code
stringlengths 59
3.37k
| docstring
stringlengths 8
15.5k
|
---|---|
def multilayer_fully_connected(images, labels):
images = pt.wrap(images)
with pt.defaults_scope(activation_fn=tf.nn.relu, l2loss=0.00001):
return (images.flatten().fully_connected(100).fully_connected(100)
.softmax_classifier(10, labels))
|
Creates a multi layer network of fully_connected layers.
Each layer is 100 neurons. Please change this to experiment with
architectures.
Args:
images: The input images.
labels: The labels as dense one-hot vectors.
Returns:
A softmax result.
|
def pare(text, size, etc='...'):
size = int(size)
text = text.strip()
if len(text)>size:
to_be_stripped = not whitespace_re.findall(text[size-1:size+2])
text = text[:size]
if to_be_stripped:
half = size//2
last = None
for mo in whitespace_re.finditer(text[half:]):
last = mo
if last is not None:
text = text[:half+last.start()+1]
return text.rstrip() + etc
else:
return text
|
Pare text to have maximum size and add etc to the end if it's
changed
|
def wait_for_close(
raiden: 'RaidenService',
payment_network_id: PaymentNetworkID,
token_address: TokenAddress,
channel_ids: List[ChannelID],
retry_timeout: float,
) -> None:
return wait_for_channel_in_states(
raiden=raiden,
payment_network_id=payment_network_id,
token_address=token_address,
channel_ids=channel_ids,
retry_timeout=retry_timeout,
target_states=CHANNEL_AFTER_CLOSE_STATES,
)
|
Wait until all channels are closed.
Note:
This does not time out, use gevent.Timeout.
|
def contains_duplicates(values: Iterable[Any]) -> bool:
for v in Counter(values).values():
if v > 1:
return True
return False
|
Does the iterable contain any duplicate values?
|
def srun_nodes(self):
count = self.execution.get('srun_nodes', 0)
if isinstance(count, six.string_types):
tag = count
count = 0
elif isinstance(count, SEQUENCES):
return count
else:
assert isinstance(count, int)
tag = self.tag
nodes = self._srun_nodes(tag, count)
if 'srun_nodes' in self.execution:
self.execution['srun_nodes'] = nodes
self.execution['srun_nodes_count'] = len(nodes)
return nodes
|
Get list of nodes where to execute the command
|
def reassign_ids(doc, verbose = False):
for n, elem in enumerate(doc.childNodes):
if verbose:
print >>sys.stderr, "reassigning row IDs: %.1f%%\r" % (100.0 * (n + 1) / len(doc.childNodes)),
if elem.tagName == ligolw.LIGO_LW.tagName:
table.reassign_ids(elem)
if verbose:
print >>sys.stderr, "reassigning row IDs: 100.0%"
return doc
|
Assign new IDs to all rows in all LSC tables in doc so that there
are no collisions when the LIGO_LW elements are merged.
|
def _get_manager(cluster_info, host, executor_id):
for node in cluster_info:
if node['host'] == host and node['executor_id'] == executor_id:
addr = node['addr']
authkey = node['authkey']
TFSparkNode.mgr = TFManager.connect(addr, authkey)
break
if TFSparkNode.mgr is None:
msg = "No TFManager found on this node, please ensure that:\n" + \
"1. Spark num_executors matches TensorFlow cluster_size\n" + \
"2. Spark cores/tasks per executor is 1.\n" + \
"3. Spark dynamic allocation is disabled."
raise Exception(msg)
logging.info("Connected to TFSparkNode.mgr on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get('state'))))
return TFSparkNode.mgr
|
Returns this executor's "singleton" instance of the multiprocessing.Manager, reconnecting per python-worker if needed.
Args:
:cluster_info: cluster node reservations
:host: host IP address
:executor_id: unique id per executor (created during initial call to run())
Returns:
TFManager instance for this executor/python-worker
|
def flatten(self, redact=False):
od = OrderedDict()
for key, view in self.items():
if redact and view.redact:
od[key] = REDACTED_TOMBSTONE
else:
try:
od[key] = view.flatten(redact=redact)
except ConfigTypeError:
od[key] = view.get()
return od
|
Create a hierarchy of OrderedDicts containing the data from
this view, recursively reifying all views to get their
represented values.
If `redact` is set, then sensitive values are replaced with
the string "REDACTED".
|
def check_incoming(self, message, addr, protocol):
component = protocol.local_candidate.component
remote_candidate = None
for c in self._remote_candidates:
if c.host == addr[0] and c.port == addr[1]:
remote_candidate = c
assert remote_candidate.component == component
break
if remote_candidate is None:
remote_candidate = Candidate(
foundation=random_string(10),
component=component,
transport='udp',
priority=message.attributes['PRIORITY'],
host=addr[0],
port=addr[1],
type='prflx')
self._remote_candidates.append(remote_candidate)
self.__log_info('Discovered peer reflexive candidate %s', remote_candidate)
pair = self._find_pair(protocol, remote_candidate)
if pair is None:
pair = CandidatePair(protocol, remote_candidate)
pair.state = CandidatePair.State.WAITING
self._check_list.append(pair)
self.sort_check_list()
if pair.state in [CandidatePair.State.WAITING, CandidatePair.State.FAILED]:
pair.handle = asyncio.ensure_future(self.check_start(pair))
if 'USE-CANDIDATE' in message.attributes and not self.ice_controlling:
pair.remote_nominated = True
if pair.state == CandidatePair.State.SUCCEEDED:
pair.nominated = True
self.check_complete(pair)
|
Handle a succesful incoming check.
|
def set_default_calibrator(self, parameter, type, data):
req = mdb_pb2.ChangeParameterRequest()
req.action = mdb_pb2.ChangeParameterRequest.SET_DEFAULT_CALIBRATOR
if type:
_add_calib(req.defaultCalibrator, type, data)
url = '/mdb/{}/{}/parameters/{}'.format(
self._instance, self._processor, parameter)
response = self._client.post_proto(url, data=req.SerializeToString())
|
Apply a calibrator while processing raw values of the specified
parameter. If there is already a default calibrator associated
to this parameter, that calibrator gets replaced.
.. note::
Contextual calibrators take precedence over the default calibrator
See :meth:`set_calibrators` for setting contextual calibrators.
Two types of calibrators can be applied:
* Polynomial calibrators apply a polynomial expression of the form:
`y = a + bx + cx^2 + ...`.
The `data` argument must be an array of floats ``[a, b, c, ...]``.
* Spline calibrators interpolate the raw value between a set of points
which represent a linear curve.
The `data` argument must be an array of ``[x, y]`` points.
:param str parameter: Either a fully-qualified XTCE name or an alias
in the format ``NAMESPACE/NAME``.
:param str type: One of ``polynomial`` or ``spline``.
:param data: Calibration definition for the selected type.
|
def to_disk(self, path, exclude=tuple(), disable=None):
if disable is not None:
deprecation_warning(Warnings.W014)
exclude = disable
path = util.ensure_path(path)
serializers = OrderedDict()
serializers["tokenizer"] = lambda p: self.tokenizer.to_disk(p, exclude=["vocab"])
serializers["meta.json"] = lambda p: p.open("w").write(srsly.json_dumps(self.meta))
for name, proc in self.pipeline:
if not hasattr(proc, "name"):
continue
if name in exclude:
continue
if not hasattr(proc, "to_disk"):
continue
serializers[name] = lambda p, proc=proc: proc.to_disk(p, exclude=["vocab"])
serializers["vocab"] = lambda p: self.vocab.to_disk(p)
util.to_disk(path, serializers, exclude)
|
Save the current state to a directory. If a model is loaded, this
will include the model.
path (unicode or Path): Path to a directory, which will be created if
it doesn't exist.
exclude (list): Names of components or serialization fields to exclude.
DOCS: https://spacy.io/api/language#to_disk
|
def diffuse_advanced(self, heatColumnName=None, time=None, verbose=False):
PARAMS=set_param(["heatColumnName","time"],[heatColumnName,time])
response=api(url=self.__url+"/diffuse_advanced", PARAMS=PARAMS, method="POST", verbose=verbose)
return response
|
Diffusion will send the selected network view and its selected nodes to
a web-based REST service to calculate network propagation. Results are
returned and represented by columns in the node table.
Columns are created for each execution of Diffusion and their names are
returned in the response.
:param heatColumnName (string, optional): A node column name intended
to override the default table column 'diffusion_input'. This represents
the query vector and corresponds to h in the diffusion equation. =
['HEKScore', 'JurkatScore', '(Use selected nodes)']
:param time (string, optional): The extent of spread over the network.
This corresponds to t in the diffusion equation.
:param verbose: print more
|
def save(filepath=None, **kwargs):
if filepath is None:
filepath = os.path.join('.env')
with open(filepath, 'wb') as file_handle:
file_handle.writelines(
'{0}={1}\n'.format(key.upper(), val)
for key, val in kwargs.items()
)
|
Saves a list of keyword arguments as environment variables to a file.
If no filepath given will default to the default `.env` file.
|
def write_representative_sequences_file(self, outname, outdir=None, set_ids_from_model=True):
if not outdir:
outdir = self.data_dir
if not outdir:
raise ValueError('Output directory must be specified')
outfile = op.join(outdir, outname + '.faa')
tmp = []
for x in self.genes_with_a_representative_sequence:
repseq = x.protein.representative_sequence
copied_seq_record = copy(repseq)
if set_ids_from_model:
copied_seq_record.id = x.id
tmp.append(copied_seq_record)
SeqIO.write(tmp, outfile, "fasta")
log.info('{}: wrote all representative sequences to file'.format(outfile))
self.genome_path = outfile
return self.genome_path
|
Write all the model's sequences as a single FASTA file. By default, sets IDs to model gene IDs.
Args:
outname (str): Name of the output FASTA file without the extension
outdir (str): Path to output directory of downloaded files, must be set if GEM-PRO directories
were not created initially
set_ids_from_model (bool): If the gene ID source should be the model gene IDs, not the original sequence ID
|
def get_thumbnail(self, file_, geometry_string, **options):
logger.debug('Getting thumbnail for file [%s] at [%s]', file_, geometry_string)
if file_:
source = ImageFile(file_)
else:
raise ValueError('falsey file_ argument in get_thumbnail()')
if settings.THUMBNAIL_PRESERVE_FORMAT:
options.setdefault('format', self._get_format(source))
for key, value in self.default_options.items():
options.setdefault(key, value)
for key, attr in self.extra_options:
value = getattr(settings, attr)
if value != getattr(default_settings, attr):
options.setdefault(key, value)
name = self._get_thumbnail_filename(source, geometry_string, options)
thumbnail = ImageFile(name, default.storage)
cached = default.kvstore.get(thumbnail)
if cached:
return cached
if settings.THUMBNAIL_FORCE_OVERWRITE or not thumbnail.exists():
try:
source_image = default.engine.get_image(source)
except IOError as e:
logger.exception(e)
if settings.THUMBNAIL_DUMMY:
return DummyImageFile(geometry_string)
else:
logger.warning(
'Remote file [%s] at [%s] does not exist',
file_, geometry_string,
)
return thumbnail
image_info = default.engine.get_image_info(source_image)
options['image_info'] = image_info
size = default.engine.get_image_size(source_image)
source.set_size(size)
try:
self._create_thumbnail(source_image, geometry_string, options,
thumbnail)
self._create_alternative_resolutions(source_image, geometry_string,
options, thumbnail.name)
finally:
default.engine.cleanup(source_image)
default.kvstore.get_or_set(source)
default.kvstore.set(thumbnail, source)
return thumbnail
|
Returns thumbnail as an ImageFile instance for file with geometry and
options given. First it will try to get it from the key value store,
secondly it will create it.
|
def set_include_entities(self, include):
if not isinstance(include, bool):
raise TwitterSearchException(1008)
self.arguments.update(
{'include_entities': 'true' if include else 'false'}
)
|
Sets 'include entities' parameter to either \
include or exclude the entities node within the results
:param include: Boolean to trigger the 'include entities' parameter
:raises: TwitterSearchException
|
def compute_checksum(filename, max_length=2**20):
fid = open(filename, 'rb')
crcval = safe_crc(fid.read(max_length))
fid.close()
return crcval
|
Compute the CRC32 checksum for specified file
Optional parameter max_length sets the maximum number
of bytes used to limit time used with large files.
Default = 2**20 (1MB)
|
def remove_user_from_group(self, username, group_name):
log.warning('Removing user from a group...')
url = 'rest/api/2/group/user'
params = {'groupname': group_name, 'username': username}
return self.delete(url, params=params)
|
Remove given user from a group
:param username: str
:param group_name: str
:return:
|
def smart_search(cls, query_string, search_options=None, extra_query = None):
if search_options is None:
search_options = {}
xmlrpc = XMLRPCConnection()
try:
smart_result = xmlrpc.connection.smart_search_prefix(
{
'query_string': query_string,
'search_options': search_options,
'auth': AuthOptions().options,
'extra_query': extra_query
})
except xmlrpclib.Fault as xml_fault:
raise _fault_to_exception(xml_fault)
result = dict()
result['interpretation'] = smart_result['interpretation']
result['search_options'] = smart_result['search_options']
result['error'] = smart_result['error']
if 'error_message' in smart_result:
result['error_message'] = smart_result['error_message']
result['result'] = list()
for prefix in smart_result['result']:
p = Prefix.from_dict(prefix)
result['result'].append(p)
return result
|
Perform a smart prefix search.
Maps to the function
:py:func:`nipap.backend.Nipap.smart_search_prefix` in the backend.
Please see the documentation for the backend function for
information regarding input arguments and return values.
|
def init(confdir="/etc/cslbot"):
multiprocessing.set_start_method('spawn')
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--debug', help='Enable debug logging.', action='store_true')
parser.add_argument('--validate', help='Initialize the db and perform other sanity checks.', action='store_true')
args = parser.parse_args()
loglevel = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(level=loglevel, format="%(asctime)s %(levelname)s:%(module)s:%(message)s")
logging.getLogger("requests").setLevel(logging.WARNING)
cslbot = IrcBot(confdir)
if args.validate:
cslbot.shutdown_mp()
print("Everything is ready to go!")
return
try:
cslbot.start()
except KeyboardInterrupt:
cslbot.disconnect('Bot received a Ctrl-C')
cslbot.shutdown_mp()
sys.exit(0)
except Exception as ex:
cslbot.shutdown_mp(False)
logging.error("The bot died! %s", ex)
output = "".join(traceback.format_exc()).strip()
for line in output.split('\n'):
logging.error(line)
sys.exit(1)
|
The bot's main entry point.
| Initialize the bot and start processing messages.
|
def delete_dcnm_out_nwk(self, tenant_id, fw_dict, is_fw_virt=False):
tenant_name = fw_dict.get('tenant_name')
ret = self._delete_service_nwk(tenant_id, tenant_name, 'out')
if ret:
res = fw_const.DCNM_OUT_NETWORK_DEL_SUCCESS
LOG.info("out Service network deleted for tenant %s",
tenant_id)
else:
res = fw_const.DCNM_OUT_NETWORK_DEL_FAIL
LOG.info("out Service network deleted failed for tenant %s",
tenant_id)
self.update_fw_db_result(tenant_id, dcnm_status=res)
return ret
|
Delete the DCNM OUT network and update the result.
|
def end_task(self, name, success=True):
self._running.remove(name)
if success:
self._completed.add(name)
self._graph.remove(name, strategy=Strategy.orphan)
else:
self._cascade_failure(name)
|
End a running task. Raises an exception if the task isn't
running.
name: The name of the task to complete.
success: (optional, True) Whether the task was successful.
|
def cdf(data,mode='continuous',**kwargs):
return ( np.linspace(0.0,1.0,len(data)), np.sort(data) )
|
Return cumulative density.
:arguments:
**data** (``<numpy.ndarray>``)
Input data, to plot the distribution for.
:returns:
**P** (``<numpy.ndarray>``)
Cumulative probability.
**x** (``<numpy.ndarray>``)
Data points.
|
def add_path(self, path):
if not os.path.exists(path):
raise RuntimeError('Path does not exists: %s.' % path)
self.paths.append(path)
|
Load translations from an existing path.
|
async def _wrap_http(self, handler, *args, **kwargs):
try:
method = self.request_method()
if method == 'OPTIONS':
return self.build_http_response(None, status=NO_CONTENT)
data = await handler(self, *args, **kwargs)
formatted = self.format(method, data)
status = self.responses.get(method, OK)
return self.build_http_response(formatted, status=status)
except Exception as ex:
return self.dispatch_error(ex)
|
wraps a handler with an HTTP request-response cycle
|
def run_apidoc(_):
import os
dirname = os.path.dirname(__file__)
ignore_paths = [os.path.join(dirname, '../../aaf2/model'),]
argv = [
'--force',
'--no-toc',
'--separate',
'--module-first',
'--output-dir',
os.path.join(dirname, 'api'),
os.path.join(dirname, '../../aaf2'),
] + ignore_paths
from sphinx.ext import apidoc
apidoc.main(argv)
|
This method is required by the setup method below.
|
def do_raise(self, arg):
self.do_continue(arg)
_, exc_value, _ = self.exc_info
exc_value._ipdbugger_let_raise = True
raise_(*self.exc_info)
|
Raise the last exception caught.
|
def shamelessly_promote():
click.echo("Need " + click.style("help", fg='green', bold=True) +
"? Found a " + click.style("bug", fg='green', bold=True) +
"? Let us " + click.style("know", fg='green', bold=True) + "! :D")
click.echo("File bug reports on " + click.style("GitHub", bold=True) + " here: "
+ click.style("https://github.com/Miserlou/Zappa", fg='cyan', bold=True))
click.echo("And join our " + click.style("Slack", bold=True) + " channel here: "
+ click.style("https://slack.zappa.io", fg='cyan', bold=True))
click.echo("Love!,")
click.echo(" ~ Team " + click.style("Zappa", bold=True) + "!")
|
Shamelessly promote our little community.
|
def get_processing_block(block_id):
identifiers = block_id.split(':')
scheduling_block_id = identifiers[0]
scheduling_block_config = get_scheduling_block(scheduling_block_id)
for processing_block in scheduling_block_config['processing_blocks']:
if processing_block['id'] == block_id:
return processing_block
raise KeyError('Unknown Processing Block id: {} ({})'
.format(identifiers[-1], block_id))
|
Return the Processing Block Configuration for the specified ID
|
def _get_cubic_root(self):
assert_array = [
tf.Assert(
tf.logical_not(tf.is_nan(self._dist_to_opt_avg)),
[self._dist_to_opt_avg,]),
tf.Assert(
tf.logical_not(tf.is_nan(self._h_min)),
[self._h_min,]),
tf.Assert(
tf.logical_not(tf.is_nan(self._grad_var)),
[self._grad_var,]),
tf.Assert(
tf.logical_not(tf.is_inf(self._dist_to_opt_avg)),
[self._dist_to_opt_avg,]),
tf.Assert(
tf.logical_not(tf.is_inf(self._h_min)),
[self._h_min,]),
tf.Assert(
tf.logical_not(tf.is_inf(self._grad_var)),
[self._grad_var,])
]
with tf.control_dependencies(assert_array):
p = self._dist_to_opt_avg**2 * self._h_min**2 / 2 / self._grad_var
w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0
w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0)
y = w - p / 3.0 / w
x = y + 1
return x
|
Get the cubic root.
|
def absolute_extreme_coefficient_ratio(model):
s_matrix, _, _ = con_helpers.stoichiometry_matrix(
model.metabolites, model.reactions
)
abs_matrix = np.abs(s_matrix)
return abs_matrix.max(), abs_matrix[abs_matrix > 0].min()
|
Return the maximum and minimum absolute, non-zero coefficients.
Parameters
----------
model : cobra.Model
The metabolic model under investigation.
|
def save_snapshot(self, si, logger, vm_uuid, snapshot_name, save_memory):
vm = self.pyvmomi_service.find_by_uuid(si, vm_uuid)
snapshot_path_to_be_created = SaveSnapshotCommand._get_snapshot_name_to_be_created(snapshot_name, vm)
save_vm_memory_to_snapshot = SaveSnapshotCommand._get_save_vm_memory_to_snapshot(save_memory)
SaveSnapshotCommand._verify_snapshot_uniquness(snapshot_path_to_be_created, vm)
task = self._create_snapshot(logger, snapshot_name, vm, save_vm_memory_to_snapshot)
self.task_waiter.wait_for_task(task=task, logger=logger, action_name='Create Snapshot')
return snapshot_path_to_be_created
|
Creates a snapshot of the current state of the virtual machine
:param vim.ServiceInstance si: py_vmomi service instance
:type si: vim.ServiceInstance
:param logger: Logger
:type logger: cloudshell.core.logger.qs_logger.get_qs_logger
:param vm_uuid: UUID of the virtual machine
:type vm_uuid: str
:param snapshot_name: Snapshot name to save the snapshot to
:type snapshot_name: str
:param save_memory: Snapshot the virtual machine's memory. Lookup, Yes / No
:type save_memory: str
|
def dispatch_event(self, event_, **kwargs):
if self.settings.hooks_enabled:
result = self.hooks.dispatch_event(event_, **kwargs)
if result is not None:
return result
if self.section:
return self.section.dispatch_event(event_, **kwargs)
elif self.section:
self.section.dispatch_event(event_, **kwargs)
|
Dispatch section event.
Notes:
You MUST NOT call event.trigger() directly because
it will circumvent the section settings as well
as ignore the section tree.
If hooks are disabled somewhere up in the tree, and enabled
down below, events will still be dispatched down below because
that's where they originate.
|
def __addLocationsToURL(self, locations):
for l in self.__locations:
self.__urlLocations += "+location:\""\
+ str(quote(l)) + "\""
|
Format all locations to GitHub's URL API.
:param locations: locations where to search users.
:type locations: list(str).
|
def add_current_user_is_applied_representation(func):
@wraps(func)
def _impl(self, instance):
ret = func(self, instance)
user = self.context["request"].user
applied = False
if not user.is_anonymous():
try:
applied = models.Apply.objects.filter(user=user, project=instance).count() > 0
except:
pass
ret["current_user_is_applied"] = applied
return ret
return _impl
|
Used to decorate Serializer.to_representation method.
It sets the field "current_user_is_applied" if the user is applied to the project
|
def _p_iteration(self, P, Bp_solver, Vm, Va, pvpq):
dVa = -Bp_solver.solve(P)
Va[pvpq] = Va[pvpq] + dVa
V = Vm * exp(1j * Va)
return V, Vm, Va
|
Performs a P iteration, updates Va.
|
def stop(self):
self.keep_reading = False
if self.readthread is not None:
self.readthread.join()
self.readthread = None
|
Stops and joins readthread.
:return: Nothing
|
def context_new(zap_helper, name):
console.info('Creating context with name: {0}'.format(name))
res = zap_helper.zap.context.new_context(contextname=name)
console.info('Context "{0}" created with ID: {1}'.format(name, res))
|
Create a new context.
|
def with_source(self, lease):
super().with_source(lease)
self.offset = lease.offset
self.sequence_number = lease.sequence_number
|
Init Azure Blob Lease from existing.
|
def run(self, stim, merge=True, **merge_kwargs):
results = list(chain(*[self.run_node(n, stim) for n in self.roots]))
results = list(flatten(results))
self._results = results
return merge_results(results, **merge_kwargs) if merge else results
|
Executes the graph by calling all Transformers in sequence.
Args:
stim (str, Stim, list): One or more valid inputs to any
Transformer's 'transform' call.
merge (bool): If True, all results are merged into a single pandas
DataFrame before being returned. If False, a list of
ExtractorResult objects is returned (one per Extractor/Stim
combination).
merge_kwargs: Optional keyword arguments to pass onto the
merge_results() call.
|
def add(self, left_column, right_column, indexes=None):
left_list, right_list = self._get_lists(left_column, right_column, indexes)
return [l + r for l, r in zip(left_list, right_list)]
|
Math helper method that adds element-wise two columns. If indexes are not None then will only perform the math
on that sub-set of the columns.
:param left_column: first column name
:param right_column: second column name
:param indexes: list of index values or list of booleans. If a list of booleans then the list must be the same\
length as the DataFrame
:return: list
|
def require_debian_packages(packages: List[str]) -> None:
present = are_debian_packages_installed(packages)
missing_packages = [k for k, v in present.items() if not v]
if missing_packages:
missing_packages.sort()
msg = (
"Debian packages are missing, as follows. Suggest:\n\n"
"sudo apt install {}".format(" ".join(missing_packages))
)
log.critical(msg)
raise ValueError(msg)
|
Ensure specific packages are installed under Debian.
Args:
packages: list of packages
Raises:
ValueError: if any are missing
|
def set_avatar(self, asset_id):
if self.get_avatar_metadata().is_read_only():
raise errors.NoAccess()
if not self._is_valid_id(asset_id):
raise errors.InvalidArgument()
self._my_map['avatarId'] = str(asset_id)
|
Sets the avatar asset.
arg: asset_id (osid.id.Id): an asset ``Id``
raise: InvalidArgument - ``asset_id`` is invalid
raise: NoAccess - ``Metadata.isReadOnly()`` is ``true``
*compliance: mandatory -- This method must be implemented.*
|
def elements(self):
offset = self.EXTRA_DIGITS
if offset:
return (self._id[:offset], self.company_prefix, self._reference,
self.check_digit)
else:
return (self.company_prefix, self._reference, self.check_digit)
|
Return the identifier's elements as tuple.
|
def _method_call(self, method, category, **kwargs):
session = requests.Session()
try:
response = session.get("http://" + self._api_address)
except requests.exceptions.ConnectionError:
raise FantasyDataError('Error: Cannot connect to the FantasyData API')
method = method.format(format=self._response_format, **kwargs)
request_url = "/v3/{game_type}/{category}/{format}/{method}?{get_params}".format(
game_type=self.game_type,
category=category,
format=self._response_format,
method=method,
get_params=self._get_params)
response = session.get(self._api_schema + self._api_address + request_url,
headers=self._headers)
result = response.json()
if isinstance(result, dict) and response.status_code:
if response.status_code == 401:
raise FantasyDataError('Error: Invalid API key')
elif response.status_code == 200:
pass
else:
raise FantasyDataError('Error: Failed to get response')
return result
|
Call API method. Generate request. Parse response. Process errors
`method` str API method url for request. Contains parameters
`params` dict parameters for method url
|
def _build_session(username, password, trans_label=None):
bigip = requests.session()
bigip.auth = (username, password)
bigip.verify = False
bigip.headers.update({'Content-Type': 'application/json'})
if trans_label:
trans_id = __salt__['grains.get']('bigip_f5_trans:{label}'.format(label=trans_label))
if trans_id:
bigip.headers.update({'X-F5-REST-Coordination-Id': trans_id})
else:
bigip.headers.update({'X-F5-REST-Coordination-Id': None})
return bigip
|
Create a session to be used when connecting to iControl REST.
|
def _import(func):
func_name = func.__name__
if func_name in globals():
return func_name
module_name = func.__module__
submodules = module_name.split('.')
if submodules[0] in globals():
return module_name + '.' + func_name
for i in range(len(submodules)):
m = submodules[i]
if m in globals():
return '.'.join(submodules[i:]) + '.' + func_name
module_ref = sys.modules[func.__module__]
all_globals = globals()
for n in all_globals:
if all_globals[n] == module_ref:
return n + '.' + func_name
return func_name
|
Return the namespace path to the function
|
def ground_motion_fields(rupture, sites, imts, gsim, truncation_level,
realizations, correlation_model=None, seed=None):
cmaker = ContextMaker(rupture.tectonic_region_type, [gsim])
gc = GmfComputer(rupture, sites, [str(imt) for imt in imts],
cmaker, truncation_level, correlation_model)
res, _sig, _eps = gc.compute(gsim, realizations, seed)
return {imt: res[imti] for imti, imt in enumerate(gc.imts)}
|
Given an earthquake rupture, the ground motion field calculator computes
ground shaking over a set of sites, by randomly sampling a ground shaking
intensity model. A ground motion field represents a possible 'realization'
of the ground shaking due to an earthquake rupture.
.. note::
This calculator is using random numbers. In order to reproduce the
same results numpy random numbers generator needs to be seeded, see
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html
:param openquake.hazardlib.source.rupture.Rupture rupture:
Rupture to calculate ground motion fields radiated from.
:param openquake.hazardlib.site.SiteCollection sites:
Sites of interest to calculate GMFs.
:param imts:
List of intensity measure type objects (see
:mod:`openquake.hazardlib.imt`).
:param gsim:
Ground-shaking intensity model, instance of subclass of either
:class:`~openquake.hazardlib.gsim.base.GMPE` or
:class:`~openquake.hazardlib.gsim.base.IPE`.
:param truncation_level:
Float, number of standard deviations for truncation of the intensity
distribution, or ``None``.
:param realizations:
Integer number of GMF realizations to compute.
:param correlation_model:
Instance of correlation model object. See
:mod:`openquake.hazardlib.correlation`. Can be ``None``, in which case
non-correlated ground motion fields are calculated. Correlation model
is not used if ``truncation_level`` is zero.
:param int seed:
The seed used in the numpy random number generator
:returns:
Dictionary mapping intensity measure type objects (same
as in parameter ``imts``) to 2d numpy arrays of floats,
representing different realizations of ground shaking intensity
for all sites in the collection. First dimension represents
sites and second one is for realizations.
|
def get_context_data(self):
self.get_context()
self.context_data.update(self.get_extra_context())
return self.context_data
|
Context Data is equal to context + extra_context
Merge the dicts context_data and extra_context and
update state
|
def cache_file(self, template):
saltpath = salt.utils.url.create(template)
self.file_client().get_file(saltpath, '', True, self.saltenv)
|
Cache a file from the salt master
|
def image_resources(package=None, directory='resources'):
if not package:
package = calling_package()
package_dir = '.'.join([package, directory])
images = []
for i in resource_listdir(package, directory):
if i.startswith('__') or i.endswith('.egg-info'):
continue
fname = resource_filename(package_dir, i)
if resource_isdir(package_dir, i):
images.extend(image_resources(package_dir, i))
elif what(fname):
images.append(fname)
return images
|
Returns all images under the directory relative to a package path. If no directory or package is specified then the
resources module of the calling package will be used. Images are recursively discovered.
:param package: package name in dotted format.
:param directory: path relative to package path of the resources directory.
:return: a list of images under the specified resources path.
|
def imsave(filename, data, maxval=None, pam=False):
try:
netpbm = NetpbmFile(data, maxval=maxval)
netpbm.write(filename, pam=pam)
finally:
netpbm.close()
|
Write image data to Netpbm file.
Examples
--------
>>> image = numpy.array([[0, 1],[65534, 65535]], dtype=numpy.uint16)
>>> imsave('_tmp.pgm', image)
|
def get_expiration_seconds_v4(expiration):
if not isinstance(expiration, _EXPIRATION_TYPES):
raise TypeError(
"Expected an integer timestamp, datetime, or "
"timedelta. Got %s" % type(expiration)
)
now = NOW().replace(tzinfo=_helpers.UTC)
if isinstance(expiration, six.integer_types):
seconds = expiration
if isinstance(expiration, datetime.datetime):
if expiration.tzinfo is None:
expiration = expiration.replace(tzinfo=_helpers.UTC)
expiration = expiration - now
if isinstance(expiration, datetime.timedelta):
seconds = int(expiration.total_seconds())
if seconds > SEVEN_DAYS:
raise ValueError(
"Max allowed expiration interval is seven days (%d seconds)".format(
SEVEN_DAYS
)
)
return seconds
|
Convert 'expiration' to a number of seconds offset from the current time.
:type expiration: Union[Integer, datetime.datetime, datetime.timedelta]
:param expiration: Point in time when the signed URL should expire.
:raises: :exc:`TypeError` when expiration is not a valid type.
:raises: :exc:`ValueError` when expiration is too large.
:rtype: Integer
:returns: seconds in the future when the signed URL will expire
|
def magenta(cls):
"Make the text foreground color magenta."
wAttributes = cls._get_text_attributes()
wAttributes &= ~win32.FOREGROUND_MASK
wAttributes |= win32.FOREGROUND_MAGENTA
cls._set_text_attributes(wAttributes)
|
Make the text foreground color magenta.
|
def pack_header_extensions(extensions: List[Tuple[int, bytes]]) -> Tuple[int, bytes]:
extension_profile = 0
extension_value = b''
if not extensions:
return extension_profile, extension_value
one_byte = True
for x_id, x_value in extensions:
x_length = len(x_value)
assert x_id > 0 and x_id < 256
assert x_length >= 0 and x_length < 256
if x_id > 14 or x_length == 0 or x_length > 16:
one_byte = False
if one_byte:
extension_profile = 0xBEDE
extension_value = b''
for x_id, x_value in extensions:
x_length = len(x_value)
extension_value += pack('!B', (x_id << 4) | (x_length - 1))
extension_value += x_value
else:
extension_profile = 0x1000
extension_value = b''
for x_id, x_value in extensions:
x_length = len(x_value)
extension_value += pack('!BB', x_id, x_length)
extension_value += x_value
extension_value += b'\x00' * padl(len(extension_value))
return extension_profile, extension_value
|
Serialize header extensions according to RFC 5285.
|
def sasutil(self) -> 'SASutil':
if not self._loaded_macros:
self._loadmacros()
self._loaded_macros = True
return SASutil(self)
|
This methods creates a SASutil object which you can use to run various analytics.
See the sasutil.py module.
:return: sasutil object
|
def display_ioc(self, width=120, sep=' ', params=False):
s = 'Name: {}\n'.format(self.metadata.findtext('short_description', default='No Name'))
s += 'ID: {}\n'.format(self.root.attrib.get('id'))
s += 'Created: {}\n'.format(self.metadata.findtext('authored_date', default='No authored_date'))
s += 'Updated: {}\n\n'.format(self.root.attrib.get('last-modified', default='No last-modified attrib'))
s += 'Author: {}\n'.format(self.metadata.findtext('authored_by', default='No authored_by'))
desc = self.metadata.findtext('description', default='No Description')
desc = textwrap.wrap(desc, width=width)
desc = '\n'.join(desc)
s += 'Description:\n{}\n\n'.format(desc)
links = self.link_text()
if links:
s += '{}'.format(links)
content_text = self.criteria_text(sep=sep, params=params)
s += '\nCriteria:\n{}'.format(content_text)
return s
|
Get a string representation of an IOC.
:param width: Width to print the description too.
:param sep: Separator used for displaying the contents of the criteria nodes.
:param params: Boolean, set to True in order to display node parameters.
:return:
|
def stop(self, reason=''):
key = '/status/sessions/terminate?sessionId=%s&reason=%s' % (self.session[0].id, quote_plus(reason))
return self._server.query(key)
|
Stop playback for a media item.
|
def use_plenary_log_view(self):
self._log_view = PLENARY
for session in self._get_provider_sessions():
try:
session.use_plenary_log_view()
except AttributeError:
pass
|
Pass through to provider LogEntryLogSession.use_plenary_log_view
|
def get_cache_key(path):
try:
path_hash = hashlib.md5(path).hexdigest()
except TypeError:
path_hash = hashlib.md5(path.encode('utf-8')).hexdigest()
return settings.cache_key_prefix + path_hash
|
Create a cache key by concatenating the prefix with a hash of the path.
|
def add_fields(self, form, index):
super(ColumnFormSet, self).add_fields(form, index)
form.fields['column'].choices = self.get_choices()
|
Filter the form's column choices
This is done at the formset level as there's no other way i could find
to get the parent object (stored in self.instance), and the form at the
same time.
|
def print_single_instruction_callback(self, address, size, branch_delay_insn,
insn_type, target, target2, disassembly):
print "0x%X SZ=%d BD=%d IT=%d\t%s" % \
(address, size, branch_delay_insn, insn_type, disassembly)
return PYBFD_DISASM_CONTINUE
|
Callack on each disassembled instruction to print its information.
|
def form_valid(self, redirect_to=None):
session = db.session()
with session.no_autoflush:
self.before_populate_obj()
self.form.populate_obj(self.obj)
session.add(self.obj)
self.after_populate_obj()
try:
session.flush()
self.send_activity()
session.commit()
except ValidationError as e:
rv = self.handle_commit_exception(e)
if rv is not None:
return rv
session.rollback()
flash(str(e), "error")
return self.get()
except sa.exc.IntegrityError as e:
rv = self.handle_commit_exception(e)
if rv is not None:
return rv
session.rollback()
logger.error(e)
flash(_("An entity with this name already exists in the system."), "error")
return self.get()
else:
self.commit_success()
flash(self.message_success(), "success")
if redirect_to:
return redirect(redirect_to)
else:
return self.redirect_to_view()
|
Save object.
Called when form is validated.
:param redirect_to: real url (created with url_for) to redirect to,
instead of the view by default.
|
def _BlobToChunks(blob_id, blob):
chunk_begins = list(range(0, len(blob), BLOB_CHUNK_SIZE)) or [0]
chunks = []
for i, chunk_begin in enumerate(chunk_begins):
chunks.append({
"blob_id": blob_id,
"chunk_index": i,
"blob_chunk": blob[chunk_begin:chunk_begin + BLOB_CHUNK_SIZE]
})
return chunks
|
Splits a Blob into chunks of size BLOB_CHUNK_SIZE.
|
def setSeed(self, value):
self.seed = value
random.seed(self.seed)
if self.verbosity >= 0:
print("Conx using seed:", self.seed)
|
Sets the seed to value.
|
def qtiling(fseries, qrange, frange, mismatch=0.2):
qplane_tile_dict = {}
qs = list(_iter_qs(qrange, deltam_f(mismatch)))
for q in qs:
qtilefreq = _iter_frequencies(q, frange, mismatch, fseries.duration)
qplane_tile_dict[q] = numpy.array(list(qtilefreq))
return qplane_tile_dict
|
Iterable constructor of QTile tuples
Parameters
----------
fseries: 'pycbc FrequencySeries'
frequency-series data set
qrange:
upper and lower bounds of q range
frange:
upper and lower bounds of frequency range
mismatch:
percentage of desired fractional mismatch
Returns
-------
qplane_tile_dict: 'dict'
dictionary containing Q-tile tuples for a set of Q-planes
|
def get_title(self):
def fformat(x):
if isinstance(x, (list, tuple)):
return '[{0}]'.format(', '.join(map(fformat, x)))
if isinstance(x, Quantity):
x = x.value
elif isinstance(x, str):
warnings.warn('WARNING: fformat called with a' +
' string. This has ' +
'been depricated and may disappear ' +
'in a future release.')
x = float(x)
return '{0:.2f}'.format(x)
bits = [('Q', fformat(self.result.q))]
bits.append(('tres', '{:.3g}'.format(self.qxfrm_args['tres'])))
if self.qxfrm_args.get('qrange'):
bits.append(('q-range', fformat(self.qxfrm_args['qrange'])))
if self.qxfrm_args['whiten']:
bits.append(('whitened',))
bits.extend([
('f-range', fformat(self.result.yspan)),
('e-range', '[{:.3g}, {:.3g}]'.format(self.result.min(),
self.result.max())),
])
return ', '.join([': '.join(bit) for bit in bits])
|
Default title for plot
|
def _analyze_case(model_dir, bench_dir, config):
bundle = livvkit.verification_model_module
model_out = functions.find_file(model_dir, "*"+config["output_ext"])
bench_out = functions.find_file(bench_dir, "*"+config["output_ext"])
model_config = functions.find_file(model_dir, "*"+config["config_ext"])
bench_config = functions.find_file(bench_dir, "*"+config["config_ext"])
model_log = functions.find_file(model_dir, "*"+config["logfile_ext"])
el = [
bit_for_bit(model_out, bench_out, config),
diff_configurations(model_config, bench_config, bundle, bundle),
bundle.parse_log(model_log)
]
return el
|
Runs all of the verification checks on a particular case
|
def create_model(self, model_server_workers=None, role=None, vpc_config_override=VPC_CONFIG_DEFAULT):
role = role or self.role
return ChainerModel(self.model_data, role, self.entry_point, source_dir=self._model_source_dir(),
enable_cloudwatch_metrics=self.enable_cloudwatch_metrics, name=self._current_job_name,
container_log_level=self.container_log_level, code_location=self.code_location,
py_version=self.py_version, framework_version=self.framework_version,
model_server_workers=model_server_workers, image=self.image_name,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override), dependencies=self.dependencies)
|
Create a SageMaker ``ChainerModel`` object that can be deployed to an ``Endpoint``.
Args:
role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``, which is also used during
transform jobs. If not specified, the role from the Estimator will be used.
model_server_workers (int): Optional. The number of worker processes used by the inference server.
If None, server will use one worker per vCPU.
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model.
Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
Returns:
sagemaker.chainer.model.ChainerModel: A SageMaker ``ChainerModel`` object.
See :func:`~sagemaker.chainer.model.ChainerModel` for full details.
|
def _check_lr(name, optimizer, lr):
n = len(optimizer.param_groups)
if not isinstance(lr, (list, tuple)):
return lr * np.ones(n)
if len(lr) != n:
raise ValueError("{} lr values were passed for {} but there are "
"{} param groups.".format(n, name, len(lr)))
return np.array(lr)
|
Return one learning rate for each param group.
|
def GET_conditionitemvalues(self) -> None:
for item in state.conditionitems:
self._outputs[item.name] = item.value
|
Get the values of all |ChangeItem| objects handling |StateSequence|
or |LogSequence| objects.
|
def resample_data(self, data, freq, resampler='mean'):
if resampler == 'mean':
data = data.resample(freq).mean()
elif resampler == 'max':
data = data.resample(freq).max()
else:
raise ValueError('Resampler can be \'mean\' or \'max\' only.')
return data
|
Resample dataframe.
Note
----
1. Figure out how to apply different functions to different columns .apply()
2. This theoretically work in upsampling too, check docs
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html
Parameters
----------
data : pd.DataFrame()
Dataframe to resample
freq : str
Resampling frequency i.e. d, h, 15T...
resampler : str
Resampling type i.e. mean, max.
Returns
-------
pd.DataFrame()
Dataframe containing resampled data
|
def getConnectionStats(self):
cur = self._conn.cursor()
cur.execute()
rows = cur.fetchall()
if rows:
return dict(rows)
else:
return {}
|
Returns dictionary with number of connections for each database.
@return: Dictionary of database connection statistics.
|
def convert_to_foldable(input_filename: str,
output_filename: str,
slice_horiz: int,
slice_vert: int,
overwrite: bool = False,
longedge: bool = False,
latex_paper_size: str = LATEX_PAPER_SIZE_A4) -> bool:
if not os.path.isfile(input_filename):
log.warning("Input file does not exist or is not a file")
return False
if not overwrite and os.path.isfile(output_filename):
log.error("Output file exists; not authorized to overwrite (use "
"--overwrite if you are sure)")
return False
log.info("Processing {!r}", input_filename)
with tempfile.TemporaryDirectory() as tmpdir:
log.debug("Using temporary directory {!r}", tmpdir)
intermediate_num = 0
def make_intermediate() -> str:
nonlocal intermediate_num
intermediate_num += 1
return os.path.join(tmpdir,
"intermediate_{}.pdf".format(intermediate_num))
input_filename = slice_pdf(
input_filename=input_filename,
output_filename=make_intermediate(),
slice_horiz=slice_horiz,
slice_vert=slice_vert
)
input_filename = booklet_nup_pdf(
input_filename=input_filename,
output_filename=make_intermediate(),
latex_paper_size=latex_paper_size
)
if longedge:
input_filename = rotate_even_pages_180(
input_filename=input_filename,
output_filename=make_intermediate(),
)
log.info("Writing to {!r}", output_filename)
shutil.move(input_filename, output_filename)
return True
|
Runs a chain of tasks to convert a PDF to a useful booklet PDF.
|
def __setuptools_version(self):
f = open(self.script_path(), "r")
try:
matcher = re.compile(r'\s*DEFAULT_VERSION\s*=\s*"([^"]*)"\s*$')
for i, line in enumerate(f):
if i > 50:
break
match = matcher.match(line)
if match:
return match.group(1)
finally:
f.close()
self.__error("error parsing setuptools installation script '%s'" % (
self.script_path(),))
|
Read setuptools version from the underlying ez_setup script.
|
def eye(ax, p0, size=1.0, alpha=0, format=None, **kwds):
r
if format is None: format = 'k-'
N = 100
ang0 = pi-3*pi/16; angf = pi+3*pi/16
angstep = (angf-ang0)/(N-1)
x1 = [size*(cos(i*angstep+ang0)+1) for i in range(N)]
y1 = [size*sin(i*angstep+ang0) for i in range(N)]
ang2 = ang0+pi/16
x2 = [size, size*(1.2*cos(ang2)+1)]
y2 = [0, 1.2*size*(sin(ang2))]
y3 = [0, -1.2*size*(sin(ang2))]
N = 100
ang0 = ang2; angf = ang2+4*pi/16
angstep = (angf-ang0)/(N-1)
x4 = [size*(0.85*cos(i*angstep+ang0)+1) for i in range(N)]
y4 = [size*0.85*sin(i*angstep+ang0) for i in range(N)]
cur_list = [(x1, y1), (x2, y2), (x2, y3), (x4, y4)]
cur_list = rotate_and_traslate(cur_list, alpha, p0)
for curi in cur_list: ax.plot(curi[0], curi[1], format, **kwds)
|
r"""Draw an eye.
|
def PrintGroup(name, codes):
range16 = MakeRanges([c for c in codes if c < 65536])
range32 = MakeRanges([c for c in codes if c >= 65536])
global n16
global n32
n16 += len(range16)
n32 += len(range32)
ugroup = "{ \"%s\", +1" % (name,)
if len(range16) > 0:
PrintRanges("URange16", name+"_range16", range16)
ugroup += ", %s_range16, %d" % (name, len(range16))
else:
ugroup += ", 0, 0"
if len(range32) > 0:
PrintRanges("URange32", name+"_range32", range32)
ugroup += ", %s_range32, %d" % (name, len(range32))
else:
ugroup += ", 0, 0"
ugroup += " }"
return ugroup
|
Print the data structures for the group of codes.
Return a UGroup literal for the group.
|
def query_metadata_pypi(self):
if self.version and self.version in self.all_versions:
metadata = self.pypi.release_data(self.project_name, self.version)
else:
metadata = self.pypi.release_data(self.project_name, \
self.all_versions[0])
if metadata:
for key in metadata.keys():
if not self.options.fields or (self.options.fields and \
self.options.fields==key):
print("%s: %s" % (key, metadata[key]))
return 0
|
Show pkg metadata queried from PyPI
@returns: 0
|
async def create_lease_if_not_exists_async(self, partition_id):
return_lease = None
try:
return_lease = AzureBlobLease()
return_lease.partition_id = partition_id
serializable_lease = return_lease.serializable()
json_lease = json.dumps(serializable_lease)
_logger.info("Creating Lease %r %r %r",
self.lease_container_name,
partition_id,
json.dumps({k:v for k, v in serializable_lease.items() if k != 'event_processor_context'}))
await self.host.loop.run_in_executor(
self.executor,
functools.partial(
self.storage_client.create_blob_from_text,
self.lease_container_name,
partition_id,
json_lease))
except Exception:
try:
return_lease = await self.get_lease_async(partition_id)
except Exception as err:
_logger.error("Failed to create lease %r", err)
raise err
return return_lease
|
Create in the store the lease info for the given partition, if it does not exist.
Do nothing if it does exist in the store already.
:param partition_id: The ID of a given parition.
:type partition_id: str
:return: the existing or newly-created lease info for the partition.
:rtype: ~azure.eventprocessorhost.lease.Lease
|
def as_dict(self):
tags_dict = dict(self)
tags_dict['@module'] = self.__class__.__module__
tags_dict['@class'] = self.__class__.__name__
return tags_dict
|
Dict representation.
Returns:
Dictionary of parameters from fefftags object
|
def window(self, begin, end=None):
if self._name_parts.decorator != '':
raise Exception("Cannot use window() on an already decorated table")
start = Table._convert_decorator_time(begin)
if end is None:
if isinstance(begin, datetime.timedelta):
end = datetime.timedelta(0)
else:
end = datetime.datetime.utcnow()
stop = Table._convert_decorator_time(end)
if (start > 0 >= stop) or (stop > 0 >= start):
raise Exception("window: Between arguments must both be absolute or relative: %s, %s" %
(str(begin), str(end)))
if start > stop:
raise Exception("window: Between arguments: begin must be before end: %s, %s" %
(str(begin), str(end)))
return Table("%s@%s-%s" % (self._full_name, str(start), str(stop)), context=self._context)
|
Return a new Table limited to the rows added to this Table during the specified time range.
Args:
begin: the start time of the window. This can be a Python datetime (absolute) or timedelta
(relative to current time). The result must be after the table was created and no more
than seven days in the past.
Note that using a relative value will provide a varying snapshot, not a fixed
snapshot; any queries issued against such a Table will be done against a snapshot
that has an age relative to the execution time of the query.
end: the end time of the snapshot; if None, then the current time is used. The types and
interpretation of values is as for start.
Returns:
A new Table object referencing the window.
Raises:
An exception if this Table is already decorated, or if the time specified is invalid.
|
def BatchNorm(x, params, axis=(0, 1, 2), epsilon=1e-5,
center=True, scale=True, **unused_kwargs):
mean = np.mean(x, axis, keepdims=True)
m1 = np.mean(x**2, axis, keepdims=True)
var = m1 - mean**2
z = (x - mean) / np.sqrt(var + epsilon)
beta, gamma = params
ed = tuple(None if i in axis else slice(None) for i in range(np.ndim(x)))
beta = beta[ed]
gamma = gamma[ed]
if center and scale:
return gamma * z + beta
if center:
return z + beta
if scale:
return gamma * z
return z
|
Layer construction function for a batch normalization layer.
|
def summary(self, h):
_, losses, _ = self.run(h=h)
df = pd.DataFrame(losses)
df.index = ['Ensemble'] + self.model_names
df.columns = [self.loss_name]
return df
|
Summarize the results for each model for h steps of the algorithm
Parameters
----------
h : int
How many steps to run the aggregating algorithm on
Returns
----------
- pd.DataFrame of losses for each model
|
def crop_image(image, label_image=None, label=1):
inpixeltype = image.pixeltype
ndim = image.dimension
if image.pixeltype != 'float':
image = image.clone('float')
if label_image is None:
label_image = get_mask(image)
if label_image.pixeltype != 'float':
label_image = label_image.clone('float')
libfn = utils.get_lib_fn('cropImageF%i' % ndim)
itkimage = libfn(image.pointer, label_image.pointer, label, 0, [], [])
return iio.ANTsImage(pixeltype='float', dimension=ndim,
components=image.components, pointer=itkimage).clone(inpixeltype)
|
Use a label image to crop a smaller ANTsImage from within a larger ANTsImage
ANTsR function: `cropImage`
Arguments
---------
image : ANTsImage
image to crop
label_image : ANTsImage
image with label values. If not supplied, estimated from data.
label : integer
the label value to use
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> fi = ants.image_read( ants.get_ants_data('r16') )
>>> cropped = ants.crop_image(fi)
>>> cropped = ants.crop_image(fi, fi, 100 )
|
def _condense(self, data):
if data:
data = filter(None,data.values())
if data:
return data[-1]
return None
|
Condense by returning the last real value of the gauge.
|
def _updateNamespace(item, new_namespace):
temp_item = ''
i = item.tag.find('}')
if i >= 0:
temp_item = item.tag[i+1:]
else:
temp_item = item.tag
item.tag = '{{{0}}}{1}'.format(new_namespace, temp_item)
for child in item.getiterator():
if isinstance(child.tag, six.string_types):
temp_item = ''
i = child.tag.find('}')
if i >= 0:
temp_item = child.tag[i+1:]
else:
temp_item = child.tag
child.tag = '{{{0}}}{1}'.format(new_namespace, temp_item)
return item
|
helper function to recursively update the namespaces of an item
|
def verify_path(self, mold_id_path):
try:
path = self.lookup_path(mold_id_path)
if not exists(path):
raise KeyError
except KeyError:
raise_os_error(ENOENT)
return path
|
Lookup and verify path.
|
def is_micropython_usb_port(portName):
for port in serial.tools.list_ports.comports():
if port.device == portName:
return is_micropython_usb_device(port)
return False
|
Checks to see if the indicated portname is a MicroPython device
or not.
|
def disassemble(nex):
rev_opcodes = {}
for op in interpreter.opcodes:
rev_opcodes[interpreter.opcodes[op]] = op
r_constants = 1 + len(nex.signature)
r_temps = r_constants + len(nex.constants)
def getArg(pc, offset):
if sys.version_info[0] < 3:
arg = ord(nex.program[pc + offset])
op = rev_opcodes.get(ord(nex.program[pc]))
else:
arg = nex.program[pc + offset]
op = rev_opcodes.get(nex.program[pc])
try:
code = op.split(b'_')[1][offset - 1]
except IndexError:
return None
if sys.version_info[0] > 2:
code = bytes([code])
if arg == 255:
return None
if code != b'n':
if arg == 0:
return b'r0'
elif arg < r_constants:
return ('r%d[%s]' % (arg, nex.input_names[arg - 1])).encode('ascii')
elif arg < r_temps:
return ('c%d[%s]' % (arg, nex.constants[arg - r_constants])).encode('ascii')
else:
return ('t%d' % (arg,)).encode('ascii')
else:
return arg
source = []
for pc in range(0, len(nex.program), 4):
if sys.version_info[0] < 3:
op = rev_opcodes.get(ord(nex.program[pc]))
else:
op = rev_opcodes.get(nex.program[pc])
dest = getArg(pc, 1)
arg1 = getArg(pc, 2)
arg2 = getArg(pc, 3)
source.append((op, dest, arg1, arg2))
return source
|
Given a NumExpr object, return a list which is the program disassembled.
|
def __write_to_character_device(self, event_list, timeval=None):
pos = self._character_device.tell()
self._character_device.seek(0, 2)
for event in event_list:
self._character_device.write(event)
sync = self.create_event_object("Sync", 0, 0, timeval)
self._character_device.write(sync)
self._character_device.seek(pos)
|
Emulate the Linux character device on other platforms such as
Windows.
|
def get_alignak_macros(self):
macros = self.get_alignak_configuration(macros=True)
sections = self._search_sections('pack.')
for name, _ in list(sections.items()):
section_macros = self.get_alignak_configuration(section=name, macros=True)
macros.update(section_macros)
return macros
|
Get the Alignak macros.
:return: a dict containing the Alignak macros
|
def get(self, url, ignore_access_time=False):
key = hashlib.md5(url).hexdigest()
accessed = self._cache_meta_get(key)
if not accessed:
self.debug("From inet {}".format(url))
return None, None
if isinstance(accessed, dict):
cached = CacheInfo.from_dict(accessed)
else:
cached = CacheInfo(accessed)
now = now_utc()
if now - cached.access_time > self.duration and not ignore_access_time:
self.debug("From inet (expired) {}".format(url))
return None, cached
try:
res = self._cache_get(key)
except:
self.exception("Failed to read cache")
self.debug("From inet (failure) {}".format(url))
return None, None
self.debug("From cache {}".format(url))
return res, cached
|
Try to retrieve url from cache if available
:param url: Url to retrieve
:type url: str | unicode
:param ignore_access_time: Should ignore the access time
:type ignore_access_time: bool
:return: (data, CacheInfo)
None, None -> not found in cache
None, CacheInfo -> found, but is expired
data, CacheInfo -> found in cache
:rtype: (None | str | unicode, None | floscraper.models.CacheInfo)
|
def publish(self):
publisher_doc = self.get_publisher_doc()
with self.published_context():
published = self.one(Q._uid == self._uid)
if not published:
published = self.__class__()
for field, value in publisher_doc.items():
setattr(published, field, value)
published.upsert()
now = datetime.now()
with self.draft_context():
self.get_collection().update(
{'_uid': self._uid},
{'$set': {'revision': now}}
)
with self.published_context():
self.get_collection().update(
{'_uid': self._uid},
{'$set': {'revision': now}}
)
|
Publish the current document.
NOTE: You must have saved any changes to the draft version of the
document before publishing, unsaved changes wont be published.
|
def copy(self, empty=False):
newobject = self.__new__(self.__class__)
if empty:
return
for prop in ["_properties","_side_properties",
"_derived_properties","_build_properties"
]:
if prop not in dir(self):
continue
try:
newobject.__dict__[prop] = copy.deepcopy(self.__dict__[prop])
except:
newobject.__dict__[prop] = copy.copy(self.__dict__[prop])
newobject._update_()
return newobject
|
returns an independent copy of the current object.
|
def organization_fields(self, organization):
return self._query_zendesk(self.endpoint.organization_fields, 'organization_field', id=organization)
|
Retrieve the organization fields for this organization.
:param organization: Organization object or id
|
def _compress_tokens(tokens):
recorder = None
def _edge_case_stray_end_quoted(tokens, index):
tokens[index] = Token(type=TokenType.UnquotedLiteral,
content=tokens[index].content,
line=tokens[index].line,
col=tokens[index].col)
tokens_len = len(tokens)
index = 0
with _EdgeCaseStrayParens() as edge_case_stray_parens:
edge_cases = [
(_is_paren_type, edge_case_stray_parens),
(_is_end_quoted_type, _edge_case_stray_end_quoted),
]
while index < tokens_len:
recorder = _find_recorder(recorder, tokens, index)
if recorder is not None:
result = recorder.consume_token(tokens, index, tokens_len)
if result is not None:
(index, tokens_len, tokens) = result
recorder = None
else:
for matcher, handler in edge_cases:
if matcher(tokens[index].type):
handler(tokens, index)
index += 1
return tokens
|
Paste multi-line strings, comments, RST etc together.
This function works by iterating over each over the _RECORDERS to determine
if we should start recording a token sequence for pasting together. If
it finds one, then we keep recording until that recorder is done and
returns a pasted together token sequence. Keep going until we reach
the end of the sequence.
The sequence is modified in place, so any function that modifies it
must return its new length. This is also why we use a while loop here.
|
def update_value(self,
workspace_id,
entity,
value,
new_value=None,
new_metadata=None,
new_value_type=None,
new_synonyms=None,
new_patterns=None,
**kwargs):
if workspace_id is None:
raise ValueError('workspace_id must be provided')
if entity is None:
raise ValueError('entity must be provided')
if value is None:
raise ValueError('value must be provided')
headers = {}
if 'headers' in kwargs:
headers.update(kwargs.get('headers'))
sdk_headers = get_sdk_headers('conversation', 'V1', 'update_value')
headers.update(sdk_headers)
params = {'version': self.version}
data = {
'value': new_value,
'metadata': new_metadata,
'type': new_value_type,
'synonyms': new_synonyms,
'patterns': new_patterns
}
url = '/v1/workspaces/{0}/entities/{1}/values/{2}'.format(
*self._encode_path_vars(workspace_id, entity, value))
response = self.request(
method='POST',
url=url,
headers=headers,
params=params,
json=data,
accept_json=True)
return response
|
Update entity value.
Update an existing entity value with new or modified data. You must provide
component objects defining the content of the updated entity value.
This operation is limited to 1000 requests per 30 minutes. For more information,
see **Rate limiting**.
:param str workspace_id: Unique identifier of the workspace.
:param str entity: The name of the entity.
:param str value: The text of the entity value.
:param str new_value: The text of the entity value. This string must conform to
the following restrictions:
- It cannot contain carriage return, newline, or tab characters.
- It cannot consist of only whitespace characters.
- It must be no longer than 64 characters.
:param dict new_metadata: Any metadata related to the entity value.
:param str new_value_type: Specifies the type of entity value.
:param list[str] new_synonyms: An array of synonyms for the entity value. A value
can specify either synonyms or patterns (depending on the value type), but not
both. A synonym must conform to the following resrictions:
- It cannot contain carriage return, newline, or tab characters.
- It cannot consist of only whitespace characters.
- It must be no longer than 64 characters.
:param list[str] new_patterns: An array of patterns for the entity value. A value
can specify either synonyms or patterns (depending on the value type), but not
both. A pattern is a regular expression no longer than 512 characters. For more
information about how to specify a pattern, see the
[documentation](https://cloud.ibm.com/docs/services/assistant/entities.html#entities-create-dictionary-based).
:param dict headers: A `dict` containing the request headers
:return: A `DetailedResponse` containing the result, headers and HTTP status code.
:rtype: DetailedResponse
|
def reshape(self, input_shapes):
indptr = [0]
sdata = []
keys = []
for k, v in input_shapes.items():
if not isinstance(v, tuple):
raise ValueError("Expect input_shapes to be dict str->tuple")
keys.append(c_str(k))
sdata.extend(v)
indptr.append(len(sdata))
new_handle = PredictorHandle()
_check_call(_LIB.MXPredReshape(
mx_uint(len(indptr) - 1),
c_array(ctypes.c_char_p, keys),
c_array(mx_uint, indptr),
c_array(mx_uint, sdata),
self.handle,
ctypes.byref(new_handle)))
_check_call(_LIB.MXPredFree(self.handle))
self.handle = new_handle
|
Change the input shape of the predictor.
Parameters
----------
input_shapes : dict of str to tuple
The new shape of input data.
Examples
--------
>>> predictor.reshape({'data':data_shape_tuple})
|
def check_return_types(self, method):
mn = method.__name__
retanno = method.__annotations__.get('return', None)
if not retanno:
return ['Missing return types for method "{}"'.format(mn)]
if not isinstance(retanno, (list, tuple)):
msg = 'Return annotation for method "{}" not tuple nor list'
return [msg.format(mn)]
if (any(map(lambda t: not isinstance(t, (list, tuple)), retanno)) or
any(map(lambda t: not (2 <= len(t) <= 3), retanno))):
msg = ('Return values series for "{}" should be composed of '
'2 or 3-items tuples (code, msg, type).')
return [msg.format(mn)]
errors = []
declared = set([t[0] for t in retanno])
actual = set(int(s)
for s in HTTP_STATUSES_REGEX.findall(method.source))
if declared != actual:
if declared.issubset(actual):
msg = 'Method {} returns undeclared codes: {}.'
errors.append(msg.format(mn, actual - declared))
elif actual.issubset(declared):
msg = 'Method {} declares codes {} that are never used.'
errors.append(msg.format(mn, declared - actual))
else:
msg = 'Declared {} and Used {} codes mismatch.'
errors.append(msg.format(declared, actual))
ret_with_types = filter(lambda t: len(t) == 3, retanno)
msg = 'Method {} return type for code {} must be class (not instance).'
msg_mod = 'Method {} return type for code {} must subclass from Model.'
for code, _, type_ in ret_with_types:
try:
if Model not in type_.__bases__:
errors.append(msg_mod.format(mn, code))
except AttributeError:
errors.append(msg.format(mn, code))
return errors
|
Return types must be correct, their codes must match actual use.
|
def _check_for_problem_somatic_batches(items, config):
to_check = []
for data in items:
data = copy.deepcopy(data)
data["config"] = config_utils.update_w_custom(config, data)
to_check.append(data)
data_by_batches = collections.defaultdict(list)
for data in to_check:
batches = dd.get_batches(data)
if batches:
for batch in batches:
data_by_batches[batch].append(data)
for batch, items in data_by_batches.items():
if vcfutils.get_paired(items):
vcfutils.check_paired_problems(items)
elif len(items) > 1:
vcs = vcfutils.get_somatic_variantcallers(items)
if "vardict" in vcs:
raise ValueError("VarDict does not support pooled non-tumor/normal calling, in batch %s: %s"
% (batch, [dd.get_sample_name(data) for data in items]))
elif "mutect" in vcs or "mutect2" in vcs:
raise ValueError("MuTect and MuTect2 require a 'phenotype: tumor' sample for calling, "
"in batch %s: %s"
% (batch, [dd.get_sample_name(data) for data in items]))
|
Identify problem batch setups for somatic calling.
We do not support multiple tumors in a single batch and VarDict(Java) does not
handle pooled calling, only tumor/normal.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.