code
stringlengths 59
3.37k
| docstring
stringlengths 8
15.5k
|
---|---|
def flow_pipeline(diameters, lengths, k_minors, target_headloss,
nu=con.WATER_NU, pipe_rough=mats.PVC_PIPE_ROUGH):
n = diameters.size
flow = pc.flow_pipe(diameters[0], target_headloss, lengths[0], nu, pipe_rough, k_minors[0])
err = 1.0
while abs(err) > 0.01 :
headloss = sum([pc.headloss(flow, diameters[i], lengths[i], nu, pipe_rough,
k_minors[i]).to(u.m).magnitude for i in range(n)])
err = (target_headloss - headloss) / (target_headloss + headloss)
flow = flow + err * flow
return flow
|
This function takes a single pipeline with multiple sections, each potentially with different diameters,
lengths and minor loss coefficients and determines the flow rate for a given headloss.
:param diameters: list of diameters, where the i_th diameter corresponds to the i_th pipe section
:type diameters: numpy.ndarray
:param lengths: list of diameters, where the i_th diameter corresponds to the i_th pipe section
:type lengths: numpy.ndarray
:param k_minors: list of diameters, where the i_th diameter corresponds to the i_th pipe section
:type k_minors: numpy.ndarray
:param target_headloss: a single headloss describing the total headloss through the system
:type target_headloss: float
:param nu: The fluid dynamic viscosity of the fluid. Defaults to water at room temperature (1 * 10**-6 * m**2/s)
:type nu: float
:param pipe_rough: The pipe roughness. Defaults to PVC roughness.
:type pipe_rough: float
:return: the total flow through the system
:rtype: float
|
def add2python(self, module=None, up=0, down=None, front=False,
must_exist=True):
if module:
try:
return import_module(module)
except ImportError:
pass
dir = self.dir().ancestor(up)
if down:
dir = dir.join(*down)
if dir.isdir():
if dir not in sys.path:
if front:
sys.path.insert(0, dir)
else:
sys.path.append(dir)
elif must_exist:
raise ImportError('Directory {0} not available'.format(dir))
else:
return None
if module:
try:
return import_module(module)
except ImportError:
if must_exist:
raise
|
Add a directory to the python path.
:parameter module: Optional module name to try to import once we
have found the directory
:parameter up: number of level to go up the directory three from
:attr:`local_path`.
:parameter down: Optional tuple of directory names to travel down
once we have gone *up* levels.
:parameter front: Boolean indicating if we want to insert the new
path at the front of ``sys.path`` using
``sys.path.insert(0,path)``.
:parameter must_exist: Boolean indicating if the module must exists.
|
def get_attr_value(self, attr_key, el_idx=0):
return self.get_element_by_attr_key(attr_key, el_idx).attrib[attr_key]
|
Return the value of the selected attribute in the selected element.
Args:
attr_key : str
Name of attribute for which to search
el_idx : int
Index of element to use in the event that there are multiple sibling
elements with the same name.
Returns:
str : Value of the selected attribute in the selected element.
|
def _build_resource_from_properties(obj, filter_fields):
partial = {}
for filter_field in filter_fields:
api_field = obj._PROPERTY_TO_API_FIELD.get(filter_field)
if api_field is None and filter_field not in obj._properties:
raise ValueError("No property %s" % filter_field)
elif api_field is not None:
partial[api_field] = obj._properties.get(api_field)
else:
partial[filter_field] = obj._properties[filter_field]
return partial
|
Build a resource based on a ``_properties`` dictionary, filtered by
``filter_fields``, which follow the name of the Python object.
|
def replace_env_vars(conf):
d = deepcopy(conf)
for key, value in d.items():
if type(value) == dict:
d[key] = replace_env_vars(value)
elif type(value) == str:
if value[0] == '$':
var_name = value[1:]
d[key] = os.environ[var_name]
return d
|
Fill `conf` with environment variables, where appropriate.
Any value of the from $VAR will be replaced with the environment variable
VAR. If there are sub dictionaries, this function will recurse.
This will preserve the original dictionary, and return a copy.
|
def unroot(self):
if len(self.children)==2:
if not self.children[0].is_leaf():
self.children[0].delete()
elif not self.children[1].is_leaf():
self.children[1].delete()
else:
raise TreeError("Cannot unroot a tree with only two leaves")
|
Unroots current node. This function is expected to be used on
the absolute tree root node, but it can be also be applied to
any other internal node. It will convert a split into a
multifurcation.
|
def _isValidQuery(self, query, mode="phonefy"):
try:
validator = self.modes[mode].get("query_validator")
if validator:
try:
compiledRegexp = re.compile(
"^{expr}$".format(
expr=validator
)
)
return compiledRegexp.match(query)
except AttributeError as e:
return True
except AttributeError as e:
compiledRegexp = re.compile("^{r}$".format(r=self.validQuery[mode]))
return compiledRegexp.match(query)
|
Method to verify if a given query is processable by the platform.
The system looks for the forbidden characters in self.Forbidden list.
Args:
-----
query: The query to be launched.
mode: To be chosen amongst mailfy, phonefy, usufy, searchfy.
Return:
-------
True | False
|
def get_name(key):
definition_dict = definition(key)
if definition_dict:
return definition_dict.get('name', key)
return key
|
Given a keyword, try to get the name of it.
.. versionadded:: 4.2
Definition dicts are defined in keywords.py. We try to return
the name if present, otherwise we return none.
keyword = 'layer_purpose'
kio = safe.utilities.keyword_io.Keyword_IO()
name = kio.get_name(keyword)
print name
:param key: A keyword key.
:type key: str
:returns: The name of the keyword
:rtype: str
|
def pick_env_and_run_and_report(self,
env: env_tools.PreparedEnv,
env_py2: Optional[env_tools.PreparedEnv],
verbose: bool,
previous_failures: Set['Check']
) -> CheckResult:
env.report_status_to_github('pending', 'Running...', self.context())
chosen_env = cast(env_tools.PreparedEnv,
env_py2 if self.needs_python2_env() else env)
os.chdir(cast(str, chosen_env.destination_directory))
result = self.run(chosen_env, verbose, previous_failures)
if result.unexpected_error is not None:
env.report_status_to_github('error',
'Unexpected error.',
self.context())
else:
env.report_status_to_github(
'success' if result.success else 'failure',
result.message,
self.context())
return result
|
Evaluates this check in python 3 or 2.7, and reports to github.
If the prepared environments are not linked to a github repository,
with a known access token, reporting to github is skipped.
Args:
env: A prepared python 3 environment.
env_py2: A prepared python 2.7 environment.
verbose: When set, more progress output is produced.
previous_failures: Checks that have already run and failed.
Returns:
A CheckResult instance.
|
def _handle_watch_message(self, message):
if self.log_protocol_level is not None:
logger.log(self.log_protocol_level, "<- %s", hexlify(message).decode())
message = self.pending_bytes + message
while len(message) >= 4:
try:
packet, length = PebblePacket.parse_message(message)
except IncompleteMessage:
self.pending_bytes = message
break
except:
expected_length, = struct.unpack('!H', message[:2])
if expected_length == 0:
self.pending_bytes = b''
else:
self.pending_bytes = message[expected_length + 4:]
raise
self.event_handler.broadcast_event("raw_inbound", message[:length])
if self.log_packet_level is not None:
logger.log(self.log_packet_level, "<- %s", packet)
message = message[length:]
self.event_handler.broadcast_event((_EventType.Watch, type(packet)), packet)
if length == 0:
break
self.pending_bytes = message
|
Processes a binary message received from the watch and broadcasts the relevant events.
:param message: A raw message from the watch, without any transport framing.
:type message: bytes
|
def mount(self, url, app):
"Mount a sub-app at the url of current app."
app.url = url
self.mounts.append(app)
|
Mount a sub-app at the url of current app.
|
def add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor,
quantize_layer, is_training):
batch_size, bottleneck_tensor_size = bottleneck_tensor.get_shape().as_list()
assert batch_size is None, 'We want to work with arbitrary batch size.'
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(
bottleneck_tensor,
shape=[batch_size, bottleneck_tensor_size],
name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(
tf.int64, [batch_size], name='GroundTruthInput')
layer_name = 'final_retrain_ops'
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
initial_value = tf.truncated_normal(
[bottleneck_tensor_size, class_count], stddev=0.001)
layer_weights = tf.Variable(initial_value, name='final_weights')
variable_summaries(layer_weights)
with tf.name_scope('biases'):
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
variable_summaries(layer_biases)
with tf.name_scope('Wx_plus_b'):
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
tf.summary.histogram('pre_activations', logits)
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
if quantize_layer:
if is_training:
tf.contrib.quantize.create_training_graph()
else:
tf.contrib.quantize.create_eval_graph()
tf.summary.histogram('activations', final_tensor)
if not is_training:
return None, None, bottleneck_input, ground_truth_input, final_tensor
with tf.name_scope('cross_entropy'):
cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
labels=ground_truth_input, logits=logits)
tf.summary.scalar('cross_entropy', cross_entropy_mean)
with tf.name_scope('train'):
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
train_step = optimizer.minimize(cross_entropy_mean)
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
final_tensor)
|
Adds a new softmax and fully-connected layer for training and eval.
We need to retrain the top layer to identify our new classes, so this function
adds the right operations to the graph, along with some variables to hold the
weights, and then sets up all the gradients for the backward pass.
The set up for the softmax and fully-connected layers is based on:
https://www.tensorflow.org/tutorials/mnist/beginners/index.html
Args:
class_count: Integer of how many categories of things we're trying to
recognize.
final_tensor_name: Name string for the new final node that produces results.
bottleneck_tensor: The output of the main CNN graph.
quantize_layer: Boolean, specifying whether the newly added layer should be
instrumented for quantization with TF-Lite.
is_training: Boolean, specifying whether the newly add layer is for training
or eval.
Returns:
The tensors for the training and cross entropy results, and tensors for the
bottleneck input and ground truth input.
|
def main():
try:
if get_global_option('show_config'):
print json.dumps(config.get_configuration(), indent=2)
elif get_global_option('daemon'):
daemon = DynamicDynamoDBDaemon(
'{0}/dynamic-dynamodb.{1}.pid'.format(
get_global_option('pid_file_dir'),
get_global_option('instance')))
if get_global_option('daemon') == 'start':
logger.debug('Starting daemon')
try:
daemon.start()
logger.info('Daemon started')
except IOError as error:
logger.error('Could not create pid file: {0}'.format(error))
logger.error('Daemon not started')
elif get_global_option('daemon') == 'stop':
logger.debug('Stopping daemon')
daemon.stop()
logger.info('Daemon stopped')
sys.exit(0)
elif get_global_option('daemon') == 'restart':
logger.debug('Restarting daemon')
daemon.restart()
logger.info('Daemon restarted')
elif get_global_option('daemon') in ['foreground', 'fg']:
logger.debug('Starting daemon in foreground')
daemon.run()
logger.info('Daemon started in foreground')
else:
print(
'Valid options for --daemon are start, '
'stop, restart, and foreground')
sys.exit(1)
else:
if get_global_option('run_once'):
execute()
else:
while True:
execute()
except Exception as error:
logger.exception(error)
|
Main function called from dynamic-dynamodb
|
def get_policy(self, name):
address = _create_policy_address(name)
policy_list_bytes = None
try:
policy_list_bytes = self._state_view.get(address=address)
except KeyError:
return None
if policy_list_bytes is not None:
policy_list = _create_from_bytes(policy_list_bytes,
identity_pb2.PolicyList)
for policy in policy_list.policies:
if policy.name == name:
return policy
return None
|
Get a single Policy by name.
Args:
name (str): The name of the Policy.
Returns:
(:obj:`Policy`) The Policy that matches the name.
|
def remove_edge_from_heap(self, segment_ids):
self._initialize_heap()
key = normalize_edge(segment_ids)
if key in self.edge_map:
self.edge_map[key][0] = None
self.num_valid_edges -= 1
|
Remove an edge from the heap.
|
def pbkdf2_bin(
data, salt, iterations=DEFAULT_PBKDF2_ITERATIONS, keylen=None, hashfunc=None
):
if not hashfunc:
hashfunc = "sha256"
data = to_bytes(data)
salt = to_bytes(salt)
if callable(hashfunc):
_test_hash = hashfunc()
hash_name = getattr(_test_hash, "name", None)
else:
hash_name = hashfunc
return hashlib.pbkdf2_hmac(hash_name, data, salt, iterations, keylen)
|
Returns a binary digest for the PBKDF2 hash algorithm of `data`
with the given `salt`. It iterates `iterations` times and produces a
key of `keylen` bytes. By default, SHA-256 is used as hash function;
a different hashlib `hashfunc` can be provided.
.. versionadded:: 0.9
:param data: the data to derive.
:param salt: the salt for the derivation.
:param iterations: the number of iterations.
:param keylen: the length of the resulting key. If not provided
the digest size will be used.
:param hashfunc: the hash function to use. This can either be the
string name of a known hash function or a function
from the hashlib module. Defaults to sha256.
|
def getThroughput(self, instId: int) -> float:
if instId not in self.instances.ids:
return None
perf_time = time.perf_counter()
throughput = self.throughputs[instId].get_throughput(perf_time)
return throughput
|
Return the throughput of the specified instance.
:param instId: the id of the protocol instance
|
def poll_for_server_running(job_id):
sys.stdout.write('Waiting for server in {0} to initialize ...'.format(job_id))
sys.stdout.flush()
desc = dxpy.describe(job_id)
while(SERVER_READY_TAG not in desc['tags'] and desc['state'] != 'failed'):
time.sleep(SLEEP_PERIOD)
sys.stdout.write('.')
sys.stdout.flush()
desc = dxpy.describe(job_id)
if desc['state'] == 'failed':
msg = RED('Error:') + ' Server failed to run.\n'
msg += 'You may want to check the job logs by running:'
msg += BOLD('dx watch {0}'.format(job_id))
err_exit(msg)
|
Poll for the job to start running and post the SERVER_READY_TAG.
|
def update(self):
con = self.subpars.pars.control
self(con.eqb*con.tind)
|
Update |KB| based on |EQB| and |TInd|.
>>> from hydpy.models.lland import *
>>> parameterstep('1d')
>>> eqb(10.0)
>>> tind.value = 10.0
>>> derived.kb.update()
>>> derived.kb
kb(100.0)
|
def update_widget_attrs(self, bound_field, attrs):
if bound_field.field.has_subwidgets() is False:
widget_classes = getattr(self, 'widget_css_classes', None)
if widget_classes:
if 'class' in attrs:
attrs['class'] += ' ' + widget_classes
else:
attrs.update({'class': widget_classes})
return attrs
|
Updated the widget attributes which shall be added to the widget when rendering this field.
|
def statuses_show(self, id, trim_user=None, include_my_retweet=None,
include_entities=None):
params = {'id': id}
set_bool_param(params, 'trim_user', trim_user)
set_bool_param(params, 'include_my_retweet', include_my_retweet)
set_bool_param(params, 'include_entities', include_entities)
return self._get_api('statuses/show.json', params)
|
Returns a single Tweet, specified by the id parameter.
https://dev.twitter.com/docs/api/1.1/get/statuses/show/%3Aid
:param str id:
(*required*) The numerical ID of the desired tweet.
:param bool trim_user:
When set to ``True``, the tweet's user object includes only the
status author's numerical ID.
:param bool include_my_retweet:
When set to ``True``, any Tweet returned that has been retweeted by
the authenticating user will include an additional
``current_user_retweet`` node, containing the ID of the source
status for the retweet.
:param bool include_entities:
When set to ``False``, the ``entities`` node will not be included.
:returns: A tweet dict.
|
def list_inappproducts(self):
result = self.service.inappproducts().list(
packageName=self.package_name).execute()
if result is not None:
return result.get('inappproduct', list())
return list()
|
temp function to list inapp products.
|
def get_taskfile(self, refobj):
tfid = cmds.getAttr("%s.taskfile_id" % refobj)
try:
return djadapter.taskfiles.get(pk=tfid)
except djadapter.models.TaskFile.DoesNotExist:
raise djadapter.models.TaskFile.DoesNotExist("Could not find the taskfile that was set on the node %s. Id was %s" % (refobj, tfid))
|
Return the taskfile that is loaded and represented by the refobj
:param refobj: the reftrack node to query
:type refobj: str
:returns: The taskfile that is loaded in the scene
:rtype: :class:`jukeboxcore.djadapter.TaskFile`
:raises: None
|
def clear_session_value(self, name):
self.redis().hdel(self._session_key, name)
self._update_session_expiration()
|
Removes a session value
|
def pool_process(func, iterable, process_name='Pool processing', cpus=cpu_count()):
with Timer('\t{0} ({1}) completed in'.format(process_name, str(func))):
pool = Pool(cpus)
vals = pool.map(func, iterable)
pool.close()
return vals
|
Apply a function to each element in an iterable and return a result list.
:param func: A function that returns a value
:param iterable: A list or set of elements to be passed to the func as the singular parameter
:param process_name: Name of the process, for printing purposes only
:param cpus: Number of CPUs
:return: Result list
|
def _visit_or_none(node, attr, visitor, parent, visit="visit", **kws):
value = getattr(node, attr, None)
if value:
return getattr(visitor, visit)(value, parent, **kws)
return None
|
If the given node has an attribute, visits the attribute, and
otherwise returns None.
|
def _train_and_eval_batches(dataset, data_dir, input_name, num_devices):
(train_data, eval_data, features_info, keys) = train_and_eval_dataset(
dataset, data_dir)
input_names, target_names = keys[0], keys[1]
train_batches = shuffle_and_batch_data(
train_data, target_names, features_info, training=True,
num_devices=num_devices)
train_eval_batches = shuffle_and_batch_data(
train_data, target_names, features_info, training=False,
num_devices=num_devices)
eval_batches = shuffle_and_batch_data(
eval_data, target_names, features_info, training=False,
num_devices=num_devices)
input_name = input_name or input_names[0]
input_shape = features_info[input_name].shape
return (train_batches, train_eval_batches, eval_batches,
input_name, list(input_shape))
|
Return train and eval batches with input name and shape.
|
def cli_schemata_list(self, *args):
self.log('Registered schemata languages:', ",".join(sorted(l10n_schemastore.keys())))
self.log('Registered Schemata:', ",".join(sorted(schemastore.keys())))
if '-c' in args or '-config' in args:
self.log('Registered Configuration Schemata:', ",".join(sorted(configschemastore.keys())), pretty=True)
|
Display a list of registered schemata
|
def set_attr(self, key: str, value):
self.attr_setter(self, key, value)
|
Sets node attribute. Can be customized by attr_setter property
|
def get_adjustments(self, assets, field, dt, perspective_dt):
if isinstance(assets, Asset):
assets = [assets]
adjustment_ratios_per_asset = []
def split_adj_factor(x):
return x if field != 'volume' else 1.0 / x
for asset in assets:
adjustments_for_asset = []
split_adjustments = self._get_adjustment_list(
asset, self._splits_dict, "SPLITS"
)
for adj_dt, adj in split_adjustments:
if dt < adj_dt <= perspective_dt:
adjustments_for_asset.append(split_adj_factor(adj))
elif adj_dt > perspective_dt:
break
if field != 'volume':
merger_adjustments = self._get_adjustment_list(
asset, self._mergers_dict, "MERGERS"
)
for adj_dt, adj in merger_adjustments:
if dt < adj_dt <= perspective_dt:
adjustments_for_asset.append(adj)
elif adj_dt > perspective_dt:
break
dividend_adjustments = self._get_adjustment_list(
asset, self._dividends_dict, "DIVIDENDS",
)
for adj_dt, adj in dividend_adjustments:
if dt < adj_dt <= perspective_dt:
adjustments_for_asset.append(adj)
elif adj_dt > perspective_dt:
break
ratio = reduce(mul, adjustments_for_asset, 1.0)
adjustment_ratios_per_asset.append(ratio)
return adjustment_ratios_per_asset
|
Returns a list of adjustments between the dt and perspective_dt for the
given field and list of assets
Parameters
----------
assets : list of type Asset, or Asset
The asset, or assets whose adjustments are desired.
field : {'open', 'high', 'low', 'close', 'volume', \
'price', 'last_traded'}
The desired field of the asset.
dt : pd.Timestamp
The timestamp for the desired value.
perspective_dt : pd.Timestamp
The timestamp from which the data is being viewed back from.
Returns
-------
adjustments : list[Adjustment]
The adjustments to that field.
|
def _clean_up_name(self, name):
for n in self.naughty: name = name.replace(n, '_')
return name
|
Cleans up the name according to the rules specified in this exact
function. Uses self.naughty, a list of naughty characters.
|
def get_interfaces_ip(self):
def extract_ip_info(parsed_intf_dict):
intf = parsed_intf_dict['name']
_ip_info = {intf: {}}
v4_ip = parsed_intf_dict.get('ip')
secondary_v4_ip = parsed_intf_dict.get('addr')
v6_ip = parsed_intf_dict.get('addr6')
if v4_ip != 'N/A':
address, pref = v4_ip.split('/')
_ip_info[intf].setdefault('ipv4', {})[address] = {'prefix_length': int(pref)}
if secondary_v4_ip is not None:
members = secondary_v4_ip['member']
if not isinstance(members, list):
members = [members]
for address in members:
address, pref = address.split('/')
_ip_info[intf].setdefault('ipv4', {})[address] = {'prefix_length': int(pref)}
if v6_ip is not None:
members = v6_ip['member']
if not isinstance(members, list):
members = [members]
for address in members:
address, pref = address.split('/')
_ip_info[intf].setdefault('ipv6', {})[address] = {'prefix_length': int(pref)}
if _ip_info == {intf: {}}:
_ip_info = {}
return _ip_info
ip_interfaces = {}
cmd = "<show><interface>all</interface></show>"
self.device.op(cmd=cmd)
interface_info_xml = xmltodict.parse(self.device.xml_root())
interface_info_json = json.dumps(
interface_info_xml['response']['result']['ifnet']['entry']
)
interface_info = json.loads(interface_info_json)
if isinstance(interface_info, dict):
interface_info = [interface_info]
for interface_dict in interface_info:
ip_info = extract_ip_info(interface_dict)
if ip_info:
ip_interfaces.update(ip_info)
return ip_interfaces
|
Return IP interface data.
|
def class_subobjects(
class_: Type) -> Generator[Tuple[str, Type, bool], None, None]:
argspec = inspect.getfullargspec(class_.__init__)
defaults = argspec.defaults if argspec.defaults else []
num_optional = len(defaults)
first_optional = len(argspec.args) - num_optional
for i, attr_name in enumerate(argspec.args):
if attr_name == 'self':
continue
if attr_name == 'yatiml_extra':
continue
attr_type = argspec.annotations.get(attr_name, Any)
yield attr_name, attr_type, i < first_optional
|
Find the aggregated subobjects of an object.
These are the public attributes.
Args:
class_: The class whose subobjects to return.
Yields:
Tuples (name, type, required) describing subobjects.
|
def service_name(doc):
for service_id, service in doc.get('services', {}).items():
service['id'] = service_id
service['organisation_id'] = doc['_id']
name = service.get('name', None)
if name:
yield name, service
|
View for getting service by name
|
def read_xso(src, xsomap):
xso_parser = xso.XSOParser()
for class_, cb in xsomap.items():
xso_parser.add_class(class_, cb)
driver = xso.SAXDriver(xso_parser)
parser = xml.sax.make_parser()
parser.setFeature(
xml.sax.handler.feature_namespaces,
True)
parser.setFeature(
xml.sax.handler.feature_external_ges,
False)
parser.setContentHandler(driver)
parser.parse(src)
|
Read a single XSO from a binary file-like input `src` containing an XML
document.
`xsomap` must be a mapping which maps :class:`~.XSO` subclasses
to callables. These will be registered at a newly created
:class:`.xso.XSOParser` instance which will be used to parse the document
in `src`.
The `xsomap` is thus used to determine the class parsing the root element
of the XML document. This can be used to support multiple versions.
|
def cycle_find(key, width=4):
key_len = len(key)
buf = ''
it = deBruijn(width, 26)
for i in range(key_len):
buf += chr(ord('A') + next(it))
if buf == key:
return 0
for i, c in enumerate(it):
buf = buf[1:] + chr(ord('A') + c)
if buf == key:
return i + 1
return -1
|
Given an element of a de Bruijn sequence, find its index in that sequence.
Args:
key(str): The piece of the de Bruijn sequence to find.
width(int): The width of each element in the sequence.
Returns:
int: The index of ``key`` in the de Bruijn sequence.
|
def datasets(ctx, client):
from renku.models._jsonld import asjsonld
from renku.models.datasets import Dataset
from renku.models.refs import LinkReference
from ._checks.location_datasets import _dataset_metadata_pre_0_3_4
for old_path in _dataset_metadata_pre_0_3_4(client):
with old_path.open('r') as fp:
dataset = Dataset.from_jsonld(yaml.safe_load(fp))
name = str(old_path.parent.relative_to(client.path / 'data'))
new_path = (
client.renku_datasets_path / dataset.identifier.hex /
client.METADATA
)
new_path.parent.mkdir(parents=True, exist_ok=True)
dataset = dataset.rename_files(
lambda key: os.path.
relpath(str(old_path.parent / key), start=str(new_path.parent))
)
with new_path.open('w') as fp:
yaml.dump(asjsonld(dataset), fp, default_flow_style=False)
old_path.unlink()
LinkReference.create(client=client,
name='datasets/' + name).set_reference(new_path)
|
Migrate dataset metadata.
|
def variants(self, case_id, skip=0, count=1000, filters=None):
filters = filters or {}
logger.debug("Fetching case with case_id: {0}".format(case_id))
case_obj = self.case(case_id)
plugin, case_id = self.select_plugin(case_obj)
self.filters = plugin.filters
gene_lists = (self.gene_list(list_id) for list_id
in filters.get('gene_lists', []))
nested_geneids = (gene_list.gene_ids for gene_list in gene_lists)
gene_ids = set(itertools.chain.from_iterable(nested_geneids))
if filters.get('gene_ids'):
filters['gene_ids'].extend(gene_ids)
else:
filters['gene_ids'] = gene_ids
variants = plugin.variants(case_id, skip, count, filters)
return variants
|
Fetch variants for a case.
|
def slew(self, value):
if float(value) != self.filepos:
pos = float(value) * self.filesize
self.mlog.f.seek(int(pos))
self.find_message()
|
move to a given position in the file
|
def get_reports(self):
return sorted(self._reports,
key=lambda x: x['stats']['totalTimeMillis'],
reverse=True)
|
Returns a minimized version of the aggregation
|
def extract_bzip2 (archive, compression, cmd, verbosity, interactive, outdir):
targetname = util.get_single_outfile(outdir, archive)
try:
with bz2.BZ2File(archive) as bz2file:
with open(targetname, 'wb') as targetfile:
data = bz2file.read(READ_SIZE_BYTES)
while data:
targetfile.write(data)
data = bz2file.read(READ_SIZE_BYTES)
except Exception as err:
msg = "error extracting %s to %s: %s" % (archive, targetname, err)
raise util.PatoolError(msg)
return None
|
Extract a BZIP2 archive with the bz2 Python module.
|
def _machinectl(cmd,
output_loglevel='debug',
ignore_retcode=False,
use_vt=False):
prefix = 'machinectl --no-legend --no-pager'
return __salt__['cmd.run_all']('{0} {1}'.format(prefix, cmd),
output_loglevel=output_loglevel,
ignore_retcode=ignore_retcode,
use_vt=use_vt)
|
Helper function to run machinectl
|
def rpy2():
if LazyImport.rpy2_module is None:
try:
rpy2 = __import__('rpy2.robjects')
except ImportError:
raise ImportError('The rpy2 module is required')
LazyImport.rpy2_module = rpy2
try:
rpy2.forecast = rpy2.robjects.packages.importr('forecast')
except:
raise ImportError('R and the "forecast" package are required')
rpy2.ts = rpy2.robjects.r['ts']
__import__('rpy2.robjects.numpy2ri')
rpy2.robjects.numpy2ri.activate()
return LazyImport.rpy2_module
|
Lazily import the rpy2 module
|
def simDeath(self):
how_many_die = int(round(self.AgentCount*(1.0-self.LivPrb[0])))
base_bool = np.zeros(self.AgentCount,dtype=bool)
base_bool[0:how_many_die] = True
who_dies = self.RNG.permutation(base_bool)
if self.T_age is not None:
who_dies[self.t_age >= self.T_age] = True
who_lives = np.logical_not(who_dies)
wealth_living = np.sum(self.aLvlNow[who_lives])
wealth_dead = np.sum(self.aLvlNow[who_dies])
Ractuarial = 1.0 + wealth_dead/wealth_living
self.aNrmNow[who_lives] = self.aNrmNow[who_lives]*Ractuarial
self.aLvlNow[who_lives] = self.aLvlNow[who_lives]*Ractuarial
return who_dies
|
Randomly determine which consumers die, and distribute their wealth among the survivors.
This method only works if there is only one period in the cycle.
Parameters
----------
None
Returns
-------
who_dies : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
|
def update_boxes(self, box_pos, box_size):
assert box_pos.shape == (self.n_boxes, 2)
assert len(box_size) == 2
self.box_bounds = _get_boxes(box_pos,
size=box_size,
keep_aspect_ratio=self.keep_aspect_ratio,
)
|
Set the box bounds from specified box positions and sizes.
|
def equivalent_reflections(self, hkl):
hkl = np.array(hkl, dtype='int', ndmin=2)
rot = self.get_rotations()
n, nrot = len(hkl), len(rot)
R = rot.transpose(0, 2, 1).reshape((3*nrot, 3)).T
refl = np.dot(hkl, R).reshape((n*nrot, 3))
ind = np.lexsort(refl.T)
refl = refl[ind]
diff = np.diff(refl, axis=0)
mask = np.any(diff, axis=1)
return np.vstack((refl[mask], refl[-1,:]))
|
Return all equivalent reflections to the list of Miller indices
in hkl.
Example:
>>> from ase.lattice.spacegroup import Spacegroup
>>> sg = Spacegroup(225) # fcc
>>> sg.equivalent_reflections([[0, 0, 2]])
array([[ 0, 0, -2],
[ 0, -2, 0],
[-2, 0, 0],
[ 2, 0, 0],
[ 0, 2, 0],
[ 0, 0, 2]])
|
def concatenate_node_predicates(node_predicates: NodePredicates) -> NodePredicate:
if not isinstance(node_predicates, Iterable):
return node_predicates
node_predicates = tuple(node_predicates)
if 1 == len(node_predicates):
return node_predicates[0]
def concatenated_node_predicate(graph: BELGraph, node: BaseEntity) -> bool:
return all(
node_predicate(graph, node)
for node_predicate in node_predicates
)
return concatenated_node_predicate
|
Concatenate multiple node predicates to a new predicate that requires all predicates to be met.
Example usage:
>>> from pybel.dsl import protein, gene
>>> from pybel.struct.filters.node_predicates import not_pathology, node_exclusion_predicate_builder
>>> app_protein = protein(name='APP', namespace='HGNC')
>>> app_gene = gene(name='APP', namespace='HGNC')
>>> app_predicate = node_exclusion_predicate_builder([app_protein, app_gene])
>>> my_predicate = concatenate_node_predicates([not_pathology, app_predicate])
|
def update_headers(self, response):
if 'expires' in response.headers and 'cache-control' in response.headers:
self.msg = self.server_cache_headers
return response.headers
else:
self.msg = self.default_cache_vars
date = parsedate(response.headers['date'])
expires = datetime(*date[:6]) + timedelta(0, self.expire_after)
response.headers.update({'expires': formatdate(calendar.timegm(expires.timetuple())),
'cache-control': 'public'})
return response.headers
|
Returns the updated caching headers.
Args:
response (HttpResponse): The response from the remote service
Returns:
response:(HttpResponse.Headers): Http caching headers
|
def _matrix_grad(q, h, h_dx, t, t_prime):
N = len(q)
W = np.zeros([N, N])
Wprime = np.zeros([N, N])
for i in range(N):
W[i, i] = 0.5*(h[min(i+1, N-1)] - h[max(i-1, 0)])
Wprime[i, i] = \
0.5*(h_dx[min(i+1, N-1)] - h_dx[max(i-1, 0)])
tgrad = np.array([t_prime[i]*h_dx[i] for i in np.arange(N)])
grad = 2.0*(q - t).T.dot(W).dot(-1.0*tgrad) \
+ (q - t).T.dot(Wprime).dot(q - t)
return grad
|
Returns the gradient with respect to a single variable
|
def get_group_admin(self, group):
data = {
'name': group,
}
response = _fix_group(self.post('getGroupAdmin', data))
return response
|
Get the group's admins
:type group: str
:param group: group name
:rtype: list
:return: a list containing group admins
|
def _get_area_def_uniform_sampling(self, lon0, channel):
logger.debug('Computing area definition')
if lon0 is not None:
proj_dict = {'a': EQUATOR_RADIUS,
'b': POLE_RADIUS,
'lon_0': lon0,
'h': ALTITUDE,
'proj': 'geos',
'units': 'm'}
xmax, ymax = get_geostationary_angle_extent(
namedtuple('area', ['proj_dict'])(proj_dict))
llx, lly, urx, ury = ALTITUDE * np.array([-xmax, -ymax, xmax, ymax])
area_extent = [llx, lly, urx, ury]
if self._is_vis(channel):
sampling = SAMPLING_NS_VIS
else:
sampling = SAMPLING_NS_IR
pix_size = ALTITUDE * sampling
area_def = pyresample.geometry.AreaDefinition(
'goes_geos_uniform',
'{} geostationary projection (uniform sampling)'.format(self.platform_name),
'goes_geos_uniform',
proj_dict,
np.rint((urx - llx) / pix_size).astype(int),
np.rint((ury - lly) / pix_size).astype(int),
area_extent)
return area_def
else:
return None
|
Get area definition with uniform sampling
|
def from_master_secret(cls, seed, network="bitcoin_testnet"):
network = Wallet.get_network(network)
seed = ensure_bytes(seed)
I = hmac.new(b"Bitcoin seed", msg=seed, digestmod=sha512).digest()
I_L, I_R = I[:32], I[32:]
return cls(private_exponent=long_or_int(hexlify(I_L), 16),
chain_code=long_or_int(hexlify(I_R), 16),
network=network)
|
Generate a new PrivateKey from a secret key.
:param seed: The key to use to generate this wallet. It may be a long
string. Do not use a phrase from a book or song, as that will
be guessed and is not secure. My advice is to not supply this
argument and let me generate a new random key for you.
See https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#Serialization_format # nopep8
|
def convert_dropout(node, **kwargs):
name, input_nodes, attrs = get_inputs(node, kwargs)
probability = float(attrs.get("p", 0.5))
dropout_node = onnx.helper.make_node(
"Dropout",
input_nodes,
[name],
ratio=probability,
name=name
)
return [dropout_node]
|
Map MXNet's Dropout operator attributes to onnx's Dropout operator
and return the created node.
|
def squash(self, a, b):
return ((''.join(x) if isinstance(x, tuple) else x) for x in itertools.product(a, b))
|
Returns a generator that squashes two iterables into one.
```
['this', 'that'], [[' and', ' or']] => ['this and', 'this or', 'that and', 'that or']
```
|
def unpack_glist(g, type_, transfer_full=True):
values = []
item = g
while item:
ptr = item.contents.data
value = cast(ptr, type_).value
values.append(value)
if transfer_full:
free(ptr)
item = item.next()
if transfer_full:
g.free()
return values
|
Takes a glist, copies the values casted to type_ in to a list
and frees all items and the list.
|
def _write_user_prefs(self, user_prefs):
with open(self.userPrefs, "w") as f:
for key, value in user_prefs.items():
f.write('user_pref("%s", %s);\n' % (key, json.dumps(value)))
|
writes the current user prefs dictionary to disk
|
def get_credentials(username=None, password=None, netrc=None, use_keyring=False):
if netrc:
path = None if netrc is True else netrc
return authenticate_through_netrc(path)
if not username:
raise CredentialsError(
'Please provide a username with the -u option, '
'or a .netrc file with the -n option.')
if not password and use_keyring:
password = keyring.get_password(KEYRING_SERVICE_NAME, username)
if not password:
password = getpass.getpass('Coursera password for {0}: '.format(username))
if use_keyring:
keyring.set_password(KEYRING_SERVICE_NAME, username, password)
return username, password
|
Return valid username, password tuple.
Raises CredentialsError if username or password is missing.
|
def simplify(self) -> None:
self.raw = cast(T, z3.simplify(self.raw))
|
Simplify this expression.
|
def _init_fields(self):
fields = {}
forms = {}
sets = {}
for name in dir(self):
if name.startswith('_'):
continue
field = getattr(self, name)
is_field = isinstance(field, Field)
is_form = isinstance(field, Form) or (
inspect.isclass(field) and issubclass(field, Form))
is_set = isinstance(field, FormSet)
if is_field:
field = copy(field)
field.name = self._prefix + name
field.form = self
if field.prepare is None:
field.prepare = getattr(self, 'prepare_' + name, None)
if field.clean is None:
field.clean = getattr(self, 'clean_' + name, None)
fields[name] = field
setattr(self, name, field)
elif is_form:
forms[name] = field
elif is_set:
field._name = self._prefix + name
sets[name] = field
self._fields = fields
self._forms = forms
self._sets = sets
|
Creates the `_fields`, `_forms` asn `_sets` dicts.
Any properties which begin with an underscore or are not `Field`,
`Form` or `FormSet` **instances** are ignored by this method.
|
def hash(hash_type, input_text):
hash_funcs = {'MD5' : hashlib.md5,
'SHA1' : hashlib.sha1,
'SHA224' : hashlib.sha224,
'SHA256' : hashlib.sha256,
'SHA384' : hashlib.sha384,
'SHA512' : hashlib.sha512}
if hash_type == 'All':
hash_type = ['MD5', 'SHA1', 'SHA224', 'SHA256', 'SHA384', 'SHA512']
else:
hash_type = [hash_type]
return [{'Algorithm' : h, 'Hash' : hash_funcs[h](input_text).hexdigest()}
for h in hash_type]
|
Hash input_text with the algorithm choice
|
def request_check(client, exception, *msg_parms, **kwargs):
timeout = kwargs.get('timeout', None)
req_msg = Message.request(*msg_parms)
if timeout is not None:
reply, informs = client.blocking_request(req_msg, timeout=timeout)
else:
reply, informs = client.blocking_request(req_msg)
if not reply.reply_ok():
raise exception('Unexpected failure reply "{2}"\n'
' with device at {0}, request \n"{1}"'
.format(client.bind_address_string, req_msg, reply))
return reply, informs
|
Make blocking request to client and raise exception if reply is not ok.
Parameters
----------
client : DeviceClient instance
exception: Exception class to raise
*msg_parms : Message parameters sent to the Message.request() call
**kwargs : Keyword arguments
Forwards kwargs['timeout'] to client.blocking_request().
Forwards kwargs['mid'] to Message.request().
Returns
-------
reply, informs : as returned by client.blocking_request
Raises
------
*exception* passed as parameter is raised if reply.reply_ok() is False
Notes
-----
A typical use-case for this function is to use functools.partial() to bind
a particular client and exception. The resulting function can then be used
instead of direct client.blocking_request() calls to automate error
handling.
|
def get(self, pk=None, **filters):
LOG.debug(u'Querying (GET) %s by pk=%s and filters=%s', self.model_class.__name__, repr(pk), filters)
query = self.model_class.objects.filter(**filters)
if pk is None:
obj = query.get()
else:
if (isinstance(pk, basestring) and pk.isdigit()) or isinstance(pk, numbers.Number):
obj = query.get(pk=pk)
elif 'slug' in self.model_class._meta.get_all_field_names():
obj = query.get(slug=pk)
else:
raise self.model_class.DoesNotExist()
perm = build_permission_name(self.model_class, 'view')
if not self.user.has_perm(perm, obj=obj):
raise PermissionDenied(u'User %s has no permission %s for object %s' % (self.user, perm, obj))
return obj
|
Retrieve an object instance. If a single argument is supplied, object is queried by
primary key, else filter queries will be applyed.
If more than one object was found raise MultipleObjectsReturned.
If no object found, raise DoesNotExist.
Raise PermissionDenied if user has no permission 'view' on object.
See https://docs.djangoproject.com/en/dev/ref/models/querysets/#get for more details
|
def notify_duration_exceeded(self, participants, reference_time):
unsubmitted = []
for participant in participants:
summary = ParticipationTime(participant, reference_time, self.config)
status = self._mturk_status_for(participant)
if status == "Approved":
participant.status = "approved"
session.commit()
elif status == "Rejected":
participant.status = "rejected"
session.commit()
elif status == "Submitted":
self._resend_submitted_rest_notification_for(participant)
self._message_researcher(self._resubmitted_msg(summary))
logger.warning(
"Error - submitted notification for participant {} missed. "
"A replacement notification was created and sent, "
"but proceed with caution.".format(participant.id)
)
else:
self._send_notification_missing_rest_notification_for(participant)
unsubmitted.append(summary)
if unsubmitted:
self._disable_autorecruit()
self.close_recruitment()
pick_one = unsubmitted[0]
self._message_researcher(self._cancelled_msg(pick_one))
try:
self.mturkservice.expire_hit(pick_one.participant.hit_id)
except MTurkServiceException as ex:
logger.exception(ex)
|
The participant has exceed the maximum time for the activity,
defined in the "duration" config value. We need find out the assignment
status on MTurk and act based on this.
|
def extend_request_args(self, args, item_cls, item_type, key,
parameters, orig=False):
try:
item = self.get_item(item_cls, item_type, key)
except KeyError:
pass
else:
for parameter in parameters:
if orig:
try:
args[parameter] = item[parameter]
except KeyError:
pass
else:
try:
args[parameter] = item[verified_claim_name(parameter)]
except KeyError:
try:
args[parameter] = item[parameter]
except KeyError:
pass
return args
|
Add a set of parameters and their value to a set of request arguments.
:param args: A dictionary
:param item_cls: The :py:class:`oidcmsg.message.Message` subclass
that describes the item
:param item_type: The type of item, this is one of the parameter
names in the :py:class:`oidcservice.state_interface.State` class.
:param key: The key to the information in the database
:param parameters: A list of parameters who's values this method
will return.
:param orig: Where the value of a claim is a signed JWT return
that.
:return: A dictionary with keys from the list of parameters and
values being the values of those parameters in the item.
If the parameter does not a appear in the item it will not appear
in the returned dictionary.
|
def cert_from_key_info(key_info, ignore_age=False):
res = []
for x509_data in key_info.x509_data:
x509_certificate = x509_data.x509_certificate
cert = x509_certificate.text.strip()
cert = '\n'.join(split_len(''.join([s.strip() for s in
cert.split()]), 64))
if ignore_age or active_cert(cert):
res.append(cert)
else:
logger.info('Inactive cert')
return res
|
Get all X509 certs from a KeyInfo instance. Care is taken to make sure
that the certs are continues sequences of bytes.
All certificates appearing in an X509Data element MUST relate to the
validation key by either containing it or being part of a certification
chain that terminates in a certificate containing the validation key.
:param key_info: The KeyInfo instance
:return: A possibly empty list of certs
|
def _get_list_of_completed_locales(product, channel):
return utils.load_json_url(_ALL_LOCALES_URL.format(product=product, channel=channel))
|
Get all the translated locales supported by Google play
So, locale unsupported by Google play won't be downloaded
Idem for not translated locale
|
def get(self):
email = {}
if self.name is not None:
email["name"] = self.name
if self.email is not None:
email["email"] = self.email
return email
|
Get a JSON-ready representation of this Email.
:returns: This Email, ready for use in a request body.
:rtype: dict
|
def cdx_load(sources, query, process=True):
cdx_iter = create_merged_cdx_gen(sources, query)
if query.page_count:
return cdx_iter
cdx_iter = make_obj_iter(cdx_iter, query)
if process and not query.secondary_index_only:
cdx_iter = process_cdx(cdx_iter, query)
custom_ops = query.custom_ops
for op in custom_ops:
cdx_iter = op(cdx_iter, query)
if query.output == 'text':
cdx_iter = cdx_to_text(cdx_iter, query.fields)
elif query.output == 'json':
cdx_iter = cdx_to_json(cdx_iter, query.fields)
return cdx_iter
|
merge text CDX lines from sources, return an iterator for
filtered and access-checked sequence of CDX objects.
:param sources: iterable for text CDX sources.
:param process: bool, perform processing sorting/filtering/grouping ops
|
def rename_with_prefix(self, prefix="", new_path=None, in_place=True, remove_desc=True):
if new_path is None: prefixed = self.__class__(new_temp_path())
else: prefixed = self.__class__(new_path)
def prefixed_iterator():
for i,read in enumerate(self):
read.id = prefix + read.id
if remove_desc: read.description = ""
yield read
prefixed.write(prefixed_iterator())
prefixed.close()
if in_place:
os.remove(self.path)
shutil.move(prefixed, self.path)
return prefixed
|
Rename every sequence based on a prefix.
|
def _send_event_task(args):
endpoint = args['endpoint']
json_message = args['json_message']
_consumer_impl.send(endpoint, json_message)
|
Actually sends the MixPanel event. Runs in a uwsgi worker process.
|
def set_ipcsem_params(self, ftok=None, persistent=None):
self._set('ftok', ftok)
self._set('persistent-ipcsem', persistent, cast=bool)
return self._section
|
Sets ipcsem lock engine params.
:param str|unicode ftok: Set the ipcsem key via ftok() for avoiding duplicates.
:param bool persistent: Do not remove ipcsem's on shutdown.
|
def add_outcome(self, name, outcome_id=None):
if outcome_id is None:
outcome_id = generate_outcome_id(list(self.outcomes.keys()))
if name in self._outcomes:
logger.error("Two outcomes cannot have the same names")
return
if outcome_id in self.outcomes:
logger.error("Two outcomes cannot have the same outcome_ids")
return
outcome = Outcome(outcome_id, name, self)
self._outcomes[outcome_id] = outcome
return outcome_id
|
Add a new outcome to the state
:param str name: the name of the outcome to add
:param int outcome_id: the optional outcome_id of the new outcome
:return: outcome_id: the outcome if of the generated state
:rtype: int
|
def get(self, addresses):
with self._lock:
results = []
for add in addresses:
self.validate_read(add)
results.append(self._get(add))
return results
|
Returns the value in this context, or None, for each address in
addresses. Useful for gets on the context manager.
Args:
addresses (list of str): The addresses to return values for, if
within this context.
Returns:
results (list of bytes): The values in state for these addresses.
|
def author_list(self):
author_list = [self.submitter] + \
[author for author in self.authors.all().exclude(pk=self.submitter.pk)]
return ",\n".join([author.get_full_name() for author in author_list])
|
The list of authors als text, for admin submission list overview.
|
def remove_handlers_bound_to_instance(self, obj):
for handler in self.handlers:
if handler.im_self == obj:
self -= handler
|
Remove all handlers bound to given object instance.
This is useful to remove all handler methods that are part of an instance.
:param object obj: Remove handlers that are methods of this instance
|
def rotation_coefs(self):
return [np.cos(self.bearing_rads),
np.sin(self.bearing_rads),
-1.0*np.sin(self.bearing_rads),
np.cos(self.bearing_rads)]
|
get the rotation coefficents in radians
Returns
-------
rotation_coefs : list
the rotation coefficients implied by Vario2d.bearing
|
def deactivate_components_ui(self):
selected_components = self.get_selected_components()
self.__engine.start_processing("Deactivating Components ...", len(selected_components))
deactivation_failed_components = []
for component in selected_components:
if component.interface.activated:
if component.interface.deactivatable:
success = self.deactivate_component(component.name) or False
if not success:
deactivation_failed_components.append(component)
else:
self.__engine.notifications_manager.warnify(
"{0} | '{1}' Component cannot be deactivated!".format(self.__class__.__name__, component.name))
else:
self.__engine.notifications_manager.warnify(
"{0} | '{1}' Component is already deactivated!".format(self.__class__.__name__, component.name))
self.__engine.step_processing()
self.__engine.stop_processing()
self.__store_deactivated_components()
if not deactivation_failed_components:
return True
else:
raise manager.exceptions.ComponentDeactivationError(
"{0} | Exception(s) raised while deactivating '{1}' Component(s)!".format(self.__class__.__name__,
", ".join((
deactivation_failed_component.name
for
deactivation_failed_component
in
deactivation_failed_components))))
|
Deactivates user selected Components.
:return: Method success.
:rtype: bool
:note: May require user interaction.
|
def all_query(expression):
def _all(index, expression=expression):
ev = expression() if callable(expression) else expression
try:
iter(ev)
except TypeError:
raise AttributeError('$all argument must be an iterable!')
hashed_ev = [index.get_hash_for(v) for v in ev]
store_keys = set()
if len(hashed_ev) == 0:
return []
store_keys = set(index.get_keys_for(hashed_ev[0]))
for value in hashed_ev[1:]:
store_keys &= set(index.get_keys_for(value))
return list(store_keys)
return _all
|
Match arrays that contain all elements in the query.
|
def gaussian_points(loc=(0, 0), scale=(10, 10), n=100):
arr = np.random.normal(loc, scale, (n, 2))
return gpd.GeoSeries([shapely.geometry.Point(x, y) for (x, y) in arr])
|
Generates and returns `n` normally distributed points centered at `loc` with `scale` x and y directionality.
|
def logout():
logout_url = REMOTE_APP['logout_url']
apps = current_app.config.get('OAUTHCLIENT_REMOTE_APPS')
if apps:
cern_app = apps.get('cern', REMOTE_APP)
logout_url = cern_app['logout_url']
return redirect(logout_url, code=302)
|
CERN logout view.
|
def patch_func(replacement, target_mod, func_name):
original = getattr(target_mod, func_name)
vars(replacement).setdefault('unpatched', original)
setattr(target_mod, func_name, replacement)
|
Patch func_name in target_mod with replacement
Important - original must be resolved by name to avoid
patching an already patched function.
|
def accepted(self):
try:
self._saveModel()
except Exception as err:
self._statusBar.showMessage(str(err))
raise
else:
self._resetWidgets()
self.exported.emit(True)
self.accept()
|
Successfully close the widget and emit an export signal.
This method is also a `SLOT`.
The dialog will be closed, when the `Export Data` button is
pressed. If errors occur during the export, the status bar
will show the error message and the dialog will not be closed.
|
def rename_regions(self, regions):
if type(regions) is list:
regions = {old: new for old, new in
zip(self.get_regions(), regions)}
for df in self.get_DataFrame(data=True):
df.rename(index=regions, columns=regions, inplace=True)
try:
for ext in self.get_extensions(data=True):
for df in ext.get_DataFrame(data=True):
df.rename(index=regions, columns=regions, inplace=True)
except:
pass
self.meta._add_modify("Changed country names")
return self
|
Sets new names for the regions
Parameters
----------
regions : list or dict
In case of dict: {'old_name' : 'new_name'} with a
entry for each old_name which should be renamed
In case of list: List of new names in order and complete
without repetition
|
def get_timing_signal(length,
min_timescale=1,
max_timescale=1e4,
num_timescales=16):
positions = to_float(tf.range(length))
log_timescale_increment = (
math.log(max_timescale / min_timescale) / (num_timescales - 1))
inv_timescales = min_timescale * tf.exp(
to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
|
Create Tensor of sinusoids of different frequencies.
Args:
length: Length of the Tensor to create, i.e. Number of steps.
min_timescale: a float
max_timescale: a float
num_timescales: an int
Returns:
Tensor of shape (length, 2*num_timescales)
|
def std_dev(xs):
m = mean(xs)
return sqrt(sum((x - m) ** 2 for x in xs) / float(len(xs)))
|
Returns the standard deviation of the given iterable of numbers.
From http://rosettacode.org/wiki/Standard_deviation#Python
An empty list, or a list with non-numeric elements will raise a TypeError.
>>> std_dev([2,4,4,4,5,5,7,9])
2.0
>>> std_dev([9,10,11,7,13])
2.0
>>> std_dev([1,1,10,19,19])
8.049844718999243
>>> std_dev({1,1,10,19,19}) == std_dev({19,10,1})
True
>>> std_dev([10,10,10,10,10])
0.0
>>> std_dev([1,"b"])
Traceback (most recent call last):
...
ValueError: Input can't have non-numeric elements
>>> std_dev([])
Traceback (most recent call last):
...
ValueError: Input can't be empty
|
def linked_attribute(self):
if isinstance(self.to_cls, str):
return 'id'
else:
return self.via or self.to_cls.meta_.id_field.attribute_name
|
Choose the Linkage attribute between `via` and designated `id_field` of the target class
This method is initially called from `__set_name__()` -> `get_attribute_name()`
at which point, the `to_cls` has not been initialized properly. We simply default
the linked attribute to 'id' in that case.
Eventually, when setting value the first time, the `to_cls` entity is initialized
and the attribute name is reset correctly.
|
def shared_options(rq):
"Default class options to pass to the CLI commands."
return {
'url': rq.redis_url,
'config': None,
'worker_class': rq.worker_class,
'job_class': rq.job_class,
'queue_class': rq.queue_class,
'connection_class': rq.connection_class,
}
|
Default class options to pass to the CLI commands.
|
def coordinates_to_index(self, x, y, x_shift=0, y_shift=0):
target_x = x + x_shift
target_y = y + y_shift
self.validate_coordinates(target_x, target_y)
index = (target_y * self.length) + target_x
return index
|
Return a linear index from a set of 2D coordinates.
Optionnal vertical and horizontal shifts might be applied.
|
def VFSOpen(pathspec,
progress_callback = None
):
if not VFS_HANDLERS:
Init()
fd = None
vroot = _VFS_VIRTUALROOTS.get(pathspec.pathtype)
if (not vroot or pathspec.is_virtualroot or
pathspec.CollapsePath().startswith(vroot.CollapsePath())):
working_pathspec = pathspec.Copy()
else:
working_pathspec = vroot.Copy()
working_pathspec.last.nested_path = pathspec.Copy()
while working_pathspec:
component = working_pathspec.Pop()
try:
handler = VFS_HANDLERS[component.pathtype]
except KeyError:
raise UnsupportedHandlerError(component.pathtype)
fd = handler.Open(
fd=fd,
component=component,
handlers=dict(VFS_HANDLERS),
pathspec=working_pathspec,
progress_callback=progress_callback)
if fd is None:
raise ValueError("VFSOpen cannot be called with empty PathSpec.")
return fd
|
Expands pathspec to return an expanded Path.
A pathspec is a specification of how to access the file by recursively opening
each part of the path by different drivers. For example the following
pathspec:
pathtype: OS
path: "/dev/sda1"
nested_path {
pathtype: TSK
path: "/home/image2.img"
nested_path {
pathtype: TSK
path: "/home/a.txt"
}
}
Instructs the system to:
1) open /dev/sda1 using the OS driver.
2) Pass the obtained filelike object to the TSK driver to open
"/home/image2.img".
3) The obtained filelike object should be passed to the TSK driver to open
"/home/a.txt".
The problem remains how to get to this expanded path specification. Since the
server is not aware of all the files on the client, the server may request
this:
pathtype: OS
path: "/dev/sda1"
nested_path {
pathtype: TSK
path: "/home/image2.img/home/a.txt"
}
Or even this:
pathtype: OS
path: "/dev/sda1/home/image2.img/home/a.txt"
This function converts the pathspec requested by the server into an expanded
pathspec required to actually open the file. This is done by expanding each
component of the pathspec in turn.
Expanding the component is done by opening each leading directory in turn and
checking if it is a directory of a file. If its a file, we examine the file
headers to determine the next appropriate driver to use, and create a nested
pathspec.
Note that for some clients there might be a virtual root specified. This
is a directory that gets prepended to all pathspecs of a given
pathtype. For example if there is a virtual root defined as
["os:/virtualroot"], a path specification like
pathtype: OS
path: "/home/user/*"
will get translated into
pathtype: OS
path: "/virtualroot"
is_virtualroot: True
nested_path {
pathtype: OS
path: "/dev/sda1"
}
Args:
pathspec: A Path() protobuf to normalize.
progress_callback: A callback to indicate that the open call is still
working but needs more time.
Returns:
The open filelike object. This will contain the expanded Path() protobuf as
the member fd.pathspec.
Raises:
IOError: if one of the path components can not be opened.
|
def _categorize_data(self, data, cols, dims):
if self.invert_axes:
cols = cols[::-1]
dims = dims[:2][::-1]
ranges = [self.handles['%s_range' % ax] for ax in 'xy']
for i, col in enumerate(cols):
column = data[col]
if (isinstance(ranges[i], FactorRange) and
(isinstance(column, list) or column.dtype.kind not in 'SU')):
data[col] = [dims[i].pprint_value(v) for v in column]
|
Transforms non-string or integer types in datasource if the
axis to be plotted on is categorical. Accepts the column data
source data, the columns corresponding to the axes and the
dimensions for each axis, changing the data inplace.
|
def write_to_fitsfile(self, fitsfile, clobber=True):
from fermipy.skymap import Map
hpx_header = self._hpx.make_header()
index_map = Map(self.ipixs, self.wcs)
mult_map = Map(self.mult_val, self.wcs)
prim_hdu = index_map.create_primary_hdu()
mult_hdu = index_map.create_image_hdu()
for key in ['COORDSYS', 'ORDERING', 'PIXTYPE',
'ORDERING', 'ORDER', 'NSIDE',
'FIRSTPIX', 'LASTPIX']:
prim_hdu.header[key] = hpx_header[key]
mult_hdu.header[key] = hpx_header[key]
hdulist = fits.HDUList([prim_hdu, mult_hdu])
hdulist.writeto(fitsfile, overwrite=clobber)
|
Write this mapping to a FITS file, to avoid having to recompute it
|
def compute_group_colors(self):
seen = set()
self.group_label_color = [
x for x in self.node_colors if not (x in seen or seen.add(x))
]
|
Computes the group colors according to node colors
|
def _pngmeta(self):
reserved = ('interlace', 'gamma', 'dpi', 'transparency', 'aspect')
try:
tags = self.tags
except AttributeError:
tags = {}
from PIL import PngImagePlugin
meta = PngImagePlugin.PngInfo()
for k__, v__ in tags.items():
if k__ not in reserved:
meta.add_text(k__, v__, 0)
return meta
|
It will return GeoImage.tags as a PNG metadata object.
Inspired by:
public domain, Nick Galbreath
http://blog.modp.com/2007/08/python-pil-and-png-metadata-take-2.html
|
def url(self):
return URL.format(http=self.web_proto, host=self.host, port=self.port)
|
Represent device base url.
|
def get_avg_price_fifo(self) -> Decimal:
balance = self.get_quantity()
if not balance:
return Decimal(0)
paid = Decimal(0)
accounts = self.get_holding_accounts()
for account in accounts:
splits = self.get_available_splits_for_account(account)
for split in splits:
paid += split.value
avg_price = paid / balance
return avg_price
|
Calculates the average price paid for the security.
security = Commodity
Returns Decimal value.
|
def open(self):
self.hwman = HardwareManager(port=self._port)
self.opened = True
if self._connection_string is not None:
try:
self.hwman.connect_direct(self._connection_string)
except HardwareError:
self.hwman.close()
raise
elif self._connect_id is not None:
try:
self.hwman.connect(self._connect_id)
except HardwareError:
self.hwman.close()
raise
|
Open and potentially connect to a device.
|
def unsubscribe_url(self):
server_relative = ('%s?s=%s' % (reverse('tidings.unsubscribe',
args=[self.pk]),
self.secret))
return 'https://%s%s' % (Site.objects.get_current().domain,
server_relative)
|
Return the absolute URL to visit to delete me.
|
def _smartos_computenode_data():
grains = {}
vms = {}
for vm in __salt__['cmd.run']('vmadm list -p -o uuid,alias,state,type').split("\n"):
vm = dict(list(zip(['uuid', 'alias', 'state', 'type'], vm.split(':'))))
vms[vm['uuid']] = vm
del vms[vm['uuid']]['uuid']
grains['computenode_vms_total'] = len(vms)
grains['computenode_vms_running'] = 0
grains['computenode_vms_stopped'] = 0
grains['computenode_vms_type'] = {'KVM': 0, 'LX': 0, 'OS': 0}
for vm in vms:
if vms[vm]['state'].lower() == 'running':
grains['computenode_vms_running'] += 1
elif vms[vm]['state'].lower() == 'stopped':
grains['computenode_vms_stopped'] += 1
if vms[vm]['type'] not in grains['computenode_vms_type']:
grains['computenode_vms_type'][vms[vm]['type']] = 0
grains['computenode_vms_type'][vms[vm]['type']] += 1
sysinfo = salt.utils.json.loads(__salt__['cmd.run']('sysinfo'))
grains['computenode_sdc_version'] = sysinfo['SDC Version']
grains['computenode_vm_capable'] = sysinfo['VM Capable']
if sysinfo['VM Capable']:
grains['computenode_vm_hw_virt'] = sysinfo['CPU Virtualization']
grains['manufacturer'] = sysinfo['Manufacturer']
grains['productname'] = sysinfo['Product']
grains['uuid'] = sysinfo['UUID']
return grains
|
Return useful information from a SmartOS compute node
|
def nl_cb_set(cb, type_, kind, func, arg):
if type_ < 0 or type_ > NL_CB_TYPE_MAX or kind < 0 or kind > NL_CB_KIND_MAX:
return -NLE_RANGE
if kind == NL_CB_CUSTOM:
cb.cb_set[type_] = func
cb.cb_args[type_] = arg
else:
cb.cb_set[type_] = cb_def[type_][kind]
cb.cb_args[type_] = arg
return 0
|
Set up a callback. Updates `cb` in place.
https://github.com/thom311/libnl/blob/libnl3_2_25/lib/handlers.c#L293
Positional arguments:
cb -- nl_cb class instance.
type_ -- callback to modify (integer).
kind -- kind of implementation (integer).
func -- callback function (NL_CB_CUSTOM).
arg -- argument passed to callback.
Returns:
0 on success or a negative error code.
|
def update_index(index):
logger.info("Updating search index: '%s'", index)
client = get_client()
responses = []
for model in get_index_models(index):
logger.info("Updating search index model: '%s'", model.search_doc_type)
objects = model.objects.get_search_queryset(index).iterator()
actions = bulk_actions(objects, index=index, action="index")
response = helpers.bulk(client, actions, chunk_size=get_setting("chunk_size"))
responses.append(response)
return responses
|
Re-index every document in a named index.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.