Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
DNRBench / README.md
amant555's picture
Update README.md
5d1fa55 verified
---
dataset_info:
- config_name: imaginary-reference
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 4485
num_examples: 25
download_size: 4391
dataset_size: 4485
- config_name: indifferent
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 11732
num_examples: 25
download_size: 10536
dataset_size: 11732
- config_name: math
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 5440
num_examples: 25
download_size: 4740
dataset_size: 5440
- config_name: redundant
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 5087
num_examples: 25
download_size: 4096
dataset_size: 5087
- config_name: unanswerable
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 12501
num_examples: 50
download_size: 8242
dataset_size: 12501
configs:
- config_name: imaginary-reference
data_files:
- split: test
path: imaginary-reference/test-*
- config_name: indifferent
data_files:
- split: test
path: indifferent/test-*
- config_name: math
data_files:
- split: test
path: math/test-*
- config_name: redundant
data_files:
- split: test
path: redundant/test-*
- config_name: unanswerable
data_files:
- split: test
path: unanswerable/test-*
license: cc-by-nc-4.0
language:
- en
---
# DNR Bench
Don’t Reason Bench (DNR Bench), a novel benchmark designed to expose a vulnerability in current RLMs: their tendency to over-reason by attempting to solve unsolvable
problems, leading to excessively long responses.
# Data Summary
The DNR Bench dataset contains 150 adversarially crafted prompts divided into five distinct categories:
- Imaginary Reference
- Indifferent
- Math,
- Redundant,
- Unanswerable.
Each category targets a specific failure mode observed in reasoning-optimized LLMs, such as hallucinating nonexistent references, failing to remain neutral in ambiguous contexts, incorrectly solving flawed math problems, overanalyzing redundant information, or answering questions that lack sufficient data.
# Leaderboard
This dataset is used to test reasoning LLMs in [DNR Leaderboard on Huggingface](https://huggingface.co/spaces/ServiceNow-AI/Do-not-reason-bench)
# Citation
```bibtex
@misc{hashemi2025dnrbenchbenchmarkingoverreasoning,
title={DNR Bench: Benchmarking Over-Reasoning in Reasoning LLMs},
author={Masoud Hashemi and Oluwanifemi Bamgbose and Sathwik Tejaswi Madhusudhan and Jishnu Sethumadhavan Nair and Aman Tiwari and Vikas Yadav},
year={2025},
eprint={2503.15793},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.15793},
}
```