15)] # 27
pr(27)
conds += [And(p < q - 1, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True,
cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)),
Abs(unbranched_argument(omega)) < (m + n - p + 1)*pi,
c1, c2, c10, c14, c15)] # 28
pr(28)
conds += [And(
p > q + 1, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0,
cstar*pi < Abs(unbranched_argument(omega)),
Abs(unbranched_argument(omega)) < (m + n - q + 1)*pi,
c1, c3, c10, c14, c15)] # 29
pr(29)
conds += [And(Eq(n, 0), Eq(phi, 0), s + t > 0, m.is_positive is True, cstar.is_positive is True, bstar.is_negative is True,
Abs(unbranched_argument(sigma)) < (s + t - u + 1)*pi,
c1, c2, c12, c14, c15)] # 30
pr(30)
conds += [And(Eq(m, 0), Eq(phi, 0), s + t > v, n.is_positive is True, cstar.is_positive is True, bstar.is_negative is True,
Abs(unbranched_argument(sigma)) < (s + t - v + 1)*pi,
c1, c3, c12, c14, c15)] # 31
pr(31)
conds += [And(Eq(n, 0), Eq(phi, 0), Eq(u, v - 1), m.is_positive is True, cstar.is_positive is True,
bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)),
Abs(unbranched_argument(sigma)) < (bstar + 1)*pi,
c1, c2, c12, c14, c15)] # 32
pr(32)
conds += [And(Eq(m, 0), Eq(phi, 0), Eq(u, v + 1), n.is_positive is True, cstar.is_positive is True,
bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)),
Abs(unbranched_argument(sigma)) < (bstar + 1)*pi,
c1, c3, c12, c14, c15)] # 33
pr(33)
conds += [And(
Eq(n, 0), Eq(phi, 0), u < v - 1, m.is_positive is True, cstar.is_positive is True, bstar >= 0,
bstar*pi < Abs(unbranched_argument(sigma)),
Abs(unbranched_argument(sigma)) < (s + t - u + 1)*pi,
c1, c2, c12, c14, c15)] # 34
pr(34)
conds += [And(
Eq(m, 0), Eq(phi, 0), u > v + 1, n.is_positive is True, cstar.is_positive is True, bstar >= 0,
bstar*pi < Abs(unbranched_argument(sigma)),
Abs(unbranched_argument(sigma)) < (s + t - v + 1)*pi,
c1, c3, c12, c14, c15)] # 35
pr(35)
return Or(*conds)
# NOTE An alternative, but as far as I can tell weaker, set of conditions
# can be found in [L, section 5.6.2].
def _int0oo(g1, g2, x):
"""
Express integral from zero to infinity g1*g2 using a G function,
assuming the necessary conditions are fulfilled.
Examples
========
>>> from sympy.integrals.meijerint import _int0oo
>>> from sympy.abc import s, t, m
>>> from sympy import meijerg, S
>>> g1 = meijerg([], [], [-S(1)/2, 0], [], s**2*t/4)
>>> g2 = meijerg([], [], [m/2], [-m/2], t/4)
>>> _int0oo(g1, g2, t)
4*meijerg(((1/2, 0), ()), ((m/2,), (-m/2,)), s**(-2))/s**2
"""
# See: [L, section 5.6.2, equation (1)]
eta, _ = _get_coeff_exp(g1.argument, x)
omega, _ = _get_coeff_exp(g2.argument, x)
def neg(l):
return [-x for x in l]
a1 = neg(g1.bm) + list(g2.an)
a2 = list(g2.aother) + neg(g1.bother)
b1 = neg(g1.an) + list(g2.bm)
b2 = list(g2.bother) + neg(g1.aother)
return meijerg(a1, a2, b1, b2, omega/eta)/eta
def _rewrite_inversion(fac, po, g, x):
""" Absorb ``po`` == x**s into g. """
_, s = _get_coeff_exp(po, x)
a, b = _get_coeff_exp(g.argument, x)
def tr(l):
return [t + s/b for t in l]
from sympy.simplify import powdenest
return (powdenest(fac/a**(s/b), polar=True),
meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), g.argument))
def _check_antecedents_inversion(g, x):
""" Check antecedents for the laplace inversion integral. """
_debug('Checking antecedents for inversion:')
z = g.argument
_, e = _get_coeff_exp(z, x)
if e < 0:
_debug(' Flipping G.')
# We want to assume that argument gets large as |x| -> oo
return _check_antecedents_inversion(_flip_g(g), x)
def statement_half(a, b, c, z, plus):
coeff, exponent = _get_coeff_exp(z, x)
a *= exponent
b *= coeff**c
c *= exponent
conds = []
wp = b*exp(S.ImaginaryUnit*re(c)*pi/2)
wm = b*exp(-S.ImaginaryUnit*re(c)*pi/2)
if plus:
w = wp
else:
w = wm
conds += [And(Or(Eq(b, 0), re(c) <= 0), re(a) <= -1)]
conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) < 0)]
conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) <= 0,
re(a) <= -1)]
return Or(*conds)
def statement(a, b, c, z):
""" Provide a convergence statement for z**a * exp(b*z**c),
c/f sphinx docs. """
return And(statement_half(a, b, c, z, True),
statement_half(a, b, c, z, False))
# Notations from [L], section 5.7-10
m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)])
tau = m + n - p
nu = q - m - n
rho = (tau - nu)/2
sigma = q - p
if sigma == 1:
epsilon = S.Half
elif sigma > 1:
epsilon = 1
else:
epsilon = S.NaN
theta = ((1 - sigma)/2 + Add(*g.bq) - Add(*g.ap))/sigma
delta = g.delta
_debug(' m=%s, n=%s, p=%s, q=%s, tau=%s, nu=%s, rho=%s, sigma=%s' % (
m, n, p, q, tau, nu, rho, sigma))
_debug(' epsilon=%s, theta=%s, delta=%s' % (epsilon, theta, delta))
# First check if the computation is valid.
if not (g.delta >= e/2 or (p >= 1 and p >= q)):
_debug(' Computation not valid for these parameters.')
return False
# Now check if the inversion integral exists.
# Test "condition A"
for a, b in itertools.product(g.an, g.bm):
if (a - b).is_integer and a > b:
_debug(' Not a valid G function.')
return False
# There are two cases. If p >= q, we can directly use a slater expansion
# like [L], 5.2 (11). Note in particular that the asymptotics of such an
# expansion even hold when some of the parameters differ by integers, i.e.
# the formula itself would not be valid! (b/c G functions are cts. in their
# parameters)
# When p < q, we need to use the theorems of [L], 5.10.
if p >= q:
_debug(' Using asymptotic Slater expansion.')
return And(*[statement(a - 1, 0, 0, z) for a in g.an])
def E(z):
return And(*[statement(a - 1, 0, 0, z) for a in g.an])
def H(z):
return statement(theta, -sigma, 1/sigma, z)
def Hp(z):
return statement_half(theta, -sigma, 1/sigma, z, True)
def Hm(z):
return statement_half(theta, -sigma, 1/sigma, z, False)
# [L], section 5.10
conds = []
# Theorem 1 -- p < q from test above
conds += [And(1 <= n, 1 <= m, rho*pi - delta >= pi/2, delta > 0,
E(z*exp(S.ImaginaryUnit*pi*(nu + 1))))]
# Theorem 2, statements (2) and (3)
conds += [And(p + 1 <= m, m + 1 <= q, delta > 0, delta < pi/2, n == 0,
(m - p + 1)*pi - delta >= pi/2,
Hp(z*exp(S.ImaginaryUnit*pi*(q - m))),
Hm(z*exp(-S.ImaginaryUnit*pi*(q - m))))]
# Theorem 2, statement (5) -- p < q from test above
conds += [And(m == q, n == 0, delta > 0,
(sigma + epsilon)*pi - delta >= pi/2, H(z))]
# Theorem 3, statements (6) and (7)
conds += [And(Or(And(p <= q - 2, 1 <= tau, tau <= sigma/2),
And(p + 1 <= m + n, m + n <= (p + q)/2)),
delta > 0, delta < pi/2, (tau + 1)*pi - delta >= pi/2,
Hp(z*exp(S.ImaginaryUnit*pi*nu)),
Hm(z*exp(-S.ImaginaryUnit*pi*nu)))]
# Theorem 4, statements (10) and (11) -- p < q from test above
conds += [And(1 <= m, rho > 0, delta > 0, delta + rho*pi < pi/2,
(tau + epsilon)*pi - delta >= pi/2,
Hp(z*exp(S.ImaginaryUnit*pi*nu)),
Hm(z*exp(-S.ImaginaryUnit*pi*nu)))]
# Trivial case
conds += [m == 0]
# TODO
# Theorem 5 is quite general
# Theorem 6 contains special cases for q=p+1
return Or(*conds)
def _int_inversion(g, x, t):
"""
Compute the laplace inversion integral, assuming the formula applies.
"""
b, a = _get_coeff_exp(g.argument, x)
C, g = _inflate_fox_h(meijerg(g.an, g.aother, g.bm, g.bother, b/t**a), -a)
return C/t*g
####################################################################
# Finally, the real meat.
####################################################################
_lookup_table = None
@cacheit
@timeit
def _rewrite_single(f, x, recursive=True):
"""
Try to rewrite f as a sum of single G functions of the form
C*x**s*G(a*x**b), where b is a rational number and C is independent of x.
We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,))
or (a, ()).
Returns a list of tuples (C, s, G) and a condition cond.
Returns None on failure.
"""
from .transforms import (mellin_transform, inverse_mellin_transform,
IntegralTransformError, MellinTransformStripError)
global _lookup_table
if not _lookup_table:
_lookup_table = {}
_create_lookup_table(_lookup_table)
if isinstance(f, meijerg):
coeff, m = factor(f.argument, x).as_coeff_mul(x)
if len(m) > 1:
return None
m = m[0]
if m.is_Pow:
if m.base != x or not m.exp.is_Rational:
return None
elif m != x:
return None
return [(1, 0, meijerg(f.an, f.aother, f.bm, f.bother, coeff*m))], True
f_ = f
f = f.subs(x, z)
t = _mytype(f, z)
if t in _lookup_table:
l = _lookup_table[t]
for formula, terms, cond, hint in l:
subs = f.match(formula, old=True)
if subs:
subs_ = {}
for fro, to in subs.items():
subs_[fro] = unpolarify(polarify(to, lift=True),
exponents_only=True)
subs = subs_
if not isinstance(hint, bool):
hint = hint.subs(subs)
if hint == False:
continue
if not isinstance(cond, (bool, BooleanAtom)):
cond = unpolarify(cond.subs(subs))
if _eval_cond(cond) == False:
continue
if not isinstance(terms, list):
terms = terms(subs)
res = []
for fac, g in terms:
r1 = _get_coeff_exp(unpolarify(fac.subs(subs).subs(z, x),
exponents_only=True), x)
try:
g = g.subs(subs).subs(z, x)
except ValueError:
continue
# NOTE these substitutions can in principle introduce oo,
# zoo and other absurdities. It shouldn't matter,
# but better be safe.
if Tuple(*(r1 + (g,))).has(S.Infinity, S.ComplexInfinity, S.NegativeInfinity):
continue
g = meijerg(g.an, g.aother, g.bm, g.bother,
unpolarify(g.argument, exponents_only=True))
res.append(r1 + (g,))
if res:
return res, cond
# try recursive mellin transform
if not recursive:
return None
_debug('Trying recursive Mellin transform method.')
def my_imt(F, s, x, strip):
""" Calling simplify() all the time is slow and not helpful, since
most of the time it only factors things in a way that has to be
un-done anyway. But sometimes it can remove apparent poles. """
# XXX should this be in inverse_mellin_transform?
try:
return inverse_mellin_transform(F, s, x, strip,
as_meijerg=True, needeval=True)
except MellinTransformStripError:
from sympy.simplify import simplify
return inverse_mellin_transform(
simplify(cancel(expand(F))), s, x, strip,
as_meijerg=True, needeval=True)
f = f_
s = _dummy('s', 'rewrite-single', f)
# to avoid infinite recursion, we have to force the two g functions case
def my_integrator(f, x):
r = _meijerint_definite_4(f, x, only_double=True)
if r is not None:
from sympy.simplify import hyperexpand
res, cond = r
res = _my_unpolarify(hyperexpand(res, rewrite='nonrepsmall'))
return Piecewise((res, cond),
(Integral(f, (x, S.Zero, S.Infinity)), True))
return Integral(f, (x, S.Zero, S.Infinity))
try:
F, strip, _ = mellin_transform(f, x, s, integrator=my_integrator,
simplify=False, needeval=True)
g = my_imt(F, s, x, strip)
except IntegralTransformError:
g = None
if g is None:
# We try to find an expression by analytic continuation.
# (also if the dummy is already in the expression, there is no point in
# putting in another one)
a = _dummy_('a', 'rewrite-single')
if a not in f.free_symbols and _is_analytic(f, x):
try:
F, strip, _ = mellin_transform(f.subs(x, a*x), x, s,
integrator=my_integrator,
needeval=True, simplify=False)
g = my_imt(F, s, x, strip).subs(a, 1)
except IntegralTransformError:
g = None
if g is None or g.has(S.Infinity, S.NaN, S.ComplexInfinity):
_debug('Recursive Mellin transform failed.')
return None
args = Add.make_args(g)
res = []
for f in args:
c, m = f.as_coeff_mul(x)
if len(m) > 1:
raise NotImplementedError('Unexpected form...')
g = m[0]
a, b = _get_coeff_exp(g.argument, x)
res += [(c, 0, meijerg(g.an, g.aother, g.bm, g.bother,
unpolarify(polarify(
a, lift=True), exponents_only=True)
*x**b))]
_debug('Recursive Mellin transform worked:', g)
return res, True
def _rewrite1(f, x, recursive=True):
"""
Try to rewrite ``f`` using a (sum of) single G functions with argument a*x**b.
Return fac, po, g such that f = fac*po*g, fac is independent of ``x``.
and po = x**s.
Here g is a result from _rewrite_single.
Return None on failure.
"""
fac, po, g = _split_mul(f, x)
g = _rewrite_single(g, x, recursive)
if g:
return fac, po, g[0], g[1]
def _rewrite2(f, x):
"""
Try to rewrite ``f`` as a product of two G functions of arguments a*x**b.
Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is
independent of x and po is x**s.
Here g1 and g2 are results of _rewrite_single.
Returns None on failure.
"""
fac, po, g = _split_mul(f, x)
if any(_rewrite_single(expr, x, False) is None for expr in _mul_args(g)):
return None
l = _mul_as_two_parts(g)
if not l:
return None
l = list(ordered(l, [
lambda p: max(len(_exponents(p[0], x)), len(_exponents(p[1], x))),
lambda p: max(len(_functions(p[0], x)), len(_functions(p[1], x))),
lambda p: max(len(_find_splitting_points(p[0], x)),
len(_find_splitting_points(p[1], x)))]))
for recursive, (fac1, fac2) in itertools.product((False, True), l):
g1 = _rewrite_single(fac1, x, recursive)
g2 = _rewrite_single(fac2, x, recursive)
if g1 and g2:
cond = And(g1[1], g2[1])
if cond != False:
return fac, po, g1[0], g2[0], cond
def meijerint_indefinite(f, x):
"""
Compute an indefinite integral of ``f`` by rewriting it as a G function.
Examples
========
>>> from sympy.integrals.meijerint import meijerint_indefinite
>>> from sympy import sin
>>> from sympy.abc import x
>>> meijerint_indefinite(sin(x), x)
-cos(x)
"""
f = sympify(f)
results = []
for a in sorted(_find_splitting_points(f, x) | {S.Zero}, key=default_sort_key):
res = _meijerint_indefinite_1(f.subs(x, x + a), x)
if not res:
continue
res = res.subs(x, x - a)
if _has(res, hyper, meijerg):
results.append(res)
else:
return res
if f.has(HyperbolicFunction):
_debug('Try rewriting hyperbolics in terms of exp.')
rv = meijerint_indefinite(
_rewrite_hyperbolics_as_exp(f), x)
if rv:
if not isinstance(rv, list):
from sympy.simplify.radsimp import collect
return collect(factor_terms(rv), rv.atoms(exp))
results.extend(rv)
if results:
return next(ordered(results))
def _meijerint_indefinite_1(f, x):
""" Helper that does not attempt any substitution. """
_debug('Trying to compute the indefinite integral of', f, 'wrt', x)
from sympy.simplify import hyperexpand, powdenest
gs = _rewrite1(f, x)
if gs is None:
# Note: the code that calls us will do expand() and try again
return None
fac, po, gl, cond = gs
_debug(' could rewrite:', gs)
res = S.Zero
for C, s, g in gl:
a, b = _get_coeff_exp(g.argument, x)
_, c = _get_coeff_exp(po, x)
c += s
# we do a substitution t=a*x**b, get integrand fac*t**rho*g
fac_ = fac * C / (b*a**((1 + c)/b))
rho = (c + 1)/b - 1
# we now use t**rho*G(params, t) = G(params + rho, t)
# [L, page 150, equation (4)]
# and integral G(params, t) dt = G(1, params+1, 0, t)
# (or a similar expression with 1 and 0 exchanged ... pick the one
# which yields a well-defined function)
# [R, section 5]
# (Note that this dummy will immediately go away again, so we
# can safely pass S.One for ``expr``.)
t = _dummy('t', 'meijerint-indefinite', S.One)
def tr(p):
return [a + rho + 1 for a in p]
if any(b.is_integer and (b <= 0) == True for b in tr(g.bm)):
r = -meijerg(
tr(g.an), tr(g.aother) + [1], tr(g.bm) + [0], tr(g.bother), t)
else:
r = meijerg(
tr(g.an) + [1], tr(g.aother), tr(g.bm), tr(g.bother) + [0], t)
# The antiderivative is most often expected to be defined
# in the neighborhood of x = 0.
if b.is_extended_nonnegative and not f.subs(x, 0).has(S.NaN, S.ComplexInfinity):
place = 0 # Assume we can expand at zero
else:
place = None
r = hyperexpand(r.subs(t, a*x**b), place=place)
# now substitute back
# Note: we really do want the powers of x to combine.
res += powdenest(fac_*r, polar=True)
def _clean(res):
"""This multiplies out superfluous powers of x we created, and chops off
constants:
>> _clean(x*(exp(x)/x - 1/x) + 3)
exp(x)
cancel is used before mul_expand since it is possible for an
expression to have an additive constant that does not become isolated
with simple expansion. Such a situation was identified in issue 6369:
Examples
========
>>> from sympy import sqrt, cancel
>>> from sympy.abc import x
>>> a = sqrt(2*x + 1)
>>> bad = (3*x*a**5 + 2*x - a**5 + 1)/a**2
>>> bad.expand().as_independent(x)[0]
0
>>> cancel(bad).expand().as_independent(x)[0]
1
"""
res = expand_mul(cancel(res), deep=False)
return Add._from_args(res.as_coeff_add(x)[1])
res = piecewise_fold(res, evaluate=None)
if res.is_Piecewise:
newargs = []
for e, c in res.args:
e = _my_unpolarify(_clean(e))
newargs += [(e, c)]
res = Piecewise(*newargs, evaluate=False)
else:
res = _my_unpolarify(_clean(res))
return Piecewise((res, _my_unpolarify(cond)), (Integral(f, x), True))
@timeit
def meijerint_definite(f, x, a, b):
"""
Integrate ``f`` over the interval [``a``, ``b``], by rewriting it as a product
of two G functions, or as a single G function.
Return res, cond, where cond are convergence conditions.
Examples
========
>>> from sympy.integrals.meijerint import meijerint_definite
>>> from sympy import exp, oo
>>> from sympy.abc import x
>>> meijerint_definite(exp(-x**2), x, -oo, oo)
(sqrt(pi), True)
This function is implemented as a succession of functions
meijerint_definite, _meijerint_definite_2, _meijerint_definite_3,
_meijerint_definite_4. Each function in the list calls the next one
(presumably) several times. This means that calling meijerint_definite
can be very costly.
"""
# This consists of three steps:
# 1) Change the integration limits to 0, oo
# 2) Rewrite in terms of G functions
# 3) Evaluate the integral
#
# There are usually several ways of doing this, and we want to try all.
# This function does (1), calls _meijerint_definite_2 for step (2).
_debug('Integrating', f, 'wrt %s from %s to %s.' % (x, a, b))
f = sympify(f)
if f.has(DiracDelta):
_debug('Integrand has DiracDelta terms - giving up.')
return None
if f.has(SingularityFunction):
_debug('Integrand has Singularity Function terms - giving up.')
return None
f_, x_, a_, b_ = f, x, a, b
# Let's use a dummy in case any of the boundaries has x.
d = Dummy('x')
f = f.subs(x, d)
x = d
if a == b:
return (S.Zero, True)
results = []
if a is S.NegativeInfinity and b is not S.Infinity:
return meijerint_definite(f.subs(x, -x), x, -b, -a)
elif a is S.NegativeInfinity:
# Integrating -oo to oo. We need to find a place to split the integral.
_debug(' Integrating -oo to +oo.')
innermost = _find_splitting_points(f, x)
_debug(' Sensible splitting points:', innermost)
for c in sorted(innermost, key=default_sort_key, reverse=True) + [S.Zero]:
_debug(' Trying to split at', c)
if not c.is_extended_real:
_debug(' Non-real splitting point.')
continue
res1 = _meijerint_definite_2(f.subs(x, x + c), x)
if res1 is None:
_debug(' But could not compute first integral.')
continue
res2 = _meijerint_definite_2(f.subs(x, c - x), x)
if res2 is None:
_debug(' But could not compute second integral.')
continue
res1, cond1 = res1
res2, cond2 = res2
cond = _condsimp(And(cond1, cond2))
if cond == False:
_debug(' But combined condition is always false.')
continue
res = res1 + res2
return res, cond
elif a is S.Infinity:
res = meijerint_definite(f, x, b, S.Infinity)
return -res[0], res[1]
elif (a, b) == (S.Zero, S.Infinity):
# This is a common case - try it directly first.
res = _meijerint_definite_2(f, x)
if res:
if _has(res[0], meijerg):
results.append(res)
else:
return res
else:
if b is S.Infinity:
for split in _find_splitting_points(f, x):
if (a - split >= 0) == True:
_debug('Trying x -> x + %s' % split)
res = _meijerint_definite_2(f.subs(x, x + split)
*Heaviside(x + split - a), x)
if res:
if _has(res[0], meijerg):
results.append(res)
else:
return res
f = f.subs(x, x + a)
b = b - a
a = 0
if b is not S.Infinity:
phi = exp(S.ImaginaryUnit*arg(b))
b = Abs(b)
f = f.subs(x, phi*x)
f *= Heaviside(b - x)*phi
b = S.Infinity
_debug('Changed limits to', a, b)
_debug('Changed function to', f)
res = _meijerint_definite_2(f, x)
if res:
if _has(res[0], meijerg):
results.append(res)
else:
return res
if f_.has(HyperbolicFunction):
_debug('Try rewriting hyperbolics in terms of exp.')
rv = meijerint_definite(
_rewrite_hyperbolics_as_exp(f_), x_, a_, b_)
if rv:
if not isinstance(rv, list):
from sympy.simplify.radsimp import collect
rv = (collect(factor_terms(rv[0]), rv[0].atoms(exp)),) + rv[1:]
return rv
results.extend(rv)
if results:
return next(ordered(results))
def _guess_expansion(f, x):
""" Try to guess sensible rewritings for integrand f(x). """
res = [(f, 'original integrand')]
orig = res[-1][0]
saw = {orig}
expanded = expand_mul(orig)
if expanded not in saw:
res += [(expanded, 'expand_mul')]
saw.add(expanded)
expanded = expand(orig)
if expanded not in saw:
res += [(expanded, 'expand')]
saw.add(expanded)
if orig.has(TrigonometricFunction, HyperbolicFunction):
expanded = expand_mul(expand_trig(orig))
if expanded not in saw:
res += [(expanded, 'expand_trig, expand_mul')]
saw.add(expanded)
if orig.has(cos, sin):
from sympy.simplify.fu import sincos_to_sum
reduced = sincos_to_sum(orig)
if reduced not in saw:
res += [(reduced, 'trig power reduction')]
saw.add(reduced)
return res
def _meijerint_definite_2(f, x):
"""
Try to integrate f dx from zero to infinity.
The body of this function computes various 'simplifications'
f1, f2, ... of f (e.g. by calling expand_mul(), trigexpand()
- see _guess_expansion) and calls _meijerint_definite_3 with each of
these in succession.
If _meijerint_definite_3 succeeds with any of the simplified functions,
returns this result.
"""
# This function does preparation for (2), calls
# _meijerint_definite_3 for (2) and (3) combined.
# use a positive dummy - we integrate from 0 to oo
# XXX if a nonnegative symbol is used there will be test failures
dummy = _dummy('x', 'meijerint-definite2', f, positive=True)
f = f.subs(x, dummy)
x = dummy
if f == 0:
return S.Zero, True
for g, explanation in _guess_expansion(f, x):
_debug('Trying', explanation)
res = _meijerint_definite_3(g, x)
if res:
return res
def _meijerint_definite_3(f, x):
"""
Try to integrate f dx from zero to infinity.
This function calls _meijerint_definite_4 to try to compute the
integral. If this fails, it tries using linearity.
"""
res = _meijerint_definite_4(f, x)
if res and res[1] != False:
return res
if f.is_Add:
_debug('Expanding and evaluating all terms.')
ress = [_meijerint_definite_4(g, x) for g in f.args]
if all(r is not None for r in ress):
conds = []
res = S.Zero
for r, c in ress:
res += r
conds += [c]
c = And(*conds)
if c != False:
return res, c
def _my_unpolarify(f):
return _eval_cond(unpolarify(f))
@timeit
def _meijerint_definite_4(f, x, only_double=False):
"""
Try to integrate f dx from zero to infinity.
Explanation
===========
This function tries to apply the integration theorems found in literature,
i.e. it tries to rewrite f as either one or a product of two G-functions.
The parameter ``only_double`` is used internally in the recursive algorithm
to disable trying to rewrite f as a single G-function.
"""
from sympy.simplify import hyperexpand
# This function does (2) and (3)
_debug('Integrating', f)
# Try single G function.
if not only_double:
gs = _rewrite1(f, x, recursive=False)
if gs is not None:
fac, po, g, cond = gs
_debug('Could rewrite as single G function:', fac, po, g)
res = S.Zero
for C, s, f in g:
if C == 0:
continue
C, f = _rewrite_saxena_1(fac*C, po*x**s, f, x)
res += C*_int0oo_1(f, x)
cond = And(cond, _check_antecedents_1(f, x))
if cond == False:
break
cond = _my_unpolarify(cond)
if cond == False:
_debug('But cond is always False.')
else:
_debug('Result before branch substitutions is:', res)
return _my_unpolarify(hyperexpand(res)), cond
# Try two G functions.
gs = _rewrite2(f, x)
if gs is not None:
for full_pb in [False, True]:
fac, po, g1, g2, cond = gs
_debug('Could rewrite as two G functions:', fac, po, g1, g2)
res = S.Zero
for C1, s1, f1 in g1:
for C2, s2, f2 in g2:
r = _rewrite_saxena(fac*C1*C2, po*x**(s1 + s2),
f1, f2, x, full_pb)
if r is None:
_debug('Non-rational exponents.')
return
C, f1_, f2_ = r
_debug('Saxena subst for yielded:', C, f1_, f2_)
cond = And(cond, _check_antecedents(f1_, f2_, x))
if cond == False:
break
res += C*_int0oo(f1_, f2_, x)
else:
continue
break
cond = _my_unpolarify(cond)
if cond == False:
_debug('But cond is always False (full_pb=%s).' % full_pb)
else:
_debug('Result before branch substitutions is:', res)
if only_double:
return res, cond
return _my_unpolarify(hyperexpand(res)), cond
def meijerint_inversion(f, x, t):
r"""
Compute the inverse laplace transform
$\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx$,
for real c larger than the real part of all singularities of ``f``.
Note that ``t`` is always assumed real and positive.
Return None if the integral does not exist or could not be evaluated.
Examples
========
>>> from sympy.abc import x, t
>>> from sympy.integrals.meijerint import meijerint_inversion
>>> meijerint_inversion(1/x, x, t)
Heaviside(t)
"""
f_ = f
t_ = t
t = Dummy('t', polar=True) # We don't want sqrt(t**2) = abs(t) etc
f = f.subs(t_, t)
_debug('Laplace-inverting', f)
if not _is_analytic(f, x):
_debug('But expression is not analytic.')
return None
# Exponentials correspond to shifts; we filter them out and then
# shift the result later. If we are given an Add this will not
# work, but the calling code will take care of that.
shift = S.Zero
if f.is_Mul:
args = list(f.args)
elif isinstance(f, exp):
args = [f]
else:
args = None
if args:
newargs = []
exponentials = []
while args:
arg = args.pop()
if isinstance(arg, exp):
arg2 = expand(arg)
if arg2.is_Mul:
args += arg2.args
continue
try:
a, b = _get_coeff_exp(arg.args[0], x)
except _CoeffExpValueError:
b = 0
if b == 1:
exponentials.append(a)
else:
newargs.append(arg)
elif arg.is_Pow:
arg2 = expand(arg)
if arg2.is_Mul:
args += arg2.args
continue
if x not in arg.base.free_symbols:
try:
a, b = _get_coeff_exp(arg.exp, x)
except _CoeffExpValueError:
b = 0
if b == 1:
exponentials.append(a*log(arg.base))
newargs.append(arg)
else:
newargs.append(arg)
shift = Add(*exponentials)
f = Mul(*newargs)
if x not in f.free_symbols:
_debug('Expression consists of constant and exp shift:', f, shift)
cond = Eq(im(shift), 0)
if cond == False:
_debug('but shift is nonreal, cannot be a Laplace transform')
return None
res = f*DiracDelta(t + shift)
_debug('Result is a delta function, possibly conditional:', res, cond)
# cond is True or Eq
return Piecewise((res.subs(t, t_), cond))
gs = _rewrite1(f, x)
if gs is not None:
fac, po, g, cond = gs
_debug('Could rewrite as single G function:', fac, po, g)
res = S.Zero
for C, s, f in g:
C, f = _rewrite_inversion(fac*C, po*x**s, f, x)
res += C*_int_inversion(f, x, t)
cond = And(cond, _check_antecedents_inversion(f, x))
if cond == False:
break
cond = _my_unpolarify(cond)
if cond == False:
_debug('But cond is always False.')
else:
_debug('Result before branch substitution:', res)
from sympy.simplify import hyperexpand
res = _my_unpolarify(hyperexpand(res))
if not res.has(Heaviside):
res *= Heaviside(t)
res = res.subs(t, t + shift)
if not isinstance(cond, bool):
cond = cond.subs(t, t + shift)
from .transforms import InverseLaplaceTransform
return Piecewise((res.subs(t, t_), cond),
(InverseLaplaceTransform(f_.subs(t, t_), x, t_, None), True))
|
237ee98e5f03220e75e0bf496caf6e8bee0dc8f35d989a3c288174da5c4656d7 | """Base class for all the objects in SymPy"""
from __future__ import annotations
from collections import defaultdict
from collections.abc import Mapping
from itertools import chain, zip_longest
from .assumptions import ManagedProperties
from .cache import cacheit
from .core import BasicMeta
from .sympify import _sympify, sympify, SympifyError, _external_converter
from .sorting import ordered
from .kind import Kind, UndefinedKind
from ._print_helpers import Printable
from sympy.utilities.decorator import deprecated
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import iterable, numbered_symbols
from sympy.utilities.misc import filldedent, func_name
from inspect import getmro
def as_Basic(expr):
"""Return expr as a Basic instance using strict sympify
or raise a TypeError; this is just a wrapper to _sympify,
raising a TypeError instead of a SympifyError."""
try:
return _sympify(expr)
except SympifyError:
raise TypeError(
'Argument must be a Basic object, not `%s`' % func_name(
expr))
class Basic(Printable, metaclass=ManagedProperties):
"""
Base class for all SymPy objects.
Notes and conventions
=====================
1) Always use ``.args``, when accessing parameters of some instance:
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
2) Never use internal methods or variables (the ones prefixed with ``_``):
>>> cot(x)._args # do not use this, use cot(x).args instead
(x,)
3) By "SymPy object" we mean something that can be returned by
``sympify``. But not all objects one encounters using SymPy are
subclasses of Basic. For example, mutable objects are not:
>>> from sympy import Basic, Matrix, sympify
>>> A = Matrix([[1, 2], [3, 4]]).as_mutable()
>>> isinstance(A, Basic)
False
>>> B = sympify(A)
>>> isinstance(B, Basic)
True
"""
__slots__ = ('_mhash', # hash value
'_args', # arguments
'_assumptions'
)
_args: tuple[Basic, ...]
_mhash: int | None
# To be overridden with True in the appropriate subclasses
is_number = False
is_Atom = False
is_Symbol = False
is_symbol = False
is_Indexed = False
is_Dummy = False
is_Wild = False
is_Function = False
is_Add = False
is_Mul = False
is_Pow = False
is_Number = False
is_Float = False
is_Rational = False
is_Integer = False
is_NumberSymbol = False
is_Order = False
is_Derivative = False
is_Piecewise = False
is_Poly = False
is_AlgebraicNumber = False
is_Relational = False
is_Equality = False
is_Boolean = False
is_Not = False
is_Matrix = False
is_Vector = False
is_Point = False
is_MatAdd = False
is_MatMul = False
is_real: bool | None
is_zero: bool | None
is_negative: bool | None
is_commutative: bool | None
kind: Kind = UndefinedKind
def __new__(cls, *args):
obj = object.__new__(cls)
obj._assumptions = cls.default_assumptions
obj._mhash = None # will be set by __hash__ method.
obj._args = args # all items in args must be Basic objects
return obj
def copy(self):
return self.func(*self.args)
def __getnewargs__(self):
return self.args
def __getstate__(self):
return None
def __setstate__(self, state):
for name, value in state.items():
setattr(self, name, value)
def __reduce_ex__(self, protocol):
if protocol < 2:
msg = "Only pickle protocol 2 or higher is supported by SymPy"
raise NotImplementedError(msg)
return super().__reduce_ex__(protocol)
def __hash__(self) -> int:
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
@property
def assumptions0(self):
"""
Return object `type` assumptions.
For example:
Symbol('x', real=True)
Symbol('x', integer=True)
are different objects. In other words, besides Python type (Symbol in
this case), the initial assumptions are also forming their typeinfo.
Examples
========
>>> from sympy import Symbol
>>> from sympy.abc import x
>>> x.assumptions0
{'commutative': True}
>>> x = Symbol("x", positive=True)
>>> x.assumptions0
{'commutative': True, 'complex': True, 'extended_negative': False,
'extended_nonnegative': True, 'extended_nonpositive': False,
'extended_nonzero': True, 'extended_positive': True, 'extended_real':
True, 'finite': True, 'hermitian': True, 'imaginary': False,
'infinite': False, 'negative': False, 'nonnegative': True,
'nonpositive': False, 'nonzero': True, 'positive': True, 'real':
True, 'zero': False}
"""
return {}
def compare(self, other):
"""
Return -1, 0, 1 if the object is smaller, equal, or greater than other.
Not in the mathematical sense. If the object is of a different type
from the "other" then their classes are ordered according to
the sorted_classes list.
Examples
========
>>> from sympy.abc import x, y
>>> x.compare(y)
-1
>>> x.compare(x)
0
>>> y.compare(x)
1
"""
# all redefinitions of __cmp__ method should start with the
# following lines:
if self is other:
return 0
n1 = self.__class__
n2 = other.__class__
c = (n1 > n2) - (n1 < n2)
if c:
return c
#
st = self._hashable_content()
ot = other._hashable_content()
c = (len(st) > len(ot)) - (len(st) < len(ot))
if c:
return c
for l, r in zip(st, ot):
l = Basic(*l) if isinstance(l, frozenset) else l
r = Basic(*r) if isinstance(r, frozenset) else r
if isinstance(l, Basic):
c = l.compare(r)
else:
c = (l > r) - (l < r)
if c:
return c
return 0
@staticmethod
def _compare_pretty(a, b):
from sympy.series.order import Order
if isinstance(a, Order) and not isinstance(b, Order):
return 1
if not isinstance(a, Order) and isinstance(b, Order):
return -1
if a.is_Rational and b.is_Rational:
l = a.p * b.q
r = b.p * a.q
return (l > r) - (l < r)
else:
from .symbol import Wild
p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
r_a = a.match(p1 * p2**p3)
if r_a and p3 in r_a:
a3 = r_a[p3]
r_b = b.match(p1 * p2**p3)
if r_b and p3 in r_b:
b3 = r_b[p3]
c = Basic.compare(a3, b3)
if c != 0:
return c
return Basic.compare(a, b)
@classmethod
def fromiter(cls, args, **assumptions):
"""
Create a new object from an iterable.
This is a convenience function that allows one to create objects from
any iterable, without having to convert to a list or tuple first.
Examples
========
>>> from sympy import Tuple
>>> Tuple.fromiter(i for i in range(5))
(0, 1, 2, 3, 4)
"""
return cls(*tuple(args), **assumptions)
@classmethod
def class_key(cls):
"""Nice order of classes. """
return 5, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
"""
Return a sort key.
Examples
========
>>> from sympy import S, I
>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]
>>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
>>> sorted(_, key=lambda x: x.sort_key())
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
"""
# XXX: remove this when issue 5169 is fixed
def inner_key(arg):
if isinstance(arg, Basic):
return arg.sort_key(order)
else:
return arg
args = self._sorted_args
args = len(args), tuple([inner_key(arg) for arg in args])
return self.class_key(), args, S.One.sort_key(), S.One
def _do_eq_sympify(self, other):
"""Returns a boolean indicating whether a == b when either a
or b is not a Basic. This is only done for types that were either
added to `converter` by a 3rd party or when the object has `_sympy_`
defined. This essentially reuses the code in `_sympify` that is
specific for this use case. Non-user defined types that are meant
to work with SymPy should be handled directly in the __eq__ methods
of the `Basic` classes it could equate to and not be converted. Note
that after conversion, `==` is used again since it is not
neccesarily clear whether `self` or `other`'s __eq__ method needs
to be used."""
for superclass in type(other).__mro__:
conv = _external_converter.get(superclass)
if conv is not None:
return self == conv(other)
if hasattr(other, '_sympy_'):
return self == other._sympy_()
return NotImplemented
def __eq__(self, other):
"""Return a boolean indicating whether a == b on the basis of
their symbolic trees.
This is the same as a.compare(b) == 0 but faster.
Notes
=====
If a class that overrides __eq__() needs to retain the
implementation of __hash__() from a parent class, the
interpreter must be told this explicitly by setting
__hash__ : Callable[[object], int] = <ParentClass>.__hash__.
Otherwise the inheritance of __hash__() will be blocked,
just as if __hash__ had been explicitly set to None.
References
==========
from http://docs.python.org/dev/reference/datamodel.html#object.__hash__
"""
if self is other:
return True
if not isinstance(other, Basic):
return self._do_eq_sympify(other)
# check for pure number expr
if not (self.is_Number and other.is_Number) and (
type(self) != type(other)):
return False
a, b = self._hashable_content(), other._hashable_content()
if a != b:
return False
# check number *in* an expression
for a, b in zip(a, b):
if not isinstance(a, Basic):
continue
if a.is_Number and type(a) != type(b):
return False
return True
def __ne__(self, other):
"""``a != b`` -> Compare two symbolic trees and see whether they are different
this is the same as:
``a.compare(b) != 0``
but faster
"""
return not self == other
def dummy_eq(self, other, symbol=None):
"""
Compare two expressions and handle dummy symbols.
Examples
========
>>> from sympy import Dummy
>>> from sympy.abc import x, y
>>> u = Dummy('u')
>>> (u**2 + 1).dummy_eq(x**2 + 1)
True
>>> (u**2 + 1) == (x**2 + 1)
False
>>> (u**2 + y).dummy_eq(x**2 + y, x)
True
>>> (u**2 + y).dummy_eq(x**2 + y, y)
False
"""
s = self.as_dummy()
o = _sympify(other)
o = o.as_dummy()
dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
if len(dummy_symbols) == 1:
dummy = dummy_symbols.pop()
else:
return s == o
if symbol is None:
symbols = o.free_symbols
if len(symbols) == 1:
symbol = symbols.pop()
else:
return s == o
tmp = dummy.__class__()
return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp})
def atoms(self, *types):
"""Returns the atoms that form the current object.
By default, only objects that are truly atomic and cannot
be divided into smaller pieces are returned: symbols, numbers,
and number symbols like I and pi. It is possible to request
atoms of any type, however, as demonstrated below.
Examples
========
>>> from sympy import I, pi, sin
>>> from sympy.abc import x, y
>>> (1 + x + 2*sin(y + I*pi)).atoms()
{1, 2, I, pi, x, y}
If one or more types are given, the results will contain only
those types of atoms.
>>> from sympy import Number, NumberSymbol, Symbol
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
{x, y}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
{1, 2}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
{1, 2, pi}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
{1, 2, I, pi}
Note that I (imaginary unit) and zoo (complex infinity) are special
types of number symbols and are not part of the NumberSymbol class.
The type can be given implicitly, too:
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
{x, y}
Be careful to check your assumptions when using the implicit option
since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
of SymPy atom, while ``type(S(2))`` is type ``Integer`` and will find all
integers in an expression:
>>> from sympy import S
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
{1}
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
{1, 2}
Finally, arguments to atoms() can select more than atomic atoms: any
SymPy type (loaded in core/__init__.py) can be listed as an argument
and those types of "atoms" as found in scanning the arguments of the
expression recursively:
>>> from sympy import Function, Mul
>>> from sympy.core.function import AppliedUndef
>>> f = Function('f')
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}
"""
if types:
types = tuple(
[t if isinstance(t, type) else type(t) for t in types])
nodes = _preorder_traversal(self)
if types:
result = {node for node in nodes if isinstance(node, types)}
else:
result = {node for node in nodes if not node.args}
return result
@property
def free_symbols(self) -> set[Basic]:
"""Return from the atoms of self those which are free symbols.
Not all free symbols are ``Symbol``. Eg: IndexedBase('I')[0].free_symbols
For most expressions, all symbols are free symbols. For some classes
this is not true. e.g. Integrals use Symbols for the dummy variables
which are bound variables, so Integral has a method to return all
symbols except those. Derivative keeps track of symbols with respect
to which it will perform a derivative; those are
bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a
free_symbols method."""
empty: set[Basic] = set()
return empty.union(*(a.free_symbols for a in self.args))
@property
def expr_free_symbols(self):
sympy_deprecation_warning("""
The expr_free_symbols property is deprecated. Use free_symbols to get
the free symbols of an expression.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-expr-free-symbols")
return set()
def as_dummy(self):
"""Return the expression with any objects having structurally
bound symbols replaced with unique, canonical symbols within
the object in which they appear and having only the default
assumption for commutativity being True. When applied to a
symbol a new symbol having only the same commutativity will be
returned.
Examples
========
>>> from sympy import Integral, Symbol
>>> from sympy.abc import x
>>> r = Symbol('r', real=True)
>>> Integral(r, (r, x)).as_dummy()
Integral(_0, (_0, x))
>>> _.variables[0].is_real is None
True
>>> r.as_dummy()
_r
Notes
=====
Any object that has structurally bound variables should have
a property, `bound_symbols` that returns those symbols
appearing in the object.
"""
from .symbol import Dummy, Symbol
def can(x):
# mask free that shadow bound
free = x.free_symbols
bound = set(x.bound_symbols)
d = {i: Dummy() for i in bound & free}
x = x.subs(d)
# replace bound with canonical names
x = x.xreplace(x.canonical_variables)
# return after undoing masking
return x.xreplace({v: k for k, v in d.items()})
if not self.has(Symbol):
return self
return self.replace(
lambda x: hasattr(x, 'bound_symbols'),
can,
simultaneous=False)
@property
def canonical_variables(self):
"""Return a dictionary mapping any variable defined in
``self.bound_symbols`` to Symbols that do not clash
with any free symbols in the expression.
Examples
========
>>> from sympy import Lambda
>>> from sympy.abc import x
>>> Lambda(x, 2*x).canonical_variables
{x: _0}
"""
if not hasattr(self, 'bound_symbols'):
return {}
dums = numbered_symbols('_')
reps = {}
# watch out for free symbol that are not in bound symbols;
# those that are in bound symbols are about to get changed
bound = self.bound_symbols
names = {i.name for i in self.free_symbols - set(bound)}
for b in bound:
d = next(dums)
if b.is_Symbol:
while d.name in names:
d = next(dums)
reps[b] = d
return reps
def rcall(self, *args):
"""Apply on the argument recursively through the expression tree.
This method is used to simulate a common abuse of notation for
operators. For instance, in SymPy the following will not work:
``(x+Lambda(y, 2*y))(z) == x+2*z``,
however, you can use:
>>> from sympy import Lambda
>>> from sympy.abc import x, y, z
>>> (x + Lambda(y, 2*y)).rcall(z)
x + 2*z
"""
return Basic._recursive_call(self, args)
@staticmethod
def _recursive_call(expr_to_call, on_args):
"""Helper for rcall method."""
from .symbol import Symbol
def the_call_method_is_overridden(expr):
for cls in getmro(type(expr)):
if '__call__' in cls.__dict__:
return cls != Basic
if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
return expr_to_call # transformed into an UndefFunction
else:
return expr_to_call(*on_args)
elif expr_to_call.args:
args = [Basic._recursive_call(
sub, on_args) for sub in expr_to_call.args]
return type(expr_to_call)(*args)
else:
return expr_to_call
def is_hypergeometric(self, k):
from sympy.simplify.simplify import hypersimp
from sympy.functions.elementary.piecewise import Piecewise
if self.has(Piecewise):
return None
return hypersimp(self, k) is not None
@property
def is_comparable(self):
"""Return True if self can be computed to a real number
(or already is a real number) with precision, else False.
Examples
========
>>> from sympy import exp_polar, pi, I
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
A False result does not mean that `self` cannot be rewritten
into a form that would be comparable. For example, the
difference computed below is zero but without simplification
it does not evaluate to a zero with precision:
>>> e = 2**pi*(1 + 2**pi)
>>> dif = e - e.expand()
>>> dif.is_comparable
False
>>> dif.n(2)._prec
1
"""
is_extended_real = self.is_extended_real
if is_extended_real is False:
return False
if not self.is_number:
return False
# don't re-eval numbers that are already evaluated since
# this will create spurious precision
n, i = [p.evalf(2) if not p.is_Number else p
for p in self.as_real_imag()]
if not (i.is_Number and n.is_Number):
return False
if i:
# if _prec = 1 we can't decide and if not,
# the answer is False because numbers with
# imaginary parts can't be compared
# so return False
return False
else:
return n._prec != 1
@property
def func(self):
"""
The top-level function in an expression.
The following should hold for all objects::
>> x == x.func(*x.args)
Examples
========
>>> from sympy.abc import x
>>> a = 2*x
>>> a.func
<class 'sympy.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
"""
return self.__class__
@property
def args(self) -> tuple[Basic, ...]:
"""Returns a tuple of arguments of 'self'.
Examples
========
>>> from sympy import cot
>>> from sympy.abc import x, y
>>> cot(x).args
(x,)
>>> cot(x).args[0]
x
>>> (x*y).args
(x, y)
>>> (x*y).args[1]
y
Notes
=====
Never use self._args, always use self.args.
Only use _args in __new__ when creating a new function.
Do not override .args() from Basic (so that it is easy to
change the interface in the future if needed).
"""
return self._args
@property
def _sorted_args(self):
"""
The same as ``args``. Derived classes which do not fix an
order on their arguments should override this method to
produce the sorted representation.
"""
return self.args
def as_content_primitive(self, radical=False, clear=True):
"""A stub to allow Basic args (like Tuple) to be skipped when computing
the content and primitive components of an expression.
See Also
========
sympy.core.expr.Expr.as_content_primitive
"""
return S.One, self
def subs(self, *args, **kwargs):
"""
Substitutes old for new in an expression after sympifying args.
`args` is either:
- two arguments, e.g. foo.subs(old, new)
- one iterable argument, e.g. foo.subs(iterable). The iterable may be
o an iterable container with (old, new) pairs. In this case the
replacements are processed in the order given with successive
patterns possibly affecting replacements already made.
o a dict or set whose key/value items correspond to old/new pairs.
In this case the old/new pairs will be sorted by op count and in
case of a tie, by number of args and the default_sort_key. The
resulting sorted list is then processed as an iterable container
(see previous).
If the keyword ``simultaneous`` is True, the subexpressions will not be
evaluated until all the substitutions have been made.
Examples
========
>>> from sympy import pi, exp, limit, oo
>>> from sympy.abc import x, y
>>> (1 + x*y).subs(x, pi)
pi*y + 1
>>> (1 + x*y).subs({x:pi, y:2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
>>> (x**2 + x**4).subs(x**2, y)
y**2 + y
To replace only the x**2 but not the x**4, use xreplace:
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
To delay evaluation until all substitutions have been made,
set the keyword ``simultaneous`` to True:
>>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
This has the added feature of not allowing subsequent substitutions
to affect those already made:
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
In order to obtain a canonical result, unordered iterables are
sorted by count_op length, number of arguments and by the
default_sort_key to break any ties. All other iterables are left
unsorted.
>>> from sympy import sqrt, sin, cos
>>> from sympy.abc import a, b, c, d, e
>>> A = (sqrt(sin(2*x)), a)
>>> B = (sin(2*x), b)
>>> C = (cos(2*x), c)
>>> D = (x, d)
>>> E = (exp(x), e)
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
>>> expr.subs(dict([A, B, C, D, E]))
a*c*sin(d*e) + b
The resulting expression represents a literal replacement of the
old arguments with the new arguments. This may not reflect the
limiting behavior of the expression:
>>> (x**3 - 3*x).subs({x: oo})
nan
>>> limit(x**3 - 3*x, x, oo)
oo
If the substitution will be followed by numerical
evaluation, it is better to pass the substitution to
evalf as
>>> (1/x).evalf(subs={x: 3.0}, n=21)
0.333333333333333333333
rather than
>>> (1/x).subs({x: 3.0}).evalf(21)
0.333333333333333314830
as the former will ensure that the desired level of precision is
obtained.
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
xreplace: exact node replacement in expr tree; also capable of
using matching rules
sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision
"""
from .containers import Dict
from .symbol import Dummy, Symbol
from .numbers import _illegal
unordered = False
if len(args) == 1:
sequence = args[0]
if isinstance(sequence, set):
unordered = True
elif isinstance(sequence, (Dict, Mapping)):
unordered = True
sequence = sequence.items()
elif not iterable(sequence):
raise ValueError(filldedent("""
When a single argument is passed to subs
it should be a dictionary of old: new pairs or an iterable
of (old, new) tuples."""))
elif len(args) == 2:
sequence = [args]
else:
raise ValueError("subs accepts either 1 or 2 arguments")
sequence = list(sequence)
for i, s in enumerate(sequence):
if isinstance(s[0], str):
# when old is a string we prefer Symbol
s = Symbol(s[0]), s[1]
try:
s = [sympify(_, strict=not isinstance(_, (str, type)))
for _ in s]
except SympifyError:
# if it can't be sympified, skip it
sequence[i] = None
continue
# skip if there is no change
sequence[i] = None if _aresame(*s) else tuple(s)
sequence = list(filter(None, sequence))
simultaneous = kwargs.pop('simultaneous', False)
if unordered:
from .sorting import _nodes, default_sort_key
sequence = dict(sequence)
# order so more complex items are first and items
# of identical complexity are ordered so
# f(x) < f(y) < x < y
# \___ 2 __/ \_1_/ <- number of nodes
#
# For more complex ordering use an unordered sequence.
k = list(ordered(sequence, default=False, keys=(
lambda x: -_nodes(x),
default_sort_key,
)))
sequence = [(k, sequence[k]) for k in k]
# do infinities first
if not simultaneous:
redo = [i for i, seq in enumerate(sequence) if seq[1] in _illegal]
for i in reversed(redo):
sequence.insert(0, sequence.pop(i))
if simultaneous: # XXX should this be the default for dict subs?
reps = {}
rv = self
kwargs['hack2'] = True
m = Dummy('subs_m')
for old, new in sequence:
com = new.is_commutative
if com is None:
com = True
d = Dummy('subs_d', commutative=com)
# using d*m so Subs will be used on dummy variables
# in things like Derivative(f(x, y), x) in which x
# is both free and bound
rv = rv._subs(old, d*m, **kwargs)
if not isinstance(rv, Basic):
break
reps[d] = new
reps[m] = S.One # get rid of m
return rv.xreplace(reps)
else:
rv = self
for old, new in sequence:
rv = rv._subs(old, new, **kwargs)
if not isinstance(rv, Basic):
break
return rv
@cacheit
def _subs(self, old, new, **hints):
"""Substitutes an expression old -> new.
If self is not equal to old then _eval_subs is called.
If _eval_subs does not want to make any special replacement
then a None is received which indicates that the fallback
should be applied wherein a search for replacements is made
amongst the arguments of self.
>>> from sympy import Add
>>> from sympy.abc import x, y, z
Examples
========
Add's _eval_subs knows how to target x + y in the following
so it makes the change:
>>> (x + y + z).subs(x + y, 1)
z + 1
Add's _eval_subs does not need to know how to find x + y in
the following:
>>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
True
The returned None will cause the fallback routine to traverse the args and
pass the z*(x + y) arg to Mul where the change will take place and the
substitution will succeed:
>>> (z*(x + y) + 3).subs(x + y, 1)
z + 3
** Developers Notes **
An _eval_subs routine for a class should be written if:
1) any arguments are not instances of Basic (e.g. bool, tuple);
2) some arguments should not be targeted (as in integration
variables);
3) if there is something other than a literal replacement
that should be attempted (as in Piecewise where the condition
may be updated without doing a replacement).
If it is overridden, here are some special cases that might arise:
1) If it turns out that no special change was made and all
the original sub-arguments should be checked for
replacements then None should be returned.
2) If it is necessary to do substitutions on a portion of
the expression then _subs should be called. _subs will
handle the case of any sub-expression being equal to old
(which usually would not be the case) while its fallback
will handle the recursion into the sub-arguments. For
example, after Add's _eval_subs removes some matching terms
it must process the remaining terms so it calls _subs
on each of the un-matched terms and then adds them
onto the terms previously obtained.
3) If the initial expression should remain unchanged then
the original expression should be returned. (Whenever an
expression is returned, modified or not, no further
substitution of old -> new is attempted.) Sum's _eval_subs
routine uses this strategy when a substitution is attempted
on any of its summation variables.
"""
def fallback(self, old, new):
"""
Try to replace old with new in any of self's arguments.
"""
hit = False
args = list(self.args)
for i, arg in enumerate(args):
if not hasattr(arg, '_eval_subs'):
continue
arg = arg._subs(old, new, **hints)
if not _aresame(arg, args[i]):
hit = True
args[i] = arg
if hit:
rv = self.func(*args)
hack2 = hints.get('hack2', False)
if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
coeff = S.One
nonnumber = []
for i in args:
if i.is_Number:
coeff *= i
else:
nonnumber.append(i)
nonnumber = self.func(*nonnumber)
if coeff is S.One:
return nonnumber
else:
return self.func(coeff, nonnumber, evaluate=False)
return rv
return self
if _aresame(self, old):
return new
rv = self._eval_subs(old, new)
if rv is None:
rv = fallback(self, old, new)
return rv
def _eval_subs(self, old, new):
"""Override this stub if you want to do anything more than
attempt a replacement of old with new in the arguments of self.
See also
========
_subs
"""
return None
def xreplace(self, rule):
"""
Replace occurrences of objects within the expression.
Parameters
==========
rule : dict-like
Expresses a replacement rule
Returns
=======
xreplace : the result of the replacement
Examples
========
>>> from sympy import symbols, pi, exp
>>> x, y, z = symbols('x y z')
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
Replacements occur only if an entire node in the expression tree is
matched:
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
x + exp(y) + 2
xreplace does not differentiate between free and bound symbols. In the
following, subs(x, y) would not change x since it is a bound symbol,
but xreplace does:
>>> from sympy import Integral
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
Trying to replace x with an expression raises an error:
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
See Also
========
replace: replacement capable of doing wildcard-like matching,
parsing of match, and conditional replacements
subs: substitution of subexpressions as defined by the objects
themselves.
"""
value, _ = self._xreplace(rule)
return value
def _xreplace(self, rule):
"""
Helper for xreplace. Tracks whether a replacement actually occurred.
"""
if self in rule:
return rule[self], True
elif rule:
args = []
changed = False
for a in self.args:
_xreplace = getattr(a, '_xreplace', None)
if _xreplace is not None:
a_xr = _xreplace(rule)
args.append(a_xr[0])
changed |= a_xr[1]
else:
args.append(a)
args = tuple(args)
if changed:
return self.func(*args), True
return self, False
@cacheit
def has(self, *patterns):
"""
Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y, z
>>> (x**2 + sin(x*y)).has(z)
False
>>> (x**2 + sin(x*y)).has(x, y, z)
True
>>> x.has(x)
True
Note ``has`` is a structural algorithm with no knowledge of
mathematics. Consider the following half-open interval:
>>> from sympy import Interval
>>> i = Interval.Lopen(0, 5); i
Interval.Lopen(0, 5)
>>> i.args
(0, 5, True, False)
>>> i.has(4) # there is no "4" in the arguments
False
>>> i.has(0) # there *is* a "0" in the arguments
True
Instead, use ``contains`` to determine whether a number is in the
interval or not:
>>> i.contains(4)
True
>>> i.contains(0)
False
Note that ``expr.has(*patterns)`` is exactly equivalent to
``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
returned when the list of patterns is empty.
>>> x.has()
False
"""
return self._has(iterargs, *patterns)
@cacheit
def has_free(self, *patterns):
"""return True if self has object(s) ``x`` as a free expression
else False.
Examples
========
>>> from sympy import Integral, Function
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> g = Function('g')
>>> expr = Integral(f(x), (f(x), 1, g(y)))
>>> expr.free_symbols
{y}
>>> expr.has_free(g(y))
True
>>> expr.has_free(*(x, f(x)))
False
This works for subexpressions and types, too:
>>> expr.has_free(g)
True
>>> (x + y + 1).has_free(y + 1)
True
"""
return self._has(iterfreeargs, *patterns)
def _has(self, iterargs, *patterns):
# separate out types and unhashable objects
type_set = set() # only types
p_set = set() # hashable non-types
for p in patterns:
if isinstance(p, BasicMeta):
type_set.add(p)
continue
if not isinstance(p, Basic):
try:
p = _sympify(p)
except SympifyError:
continue # Basic won't have this in it
p_set.add(p) # fails if object defines __eq__ but
# doesn't define __hash__
types = tuple(type_set) #
for i in iterargs(self): #
if i in p_set: # <--- here, too
return True
if isinstance(i, types):
return True
# use matcher if defined, e.g. operations defines
# matcher that checks for exact subset containment,
# (x + y + 1).has(x + 1) -> True
for i in p_set - type_set: # types don't have matchers
if not hasattr(i, '_has_matcher'):
continue
match = i._has_matcher()
if any(match(arg) for arg in iterargs(self)):
return True
# no success
return False
def replace(self, query, value, map=False, simultaneous=True, exact=None):
"""
Replace matching subexpressions of ``self`` with ``value``.
If ``map = True`` then also return the mapping {old: new} where ``old``
was a sub-expression found with query and ``new`` is the replacement
value for it. If the expression itself does not match the query, then
the returned value will be ``self.xreplace(map)`` otherwise it should
be ``self.subs(ordered(map.items()))``.
Traverses an expression tree and performs replacement of matching
subexpressions from the bottom to the top of the tree. The default
approach is to do the replacement in a simultaneous fashion so
changes made are targeted only once. If this is not desired or causes
problems, ``simultaneous`` can be set to False.
In addition, if an expression containing more than one Wild symbol
is being used to match subexpressions and the ``exact`` flag is None
it will be set to True so the match will only succeed if all non-zero
values are received for each Wild that appears in the match pattern.
Setting this to False accepts a match of 0; while setting it True
accepts all matches that have a 0 in them. See example below for
cautions.
The list of possible combinations of queries and replacement values
is listed below:
Examples
========
Initial setup
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
>>> from sympy.abc import x, y
>>> f = log(sin(x)) + tan(sin(x**2))
1.1. type -> type
obj.replace(type, newtype)
When object of type ``type`` is found, replace it with the
result of passing its argument(s) to ``newtype``.
>>> f.replace(sin, cos)
log(cos(x)) + tan(cos(x**2))
>>> sin(x).replace(sin, cos, map=True)
(cos(x), {sin(x): cos(x)})
>>> (x*y).replace(Mul, Add)
x + y
1.2. type -> func
obj.replace(type, func)
When object of type ``type`` is found, apply ``func`` to its
argument(s). ``func`` must be written to handle the number
of arguments of ``type``.
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
sin(2*x*y)
2.1. pattern -> expr
obj.replace(pattern(wild), expr(wild))
Replace subexpressions matching ``pattern`` with the expression
written in terms of the Wild symbols in ``pattern``.
>>> a, b = map(Wild, 'ab')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
>>> f.replace(sin(a), tan(a/2))
log(tan(x/2)) + tan(tan(x**2/2))
>>> f.replace(sin(a), a)
log(x) + tan(x**2)
>>> (x*y).replace(a*x, a)
y
Matching is exact by default when more than one Wild symbol
is used: matching fails unless the match gives non-zero
values for all Wild symbols:
>>> (2*x + y).replace(a*x + b, b - a)
y - 2
>>> (2*x).replace(a*x + b, b - a)
2*x
When set to False, the results may be non-intuitive:
>>> (2*x).replace(a*x + b, b - a, exact=False)
2/x
2.2. pattern -> func
obj.replace(pattern(wild), lambda wild: expr(wild))
All behavior is the same as in 2.1 but now a function in terms of
pattern variables is used rather than an expression:
>>> f.replace(sin(a), lambda a: sin(2*a))
log(sin(2*x)) + tan(sin(2*x**2))
3.1. func -> func
obj.replace(filter, func)
Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
is True.
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*sin(x**9)
The expression itself is also targeted by the query but is done in
such a fashion that changes are not made twice.
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
When matching a single symbol, `exact` will default to True, but
this may or may not be the behavior that is desired:
Here, we want `exact=False`:
>>> from sympy import Function
>>> f = Function('f')
>>> e = f(1) + f(0)
>>> q = f(a), lambda a: f(a + 1)
>>> e.replace(*q, exact=False)
f(1) + f(2)
>>> e.replace(*q, exact=True)
f(0) + f(2)
But here, the nature of matching makes selecting
the right setting tricky:
>>> e = x**(1 + y)
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
x
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(-x - y + 1)
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
x
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
x**(1 - y)
It is probably better to use a different form of the query
that describes the target expression more precisely:
>>> (1 + x**(1 + y)).replace(
... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
... lambda x: x.base**(1 - (x.exp - 1)))
...
x**(1 - y) + 1
See Also
========
subs: substitution of subexpressions as defined by the objects
themselves.
xreplace: exact node replacement in expr tree; also capable of
using matching rules
"""
try:
query = _sympify(query)
except SympifyError:
pass
try:
value = _sympify(value)
except SympifyError:
pass
if isinstance(query, type):
_query = lambda expr: isinstance(expr, query)
if isinstance(value, type):
_value = lambda expr, result: value(*expr.args)
elif callable(value):
_value = lambda expr, result: value(*expr.args)
else:
raise TypeError(
"given a type, replace() expects another "
"type or a callable")
elif isinstance(query, Basic):
_query = lambda expr: expr.match(query)
if exact is None:
from .symbol import Wild
exact = (len(query.atoms(Wild)) > 1)
if isinstance(value, Basic):
if exact:
_value = lambda expr, result: (value.subs(result)
if all(result.values()) else expr)
else:
_value = lambda expr, result: value.subs(result)
elif callable(value):
# match dictionary keys get the trailing underscore stripped
# from them and are then passed as keywords to the callable;
# if ``exact`` is True, only accept match if there are no null
# values amongst those matched.
if exact:
_value = lambda expr, result: (value(**
{str(k)[:-1]: v for k, v in result.items()})
if all(val for val in result.values()) else expr)
else:
_value = lambda expr, result: value(**
{str(k)[:-1]: v for k, v in result.items()})
else:
raise TypeError(
"given an expression, replace() expects "
"another expression or a callable")
elif callable(query):
_query = query
if callable(value):
_value = lambda expr, result: value(expr)
else:
raise TypeError(
"given a callable, replace() expects "
"another callable")
else:
raise TypeError(
"first argument to replace() must be a "
"type, an expression or a callable")
def walk(rv, F):
"""Apply ``F`` to args and then to result.
"""
args = getattr(rv, 'args', None)
if args is not None:
if args:
newargs = tuple([walk(a, F) for a in args])
if args != newargs:
rv = rv.func(*newargs)
if simultaneous:
# if rv is something that was already
# matched (that was changed) then skip
# applying F again
for i, e in enumerate(args):
if rv == e and e != newargs[i]:
return rv
rv = F(rv)
return rv
mapping = {} # changes that took place
def rec_replace(expr):
result = _query(expr)
if result or result == {}:
v = _value(expr, result)
if v is not None and v != expr:
if map:
mapping[expr] = v
expr = v
return expr
rv = walk(self, rec_replace)
return (rv, mapping) if map else rv
def find(self, query, group=False):
"""Find all subexpressions matching a query. """
query = _make_find_query(query)
results = list(filter(query, _preorder_traversal(self)))
if not group:
return set(results)
else:
groups = {}
for result in results:
if result in groups:
groups[result] += 1
else:
groups[result] = 1
return groups
def count(self, query):
"""Count the number of matching subexpressions. """
query = _make_find_query(query)
return sum(bool(query(sub)) for sub in _preorder_traversal(self))
def matches(self, expr, repl_dict=None, old=False):
"""
Helper method for match() that looks for a match between Wild symbols
in self and expressions in expr.
Examples
========
>>> from sympy import symbols, Wild, Basic
>>> a, b, c = symbols('a b c')
>>> x = Wild('x')
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
True
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
{x_: b + c}
"""
expr = sympify(expr)
if not isinstance(expr, self.__class__):
return None
if repl_dict is None:
repl_dict = {}
else:
repl_dict = repl_dict.copy()
if self == expr:
return repl_dict
if len(self.args) != len(expr.args):
return None
d = repl_dict # already a copy
for arg, other_arg in zip(self.args, expr.args):
if arg == other_arg:
continue
if arg.is_Relational:
try:
d = arg.xreplace(d).matches(other_arg, d, old=old)
except TypeError: # Should be InvalidComparisonError when introduced
d = None
else:
d = arg.xreplace(d).matches(other_arg, d, old=old)
if d is None:
return None
return d
def match(self, pattern, old=False):
"""
Pattern matching.
Wild symbols match all.
Return ``None`` when expression (self) does not match
with pattern. Otherwise return a dictionary such that::
pattern.xreplace(self.match(pattern)) == self
Examples
========
>>> from sympy import Wild, Sum
>>> from sympy.abc import x, y
>>> p = Wild("p")
>>> q = Wild("q")
>>> r = Wild("r")
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> e = (2*x)**2
>>> e.match(p*q**r)
{p_: 4, q_: x, r_: 2}
>>> (p*q**r).xreplace(e.match(p*q**r))
4*x**2
Structurally bound symbols are ignored during matching:
>>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p)))
{p_: 2}
But they can be identified if desired:
>>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p)))
{p_: 2, q_: x}
The ``old`` flag will give the old-style pattern matching where
expressions and patterns are essentially solved to give the
match. Both of the following give None unless ``old=True``:
>>> (x - 2).match(p - x, old=True)
{p_: 2*x - 2}
>>> (2/x).match(p*x, old=True)
{p_: 2/x**2}
"""
pattern = sympify(pattern)
# match non-bound symbols
canonical = lambda x: x if x.is_Symbol else x.as_dummy()
m = canonical(pattern).matches(canonical(self), old=old)
if m is None:
return m
from .symbol import Wild
from .function import WildFunction
wild = pattern.atoms(Wild, WildFunction)
# sanity check
if set(m) - wild:
raise ValueError(filldedent('''
Some `matches` routine did not use a copy of repl_dict
and injected unexpected symbols. Report this as an
error at https://github.com/sympy/sympy/issues'''))
# now see if bound symbols were requested
bwild = wild - set(m)
if not bwild:
return m
# replace free-Wild symbols in pattern with match result
# so they will match but not be in the next match
wpat = pattern.xreplace(m)
# identify remaining bound wild
w = wpat.matches(self, old=old)
# add them to m
if w:
m.update(w)
# done
return m
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from .function import count_ops
return count_ops(self, visual)
def doit(self, **hints):
"""Evaluate objects that are not evaluated by default like limits,
integrals, sums and products. All objects of this kind will be
evaluated recursively, unless some species were excluded via 'hints'
or unless the 'deep' hint was set to 'False'.
>>> from sympy import Integral
>>> from sympy.abc import x
>>> 2*Integral(x, x)
2*Integral(x, x)
>>> (2*Integral(x, x)).doit()
x**2
>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)
"""
if hints.get('deep', True):
terms = [term.doit(**hints) if isinstance(term, Basic) else term
for term in self.args]
return self.func(*terms)
else:
return self
def simplify(self, **kwargs):
"""See the simplify function in sympy.simplify"""
from sympy.simplify.simplify import simplify
return simplify(self, **kwargs)
def refine(self, assumption=True):
"""See the refine function in sympy.assumptions"""
from sympy.assumptions.refine import refine
return refine(self, assumption)
def _eval_derivative_n_times(self, s, n):
# This is the default evaluator for derivatives (as called by `diff`
# and `Derivative`), it will attempt a loop to derive the expression
# `n` times by calling the corresponding `_eval_derivative` method,
# while leaving the derivative unevaluated if `n` is symbolic. This
# method should be overridden if the object has a closed form for its
# symbolic n-th derivative.
from .numbers import Integer
if isinstance(n, (int, Integer)):
obj = self
for i in range(n):
obj2 = obj._eval_derivative(s)
if obj == obj2 or obj2 is None:
break
obj = obj2
return obj2
else:
return None
def rewrite(self, *args, deep=True, **hints):
"""
Rewrite *self* using a defined rule.
Rewriting transforms an expression to another, which is mathematically
equivalent but structurally different. For example you can rewrite
trigonometric functions as complex exponentials or combinatorial
functions as gamma function.
This method takes a *pattern* and a *rule* as positional arguments.
*pattern* is optional parameter which defines the types of expressions
that will be transformed. If it is not passed, all possible expressions
will be rewritten. *rule* defines how the expression will be rewritten.
Parameters
==========
args : *rule*, or *pattern* and *rule*.
- *pattern* is a type or an iterable of types.
- *rule* can be any object.
deep : bool, optional.
If ``True``, subexpressions are recursively transformed. Default is
``True``.
Examples
========
If *pattern* is unspecified, all possible expressions are transformed.
>>> from sympy import cos, sin, exp, I
>>> from sympy.abc import x
>>> expr = cos(x) + I*sin(x)
>>> expr.rewrite(exp)
exp(I*x)
Pattern can be a type or an iterable of types.
>>> expr.rewrite(sin, exp)
exp(I*x)/2 + cos(x) - exp(-I*x)/2
>>> expr.rewrite([cos,], exp)
exp(I*x)/2 + I*sin(x) + exp(-I*x)/2
>>> expr.rewrite([cos, sin], exp)
exp(I*x)
Rewriting behavior can be implemented by defining ``_eval_rewrite()``
method.
>>> from sympy import Expr, sqrt, pi
>>> class MySin(Expr):
... def _eval_rewrite(self, rule, args, **hints):
... x, = args
... if rule == cos:
... return cos(pi/2 - x, evaluate=False)
... if rule == sqrt:
... return sqrt(1 - cos(x)**2)
>>> MySin(MySin(x)).rewrite(cos)
cos(-cos(-x + pi/2) + pi/2)
>>> MySin(x).rewrite(sqrt)
sqrt(1 - cos(x)**2)
Defining ``_eval_rewrite_as_[...]()`` method is supported for backwards
compatibility reason. This may be removed in the future and using it is
discouraged.
>>> class MySin(Expr):
... def _eval_rewrite_as_cos(self, *args, **hints):
... x, = args
... return cos(pi/2 - x, evaluate=False)
>>> MySin(x).rewrite(cos)
cos(-x + pi/2)
"""
if not args:
return self
hints.update(deep=deep)
pattern = args[:-1]
rule = args[-1]
# support old design by _eval_rewrite_as_[...] method
if isinstance(rule, str):
method = "_eval_rewrite_as_%s" % rule
elif hasattr(rule, "__name__"):
# rule is class or function
clsname = rule.__name__
method = "_eval_rewrite_as_%s" % clsname
else:
# rule is instance
clsname = rule.__class__.__name__
method = "_eval_rewrite_as_%s" % clsname
if pattern:
if iterable(pattern[0]):
pattern = pattern[0]
pattern = tuple(p for p in pattern if self.has(p))
if not pattern:
return self
# hereafter, empty pattern is interpreted as all pattern.
return self._rewrite(pattern, rule, method, **hints)
def _rewrite(self, pattern, rule, method, **hints):
deep = hints.pop('deep', True)
if deep:
args = [a._rewrite(pattern, rule, method, **hints)
for a in self.args]
else:
args = self.args
if not pattern or any(isinstance(self, p) for p in pattern):
meth = getattr(self, method, None)
if meth is not None:
rewritten = meth(*args, **hints)
else:
rewritten = self._eval_rewrite(rule, args, **hints)
if rewritten is not None:
return rewritten
if not args:
return self
return self.func(*args)
def _eval_rewrite(self, rule, args, **hints):
return None
_constructor_postprocessor_mapping = {} # type: ignore
@classmethod
def _exec_constructor_postprocessors(cls, obj):
# WARNING: This API is experimental.
# This is an experimental API that introduces constructor
# postprosessors for SymPy Core elements. If an argument of a SymPy
# expression has a `_constructor_postprocessor_mapping` attribute, it will
# be interpreted as a dictionary containing lists of postprocessing
# functions for matching expression node names.
clsname = obj.__class__.__name__
postprocessors = defaultdict(list)
for i in obj.args:
try:
postprocessor_mappings = (
Basic._constructor_postprocessor_mapping[cls].items()
for cls in type(i).mro()
if cls in Basic._constructor_postprocessor_mapping
)
for k, v in chain.from_iterable(postprocessor_mappings):
postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
except TypeError:
pass
for f in postprocessors.get(clsname, []):
obj = f(obj)
return obj
def _sage_(self):
"""
Convert *self* to a symbolic expression of SageMath.
This version of the method is merely a placeholder.
"""
old_method = self._sage_
from sage.interfaces.sympy import sympy_init
sympy_init() # may monkey-patch _sage_ method into self's class or superclasses
if old_method == self._sage_:
raise NotImplementedError('conversion to SageMath is not implemented')
else:
# call the freshly monkey-patched method
return self._sage_()
def could_extract_minus_sign(self):
return False # see Expr.could_extract_minus_sign
class Atom(Basic):
"""
A parent class for atomic things. An atom is an expression with no subexpressions.
Examples
========
Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_Atom = True
__slots__ = ()
def matches(self, expr, repl_dict=None, old=False):
if self == expr:
if repl_dict is None:
return {}
return repl_dict.copy()
def xreplace(self, rule, hack2=False):
return rule.get(self, self)
def doit(self, **hints):
return self
@classmethod
def class_key(cls):
return 2, 0, cls.__name__
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
def _eval_simplify(self, **kwargs):
return self
@property
def _sorted_args(self):
# this is here as a safeguard against accidentally using _sorted_args
# on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
# since there are no args. So the calling routine should be checking
# to see that this property is not called for Atoms.
raise AttributeError('Atoms have no args. It might be necessary'
' to make a check for Atoms in the calling code.')
def _aresame(a, b):
"""Return True if a and b are structurally the same, else False.
Examples
========
In SymPy (as in Python) two numbers compare the same if they
have the same underlying base-2 representation even though
they may not be the same type:
>>> from sympy import S
>>> 2.0 == S(2)
True
>>> 0.5 == S.Half
True
This routine was written to provide a query for such cases that
would give false when the types do not match:
>>> from sympy.core.basic import _aresame
>>> _aresame(S(2.0), S(2))
False
"""
from .numbers import Number
from .function import AppliedUndef, UndefinedFunction as UndefFunc
if isinstance(a, Number) and isinstance(b, Number):
return a == b and a.__class__ == b.__class__
for i, j in zip_longest(_preorder_traversal(a), _preorder_traversal(b)):
if i != j or type(i) != type(j):
if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
(isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
if i.class_key() != j.class_key():
return False
else:
return False
return True
def _ne(a, b):
# use this as a second test after `a != b` if you want to make
# sure that things are truly equal, e.g.
# a, b = 0.5, S.Half
# a !=b or _ne(a, b) -> True
from .numbers import Number
# 0.5 == S.Half
if isinstance(a, Number) and isinstance(b, Number):
return a.__class__ != b.__class__
def _atomic(e, recursive=False):
"""Return atom-like quantities as far as substitution is
concerned: Derivatives, Functions and Symbols. Do not
return any 'atoms' that are inside such quantities unless
they also appear outside, too, unless `recursive` is True.
Examples
========
>>> from sympy import Derivative, Function, cos
>>> from sympy.abc import x, y
>>> from sympy.core.basic import _atomic
>>> f = Function('f')
>>> _atomic(x + y)
{x, y}
>>> _atomic(x + f(y))
{x, f(y)}
>>> _atomic(Derivative(f(x), x) + cos(x) + y)
{y, cos(x), Derivative(f(x), x)}
"""
pot = _preorder_traversal(e)
seen = set()
if isinstance(e, Basic):
free = getattr(e, "free_symbols", None)
if free is None:
return {e}
else:
return set()
from .symbol import Symbol
from .function import Derivative, Function
atoms = set()
for p in pot:
if p in seen:
pot.skip()
continue
seen.add(p)
if isinstance(p, Symbol) and p in free:
atoms.add(p)
elif isinstance(p, (Derivative, Function)):
if not recursive:
pot.skip()
atoms.add(p)
return atoms
def _make_find_query(query):
"""Convert the argument of Basic.find() into a callable"""
try:
query = _sympify(query)
except SympifyError:
pass
if isinstance(query, type):
return lambda expr: isinstance(expr, query)
elif isinstance(query, Basic):
return lambda expr: expr.match(query) is not None
return query
# Delayed to avoid cyclic import
from .singleton import S
from .traversal import (preorder_traversal as _preorder_traversal,
iterargs, iterfreeargs)
preorder_traversal = deprecated(
"""
Using preorder_traversal from the sympy.core.basic submodule is
deprecated.
Instead, use preorder_traversal from the top-level sympy namespace, like
sympy.preorder_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved",
)(_preorder_traversal)
|
62824d966b2846f3ade3e399608977bd20331f3286cae7e81568761b7b9b474a | from __future__ import annotations
from typing import Callable
from math import log as _log, sqrt as _sqrt
from itertools import product
from .sympify import _sympify
from .cache import cacheit
from .singleton import S
from .expr import Expr
from .evalf import PrecisionExhausted
from .function import (expand_complex, expand_multinomial,
expand_mul, _mexpand, PoleError)
from .logic import fuzzy_bool, fuzzy_not, fuzzy_and, fuzzy_or
from .parameters import global_parameters
from .relational import is_gt, is_lt
from .kind import NumberKind, UndefinedKind
from sympy.external.gmpy import HAS_GMPY, gmpy
from sympy.utilities.iterables import sift
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.misc import as_int
from sympy.multipledispatch import Dispatcher
from mpmath.libmp import sqrtrem as mpmath_sqrtrem
def isqrt(n):
"""Return the largest integer less than or equal to sqrt(n)."""
if n < 0:
raise ValueError("n must be nonnegative")
n = int(n)
# Fast path: with IEEE 754 binary64 floats and a correctly-rounded
# math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n <
# 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either
# IEEE 754 format floats *or* correct rounding of math.sqrt, so check the
# answer and fall back to the slow method if necessary.
if n < 4503599761588224:
s = int(_sqrt(n))
if 0 <= n - s*s <= 2*s:
return s
return integer_nthroot(n, 2)[0]
def integer_nthroot(y, n):
"""
Return a tuple containing x = floor(y**(1/n))
and a boolean indicating whether the result is exact (that is,
whether x**n == y).
Examples
========
>>> from sympy import integer_nthroot
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
To simply determine if a number is a perfect square, the is_square
function should be used:
>>> from sympy.ntheory.primetest import is_square
>>> is_square(26)
False
See Also
========
sympy.ntheory.primetest.is_square
integer_log
"""
y, n = as_int(y), as_int(n)
if y < 0:
raise ValueError("y must be nonnegative")
if n < 1:
raise ValueError("n must be positive")
if HAS_GMPY and n < 2**63:
# Currently it works only for n < 2**63, else it produces TypeError
# sympy issue: https://github.com/sympy/sympy/issues/18374
# gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257
if HAS_GMPY >= 2:
x, t = gmpy.iroot(y, n)
else:
x, t = gmpy.root(y, n)
return as_int(x), bool(t)
return _integer_nthroot_python(y, n)
def _integer_nthroot_python(y, n):
if y in (0, 1):
return y, True
if n == 1:
return y, True
if n == 2:
x, rem = mpmath_sqrtrem(y)
return int(x), not rem
if n >= y.bit_length():
return 1, False
# Get initial estimate for Newton's method. Care must be taken to
# avoid overflow
try:
guess = int(y**(1./n) + 0.5)
except OverflowError:
exp = _log(y, 2)/n
if exp > 53:
shift = int(exp - 53)
guess = int(2.0**(exp - shift) + 1) << shift
else:
guess = int(2.0**exp)
if guess > 2**50:
# Newton iteration
xprev, x = -1, guess
while 1:
t = x**(n - 1)
xprev, x = x, ((n - 1)*x + y//t)//n
if abs(x - xprev) < 2:
break
else:
x = guess
# Compensate
t = x**n
while t < y:
x += 1
t = x**n
while t > y:
x -= 1
t = x**n
return int(x), t == y # int converts long to int if possible
def integer_log(y, x):
r"""
Returns ``(e, bool)`` where e is the largest nonnegative integer
such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$.
Examples
========
>>> from sympy import integer_log
>>> integer_log(125, 5)
(3, True)
>>> integer_log(17, 9)
(1, False)
>>> integer_log(4, -2)
(2, True)
>>> integer_log(-125,-5)
(3, True)
See Also
========
integer_nthroot
sympy.ntheory.primetest.is_square
sympy.ntheory.factor_.multiplicity
sympy.ntheory.factor_.perfect_power
"""
if x == 1:
raise ValueError('x cannot take value as 1')
if y == 0:
raise ValueError('y cannot take value as 0')
if x in (-2, 2):
x = int(x)
y = as_int(y)
e = y.bit_length() - 1
return e, x**e == y
if x < 0:
n, b = integer_log(y if y > 0 else -y, -x)
return n, b and bool(n % 2 if y < 0 else not n % 2)
x = as_int(x)
y = as_int(y)
r = e = 0
while y >= x:
d = x
m = 1
while y >= d:
y, rem = divmod(y, d)
r = r or rem
e += m
if y > d:
d *= d
m *= 2
return e, r == 0 and y == 1
class Pow(Expr):
"""
Defines the expression x**y as "x raised to a power y"
.. deprecated:: 1.7
Using arguments that aren't subclasses of :class:`~.Expr` in core
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
deprecated. See :ref:`non-expr-args-deprecated` for details.
Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
+--------------+---------+-----------------------------------------------+
| expr | value | reason |
+==============+=========+===============================================+
| z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
+--------------+---------+-----------------------------------------------+
| z**1 | z | |
+--------------+---------+-----------------------------------------------+
| (-oo)**(-1) | 0 | |
+--------------+---------+-----------------------------------------------+
| (-1)**-1 | -1 | |
+--------------+---------+-----------------------------------------------+
| S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
| | | undefined, but is convenient in some contexts |
| | | where the base is assumed to be positive. |
+--------------+---------+-----------------------------------------------+
| 1**-1 | 1 | |
+--------------+---------+-----------------------------------------------+
| oo**-1 | 0 | |
+--------------+---------+-----------------------------------------------+
| 0**oo | 0 | Because for all complex numbers z near |
| | | 0, z**oo -> 0. |
+--------------+---------+-----------------------------------------------+
| 0**-oo | zoo | This is not strictly true, as 0**oo may be |
| | | oscillating between positive and negative |
| | | values or rotating in the complex plane. |
| | | It is convenient, however, when the base |
| | | is positive. |
+--------------+---------+-----------------------------------------------+
| 1**oo | nan | Because there are various cases where |
| 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
| | | but lim( x(t)**y(t), t) != 1. See [3]. |
+--------------+---------+-----------------------------------------------+
| b**zoo | nan | Because b**z has no limit as z -> zoo |
+--------------+---------+-----------------------------------------------+
| (-1)**oo | nan | Because of oscillations in the limit. |
| (-1)**(-oo) | | |
+--------------+---------+-----------------------------------------------+
| oo**oo | oo | |
+--------------+---------+-----------------------------------------------+
| oo**-oo | 0 | |
+--------------+---------+-----------------------------------------------+
| (-oo)**oo | nan | |
| (-oo)**-oo | | |
+--------------+---------+-----------------------------------------------+
| oo**I | nan | oo**e could probably be best thought of as |
| (-oo)**I | | the limit of x**e for real x as x tends to |
| | | oo. If e is I, then the limit does not exist |
| | | and nan is used to indicate that. |
+--------------+---------+-----------------------------------------------+
| oo**(1+I) | zoo | If the real part of e is positive, then the |
| (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
| | | is zoo. |
+--------------+---------+-----------------------------------------------+
| oo**(-1+I) | 0 | If the real part of e is negative, then the |
| -oo**(-1+I) | | limit is 0. |
+--------------+---------+-----------------------------------------------+
Because symbolic computations are more flexible than floating point
calculations and we prefer to never return an incorrect answer,
we choose not to conform to all IEEE 754 conventions. This helps
us avoid extra test-case code in the calculation of limits.
See Also
========
sympy.core.numbers.Infinity
sympy.core.numbers.NegativeInfinity
sympy.core.numbers.NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Exponentiation
.. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero
.. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
"""
is_Pow = True
__slots__ = ('is_commutative',)
args: tuple[Expr, Expr]
_args: tuple[Expr, Expr]
@cacheit
def __new__(cls, b, e, evaluate=None):
if evaluate is None:
evaluate = global_parameters.evaluate
b = _sympify(b)
e = _sympify(e)
# XXX: This can be removed when non-Expr args are disallowed rather
# than deprecated.
from .relational import Relational
if isinstance(b, Relational) or isinstance(e, Relational):
raise TypeError('Relational cannot be used in Pow')
# XXX: This should raise TypeError once deprecation period is over:
for arg in [b, e]:
if not isinstance(arg, Expr):
sympy_deprecation_warning(
f"""
Using non-Expr arguments in Pow is deprecated (in this case, one of the
arguments is of type {type(arg).__name__!r}).
If you really did intend to construct a power with this base, use the **
operator instead.""",
deprecated_since_version="1.7",
active_deprecations_target="non-expr-args-deprecated",
stacklevel=4,
)
if evaluate:
if e is S.ComplexInfinity:
return S.NaN
if e is S.Infinity:
if is_gt(b, S.One):
return S.Infinity
if is_gt(b, S.NegativeOne) and is_lt(b, S.One):
return S.Zero
if is_lt(b, S.NegativeOne):
if b.is_finite:
return S.ComplexInfinity
if b.is_finite is False:
return S.NaN
if e is S.Zero:
return S.One
elif e is S.One:
return b
elif e == -1 and not b:
return S.ComplexInfinity
elif e.__class__.__name__ == "AccumulationBounds":
if b == S.Exp1:
from sympy.calculus.accumulationbounds import AccumBounds
return AccumBounds(Pow(b, e.min), Pow(b, e.max))
# autosimplification if base is a number and exp odd/even
# if base is Number then the base will end up positive; we
# do not do this with arbitrary expressions since symbolic
# cancellation might occur as in (x - 1)/(1 - x) -> -1. If
# we returned Piecewise((-1, Ne(x, 1))) for such cases then
# we could do this...but we don't
elif (e.is_Symbol and e.is_integer or e.is_Integer
) and (b.is_number and b.is_Mul or b.is_Number
) and b.could_extract_minus_sign():
if e.is_even:
b = -b
elif e.is_odd:
return -Pow(-b, e)
if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
return S.NaN
elif b is S.One:
if abs(e).is_infinite:
return S.NaN
return S.One
else:
# recognize base as E
from sympy.functions.elementary.exponential import exp_polar
if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
from .exprtools import factor_terms
from sympy.functions.elementary.exponential import log
from sympy.simplify.radsimp import fraction
c, ex = factor_terms(e, sign=False).as_coeff_Mul()
num, den = fraction(ex)
if isinstance(den, log) and den.args[0] == b:
return S.Exp1**(c*num)
elif den.is_Add:
from sympy.functions.elementary.complexes import sign, im
s = sign(im(b))
if s.is_Number and s and den == \
log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
return S.Exp1**(c*num)
obj = b._eval_power(e)
if obj is not None:
return obj
obj = Expr.__new__(cls, b, e)
obj = cls._exec_constructor_postprocessors(obj)
if not isinstance(obj, Pow):
return obj
obj.is_commutative = (b.is_commutative and e.is_commutative)
return obj
def inverse(self, argindex=1):
if self.base == S.Exp1:
from sympy.functions.elementary.exponential import log
return log
return None
@property
def base(self) -> Expr:
return self._args[0]
@property
def exp(self) -> Expr:
return self._args[1]
@property
def kind(self):
if self.exp.kind is NumberKind:
return self.base.kind
else:
return UndefinedKind
@classmethod
def class_key(cls):
return 3, 2, cls.__name__
def _eval_refine(self, assumptions):
from sympy.assumptions.ask import ask, Q
b, e = self.as_base_exp()
if ask(Q.integer(e), assumptions) and b.could_extract_minus_sign():
if ask(Q.even(e), assumptions):
return Pow(-b, e)
elif ask(Q.odd(e), assumptions):
return -Pow(-b, e)
def _eval_power(self, other):
b, e = self.as_base_exp()
if b is S.NaN:
return (b**e)**other # let __new__ handle it
s = None
if other.is_integer:
s = 1
elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
s = 1
elif e.is_extended_real is not None:
from sympy.functions.elementary.complexes import arg, im, re, sign
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import floor
# helper functions ===========================
def _half(e):
"""Return True if the exponent has a literal 2 as the
denominator, else None."""
if getattr(e, 'q', None) == 2:
return True
n, d = e.as_numer_denom()
if n.is_integer and d == 2:
return True
def _n2(e):
"""Return ``e`` evaluated to a Number with 2 significant
digits, else None."""
try:
rv = e.evalf(2, strict=True)
if rv.is_Number:
return rv
except PrecisionExhausted:
pass
# ===================================================
if e.is_extended_real:
# we need _half(other) with constant floor or
# floor(S.Half - e*arg(b)/2/pi) == 0
# handle -1 as special case
if e == -1:
# floor arg. is 1/2 + arg(b)/2/pi
if _half(other):
if b.is_negative is True:
return S.NegativeOne**other*Pow(-b, e*other)
elif b.is_negative is False: # XXX ok if im(b) != 0?
return Pow(b, -other)
elif e.is_even:
if b.is_extended_real:
b = abs(b)
if b.is_imaginary:
b = abs(im(b))*S.ImaginaryUnit
if (abs(e) < 1) == True or e == 1:
s = 1 # floor = 0
elif b.is_extended_nonnegative:
s = 1 # floor = 0
elif re(b).is_extended_nonnegative and (abs(e) < 2) == True:
s = 1 # floor = 0
elif _half(other):
s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
S.Half - e*arg(b)/(2*S.Pi)))
if s.is_extended_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
else:
# e.is_extended_real is False requires:
# _half(other) with constant floor or
# floor(S.Half - im(e*log(b))/2/pi) == 0
try:
s = exp(2*S.ImaginaryUnit*S.Pi*other*
floor(S.Half - im(e*log(b))/2/S.Pi))
# be careful to test that s is -1 or 1 b/c sign(I) == I:
# so check that s is real
if s.is_extended_real and _n2(sign(s) - s) == 0:
s = sign(s)
else:
s = None
except PrecisionExhausted:
s = None
if s is not None:
return s*Pow(b, e*other)
def _eval_Mod(self, q):
r"""A dispatched function to compute `b^e \bmod q`, dispatched
by ``Mod``.
Notes
=====
Algorithms:
1. For unevaluated integer power, use built-in ``pow`` function
with 3 arguments, if powers are not too large wrt base.
2. For very large powers, use totient reduction if $e \ge \log(m)$.
Bound on m, is for safe factorization memory wise i.e. $m^{1/4}$.
For pollard-rho to be faster than built-in pow $\log(e) > m^{1/4}$
check is added.
3. For any unevaluated power found in `b` or `e`, the step 2
will be recursed down to the base and the exponent
such that the $b \bmod q$ becomes the new base and
$\phi(q) + e \bmod \phi(q)$ becomes the new exponent, and then
the computation for the reduced expression can be done.
"""
base, exp = self.base, self.exp
if exp.is_integer and exp.is_positive:
if q.is_integer and base % q == 0:
return S.Zero
from sympy.ntheory.factor_ import totient
if base.is_Integer and exp.is_Integer and q.is_Integer:
b, e, m = int(base), int(exp), int(q)
mb = m.bit_length()
if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
phi = int(totient(m))
return Integer(pow(b, phi + e%phi, m))
return Integer(pow(b, e, m))
from .mod import Mod
if isinstance(base, Pow) and base.is_integer and base.is_number:
base = Mod(base, q)
return Mod(Pow(base, exp, evaluate=False), q)
if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
bit_length = int(q).bit_length()
# XXX Mod-Pow actually attempts to do a hanging evaluation
# if this dispatched function returns None.
# May need some fixes in the dispatcher itself.
if bit_length <= 80:
phi = totient(q)
exp = phi + Mod(exp, phi)
return Mod(Pow(base, exp, evaluate=False), q)
def _eval_is_even(self):
if self.exp.is_integer and self.exp.is_positive:
return self.base.is_even
def _eval_is_negative(self):
ext_neg = Pow._eval_is_extended_negative(self)
if ext_neg is True:
return self.is_finite
return ext_neg
def _eval_is_extended_positive(self):
if self.base == self.exp:
if self.base.is_extended_nonnegative:
return True
elif self.base.is_positive:
if self.exp.is_real:
return True
elif self.base.is_extended_negative:
if self.exp.is_even:
return True
if self.exp.is_odd:
return False
elif self.base.is_zero:
if self.exp.is_extended_real:
return self.exp.is_zero
elif self.base.is_extended_nonpositive:
if self.exp.is_odd:
return False
elif self.base.is_imaginary:
if self.exp.is_integer:
m = self.exp % 4
if m.is_zero:
return True
if m.is_integer and m.is_zero is False:
return False
if self.exp.is_imaginary:
from sympy.functions.elementary.exponential import log
return log(self.base).is_imaginary
def _eval_is_extended_negative(self):
if self.exp is S.Half:
if self.base.is_complex or self.base.is_extended_real:
return False
if self.base.is_extended_negative:
if self.exp.is_odd and self.base.is_finite:
return True
if self.exp.is_even:
return False
elif self.base.is_extended_positive:
if self.exp.is_extended_real:
return False
elif self.base.is_zero:
if self.exp.is_extended_real:
return False
elif self.base.is_extended_nonnegative:
if self.exp.is_extended_nonnegative:
return False
elif self.base.is_extended_nonpositive:
if self.exp.is_even:
return False
elif self.base.is_extended_real:
if self.exp.is_even:
return False
def _eval_is_zero(self):
if self.base.is_zero:
if self.exp.is_extended_positive:
return True
elif self.exp.is_extended_nonpositive:
return False
elif self.base == S.Exp1:
return self.exp is S.NegativeInfinity
elif self.base.is_zero is False:
if self.base.is_finite and self.exp.is_finite:
return False
elif self.exp.is_negative:
return self.base.is_infinite
elif self.exp.is_nonnegative:
return False
elif self.exp.is_infinite and self.exp.is_extended_real:
if (1 - abs(self.base)).is_extended_positive:
return self.exp.is_extended_positive
elif (1 - abs(self.base)).is_extended_negative:
return self.exp.is_extended_negative
elif self.base.is_finite and self.exp.is_negative:
# when self.base.is_zero is None
return False
def _eval_is_integer(self):
b, e = self.args
if b.is_rational:
if b.is_integer is False and e.is_positive:
return False # rat**nonneg
if b.is_integer and e.is_integer:
if b is S.NegativeOne:
return True
if e.is_nonnegative or e.is_positive:
return True
if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
return False
if b.is_Number and e.is_Number:
check = self.func(*self.args)
return check.is_Integer
if e.is_negative and b.is_positive and (b - 1).is_positive:
return False
if e.is_negative and b.is_negative and (b + 1).is_negative:
return False
def _eval_is_extended_real(self):
if self.base is S.Exp1:
if self.exp.is_extended_real:
return True
elif self.exp.is_imaginary:
return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even
from sympy.functions.elementary.exponential import log, exp
real_b = self.base.is_extended_real
if real_b is None:
if self.base.func == exp and self.base.exp.is_imaginary:
return self.exp.is_imaginary
if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary:
return self.exp.is_imaginary
return
real_e = self.exp.is_extended_real
if real_e is None:
return
if real_b and real_e:
if self.base.is_extended_positive:
return True
elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative:
return True
elif self.exp.is_integer and self.base.is_extended_nonzero:
return True
elif self.exp.is_integer and self.exp.is_nonnegative:
return True
elif self.base.is_extended_negative:
if self.exp.is_Rational:
return False
if real_e and self.exp.is_extended_negative and self.base.is_zero is False:
return Pow(self.base, -self.exp).is_extended_real
im_b = self.base.is_imaginary
im_e = self.exp.is_imaginary
if im_b:
if self.exp.is_integer:
if self.exp.is_even:
return True
elif self.exp.is_odd:
return False
elif im_e and log(self.base).is_imaginary:
return True
elif self.exp.is_Add:
c, a = self.exp.as_coeff_Add()
if c and c.is_Integer:
return Mul(
self.base**c, self.base**a, evaluate=False).is_extended_real
elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
if (self.exp/2).is_integer is False:
return False
if real_b and im_e:
if self.base is S.NegativeOne:
return True
c = self.exp.coeff(S.ImaginaryUnit)
if c:
if self.base.is_rational and c.is_rational:
if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero:
return False
ok = (c*log(self.base)/S.Pi).is_integer
if ok is not None:
return ok
if real_b is False and real_e: # we already know it's not imag
from sympy.functions.elementary.complexes import arg
i = arg(self.base)*self.exp/S.Pi
if i.is_complex: # finite
return i.is_integer
def _eval_is_complex(self):
if self.base == S.Exp1:
return fuzzy_or([self.exp.is_complex, self.exp.is_extended_negative])
if all(a.is_complex for a in self.args) and self._eval_is_finite():
return True
def _eval_is_imaginary(self):
if self.base.is_commutative is False:
return False
if self.base.is_imaginary:
if self.exp.is_integer:
odd = self.exp.is_odd
if odd is not None:
return odd
return
if self.base == S.Exp1:
f = 2 * self.exp / (S.Pi*S.ImaginaryUnit)
# exp(pi*integer) = 1 or -1, so not imaginary
if f.is_even:
return False
# exp(pi*integer + pi/2) = I or -I, so it is imaginary
if f.is_odd:
return True
return None
if self.exp.is_imaginary:
from sympy.functions.elementary.exponential import log
imlog = log(self.base).is_imaginary
if imlog is not None:
return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
if self.base.is_extended_real and self.exp.is_extended_real:
if self.base.is_positive:
return False
else:
rat = self.exp.is_rational
if not rat:
return rat
if self.exp.is_integer:
return False
else:
half = (2*self.exp).is_integer
if half:
return self.base.is_negative
return half
if self.base.is_extended_real is False: # we already know it's not imag
from sympy.functions.elementary.complexes import arg
i = arg(self.base)*self.exp/S.Pi
isodd = (2*i).is_odd
if isodd is not None:
return isodd
def _eval_is_odd(self):
if self.exp.is_integer:
if self.exp.is_positive:
return self.base.is_odd
elif self.exp.is_nonnegative and self.base.is_odd:
return True
elif self.base is S.NegativeOne:
return True
def _eval_is_finite(self):
if self.exp.is_negative:
if self.base.is_zero:
return False
if self.base.is_infinite or self.base.is_nonzero:
return True
c1 = self.base.is_finite
if c1 is None:
return
c2 = self.exp.is_finite
if c2 is None:
return
if c1 and c2:
if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
return True
def _eval_is_prime(self):
'''
An integer raised to the n(>=2)-th power cannot be a prime.
'''
if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
return False
def _eval_is_composite(self):
"""
A power is composite if both base and exponent are greater than 1
"""
if (self.base.is_integer and self.exp.is_integer and
((self.base - 1).is_positive and (self.exp - 1).is_positive or
(self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
return True
def _eval_is_polar(self):
return self.base.is_polar
def _eval_subs(self, old, new):
from sympy.calculus.accumulationbounds import AccumBounds
if isinstance(self.exp, AccumBounds):
b = self.base.subs(old, new)
e = self.exp.subs(old, new)
if isinstance(e, AccumBounds):
return e.__rpow__(b)
return self.func(b, e)
from sympy.functions.elementary.exponential import exp, log
def _check(ct1, ct2, old):
"""Return (bool, pow, remainder_pow) where, if bool is True, then the
exponent of Pow `old` will combine with `pow` so the substitution
is valid, otherwise bool will be False.
For noncommutative objects, `pow` will be an integer, and a factor
`Pow(old.base, remainder_pow)` needs to be included. If there is
no such factor, None is returned. For commutative objects,
remainder_pow is always None.
cti are the coefficient and terms of an exponent of self or old
In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
will give y**2 since (b**x)**2 == b**(2*x); if that equality does
not hold then the substitution should not occur so `bool` will be
False.
"""
coeff1, terms1 = ct1
coeff2, terms2 = ct2
if terms1 == terms2:
if old.is_commutative:
# Allow fractional powers for commutative objects
pow = coeff1/coeff2
try:
as_int(pow, strict=False)
combines = True
except ValueError:
b, e = old.as_base_exp()
# These conditions ensure that (b**e)**f == b**(e*f) for any f
combines = b.is_positive and e.is_real or b.is_nonnegative and e.is_nonnegative
return combines, pow, None
else:
# With noncommutative symbols, substitute only integer powers
if not isinstance(terms1, tuple):
terms1 = (terms1,)
if not all(term.is_integer for term in terms1):
return False, None, None
try:
# Round pow toward zero
pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
if pow < 0 and remainder != 0:
pow += 1
remainder -= as_int(coeff2)
if remainder == 0:
remainder_pow = None
else:
remainder_pow = Mul(remainder, *terms1)
return True, pow, remainder_pow
except ValueError:
# Can't substitute
pass
return False, None, None
if old == self.base or (old == exp and self.base == S.Exp1):
if new.is_Function and isinstance(new, Callable):
return new(self.exp._subs(old, new))
else:
return new**self.exp._subs(old, new)
# issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
if isinstance(old, self.func) and self.exp == old.exp:
l = log(self.base, old.base)
if l.is_Number:
return Pow(new, l)
if isinstance(old, self.func) and self.base == old.base:
if self.exp.is_Add is False:
ct1 = self.exp.as_independent(Symbol, as_Add=False)
ct2 = old.exp.as_independent(Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
# issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
result = self.func(new, pow)
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
# exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
oarg = old.exp
new_l = []
o_al = []
ct2 = oarg.as_coeff_mul()
for a in self.exp.args:
newa = a._subs(old, new)
ct1 = newa.as_coeff_mul()
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
new_l.append(new**pow)
if remainder_pow is not None:
o_al.append(remainder_pow)
continue
elif not old.is_commutative and not newa.is_integer:
# If any term in the exponent is non-integer,
# we do not do any substitutions in the noncommutative case
return
o_al.append(newa)
if new_l:
expo = Add(*o_al)
new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
return Mul(*new_l)
if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive:
ct1 = old.exp.as_independent(Symbol, as_Add=False)
ct2 = (self.exp*log(self.base)).as_independent(
Symbol, as_Add=False)
ok, pow, remainder_pow = _check(ct1, ct2, old)
if ok:
result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
if remainder_pow is not None:
result = Mul(result, Pow(old.base, remainder_pow))
return result
def as_base_exp(self):
"""Return base and exp of self.
Explanation
===========
If base is 1/Integer, then return Integer, -exp. If this extra
processing is not needed, the base and exp properties will
give the raw arguments
Examples
========
>>> from sympy import Pow, S
>>> p = Pow(S.Half, 2, evaluate=False)
>>> p.as_base_exp()
(2, -2)
>>> p.args
(1/2, 2)
"""
b, e = self.args
if b.is_Rational and b.p == 1 and b.q != 1:
return Integer(b.q), -e
return b, e
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import adjoint
i, p = self.exp.is_integer, self.base.is_positive
if i:
return adjoint(self.base)**self.exp
if p:
return self.base**adjoint(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return adjoint(expanded)
def _eval_conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
i, p = self.exp.is_integer, self.base.is_positive
if i:
return c(self.base)**self.exp
if p:
return self.base**c(self.exp)
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return c(expanded)
if self.is_extended_real:
return self
def _eval_transpose(self):
from sympy.functions.elementary.complexes import transpose
if self.base == S.Exp1:
return self.func(S.Exp1, self.exp.transpose())
i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite)
if p:
return self.base**self.exp
if i:
return transpose(self.base)**self.exp
if i is False and p is False:
expanded = expand_complex(self)
if expanded != self:
return transpose(expanded)
def _eval_expand_power_exp(self, **hints):
"""a**(n + m) -> a**n*a**m"""
b = self.base
e = self.exp
if b == S.Exp1:
from sympy.concrete.summations import Sum
if isinstance(e, Sum) and e.is_commutative:
from sympy.concrete.products import Product
return Product(self.func(b, e.function), *e.limits)
if e.is_Add and e.is_commutative:
return Mul(*[self.func(b, x) for x in e.args])
return self.func(b, e)
def _eval_expand_power_base(self, **hints):
"""(a*b)**n -> a**n * b**n"""
force = hints.get('force', False)
b = self.base
e = self.exp
if not b.is_Mul:
return self
cargs, nc = b.args_cnc(split_1=False)
# expand each term - this is top-level-only
# expansion but we have to watch out for things
# that don't have an _eval_expand method
if nc:
nc = [i._eval_expand_power_base(**hints)
if hasattr(i, '_eval_expand_power_base') else i
for i in nc]
if e.is_Integer:
if e.is_positive:
rv = Mul(*nc*e)
else:
rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
if cargs:
rv *= Mul(*cargs)**e
return rv
if not cargs:
return self.func(Mul(*nc), e, evaluate=False)
nc = [Mul(*nc)]
# sift the commutative bases
other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False,
binary=True)
def pred(x):
if x is S.ImaginaryUnit:
return S.ImaginaryUnit
polar = x.is_polar
if polar:
return True
if polar is None:
return fuzzy_bool(x.is_extended_nonnegative)
sifted = sift(maybe_real, pred)
nonneg = sifted[True]
other += sifted[None]
neg = sifted[False]
imag = sifted[S.ImaginaryUnit]
if imag:
I = S.ImaginaryUnit
i = len(imag) % 4
if i == 0:
pass
elif i == 1:
other.append(I)
elif i == 2:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
else:
if neg:
nonn = -neg.pop()
if nonn is not S.One:
nonneg.append(nonn)
else:
neg.append(S.NegativeOne)
other.append(I)
del imag
# bring out the bases that can be separated from the base
if force or e.is_integer:
# treat all commutatives the same and put nc in other
cargs = nonneg + neg + other
other = nc
else:
# this is just like what is happening automatically, except
# that now we are doing it for an arbitrary exponent for which
# no automatic expansion is done
assert not e.is_Integer
# handle negatives by making them all positive and putting
# the residual -1 in other
if len(neg) > 1:
o = S.One
if not other and neg[0].is_Number:
o *= neg.pop(0)
if len(neg) % 2:
o = -o
for n in neg:
nonneg.append(-n)
if o is not S.One:
other.append(o)
elif neg and other:
if neg[0].is_Number and neg[0] is not S.NegativeOne:
other.append(S.NegativeOne)
nonneg.append(-neg[0])
else:
other.extend(neg)
else:
other.extend(neg)
del neg
cargs = nonneg
other += nc
rv = S.One
if cargs:
if e.is_Rational:
npow, cargs = sift(cargs, lambda x: x.is_Pow and
x.exp.is_Rational and x.base.is_number,
binary=True)
rv = Mul(*[self.func(b.func(*b.args), e) for b in npow])
rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
if other:
rv *= self.func(Mul(*other), e, evaluate=False)
return rv
def _eval_expand_multinomial(self, **hints):
"""(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
base, exp = self.args
result = self
if exp.is_Rational and exp.p > 0 and base.is_Add:
if not exp.is_Integer:
n = Integer(exp.p // exp.q)
if not n:
return result
else:
radical, result = self.func(base, exp - n), []
expanded_base_n = self.func(base, n)
if expanded_base_n.is_Pow:
expanded_base_n = \
expanded_base_n._eval_expand_multinomial()
for term in Add.make_args(expanded_base_n):
result.append(term*radical)
return Add(*result)
n = int(exp)
if base.is_commutative:
order_terms, other_terms = [], []
for b in base.args:
if b.is_Order:
order_terms.append(b)
else:
other_terms.append(b)
if order_terms:
# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
f = Add(*other_terms)
o = Add(*order_terms)
if n == 2:
return expand_multinomial(f**n, deep=False) + n*f*o
else:
g = expand_multinomial(f**(n - 1), deep=False)
return expand_mul(f*g, deep=False) + n*g*o
if base.is_number:
# Efficiently expand expressions of the form (a + b*I)**n
# where 'a' and 'b' are real numbers and 'n' is integer.
a, b = base.as_real_imag()
if a.is_Rational and b.is_Rational:
if not a.is_Integer:
if not b.is_Integer:
k = self.func(a.q * b.q, n)
a, b = a.p*b.q, a.q*b.p
else:
k = self.func(a.q, n)
a, b = a.p, a.q*b
elif not b.is_Integer:
k = self.func(b.q, n)
a, b = a*b.q, b.p
else:
k = 1
a, b, c, d = int(a), int(b), 1, 0
while n:
if n & 1:
c, d = a*c - b*d, b*c + a*d
n -= 1
a, b = a*a - b*b, 2*a*b
n //= 2
I = S.ImaginaryUnit
if k == 1:
return c + I*d
else:
return Integer(c)/k + I*d/k
p = other_terms
# (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
# in this particular example:
# p = [x,y]; n = 3
# so now it's easy to get the correct result -- we get the
# coefficients first:
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.polyutils import basic_from_dict
expansion_dict = multinomial_coefficients(len(p), n)
# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
# and now construct the expression.
return basic_from_dict(expansion_dict, *p)
else:
if n == 2:
return Add(*[f*g for f in base.args for g in base.args])
else:
multi = (base**(n - 1))._eval_expand_multinomial()
if multi.is_Add:
return Add(*[f*g for f in base.args
for g in multi.args])
else:
# XXX can this ever happen if base was an Add?
return Add(*[f*multi for f in base.args])
elif (exp.is_Rational and exp.p < 0 and base.is_Add and
abs(exp.p) > exp.q):
return 1 / self.func(base, -exp)._eval_expand_multinomial()
elif exp.is_Add and base.is_Number:
# a + b a b
# n --> n n, where n, a, b are Numbers
coeff, tail = S.One, S.Zero
for term in exp.args:
if term.is_Number:
coeff *= self.func(base, term)
else:
tail += term
return coeff * self.func(base, tail)
else:
return result
def as_real_imag(self, deep=True, **hints):
if self.exp.is_Integer:
from sympy.polys.polytools import poly
exp = self.exp
re_e, im_e = self.base.as_real_imag(deep=deep)
if not im_e:
return self, S.Zero
a, b = symbols('a b', cls=Dummy)
if exp >= 0:
if re_e.is_Number and im_e.is_Number:
# We can be more efficient in this case
expr = expand_multinomial(self.base**exp)
if expr != self:
return expr.as_real_imag()
expr = poly(
(a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
else:
mag = re_e**2 + im_e**2
re_e, im_e = re_e/mag, -im_e/mag
if re_e.is_Number and im_e.is_Number:
# We can be more efficient in this case
expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp)
if expr != self:
return expr.as_real_imag()
expr = poly((a + b)**-exp)
# Terms with even b powers will be real
r = [i for i in expr.terms() if not i[0][1] % 2]
re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
# Terms with odd b powers will be imaginary
r = [i for i in expr.terms() if i[0][1] % 4 == 1]
im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
r = [i for i in expr.terms() if i[0][1] % 4 == 3]
im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}),
im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e}))
from sympy.functions.elementary.trigonometric import atan2, cos, sin
if self.exp.is_Rational:
re_e, im_e = self.base.as_real_imag(deep=deep)
if im_e.is_zero and self.exp is S.Half:
if re_e.is_extended_nonnegative:
return self, S.Zero
if re_e.is_extended_nonpositive:
return S.Zero, (-self.base)**self.exp
# XXX: This is not totally correct since for x**(p/q) with
# x being imaginary there are actually q roots, but
# only a single one is returned from here.
r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half)
t = atan2(im_e, re_e)
rp, tp = self.func(r, self.exp), t*self.exp
return rp*cos(tp), rp*sin(tp)
elif self.base is S.Exp1:
from sympy.functions.elementary.exponential import exp
re_e, im_e = self.exp.as_real_imag()
if deep:
re_e = re_e.expand(deep, **hints)
im_e = im_e.expand(deep, **hints)
c, s = cos(im_e), sin(im_e)
return exp(re_e)*c, exp(re_e)*s
else:
from sympy.functions.elementary.complexes import im, re
if deep:
hints['complex'] = False
expanded = self.expand(deep, **hints)
if hints.get('ignore') == expanded:
return None
else:
return (re(expanded), im(expanded))
else:
return re(self), im(self)
def _eval_derivative(self, s):
from sympy.functions.elementary.exponential import log
dbase = self.base.diff(s)
dexp = self.exp.diff(s)
return self * (dexp * log(self.base) + dbase * self.exp/self.base)
def _eval_evalf(self, prec):
base, exp = self.as_base_exp()
if base == S.Exp1:
# Use mpmath function associated to class "exp":
from sympy.functions.elementary.exponential import exp as exp_function
return exp_function(self.exp, evaluate=False)._eval_evalf(prec)
base = base._evalf(prec)
if not exp.is_Integer:
exp = exp._evalf(prec)
if exp.is_negative and base.is_number and base.is_extended_real is False:
base = base.conjugate() / (base * base.conjugate())._evalf(prec)
exp = -exp
return self.func(base, exp).expand()
return self.func(base, exp)
def _eval_is_polynomial(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return bool(self.base._eval_is_polynomial(syms) and
self.exp.is_Integer and (self.exp >= 0))
else:
return True
def _eval_is_rational(self):
# The evaluation of self.func below can be very expensive in the case
# of integer**integer if the exponent is large. We should try to exit
# before that if possible:
if (self.exp.is_integer and self.base.is_rational
and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))):
return True
p = self.func(*self.as_base_exp()) # in case it's unevaluated
if not p.is_Pow:
return p.is_rational
b, e = p.as_base_exp()
if e.is_Rational and b.is_Rational:
# we didn't check that e is not an Integer
# because Rational**Integer autosimplifies
return False
if e.is_integer:
if b.is_rational:
if fuzzy_not(b.is_zero) or e.is_nonnegative:
return True
if b == e: # always rational, even for 0**0
return True
elif b.is_irrational:
return e.is_zero
if b is S.Exp1:
if e.is_rational and e.is_nonzero:
return False
def _eval_is_algebraic(self):
def _is_one(expr):
try:
return (expr - 1).is_zero
except ValueError:
# when the operation is not allowed
return False
if self.base.is_zero or _is_one(self.base):
return True
elif self.base is S.Exp1:
s = self.func(*self.args)
if s.func == self.func:
if self.exp.is_nonzero:
if self.exp.is_algebraic:
return False
elif (self.exp/S.Pi).is_rational:
return False
elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational:
return True
else:
return s.is_algebraic
elif self.exp.is_rational:
if self.base.is_algebraic is False:
return self.exp.is_zero
if self.base.is_zero is False:
if self.exp.is_nonzero:
return self.base.is_algebraic
elif self.base.is_algebraic:
return True
if self.exp.is_positive:
return self.base.is_algebraic
elif self.base.is_algebraic and self.exp.is_algebraic:
if ((fuzzy_not(self.base.is_zero)
and fuzzy_not(_is_one(self.base)))
or self.base.is_integer is False
or self.base.is_irrational):
return self.exp.is_rational
def _eval_is_rational_function(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_rational_function(syms) and \
self.exp.is_Integer
else:
return True
def _eval_is_meromorphic(self, x, a):
# f**g is meromorphic if g is an integer and f is meromorphic.
# E**(log(f)*g) is meromorphic if log(f)*g is meromorphic
# and finite.
base_merom = self.base._eval_is_meromorphic(x, a)
exp_integer = self.exp.is_Integer
if exp_integer:
return base_merom
exp_merom = self.exp._eval_is_meromorphic(x, a)
if base_merom is False:
# f**g = E**(log(f)*g) may be meromorphic if the
# singularities of log(f) and g cancel each other,
# for example, if g = 1/log(f). Hence,
return False if exp_merom else None
elif base_merom is None:
return None
b = self.base.subs(x, a)
# b is extended complex as base is meromorphic.
# log(base) is finite and meromorphic when b != 0, zoo.
b_zero = b.is_zero
if b_zero:
log_defined = False
else:
log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero)))
if log_defined is False: # zero or pole of base
return exp_integer # False or None
elif log_defined is None:
return None
if not exp_merom:
return exp_merom # False or None
return self.exp.subs(x, a).is_finite
def _eval_is_algebraic_expr(self, syms):
if self.exp.has(*syms):
return False
if self.base.has(*syms):
return self.base._eval_is_algebraic_expr(syms) and \
self.exp.is_Rational
else:
return True
def _eval_rewrite_as_exp(self, base, expo, **kwargs):
from sympy.functions.elementary.exponential import exp, log
if base.is_zero or base.has(exp) or expo.has(exp):
return base**expo
if base.has(Symbol):
# delay evaluation if expo is non symbolic
# (as exp(x*log(5)) automatically reduces to x**5)
if global_parameters.exp_is_pow:
return Pow(S.Exp1, log(base)*expo, evaluate=expo.has(Symbol))
else:
return exp(log(base)*expo, evaluate=expo.has(Symbol))
else:
from sympy.functions.elementary.complexes import arg, Abs
return exp((log(Abs(base)) + S.ImaginaryUnit*arg(base))*expo)
def as_numer_denom(self):
if not self.is_commutative:
return self, S.One
base, exp = self.as_base_exp()
n, d = base.as_numer_denom()
# this should be the same as ExpBase.as_numer_denom wrt
# exponent handling
neg_exp = exp.is_negative
if exp.is_Mul and not neg_exp and not exp.is_positive:
neg_exp = exp.could_extract_minus_sign()
int_exp = exp.is_integer
# the denominator cannot be separated from the numerator if
# its sign is unknown unless the exponent is an integer, e.g.
# sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
# denominator is negative the numerator and denominator can
# be negated and the denominator (now positive) separated.
if not (d.is_extended_real or int_exp):
n = base
d = S.One
dnonpos = d.is_nonpositive
if dnonpos:
n, d = -n, -d
elif dnonpos is None and not int_exp:
n = base
d = S.One
if neg_exp:
n, d = d, n
exp = -exp
if exp.is_infinite:
if n is S.One and d is not S.One:
return n, self.func(d, exp)
if n is not S.One and d is S.One:
return self.func(n, exp), d
return self.func(n, exp), self.func(d, exp)
def matches(self, expr, repl_dict=None, old=False):
expr = _sympify(expr)
if repl_dict is None:
repl_dict = {}
# special case, pattern = 1 and expr.exp can match to 0
if expr is S.One:
d = self.exp.matches(S.Zero, repl_dict)
if d is not None:
return d
# make sure the expression to be matched is an Expr
if not isinstance(expr, Expr):
return None
b, e = expr.as_base_exp()
# special case number
sb, se = self.as_base_exp()
if sb.is_Symbol and se.is_Integer and expr:
if e.is_rational:
return sb.matches(b**(e/se), repl_dict)
return sb.matches(expr**(1/se), repl_dict)
d = repl_dict.copy()
d = self.base.matches(b, d)
if d is None:
return None
d = self.exp.xreplace(d).matches(e, d)
if d is None:
return Expr.matches(self, expr, repl_dict)
return d
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE! This function is an important part of the gruntz algorithm
# for computing limits. It has to return a generalized power
# series with coefficients in C(log, log(x)). In more detail:
# It has to return an expression
# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i are
# expressions involving only numbers, the log function, and log(x).
# The series expansion of b**e is computed as follows:
# 1) We express b as f*(1 + g) where f is the leading term of b.
# g has order O(x**d) where d is strictly positive.
# 2) Then b**e = (f**e)*((1 + g)**e).
# (1 + g)**e is computed using binomial series.
from sympy.functions.elementary.exponential import exp, log
from sympy.series.limits import limit
from sympy.series.order import Order
if self.base is S.Exp1:
e_series = self.exp.nseries(x, n=n, logx=logx)
if e_series.is_Order:
return 1 + e_series
e0 = limit(e_series.removeO(), x, 0)
if e0 is S.NegativeInfinity:
return Order(x**n, x)
if e0 is S.Infinity:
return self
t = e_series - e0
exp_series = term = exp(e0)
# series of exp(e0 + t) in t
for i in range(1, n):
term *= t/i
term = term.nseries(x, n=n, logx=logx)
exp_series += term
exp_series += Order(t**n, x)
from sympy.simplify.powsimp import powsimp
return powsimp(exp_series, deep=True, combine='exp')
from sympy.simplify.powsimp import powdenest
from .numbers import _illegal
self = powdenest(self, force=True).trigsimp()
b, e = self.as_base_exp()
if e.has(*_illegal):
raise PoleError()
if e.has(x):
return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
if logx is not None and b.has(log):
from .symbol import Wild
c, ex = symbols('c, ex', cls=Wild, exclude=[x])
b = b.replace(log(c*x**ex), log(c) + ex*logx)
self = b**e
b = b.removeO()
try:
from sympy.functions.special.gamma_functions import polygamma
if b.has(polygamma, S.EulerGamma) and logx is not None:
raise ValueError()
_, m = b.leadterm(x)
except (ValueError, NotImplementedError, PoleError):
b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO()
if b.has(S.NaN, S.ComplexInfinity):
raise NotImplementedError()
_, m = b.leadterm(x)
if e.has(log):
from sympy.simplify.simplify import logcombine
e = logcombine(e).cancel()
if not (m.is_zero or e.is_number and e.is_real):
res = exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
if res is exp(e*log(b)):
return self
return res
f = b.as_leading_term(x, logx=logx)
g = (b/f - S.One).cancel(expand=False)
if not m.is_number:
raise NotImplementedError()
maxpow = n - m*e
if maxpow.is_negative:
return Order(x**(m*e), x)
if g.is_zero:
r = f**e
if r != self:
r += Order(x**n, x)
return r
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
def mul(d1, d2):
res = {}
for e1, e2 in product(d1, d2):
ex = e1 + e2
if ex < maxpow:
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
return res
try:
c, d = g.leadterm(x, logx=logx)
except (ValueError, NotImplementedError):
if limit(g/x**maxpow, x, 0) == 0:
# g has higher order zero
return f**e + e*f**e*g # first term of binomial series
else:
raise NotImplementedError()
if c.is_Float and d == S.Zero:
# Convert floats like 0.5 to exact SymPy numbers like S.Half, to
# prevent rounding errors which can induce wrong values of d leading
# to execution of an inappropriate code block (line 1741 - 1750)
from sympy.simplify.simplify import nsimplify
_, d = nsimplify(g).leadterm(x, logx=logx)
if not d.is_positive:
g = g.simplify()
if g.is_zero:
return f**e
_, d = g.leadterm(x, logx=logx)
if not d.is_positive:
g = ((b - f)/f).expand()
_, d = g.leadterm(x, logx=logx)
if not d.is_positive:
raise NotImplementedError()
from sympy.functions.elementary.integers import ceiling
gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO()
gterms = {}
for term in Add.make_args(gpoly):
co1, e1 = coeff_exp(term, x)
gterms[e1] = gterms.get(e1, S.Zero) + co1
k = S.One
terms = {S.Zero: S.One}
tk = gterms
from sympy.functions.combinatorial.factorials import factorial, ff
while (k*d - maxpow).is_negative:
coeff = ff(e, k)/factorial(k)
for ex in tk:
terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex]
tk = mul(tk, gterms)
k += S.One
from sympy.functions.elementary.complexes import im
if not e.is_integer and m.is_zero and f.is_negative:
ndir = (b - f).dir(x, cdir)
if im(ndir).is_negative:
inco, inex = coeff_exp(f**e*(-1)**(-2*e), x)
elif im(ndir).is_zero:
inco, inex = coeff_exp(exp(e*log(b)).as_leading_term(x, logx=logx, cdir=cdir), x)
else:
inco, inex = coeff_exp(f**e, x)
else:
inco, inex = coeff_exp(f**e, x)
res = S.Zero
for e1 in terms:
ex = e1 + inex
res += terms[e1]*inco*x**(ex)
if not (e.is_integer and e.is_positive and (e*d - n).is_nonpositive and
res == _mexpand(self)):
res += Order(x**n, x)
return res
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.functions.elementary.exponential import exp, log
e = self.exp
b = self.base
if self.base is S.Exp1:
arg = e.as_leading_term(x, logx=logx)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0)
if arg0.is_infinite is False:
return S.Exp1**arg0
raise PoleError("Cannot expand %s around 0" % (self))
elif e.has(x):
lt = exp(e * log(b))
return lt.as_leading_term(x, logx=logx, cdir=cdir)
else:
from sympy.functions.elementary.complexes import im
try:
f = b.as_leading_term(x, logx=logx, cdir=cdir)
except PoleError:
return self
if not e.is_integer and f.is_negative:
ndir = (b - f).dir(x, cdir)
if im(ndir).is_negative:
# Normally, f**e would evaluate to exp(e*log(f)) but on branch cuts
# an other value is expected through the following computation
# exp(e*(log(f) - 2*pi*I)) == f**e*exp(-2*e*pi*I) == f**e*(-1)**(-2*e).
return self.func(f, e) * (-1)**(-2*e)
elif im(ndir).is_zero:
log_leadterm = log(b)._eval_as_leading_term(x, logx=logx, cdir=cdir)
if log_leadterm.is_infinite is False:
return exp(e*log_leadterm)
return self.func(f, e)
@cacheit
def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
from sympy.functions.combinatorial.factorials import binomial
return binomial(self.exp, n) * self.func(x, n)
def taylor_term(self, n, x, *previous_terms):
if self.base is not S.Exp1:
return super().taylor_term(n, x, *previous_terms)
if n < 0:
return S.Zero
if n == 0:
return S.One
from .sympify import sympify
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
from sympy.functions.combinatorial.factorials import factorial
return x**n/factorial(n)
def _eval_rewrite_as_sin(self, base, exp):
if self.base is S.Exp1:
from sympy.functions.elementary.trigonometric import sin
return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp)
def _eval_rewrite_as_cos(self, base, exp):
if self.base is S.Exp1:
from sympy.functions.elementary.trigonometric import cos
return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2)
def _eval_rewrite_as_tanh(self, base, exp):
if self.base is S.Exp1:
from sympy.functions.elementary.hyperbolic import tanh
return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2))
def _eval_rewrite_as_sqrt(self, base, exp, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if base is not S.Exp1:
return None
if exp.is_Mul:
coeff = exp.coeff(S.Pi * S.ImaginaryUnit)
if coeff and coeff.is_number:
cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + S.ImaginaryUnit*sine
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
(2, sqrt(1 + sqrt(2)))
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
(1, sqrt(3)*sqrt(1 + sqrt(2)))
>>> from sympy import expand_power_base, powsimp, Mul
>>> from sympy.abc import x, y
>>> ((2*x + 2)**2).as_content_primitive()
(4, (x + 1)**2)
>>> (4**((1 + y)/2)).as_content_primitive()
(2, 4**(y/2))
>>> (3**((1 + y)/2)).as_content_primitive()
(1, 3**((y + 1)/2))
>>> (3**((5 + y)/2)).as_content_primitive()
(9, 3**((y + 1)/2))
>>> eq = 3**(2 + 2*x)
>>> powsimp(eq) == eq
True
>>> eq.as_content_primitive()
(9, 3**(2*x))
>>> powsimp(Mul(*_))
3**(2*x + 2)
>>> eq = (2 + 2*x)**y
>>> s = expand_power_base(eq); s.is_Mul, s
(False, (2*x + 2)**y)
>>> eq.as_content_primitive()
(1, (2*(x + 1))**y)
>>> s = expand_power_base(_[1]); s.is_Mul, s
(True, 2**y*(x + 1)**y)
See docstring of Expr.as_content_primitive for more examples.
"""
b, e = self.as_base_exp()
b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
ce, pe = e.as_content_primitive(radical=radical, clear=clear)
if b.is_Rational:
#e
#= ce*pe
#= ce*(h + t)
#= ce*h + ce*t
#=> self
#= b**(ce*h)*b**(ce*t)
#= b**(cehp/cehq)*b**(ce*t)
#= b**(iceh + r/cehq)*b**(ce*t)
#= b**(iceh)*b**(r/cehq)*b**(ce*t)
#= b**(iceh)*b**(ce*t + r/cehq)
h, t = pe.as_coeff_Add()
if h.is_Rational and b != S.Zero:
ceh = ce*h
c = self.func(b, ceh)
r = S.Zero
if not c.is_Rational:
iceh, r = divmod(ceh.p, ceh.q)
c = self.func(b, iceh)
return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
e = _keep_coeff(ce, pe)
# b**e = (h*t)**e = h**e*t**e = c*m*t**e
if e.is_Rational and b.is_Mul:
h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
c, m = self.func(h, e).as_coeff_Mul() # so c is positive
m, me = m.as_base_exp()
if m is S.One or me == e: # probably always true
# return the following, not return c, m*Pow(t, e)
# which would change Pow into Mul; we let SymPy
# decide what to do by using the unevaluated Mul, e.g
# should it stay as sqrt(2 + 2*sqrt(5)) or become
# sqrt(2)*sqrt(1 + sqrt(5))
return c, self.func(_keep_coeff(m, t), e)
return S.One, self.func(b, e)
def is_constant(self, *wrt, **flags):
expr = self
if flags.get('simplify', True):
expr = expr.simplify()
b, e = expr.as_base_exp()
bz = b.equals(0)
if bz: # recalculate with assumptions in case it's unevaluated
new = b**e
if new != expr:
return new.is_constant()
econ = e.is_constant(*wrt)
bcon = b.is_constant(*wrt)
if bcon:
if econ:
return True
bz = b.equals(0)
if bz is False:
return False
elif bcon is None:
return None
return e.equals(0)
def _eval_difference_delta(self, n, step):
b, e = self.args
if e.has(n) and not b.has(n):
new_e = e.subs(n, n + step)
return (b**(new_e - e) - 1) * self
power = Dispatcher('power')
power.add((object, object), Pow)
from .add import Add
from .numbers import Integer
from .mul import Mul, _keep_coeff
from .symbol import Symbol, Dummy, symbols
|
271eb776d6045b85a1bd6f3f37a18ae4b3c3526fedf2b9056eb16f7312043ed5 | """Tools for manipulating of large commutative expressions. """
from .add import Add
from .mul import Mul, _keep_coeff
from .power import Pow
from .basic import Basic
from .expr import Expr
from .sympify import sympify
from .numbers import Rational, Integer, Number, I
from .singleton import S
from .sorting import default_sort_key, ordered
from .symbol import Dummy
from .traversal import preorder_traversal
from .coreerrors import NonCommutativeExpression
from .containers import Tuple, Dict
from sympy.external.gmpy import SYMPY_INTS
from sympy.utilities.iterables import (common_prefix, common_suffix,
variations, iterable, is_sequence)
from collections import defaultdict
from typing import Tuple as tTuple
_eps = Dummy(positive=True)
def _isnumber(i):
return isinstance(i, (SYMPY_INTS, float)) or i.is_Number
def _monotonic_sign(self):
"""Return the value closest to 0 that ``self`` may have if all symbols
are signed and the result is uniformly the same sign for all values of symbols.
If a symbol is only signed but not known to be an
integer or the result is 0 then a symbol representative of the sign of self
will be returned. Otherwise, None is returned if a) the sign could be positive
or negative or b) self is not in one of the following forms:
- L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
additive constant; if A is zero then the function can be a monomial whose
sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
nonnegative.
- A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
that does not have a sign change from positive to negative for any set
of values for the variables.
- M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
- A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
- P(x): a univariate polynomial
Examples
========
>>> from sympy.core.exprtools import _monotonic_sign as F
>>> from sympy import Dummy
>>> nn = Dummy(integer=True, nonnegative=True)
>>> p = Dummy(integer=True, positive=True)
>>> p2 = Dummy(integer=True, positive=True)
>>> F(nn + 1)
1
>>> F(p - 1)
_nneg
>>> F(nn*p + 1)
1
>>> F(p2*p + 1)
2
>>> F(nn - 1) # could be negative, zero or positive
"""
if not self.is_extended_real:
return
if (-self).is_Symbol:
rv = _monotonic_sign(-self)
return rv if rv is None else -rv
if not self.is_Add and self.as_numer_denom()[1].is_number:
s = self
if s.is_prime:
if s.is_odd:
return Integer(3)
else:
return Integer(2)
elif s.is_composite:
if s.is_odd:
return Integer(9)
else:
return Integer(4)
elif s.is_positive:
if s.is_even:
if s.is_prime is False:
return Integer(4)
else:
return Integer(2)
elif s.is_integer:
return S.One
else:
return _eps
elif s.is_extended_negative:
if s.is_even:
return Integer(-2)
elif s.is_integer:
return S.NegativeOne
else:
return -_eps
if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative:
return S.Zero
return None
# univariate polynomial
free = self.free_symbols
if len(free) == 1:
if self.is_polynomial():
from sympy.polys.polytools import real_roots
from sympy.polys.polyroots import roots
from sympy.polys.polyerrors import PolynomialError
x = free.pop()
x0 = _monotonic_sign(x)
if x0 in (_eps, -_eps):
x0 = S.Zero
if x0 is not None:
d = self.diff(x)
if d.is_number:
currentroots = []
else:
try:
currentroots = real_roots(d)
except (PolynomialError, NotImplementedError):
currentroots = [r for r in roots(d, x) if r.is_extended_real]
y = self.subs(x, x0)
if x.is_nonnegative and all(
(r - x0).is_nonpositive for r in currentroots):
if y.is_nonnegative and d.is_positive:
if y:
return y if y.is_positive else Dummy('pos', positive=True)
else:
return Dummy('nneg', nonnegative=True)
if y.is_nonpositive and d.is_negative:
if y:
return y if y.is_negative else Dummy('neg', negative=True)
else:
return Dummy('npos', nonpositive=True)
elif x.is_nonpositive and all(
(r - x0).is_nonnegative for r in currentroots):
if y.is_nonnegative and d.is_negative:
if y:
return Dummy('pos', positive=True)
else:
return Dummy('nneg', nonnegative=True)
if y.is_nonpositive and d.is_positive:
if y:
return Dummy('neg', negative=True)
else:
return Dummy('npos', nonpositive=True)
else:
n, d = self.as_numer_denom()
den = None
if n.is_number:
den = _monotonic_sign(d)
elif not d.is_number:
if _monotonic_sign(n) is not None:
den = _monotonic_sign(d)
if den is not None and (den.is_positive or den.is_negative):
v = n*den
if v.is_positive:
return Dummy('pos', positive=True)
elif v.is_nonnegative:
return Dummy('nneg', nonnegative=True)
elif v.is_negative:
return Dummy('neg', negative=True)
elif v.is_nonpositive:
return Dummy('npos', nonpositive=True)
return None
# multivariate
c, a = self.as_coeff_Add()
v = None
if not a.is_polynomial():
# F/A or A/F where A is a number and F is a signed, rational monomial
n, d = a.as_numer_denom()
if not (n.is_number or d.is_number):
return
if (
a.is_Mul or a.is_Pow) and \
a.is_rational and \
all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
(a.is_positive or a.is_negative):
v = S.One
for ai in Mul.make_args(a):
if ai.is_number:
v *= ai
continue
reps = {}
for x in ai.free_symbols:
reps[x] = _monotonic_sign(x)
if reps[x] is None:
return
v *= ai.subs(reps)
elif c:
# signed linear expression
if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
free = list(a.free_symbols)
p = {}
for i in free:
v = _monotonic_sign(i)
if v is None:
return
p[i] = v or (_eps if i.is_nonnegative else -_eps)
v = a.xreplace(p)
if v is not None:
rv = v + c
if v.is_nonnegative and rv.is_positive:
return rv.subs(_eps, 0)
if v.is_nonpositive and rv.is_negative:
return rv.subs(_eps, 0)
def decompose_power(expr: Expr) -> tTuple[Expr, int]:
"""
Decompose power into symbolic base and integer exponent.
Explanation
===========
This is strictly only valid if the exponent from which
the integer is extracted is itself an integer or the
base is positive. These conditions are assumed and not
checked here.
Examples
========
>>> from sympy.core.exprtools import decompose_power
>>> from sympy.abc import x, y
>>> decompose_power(x)
(x, 1)
>>> decompose_power(x**2)
(x, 2)
>>> decompose_power(x**(2*y))
(x**y, 2)
>>> decompose_power(x**(2*y/3))
(x**(y/3), 2)
"""
base, exp = expr.as_base_exp()
if exp.is_Number:
if exp.is_Rational:
if not exp.is_Integer:
base = Pow(base, Rational(1, exp.q)) # type: ignore
e = exp.p # type: ignore
else:
base, e = expr, 1
else:
exp, tail = exp.as_coeff_Mul(rational=True)
if exp is S.NegativeOne:
base, e = Pow(base, tail), -1
elif exp is not S.One:
# todo: after dropping python 3.7 support, use overload and Literal
# in as_coeff_Mul to make exp Rational, and remove these 2 ignores
tail = _keep_coeff(Rational(1, exp.q), tail) # type: ignore
base, e = Pow(base, tail), exp.p # type: ignore
else:
base, e = expr, 1
return base, e
def decompose_power_rat(expr: Expr) -> tTuple[Expr, Rational]:
"""
Decompose power into symbolic base and rational exponent.
"""
base, exp = expr.as_base_exp()
if exp.is_Number:
if exp.is_Rational:
e: Rational = exp # type: ignore
else:
base, e = expr, S.One
else:
exp, tail = exp.as_coeff_Mul(rational=True)
if exp is S.NegativeOne:
base, e = Pow(base, tail), S.NegativeOne
elif exp is not S.One:
tail = _keep_coeff(Rational(1, exp.q), tail) # type: ignore
base, e = Pow(base, tail), Integer(exp.p) # type: ignore
else:
base, e = expr, S.One
return base, e
class Factors:
"""Efficient representation of ``f_1*f_2*...*f_n``."""
__slots__ = ('factors', 'gens')
def __init__(self, factors=None): # Factors
"""Initialize Factors from dict or expr.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x
>>> from sympy import I
>>> e = 2*x**3
>>> Factors(e)
Factors({2: 1, x: 3})
>>> Factors(e.as_powers_dict())
Factors({2: 1, x: 3})
>>> f = _
>>> f.factors # underlying dictionary
{2: 1, x: 3}
>>> f.gens # base of each factor
frozenset({2, x})
>>> Factors(0)
Factors({0: 1})
>>> Factors(I)
Factors({I: 1})
Notes
=====
Although a dictionary can be passed, only minimal checking is
performed: powers of -1 and I are made canonical.
"""
if isinstance(factors, (SYMPY_INTS, float)):
factors = S(factors)
if isinstance(factors, Factors):
factors = factors.factors.copy()
elif factors in (None, S.One):
factors = {}
elif factors is S.Zero or factors == 0:
factors = {S.Zero: S.One}
elif isinstance(factors, Number):
n = factors
factors = {}
if n < 0:
factors[S.NegativeOne] = S.One
n = -n
if n is not S.One:
if n.is_Float or n.is_Integer or n is S.Infinity:
factors[n] = S.One
elif n.is_Rational:
# since we're processing Numbers, the denominator is
# stored with a negative exponent; all other factors
# are left .
if n.p != 1:
factors[Integer(n.p)] = S.One
factors[Integer(n.q)] = S.NegativeOne
else:
raise ValueError('Expected Float|Rational|Integer, not %s' % n)
elif isinstance(factors, Basic) and not factors.args:
factors = {factors: S.One}
elif isinstance(factors, Expr):
c, nc = factors.args_cnc()
i = c.count(I)
for _ in range(i):
c.remove(I)
factors = dict(Mul._from_args(c).as_powers_dict())
# Handle all rational Coefficients
for f in list(factors.keys()):
if isinstance(f, Rational) and not isinstance(f, Integer):
p, q = Integer(f.p), Integer(f.q)
factors[p] = (factors[p] if p in factors else S.Zero) + factors[f]
factors[q] = (factors[q] if q in factors else S.Zero) - factors[f]
factors.pop(f)
if i:
factors[I] = factors.get(I, S.Zero) + i
if nc:
factors[Mul(*nc, evaluate=False)] = S.One
else:
factors = factors.copy() # /!\ should be dict-like
# tidy up -/+1 and I exponents if Rational
handle = [k for k in factors if k is I or k in (-1, 1)]
if handle:
i1 = S.One
for k in handle:
if not _isnumber(factors[k]):
continue
i1 *= k**factors.pop(k)
if i1 is not S.One:
for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e
if a is S.NegativeOne:
factors[a] = S.One
elif a is I:
factors[I] = S.One
elif a.is_Pow:
factors[a.base] = factors.get(a.base, S.Zero) + a.exp
elif a == 1:
factors[a] = S.One
elif a == -1:
factors[-a] = S.One
factors[S.NegativeOne] = S.One
else:
raise ValueError('unexpected factor in i1: %s' % a)
self.factors = factors
keys = getattr(factors, 'keys', None)
if keys is None:
raise TypeError('expecting Expr or dictionary')
self.gens = frozenset(keys())
def __hash__(self): # Factors
keys = tuple(ordered(self.factors.keys()))
values = [self.factors[k] for k in keys]
return hash((keys, values))
def __repr__(self): # Factors
return "Factors({%s})" % ', '.join(
['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])
@property
def is_zero(self): # Factors
"""
>>> from sympy.core.exprtools import Factors
>>> Factors(0).is_zero
True
"""
f = self.factors
return len(f) == 1 and S.Zero in f
@property
def is_one(self): # Factors
"""
>>> from sympy.core.exprtools import Factors
>>> Factors(1).is_one
True
"""
return not self.factors
def as_expr(self): # Factors
"""Return the underlying expression.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y
>>> Factors((x*y**2).as_powers_dict()).as_expr()
x*y**2
"""
args = []
for factor, exp in self.factors.items():
if exp != 1:
if isinstance(exp, Integer):
b, e = factor.as_base_exp()
e = _keep_coeff(exp, e)
args.append(b**e)
else:
args.append(factor**exp)
else:
args.append(factor)
return Mul(*args)
def mul(self, other): # Factors
"""Return Factors of ``self * other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.mul(b)
Factors({x: 2, y: 3, z: -1})
>>> a*b
Factors({x: 2, y: 3, z: -1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if any(f.is_zero for f in (self, other)):
return Factors(S.Zero)
factors = dict(self.factors)
for factor, exp in other.factors.items():
if factor in factors:
exp = factors[factor] + exp
if not exp:
del factors[factor]
continue
factors[factor] = exp
return Factors(factors)
def normal(self, other):
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
The only differences between this and method ``div`` is that this
is 1) optimized for the case when there are few factors in common and
2) this does not raise an error if ``other`` is zero.
See Also
========
div
"""
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
return (Factors(), Factors(S.Zero))
if self.is_zero:
return (Factors(S.Zero), Factors())
self_factors = dict(self.factors)
other_factors = dict(other.factors)
for factor, self_exp in self.factors.items():
try:
other_exp = other.factors[factor]
except KeyError:
continue
exp = self_exp - other_exp
if not exp:
del self_factors[factor]
del other_factors[factor]
elif _isnumber(exp):
if exp > 0:
self_factors[factor] = exp
del other_factors[factor]
else:
del self_factors[factor]
other_factors[factor] = -exp
else:
r = self_exp.extract_additively(other_exp)
if r is not None:
if r:
self_factors[factor] = r
del other_factors[factor]
else: # should be handled already
del self_factors[factor]
del other_factors[factor]
else:
sc, sa = self_exp.as_coeff_Add()
if sc:
oc, oa = other_exp.as_coeff_Add()
diff = sc - oc
if diff > 0:
self_factors[factor] -= oc
other_exp = oa
elif diff < 0:
self_factors[factor] -= sc
other_factors[factor] -= sc
other_exp = oa - diff
else:
self_factors[factor] = sa
other_exp = oa
if other_exp:
other_factors[factor] = other_exp
else:
del other_factors[factor]
return Factors(self_factors), Factors(other_factors)
def div(self, other): # Factors
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
This is optimized for the case when there are many factors in common.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> a = Factors((x*y**2).as_powers_dict())
>>> a.div(a)
(Factors({}), Factors({}))
>>> a.div(x*z)
(Factors({y: 2}), Factors({z: 1}))
The ``/`` operator only gives ``quo``:
>>> a/x
Factors({y: 2})
Factors treats its factors as though they are all in the numerator, so
if you violate this assumption the results will be correct but will
not strictly correspond to the numerator and denominator of the ratio:
>>> a.div(x/z)
(Factors({y: 2}), Factors({z: -1}))
Factors is also naive about bases: it does not attempt any denesting
of Rational-base terms, for example the following does not become
2**(2*x)/2.
>>> Factors(2**(2*x + 2)).div(S(8))
(Factors({2: 2*x + 2}), Factors({8: 1}))
factor_terms can clean up such Rational-bases powers:
>>> from sympy import factor_terms
>>> n, d = Factors(2**(2*x + 2)).div(S(8))
>>> n.as_expr()/d.as_expr()
2**(2*x + 2)/8
>>> factor_terms(_)
2**(2*x)/2
"""
quo, rem = dict(self.factors), {}
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
raise ZeroDivisionError
if self.is_zero:
return (Factors(S.Zero), Factors())
for factor, exp in other.factors.items():
if factor in quo:
d = quo[factor] - exp
if _isnumber(d):
if d <= 0:
del quo[factor]
if d >= 0:
if d:
quo[factor] = d
continue
exp = -d
else:
r = quo[factor].extract_additively(exp)
if r is not None:
if r:
quo[factor] = r
else: # should be handled already
del quo[factor]
else:
other_exp = exp
sc, sa = quo[factor].as_coeff_Add()
if sc:
oc, oa = other_exp.as_coeff_Add()
diff = sc - oc
if diff > 0:
quo[factor] -= oc
other_exp = oa
elif diff < 0:
quo[factor] -= sc
other_exp = oa - diff
else:
quo[factor] = sa
other_exp = oa
if other_exp:
rem[factor] = other_exp
else:
assert factor not in rem
continue
rem[factor] = exp
return Factors(quo), Factors(rem)
def quo(self, other): # Factors
"""Return numerator Factor of ``self / other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.quo(b) # same as a/b
Factors({y: 1})
"""
return self.div(other)[0]
def rem(self, other): # Factors
"""Return denominator Factors of ``self / other``.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.rem(b)
Factors({z: -1})
>>> a.rem(a)
Factors({})
"""
return self.div(other)[1]
def pow(self, other): # Factors
"""Return self raised to a non-negative integer power.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y
>>> a = Factors((x*y**2).as_powers_dict())
>>> a**2
Factors({x: 2, y: 4})
"""
if isinstance(other, Factors):
other = other.as_expr()
if other.is_Integer:
other = int(other)
if isinstance(other, SYMPY_INTS) and other >= 0:
factors = {}
if other:
for factor, exp in self.factors.items():
factors[factor] = exp*other
return Factors(factors)
else:
raise ValueError("expected non-negative integer, got %s" % other)
def gcd(self, other): # Factors
"""Return Factors of ``gcd(self, other)``. The keys are
the intersection of factors with the minimum exponent for
each factor.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.gcd(b)
Factors({x: 1, y: 1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if other.is_zero:
return Factors(self.factors)
factors = {}
for factor, exp in self.factors.items():
factor, exp = sympify(factor), sympify(exp)
if factor in other.factors:
lt = (exp - other.factors[factor]).is_negative
if lt == True:
factors[factor] = exp
elif lt == False:
factors[factor] = other.factors[factor]
return Factors(factors)
def lcm(self, other): # Factors
"""Return Factors of ``lcm(self, other)`` which are
the union of factors with the maximum exponent for
each factor.
Examples
========
>>> from sympy.core.exprtools import Factors
>>> from sympy.abc import x, y, z
>>> a = Factors((x*y**2).as_powers_dict())
>>> b = Factors((x*y/z).as_powers_dict())
>>> a.lcm(b)
Factors({x: 1, y: 2, z: -1})
"""
if not isinstance(other, Factors):
other = Factors(other)
if any(f.is_zero for f in (self, other)):
return Factors(S.Zero)
factors = dict(self.factors)
for factor, exp in other.factors.items():
if factor in factors:
exp = max(exp, factors[factor])
factors[factor] = exp
return Factors(factors)
def __mul__(self, other): # Factors
return self.mul(other)
def __divmod__(self, other): # Factors
return self.div(other)
def __truediv__(self, other): # Factors
return self.quo(other)
def __mod__(self, other): # Factors
return self.rem(other)
def __pow__(self, other): # Factors
return self.pow(other)
def __eq__(self, other): # Factors
if not isinstance(other, Factors):
other = Factors(other)
return self.factors == other.factors
def __ne__(self, other): # Factors
return not self == other
class Term:
"""Efficient representation of ``coeff*(numer/denom)``. """
__slots__ = ('coeff', 'numer', 'denom')
def __init__(self, term, numer=None, denom=None): # Term
if numer is None and denom is None:
if not term.is_commutative:
raise NonCommutativeExpression(
'commutative expression expected')
coeff, factors = term.as_coeff_mul()
numer, denom = defaultdict(int), defaultdict(int)
for factor in factors:
base, exp = decompose_power(factor)
if base.is_Add:
cont, base = base.primitive()
coeff *= cont**exp
if exp > 0:
numer[base] += exp
else:
denom[base] += -exp
numer = Factors(numer)
denom = Factors(denom)
else:
coeff = term
if numer is None:
numer = Factors()
if denom is None:
denom = Factors()
self.coeff = coeff
self.numer = numer
self.denom = denom
def __hash__(self): # Term
return hash((self.coeff, self.numer, self.denom))
def __repr__(self): # Term
return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)
def as_expr(self): # Term
return self.coeff*(self.numer.as_expr()/self.denom.as_expr())
def mul(self, other): # Term
coeff = self.coeff*other.coeff
numer = self.numer.mul(other.numer)
denom = self.denom.mul(other.denom)
numer, denom = numer.normal(denom)
return Term(coeff, numer, denom)
def inv(self): # Term
return Term(1/self.coeff, self.denom, self.numer)
def quo(self, other): # Term
return self.mul(other.inv())
def pow(self, other): # Term
if other < 0:
return self.inv().pow(-other)
else:
return Term(self.coeff ** other,
self.numer.pow(other),
self.denom.pow(other))
def gcd(self, other): # Term
return Term(self.coeff.gcd(other.coeff),
self.numer.gcd(other.numer),
self.denom.gcd(other.denom))
def lcm(self, other): # Term
return Term(self.coeff.lcm(other.coeff),
self.numer.lcm(other.numer),
self.denom.lcm(other.denom))
def __mul__(self, other): # Term
if isinstance(other, Term):
return self.mul(other)
else:
return NotImplemented
def __truediv__(self, other): # Term
if isinstance(other, Term):
return self.quo(other)
else:
return NotImplemented
def __pow__(self, other): # Term
if isinstance(other, SYMPY_INTS):
return self.pow(other)
else:
return NotImplemented
def __eq__(self, other): # Term
return (self.coeff == other.coeff and
self.numer == other.numer and
self.denom == other.denom)
def __ne__(self, other): # Term
return not self == other
def _gcd_terms(terms, isprimitive=False, fraction=True):
"""Helper function for :func:`gcd_terms`.
Parameters
==========
isprimitive : boolean, optional
If ``isprimitive`` is True then the call to primitive
for an Add will be skipped. This is useful when the
content has already been extrated.
fraction : boolean, optional
If ``fraction`` is True then the expression will appear over a common
denominator, the lcm of all term denominators.
"""
if isinstance(terms, Basic) and not isinstance(terms, Tuple):
terms = Add.make_args(terms)
terms = list(map(Term, [t for t in terms if t]))
# there is some simplification that may happen if we leave this
# here rather than duplicate it before the mapping of Term onto
# the terms
if len(terms) == 0:
return S.Zero, S.Zero, S.One
if len(terms) == 1:
cont = terms[0].coeff
numer = terms[0].numer.as_expr()
denom = terms[0].denom.as_expr()
else:
cont = terms[0]
for term in terms[1:]:
cont = cont.gcd(term)
for i, term in enumerate(terms):
terms[i] = term.quo(cont)
if fraction:
denom = terms[0].denom
for term in terms[1:]:
denom = denom.lcm(term.denom)
numers = []
for term in terms:
numer = term.numer.mul(denom.quo(term.denom))
numers.append(term.coeff*numer.as_expr())
else:
numers = [t.as_expr() for t in terms]
denom = Term(S.One).numer
cont = cont.as_expr()
numer = Add(*numers)
denom = denom.as_expr()
if not isprimitive and numer.is_Add:
_cont, numer = numer.primitive()
cont *= _cont
return cont, numer, denom
def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
"""Compute the GCD of ``terms`` and put them together.
Parameters
==========
terms : Expr
Can be an expression or a non-Basic sequence of expressions
which will be handled as though they are terms from a sum.
isprimitive : bool, optional
If ``isprimitive`` is True the _gcd_terms will not run the primitive
method on the terms.
clear : bool, optional
It controls the removal of integers from the denominator of an Add
expression. When True (default), all numerical denominator will be cleared;
when False the denominators will be cleared only if all terms had numerical
denominators other than 1.
fraction : bool, optional
When True (default), will put the expression over a common
denominator.
Examples
========
>>> from sympy import gcd_terms
>>> from sympy.abc import x, y
>>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
y*(x + 1)*(x + y + 1)
>>> gcd_terms(x/2 + 1)
(x + 2)/2
>>> gcd_terms(x/2 + 1, clear=False)
x/2 + 1
>>> gcd_terms(x/2 + y/2, clear=False)
(x + y)/2
>>> gcd_terms(x/2 + 1/x)
(x**2 + 2)/(2*x)
>>> gcd_terms(x/2 + 1/x, fraction=False)
(x + 2/x)/2
>>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
x/2 + 1/x
>>> gcd_terms(x/2/y + 1/x/y)
(x**2 + 2)/(2*x*y)
>>> gcd_terms(x/2/y + 1/x/y, clear=False)
(x**2/2 + 1)/(x*y)
>>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
(x/2 + 1/x)/y
The ``clear`` flag was ignored in this case because the returned
expression was a rational expression, not a simple sum.
See Also
========
factor_terms, sympy.polys.polytools.terms_gcd
"""
def mask(terms):
"""replace nc portions of each term with a unique Dummy symbols
and return the replacements to restore them"""
args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
reps = []
for i, (c, nc) in enumerate(args):
if nc:
nc = Mul(*nc)
d = Dummy()
reps.append((d, nc))
c.append(d)
args[i] = Mul(*c)
else:
args[i] = c
return args, dict(reps)
isadd = isinstance(terms, Add)
addlike = isadd or not isinstance(terms, Basic) and \
is_sequence(terms, include=set) and \
not isinstance(terms, Dict)
if addlike:
if isadd: # i.e. an Add
terms = list(terms.args)
else:
terms = sympify(terms)
terms, reps = mask(terms)
cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
numer = numer.xreplace(reps)
coeff, factors = cont.as_coeff_Mul()
if not clear:
c, _coeff = coeff.as_coeff_Mul()
if not c.is_Integer and not clear and numer.is_Add:
n, d = c.as_numer_denom()
_numer = numer/d
if any(a.as_coeff_Mul()[0].is_Integer
for a in _numer.args):
numer = _numer
coeff = n*_coeff
return _keep_coeff(coeff, factors*numer/denom, clear=clear)
if not isinstance(terms, Basic):
return terms
if terms.is_Atom:
return terms
if terms.is_Mul:
c, args = terms.as_coeff_mul()
return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
for i in args]), clear=clear)
def handle(a):
# don't treat internal args like terms of an Add
if not isinstance(a, Expr):
if isinstance(a, Basic):
if not a.args:
return a
return a.func(*[handle(i) for i in a.args])
return type(a)([handle(i) for i in a])
return gcd_terms(a, isprimitive, clear, fraction)
if isinstance(terms, Dict):
return Dict(*[(k, handle(v)) for k, v in terms.args])
return terms.func(*[handle(i) for i in terms.args])
def _factor_sum_int(expr, **kwargs):
"""Return Sum or Integral object with factors that are not
in the wrt variables removed. In cases where there are additive
terms in the function of the object that are independent, the
object will be separated into two objects.
Examples
========
>>> from sympy import Sum, factor_terms
>>> from sympy.abc import x, y
>>> factor_terms(Sum(x + y, (x, 1, 3)))
y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3))
>>> factor_terms(Sum(x*y, (x, 1, 3)))
y*Sum(x, (x, 1, 3))
Notes
=====
If a function in the summand or integrand is replaced
with a symbol, then this simplification should not be
done or else an incorrect result will be obtained when
the symbol is replaced with an expression that depends
on the variables of summation/integration:
>>> eq = Sum(y, (x, 1, 3))
>>> factor_terms(eq).subs(y, x).doit()
3*x
>>> eq.subs(y, x).doit()
6
"""
result = expr.function
if result == 0:
return S.Zero
limits = expr.limits
# get the wrt variables
wrt = {i.args[0] for i in limits}
# factor out any common terms that are independent of wrt
f = factor_terms(result, **kwargs)
i, d = f.as_independent(*wrt)
if isinstance(f, Add):
return i * expr.func(1, *limits) + expr.func(d, *limits)
else:
return i * expr.func(d, *limits)
def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
"""Remove common factors from terms in all arguments without
changing the underlying structure of the expr. No expansion or
simplification (and no processing of non-commutatives) is performed.
Parameters
==========
radical: bool, optional
If radical=True then a radical common to all terms will be factored
out of any Add sub-expressions of the expr.
clear : bool, optional
If clear=False (default) then coefficients will not be separated
from a single Add if they can be distributed to leave one or more
terms with integer coefficients.
fraction : bool, optional
If fraction=True (default is False) then a common denominator will be
constructed for the expression.
sign : bool, optional
If sign=True (default) then even if the only factor in common is a -1,
it will be factored out of the expression.
Examples
========
>>> from sympy import factor_terms, Symbol
>>> from sympy.abc import x, y
>>> factor_terms(x + x*(2 + 4*y)**3)
x*(8*(2*y + 1)**3 + 1)
>>> A = Symbol('A', commutative=False)
>>> factor_terms(x*A + x*A + x*y*A)
x*(y*A + 2*A)
When ``clear`` is False, a rational will only be factored out of an
Add expression if all terms of the Add have coefficients that are
fractions:
>>> factor_terms(x/2 + 1, clear=False)
x/2 + 1
>>> factor_terms(x/2 + 1, clear=True)
(x + 2)/2
If a -1 is all that can be factored out, to *not* factor it out, the
flag ``sign`` must be False:
>>> factor_terms(-x - y)
-(x + y)
>>> factor_terms(-x - y, sign=False)
-x - y
>>> factor_terms(-2*x - 2*y, sign=False)
-2*(x + y)
See Also
========
gcd_terms, sympy.polys.polytools.terms_gcd
"""
def do(expr):
from sympy.concrete.summations import Sum
from sympy.integrals.integrals import Integral
is_iterable = iterable(expr)
if not isinstance(expr, Basic) or expr.is_Atom:
if is_iterable:
return type(expr)([do(i) for i in expr])
return expr
if expr.is_Pow or expr.is_Function or \
is_iterable or not hasattr(expr, 'args_cnc'):
args = expr.args
newargs = tuple([do(i) for i in args])
if newargs == args:
return expr
return expr.func(*newargs)
if isinstance(expr, (Sum, Integral)):
return _factor_sum_int(expr,
radical=radical, clear=clear,
fraction=fraction, sign=sign)
cont, p = expr.as_content_primitive(radical=radical, clear=clear)
if p.is_Add:
list_args = [do(a) for a in Add.make_args(p)]
# get a common negative (if there) which gcd_terms does not remove
if not any(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is None
for a in list_args):
cont = -cont
list_args = [-a for a in list_args]
# watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
special = {}
for i, a in enumerate(list_args):
b, e = a.as_base_exp()
if e.is_Mul and e != Mul(*e.args):
list_args[i] = Dummy()
special[list_args[i]] = a
# rebuild p not worrying about the order which gcd_terms will fix
p = Add._from_args(list_args)
p = gcd_terms(p,
isprimitive=True,
clear=clear,
fraction=fraction).xreplace(special)
elif p.args:
p = p.func(
*[do(a) for a in p.args])
rv = _keep_coeff(cont, p, clear=clear, sign=sign)
return rv
expr = sympify(expr)
return do(expr)
def _mask_nc(eq, name=None):
"""
Return ``eq`` with non-commutative objects replaced with Dummy
symbols. A dictionary that can be used to restore the original
values is returned: if it is None, the expression is noncommutative
and cannot be made commutative. The third value returned is a list
of any non-commutative symbols that appear in the returned equation.
Explanation
===========
All non-commutative objects other than Symbols are replaced with
a non-commutative Symbol. Identical objects will be identified
by identical symbols.
If there is only 1 non-commutative object in an expression it will
be replaced with a commutative symbol. Otherwise, the non-commutative
entities are retained and the calling routine should handle
replacements in this case since some care must be taken to keep
track of the ordering of symbols when they occur within Muls.
Parameters
==========
name : str
``name``, if given, is the name that will be used with numbered Dummy
variables that will replace the non-commutative objects and is mainly
used for doctesting purposes.
Examples
========
>>> from sympy.physics.secondquant import Commutator, NO, F, Fd
>>> from sympy import symbols
>>> from sympy.core.exprtools import _mask_nc
>>> from sympy.abc import x, y
>>> A, B, C = symbols('A,B,C', commutative=False)
One nc-symbol:
>>> _mask_nc(A**2 - x**2, 'd')
(_d0**2 - x**2, {_d0: A}, [])
Multiple nc-symbols:
>>> _mask_nc(A**2 - B**2, 'd')
(A**2 - B**2, {}, [A, B])
An nc-object with nc-symbols but no others outside of it:
>>> _mask_nc(1 + x*Commutator(A, B), 'd')
(_d0*x + 1, {_d0: Commutator(A, B)}, [])
>>> _mask_nc(NO(Fd(x)*F(y)), 'd')
(_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
Multiple nc-objects:
>>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
>>> _mask_nc(eq, 'd')
(x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
Multiple nc-objects and nc-symbols:
>>> eq = A*Commutator(A, B) + B*Commutator(A, C)
>>> _mask_nc(eq, 'd')
(A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
"""
name = name or 'mask'
# Make Dummy() append sequential numbers to the name
def numbered_names():
i = 0
while True:
yield name + str(i)
i += 1
names = numbered_names()
def Dummy(*args, **kwargs):
from .symbol import Dummy
return Dummy(next(names), *args, **kwargs)
expr = eq
if expr.is_commutative:
return eq, {}, []
# identify nc-objects; symbols and other
rep = []
nc_obj = set()
nc_syms = set()
pot = preorder_traversal(expr, keys=default_sort_key)
for i, a in enumerate(pot):
if any(a == r[0] for r in rep):
pot.skip()
elif not a.is_commutative:
if a.is_symbol:
nc_syms.add(a)
pot.skip()
elif not (a.is_Add or a.is_Mul or a.is_Pow):
nc_obj.add(a)
pot.skip()
# If there is only one nc symbol or object, it can be factored regularly
# but polys is going to complain, so replace it with a Dummy.
if len(nc_obj) == 1 and not nc_syms:
rep.append((nc_obj.pop(), Dummy()))
elif len(nc_syms) == 1 and not nc_obj:
rep.append((nc_syms.pop(), Dummy()))
# Any remaining nc-objects will be replaced with an nc-Dummy and
# identified as an nc-Symbol to watch out for
nc_obj = sorted(nc_obj, key=default_sort_key)
for n in nc_obj:
nc = Dummy(commutative=False)
rep.append((n, nc))
nc_syms.add(nc)
expr = expr.subs(rep)
nc_syms = list(nc_syms)
nc_syms.sort(key=default_sort_key)
return expr, {v: k for k, v in rep}, nc_syms
def factor_nc(expr):
"""Return the factored form of ``expr`` while handling non-commutative
expressions.
Examples
========
>>> from sympy import factor_nc, Symbol
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
>>> B = Symbol('B', commutative=False)
>>> factor_nc((x**2 + 2*A*x + A**2).expand())
(x + A)**2
>>> factor_nc(((x + A)*(x + B)).expand())
(x + A)*(x + B)
"""
expr = sympify(expr)
if not isinstance(expr, Expr) or not expr.args:
return expr
if not expr.is_Add:
return expr.func(*[factor_nc(a) for a in expr.args])
from sympy.polys.polytools import gcd, factor
expr, rep, nc_symbols = _mask_nc(expr)
if rep:
return factor(expr).subs(rep)
else:
args = [a.args_cnc() for a in Add.make_args(expr)]
c = g = l = r = S.One
hit = False
# find any commutative gcd term
for i, a in enumerate(args):
if i == 0:
c = Mul._from_args(a[0])
elif a[0]:
c = gcd(c, Mul._from_args(a[0]))
else:
c = S.One
if c is not S.One:
hit = True
c, g = c.as_coeff_Mul()
if g is not S.One:
for i, (cc, _) in enumerate(args):
cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
args[i][0] = cc
for i, (cc, _) in enumerate(args):
if cc:
cc[0] = cc[0]/c
else:
cc = [1/c]
args[i][0] = cc
# find any noncommutative common prefix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_prefix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][0].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][0].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
l = b**e
il = b**-e
for _ in args:
_[1][0] = il*_[1][0]
break
if not ok:
break
else:
hit = True
lenn = len(n)
l = Mul(*n)
for _ in args:
_[1] = _[1][lenn:]
# find any noncommutative common suffix
for i, a in enumerate(args):
if i == 0:
n = a[1][:]
else:
n = common_suffix(n, a[1])
if not n:
# is there a power that can be extracted?
if not args[0][1]:
break
b, e = args[0][1][-1].as_base_exp()
ok = False
if e.is_Integer:
for t in args:
if not t[1]:
break
bt, et = t[1][-1].as_base_exp()
if et.is_Integer and bt == b:
e = min(e, et)
else:
break
else:
ok = hit = True
r = b**e
il = b**-e
for _ in args:
_[1][-1] = _[1][-1]*il
break
if not ok:
break
else:
hit = True
lenn = len(n)
r = Mul(*n)
for _ in args:
_[1] = _[1][:len(_[1]) - lenn]
if hit:
mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
else:
mid = expr
from sympy.simplify.powsimp import powsimp
# sort the symbols so the Dummys would appear in the same
# order as the original symbols, otherwise you may introduce
# a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
# and the former factors into two terms, (A - B)*(A + B) while the
# latter factors into 3 terms, (-1)*(x - y)*(x + y)
rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
unrep1 = [(v, k) for k, v in rep1]
unrep1.reverse()
new_mid, r2, _ = _mask_nc(mid.subs(rep1))
new_mid = powsimp(factor(new_mid))
new_mid = new_mid.subs(r2).subs(unrep1)
if new_mid.is_Pow:
return _keep_coeff(c, g*l*new_mid*r)
if new_mid.is_Mul:
def _pemexpand(expr):
"Expand with the minimal set of hints necessary to check the result."
return expr.expand(deep=True, mul=True, power_exp=True,
power_base=False, basic=False, multinomial=True, log=False)
# XXX TODO there should be a way to inspect what order the terms
# must be in and just select the plausible ordering without
# checking permutations
cfac = []
ncfac = []
for f in new_mid.args:
if f.is_commutative:
cfac.append(f)
else:
b, e = f.as_base_exp()
if e.is_Integer:
ncfac.extend([b]*e)
else:
ncfac.append(f)
pre_mid = g*Mul(*cfac)*l
target = _pemexpand(expr/c)
for s in variations(ncfac, len(ncfac)):
ok = pre_mid*Mul(*s)*r
if _pemexpand(ok) == target:
return _keep_coeff(c, ok)
# mid was an Add that didn't factor successfully
return _keep_coeff(c, g*l*mid*r)
|
16dbeeb638073ed49a33b2fb53ea0b8d68390141d7314902d638e9e52612f48b | from collections import defaultdict
from .sympify import sympify, SympifyError
from sympy.utilities.iterables import iterable, uniq
__all__ = ['default_sort_key', 'ordered']
def default_sort_key(item, order=None):
"""Return a key that can be used for sorting.
The key has the structure:
(class_key, (len(args), args), exponent.sort_key(), coefficient)
This key is supplied by the sort_key routine of Basic objects when
``item`` is a Basic object or an object (other than a string) that
sympifies to a Basic object. Otherwise, this function produces the
key.
The ``order`` argument is passed along to the sort_key routine and is
used to determine how the terms *within* an expression are ordered.
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
and reversed values of the same (e.g. 'rev-lex'). The default order
value is None (which translates to 'lex').
Examples
========
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
>>> from sympy.core.function import UndefinedFunction
>>> from sympy.abc import x
The following are equivalent ways of getting the key for an object:
>>> x.sort_key() == default_sort_key(x)
True
Here are some examples of the key that is produced:
>>> default_sort_key(UndefinedFunction('f'))
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
(0, ()), (), 1), 1)
>>> default_sort_key('1')
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
>>> default_sort_key(S.One)
((1, 0, 'Number'), (0, ()), (), 1)
>>> default_sort_key(2)
((1, 0, 'Number'), (0, ()), (), 2)
While sort_key is a method only defined for SymPy objects,
default_sort_key will accept anything as an argument so it is
more robust as a sorting key. For the following, using key=
lambda i: i.sort_key() would fail because 2 does not have a sort_key
method; that's why default_sort_key is used. Note, that it also
handles sympification of non-string items likes ints:
>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]
The returned key can be used anywhere that a key can be specified for
a function, e.g. sort, min, max, etc...:
>>> a.sort(key=default_sort_key); a[0]
2
>>> min(a, key=default_sort_key)
2
Note
----
The key returned is useful for getting items into a canonical order
that will be the same across platforms. It is not directly useful for
sorting lists of expressions:
>>> a, b = x, 1/x
Since ``a`` has only 1 term, its value of sort_key is unaffected by
``order``:
>>> a.sort_key() == a.sort_key('rev-lex')
True
If ``a`` and ``b`` are combined then the key will differ because there
are terms that can be ordered:
>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]
But since the keys for each of these terms are independent of ``order``'s
value, they do not sort differently when they appear separately in a list:
>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]
The order of terms obtained when using these keys is the order that would
be obtained if those terms were *factors* in a product.
Although it is useful for quickly putting expressions in canonical order,
it does not sort expressions based on their complexity defined by the
number of operations, power of variables and others:
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
[sin(x)*cos(x), sin(x)]
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
[sqrt(x), x, x**2, x**3]
See Also
========
ordered, sympy.core.expr.Expr.as_ordered_factors, sympy.core.expr.Expr.as_ordered_terms
"""
from .basic import Basic
from .singleton import S
if isinstance(item, Basic):
return item.sort_key(order=order)
if iterable(item, exclude=str):
if isinstance(item, dict):
args = item.items()
unordered = True
elif isinstance(item, set):
args = item
unordered = True
else:
# e.g. tuple, list
args = list(item)
unordered = False
args = [default_sort_key(arg, order=order) for arg in args]
if unordered:
# e.g. dict, set
args = sorted(args)
cls_index, args = 10, (len(args), tuple(args))
else:
if not isinstance(item, str):
try:
item = sympify(item, strict=True)
except SympifyError:
# e.g. lambda x: x
pass
else:
if isinstance(item, Basic):
# e.g int -> Integer
return default_sort_key(item)
# e.g. UndefinedFunction
# e.g. str
cls_index, args = 0, (1, (str(item),))
return (cls_index, 0, item.__class__.__name__
), args, S.One.sort_key(), S.One
def _node_count(e):
# this not only counts nodes, it affirms that the
# args are Basic (i.e. have an args property). If
# some object has a non-Basic arg, it needs to be
# fixed since it is intended that all Basic args
# are of Basic type (though this is not easy to enforce).
if e.is_Float:
return 0.5
return 1 + sum(map(_node_count, e.args))
def _nodes(e):
"""
A helper for ordered() which returns the node count of ``e`` which
for Basic objects is the number of Basic nodes in the expression tree
but for other objects is 1 (unless the object is an iterable or dict
for which the sum of nodes is returned).
"""
from .basic import Basic
from .function import Derivative
if isinstance(e, Basic):
if isinstance(e, Derivative):
return _nodes(e.expr) + sum(i[1] if i[1].is_Number else
_nodes(i[1]) for i in e.variable_count)
return _node_count(e)
elif iterable(e):
return 1 + sum(_nodes(ei) for ei in e)
elif isinstance(e, dict):
return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items())
else:
return 1
def ordered(seq, keys=None, default=True, warn=False):
"""Return an iterator of the seq where keys are used to break ties in
a conservative fashion: if, after applying a key, there are no ties
then no other keys will be computed.
Two default keys will be applied if 1) keys are not provided or 2) the
given keys do not resolve all ties (but only if ``default`` is True). The
two keys are ``_nodes`` (which places smaller expressions before large) and
``default_sort_key`` which (if the ``sort_key`` for an object is defined
properly) should resolve any ties.
If ``warn`` is True then an error will be raised if there were no
keys remaining to break ties. This can be used if it was expected that
there should be no ties between items that are not identical.
Examples
========
>>> from sympy import ordered, count_ops
>>> from sympy.abc import x, y
The count_ops is not sufficient to break ties in this list and the first
two items appear in their original order (i.e. the sorting is stable):
>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
... count_ops, default=False, warn=False))
...
[y + 2, x + 2, x**2 + y + 3]
The default_sort_key allows the tie to be broken:
>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
...
[x + 2, y + 2, x**2 + y + 3]
Here, sequences are sorted by length, then sum:
>>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
... lambda x: len(x),
... lambda x: sum(x)]]
...
>>> list(ordered(seq, keys, default=False, warn=False))
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
If ``warn`` is True, an error will be raised if there were not
enough keys to break ties:
>>> list(ordered(seq, keys, default=False, warn=True))
Traceback (most recent call last):
...
ValueError: not enough keys to break ties
Notes
=====
The decorated sort is one of the fastest ways to sort a sequence for
which special item comparison is desired: the sequence is decorated,
sorted on the basis of the decoration (e.g. making all letters lower
case) and then undecorated. If one wants to break ties for items that
have the same decorated value, a second key can be used. But if the
second key is expensive to compute then it is inefficient to decorate
all items with both keys: only those items having identical first key
values need to be decorated. This function applies keys successively
only when needed to break ties. By yielding an iterator, use of the
tie-breaker is delayed as long as possible.
This function is best used in cases when use of the first key is
expected to be a good hashing function; if there are no unique hashes
from application of a key, then that key should not have been used. The
exception, however, is that even if there are many collisions, if the
first group is small and one does not need to process all items in the
list then time will not be wasted sorting what one was not interested
in. For example, if one were looking for the minimum in a list and
there were several criteria used to define the sort order, then this
function would be good at returning that quickly if the first group
of candidates is small relative to the number of items being processed.
"""
d = defaultdict(list)
if keys:
if isinstance(keys, (list, tuple)):
keys = list(keys)
f = keys.pop(0)
else:
f = keys
keys = []
for a in seq:
d[f(a)].append(a)
else:
if not default:
raise ValueError('if default=False then keys must be provided')
d[None].extend(seq)
for k, value in sorted(d.items()):
if len(value) > 1:
if keys:
value = ordered(value, keys, default, warn)
elif default:
value = ordered(value, (_nodes, default_sort_key,),
default=False, warn=warn)
elif warn:
u = list(uniq(value))
if len(u) > 1:
raise ValueError(
'not enough keys to break ties: %s' % u)
yield from value
|
da96cfc463ad314db4a124b7061fd5d70df8cbf00bfc538f96a4048647a06354 | """
This module contains the machinery handling assumptions.
Do also consider the guide :ref:`assumptions-guide`.
All symbolic objects have assumption attributes that can be accessed via
``.is_<assumption name>`` attribute.
Assumptions determine certain properties of symbolic objects and can
have 3 possible values: ``True``, ``False``, ``None``. ``True`` is returned if the
object has the property and ``False`` is returned if it does not or cannot
(i.e. does not make sense):
>>> from sympy import I
>>> I.is_algebraic
True
>>> I.is_real
False
>>> I.is_prime
False
When the property cannot be determined (or when a method is not
implemented) ``None`` will be returned. For example, a generic symbol, ``x``,
may or may not be positive so a value of ``None`` is returned for ``x.is_positive``.
By default, all symbolic values are in the largest set in the given context
without specifying the property. For example, a symbol that has a property
being integer, is also real, complex, etc.
Here follows a list of possible assumption names:
.. glossary::
commutative
object commutes with any other object with
respect to multiplication operation. See [12]_.
complex
object can have only values from the set
of complex numbers. See [13]_.
imaginary
object value is a number that can be written as a real
number multiplied by the imaginary unit ``I``. See
[3]_. Please note that ``0`` is not considered to be an
imaginary number, see
`issue #7649 <https://github.com/sympy/sympy/issues/7649>`_.
real
object can have only values from the set
of real numbers.
extended_real
object can have only values from the set
of real numbers, ``oo`` and ``-oo``.
integer
object can have only values from the set
of integers.
odd
even
object can have only values from the set of
odd (even) integers [2]_.
prime
object is a natural number greater than 1 that has
no positive divisors other than 1 and itself. See [6]_.
composite
object is a positive integer that has at least one positive
divisor other than 1 or the number itself. See [4]_.
zero
object has the value of 0.
nonzero
object is a real number that is not zero.
rational
object can have only values from the set
of rationals.
algebraic
object can have only values from the set
of algebraic numbers [11]_.
transcendental
object can have only values from the set
of transcendental numbers [10]_.
irrational
object value cannot be represented exactly by :class:`~.Rational`, see [5]_.
finite
infinite
object absolute value is bounded (arbitrarily large).
See [7]_, [8]_, [9]_.
negative
nonnegative
object can have only negative (nonnegative)
values [1]_.
positive
nonpositive
object can have only positive (nonpositive) values.
extended_negative
extended_nonnegative
extended_positive
extended_nonpositive
extended_nonzero
as without the extended part, but also including infinity with
corresponding sign, e.g., extended_positive includes ``oo``
hermitian
antihermitian
object belongs to the field of Hermitian
(antihermitian) operators.
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x', real=True); x
x
>>> x.is_real
True
>>> x.is_complex
True
See Also
========
.. seealso::
:py:class:`sympy.core.numbers.ImaginaryUnit`
:py:class:`sympy.core.numbers.Zero`
:py:class:`sympy.core.numbers.One`
:py:class:`sympy.core.numbers.Infinity`
:py:class:`sympy.core.numbers.NegativeInfinity`
:py:class:`sympy.core.numbers.ComplexInfinity`
Notes
=====
The fully-resolved assumptions for any SymPy expression
can be obtained as follows:
>>> from sympy.core.assumptions import assumptions
>>> x = Symbol('x',positive=True)
>>> assumptions(x + I)
{'commutative': True, 'complex': True, 'composite': False, 'even':
False, 'extended_negative': False, 'extended_nonnegative': False,
'extended_nonpositive': False, 'extended_nonzero': False,
'extended_positive': False, 'extended_real': False, 'finite': True,
'imaginary': False, 'infinite': False, 'integer': False, 'irrational':
False, 'negative': False, 'noninteger': False, 'nonnegative': False,
'nonpositive': False, 'nonzero': False, 'odd': False, 'positive':
False, 'prime': False, 'rational': False, 'real': False, 'zero':
False}
Developers Notes
================
The current (and possibly incomplete) values are stored
in the ``obj._assumptions dictionary``; queries to getter methods
(with property decorators) or attributes of objects/classes
will return values and update the dictionary.
>>> eq = x**2 + I
>>> eq._assumptions
{}
>>> eq.is_finite
True
>>> eq._assumptions
{'finite': True, 'infinite': False}
For a :class:`~.Symbol`, there are two locations for assumptions that may
be of interest. The ``assumptions0`` attribute gives the full set of
assumptions derived from a given set of initial assumptions. The
latter assumptions are stored as ``Symbol._assumptions.generator``
>>> Symbol('x', prime=True, even=True)._assumptions.generator
{'even': True, 'prime': True}
The ``generator`` is not necessarily canonical nor is it filtered
in any way: it records the assumptions used to instantiate a Symbol
and (for storage purposes) represents a more compact representation
of the assumptions needed to recreate the full set in
``Symbol.assumptions0``.
References
==========
.. [1] https://en.wikipedia.org/wiki/Negative_number
.. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29
.. [3] https://en.wikipedia.org/wiki/Imaginary_number
.. [4] https://en.wikipedia.org/wiki/Composite_number
.. [5] https://en.wikipedia.org/wiki/Irrational_number
.. [6] https://en.wikipedia.org/wiki/Prime_number
.. [7] https://en.wikipedia.org/wiki/Finite
.. [8] https://docs.python.org/3/library/math.html#math.isfinite
.. [9] http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html
.. [10] https://en.wikipedia.org/wiki/Transcendental_number
.. [11] https://en.wikipedia.org/wiki/Algebraic_number
.. [12] https://en.wikipedia.org/wiki/Commutative_property
.. [13] https://en.wikipedia.org/wiki/Complex_number
"""
from .facts import FactRules, FactKB
from .core import BasicMeta
from .sympify import sympify
from sympy.core.random import shuffle
_assume_rules = FactRules([
'integer -> rational',
'rational -> real',
'rational -> algebraic',
'algebraic -> complex',
'transcendental == complex & !algebraic',
'real -> hermitian',
'imaginary -> complex',
'imaginary -> antihermitian',
'extended_real -> commutative',
'complex -> commutative',
'complex -> finite',
'odd == integer & !even',
'even == integer & !odd',
'real -> complex',
'extended_real -> real | infinite',
'real == extended_real & finite',
'extended_real == extended_negative | zero | extended_positive',
'extended_negative == extended_nonpositive & extended_nonzero',
'extended_positive == extended_nonnegative & extended_nonzero',
'extended_nonpositive == extended_real & !extended_positive',
'extended_nonnegative == extended_real & !extended_negative',
'real == negative | zero | positive',
'negative == nonpositive & nonzero',
'positive == nonnegative & nonzero',
'nonpositive == real & !positive',
'nonnegative == real & !negative',
'positive == extended_positive & finite',
'negative == extended_negative & finite',
'nonpositive == extended_nonpositive & finite',
'nonnegative == extended_nonnegative & finite',
'nonzero == extended_nonzero & finite',
'zero -> even & finite',
'zero == extended_nonnegative & extended_nonpositive',
'zero == nonnegative & nonpositive',
'nonzero -> real',
'prime -> integer & positive',
'composite -> integer & positive & !prime',
'!composite -> !positive | !even | prime',
'irrational == real & !rational',
'imaginary -> !extended_real',
'infinite == !finite',
'noninteger == extended_real & !integer',
'extended_nonzero == extended_real & !zero',
])
_assume_defined = _assume_rules.defined_facts.copy()
_assume_defined.add('polar')
_assume_defined = frozenset(_assume_defined)
def assumptions(expr, _check=None):
"""return the T/F assumptions of ``expr``"""
n = sympify(expr)
if n.is_Symbol:
rv = n.assumptions0 # are any important ones missing?
if _check is not None:
rv = {k: rv[k] for k in set(rv) & set(_check)}
return rv
rv = {}
for k in _assume_defined if _check is None else _check:
v = getattr(n, 'is_{}'.format(k))
if v is not None:
rv[k] = v
return rv
def common_assumptions(exprs, check=None):
"""return those assumptions which have the same True or False
value for all the given expressions.
Examples
========
>>> from sympy.core import common_assumptions
>>> from sympy import oo, pi, sqrt
>>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo])
{'commutative': True, 'composite': False,
'extended_real': True, 'imaginary': False, 'odd': False}
By default, all assumptions are tested; pass an iterable of the
assumptions to limit those that are reported:
>>> common_assumptions([0, 1, 2], ['positive', 'integer'])
{'integer': True}
"""
check = _assume_defined if check is None else set(check)
if not check or not exprs:
return {}
# get all assumptions for each
assume = [assumptions(i, _check=check) for i in sympify(exprs)]
# focus on those of interest that are True
for i, e in enumerate(assume):
assume[i] = {k: e[k] for k in set(e) & check}
# what assumptions are in common?
common = set.intersection(*[set(i) for i in assume])
# which ones hold the same value
a = assume[0]
return {k: a[k] for k in common if all(a[k] == b[k]
for b in assume)}
def failing_assumptions(expr, **assumptions):
"""
Return a dictionary containing assumptions with values not
matching those of the passed assumptions.
Examples
========
>>> from sympy import failing_assumptions, Symbol
>>> x = Symbol('x', positive=True)
>>> y = Symbol('y')
>>> failing_assumptions(6*x + y, positive=True)
{'positive': None}
>>> failing_assumptions(x**2 - 1, positive=True)
{'positive': None}
If *expr* satisfies all of the assumptions, an empty dictionary is returned.
>>> failing_assumptions(x**2, positive=True)
{}
"""
expr = sympify(expr)
failed = {}
for k in assumptions:
test = getattr(expr, 'is_%s' % k, None)
if test is not assumptions[k]:
failed[k] = test
return failed # {} or {assumption: value != desired}
def check_assumptions(expr, against=None, **assume):
"""
Checks whether assumptions of ``expr`` match the T/F assumptions
given (or possessed by ``against``). True is returned if all
assumptions match; False is returned if there is a mismatch and
the assumption in ``expr`` is not None; else None is returned.
Explanation
===========
*assume* is a dict of assumptions with True or False values
Examples
========
>>> from sympy import Symbol, pi, I, exp, check_assumptions
>>> check_assumptions(-5, integer=True)
True
>>> check_assumptions(pi, real=True, integer=False)
True
>>> check_assumptions(pi, negative=True)
False
>>> check_assumptions(exp(I*pi/7), real=False)
True
>>> x = Symbol('x', positive=True)
>>> check_assumptions(2*x + 1, positive=True)
True
>>> check_assumptions(-2*x - 5, positive=True)
False
To check assumptions of *expr* against another variable or expression,
pass the expression or variable as ``against``.
>>> check_assumptions(2*x + 1, x)
True
To see if a number matches the assumptions of an expression, pass
the number as the first argument, else its specific assumptions
may not have a non-None value in the expression:
>>> check_assumptions(x, 3)
>>> check_assumptions(3, x)
True
``None`` is returned if ``check_assumptions()`` could not conclude.
>>> check_assumptions(2*x - 1, x)
>>> z = Symbol('z')
>>> check_assumptions(z, real=True)
See Also
========
failing_assumptions
"""
expr = sympify(expr)
if against is not None:
if assume:
raise ValueError(
'Expecting `against` or `assume`, not both.')
assume = assumptions(against)
known = True
for k, v in assume.items():
if v is None:
continue
e = getattr(expr, 'is_' + k, None)
if e is None:
known = None
elif v != e:
return False
return known
class StdFactKB(FactKB):
"""A FactKB specialized for the built-in rules
This is the only kind of FactKB that Basic objects should use.
"""
def __init__(self, facts=None):
super().__init__(_assume_rules)
# save a copy of the facts dict
if not facts:
self._generator = {}
elif not isinstance(facts, FactKB):
self._generator = facts.copy()
else:
self._generator = facts.generator
if facts:
self.deduce_all_facts(facts)
def copy(self):
return self.__class__(self)
@property
def generator(self):
return self._generator.copy()
def as_property(fact):
"""Convert a fact name to the name of the corresponding property"""
return 'is_%s' % fact
def make_property(fact):
"""Create the automagic property corresponding to a fact."""
def getit(self):
try:
return self._assumptions[fact]
except KeyError:
if self._assumptions is self.default_assumptions:
self._assumptions = self.default_assumptions.copy()
return _ask(fact, self)
getit.func_name = as_property(fact)
return property(getit)
def _ask(fact, obj):
"""
Find the truth value for a property of an object.
This function is called when a request is made to see what a fact
value is.
For this we use several techniques:
First, the fact-evaluation function is tried, if it exists (for
example _eval_is_integer). Then we try related facts. For example
rational --> integer
another example is joined rule:
integer & !odd --> even
so in the latter case if we are looking at what 'even' value is,
'integer' and 'odd' facts will be asked.
In all cases, when we settle on some fact value, its implications are
deduced, and the result is cached in ._assumptions.
"""
# FactKB which is dict-like and maps facts to their known values:
assumptions = obj._assumptions
# A dict that maps facts to their handlers:
handler_map = obj._prop_handler
# This is our queue of facts to check:
facts_to_check = [fact]
facts_queued = {fact}
# Loop over the queue as it extends
for fact_i in facts_to_check:
# If fact_i has already been determined then we don't need to rerun the
# handler. There is a potential race condition for multithreaded code
# though because it's possible that fact_i was checked in another
# thread. The main logic of the loop below would potentially skip
# checking assumptions[fact] in this case so we check it once after the
# loop to be sure.
if fact_i in assumptions:
continue
# Now we call the associated handler for fact_i if it exists.
fact_i_value = None
handler_i = handler_map.get(fact_i)
if handler_i is not None:
fact_i_value = handler_i(obj)
# If we get a new value for fact_i then we should update our knowledge
# of fact_i as well as any related facts that can be inferred using the
# inference rules connecting the fact_i and any other fact values that
# are already known.
if fact_i_value is not None:
assumptions.deduce_all_facts(((fact_i, fact_i_value),))
# Usually if assumptions[fact] is now not None then that is because of
# the call to deduce_all_facts above. The handler for fact_i returned
# True or False and knowing fact_i (which is equal to fact in the first
# iteration) implies knowing a value for fact. It is also possible
# though that independent code e.g. called indirectly by the handler or
# called in another thread in a multithreaded context might have
# resulted in assumptions[fact] being set. Either way we return it.
fact_value = assumptions.get(fact)
if fact_value is not None:
return fact_value
# Extend the queue with other facts that might determine fact_i. Here
# we randomise the order of the facts that are checked. This should not
# lead to any non-determinism if all handlers are logically consistent
# with the inference rules for the facts. Non-deterministic assumptions
# queries can result from bugs in the handlers that are exposed by this
# call to shuffle. These are pushed to the back of the queue meaning
# that the inference graph is traversed in breadth-first order.
new_facts_to_check = list(_assume_rules.prereq[fact_i] - facts_queued)
shuffle(new_facts_to_check)
facts_to_check.extend(new_facts_to_check)
facts_queued.update(new_facts_to_check)
# The above loop should be able to handle everything fine in a
# single-threaded context but in multithreaded code it is possible that
# this thread skipped computing a particular fact that was computed in
# another thread (due to the continue). In that case it is possible that
# fact was inferred and is now stored in the assumptions dict but it wasn't
# checked for in the body of the loop. This is an obscure case but to make
# sure we catch it we check once here at the end of the loop.
if fact in assumptions:
return assumptions[fact]
# This query can not be answered. It's possible that e.g. another thread
# has already stored None for fact but assumptions._tell does not mind if
# we call _tell twice setting the same value. If this raises
# InconsistentAssumptions then it probably means that another thread
# attempted to compute this and got a value of True or False rather than
# None. In that case there must be a bug in at least one of the handlers.
# If the handlers are all deterministic and are consistent with the
# inference rules then the same value should be computed for fact in all
# threads.
assumptions._tell(fact, None)
return None
class ManagedProperties(BasicMeta):
"""Metaclass for classes with old-style assumptions"""
def __init__(cls, *args, **kws):
BasicMeta.__init__(cls, *args, **kws)
local_defs = {}
for k in _assume_defined:
attrname = as_property(k)
v = cls.__dict__.get(attrname, '')
if isinstance(v, (bool, int, type(None))):
if v is not None:
v = bool(v)
local_defs[k] = v
defs = {}
for base in reversed(cls.__bases__):
assumptions = getattr(base, '_explicit_class_assumptions', None)
if assumptions is not None:
defs.update(assumptions)
defs.update(local_defs)
cls._explicit_class_assumptions = defs
cls.default_assumptions = StdFactKB(defs)
cls._prop_handler = {}
for k in _assume_defined:
eval_is_meth = getattr(cls, '_eval_is_%s' % k, None)
if eval_is_meth is not None:
cls._prop_handler[k] = eval_is_meth
# Put definite results directly into the class dict, for speed
for k, v in cls.default_assumptions.items():
setattr(cls, as_property(k), v)
# protection e.g. for Integer.is_even=F <- (Rational.is_integer=F)
derived_from_bases = set()
for base in cls.__bases__:
default_assumptions = getattr(base, 'default_assumptions', None)
# is an assumption-aware class
if default_assumptions is not None:
derived_from_bases.update(default_assumptions)
for fact in derived_from_bases - set(cls.default_assumptions):
pname = as_property(fact)
if pname not in cls.__dict__:
setattr(cls, pname, make_property(fact))
# Finally, add any missing automagic property (e.g. for Basic)
for fact in _assume_defined:
pname = as_property(fact)
if not hasattr(cls, pname):
setattr(cls, pname, make_property(fact))
|
Subsets and Splits