code
stringlengths 51
2.38k
| docstring
stringlengths 4
15.2k
|
---|---|
def api_retrieve(self, api_key=None):
api_key = api_key or self.default_api_key
return self.stripe_class.retrieve(
id=self.id, api_key=api_key, expand=self.expand_fields
)
|
Call the stripe API's retrieve operation for this model.
:param api_key: The api key to use for this request. Defaults to settings.STRIPE_SECRET_KEY.
:type api_key: string
|
def next(self):
if self.idx >= len(self.page_list):
raise StopIteration()
page = self.page_list[self.idx]
self.idx += 1
return page
|
Provide the next element of the list.
|
def debugging():
print("In debugging")
json_file = r"C:\Scripting\Processing\Cell" \
r"data\outdata\SiBEC\cellpy_batch_bec_exp02.json"
b = init(default_log_level="DEBUG")
b.load_info_df(json_file)
print(b.info_df.head())
b.export_raw = False
b.export_cycles = False
b.export_ica = False
b.save_cellpy_file = True
b.force_raw_file = False
b.force_cellpy_file = True
b.load_and_save_raw(parent_level="cellpydata")
|
This one I use for debugging...
|
def get_member_class(resource):
reg = get_current_registry()
if IInterface in provided_by(resource):
member_class = reg.getUtility(resource, name='member-class')
else:
member_class = reg.getAdapter(resource, IMemberResource,
name='member-class')
return member_class
|
Returns the registered member class for the given resource.
:param resource: registered resource
:type resource: class implementing or instance providing or subclass of
a registered resource interface.
|
def username_or(user, attr):
if not settings.ACCOUNTS_NO_USERNAME:
attr = "username"
value = getattr(user, attr)
if callable(value):
value = value()
return value
|
Returns the user's username for display, or an alternate attribute
if ``ACCOUNTS_NO_USERNAME`` is set to ``True``.
|
def image_from_simplestreams(server,
alias,
remote_addr=None,
cert=None,
key=None,
verify_cert=True,
aliases=None,
public=False,
auto_update=False,
_raw=False):
if aliases is None:
aliases = []
client = pylxd_client_get(remote_addr, cert, key, verify_cert)
try:
image = client.images.create_from_simplestreams(
server, alias, public=public, auto_update=auto_update
)
except pylxd.exceptions.LXDAPIException as e:
raise CommandExecutionError(six.text_type(e))
for alias in aliases:
image_alias_add(image, alias)
if _raw:
return image
return _pylxd_model_to_dict(image)
|
Create an image from simplestreams
server :
Simplestreams server URI
alias :
The alias of the image to retrieve
remote_addr :
An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!
Examples:
https://myserver.lan:8443
/var/lib/mysocket.sock
cert :
PEM Formatted SSL Certificate.
Examples:
~/.config/lxc/client.crt
key :
PEM Formatted SSL Key.
Examples:
~/.config/lxc/client.key
verify_cert : True
Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normaly uses self-signed certificates.
aliases : []
List of aliases to append to the copied image
public : False
Make this image public available
auto_update : False
Should LXD auto update that image?
_raw : False
Return the raw pylxd object or a dict of the image?
CLI Examples:
..code-block:: bash
$ salt '*' lxd.image_from_simplestreams "https://cloud-images.ubuntu.com/releases" "trusty/amd64" aliases='["t", "trusty/amd64"]' auto_update=True
|
def _has_perm(self, user, permission):
if user.is_superuser:
return True
if user.is_active:
perms = [perm.split('.')[1] for perm in user.get_all_permissions()]
return permission in perms
return False
|
Check whether the user has the given permission
@return True if user is granted with access, False if not.
|
def nla_parse(tb, maxtype, head, len_, policy):
rem = c_int()
for nla in nla_for_each_attr(head, len_, rem):
type_ = nla_type(nla)
if type_ > maxtype:
continue
if policy:
err = validate_nla(nla, maxtype, policy)
if err < 0:
return err
if type_ in tb and tb[type_]:
_LOGGER.debug('Attribute of type %d found multiple times in message, previous attribute is being ignored.',
type_)
tb[type_] = nla
if rem.value > 0:
_LOGGER.debug('netlink: %d bytes leftover after parsing attributes.', rem.value)
return 0
|
Create attribute index based on a stream of attributes.
https://github.com/thom311/libnl/blob/libnl3_2_25/lib/attr.c#L242
Iterates over the stream of attributes and stores a pointer to each attribute in the index array using the attribute
type as index to the array. Attribute with a type greater than the maximum type specified will be silently ignored
in order to maintain backwards compatibility. If `policy` is not None, the attribute will be validated using the
specified policy.
Positional arguments:
tb -- dictionary to be filled (maxtype+1 elements).
maxtype -- maximum attribute type expected and accepted (integer).
head -- first nlattr with more in its bytearray payload (nlattr class instance).
len_ -- length of attribute stream (integer).
policy -- dictionary of nla_policy class instances as values, with nla types as keys.
Returns:
0 on success or a negative error code.
|
def append_string(self, field, header=False):
bits = field.split('=', 1)
if len(bits) != 2:
raise ValueError("Field missing '=' separator.")
try:
tag_int = int(bits[0])
except ValueError:
raise ValueError("Tag value must be an integer")
self.append_pair(tag_int, bits[1], header=header)
return
|
Append a tag=value pair in string format.
:param field: String "tag=value" to be appended to this message.
:param header: Append to header if True; default to body.
The string is split at the first '=' character, and the resulting
tag and value strings are appended to the message.
|
def send_message(
self,
title=None,
body=None,
icon=None,
data=None,
sound=None,
badge=None,
api_key=None,
**kwargs):
if self:
from .fcm import fcm_send_bulk_message
registration_ids = list(self.filter(active=True).values_list(
'registration_id',
flat=True
))
if len(registration_ids) == 0:
return [{'failure': len(self), 'success': 0}]
result = fcm_send_bulk_message(
registration_ids=registration_ids,
title=title,
body=body,
icon=icon,
data=data,
sound=sound,
badge=badge,
api_key=api_key,
**kwargs
)
self._deactivate_devices_with_error_results(
registration_ids,
result['results']
)
return result
|
Send notification for all active devices in queryset and deactivate if
DELETE_INACTIVE_DEVICES setting is set to True.
|
def calculate_median(given_list):
median = None
if not given_list:
return median
given_list = sorted(given_list)
list_length = len(given_list)
if list_length % 2:
median = given_list[int(list_length / 2)]
else:
median = (given_list[int(list_length / 2)] + given_list[int(list_length / 2) - 1]) / 2.0
return median
|
Returns the median of values in the given list.
|
def get_cli_argument(self, command, name):
parts = command.split()
result = CLIArgumentType()
for index in range(0, len(parts) + 1):
probe = ' '.join(parts[0:index])
override = self.arguments.get(probe, {}).get(name, None)
if override:
result.update(override)
return result
|
Get the argument for the command after applying the scope hierarchy
:param command: The command that we want the argument for
:type command: str
:param name: The name of the argument
:type name: str
:return: The CLI command after all overrides in the scope hierarchy have been applied
:rtype: knack.arguments.CLIArgumentType
|
def run(configobj=None):
acssum(configobj['input'],
configobj['output'],
exec_path=configobj['exec_path'],
time_stamps=configobj['time_stamps'],
verbose=configobj['verbose'],
quiet=configobj['quiet']
)
|
TEAL interface for the `acssum` function.
|
def report_score_vs_rmsd_funnels(designs, path):
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
print "Reporting score vs RMSD funnels..."
pdf = PdfPages(path)
designs = sorted(designs, key=lambda x: x.fancy_path)
for index, design in enumerate(designs):
plt.figure(figsize=(8.5, 11))
plt.suptitle(design.fancy_path)
axes = plt.subplot(2, 1, 1)
plot_score_vs_dist(axes, design, metric="Max COOH Distance")
axes = plt.subplot(2, 1, 2)
plot_score_vs_dist(axes, design, metric="Loop RMSD")
pdf.savefig(orientation='portrait')
plt.close()
pdf.close()
|
Create a PDF showing the score vs. RMSD funnels for all the reasonable
designs. This method was copied from an old version of this script, and
does not currently work.
|
def partition(molList, options):
status_field = options.status_field
active_label = options.active_label
decoy_label = options.decoy_label
activeList = []
decoyList = []
for mol in molList:
if mol.GetProp(status_field) == active_label:
activeList.append(mol)
elif mol.GetProp(status_field) == decoy_label:
decoyList.append(mol)
return activeList, decoyList
|
Partition molList into activeList and decoyList
|
def aligner_from_header(in_bam):
from bcbio.pipeline.alignment import TOOLS
with pysam.Samfile(in_bam, "rb") as bamfile:
for pg in bamfile.header.get("PG", []):
for ka in TOOLS.keys():
if pg.get("PN", "").lower().find(ka) >= 0:
return ka
|
Identify aligner from the BAM header; handling pre-aligned inputs.
|
def trace_start(self):
cmd = enums.JLinkTraceCommand.START
res = self._dll.JLINKARM_TRACE_Control(cmd, 0)
if (res == 1):
raise errors.JLinkException('Failed to start trace.')
return None
|
Starts collecting trace data.
Args:
self (JLink): the ``JLink`` instance.
Returns:
``None``
|
def attach_files(self, files: Sequence[AttachedFile]):
assert not self._content, 'content must be empty to attach files.'
self.content_type = 'multipart/form-data'
self._attached_files = files
|
Attach a list of files represented as AttachedFile.
|
def validate_categories(categories):
if not set(categories) <= Source.categories:
invalid = list(set(categories) - Source.categories)
raise ValueError('Invalid categories: %s' % invalid)
|
Take an iterable of source categories and raise ValueError if some
of them are invalid.
|
def crps(self):
return np.sum(self.errors["F_2"].values - self.errors["F_O"].values * 2.0 + self.errors["O_2"].values) / \
(self.thresholds.size * self.num_forecasts)
|
Calculates the continuous ranked probability score.
|
def if_not_exists(self):
if self.model._has_counter:
raise IfNotExistsWithCounterColumn('if_not_exists cannot be used with tables containing counter columns')
clone = copy.deepcopy(self)
clone._if_not_exists = True
return clone
|
Check the existence of an object before insertion.
If the insertion isn't applied, a LWTException is raised.
|
def blend_palette(colors, n_colors=6, as_cmap=False):
name = "-".join(map(str, colors))
pal = mpl.colors.LinearSegmentedColormap.from_list(name, colors)
if not as_cmap:
pal = pal(np.linspace(0, 1, n_colors))
return pal
|
Make a palette that blends between a list of colors.
Parameters
----------
colors : sequence of matplotlib colors
hex, rgb-tuple, or html color name
n_colors : int, optional
number of colors in the palette
as_cmap : bool, optional
if True, return as a matplotlib colormap instead of list
Returns
-------
palette : list or colormap
|
def refresh_metrics(self):
metrics = self.get_metrics()
dbmetrics = (
db.session.query(DruidMetric)
.filter(DruidMetric.datasource_id == self.datasource_id)
.filter(DruidMetric.metric_name.in_(metrics.keys()))
)
dbmetrics = {metric.metric_name: metric for metric in dbmetrics}
for metric in metrics.values():
dbmetric = dbmetrics.get(metric.metric_name)
if dbmetric:
for attr in ['json', 'metric_type']:
setattr(dbmetric, attr, getattr(metric, attr))
else:
with db.session.no_autoflush:
metric.datasource_id = self.datasource_id
db.session.add(metric)
|
Refresh metrics based on the column metadata
|
def set_monitoring(module):
def monitoring(is_monitoring,
track_data=None,
track_grad=None,
track_update=None,
track_update_ratio=None):
module.is_monitoring = is_monitoring
module.track_data = track_data if track_data is not None else module.track_data
module.track_grad = track_grad if track_grad is not None else module.track_grad
module.track_update = track_update if track_update is not None else module.track_update
module.track_update_ratio = track_update_ratio if track_update_ratio is not None else module.track_update_ratio
module.monitoring = monitoring
|
Defines the monitoring method on the module.
|
def load_cufflinks(self, filter_ok=True):
return \
pd.concat(
[self._load_single_patient_cufflinks(patient, filter_ok) for patient in self],
copy=False
)
|
Load a Cufflinks gene expression data for a cohort
Parameters
----------
filter_ok : bool, optional
If true, filter Cufflinks data to row with FPKM_status == "OK"
Returns
-------
cufflinks_data : Pandas dataframe
Pandas dataframe with Cufflinks data for all patients
columns include patient_id, gene_id, gene_short_name, FPKM, FPKM_conf_lo, FPKM_conf_hi
|
def token_urlsafe(nbytes=32):
tok = os.urandom(nbytes)
return base64.urlsafe_b64encode(tok).rstrip(b'=').decode('ascii')
|
Return a random URL-safe text string, in Base64 encoding.
This is taken and slightly modified from the Python 3.6 stdlib.
The string has *nbytes* random bytes. If *nbytes* is ``None``
or not supplied, a reasonable default is used.
>>> token_urlsafe(16) #doctest:+SKIP
'Drmhze6EPcv0fN_81Bj-nA'
|
def save(self, filename, format=None, **kwargs):
if format is None:
format = format_from_extension(filename)
with file(filename, 'wb') as fp:
self.save_to_file_object(fp, format, **kwargs)
|
Save the object to file given by filename.
|
def load_ipython_extension(ip):
ip.register_magics(CustomMagics)
patch = ("IPython.config.cell_magic_highlight['clrmagic'] = "
"{'reg':[/^%%CS/]};")
js = display.Javascript(data=patch,
lib=["https://github.com/codemirror/CodeMirror/blob/master/mode/clike/clike.js"])
|
register magics function, can be called from a notebook
|
def exam_reliability_by_datetime(
datetime_axis, datetime_new_axis, reliable_distance):
numeric_datetime_axis = [
totimestamp(a_datetime) for a_datetime in datetime_axis
]
numeric_datetime_new_axis = [
totimestamp(a_datetime) for a_datetime in datetime_new_axis
]
return exam_reliability(numeric_datetime_axis, numeric_datetime_new_axis,
reliable_distance, precision=0)
|
A datetime-version that takes datetime object list as x_axis
reliable_distance equals to the time difference in seconds.
|
def is_lagging(self, wal_position):
lag = (self.cluster.last_leader_operation or 0) - wal_position
return lag > self.patroni.config.get('maximum_lag_on_failover', 0)
|
Returns if instance with an wal should consider itself unhealthy to be promoted due to replication lag.
:param wal_position: Current wal position.
:returns True when node is lagging
|
def _contains_yieldpoint(children):
if isinstance(children, dict):
return any(isinstance(i, YieldPoint) for i in children.values())
if isinstance(children, list):
return any(isinstance(i, YieldPoint) for i in children)
return False
|
Returns True if ``children`` contains any YieldPoints.
``children`` may be a dict or a list, as used by `MultiYieldPoint`
and `multi_future`.
|
def clear_session(self, response):
session.clear()
if 'flask_login' in sys.modules:
remember_cookie = current_app.config.get('REMEMBER_COOKIE',
'remember_token')
response.set_cookie(remember_cookie, '', expires=0, max_age=0)
|
Clear the session.
This method is invoked when the session is found to be invalid.
Subclasses can override this method to implement a custom session
reset.
|
async def handle_agent_job_started(self, agent_addr, message: AgentJobStarted):
self._logger.debug("Job %s %s started on agent %s", message.job_id[0], message.job_id[1], agent_addr)
await ZMQUtils.send_with_addr(self._client_socket, message.job_id[0], BackendJobStarted(message.job_id[1]))
|
Handle an AgentJobStarted message. Send the data back to the client
|
def get(self, key, failobj=None, exact=0):
if not exact:
try:
key = self.getfullkey(key)
except KeyError:
return failobj
return self.data.get(key,failobj)
|
Returns failobj if key is not found or is ambiguous
|
def load_tiff(filename, crs=None, apply_transform=False, nan_nodata=False, **kwargs):
try:
import xarray as xr
except:
raise ImportError('Loading tiffs requires xarray to be installed')
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
da = xr.open_rasterio(filename)
return from_xarray(da, crs, apply_transform, nan_nodata, **kwargs)
|
Returns an RGB or Image element loaded from a geotiff file.
The data is loaded using xarray and rasterio. If a crs attribute
is present on the loaded data it will attempt to decode it into
a cartopy projection otherwise it will default to a non-geographic
HoloViews element.
Parameters
----------
filename: string
Filename pointing to geotiff file to load
crs: Cartopy CRS or EPSG string (optional)
Overrides CRS inferred from the data
apply_transform: boolean
Whether to apply affine transform if defined on the data
nan_nodata: boolean
If data contains nodata values convert them to NaNs
**kwargs:
Keyword arguments passed to the HoloViews/GeoViews element
Returns
-------
element: Image/RGB/QuadMesh element
|
def trainModel(model, loader, optimizer, device, criterion=F.nll_loss,
batches_in_epoch=sys.maxsize, batch_callback=None,
progress_bar=None):
model.train()
if progress_bar is not None:
loader = tqdm(loader, **progress_bar)
if batches_in_epoch < len(loader):
loader.total = batches_in_epoch
for batch_idx, (data, target) in enumerate(loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_callback is not None:
batch_callback(model=model, batch_idx=batch_idx)
if batch_idx >= batches_in_epoch:
break
if progress_bar is not None:
loader.n = loader.total
loader.close()
|
Train the given model by iterating through mini batches. An epoch
ends after one pass through the training set, or if the number of mini
batches exceeds the parameter "batches_in_epoch".
:param model: pytorch model to be trained
:type model: torch.nn.Module
:param loader: train dataset loader
:type loader: :class:`torch.utils.data.DataLoader`
:param optimizer: Optimizer object used to train the model.
This function will train the model on every batch using this optimizer
and the :func:`torch.nn.functional.nll_loss` function
:param batches_in_epoch: Max number of mini batches to train.
:param device: device to use ('cpu' or 'cuda')
:type device: :class:`torch.device
:param criterion: loss function to use
:type criterion: function
:param batch_callback: Callback function to be called on every batch with the
following parameters: model, batch_idx
:type batch_callback: function
:param progress_bar: Optional :class:`tqdm` progress bar args.
None for no progress bar
:type progress_bar: dict or None
|
def _get_resource_list(self, rsrc_dict):
if 'collections' in rsrc_dict:
return rsrc_dict['collections']
if 'experiments' in rsrc_dict:
return rsrc_dict['experiments']
if 'channels' in rsrc_dict:
return rsrc_dict['channels']
if 'coords' in rsrc_dict:
return rsrc_dict['coords']
raise RuntimeError('Invalid list response received from Boss. No known resource type returned.')
|
Extracts list of resources from the HTTP response.
Args:
rsrc_dict (dict): HTTP response encoded in a dictionary.
Returns:
(list[string]): List of a type of resource (collections, experiments, etc).
Raises:
(RuntimeError): If rsrc_dict does not contain any known resources.
|
def dedent(string, indent_str=' ', max_levels=None):
if len(indent_str) == 0:
return string
lines = string.splitlines()
def num_indents(line):
max_num = int(np.ceil(len(line) / len(indent_str)))
for i in range(max_num):
if line.startswith(indent_str):
line = line[len(indent_str):]
else:
break
return i
num_levels = num_indents(min(lines, key=num_indents))
if max_levels is not None:
num_levels = min(num_levels, max_levels)
dedent_len = num_levels * len(indent_str)
return '\n'.join(line[dedent_len:] for line in lines)
|
Revert the effect of indentation.
Examples
--------
Remove a simple one-level indentation:
>>> text = '''<->This is line 1.
... <->Next line.
... <->And another one.'''
>>> print(text)
<->This is line 1.
<->Next line.
<->And another one.
>>> print(dedent(text, '<->'))
This is line 1.
Next line.
And another one.
Multiple levels of indentation:
>>> text = '''<->Level 1.
... <-><->Level 2.
... <-><-><->Level 3.'''
>>> print(text)
<->Level 1.
<-><->Level 2.
<-><-><->Level 3.
>>> print(dedent(text, '<->'))
Level 1.
<->Level 2.
<-><->Level 3.
>>> text = '''<-><->Level 2.
... <-><-><->Level 3.'''
>>> print(text)
<-><->Level 2.
<-><-><->Level 3.
>>> print(dedent(text, '<->'))
Level 2.
<->Level 3.
>>> print(dedent(text, '<->', max_levels=1))
<->Level 2.
<-><->Level 3.
|
def get_request_token(self,
method='GET',
decoder=parse_utf8_qsl,
key_token='oauth_token',
key_token_secret='oauth_token_secret',
**kwargs):
r = self.get_raw_request_token(method=method, **kwargs)
request_token, request_token_secret = \
process_token_request(r, decoder, key_token, key_token_secret)
return request_token, request_token_secret
|
Return a request token pair.
:param method: A string representation of the HTTP method to be used,
defaults to `GET`.
:type method: str
:param decoder: A function used to parse the Response content. Should
return a dictionary.
:type decoder: func
:param key_token: The key the access token will be decoded by, defaults
to 'oauth_token'.
:type string:
:param key_token_secret: The key the access token will be decoded by,
defaults to 'oauth_token_secret'.
:type string:
:param \*\*kwargs: Optional arguments. Same as Requests.
:type \*\*kwargs: dict
|
def create(self, resource):
schema = self.CREATE_SCHEMA
json = self.service.encode(schema, resource)
schema = self.GET_SCHEMA
resp = self.service.create(self.base, json)
return self.service.decode(schema, resp)
|
Create a new config.
:param resource: :class:`configs.Config <configs.Config>` object
:return: :class:`configs.Config <configs.Config>` object
:rtype: configs.Config
|
def delete_grade(self, grade_id):
from dlkit.abstract_osid.id.primitives import Id as ABCId
from .objects import Grade
collection = JSONClientValidated('grading',
collection='GradeSystem',
runtime=self._runtime)
if not isinstance(grade_id, ABCId):
raise errors.InvalidArgument('the argument is not a valid OSID Id')
grade_system = collection.find_one({'grades._id': ObjectId(grade_id.get_identifier())})
index = 0
found = False
for i in grade_system['grades']:
if i['_id'] == ObjectId(grade_id.get_identifier()):
grade_map = grade_system['grades'].pop(index)
index += 1
found = True
if not found:
raise errors.OperationFailed()
Grade(
osid_object_map=grade_map,
runtime=self._runtime,
proxy=self._proxy)._delete()
collection.save(grade_system)
|
Deletes a ``Grade``.
arg: grade_id (osid.id.Id): the ``Id`` of the ``Grade`` to
remove
raise: NotFound - ``grade_id`` not found
raise: NullArgument - ``grade_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
|
def io_surface(timestep, time, fid, fld):
fid.write("{} {}".format(timestep, time))
fid.writelines(["%10.2e" % item for item in fld[:]])
fid.writelines(["\n"])
|
Output for surface files
|
async def explain(self, *args, analyze=False):
query = 'EXPLAIN (FORMAT JSON, VERBOSE'
if analyze:
query += ', ANALYZE) '
else:
query += ') '
query += self._state.query
if analyze:
tr = self._connection.transaction()
await tr.start()
try:
data = await self._connection.fetchval(query, *args)
finally:
await tr.rollback()
else:
data = await self._connection.fetchval(query, *args)
return json.loads(data)
|
Return the execution plan of the statement.
:param args: Query arguments.
:param analyze: If ``True``, the statement will be executed and
the run time statitics added to the return value.
:return: An object representing the execution plan. This value
is actually a deserialized JSON output of the SQL
``EXPLAIN`` command.
|
def put_readme(self, content):
logger.debug("Putting readme")
key = self.get_readme_key()
self.put_text(key, content)
|
Store the readme descriptive metadata.
|
def request_sid_cookie(self, username, password):
log.debug("Requesting SID cookie")
target_url = self._login_url + '?usr={0}&pwd={1}&persist=y'.format(
username, password
)
cookie = urlopen(target_url).read()
return cookie
|
Request cookie for permanent session token.
|
def _retrieve_value(self, entity, default=None):
return entity._values.get(self._name, default)
|
Internal helper to retrieve the value for this Property from an entity.
This returns None if no value is set, or the default argument if
given. For a repeated Property this returns a list if a value is
set, otherwise None. No additional transformations are applied.
|
def transform_rest_response(self, response_body):
body_json = json.loads(response_body)
return json.dumps(body_json, indent=1, sort_keys=True)
|
Translates an apiserving REST response so it's ready to return.
Currently, the only thing that needs to be fixed here is indentation,
so it's consistent with what the live app will return.
Args:
response_body: A string containing the backend response.
Returns:
A reformatted version of the response JSON.
|
def override(self, key, value):
keys = key.split('.')
if len(keys) > 1:
if keys[0] != "plugins":
raise AttributeError("no such setting: %r" % key)
self.plugins.override(keys[1:], value)
else:
self.overrides[key] = value
self._uncache(key)
|
Set a setting to the given value.
Note that `key` can be in dotted form, eg
'plugins.release_hook.emailer.sender'.
|
def _serialize_attributes(attributes):
result = ''
for name, value in attributes.items():
if not value:
continue
result += ' ' + _unmangle_attribute_name(name)
result += '="' + escape(value, True) + '"'
return result
|
Serializes HTML element attributes in a name="value" pair form.
|
def get_series_as_of_date(self, series_id, as_of_date):
as_of_date = pd.to_datetime(as_of_date)
df = self.get_series_all_releases(series_id)
data = df[df['realtime_start'] <= as_of_date]
return data
|
Get latest data for a Fred series id as known on a particular date. This includes any revision to the data series
before or on as_of_date, but ignores any revision on dates after as_of_date.
Parameters
----------
series_id : str
Fred series id such as 'GDP'
as_of_date : datetime, or datetime-like str such as '10/25/2014'
Include data revisions on or before this date, and ignore revisions afterwards
Returns
-------
data : Series
a Series where each index is the observation date and the value is the data for the Fred series
|
def set_prompt(self, prompt):
if prompt and self.settings.vehicle_name:
prompt = self.settings.vehicle_name + ':' + prompt
self.mpstate.rl.set_prompt(prompt)
|
set prompt for command line
|
def _spawn(self, distribution, executor=None, *args, **kwargs):
actual_executor = executor or SubprocessExecutor(distribution)
return distribution.execute_java_async(*args,
executor=actual_executor,
**kwargs)
|
Returns a processhandler to a process executing java.
:param Executor executor: the java subprocess executor to use. If not specified, construct
using the distribution.
:param Distribution distribution: The JDK or JRE installed.
:rtype: ProcessHandler
|
def get_authorization_ids_by_vault(self, vault_id):
id_list = []
for authorization in self.get_authorizations_by_vault(vault_id):
id_list.append(authorization.get_id())
return IdList(id_list)
|
Gets the list of ``Authorization`` ``Ids`` associated with a ``Vault``.
arg: vault_id (osid.id.Id): ``Id`` of a ``Vault``
return: (osid.id.IdList) - list of related authorization ``Ids``
raise: NotFound - ``vault_id`` is not found
raise: NullArgument - ``vault_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
|
def _populate_route_attributes(self):
route_schema = self._validate_stone_cfg()
self.api.add_route_schema(route_schema)
for namespace in self.api.namespaces.values():
env = self._get_or_create_env(namespace.name)
for route in namespace.routes:
self._populate_route_attributes_helper(env, route, route_schema)
|
Converts all routes from forward references to complete definitions.
|
def remove_server(self, name):
for i in self._server_list:
if i['key'] == name:
try:
self._server_list.remove(i)
logger.debug("Remove server %s from the list" % name)
logger.debug("Updated servers list (%s servers): %s" % (
len(self._server_list), self._server_list))
except ValueError:
logger.error(
"Cannot remove server %s from the list" % name)
|
Remove a server from the dict.
|
def pad_decr(ids):
if len(ids) < 1:
return list(ids)
if not any(ids):
return []
idx = -1
while not ids[idx]:
idx -= 1
if idx == -1:
ids = ids
else:
ids = ids[:idx + 1]
return [i - 1 for i in ids]
|
Strip ID 0 and decrement ids by 1.
|
def cublasZtrsm(handle, side, uplo, transa, diag, m, n, alpha, A, lda, B, ldb):
status = _libcublas.cublasZtrsm_v2(handle,
_CUBLAS_SIDE_MODE[side],
_CUBLAS_FILL_MODE[uplo],
_CUBLAS_OP[trans],
_CUBLAS_DIAG[diag],
m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real,
alpha.imag)),
int(A), lda, int(B), ldb)
cublasCheckStatus(status)
|
Solve complex triangular system with multiple right-hand sides.
|
def transfer_state_data(cls, source_entity, target_entity):
state_data = cls.get_state_data(source_entity)
cls.set_state_data(target_entity, state_data)
|
Transfers instance state data from the given source entity to the
given target entity.
|
async def helo(
self, hostname: str = None, timeout: DefaultNumType = _default
) -> SMTPResponse:
if hostname is None:
hostname = self.source_address
async with self._command_lock:
response = await self.execute_command(
b"HELO", hostname.encode("ascii"), timeout=timeout
)
self.last_helo_response = response
if response.code != SMTPStatus.completed:
raise SMTPHeloError(response.code, response.message)
return response
|
Send the SMTP HELO command.
Hostname to send for this command defaults to the FQDN of the local
host.
:raises SMTPHeloError: on unexpected server response code
|
def get_modified_time(self) -> Optional[datetime.datetime]:
stat_result = self._stat()
modified = datetime.datetime.utcfromtimestamp(int(stat_result.st_mtime))
return modified
|
Returns the time that ``self.absolute_path`` was last modified.
May be overridden in subclasses. Should return a `~datetime.datetime`
object or None.
.. versionadded:: 3.1
|
def print_dependencies(_run):
print('Dependencies:')
for dep in _run.experiment_info['dependencies']:
pack, _, version = dep.partition('==')
print(' {:<20} == {}'.format(pack, version))
print('\nSources:')
for source, digest in _run.experiment_info['sources']:
print(' {:<43} {}'.format(source, digest))
if _run.experiment_info['repositories']:
repos = _run.experiment_info['repositories']
print('\nVersion Control:')
for repo in repos:
mod = COLOR_DIRTY + 'M' if repo['dirty'] else ' '
print('{} {:<43} {}'.format(mod, repo['url'], repo['commit']) +
ENDC)
print('')
|
Print the detected source-files and dependencies.
|
def file_or_stdin() -> Callable:
def parse(path):
if path is None or path == "-":
return sys.stdin
else:
return data_io.smart_open(path)
return parse
|
Returns a file descriptor from stdin or opening a file from a given path.
|
async def eap_options(request: web.Request) -> web.Response:
return web.json_response(EAP_CONFIG_SHAPE, status=200)
|
Get request returns the available configuration options for WPA-EAP.
Because the options for connecting to WPA-EAP secured networks are quite
complex, to avoid duplicating logic this endpoint returns a json object
describing the structure of arguments and options for the eap_config arg to
/wifi/configure.
The object is shaped like this:
{
options: [ // Supported EAP methods and their options. One of these
// method names must be passed in the eapConfig dict
{
name: str // i.e. TTLS-EAPMSCHAPv2. Should be in the eapType
// key of eapConfig when sent to /configure.
options: [
{
name: str // i.e. "username"
displayName: str // i.e. "Username"
required: bool,
type: str
}
]
}
]
}
The ``type`` keys denote the semantic kind of the argument. Valid types
are:
password: This is some kind of password. It may be a psk for the network,
an Active Directory password, or the passphrase for a private key
string: A generic string; perhaps a username, or a subject-matches
domain name for server validation
file: A file that the user must provide. This should be the id of a
file previously uploaded via POST /wifi/keys.
Although the arguments are described hierarchically, they should be
specified in eap_config as a flat dict. For instance, a /configure
invocation for TTLS/EAP-TLS might look like
```
POST
{
ssid: "my-ssid",
securityType: "wpa-eap",
hidden: false,
eapConfig : {
eapType: "TTLS/EAP-TLS", // One of the method options
identity: "[email protected]", // And then its arguments
anonymousIdentity: "[email protected]",
password: "testing123",
caCert: "12d1f180f081b",
phase2CaCert: "12d1f180f081b",
phase2ClientCert: "009909fd9fa",
phase2PrivateKey: "081009fbcbc"
phase2PrivateKeyPassword: "testing321"
}
}
```
|
def make_c_args(arg_pairs):
logging.debug(arg_pairs)
c_args = [
'{} {}'.format(arg_type, arg_name) if arg_name else arg_type
for dummy_number, arg_type, arg_name in sorted(arg_pairs)
]
return ', '.join(c_args)
|
Build a C argument list from return type and arguments pairs.
|
def getcal(self):
status, cal, cal_error, offset, offset_err, data_type = \
_C.SDgetcal(self._id)
_checkErr('getcal', status, 'no calibration record')
return cal, cal_error, offset, offset_err, data_type
|
Retrieve the SDS calibration coefficients.
Args::
no argument
Returns::
5-element tuple holding:
- cal: calibration factor (attribute 'scale_factor')
- cal_error : calibration factor error
(attribute 'scale_factor_err')
- offset: calibration offset (attribute 'add_offset')
- offset_err : offset error (attribute 'add_offset_err')
- data_type : type of the data resulting from applying
the calibration formula to the dataset values
(attribute 'calibrated_nt')
An exception is raised if no calibration data are defined.
Original dataset values 'orival' are converted to calibrated
values 'calval' through the formula::
calval = cal * (orival - offset)
The calibration coefficients are part of the so-called
"standard" SDS attributes. The values inside the tuple returned
by 'getcal' are those of the following attributes, in order::
scale_factor, scale_factor_err, add_offset, add_offset_err,
calibrated_nt
C library equivalent: SDgetcal()
|
def build_rdn(self):
bits = []
for field in self._meta.fields:
if field.db_column and field.primary_key:
bits.append("%s=%s" % (field.db_column,
getattr(self, field.name)))
if not len(bits):
raise Exception("Could not build Distinguished Name")
return '+'.join(bits)
|
Build the Relative Distinguished Name for this entry.
|
def send_message(self, message, sign=True):
if sign:
message.sign(self.authenticators[self.defauth])
logger.debug("sending %s", LazyStr(message.dump_oneline))
self.transport.write(message.as_string())
|
Send the given message to the connection.
@type message: OmapiMessage
@param sign: whether the message needs to be signed
@raises OmapiError:
@raises socket.error:
|
def count(self) -> int:
counter = 0
for pool in self._host_pools.values():
counter += pool.count()
return counter
|
Return number of connections.
|
def set_size(self, data_size):
if len(str(data_size)) > self.first:
raise ValueError(
'Send size is too large for message size-field width!')
self.data_size = data_size
|
Set the data slice size.
|
def deserialize(self, value, **kwargs):
for validator in self.validators:
validator.validate(value, **kwargs)
return value
|
Deserialization of value.
:return: Deserialized value.
:raises: :class:`halogen.exception.ValidationError` exception if value is not valid.
|
def libvlc_media_player_has_vout(p_mi):
f = _Cfunctions.get('libvlc_media_player_has_vout', None) or \
_Cfunction('libvlc_media_player_has_vout', ((1,),), None,
ctypes.c_uint, MediaPlayer)
return f(p_mi)
|
How many video outputs does this media player have?
@param p_mi: the media player.
@return: the number of video outputs.
|
def _FormatDescription(self, event):
date_time_string = timelib.Timestamp.CopyToIsoFormat(
event.timestamp, timezone=self._output_mediator.timezone)
timestamp_description = event.timestamp_desc or 'UNKNOWN'
message, _ = self._output_mediator.GetFormattedMessages(event)
if message is None:
data_type = getattr(event, 'data_type', 'UNKNOWN')
raise errors.NoFormatterFound(
'Unable to find event formatter for: {0:s}.'.format(data_type))
description = '{0:s}; {1:s}; {2:s}'.format(
date_time_string, timestamp_description,
message.replace(self._DESCRIPTION_FIELD_DELIMITER, ' '))
return self._SanitizeField(description)
|
Formats the description.
Args:
event (EventObject): event.
Returns:
str: formatted description field.
|
async def discover_nupnp(websession):
async with websession.get(URL_NUPNP) as res:
return [Bridge(item['internalipaddress'], websession=websession)
for item in (await res.json())]
|
Discover bridges via NUPNP.
|
def get_file_hash(storage, path):
contents = storage.open(path).read()
file_hash = hashlib.md5(contents).hexdigest()
content_type = mimetypes.guess_type(path)[0] or 'application/octet-stream'
if settings.is_gzipped and content_type in settings.gzip_content_types:
cache_key = get_cache_key('gzip_hash_%s' % file_hash)
file_hash = cache.get(cache_key, False)
if file_hash is False:
buffer = BytesIO()
zf = gzip.GzipFile(
mode='wb', compresslevel=6, fileobj=buffer, mtime=0.0)
zf.write(force_bytes(contents))
zf.close()
file_hash = hashlib.md5(buffer.getvalue()).hexdigest()
cache.set(cache_key, file_hash)
return '"%s"' % file_hash
|
Create md5 hash from file contents.
|
def define_code_breakpoint(self, dwProcessId, address, condition = True,
action = None):
process = self.system.get_process(dwProcessId)
bp = CodeBreakpoint(address, condition, action)
key = (dwProcessId, bp.get_address())
if key in self.__codeBP:
msg = "Already exists (PID %d) : %r"
raise KeyError(msg % (dwProcessId, self.__codeBP[key]))
self.__codeBP[key] = bp
return bp
|
Creates a disabled code breakpoint at the given address.
@see:
L{has_code_breakpoint},
L{get_code_breakpoint},
L{enable_code_breakpoint},
L{enable_one_shot_code_breakpoint},
L{disable_code_breakpoint},
L{erase_code_breakpoint}
@type dwProcessId: int
@param dwProcessId: Process global ID.
@type address: int
@param address: Memory address of the code instruction to break at.
@type condition: function
@param condition: (Optional) Condition callback function.
The callback signature is::
def condition_callback(event):
return True # returns True or False
Where B{event} is an L{Event} object,
and the return value is a boolean
(C{True} to dispatch the event, C{False} otherwise).
@type action: function
@param action: (Optional) Action callback function.
If specified, the event is handled by this callback instead of
being dispatched normally.
The callback signature is::
def action_callback(event):
pass # no return value
Where B{event} is an L{Event} object,
and the return value is a boolean
(C{True} to dispatch the event, C{False} otherwise).
@rtype: L{CodeBreakpoint}
@return: The code breakpoint object.
|
def main(cls, args=None):
if args is None:
args = sys.argv[1:]
try:
o = cls()
o.parseOptions(args)
except usage.UsageError as e:
print(o.getSynopsis())
print(o.getUsage())
print(str(e))
return 1
except CLIError as ce:
print(str(ce))
return ce.returnCode
return 0
|
Fill in command-line arguments from argv
|
def write_bit(self, b, pack=Struct('B').pack):
self._output_buffer.append(pack(True if b else False))
return self
|
Write a single bit. Convenience method for single bit args.
|
def cumulative_sum(self):
from .. import extensions
agg_op = "__builtin__cum_sum__"
return SArray(_proxy = self.__proxy__.builtin_cumulative_aggregate(agg_op))
|
Return the cumulative sum of the elements in the SArray.
Returns an SArray where each element in the output corresponds to the
sum of all the elements preceding and including it. The SArray is
expected to be of numeric type (int, float), or a numeric vector type.
Returns
-------
out : sarray[int, float, array.array]
Notes
-----
- Missing values are ignored while performing the cumulative
aggregate operation.
- For SArray's of type array.array, all entries are expected to
be of the same size.
Examples
--------
>>> sa = SArray([1, 2, 3, 4, 5])
>>> sa.cumulative_sum()
dtype: int
rows: 3
[1, 3, 6, 10, 15]
|
def is_uniform(self):
pages = self.pages
page = pages[0]
if page.is_scanimage or page.is_nih:
return True
try:
useframes = pages.useframes
pages.useframes = False
h = page.hash
for i in (1, 7, -1):
if pages[i].aspage().hash != h:
return False
except IndexError:
return False
finally:
pages.useframes = useframes
return True
|
Return if file contains a uniform series of pages.
|
def crypto_pwhash_scryptsalsa208sha256_ll(passwd, salt, n, r, p, dklen=64,
maxmem=SCRYPT_MAX_MEM):
ensure(isinstance(n, integer_types),
raising=TypeError)
ensure(isinstance(r, integer_types),
raising=TypeError)
ensure(isinstance(p, integer_types),
raising=TypeError)
ensure(isinstance(passwd, bytes),
raising=TypeError)
ensure(isinstance(salt, bytes),
raising=TypeError)
_check_memory_occupation(n, r, p, maxmem)
buf = ffi.new("uint8_t[]", dklen)
ret = lib.crypto_pwhash_scryptsalsa208sha256_ll(passwd, len(passwd),
salt, len(salt),
n, r, p,
buf, dklen)
ensure(ret == 0, 'Unexpected failure in key derivation',
raising=exc.RuntimeError)
return ffi.buffer(ffi.cast("char *", buf), dklen)[:]
|
Derive a cryptographic key using the ``passwd`` and ``salt``
given as input.
The work factor can be tuned by by picking different
values for the parameters
:param bytes passwd:
:param bytes salt:
:param bytes salt: *must* be *exactly* :py:const:`.SALTBYTES` long
:param int dklen:
:param int opslimit:
:param int n:
:param int r: block size,
:param int p: the parallelism factor
:param int maxmem: the maximum available memory available for scrypt's
operations
:rtype: bytes
|
def _maybe_extract(compressed_filename, directory, extension=None):
logger.info('Extracting {}'.format(compressed_filename))
if extension is None:
basename = os.path.basename(compressed_filename)
extension = basename.split('.', 1)[1]
if 'zip' in extension:
with zipfile.ZipFile(compressed_filename, "r") as zip_:
zip_.extractall(directory)
elif 'tar' in extension or 'tgz' in extension:
with tarfile.open(compressed_filename, mode='r') as tar:
tar.extractall(path=directory)
logger.info('Extracted {}'.format(compressed_filename))
|
Extract a compressed file to ``directory``.
Args:
compressed_filename (str): Compressed file.
directory (str): Extract to directory.
extension (str, optional): Extension of the file; Otherwise, attempts to extract extension
from the filename.
|
def fetch(self):
params = values.of({})
payload = self._version.fetch(
'GET',
self._uri,
params=params,
)
return InstalledAddOnExtensionInstance(
self._version,
payload,
installed_add_on_sid=self._solution['installed_add_on_sid'],
sid=self._solution['sid'],
)
|
Fetch a InstalledAddOnExtensionInstance
:returns: Fetched InstalledAddOnExtensionInstance
:rtype: twilio.rest.preview.marketplace.installed_add_on.installed_add_on_extension.InstalledAddOnExtensionInstance
|
def promote(self, name):
return PartitionName(**dict(list(name.dict.items()) + list(self.dict.items())))
|
Promote to a PartitionName by combining with a bundle Name.
|
def blockgen(blocks, shape):
iterables = [blockgen1d(l, s) for (l, s) in zip(blocks, shape)]
return product(*iterables)
|
Generate a list of slice tuples to be used by combine.
The tuples represent regions in an N-dimensional image.
:param blocks: a tuple of block sizes
:param shape: the shape of the n-dimensional array
:return: an iterator to the list of tuples of slices
Example:
>>> blocks = (500, 512)
>>> shape = (1040, 1024)
>>> for i in blockgen(blocks, shape):
... print i
(slice(0, 260, None), slice(0, 512, None))
(slice(0, 260, None), slice(512, 1024, None))
(slice(260, 520, None), slice(0, 512, None))
(slice(260, 520, None), slice(512, 1024, None))
(slice(520, 780, None), slice(0, 512, None))
(slice(520, 780, None), slice(512, 1024, None))
(slice(780, 1040, None), slice(0, 512, None))
(slice(780, 1040, None), slice(512, 1024, None))
|
def insert_query_m(data, table, conn, columns=None, db_type='mysql'):
if len(data) > 10000:
_chunk_query(data, 10000, columns, conn, table, db_type)
else:
if db_type == 'sqlite':
type_sign = '?'
else:
type_sign = '%s'
type_com = type_sign + ", "
type = type_com * (len(data[0]) - 1)
type = type + type_sign
if columns:
stmt = "INSERT INTO " + table + "( " + columns + ") VALUES (" + type + ")"
else:
stmt = "INSERT INTO " + table + " VALUES (" + type + ")"
cursor = conn.cursor()
cursor.executemany(stmt, data)
conn.commit()
|
Insert python list of tuples into SQL table
Args:
data (list): List of tuples
table (str): Name of database table
conn (connection object): database connection object
columns (str): String of column names to use if not assigned then all columns are presumed to be used [Optional]
db_type (str): If "sqlite" or "mysql"
|
async def exchange_declare(self):
await self.channel.exchange_declare(
self.exchange,
self.exchange_type,
durable=self.durable,
auto_delete=self.auto_delete,
no_wait=self.no_wait,
)
|
Override this method to change how a exchange is declared
|
def _closure_createlink(self):
linkparents = self._closure_model.objects.filter(
child__pk=self._closure_parent_pk
).values("parent", "depth")
linkchildren = self._closure_model.objects.filter(
parent__pk=self.pk
).values("child", "depth")
newlinks = [self._closure_model(
parent_id=p['parent'],
child_id=c['child'],
depth=p['depth']+c['depth']+1
) for p in linkparents for c in linkchildren]
self._closure_model.objects.bulk_create(newlinks)
|
Create a link in the closure tree.
|
def get_path_list(args, nni_config, trial_content, temp_nni_path):
path_list, host_list = parse_log_path(args, trial_content)
platform = nni_config.get_config('experimentConfig').get('trainingServicePlatform')
if platform == 'local':
print_normal('Log path: %s' % ' '.join(path_list))
return path_list
elif platform == 'remote':
path_list = copy_data_from_remote(args, nni_config, trial_content, path_list, host_list, temp_nni_path)
print_normal('Log path: %s' % ' '.join(path_list))
return path_list
else:
print_error('Not supported platform!')
exit(1)
|
get path list according to different platform
|
def or_where_pivot(self, column, operator=None, value=None):
return self.where_pivot(column, operator, value, "or")
|
Set an or where clause for a pivot table column.
:param column: The column of the where clause, can also be a QueryBuilder instance for sub where
:type column: str|Builder
:param operator: The operator of the where clause
:type operator: str
:param value: The value of the where clause
:type value: mixed
:return: self
:rtype: BelongsToMany
|
def getbr(self, name):
for br in self.showall():
if br.name == name:
return br
raise BridgeException("Bridge does not exist.")
|
Return a bridge object.
|
def delete_series(self, database=None, measurement=None, tags=None):
database = database or self._database
query_str = 'DROP SERIES'
if measurement:
query_str += ' FROM {0}'.format(quote_ident(measurement))
if tags:
tag_eq_list = ["{0}={1}".format(quote_ident(k), quote_literal(v))
for k, v in tags.items()]
query_str += ' WHERE ' + ' AND '.join(tag_eq_list)
self.query(query_str, database=database, method="POST")
|
Delete series from a database.
Series must be filtered by either measurement and tags.
This method cannot be used to delete all series, use
`drop_database` instead.
:param database: the database from which the series should be
deleted, defaults to client's current database
:type database: str
:param measurement: Delete all series from a measurement
:type measurement: str
:param tags: Delete all series that match given tags
:type tags: dict
|
def get_exception_message(instance):
args = getattr(instance, 'args', None)
if args:
return str(instance)
try:
return type(instance).__name__
except AttributeError:
return str(instance)
|
Try to get the exception message or the class name.
|
def create_section(
aggregation_summary, analysis_layer, postprocessor_fields,
section_header,
use_aggregation=True,
units_label=None,
use_rounding=True,
extra_component_args=None):
if use_aggregation:
return create_section_with_aggregation(
aggregation_summary, analysis_layer, postprocessor_fields,
section_header,
units_label=units_label,
use_rounding=use_rounding,
extra_component_args=extra_component_args)
else:
return create_section_without_aggregation(
aggregation_summary, analysis_layer, postprocessor_fields,
section_header,
units_label=units_label,
use_rounding=use_rounding,
extra_component_args=extra_component_args)
|
Create demographic section context.
:param aggregation_summary: Aggregation summary
:type aggregation_summary: qgis.core.QgsVectorlayer
:param analysis_layer: Analysis layer
:type analysis_layer: qgis.core.QgsVectorLayer
:param postprocessor_fields: Postprocessor fields to extract
:type postprocessor_fields: list[dict]
:param section_header: Section header text
:type section_header: qgis.core.QgsVectorLayer
:param use_aggregation: Flag, if using aggregation layer
:type use_aggregation: bool
:param units_label: Unit label for each column
:type units_label: list[str]
:param use_rounding: flag for rounding, affect number representations
:type use_rounding: bool
:param extra_component_args: extra_args passed from report component
metadata
:type extra_component_args: dict
:return: context for gender section
:rtype: dict
.. versionadded:: 4.0
|
def _check_image(self, image_nD):
self.input_image = load_image_from_disk(image_nD)
if len(self.input_image.shape) < 3:
raise ValueError('Input image must be atleast 3D')
if np.count_nonzero(self.input_image) == 0:
raise ValueError('Input image is completely filled with zeros! '
'Must be non-empty')
|
Sanity checks on the image data
|
def setPoint(self, targetTemp):
self.targetTemp = targetTemp
self.Integrator = 0
self.Derivator = 0
|
Initilize the setpoint of PID.
|
def make_retry_state(previous_attempt_number, delay_since_first_attempt,
last_result=None):
required_parameter_unset = (previous_attempt_number is _unset or
delay_since_first_attempt is _unset)
if required_parameter_unset:
raise _make_unset_exception(
'wait/stop',
previous_attempt_number=previous_attempt_number,
delay_since_first_attempt=delay_since_first_attempt)
from tenacity import RetryCallState
retry_state = RetryCallState(None, None, (), {})
retry_state.attempt_number = previous_attempt_number
if last_result is not None:
retry_state.outcome = last_result
else:
retry_state.set_result(None)
_set_delay_since_start(retry_state, delay_since_first_attempt)
return retry_state
|
Construct RetryCallState for given attempt number & delay.
Only used in testing and thus is extra careful about timestamp arithmetics.
|
def metarate(self, func, name='values'):
setattr(func, name, self.values)
return func
|
Set the values object to the function object's namespace
|
def tree2array(tree,
branches=None,
selection=None,
object_selection=None,
start=None,
stop=None,
step=None,
include_weight=False,
weight_name='weight',
cache_size=-1):
import ROOT
if not isinstance(tree, ROOT.TTree):
raise TypeError("tree must be a ROOT.TTree")
cobj = ROOT.AsCObject(tree)
if isinstance(branches, string_types):
flatten = branches
branches = [branches]
elif isinstance(branches, tuple):
if len(branches) not in (2, 3):
raise ValueError(
"invalid branch tuple: {0}. "
"A branch tuple must contain two elements "
"(branch_name, fill_value) or three elements "
"(branch_name, fill_value, length) "
"to yield a single value or truncate, respectively".format(branches))
flatten = branches[0]
branches = [branches]
else:
flatten = False
arr = _librootnumpy.root2array_fromtree(
cobj, branches, selection, object_selection,
start, stop, step,
include_weight,
weight_name,
cache_size)
if flatten:
return arr[flatten]
return arr
|
Convert a tree into a numpy structured array.
Convert branches of strings and basic types such as bool, int, float,
double, etc. as well as variable-length and fixed-length multidimensional
arrays and 1D or 2D vectors of basic types and strings. ``tree2array`` can
also create columns in the output array that are expressions involving the
TTree branches (i.e. ``'vect.Pt() / 1000'``) similar to ``TTree::Draw()``.
See the notes below for important details.
Parameters
----------
tree : ROOT TTree instance
The ROOT TTree to convert into an array.
branches : list of strings and tuples or a string or tuple, optional (default=None)
List of branches and expressions to include as columns of the array or
a single branch or expression in which case a nonstructured array is
returned. If None then include all branches that can be converted.
Branches or expressions that result in variable-length subarrays can be
truncated at a fixed length by using the tuple ``(branch_or_expression,
fill_value, length)`` or converted into a single value with
``(branch_or_expression, fill_value)`` where ``length==1`` is implied.
``fill_value`` is used when the original array is shorter than
``length``. This truncation is after any object selection performed
with the ``object_selection`` argument.
selection : str, optional (default=None)
Only include entries fulfilling this condition. If the condition
evaluates to multiple values per tree entry (e.g. conditions on array
branches) then an entry will be included if the condition evaluates to
true for at least one array element.
object_selection : dict, optional (default=None)
A dictionary mapping selection strings to branch names or lists of
branch names. Only array elements passing the selection strings will be
included in the output array per entry in the tree. The branches
specified must be variable-length array-type branches and the length of
the selection and branches it acts on must match for each tree entry.
For example ``object_selection={'a > 0': ['a', 'b']}`` will include all
elements of 'a' and corresponding elements of 'b' where 'a > 0' for
each tree entry. 'a' and 'b' must have the same length in every tree
entry.
start, stop, step: int, optional (default=None)
The meaning of the ``start``, ``stop`` and ``step`` parameters is the
same as for Python slices. If a range is supplied (by setting some of
the ``start``, ``stop`` or ``step`` parameters), only the entries in
that range and fulfilling the ``selection`` condition (if defined) are
used.
include_weight : bool, optional (default=False)
Include a column containing the tree weight ``TTree::GetWeight()``.
Note that this will be the same value for all entries unless the tree
is actually a TChain containing multiple trees with different weights.
weight_name : str, optional (default='weight')
The field name for the weight column if ``include_weight=True``.
cache_size : int, optional (default=-1)
Set the size (in bytes) of the TTreeCache used while reading a TTree. A
value of -1 uses ROOT's default cache size. A value of 0 disables the
cache.
Notes
-----
Types are converted according to the following table:
.. _conversion_table:
======================== ===============================
ROOT NumPy
======================== ===============================
``Bool_t`` ``np.bool``
``Char_t`` ``np.int8``
``UChar_t`` ``np.uint8``
``Short_t`` ``np.int16``
``UShort_t`` ``np.uint16``
``Int_t`` ``np.int32``
``UInt_t`` ``np.uint32``
``Float_t`` ``np.float32``
``Double_t`` ``np.float64``
``Long64_t`` ``np.int64``
``ULong64_t`` ``np.uint64``
``<type>[2][3]...`` ``(<nptype>, (2, 3, ...))``
``<type>[nx][2]...`` ``np.object``
``string`` ``np.object``
``vector<t>`` ``np.object``
``vector<vector<t> >`` ``np.object``
======================== ===============================
* Variable-length arrays (such as ``x[nx][2]``) and vectors (such as
``vector<int>``) are converted to NumPy arrays of the corresponding
types.
* Fixed-length arrays are converted to fixed-length NumPy array fields.
**Branches with different lengths:**
Note that when converting trees that have branches of different lengths
into numpy arrays, the shorter branches will be extended to match the
length of the longest branch by repeating their last values. If all
requested branches are shorter than the longest branch in the tree, this
will result in a "read failure" since beyond the end of the longest
requested branch no additional bytes will be read from the file and
root_numpy is unable to distinguish this from other ROOT errors that result
in no bytes being read. In this case, explicitly set the ``stop`` argument
to the length of the longest requested branch.
See Also
--------
root2array
array2root
array2tree
|
def load_report(identifier=None):
path = os.path.join(
report_dir(),
identifier + '.pyireport'
)
return ProfilerSession.load(path)
|
Returns the session referred to by identifier
|
def getLibraryFiles(self, engineRoot, delimiter=' '):
return delimiter.join(self.resolveRoot(self.libs, engineRoot))
|
Returns the list of library files for this library, joined using the specified delimiter
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.