code
stringlengths 51
2.38k
| docstring
stringlengths 4
15.2k
|
---|---|
def handle_status(self):
status = self.get_status()
if status:
self.zones['main'].update_status(status)
|
Handle status from device
|
def absorption_coefficient( dielectric ):
energies_in_eV = np.array( dielectric[0] )
real_dielectric = parse_dielectric_data( dielectric[1] )
imag_dielectric = parse_dielectric_data( dielectric[2] )
epsilon_1 = np.mean( real_dielectric, axis=1 )
epsilon_2 = np.mean( imag_dielectric, axis=1 )
return ( 2.0 * np.sqrt(2.0)*pi*eV_to_recip_cm*energies_in_eV
* np.sqrt( -epsilon_1 + np.sqrt( epsilon_1**2 + epsilon_2**2 ) ) )
|
Calculate the optical absorption coefficient from an input set of
pymatgen vasprun dielectric constant data.
Args:
dielectric (list): A list containing the dielectric response function
in the pymatgen vasprun format.
| element 0: list of energies
| element 1: real dielectric tensors, in ``[xx, yy, zz, xy, xz, yz]`` format.
| element 2: imaginary dielectric tensors, in ``[xx, yy, zz, xy, xz, yz]`` format.
Returns:
(np.array): absorption coefficient using eV as frequency units (cm^-1).
Notes:
The absorption coefficient is calculated as
.. math:: \\alpha = \\frac{2\sqrt{2} \pi}{\lambda} \sqrt{-\epsilon_1+\sqrt{\epsilon_1^2+\epsilon_2^2}}
|
def menu(self, prompt, choices):
menu = [prompt] + [
"{0}. {1}".format(*choice) for choice in enumerate(choices, start=1)
]
command = 'inputlist({})'.format(repr(menu))
choice = int(self._vim.eval(command))
if not 0 < choice < len(menu):
return
return choices[choice - 1]
|
Presents a selection menu and returns the user's choice.
Args:
prompt (str): Text to ask the user what to select.
choices (Sequence[str]): Values for the user to select from.
Returns:
The value selected by the user, or ``None``.
Todo:
Nice opportunity to provide a hook for Unite.vim, etc. here.
|
def format_call(self, api_version, api_call):
api_call = api_call.lstrip('/')
api_call = api_call.rstrip('?')
logger.debug('api_call post strip =\n%s' % api_call)
if (api_version == 2 and api_call[-1] != '/'):
logger.debug('Adding "/" to api_call.')
api_call += '/'
if api_call in self.api_methods_with_trailing_slash[api_version]:
logger.debug('Adding "/" to api_call.')
api_call += '/'
return api_call
|
Return properly formatted QualysGuard API call according to api_version etiquette.
|
def cache_security_group_exists(name, region=None, key=None, keyid=None, profile=None):
return bool(describe_cache_security_groups(name=name, region=region, key=key, keyid=keyid,
profile=profile))
|
Check to see if an ElastiCache security group exists.
Example:
.. code-block:: bash
salt myminion boto3_elasticache.cache_security_group_exists mysecuritygroup
|
def set_stepdown_window(self, start, end, enabled=True, scheduled=True, weekly=True):
if not start < end:
raise TypeError('Parameter "start" must occur earlier in time than "end".')
week_delta = datetime.timedelta(days=7)
if not ((end - start) <= week_delta):
raise TypeError('Stepdown windows can not be longer than 1 week in length.')
url = self._service_url + 'stepdown/'
data = {
'start': int(start.strftime('%s')),
'end': int(end.strftime('%s')),
'enabled': enabled,
'scheduled': scheduled,
'weekly': weekly,
}
response = requests.post(
url,
data=json.dumps(data),
**self._instances._default_request_kwargs
)
return response.json()
|
Set the stepdown window for this instance.
Date times are assumed to be UTC, so use UTC date times.
:param datetime.datetime start: The datetime which the stepdown window is to open.
:param datetime.datetime end: The datetime which the stepdown window is to close.
:param bool enabled: A boolean indicating whether or not stepdown is to be enabled.
:param bool scheduled: A boolean indicating whether or not to schedule stepdown.
:param bool weekly: A boolean indicating whether or not to schedule compaction weekly.
|
def can_proceed(self):
now = datetime.datetime.now()
delta = datetime.timedelta(days=self.update_interval)
return now >= self.last_update + delta
|
Checks whether app can proceed
:return: True iff app is not locked and times since last update < app
update interval
|
def nb_per_chunk(item_size, item_dim, chunk_size):
size = chunk_size * 10.**6
ratio = int(round(size / (item_size*item_dim)))
return max(10, ratio)
|
Return the number of items that can be stored in one chunk.
:param int item_size: Size of an item's scalar componant in
Bytes (e.g. for np.float64 this is 8)
:param int item_dim: Items dimension (length of the second axis)
:param float chunk_size: The size of a chunk given in MBytes.
|
def get_mapping(self, index, doc_type=None):
mapping = self.es.indices.get_mapping(index=index, doc_type=doc_type)
return next(iter(mapping.values()))
|
Get mapping for index.
:param index: index name
|
def session_end_pb(status, end_time_secs=None):
if end_time_secs is None:
end_time_secs = time.time()
session_end_info = plugin_data_pb2.SessionEndInfo(status=status,
end_time_secs=end_time_secs)
return _summary(metadata.SESSION_END_INFO_TAG,
plugin_data_pb2.HParamsPluginData(
session_end_info=session_end_info))
|
Constructs a SessionEndInfo protobuffer.
Creates a summary that contains status information for a completed
training session. Should be exported after the training session is completed.
One such summary per training session should be created. Each should have
a different run.
Args:
status: A tensorboard.hparams.Status enumeration value denoting the
status of the session.
end_time_secs: float. The time to use as the session end time. Represented
as seconds since the unix epoch. If None uses the current time.
Returns:
The summary protobuffer mentioned above.
|
def _mesh_to_material(mesh, metallic=0.0, rough=0.0):
try:
color = mesh.visual.main_color
except BaseException:
color = np.array([100, 100, 100, 255], dtype=np.uint8)
color = color.astype(float32) / np.iinfo(color.dtype).max
material = {
"pbrMetallicRoughness": {
"baseColorFactor": color.tolist(),
"metallicFactor": metallic,
"roughnessFactor": rough}
}
return material
|
Create a simple GLTF material for a mesh using the most
commonly occurring color in that mesh.
Parameters
------------
mesh: trimesh.Trimesh
Mesh to create a material from
Returns
------------
material: dict
In GLTF material format
|
def CheckInputArgs(*interfaces):
l = len(interfaces)
def wrapper(func):
def check_args(self, *args, **kw):
for i in range(len(args)):
if (l > i and interfaces[i].providedBy(args[i])) or interfaces[-1].providedBy(args[i]):
continue
if l > i: raise TypeError, 'arg %s does not implement %s' %(args[i], interfaces[i])
raise TypeError, 'arg %s does not implement %s' %(args[i], interfaces[-1])
func(self, *args, **kw)
return check_args
return wrapper
|
Must provide at least one interface, the last one may be repeated.
|
def daily(self):
if self._daily is None:
self._daily = DailyList(self._version, account_sid=self._solution['account_sid'], )
return self._daily
|
Access the daily
:returns: twilio.rest.api.v2010.account.usage.record.daily.DailyList
:rtype: twilio.rest.api.v2010.account.usage.record.daily.DailyList
|
def get_data_with_timestamps(self):
result = []
for t, d in zip(self.timestamps, self.data_points):
result.append(t, round(d, self.lr))
return result
|
Returns the data points with timestamps.
Returns:
A list of tuples in the format of (timestamp, data)
|
def validate_data_columns(self, data_columns, min_itemsize):
if not len(self.non_index_axes):
return []
axis, axis_labels = self.non_index_axes[0]
info = self.info.get(axis, dict())
if info.get('type') == 'MultiIndex' and data_columns:
raise ValueError("cannot use a multi-index on axis [{0}] with "
"data_columns {1}".format(axis, data_columns))
if data_columns is True:
data_columns = list(axis_labels)
elif data_columns is None:
data_columns = []
if isinstance(min_itemsize, dict):
existing_data_columns = set(data_columns)
data_columns.extend([
k for k in min_itemsize.keys()
if k != 'values' and k not in existing_data_columns
])
return [c for c in data_columns if c in axis_labels]
|
take the input data_columns and min_itemize and create a data
columns spec
|
def get_channel_property(self, channel_id, property_name):
if isinstance(channel_id, (int, np.integer)):
if channel_id in self.get_channel_ids():
if channel_id not in self._channel_properties:
self._channel_properties[channel_id] = {}
if isinstance(property_name, str):
if property_name in list(self._channel_properties[channel_id].keys()):
return self._channel_properties[channel_id][property_name]
else:
raise ValueError(str(property_name) + " has not been added to channel " + str(channel_id))
else:
raise ValueError(str(property_name) + " must be a string")
else:
raise ValueError(str(channel_id) + " is not a valid channel_id")
else:
raise ValueError(str(channel_id) + " must be an int")
|
This function returns the data stored under the property name from
the given channel.
Parameters
----------
channel_id: int
The channel id for which the property will be returned
property_name: str
A property stored by the RecordingExtractor (location, etc.)
Returns
----------
property_data
The data associated with the given property name. Could be many
formats as specified by the user.
|
def x_y_by_col_lbl(df, y_col_lbl):
x_cols = [col for col in df.columns if col != y_col_lbl]
return df[x_cols], df[y_col_lbl]
|
Returns an X dataframe and a y series by the given column name.
Parameters
----------
df : pandas.DataFrame
The dataframe to split.
y_col_lbl : object
The label of the y column.
Returns
-------
X, y : pandas.DataFrame, pandas.Series
A dataframe made up of all columns but the column with the given name
and a series made up of the same column, respectively.
Example
-------
>>> import pandas as pd
>>> data = [[23, 'Jo', 4], [19, 'Mi', 3]]
>>> df = pd.DataFrame(data, [1, 2] , ['Age', 'Name', 'D'])
>>> X, y = x_y_by_col_lbl(df, 'D')
>>> X
Age Name
1 23 Jo
2 19 Mi
>>> y
1 4
2 3
Name: D, dtype: int64
|
def remove_unsafe_chars(text):
if isinstance(text, six.string_types):
text = UNSAFE_RE.sub('', text)
return text
|
Remove unsafe unicode characters from a piece of text.
|
def vi_score(self, x, index):
if index == 0:
return self.vi_loc_score(x)
elif index == 1:
return self.vi_scale_score(x)
|
Wrapper function for selecting appropriate score
Parameters
----------
x : float
A random variable
index : int
0 or 1 depending on which latent variable
Returns
----------
The gradient of the scale latent variable at x
|
def merge(self, other):
if not getattr(other, '_catalog', None):
return
if self._catalog is None:
self.plural = other.plural
self._info = other._info.copy()
self._catalog = other._catalog.copy()
else:
self._catalog.update(other._catalog)
|
Merge another translation into this catalog.
|
def add_weight(cls):
@functools.wraps(cls.add_weight)
def _add_weight(self,
name=None,
shape=None,
dtype=None,
initializer=None,
regularizer=None,
**kwargs):
if isinstance(initializer, tf.keras.layers.Layer):
weight = initializer(shape, dtype)
self._trainable_weights.extend(initializer.trainable_weights)
self._non_trainable_weights.extend(initializer.non_trainable_weights)
if regularizer is not None:
def loss_fn():
with tf.name_scope(name + '/Regularizer'):
return regularizer(initializer(shape, dtype))
self.add_loss(loss_fn)
return weight
return super(cls, self).add_weight(name=name,
shape=shape,
dtype=dtype,
initializer=initializer,
regularizer=regularizer,
**kwargs)
cls.add_weight = _add_weight
return cls
|
Decorator for Layers, overriding add_weight for trainable initializers.
|
def allowed_entries(self, capability):
index = re.match(r'(.+)index$', capability)
archive = re.match(r'(.+)\-archive$', capability)
if (capability == 'capabilitylistindex'):
return([])
elif (index):
return([index.group(1)])
elif (archive):
return([archive.group(1)])
elif (capability == 'description'):
return(['capabilitylist'])
elif (capability == 'capabilitylist'):
return(['resourcelist', 'resourcedump',
'changelist', 'changedump',
'resourcelist-archive', 'resourcedump-archive',
'changelist-archive', 'changedump-archive'])
return([])
|
Return list of allowed entries for given capability document.
Includes handling of capability = *index where the only acceptable
entries are *.
|
def lex(args):
if len(args) == 0 or args[0] == SHOW:
return [(SHOW, None)]
elif args[0] == LOG:
return [(LOG, None)]
elif args[0] == ECHO:
return [(ECHO, None)]
elif args[0] == SET and args[1] == RATE:
return tokenizeSetRate(args[2:])
elif args[0] == SET and args[1] == DAYS:
return tokenizeSetDays(args[2:])
elif args[0] == TAKE:
return tokenizeTake(args[1:])
elif args[0] == CANCEL:
return tokenizeCancel(args[1:])
elif isMonth(args[0]):
return tokenizeTake(args)
else:
print('Unknown commands: {}'.format(' '.join(args)))
return []
|
Lex input and return a list of actions to perform.
|
def _download(self):
min_x, max_x, min_y, max_y = self.gssha_grid.bounds(as_geographic=True)
if self.era_download_data == 'era5':
log.info("Downloading ERA5 data ...")
download_era5_for_gssha(self.lsm_input_folder_path,
self.download_start_datetime,
self.download_end_datetime,
leftlon=min_x-0.5,
rightlon=max_x+0.5,
toplat=max_y+0.5,
bottomlat=min_y-0.5)
else:
log.info("Downloading ERA Interim data ...")
download_interim_for_gssha(self.lsm_input_folder_path,
self.download_start_datetime,
self.download_end_datetime,
leftlon=min_x-1,
rightlon=max_x+1,
toplat=max_y+1,
bottomlat=min_y-1)
|
download ERA5 data for GSSHA domain
|
def _save_vocab_file(vocab_file, subtoken_list):
with tf.gfile.Open(vocab_file, mode="w") as f:
for subtoken in subtoken_list:
f.write("'%s'\n" % _unicode_to_native(subtoken))
|
Save subtokens to file.
|
def _is_env_per_bucket():
buckets = _get_buckets()
if isinstance(buckets, dict):
return True
elif isinstance(buckets, list):
return False
else:
raise ValueError('Incorrect s3.buckets type given in config')
|
Return the configuration mode, either buckets per environment or a list of
buckets that have environment dirs in their root
|
def read_csv_from_file(filename):
logger_csvs.info("enter read_csv_from_file")
d = {}
l = []
try:
logger_csvs.info("open file: {}".format(filename))
with open(filename, 'r') as f:
r = csv.reader(f, delimiter=',')
for idx, col in enumerate(next(r)):
d[idx] = []
d = cast_values_csvs(d, idx, col)
for row in r:
for idx, col in enumerate(row):
d = cast_values_csvs(d, idx, col)
for idx, col in d.items():
l.append(col)
except FileNotFoundError as e:
print('CSV FileNotFound: ' + filename)
logger_csvs.warn("read_csv_to_columns: FileNotFound: {}, {}".format(filename, e))
logger_csvs.info("exit read_csv_from_file")
return l
|
Opens the target CSV file and creates a dictionary with one list for each CSV column.
:param str filename:
:return list of lists: column values
|
def get_api_service(self, name=None):
try:
svc = self.services_by_name.get(name, None)
if svc is None:
raise ValueError(f"Couldn't find the API service configuration")
return svc
except:
raise Exception(f"Failed to retrieve the API service configuration")
|
Returns the specific service config definition
|
def list_services(self, limit=None, marker=None):
return self._services_manager.list(limit=limit, marker=marker)
|
List CDN services.
|
def _update_dict(self, to_dict, from_dict):
for key, value in from_dict.items():
if key in to_dict and isinstance(to_dict[key], dict) and \
isinstance(from_dict[key], dict):
self._update_dict(to_dict[key], from_dict[key])
else:
to_dict[key] = from_dict[key]
|
Recursively merges the fields for two dictionaries.
Args:
to_dict (dict): The dictionary onto which the merge is executed.
from_dict (dict): The dictionary merged into to_dict
|
def get(self):
if (self.obj is None) or (time.time() >= self.expires):
with self.lock:
self.expires, self.obj = self.factory()
if isinstance(self.obj, BaseException):
self.exception = self.obj
else:
self.exception = None
if self.exception:
raise self.exception
else:
return self.obj
|
Get the wrapped object.
|
def get_processor_name():
if platform.system() == "Linux":
with open("/proc/cpuinfo", "rb") as cpuinfo:
all_info = cpuinfo.readlines()
for line in all_info:
if b'model name' in line:
return re.sub(b'.*model name.*:', b'', line, 1)
return platform.processor()
|
Returns the processor name in the system
|
def responses_callback(request):
method = request.method
headers = CaseInsensitiveDict()
request_headers = CaseInsensitiveDict()
request_headers.update(request.headers)
request.headers = request_headers
uri = request.url
return StackInABox.call_into(method,
request,
uri,
headers)
|
Responses Request Handler.
Converts a call intercepted by Responses to
the Stack-In-A-Box infrastructure
:param request: request object
:returns: tuple - (int, dict, string) containing:
int - the HTTP response status code
dict - the headers for the HTTP response
string - HTTP string response
|
def _prepare_colors(color, values, limits_c, colormap, alpha, chan=None):
if values is not None:
if limits_c is None:
limits_c = array([-1, 1]) * nanmax(abs(values))
norm_values = normalize(values, *limits_c)
cm = get_colormap(colormap)
colors = cm[norm_values]
elif color is not None:
colors = ColorArray(color)
else:
cm = get_colormap('hsl')
group_idx = _chan_groups_to_index(chan)
colors = cm[group_idx]
if alpha is not None:
colors.alpha = alpha
return colors, limits_c
|
Return colors for all the channels based on various inputs.
Parameters
----------
color : tuple
3-, 4-element tuple, representing RGB and alpha, between 0 and 1
values : ndarray
array with values for each channel
limits_c : tuple of 2 floats, optional
min and max values to normalize the color
colormap : str
one of the colormaps in vispy
alpha : float
transparency (0 = transparent, 1 = opaque)
chan : instance of Channels
use labels to create channel groups
Returns
-------
1d / 2d array
colors for all the channels or for each channel individually
tuple of two float or None
limits for the values
|
def validate_value(self, value):
if value not in (None, self._unset):
super(ReferenceField, self).validate_value(value)
if value.app != self.target_app:
raise ValidationError(
self.record,
"Reference field '{}' has target app '{}', cannot reference record '{}' from app '{}'".format(
self.name,
self.target_app,
value,
value.app
)
)
|
Validate provided record is a part of the appropriate target app for the field
|
def wheelEvent(self, event):
initial_state = event.isAccepted()
event.ignore()
self.mouse_wheel_activated.emit(event)
if not event.isAccepted():
event.setAccepted(initial_state)
super(CodeEdit, self).wheelEvent(event)
|
Emits the mouse_wheel_activated signal.
:param event: QMouseEvent
|
def generate(self):
header = ' '.join('=' * self.width[i] for i in range(self.w))
lines = [
' '.join(row[i].ljust(self.width[i]) for i in range(self.w))
for row in self.rows]
return [header] + lines + [header]
|
Generate a list of strings representing the table in RST format.
|
def transaction_error_code(self):
error = self.response_doc.find('transaction_error')
if error is not None:
code = error.find('error_code')
if code is not None:
return code.text
|
The machine-readable error code for a transaction error.
|
def image_get(auth=None, **kwargs):
cloud = get_operator_cloud(auth)
kwargs = _clean_kwargs(**kwargs)
return cloud.get_image(**kwargs)
|
Get a single image
CLI Example:
.. code-block:: bash
salt '*' glanceng.image_get name=image1
salt '*' glanceng.image_get name=0e4febc2a5ab4f2c8f374b054162506d
|
def installedUniqueRequirements(self, target):
myDepends = dependentsOf(self.__class__)
for dc in self.store.query(_DependencyConnector,
_DependencyConnector.target==target):
if dc.installee is self:
continue
depends = dependentsOf(dc.installee.__class__)
if self.__class__ in depends:
raise DependencyError(
"%r cannot be uninstalled from %r, "
"%r still depends on it" % (self, target, dc.installee))
for cls in myDepends[:]:
if cls in depends:
myDepends.remove(cls)
for dc in self.store.query(_DependencyConnector,
_DependencyConnector.target==target):
if (dc.installee.__class__ in myDepends
and not dc.explicitlyInstalled):
yield dc.installee
|
Return an iterable of things installed on the target that this item
requires and are not required by anything else.
|
def next_chunks(self):
with self.chunk_available:
while True:
playing_sounds = [s for s in self.sounds if s.playing]
chunks = []
for s in playing_sounds:
try:
chunks.append(next(s.chunks))
except StopIteration:
s.playing = False
self.sounds.remove(s)
self.is_done.set()
if chunks:
break
self.chunk_available.wait()
return numpy.mean(chunks, axis=0)
|
Gets a new chunk from all played sound and mix them together.
|
def try_enqueue(conn, queue_name, msg):
logger.debug('Getting Queue URL for queue %s', queue_name)
qurl = conn.get_queue_url(QueueName=queue_name)['QueueUrl']
logger.debug('Sending message to queue at: %s', qurl)
resp = conn.send_message(
QueueUrl=qurl,
MessageBody=msg,
DelaySeconds=0
)
logger.debug('Enqueued message in %s with ID %s', queue_name,
resp['MessageId'])
return resp['MessageId']
|
Try to enqueue a message. If it succeeds, return the message ID.
:param conn: SQS API connection
:type conn: :py:class:`botocore:SQS.Client`
:param queue_name: name of queue to put message in
:type queue_name: str
:param msg: JSON-serialized message body
:type msg: str
:return: message ID
:rtype: str
|
def _get_auth_token(self):
url = '/%s/oauth2/token' % getattr(
settings, 'RESTCLIENTS_O365_TENANT', 'test')
headers = {'Accept': 'application/json'}
data = {
"grant_type": "client_credentials",
"client_id": getattr(settings,
'RESTCLIENTS_O365_CLIENT_ID',
None),
"client_secret": getattr(settings,
'RESTCLIENTS_O365_CLIENT_SECRET',
None),
"resource": self._api_host
}
body = urlencode(data)
auth_pool = self._get_pool(self._auth_host)
response = get_live_url(auth_pool, 'POST', self._auth_host,
url, headers=headers, body=body,
service_name='o365')
try:
json_data = json.loads(response.data)
if response.status == 200:
return "%s %s" % (
json_data['token_type'], json_data['access_token'])
else:
raise DataFailureException(
url, response.status,
'Auth token failure: %s - %s' % (
json_data.get('error', 'unknown'),
json_data.get('error_description', 'no description')))
except ValueError:
raise DataFailureException(
url, response.status,
'Auth token failure: %s' % (response.data))
|
Given the office356 tenant and client id, and client secret
acquire a new authorization token
|
def remove_from_queue(self, index):
updid = '0'
objid = 'Q:0/' + str(index + 1)
self.avTransport.RemoveTrackFromQueue([
('InstanceID', 0),
('ObjectID', objid),
('UpdateID', updid),
])
|
Remove a track from the queue by index. The index number is
required as an argument, where the first index is 0.
Args:
index (int): The (0-based) index of the track to remove
|
def _convert_to_clusters(c):
new_dict = {}
n_cluster = 0
logger.debug("_convert_to_cluster: loci %s" % c.loci2seq.keys())
for idl in c.loci2seq:
n_cluster += 1
new_c = cluster(n_cluster)
new_c.loci2seq[idl] = c.loci2seq[idl]
new_dict[n_cluster] = new_c
logger.debug("_convert_to_cluster: new ids %s" % new_dict.keys())
return new_dict
|
Return 1 cluster per loci
|
def read(self):
if not self.ready_to_read():
return None
data = self._read()
if data is None:
return None
return self._parse_message(data)
|
If there is data available to be read from the transport, reads the data and tries to parse it as a protobuf message. If the parsing succeeds, return a protobuf object.
Otherwise, returns None.
|
def loc(self):
try:
return '{}:{}'.format(*ParseError.loc_info(self.text, self.index))
except ValueError:
return '<out of bounds index {!r}>'.format(self.index)
|
Locate the error position in the source code text.
|
def send_status(self, payload):
answer = {}
data = []
if self.paused:
answer['status'] = 'paused'
else:
answer['status'] = 'running'
if len(self.queue) > 0:
data = deepcopy(self.queue.queue)
for key, item in data.items():
if 'stderr' in item:
del item['stderr']
if 'stdout' in item:
del item['stdout']
else:
data = 'Queue is empty'
answer['data'] = data
return answer
|
Send the daemon status and the current queue for displaying.
|
def _tracebacks(score_matrix, traceback_matrix, idx):
score = score_matrix[idx]
if score == 0:
yield ()
return
directions = traceback_matrix[idx]
assert directions != Direction.NONE, 'Tracebacks with direction NONE should have value 0!'
row, col = idx
if directions & Direction.UP.value:
for tb in _tracebacks(score_matrix, traceback_matrix, (row - 1, col)):
yield itertools.chain(tb, ((idx, Direction.UP),))
if directions & Direction.LEFT.value:
for tb in _tracebacks(score_matrix, traceback_matrix, (row, col - 1)):
yield itertools.chain(tb, ((idx, Direction.LEFT),))
if directions & Direction.DIAG.value:
for tb in _tracebacks(score_matrix, traceback_matrix, (row - 1, col - 1)):
yield itertools.chain(tb, ((idx, Direction.DIAG),))
|
Implementation of traceeback.
This version can produce empty tracebacks, which we generally don't want
users seeing. So the higher level `tracebacks` filters those out.
|
def _parse_content_type(content_type: Optional[str]) -> Tuple[Optional[str], str]:
if not content_type:
return None, "utf-8"
else:
type_, parameters = cgi.parse_header(content_type)
encoding = parameters.get("charset", "utf-8")
return type_, encoding
|
Tease out the content-type and character encoding.
A default character encoding of UTF-8 is used, so the content-type
must be used to determine if any decoding is necessary to begin
with.
|
def get_similar(self, limit=None):
params = self._get_params()
if limit:
params["limit"] = limit
doc = self._request(self.ws_prefix + ".getSimilar", True, params)
names = _extract_all(doc, "name")
matches = _extract_all(doc, "match")
artists = []
for i in range(0, len(names)):
artists.append(
SimilarItem(Artist(names[i], self.network), _number(matches[i]))
)
return artists
|
Returns the similar artists on the network.
|
def resolve(self, working_set=None):
working_set = working_set or global_working_set
if self._plugin_requirements:
for plugin_location in self._resolve_plugin_locations():
if self._is_wheel(plugin_location):
plugin_location = self._activate_wheel(plugin_location)
working_set.add_entry(plugin_location)
return working_set
|
Resolves any configured plugins and adds them to the global working set.
:param working_set: The working set to add the resolved plugins to instead of the global
working set (for testing).
:type: :class:`pkg_resources.WorkingSet`
|
def OnDestroy(self, event):
if hasattr(self, 'cardmonitor'):
self.cardmonitor.deleteObserver(self.cardtreecardobserver)
if hasattr(self, 'readermonitor'):
self.readermonitor.deleteObserver(self.readertreereaderobserver)
self.cardmonitor.deleteObserver(self.readertreecardobserver)
event.Skip()
|
Called on panel destruction.
|
def get_effective_target_sdk_version(self):
target_sdk_version = self.get_target_sdk_version()
if not target_sdk_version:
target_sdk_version = self.get_min_sdk_version()
try:
return int(target_sdk_version)
except (ValueError, TypeError):
return 1
|
Return the effective targetSdkVersion, always returns int > 0.
If the targetSdkVersion is not set, it defaults to 1. This is
set based on defaults as defined in:
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
:rtype: int
|
def GET_savedtimegrid(self) -> None:
try:
self._write_timegrid(state.timegrids[self._id])
except KeyError:
self._write_timegrid(hydpy.pub.timegrids.init)
|
Get the previously saved simulation period.
|
def append(self, value):
if not self.need_free:
raise ValueError("Stack is read-only")
if not isinstance(value, X509):
raise TypeError('StackOfX509 can contain only X509 objects')
sk_push(self.ptr, libcrypto.X509_dup(value.cert))
|
Adds certificate to stack
|
def rank_dated_files(pattern, dir, descending=True):
files = glob.glob(op.join(dir, pattern))
return sorted(files, reverse=descending)
|
Search a directory for files that match a pattern. Return an ordered list of these files by filename.
Args:
pattern: The glob pattern to search for.
dir: Path to directory where the files will be searched for.
descending: Default True, will sort alphabetically by descending order.
Returns:
list: Rank-ordered list by filename.
|
def _no_primary(max_staleness, selection):
smax = selection.secondary_with_max_last_write_date()
if not smax:
return selection.with_server_descriptions([])
sds = []
for s in selection.server_descriptions:
if s.server_type == SERVER_TYPE.RSSecondary:
staleness = (smax.last_write_date -
s.last_write_date +
selection.heartbeat_frequency)
if staleness <= max_staleness:
sds.append(s)
else:
sds.append(s)
return selection.with_server_descriptions(sds)
|
Apply max_staleness, in seconds, to a Selection with no known primary.
|
def has_permission(self, request, view):
if not self.global_permissions:
return True
serializer_class = view.get_serializer_class()
assert serializer_class.Meta.model is not None, (
"global_permissions set to true without a model "
"set on the serializer for '%s'" % view.__class__.__name__
)
model_class = serializer_class.Meta.model
action_method_name = None
if hasattr(view, 'action'):
action = self._get_action(view.action)
action_method_name = "has_{action}_permission".format(action=action)
if hasattr(model_class, action_method_name):
return getattr(model_class, action_method_name)(request)
if request.method in permissions.SAFE_METHODS:
assert hasattr(model_class, 'has_read_permission'), \
self._get_error_message(model_class, 'has_read_permission', action_method_name)
return model_class.has_read_permission(request)
else:
assert hasattr(model_class, 'has_write_permission'), \
self._get_error_message(model_class, 'has_write_permission', action_method_name)
return model_class.has_write_permission(request)
|
Overrides the standard function and figures out methods to call for global permissions.
|
def targetpop(upper_density, coul, target_cf, slsp, n_tot):
if upper_density < 0.503: return 0.
trypops=population_distri(upper_density, n_tot)
slsp.set_filling(trypops)
slsp.selfconsistency(coul,0)
efm_free = dos_bethe_find_crystalfield(trypops, slsp.param['hopping'])
orb_ener = slsp.param['lambda']+ slsp.quasiparticle_weight()*efm_free
obtained_cf = orb_ener[5] - orb_ener[0]
return target_cf - obtained_cf
|
restriction on finding the right populations that leave the crystal
field same
|
def rav2xf(rot, av):
rot = stypes.toDoubleMatrix(rot)
av = stypes.toDoubleVector(av)
xform = stypes.emptyDoubleMatrix(x=6, y=6)
libspice.rav2xf_c(rot, av, xform)
return stypes.cMatrixToNumpy(xform)
|
This routine determines a state transformation matrix
from a rotation matrix and the angular velocity of the
rotation.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/rav2xf_c.html
:param rot: Rotation matrix.
:type rot: 3x3-Element Array of floats
:param av: Angular velocity vector.
:type av: 3-Element Array of floats
:return: State transformation associated with rot and av.
:rtype: 6x6-Element Array of floats
|
def no_coroutine(f):
@functools.wraps(f)
def _no_coroutine(*args, **kwargs):
generator = f(*args, **kwargs)
if not isinstance(generator, types.GeneratorType):
return generator
previous = None
first = True
while True:
element = None
try:
if first:
element = next(generator)
else:
element = generator.send(previous)
except StopIteration as e:
return getattr(e, "value", None)
except ReturnValueException as e:
return e.value
else:
previous = element
first = False
return _no_coroutine
|
This is not a coroutine ;)
Use as a decorator:
@no_coroutine
def foo():
five = yield 5
print(yield "hello")
The function passed should be a generator yielding whatever you feel like.
The yielded values instantly get passed back into the generator.
It's basically the same as if you didn't use yield at all.
The example above is equivalent to:
def foo():
five = 5
print("hello")
Why?
This is the counterpart to coroutine used by maybe_coroutine below.
|
def get_cache_time(
self, path: str, modified: Optional[datetime.datetime], mime_type: str
) -> int:
return self.CACHE_MAX_AGE if "v" in self.request.arguments else 0
|
Override to customize cache control behavior.
Return a positive number of seconds to make the result
cacheable for that amount of time or 0 to mark resource as
cacheable for an unspecified amount of time (subject to
browser heuristics).
By default returns cache expiry of 10 years for resources requested
with ``v`` argument.
|
def find_cached_dm(self):
pmag_dir = find_pmag_dir.get_pmag_dir()
if pmag_dir is None:
pmag_dir = '.'
model_file = os.path.join(pmag_dir, 'pmagpy',
'data_model', 'data_model.json')
if not os.path.isfile(model_file):
model_file = os.path.join(pmag_dir, 'data_model',
'data_model.json')
if not os.path.isfile(model_file):
model_file = os.path.join(os.path.split(os.path.dirname(__file__))[0],'pmagpy', 'data_model','data_model.json')
if not os.path.isfile(model_file):
model_file = os.path.join(os.path.split(os.path.dirname(__file__))[0], 'data_model','data_model.json')
return model_file
|
Find filename where cached data model json is stored.
Returns
---------
model_file : str
data model json file location
|
def _in_tag(self, tagname, attributes=None):
node = self.cur_node
while not node is None:
if node.tag == tagname:
if attributes and node.attrib == attributes:
return True
elif attributes:
return False
return True
node = node.getparent()
return False
|
Determine if we are already in a certain tag.
If we give attributes, make sure they match.
|
def datapath(self):
path = self._fields['path']
if not path:
path = self.fetch('directory')
if path and not self._fields['is_multi_file']:
path = os.path.join(path, self._fields['name'])
return os.path.expanduser(fmt.to_unicode(path))
|
Get an item's data path.
|
def get_gallery_favorites(self):
url = (self._imgur._base_url + "/3/account/{0}/gallery_favorites".format(
self.name))
resp = self._imgur._send_request(url)
return [Image(img, self._imgur) for img in resp]
|
Get a list of the images in the gallery this user has favorited.
|
def participant_policy(self, value):
old_policy = self.participant_policy
new_policy = value
self._participant_policy = new_policy
notify(ParticipationPolicyChangedEvent(self, old_policy, new_policy))
|
Changing participation policy fires a
"ParticipationPolicyChanged" event
|
def sell(self, product_id, order_type, **kwargs):
return self.place_order(product_id, 'sell', order_type, **kwargs)
|
Place a sell order.
This is included to maintain backwards compatibility with older versions
of cbpro-Python. For maximum support from docstrings and function
signatures see the order type-specific functions place_limit_order,
place_market_order, and place_stop_order.
Args:
product_id (str): Product to order (eg. 'BTC-USD')
order_type (str): Order type ('limit', 'market', or 'stop')
**kwargs: Additional arguments can be specified for different order
types.
Returns:
dict: Order details. See `place_order` for example.
|
def job_delayed(self, job, queue):
delayed_until = job.delayed_until.hget()
if delayed_until:
try:
delayed_until = compute_delayed_until(delayed_until=parse(delayed_until))
except (ValueError, TypeError):
delayed_until = None
if not delayed_until:
delayed_until = compute_delayed_until(delayed_for=60)
job.enqueue_or_delay(
queue_name=queue._cached_name,
delayed_until=delayed_until,
queue_model=queue.__class__,
)
self.log(self.job_delayed_message(job, queue), level='warning')
if hasattr(job, 'on_delayed'):
job.on_delayed(queue)
|
Called if a job, before trying to run it, has the "delayed" status, or,
after run, if its status was set to "delayed"
If delayed_until was not set, or is invalid, set it to 60sec in the future
|
def _resolve_deps(self, depmap):
deps = defaultdict(lambda: OrderedSet())
for category, depspecs in depmap.items():
dependencies = deps[category]
for depspec in depspecs:
dep_address = Address.parse(depspec)
try:
self.context.build_graph.maybe_inject_address_closure(dep_address)
dependencies.add(self.context.build_graph.get_target(dep_address))
except AddressLookupError as e:
raise AddressLookupError('{}\n referenced from {} scope'.format(e, self.options_scope))
return deps
|
Given a map of gen-key=>target specs, resolves the target specs into references.
|
def infer(self, ob):
self._add_to_stack(ob)
logits, vf = self.infer_from_frame_stack(self._frame_stack)
return logits, vf
|
Add new observation to frame stack and infer policy.
Args:
ob: array of shape (height, width, channels)
Returns:
logits and vf.
|
def remove_entity(self, entity, second=False):
if entity in self._entities:
if second:
for group in self._groups.keys():
if entity in self._groups[group]:
self.deregister_entity_from_group(entity, group)
self._entities.remove(entity)
else:
entity.kill()
else:
raise UnmanagedEntityError(entity)
|
Removes entity from world and kills entity
|
def E_Advective_Dispersion(t, Pe):
if isinstance(t, list):
t[t == 0] = 10**(-10)
return (Pe/(4*np.pi*t))**(0.5)*np.exp((-Pe*((1-t)**2))/(4*t))
|
Calculate a dimensionless measure of the output tracer concentration from
a spike input to reactor with advection and dispersion.
:param t: The time(s) at which to calculate the effluent concentration. Time can be made dimensionless by dividing by the residence time of the CMFR.
:type t: float or numpy.array
:param Pe: The ratio of advection to dispersion ((mean fluid velocity)/(Dispersion*flow path length))
:type Pe: float
:return: dimensionless measure of the output tracer concentration (concentration * volume of reactor) / (mass of tracer)
:rtype: float
:Examples:
>>> from aguaclara.research.environmental_processes_analysis import E_Advective_Dispersion
>>> round(E_Advective_Dispersion(0.5, 5), 7)
0.4774864
|
def dump_tree(self, statement=None, indent_level=0):
out = u""
indent = u" "*indent_level
if statement is None:
for root_statement in self.statements:
out += self.dump_tree(root_statement, indent_level)
else:
out += indent + str(statement) + u'\n'
if len(statement.children) > 0:
for child in statement.children:
out += self.dump_tree(child, indent_level=indent_level+4)
return out
|
Dump the AST for this parsed file.
Args:
statement (SensorGraphStatement): the statement to print
if this function is called recursively.
indent_level (int): The number of spaces to indent this
statement. Used for recursively printing blocks of
statements.
Returns:
str: The AST for this parsed sg file as a nested
tree with one node per line and blocks indented.
|
def maybe_reduce(nodes):
r
_, num_nodes = nodes.shape
if num_nodes < 2:
return False, nodes
elif num_nodes == 2:
projection = _PROJECTION0
denom = _PROJ_DENOM0
elif num_nodes == 3:
projection = _PROJECTION1
denom = _PROJ_DENOM1
elif num_nodes == 4:
projection = _PROJECTION2
denom = _PROJ_DENOM2
elif num_nodes == 5:
projection = _PROJECTION3
denom = _PROJ_DENOM3
else:
raise _helpers.UnsupportedDegree(
num_nodes - 1, supported=(0, 1, 2, 3, 4)
)
projected = _helpers.matrix_product(nodes, projection) / denom
relative_err = projection_error(nodes, projected)
if relative_err < _REDUCE_THRESHOLD:
return True, reduce_pseudo_inverse(nodes)
else:
return False, nodes
|
r"""Reduce nodes in a curve if they are degree-elevated.
.. note::
This is a helper for :func:`_full_reduce`. Hence there is no
corresponding Fortran speedup.
We check if the nodes are degree-elevated by projecting onto the
space of degree-elevated curves of the same degree, then comparing
to the projection. We form the projection by taking the corresponding
(right) elevation matrix :math:`E` (from one degree lower) and forming
:math:`E^T \left(E E^T\right)^{-1} E`.
Args:
nodes (numpy.ndarray): The nodes in the curve.
Returns:
Tuple[bool, numpy.ndarray]: Pair of values. The first indicates
if the ``nodes`` were reduced. The second is the resulting nodes,
either the reduced ones or the original passed in.
Raises:
.UnsupportedDegree: If the curve is degree 5 or higher.
|
def thresholdBlocks(self, blocks, recall_weight=1.5):
candidate_records = itertools.chain.from_iterable(self._blockedPairs(blocks))
probability = core.scoreDuplicates(candidate_records,
self.data_model,
self.classifier,
self.num_cores)['score']
probability = probability.copy()
probability.sort()
probability = probability[::-1]
expected_dupes = numpy.cumsum(probability)
recall = expected_dupes / expected_dupes[-1]
precision = expected_dupes / numpy.arange(1, len(expected_dupes) + 1)
score = recall * precision / (recall + recall_weight ** 2 * precision)
i = numpy.argmax(score)
logger.info('Maximum expected recall and precision')
logger.info('recall: %2.3f', recall[i])
logger.info('precision: %2.3f', precision[i])
logger.info('With threshold: %2.3f', probability[i])
return probability[i]
|
Returns the threshold that maximizes the expected F score, a
weighted average of precision and recall for a sample of
blocked data.
Arguments:
blocks -- Sequence of tuples of records, where each tuple is a
set of records covered by a blocking predicate
recall_weight -- Sets the tradeoff between precision and
recall. I.e. if you care twice as much about
recall as you do precision, set recall_weight
to 2.
|
def resize(self, size, disk=None):
if isinstance(size, Size):
size = size.slug
opts = {"disk": disk} if disk is not None else {}
return self.act(type='resize', size=size, **opts)
|
Resize the droplet
:param size: a size slug or a `Size` object representing the size to
resize to
:type size: string or `Size`
:param bool disk: Set to `True` for a permanent resize, including
disk changes
:return: an `Action` representing the in-progress operation on the
droplet
:rtype: Action
:raises DOAPIError: if the API endpoint replies with an error
|
def image_create(cmptparms, cspace):
lst = [ctypes.c_int, ctypes.POINTER(ImageComptParmType), ctypes.c_int]
OPENJPEG.opj_image_create.argtypes = lst
OPENJPEG.opj_image_create.restype = ctypes.POINTER(ImageType)
image = OPENJPEG.opj_image_create(len(cmptparms), cmptparms, cspace)
return(image)
|
Wrapper for openjpeg library function opj_image_create.
|
def boolean(self):
try:
return self._boolean
except AttributeError:
nbits = len(self.bits)
boolean = numpy.zeros((self.size, nbits), dtype=bool)
for i, sample in enumerate(self.value):
boolean[i, :] = [int(sample) >> j & 1 for j in range(nbits)]
self._boolean = Array2D(boolean, name=self.name,
x0=self.x0, dx=self.dx, y0=0, dy=1)
return self.boolean
|
A mapping of this `StateVector` to a 2-D array containing all
binary bits as booleans, for each time point.
|
def _is_cow(path):
dirname = os.path.dirname(path)
return 'C' not in __salt__['file.lsattr'](dirname)[path]
|
Check if the subvolume is copy on write
|
def check_query(query):
q = query.lower()
if "select " not in q:
raise InvalidQuery("SELECT word not found in the query: {0}".format(query))
if " from " not in q:
raise InvalidQuery("FROM word not found in the query: {0}".format(query))
|
Check query sanity
Args:
query: query string
Returns:
None
|
def rbac_policy_create(request, **kwargs):
body = {'rbac_policy': kwargs}
rbac_policy = neutronclient(request).create_rbac_policy(
body=body).get('rbac_policy')
return RBACPolicy(rbac_policy)
|
Create a RBAC Policy.
:param request: request context
:param target_tenant: target tenant of the policy
:param tenant_id: owner tenant of the policy(Not recommended)
:param object_type: network or qos_policy
:param object_id: object id of policy
:param action: access_as_shared or access_as_external
:return: RBACPolicy object
|
def on_data(self, raw_data):
try:
data = json.loads(raw_data)
except ValueError:
logger.error('value error: %s' % raw_data)
return
unique_id = data.get('id')
if self._error_handler(data, unique_id):
return False
operation = data['op']
if operation == 'connection':
self._on_connection(data, unique_id)
elif operation == 'status':
self._on_status(data, unique_id)
elif operation in ['mcm', 'ocm']:
if self.stream_unique_id not in [unique_id, 'HISTORICAL']:
logger.warning('Unwanted data received from uniqueId: %s, expecting: %s' %
(unique_id, self.stream_unique_id))
return
self._on_change_message(data, unique_id)
|
Called when raw data is received from connection.
Override this method if you wish to manually handle
the stream data
:param raw_data: Received raw data
:return: Return False to stop stream and close connection
|
def __calculate_boltzmann_factor(self, state_key, next_action_list):
sigmoid = self.__calculate_sigmoid()
q_df = self.q_df[self.q_df.state_key == state_key]
q_df = q_df[q_df.isin(next_action_list)]
q_df["boltzmann_factor"] = q_df["q_value"] / sigmoid
q_df["boltzmann_factor"] = q_df["boltzmann_factor"].apply(np.exp)
q_df["boltzmann_factor"] = q_df["boltzmann_factor"] / q_df["boltzmann_factor"].sum()
return q_df
|
Calculate boltzmann factor.
Args:
state_key: The key of state.
next_action_list: The possible action in `self.t+1`.
If the length of this list is 0, all action should be possible.
Returns:
[(`The key of action`, `boltzmann probability`)]
|
def _authenticate(self):
try:
hosted_zones = self.r53_client.list_hosted_zones_by_name()[
'HostedZones'
]
hosted_zone = next(
hz for hz in hosted_zones
if self.filter_zone(hz)
)
self.domain_id = hosted_zone['Id']
except StopIteration:
raise Exception('No domain found')
|
Determine the hosted zone id for the domain.
|
def handle_message(self, msg):
if msg.msg_id not in self.msg_types:
self.report_message_type(msg)
self.msg_types.add(msg.msg_id)
self.tc.message('inspection', typeId=msg.msg_id, message=msg.msg,
file=os.path.relpath(msg.abspath).replace('\\', '/'),
line=str(msg.line),
SEVERITY=TC_SEVERITY.get(msg.category))
|
Issues an `inspection` service message based on a PyLint message.
Registers each message type upon first encounter.
:param utils.Message msg: a PyLint message
|
def get_posix(self, i):
index = i.index
value = ['[']
try:
c = next(i)
if c != ':':
raise ValueError('Not a valid property!')
else:
value.append(c)
c = next(i)
if c == '^':
value.append(c)
c = next(i)
while c != ':':
if c not in _PROPERTY:
raise ValueError('Not a valid property!')
if c not in _PROPERTY_STRIP:
value.append(c)
c = next(i)
value.append(c)
c = next(i)
if c != ']' or not value:
raise ValueError('Unmatched ]')
value.append(c)
except Exception:
i.rewind(i.index - index)
value = []
return ''.join(value) if value else None
|
Get POSIX.
|
def many_nodes(
lexer: Lexer,
open_kind: TokenKind,
parse_fn: Callable[[Lexer], Node],
close_kind: TokenKind,
) -> List[Node]:
expect_token(lexer, open_kind)
nodes = [parse_fn(lexer)]
append = nodes.append
while not expect_optional_token(lexer, close_kind):
append(parse_fn(lexer))
return nodes
|
Fetch matching nodes, at least one.
Returns a non-empty list of parse nodes, determined by the `parse_fn`.
This list begins with a lex token of `open_kind` and ends with a lex token of
`close_kind`. Advances the parser to the next lex token after the closing token.
|
def save_statement(self, statement):
if not isinstance(statement, Statement):
statement = Statement(statement)
request = HTTPRequest(
method="POST",
resource="statements"
)
if statement.id is not None:
request.method = "PUT"
request.query_params["statementId"] = statement.id
request.headers["Content-Type"] = "application/json"
request.content = statement.to_json(self.version)
lrs_response = self._send_request(request)
if lrs_response.success:
if statement.id is None:
statement.id = json.loads(lrs_response.data)[0]
lrs_response.content = statement
return lrs_response
|
Save statement to LRS and update statement id if necessary
:param statement: Statement object to be saved
:type statement: :class:`tincan.statement.Statement`
:return: LRS Response object with the saved statement as content
:rtype: :class:`tincan.lrs_response.LRSResponse`
|
def _start_reader(self):
while True:
message = yield From(self.pipe.read_message())
self._process(message)
|
Read messages from the Win32 pipe server and handle them.
|
def format_norm(kwargs, current=None):
norm = kwargs.pop('norm', current) or 'linear'
vmin = kwargs.pop('vmin', None)
vmax = kwargs.pop('vmax', None)
clim = kwargs.pop('clim', (vmin, vmax)) or (None, None)
clip = kwargs.pop('clip', None)
if norm == 'linear':
norm = colors.Normalize()
elif norm == 'log':
norm = colors.LogNorm()
elif not isinstance(norm, colors.Normalize):
raise ValueError("unrecognised value for norm {!r}".format(norm))
for attr, value in (('vmin', clim[0]), ('vmax', clim[1]), ('clip', clip)):
if value is not None:
setattr(norm, attr, value)
return norm, kwargs
|
Format a `~matplotlib.colors.Normalize` from a set of kwargs
Returns
-------
norm, kwargs
the formatted `Normalize` instance, and the remaining keywords
|
def OnDrawBackground(self, dc, rect, item, flags):
if (item & 1 == 0 or flags & (wx.combo.ODCB_PAINTING_CONTROL |
wx.combo.ODCB_PAINTING_SELECTED)):
try:
wx.combo.OwnerDrawnComboBox.OnDrawBackground(self, dc,
rect, item, flags)
finally:
return
bg_color = get_color(config["label_color"])
dc.SetBrush(wx.Brush(bg_color))
dc.SetPen(wx.Pen(bg_color))
dc.DrawRectangleRect(rect)
|
Called for drawing the background area of each item
Overridden from OwnerDrawnComboBox
|
def sign_off(self):
try:
logger.info("Bot player signing off.")
feedback = WebDriverWait(self.driver, 20).until(
EC.presence_of_element_located((By.ID, "submit-questionnaire"))
)
self.complete_questionnaire()
feedback.click()
logger.info("Clicked submit questionnaire button.")
self.driver.switch_to_window(self.driver.window_handles[0])
self.driver.set_window_size(1024, 768)
logger.info("Switched back to initial window.")
return True
except TimeoutException:
logger.error("Error during experiment sign off.")
return False
|
Submit questionnaire and finish.
This uses Selenium to click the submit button on the questionnaire
and return to the original window.
|
def to_yaml(value) -> str:
stream = yaml.io.StringIO()
dumper = ConfigDumper(stream, default_flow_style=True, width=sys.maxsize)
val = None
try:
dumper.open()
dumper.represent(value)
val = stream.getvalue().strip()
dumper.close()
finally:
dumper.dispose()
return val
|
Convert a given value to a YAML string.
|
def _make_version(major, minor, micro, releaselevel, serial):
assert releaselevel in ['alpha', 'beta', 'candidate', 'final']
version = "%d.%d" % (major, minor)
if micro:
version += ".%d" % (micro,)
if releaselevel != 'final':
short = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc'}[releaselevel]
version += "%s%d" % (short, serial)
return version
|
Create a readable version string from version_info tuple components.
|
def _build_auth_request(self, verify=False, **kwargs):
json = {
'domain': self.domain
}
credential = self.credential
params = {}
if credential.provider_name.startswith('lms'):
params = dict(
login=credential._login,
pwd=credential._pwd)
else:
json.update(authenticationkey=credential._api_key)
if kwargs:
json.update(**kwargs)
self._extra_args.update(**kwargs)
request = dict(
url=self.credential.get_provider_entry_point(self.url, self.api_version),
json=json,
params=params,
headers={'content-type': 'application/json'},
verify=verify)
return request
|
Build the authentication request to SMC
|
def finalize(self, result):
runtime = int(time.time() * 1000) - self.execution_start_time
self.testcase_manager.update_execution_data(self.execution_guid,
runtime)
|
At the end of the run, we want to
update the DB row with the execution time.
|
def ListAssets(logdir, plugin_name):
plugin_dir = PluginDirectory(logdir, plugin_name)
try:
return [x.rstrip('/') for x in tf.io.gfile.listdir(plugin_dir)]
except tf.errors.NotFoundError:
return []
|
List all the assets that are available for given plugin in a logdir.
Args:
logdir: A directory that was created by a TensorFlow summary.FileWriter.
plugin_name: A string name of a plugin to list assets for.
Returns:
A string list of available plugin assets. If the plugin subdirectory does
not exist (either because the logdir doesn't exist, or because the plugin
didn't register) an empty list is returned.
|
def _register_allocator(self, plugin_name, plugin_instance):
for allocator in plugin_instance.get_allocators().keys():
if allocator in self._allocators:
raise PluginException("Allocator with name {} already exists! unable to add "
"allocators from plugin {}".format(allocator, plugin_name))
self._allocators[allocator] = plugin_instance.get_allocators().get(allocator)
|
Register an allocator.
:param plugin_name: Allocator name
:param plugin_instance: RunPluginBase
:return:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.