code
stringlengths 51
2.38k
| docstring
stringlengths 4
15.2k
|
---|---|
def _normalize_value_ms(cls, value):
value = round(value / 1000) * 1000
sorted_units = sorted(cls.UNITS_IN_MILLISECONDS.items(),
key=lambda x: x[1], reverse=True)
for unit, unit_in_ms in sorted_units:
unit_value = value / unit_in_ms
if unit_value.is_integer():
return int(unit_value), unit
return value, MILLISECOND
|
Normalize a value in ms to the largest unit possible without decimal places.
Note that this ignores fractions of a second and always returns a value _at least_
in seconds.
:return: the normalized value and unit name
:rtype: Tuple[Union[int, float], str]
|
def alerts(self):
endpoint = '/'.join((self.endpoint, self.id, 'alerts'))
return self.alertFactory.find(
endpoint=endpoint,
api_key=self.api_key,
)
|
Query for alerts attached to this incident.
|
def _format_default(client, value):
if isinstance(value, File):
return os.path.relpath(
str((client.workflow_path / value.path).resolve())
)
return value
|
Format default values.
|
def fft(a, n=None, axis=-1, norm=None):
output = mkl_fft.fft(a, n, axis)
if _unitary(norm):
output *= 1 / sqrt(output.shape[axis])
return output
|
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional *n*-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].
Parameters
----------
a : array_like
Input array, can be complex.
n : int, optional
Length of the transformed axis of the output.
If `n` is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If `n` is not given,
the length of the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
norm : {None, "ortho"}, optional
.. versionadded:: 1.10.0
Normalization mode (see `numpy.fft`). Default is None.
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
Raises
------
IndexError
if `axes` is larger than the last axis of `a`.
See Also
--------
numpy.fft : for definition of the DFT and conventions used.
ifft : The inverse of `fft`.
fft2 : The two-dimensional FFT.
fftn : The *n*-dimensional FFT.
rfftn : The *n*-dimensional FFT of real input.
fftfreq : Frequency bins for given FFT parameters.
Notes
-----
FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when `n` is a power of 2, and
the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in
the documentation for the `numpy.fft` module.
References
----------
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
machine calculation of complex Fourier series," *Math. Comput.*
19: 297-301.
Examples
--------
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([ -3.44505240e-16 +1.14383329e-17j,
8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()
In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the `numpy.fft` documentation.
|
def sign(self, msg, key):
h = hmac.HMAC(key, self.algorithm(), default_backend())
h.update(msg)
return h.finalize()
|
Create a signature over a message as defined in RFC7515 using a
symmetric key
:param msg: The message
:param key: The key
:return: A signature
|
def default_start():
(config, daemon, pidfile, startup, fork) = parsearg()
if config is None:
if os.path.isfile('/etc/vlcp.conf'):
config = '/etc/vlcp.conf'
else:
print('/etc/vlcp.conf is not found; start without configurations.')
elif not config:
config = None
main(config, startup, daemon, pidfile, fork)
|
Use `sys.argv` for starting parameters. This is the entry-point of `vlcp-start`
|
def add_context_menu_items(self, items, replace_items=False):
for label, action in items:
assert isinstance(label, basestring)
assert isinstance(action, basestring)
if replace_items:
self._context_menu_items = []
self._context_menu_items.extend(items)
self._listitem.addContextMenuItems(items, replace_items)
|
Adds context menu items. If replace_items is True all
previous context menu items will be removed.
|
def _assert_can_do_op(self, value):
if not is_scalar(value):
msg = "'value' must be a scalar, passed: {0}"
raise TypeError(msg.format(type(value).__name__))
|
Check value is valid for scalar op.
|
def pwgen(length=None):
if length is None:
length = random.choice(range(35, 45))
alphanumeric_chars = [
l for l in (string.ascii_letters + string.digits)
if l not in 'l0QD1vAEIOUaeiou']
random_generator = random.SystemRandom()
random_chars = [
random_generator.choice(alphanumeric_chars) for _ in range(length)]
return(''.join(random_chars))
|
Generate a random pasword.
|
def _unsubscribe_myself(self):
url = UNSUBSCRIBE_ENDPOINT
return self._session.query(url, method='GET', raw=True, stream=False)
|
Unsubscribe this base station for all events.
|
def make_frequency_series(vec):
if isinstance(vec, FrequencySeries):
return vec
if isinstance(vec, TimeSeries):
N = len(vec)
n = N/2+1
delta_f = 1.0 / N / vec.delta_t
vectilde = FrequencySeries(zeros(n, dtype=complex_same_precision_as(vec)),
delta_f=delta_f, copy=False)
fft(vec, vectilde)
return vectilde
else:
raise TypeError("Can only convert a TimeSeries to a FrequencySeries")
|
Return a frequency series of the input vector.
If the input is a frequency series it is returned, else if the input
vector is a real time series it is fourier transformed and returned as a
frequency series.
Parameters
----------
vector : TimeSeries or FrequencySeries
Returns
-------
Frequency Series: FrequencySeries
A frequency domain version of the input vector.
|
def create_args(line, namespace):
args = []
for arg in shlex.split(line):
if not arg:
continue
if arg[0] == '$':
var_name = arg[1:]
if var_name in namespace:
args.append((namespace[var_name]))
else:
raise Exception('Undefined variable referenced in command line: %s' % arg)
else:
args.append(arg)
return args
|
Expand any meta-variable references in the argument list.
|
def open(self, filename, mode='r', **kwargs):
if 'r' in mode and not self.backend.exists(filename):
raise FileNotFound(filename)
return self.backend.open(filename, mode, **kwargs)
|
Open the file and return a file-like object.
:param str filename: The storage root-relative filename
:param str mode: The open mode (``(r|w)b?``)
:raises FileNotFound: If trying to read a file that does not exists
|
def _get_queue_for_the_action(self, action):
mod = getattr(action, 'module_type', 'fork')
queues = list(self.q_by_mod[mod].items())
if not queues:
return (0, None)
self.rr_qid = (self.rr_qid + 1) % len(queues)
(worker_id, queue) = queues[self.rr_qid]
return (worker_id, queue)
|
Find action queue for the action depending on the module.
The id is found with action modulo on action id
:param a: the action that need action queue to be assigned
:type action: object
:return: worker id and queue. (0, None) if no queue for the module_type
:rtype: tuple
|
def search_associations_go(
subject_category=None,
object_category=None,
relation=None,
subject=None,
**kwargs):
go_golr_url = "http://golr.geneontology.org/solr/"
go_solr = pysolr.Solr(go_golr_url, timeout=5)
go_solr.get_session().headers['User-Agent'] = get_user_agent(caller_name=__name__)
return search_associations(subject_category,
object_category,
relation,
subject,
solr=go_solr,
field_mapping=goassoc_fieldmap(),
**kwargs)
|
Perform association search using Monarch golr
|
def print_token(self, token_node_index):
err_msg = "The given node is not a token node."
assert isinstance(self.nodes[token_node_index], TokenNode), err_msg
onset = self.nodes[token_node_index].onset
offset = self.nodes[token_node_index].offset
return self.text[onset:offset]
|
returns the string representation of a token.
|
def regexer_for_targets(targets):
for target in targets:
path, file_ext = os.path.splitext(target)
regexer = config.regexers[file_ext]
yield target, regexer
|
Pairs up target files with their correct regex
|
def write(self,
equities=None,
futures=None,
exchanges=None,
root_symbols=None,
equity_supplementary_mappings=None,
chunk_size=DEFAULT_CHUNK_SIZE):
if exchanges is None:
exchange_names = [
df['exchange']
for df in (equities, futures, root_symbols)
if df is not None
]
if exchange_names:
exchanges = pd.DataFrame({
'exchange': pd.concat(exchange_names).unique(),
})
data = self._load_data(
equities if equities is not None else pd.DataFrame(),
futures if futures is not None else pd.DataFrame(),
exchanges if exchanges is not None else pd.DataFrame(),
root_symbols if root_symbols is not None else pd.DataFrame(),
(
equity_supplementary_mappings
if equity_supplementary_mappings is not None
else pd.DataFrame()
),
)
self._real_write(
equities=data.equities,
equity_symbol_mappings=data.equities_mappings,
equity_supplementary_mappings=data.equity_supplementary_mappings,
futures=data.futures,
root_symbols=data.root_symbols,
exchanges=data.exchanges,
chunk_size=chunk_size,
)
|
Write asset metadata to a sqlite database.
Parameters
----------
equities : pd.DataFrame, optional
The equity metadata. The columns for this dataframe are:
symbol : str
The ticker symbol for this equity.
asset_name : str
The full name for this asset.
start_date : datetime
The date when this asset was created.
end_date : datetime, optional
The last date we have trade data for this asset.
first_traded : datetime, optional
The first date we have trade data for this asset.
auto_close_date : datetime, optional
The date on which to close any positions in this asset.
exchange : str
The exchange where this asset is traded.
The index of this dataframe should contain the sids.
futures : pd.DataFrame, optional
The future contract metadata. The columns for this dataframe are:
symbol : str
The ticker symbol for this futures contract.
root_symbol : str
The root symbol, or the symbol with the expiration stripped
out.
asset_name : str
The full name for this asset.
start_date : datetime, optional
The date when this asset was created.
end_date : datetime, optional
The last date we have trade data for this asset.
first_traded : datetime, optional
The first date we have trade data for this asset.
exchange : str
The exchange where this asset is traded.
notice_date : datetime
The date when the owner of the contract may be forced
to take physical delivery of the contract's asset.
expiration_date : datetime
The date when the contract expires.
auto_close_date : datetime
The date when the broker will automatically close any
positions in this contract.
tick_size : float
The minimum price movement of the contract.
multiplier: float
The amount of the underlying asset represented by this
contract.
exchanges : pd.DataFrame, optional
The exchanges where assets can be traded. The columns of this
dataframe are:
exchange : str
The full name of the exchange.
canonical_name : str
The canonical name of the exchange.
country_code : str
The ISO 3166 alpha-2 country code of the exchange.
root_symbols : pd.DataFrame, optional
The root symbols for the futures contracts. The columns for this
dataframe are:
root_symbol : str
The root symbol name.
root_symbol_id : int
The unique id for this root symbol.
sector : string, optional
The sector of this root symbol.
description : string, optional
A short description of this root symbol.
exchange : str
The exchange where this root symbol is traded.
equity_supplementary_mappings : pd.DataFrame, optional
Additional mappings from values of abitrary type to assets.
chunk_size : int, optional
The amount of rows to write to the SQLite table at once.
This defaults to the default number of bind params in sqlite.
If you have compiled sqlite3 with more bind or less params you may
want to pass that value here.
See Also
--------
zipline.assets.asset_finder
|
def namedb_is_name_zonefile_hash(cur, name, zonefile_hash):
select_query = 'SELECT COUNT(value_hash) FROM history WHERE history_id = ? AND value_hash = ?'
select_args = (name,zonefile_hash)
rows = namedb_query_execute(cur, select_query, select_args)
count = None
for r in rows:
count = r['COUNT(value_hash)']
break
return count > 0
|
Determine if a zone file hash was sent by a name.
Return True if so, false if not
|
def decode_mysql_literal(text):
if MYSQL_NULL_PATTERN.match(text):
return None
if MYSQL_BOOLEAN_PATTERN.match(text):
return text.lower() == "true"
if MYSQL_FLOAT_PATTERN.match(text):
return float(text)
if MYSQL_INT_PATTERN.match(text):
return int(text)
if MYSQL_STRING_PATTERN.match(text):
return decode_mysql_string_literal(text)
raise ValueError("Unable to decode given value: %r" % (text,))
|
Attempts to decode given MySQL literal into Python value.
:param text: Value to be decoded, as MySQL literal.
:type text: str
:return: Python version of the given MySQL literal.
:rtype: any
|
def importPreflibFile(self, fileName):
elecFileObj = open(fileName, 'r')
self.candMap, rankMaps, wmgMapsCounts, self.numVoters = prefpy_io.read_election_file(elecFileObj)
elecFileObj.close()
self.numCands = len(self.candMap.keys())
self.preferences = []
for i in range(0, len(rankMaps)):
wmgMap = self.genWmgMapFromRankMap(rankMaps[i])
self.preferences.append(Preference(wmgMap, wmgMapsCounts[i]))
|
Imports a preflib format file that contains all the information of a Profile. This function
will completely override all members of the current Profile object. Currently, we assume
that in an election where incomplete ordering are allowed, if a voter ranks only one
candidate, then the voter did not prefer any candidates over another. This may lead to some
discrepancies when importing and exporting a .toi preflib file or a .soi preflib file.
:ivar str fileName: The name of the input file to be imported.
|
def get_locale_choices(locale_dir):
file_name_s = os.listdir(locale_dir)
choice_s = []
for file_name in file_name_s:
if file_name.endswith(I18n.TT_FILE_EXT_STXT):
file_name_noext, _ = os.path.splitext(file_name)
if file_name_noext:
choice_s.append(file_name_noext)
choice_s = sorted(choice_s)
return choice_s
|
Get a list of locale file names in the given locale dir.
|
def __prepare_info_from_dicomdir_file(self, writedicomdirfile=True):
createdcmdir = True
dicomdirfile = os.path.join(self.dirpath, self.dicomdir_filename)
ftype = 'pickle'
if os.path.exists(dicomdirfile):
try:
dcmdirplus = misc.obj_from_file(dicomdirfile, ftype)
if dcmdirplus['version'] == __version__:
createdcmdir = False
dcmdir = dcmdirplus['filesinfo']
except Exception:
logger.debug('Found dicomdir.pkl with wrong version')
createdcmdir = True
if createdcmdir or self.force_create_dicomdir:
dcmdirplus = self._create_dicomdir_info()
dcmdir = dcmdirplus['filesinfo']
if (writedicomdirfile) and len(dcmdir) > 0:
try:
misc.obj_to_file(dcmdirplus, dicomdirfile, ftype)
except:
logger.warning('Cannot write dcmdir file')
traceback.print_exc()
dcmdir = dcmdirplus['filesinfo']
self.dcmdirplus = dcmdirplus
self.files_with_info = dcmdir
return dcmdir
|
Check if exists dicomdir file and load it or cerate it
dcmdir = get_dir(dirpath)
dcmdir: list with filenames, SeriesNumber and SliceLocation
|
def tilt_residual(params, data, mask):
bg = tilt_model(params, shape=data.shape)
res = (data - bg)[mask]
return res.flatten()
|
lmfit tilt residuals
|
def _try_to_compute_deterministic_class_id(cls, depth=5):
class_id = pickle.dumps(cls)
for _ in range(depth):
new_class_id = pickle.dumps(pickle.loads(class_id))
if new_class_id == class_id:
return hashlib.sha1(new_class_id).digest()
class_id = new_class_id
logger.warning(
"WARNING: Could not produce a deterministic class ID for class "
"{}".format(cls))
return hashlib.sha1(new_class_id).digest()
|
Attempt to produce a deterministic class ID for a given class.
The goal here is for the class ID to be the same when this is run on
different worker processes. Pickling, loading, and pickling again seems to
produce more consistent results than simply pickling. This is a bit crazy
and could cause problems, in which case we should revert it and figure out
something better.
Args:
cls: The class to produce an ID for.
depth: The number of times to repeatedly try to load and dump the
string while trying to reach a fixed point.
Returns:
A class ID for this class. We attempt to make the class ID the same
when this function is run on different workers, but that is not
guaranteed.
Raises:
Exception: This could raise an exception if cloudpickle raises an
exception.
|
def _get_float(data, position, dummy0, dummy1, dummy2):
end = position + 8
return _UNPACK_FLOAT(data[position:end])[0], end
|
Decode a BSON double to python float.
|
def apply_boundary_conditions(self, **kwargs):
polarval = kwargs[self._polar_angle]
azval = kwargs[self._azimuthal_angle]
polarval = self._polardist._domain.apply_conditions(polarval)
azval = self._azimuthaldist._domain.apply_conditions(azval)
polarval = self._bounds[self._polar_angle].apply_conditions(polarval)
azval = self._bounds[self._azimuthal_angle].apply_conditions(azval)
return {self._polar_angle: polarval, self._azimuthal_angle: azval}
|
Maps the given values to be within the domain of the azimuthal and
polar angles, before applying any other boundary conditions.
Parameters
----------
\**kwargs :
The keyword args must include values for both the azimuthal and
polar angle, using the names they were initilialized with. For
example, if `polar_angle='theta'` and `azimuthal_angle=`phi`, then
the keyword args must be `theta={val1}, phi={val2}`.
Returns
-------
dict
A dictionary of the parameter names and the conditioned values.
|
def by_median_home_value(self,
lower=-1,
upper=2 ** 31,
zipcode_type=ZipcodeType.Standard,
sort_by=SimpleZipcode.median_home_value.name,
ascending=False,
returns=DEFAULT_LIMIT):
return self.query(
median_home_value_lower=lower,
median_home_value_upper=upper,
sort_by=sort_by, zipcode_type=zipcode_type,
ascending=ascending, returns=returns,
)
|
Search zipcode information by median home value.
|
def pivot_wavelength(self):
wl = self.registry._pivot_wavelengths.get((self.telescope, self.band))
if wl is not None:
return wl
wl = self.calc_pivot_wavelength()
self.registry.register_pivot_wavelength(self.telescope, self.band, wl)
return wl
|
Get the bandpass' pivot wavelength.
Unlike calc_pivot_wavelength(), this function will use a cached
value if available.
|
def get_last(self):
query = self.table().where('batch', self.get_last_batch_number())
return query.order_by('migration', 'desc').get()
|
Get the last migration batch.
:rtype: list
|
def add(self, document_data, document_id=None):
if document_id is None:
parent_path, expected_prefix = self._parent_info()
document_pb = document_pb2.Document()
created_document_pb = self._client._firestore_api.create_document(
parent_path,
collection_id=self.id,
document_id=None,
document=document_pb,
mask=None,
metadata=self._client._rpc_metadata,
)
new_document_id = _helpers.get_doc_id(created_document_pb, expected_prefix)
document_ref = self.document(new_document_id)
set_result = document_ref.set(document_data)
return set_result.update_time, document_ref
else:
document_ref = self.document(document_id)
write_result = document_ref.create(document_data)
return write_result.update_time, document_ref
|
Create a document in the Firestore database with the provided data.
Args:
document_data (dict): Property names and values to use for
creating the document.
document_id (Optional[str]): The document identifier within the
current collection. If not provided, an ID will be
automatically assigned by the server (the assigned ID will be
a random 20 character string composed of digits,
uppercase and lowercase letters).
Returns:
Tuple[google.protobuf.timestamp_pb2.Timestamp, \
~.firestore_v1beta1.document.DocumentReference]: Pair of
* The ``update_time`` when the document was created (or
overwritten).
* A document reference for the created document.
Raises:
~google.cloud.exceptions.Conflict: If ``document_id`` is provided
and the document already exists.
|
def query_by_student(self, student_id, end_time=None, start_time=None):
path = {}
data = {}
params = {}
path["student_id"] = student_id
if start_time is not None:
params["start_time"] = start_time
if end_time is not None:
params["end_time"] = end_time
self.logger.debug("GET /api/v1/audit/grade_change/students/{student_id} with query params: {params} and form data: {data}".format(params=params, data=data, **path))
return self.generic_request("GET", "/api/v1/audit/grade_change/students/{student_id}".format(**path), data=data, params=params, all_pages=True)
|
Query by student.
List grade change events for a given student.
|
def retrieve_customer(self, handle, with_additional_data=False):
response = self.request(E.retrieveCustomerRequest(
E.handle(handle),
E.withAdditionalData(int(with_additional_data)),
))
return response.as_model(Customer)
|
Retrieve information of an existing customer.
|
def clear_list_value(self, value):
if not value:
return self.empty_value
if self.clean_empty:
value = [v for v in value if v]
return value or self.empty_value
|
Clean the argument value to eliminate None or Falsy values if needed.
|
def _wire_events(self):
self._device.on_open += self._on_open
self._device.on_close += self._on_close
self._device.on_read += self._on_read
self._device.on_write += self._on_write
self._zonetracker.on_fault += self._on_zone_fault
self._zonetracker.on_restore += self._on_zone_restore
|
Wires up the internal device events.
|
def reward_bonus(self, assignment_id, amount, reason):
try:
return self.mturkservice.grant_bonus(assignment_id, amount, reason)
except MTurkServiceException as ex:
logger.exception(str(ex))
|
Reward the Turker for a specified assignment with a bonus.
|
def inspect_select_calculation(self):
try:
node = self.ctx.cif_select
self.ctx.cif = node.outputs.cif
except exceptions.NotExistent:
self.report('aborting: CifSelectCalculation<{}> did not return the required cif output'.format(node.uuid))
return self.exit_codes.ERROR_CIF_SELECT_FAILED
|
Inspect the result of the CifSelectCalculation, verifying that it produced a CifData output node.
|
def from_chords(self, chords, duration=1):
tun = self.get_tuning()
def add_chord(chord, duration):
if type(chord) == list:
for c in chord:
add_chord(c, duration * 2)
else:
chord = NoteContainer().from_chord(chord)
if tun:
chord = tun.find_chord_fingering(chord,
return_best_as_NoteContainer=True)
if not self.add_notes(chord, duration):
dur = self.bars[-1].value_left()
self.add_notes(chord, dur)
self.add_notes(chord, value.subtract(duration, dur))
for c in chords:
if c is not None:
add_chord(c, duration)
else:
self.add_notes(None, duration)
return self
|
Add chords to the Track.
The given chords should be a list of shorthand strings or list of
list of shorthand strings, etc.
Each sublist divides the value by 2.
If a tuning is set, chords will be expanded so they have a proper
fingering.
Example:
>>> t = Track().from_chords(['C', ['Am', 'Dm'], 'G7', 'C#'], 1)
|
def extract_coverage(self, container: Container) -> FileLineSet:
uid = container.uid
r = self.__api.post('containers/{}/read-coverage'.format(uid))
if r.status_code == 200:
return FileLineSet.from_dict(r.json())
self.__api.handle_erroneous_response(r)
|
Extracts a report of the lines that have been executed since the last
time that a coverage report was extracted.
|
def size_r_img_inches(width, height):
aspect_ratio = height / (1.0 * width)
return R_IMAGE_SIZE, round(aspect_ratio * R_IMAGE_SIZE, 2)
|
Compute the width and height for an R image for display in IPython
Neight width nor height can be null but should be integer pixel values > 0.
Returns a tuple of (width, height) that should be used by ggsave in R to
produce an appropriately sized jpeg/png/pdf image with the right aspect
ratio. The returned values are in inches.
|
def package_releases(self, project_name):
try:
return self._connection.package_releases(project_name)
except Exception as err:
raise PyPIClientError(err)
|
Retrieve the versions from PyPI by ``project_name``.
Args:
project_name (str): The name of the project we wish to retrieve
the versions of.
Returns:
list: Of string versions.
|
def get_remote_port_id_local(self, tlv_data):
ret, parsed_val = self._check_common_tlv_format(
tlv_data, "Local:", "Port ID TLV")
if not ret:
return None
local = parsed_val[1].split('\n')
return local[0].strip()
|
Returns Remote Port ID Local from the TLV.
|
def _generate_badges(self):
daycount = self._stats.downloads_per_day
day = self._generate_badge('Downloads', '%d/day' % daycount)
self._badges['per-day'] = day
weekcount = self._stats.downloads_per_week
if weekcount is None:
return
week = self._generate_badge('Downloads', '%d/week' % weekcount)
self._badges['per-week'] = week
monthcount = self._stats.downloads_per_month
if monthcount is None:
return
month = self._generate_badge('Downloads', '%d/month' % monthcount)
self._badges['per-month'] = month
|
Generate download badges. Append them to ``self._badges``.
|
def _init_add_goid_alt(self):
goid_alts = set()
go2cnt_add = {}
aspect_counts = self.aspect_counts
gocnts = self.gocnts
go2obj = self.go2obj
for go_id, cnt in gocnts.items():
goobj = go2obj[go_id]
assert cnt, "NO TERM COUNTS FOR {GO}".format(GO=goobj.item_id)
if go_id != goobj.item_id:
go2cnt_add[goobj.item_id] = cnt
goid_alts |= goobj.alt_ids
aspect_counts[goobj.namespace] += cnt
for goid, cnt in go2cnt_add.items():
gocnts[goid] = cnt
for alt_goid in goid_alts.difference(gocnts):
goobj = go2obj[alt_goid]
cnt = gocnts[goobj.item_id]
assert cnt, "NO TERM COUNTS FOR ALT_ID({GOa}) ID({GO}): {NAME}".format(
GOa=alt_goid, GO=goobj.item_id, NAME=goobj.name)
gocnts[alt_goid] = cnt
|
Add alternate GO IDs to term counts.
|
def on_resolve(target, func, *args, **kwargs):
return _register_hook(ON_RESOLVE, target, func, *args, **kwargs)
|
Register a resolution hook.
|
def toggleDrawingSensitive(self, drawing=True):
self.actions.editMode.setEnabled(not drawing)
if not drawing and self.beginner():
print('Cancel creation.')
self.canvas.setEditing(True)
self.canvas.restoreCursor()
self.actions.create.setEnabled(True)
|
In the middle of drawing, toggling between modes should be disabled.
|
def angle2vecs(vec1, vec2):
dot = np.dot(vec1, vec2)
vec1_modulus = np.sqrt(np.multiply(vec1, vec1).sum())
vec2_modulus = np.sqrt(np.multiply(vec2, vec2).sum())
if (vec1_modulus * vec2_modulus) == 0:
cos_angle = 1
else: cos_angle = dot / (vec1_modulus * vec2_modulus)
return math.degrees(acos(cos_angle))
|
angle between two vectors
|
def _update_prx(self):
qx = scipy.ones(N_CODON, dtype='float')
for j in range(3):
for w in range(N_NT):
qx[CODON_NT[j][w]] *= self.phi[w]
frx = self.pi_codon**self.beta
self.prx = frx * qx
with scipy.errstate(divide='raise', under='raise', over='raise',
invalid='raise'):
for r in range(self.nsites):
self.prx[r] /= self.prx[r].sum()
|
Update `prx` from `phi`, `pi_codon`, and `beta`.
|
def fmt_transition(t):
return "Transition({} {} {})".format(
fmt_mechanism(t.cause_indices, t.node_labels),
ARROW_RIGHT,
fmt_mechanism(t.effect_indices, t.node_labels))
|
Format a |Transition|.
|
def delete(self):
response = self._client._request('DELETE', self._client._build_url('service', service_id=self.id))
if response.status_code != requests.codes.no_content:
raise APIError("Could not delete service: {} with id {}".format(self.name, self.id))
|
Delete this service.
:raises APIError: if delete was not succesfull.
|
def update(self, **args):
data = json.dumps(args)
r = requests.put(
"https://kippt.com/api/clips/%s" % (self.id),
headers=self.kippt.header,
data=data)
return (r.json())
|
Updates a Clip.
Parameters:
- args Dictionary of other fields
Accepted fields can be found here:
https://github.com/kippt/api-documentation/blob/master/objects/clip.md
|
def _collapse_header(self, header):
out = []
for i, h in enumerate(header):
if h.startswith(self._col_quals):
out[-1].append(i)
else:
out.append([i])
return out
|
Combine header columns into related groups.
|
def set(self, code):
if self.update:
self.vertices_substitution_dict, self.edges_substitution_dict, self.match_info\
= self.match.get_variables_substitution_dictionaries(self.g, self.matching_graph)
try:
self.matching_graph = self.__apply_code_to_graph(code, self.matching_graph)
except:
pass
try:
code = self.__substitute_names_in_code(code)
self.g = self.__apply_code_to_graph(code, self.g)
except:
pass
return True
|
Executes the code and apply it to the self.g
:param code: the LISP code to execute
:return: True/False, depending on the result of the LISP code
|
def delete_session(self, ticket):
assert isinstance(self.session_storage_adapter, CASSessionAdapter)
logging.debug('[CAS] Deleting session for ticket {}'.format(ticket))
self.session_storage_adapter.delete(ticket)
|
Delete a session record associated with a service ticket.
|
def display_arr(screen, arr, video_size, transpose):
if transpose:
pyg_img = pygame.surfarray.make_surface(arr.swapaxes(0, 1))
else:
pyg_img = arr
pyg_img = pygame.transform.scale(pyg_img, video_size)
screen.blit(pyg_img, (0, 0))
|
Display an image to the pygame screen.
Args:
screen (pygame.Surface): the pygame surface to write frames to
arr (np.ndarray): numpy array representing a single frame of gameplay
video_size (tuple): the size to render the frame as
transpose (bool): whether to transpose the frame before displaying
Returns:
None
|
def _caveat_v1_to_dict(c):
serialized = {}
if len(c.caveat_id) > 0:
serialized['cid'] = c.caveat_id
if c.verification_key_id:
serialized['vid'] = utils.raw_urlsafe_b64encode(
c.verification_key_id).decode('utf-8')
if c.location:
serialized['cl'] = c.location
return serialized
|
Return a caveat as a dictionary for export as the JSON
macaroon v1 format.
|
def _sumDiceRolls(self, rollList):
if isinstance(rollList, RollList):
self.rolls.append(rollList)
return rollList.sum()
else:
return rollList
|
convert from dice roll structure to a single integer result
|
def _peek(self, *types):
tok = self._scanner.token(self._pos, types)
return tok[2]
|
Returns the token type for lookahead; if there are any args
then the list of args is the set of token types to allow
|
def remove_from_tor(self, protocol):
r = yield protocol.queue_command('DEL_ONION %s' % self.hostname[:-6])
if r.strip() != 'OK':
raise RuntimeError('Failed to remove hidden service: "%s".' % r)
|
Returns a Deferred which fires with None
|
def remove_autosave_file(self, fileinfo):
filename = fileinfo.filename
if filename not in self.name_mapping:
return
autosave_filename = self.name_mapping[filename]
try:
os.remove(autosave_filename)
except EnvironmentError as error:
action = (_('Error while removing autosave file {}')
.format(autosave_filename))
msgbox = AutosaveErrorDialog(action, error)
msgbox.exec_if_enabled()
del self.name_mapping[filename]
self.stack.sig_option_changed.emit(
'autosave_mapping', self.name_mapping)
logger.debug('Removing autosave file %s', autosave_filename)
|
Remove autosave file for specified file.
This function also updates `self.autosave_mapping` and clears the
`changed_since_autosave` flag.
|
def show_instance(name, call=None):
if call != 'action':
raise SaltCloudException(
'The show_instance action must be called with -a or --action.'
)
node_id = get_linode_id_from_name(name)
node_data = get_linode(kwargs={'linode_id': node_id})
ips = get_ips(node_id)
state = int(node_data['STATUS'])
ret = {'id': node_data['LINODEID'],
'image': node_data['DISTRIBUTIONVENDOR'],
'name': node_data['LABEL'],
'size': node_data['TOTALRAM'],
'state': _get_status_descr_by_id(state),
'private_ips': ips['private_ips'],
'public_ips': ips['public_ips']}
return ret
|
Displays details about a particular Linode VM. Either a name or a linode_id must
be provided.
.. versionadded:: 2015.8.0
name
The name of the VM for which to display details.
CLI Example:
.. code-block:: bash
salt-cloud -a show_instance vm_name
.. note::
The ``image`` label only displays information about the VM's distribution vendor,
such as "Debian" or "RHEL" and does not display the actual image name. This is
due to a limitation of the Linode API.
|
def is_in_current_deployment(server, extra_prefix=""):
return re.match(r"^%s" % '-'.join([DEFAULT_PREFIX, extra_prefix]),
server.name) is not None
|
Check if an existing server in the system take part to
the current deployment
|
def object_factory(api, api_version, kind):
resource_list = api.resource_list(api_version)
resource = next((resource for resource in resource_list["resources"] if resource["kind"] == kind), None)
base = NamespacedAPIObject if resource["namespaced"] else APIObject
return type(kind, (base,), {
"version": api_version,
"endpoint": resource["name"],
"kind": kind
})
|
Dynamically builds a Python class for the given Kubernetes object in an API.
For example:
api = pykube.HTTPClient(...)
NetworkPolicy = pykube.object_factory(api, "networking.k8s.io/v1", "NetworkPolicy")
This enables construction of any Kubernetes object kind without explicit support
from pykube.
Currently, the HTTPClient passed to this function will not be bound to the returned type.
It is planned to fix this, but in the mean time pass it as you would normally.
|
def remove_diagonal(S):
if not isspmatrix_csr(S):
raise TypeError('expected csr_matrix')
if S.shape[0] != S.shape[1]:
raise ValueError('expected square matrix, shape=%s' % (S.shape,))
S = coo_matrix(S)
mask = S.row != S.col
S.row = S.row[mask]
S.col = S.col[mask]
S.data = S.data[mask]
return S.tocsr()
|
Remove the diagonal of the matrix S.
Parameters
----------
S : csr_matrix
Square matrix
Returns
-------
S : csr_matrix
Strength matrix with the diagonal removed
Notes
-----
This is needed by all the splitting routines which operate on matrix graphs
with an assumed zero diagonal
Examples
--------
>>> from pyamg.gallery import poisson
>>> from pyamg.util.utils import remove_diagonal
>>> A = poisson( (4,), format='csr' )
>>> C = remove_diagonal(A)
>>> C.todense()
matrix([[ 0., -1., 0., 0.],
[-1., 0., -1., 0.],
[ 0., -1., 0., -1.],
[ 0., 0., -1., 0.]])
|
def size(self):
import tensorflow as tf
if self._size is None:
self._size = 0
options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
for tfexample_file in self.files:
self._size += sum(1 for x
in tf.python_io.tf_record_iterator(tfexample_file, options=options))
return self._size
|
The number of instances in the data. If the underlying data source changes,
it may be outdated.
|
def insert(self, index, item):
super(ObservableList, self).insert(index, item)
length = len(self)
if index >= length:
index = length - 1
elif index < 0:
index += length - 1
if index < 0:
index = 0
self._notify_add_at(index)
|
See list.insert.
|
def expectation(self, operator: Union[PauliTerm, PauliSum]):
if not isinstance(operator, PauliSum):
operator = PauliSum([operator])
return sum(_term_expectation(self.wf, term, n_qubits=self.n_qubits) for term in operator)
|
Compute the expectation of an operator.
:param operator: The operator
:return: The operator's expectation value
|
def pp(i, base=1024):
degree = 0
pattern = "%4d %s"
while i > base:
pattern = "%7.2f %s"
i = i / float(base)
degree += 1
scales = ['B', 'KB', 'MB', 'GB', 'TB', 'EB']
return pattern % (i, scales[degree])
|
Pretty-print the integer `i` as a human-readable size representation.
|
def _original_images(self, **kwargs):
def test(image):
if not image.original:
return False
for filter, value in kwargs.items():
if getattr(image, filter) != value:
return False
return True
if Session.object_session(self.instance) is None:
images = []
for image, store in self._stored_images:
if test(image):
images.append(image)
state = instance_state(self.instance)
try:
added = state.committed_state[self.attr.key].added_items
except KeyError:
pass
else:
for image in added:
if test(image):
images.append(image)
if self.session:
for image in self.session.new:
if test(image):
images.append(image)
else:
query = self.filter_by(original=True, **kwargs)
images = query.all()
return images
|
A list of the original images.
:returns: A list of the original images.
:rtype: :class:`typing.Sequence`\ [:class:`Image`]
|
def base64_b64decode(instr):
decoded = base64.b64decode(salt.utils.stringutils.to_bytes(instr))
try:
return salt.utils.stringutils.to_unicode(
decoded,
encoding='utf8' if salt.utils.platform.is_windows() else None
)
except UnicodeDecodeError:
return decoded
|
Decode a base64-encoded string using the "modern" Python interface.
|
async def get_analog_map(self):
current_time = time.time()
if self.query_reply_data.get(
PrivateConstants.ANALOG_MAPPING_RESPONSE) is None:
await self._send_sysex(PrivateConstants.ANALOG_MAPPING_QUERY)
while self.query_reply_data.get(
PrivateConstants.ANALOG_MAPPING_RESPONSE) is None:
elapsed_time = time.time()
if elapsed_time - current_time > 4:
return None
await asyncio.sleep(self.sleep_tune)
return self.query_reply_data.get(
PrivateConstants.ANALOG_MAPPING_RESPONSE)
|
This method requests a Firmata analog map query and returns the results.
:returns: An analog map response or None if a timeout occurs
|
def list_documents(self, limit=None):
limit_str = ''
if limit:
try:
limit_str = 'LIMIT {}'.format(int(limit))
except (TypeError, ValueError):
pass
query = ('SELECT identifier FROM identifier_index ' + limit_str)
for row in self.backend.library.database.connection.execute(query).fetchall():
yield row['identifier']
|
Generates vids of all indexed identifiers.
Args:
limit (int, optional): If not empty, the maximum number of results to return
Generates:
str: vid of the document.
|
def reset(self):
"Initialises all needed variables to default values"
self.metadata = {}
self.items = []
self.spine = []
self.guide = []
self.pages = []
self.toc = []
self.bindings = []
self.IDENTIFIER_ID = 'id'
self.FOLDER_NAME = 'EPUB'
self._id_html = 0
self._id_image = 0
self._id_static = 0
self.title = ''
self.language = 'en'
self.direction = None
self.templates = {
'ncx': NCX_XML,
'nav': NAV_XML,
'chapter': CHAPTER_XML,
'cover': COVER_XML
}
self.add_metadata('OPF', 'generator', '', {
'name': 'generator', 'content': 'Ebook-lib %s' % '.'.join([str(s) for s in VERSION])
})
self.set_identifier(str(uuid.uuid4()))
self.prefixes = []
self.namespaces = {}
|
Initialises all needed variables to default values
|
def previous(self, day_of_week=None):
if day_of_week is None:
day_of_week = self.day_of_week
if day_of_week < SUNDAY or day_of_week > SATURDAY:
raise ValueError("Invalid day of week")
dt = self.subtract(days=1)
while dt.day_of_week != day_of_week:
dt = dt.subtract(days=1)
return dt
|
Modify to the previous occurrence of a given day of the week.
If no day_of_week is provided, modify to the previous occurrence
of the current day of the week. Use the supplied consts
to indicate the desired day_of_week, ex. pendulum.MONDAY.
:param day_of_week: The previous day of week to reset to.
:type day_of_week: int or None
:rtype: Date
|
def AddMapping(self, filename, new_mapping):
for field in self._REQUIRED_MAPPING_FIELDS:
if field not in new_mapping:
raise problems.InvalidMapping(field)
if filename in self.GetKnownFilenames():
raise problems.DuplicateMapping(filename)
self._file_mapping[filename] = new_mapping
|
Adds an entry to the list of known filenames.
Args:
filename: The filename whose mapping is being added.
new_mapping: A dictionary with the mapping to add. Must contain all
fields in _REQUIRED_MAPPING_FIELDS.
Raises:
DuplicateMapping if the filename already exists in the mapping
InvalidMapping if not all required fields are present
|
def format_file_path(filepath):
try:
is_windows_network_mount = WINDOWS_NETWORK_MOUNT_PATTERN.match(filepath)
filepath = os.path.realpath(os.path.abspath(filepath))
filepath = re.sub(BACKSLASH_REPLACE_PATTERN, '/', filepath)
is_windows_drive = WINDOWS_DRIVE_PATTERN.match(filepath)
if is_windows_drive:
filepath = filepath.capitalize()
if is_windows_network_mount:
filepath = '/' + filepath
except:
pass
return filepath
|
Formats a path as absolute and with the correct platform separator.
|
def _validate_auth(self, path, obj, _):
errs = []
if obj.type == 'apiKey':
if not obj.passAs:
errs.append('need "passAs" for apiKey')
if not obj.keyname:
errs.append('need "keyname" for apiKey')
elif obj.type == 'oauth2':
if not obj.grantTypes:
errs.append('need "grantTypes" for oauth2')
return path, obj.__class__.__name__, errs
|
validate that apiKey and oauth2 requirements
|
def concretize_load_idx(self, idx, strategies=None):
if isinstance(idx, int):
return [idx]
elif not self.state.solver.symbolic(idx):
return [self.state.solver.eval(idx)]
strategies = self.load_strategies if strategies is None else strategies
return self._apply_concretization_strategies(idx, strategies, 'load')
|
Concretizes a load index.
:param idx: An expression for the index.
:param strategies: A list of concretization strategies (to override the default).
:param min_idx: Minimum value for a concretized index (inclusive).
:param max_idx: Maximum value for a concretized index (exclusive).
:returns: A list of concrete indexes.
|
def update_ff(self, ff, mol2=False, force_ff_assign=False):
aff = False
if force_ff_assign:
aff = True
elif 'assigned_ff' not in self.tags:
aff = True
elif not self.tags['assigned_ff']:
aff = True
if aff:
self.assign_force_field(ff, mol2=mol2)
return
|
Manages assigning the force field parameters.
The aim of this method is to avoid unnecessary assignment of the
force field.
Parameters
----------
ff: BuffForceField
The force field to be used for scoring.
mol2: bool, optional
If true, mol2 style labels will also be used.
force_ff_assign: bool, optional
If true, the force field will be completely reassigned, ignoring the
cached parameters.
|
def Fierz_to_Bern_chrom(C, dd, parameters):
e = sqrt(4 * pi * parameters['alpha_e'])
gs = sqrt(4 * pi * parameters['alpha_s'])
if dd == 'sb' or dd == 'db':
mq = parameters['m_b']
elif dd == 'ds':
mq = parameters['m_s']
else:
KeyError("Not sure what to do with quark mass for flavour {}".format(dd))
return {
'7gamma' + dd : gs**2 / e / mq * C['F7gamma' + dd ],
'8g' + dd : gs / mq * C['F8g' + dd ],
'7pgamma' + dd : gs**2 / e /mq * C['F7pgamma' + dd],
'8pg' + dd : gs / mq * C['F8pg' + dd]
}
|
From Fierz to chromomagnetic Bern basis for Class V.
dd should be of the form 'sb', 'ds' etc.
|
def is_cached(self, link):
if link is None:
return False
elif hasattr(link, 'uri'):
return link.uri in self.id_map
else:
return link in self.id_map
|
Returns whether the current navigator is cached. Intended
to be overwritten and customized by subclasses.
|
def reconnect(connection):
if isinstance(connection, FflConnection):
return type(connection)(connection.ffldir)
kw = {'context': connection._context} if connection.port != 80 else {}
return connection.__class__(connection.host, port=connection.port, **kw)
|
Open a new datafind connection based on an existing connection
This is required because of https://git.ligo.org/lscsoft/glue/issues/1
Parameters
----------
connection : :class:`~gwdatafind.http.HTTPConnection` or `FflConnection`
a connection object (doesn't need to be open)
Returns
-------
newconn : :class:`~gwdatafind.http.HTTPConnection` or `FflConnection`
the new open connection to the same `host:port` server
|
def write_csv_header(mol, csv_writer):
line = []
line.append('id')
line.append('status')
queryList = mol.properties.keys()
for queryLabel in queryList:
line.append(queryLabel)
csv_writer.writerow(line)
|
Write the csv header
|
def HasColumn(self, table_name, column_name):
if not self._connection:
raise IOError('Not opened.')
if not column_name:
return False
table_name = table_name.lower()
column_names = self._column_names_per_table.get(table_name, None)
if column_names is None:
column_names = []
self._cursor.execute(self._HAS_COLUMN_QUERY.format(table_name))
for row in self._cursor.fetchall():
if not row[1]:
continue
row_column_name = row[1]
if isinstance(row_column_name, bytes):
row_column_name = row_column_name.decode('utf-8')
column_names.append(row_column_name.lower())
self._column_names_per_table[table_name] = column_names
column_name = column_name.lower()
return column_name in column_names
|
Determines if a specific column exists.
Args:
table_name (str): name of the table.
column_name (str): name of the column.
Returns:
bool: True if the column exists.
Raises:
IOError: if the database file is not opened.
OSError: if the database file is not opened.
|
def show_syspath(self):
editor = CollectionsEditor(parent=self)
editor.setup(sys.path, title="sys.path", readonly=True,
width=600, icon=ima.icon('syspath'))
self.dialog_manager.show(editor)
|
Show sys.path
|
async def restart_walk(self):
if not self._restartwalk:
self._restartwalk = True
await self.wait_for_send(FlowUpdaterNotification(self, FlowUpdaterNotification.STARTWALK))
|
Force a re-walk
|
def source(self, source):
BaseView.source.fset(self, source)
if self.main_pane:
self.main_pane.object = self.contents
self.label_pane.object = self.label
|
When the source gets updated, update the pane object
|
def _GetAuthCookie(self, auth_token):
continue_location = "http://localhost/"
args = {"continue": continue_location, "auth": auth_token}
req = self._CreateRequest("https://%s/_ah/login?%s" % (self.host, urllib.urlencode(args)))
try:
response = self.opener.open(req)
except urllib2.HTTPError, e:
response = e
if (response.code != 302 or
response.info()["location"] != continue_location):
raise urllib2.HTTPError(req.get_full_url(), response.code, response.msg, response.headers, response.fp)
self.authenticated = True
|
Fetches authentication cookies for an authentication token.
Args:
auth_token: The authentication token returned by ClientLogin.
Raises:
HTTPError: If there was an error fetching the authentication cookies.
|
def distribution(self, start=None, end=None, normalized=True, mask=None):
start, end, mask = self._check_boundaries(start, end, mask=mask)
counter = histogram.Histogram()
for start, end, _ in mask.iterperiods(value=True):
for t0, t1, value in self.iterperiods(start, end):
duration = utils.duration_to_number(
t1 - t0,
units='seconds',
)
try:
counter[value] += duration
except histogram.UnorderableElements as e:
counter = histogram.Histogram.from_dict(
dict(counter), key=hash)
counter[value] += duration
if normalized:
return counter.normalized()
else:
return counter
|
Calculate the distribution of values over the given time range from
`start` to `end`.
Args:
start (orderable, optional): The lower time bound of
when to calculate the distribution. By default, the
first time point will be used.
end (orderable, optional): The upper time bound of
when to calculate the distribution. By default, the
last time point will be used.
normalized (bool): If True, distribution will sum to
one. If False and the time values of the TimeSeries
are datetimes, the units will be seconds.
mask (:obj:`TimeSeries`, optional): A
domain on which to calculate the distribution.
Returns:
:obj:`Histogram` with the results.
|
def query(self, design, view, use_devmode=False, **kwargs):
design = self._mk_devmode(design, use_devmode)
itercls = kwargs.pop('itercls', View)
return itercls(self, design, view, **kwargs)
|
Query a pre-defined MapReduce view, passing parameters.
This method executes a view on the cluster. It accepts various
parameters for the view and returns an iterable object
(specifically, a :class:`~.View`).
:param string design: The design document
:param string view: The view function contained within the design
document
:param boolean use_devmode: Whether the view name should be
transformed into a development-mode view. See documentation
on :meth:`~.BucketManager.design_create` for more
explanation.
:param kwargs: Extra arguments passed to the :class:`~.View`
object constructor.
:param kwargs: Additional parameters passed to the
:class:`~.View` constructor. See that class'
documentation for accepted parameters.
.. seealso::
:class:`~.View`
contains more extensive documentation and examples
:class:`couchbase.views.params.Query`
contains documentation on the available query options
:class:`~.SpatialQuery`
contains documentation on the available query options
for Geospatial views.
.. note::
To query a spatial view, you must explicitly use the
:class:`.SpatialQuery`. Passing key-value view parameters
in ``kwargs`` is not supported for spatial views.
|
def get_container_names(self):
current_containers = self.containers(all=True)
return set(c_name[1:] for c in current_containers for c_name in c['Names'])
|
Fetches names of all present containers from Docker.
:return: All container names.
:rtype: set
|
def search_index_simple(self,index,key,search_term):
request = self.session
url = 'http://%s:%s/%s/_search?q=%s:%s' % (self.host,self.port,index,key,search_term)
response = request.get(url)
return response
|
Search the index using a simple key and search_term
@param index Name of the index
@param key Search Key
@param search_term The term to be searched for
|
def cls_get_by_name(cls, name):
try:
val = getattr(cls, name)
except AttributeError:
for attr in (a for a in dir(cls) if not a.startswith('_')):
try:
val = getattr(cls, attr)
except AttributeError:
continue
valname = getattr(val, 'name', None)
if valname == name:
return val
else:
raise ValueError('No {} with that name: {}'.format(
cls.__name__,
name,
))
else:
return val
|
Return a class attribute by searching the attributes `name` attribute.
|
def login_service_description(self):
label = 'Login to ' + self.name
if (self.auth_type):
label = label + ' (' + self.auth_type + ')'
desc = {"@id": self.login_uri,
"profile": self.profile_base + self.auth_pattern,
"label": label}
if (self.header):
desc['header'] = self.header
if (self.description):
desc['description'] = self.description
return desc
|
Login service description.
The login service description _MUST_ include the token service
description. The authentication pattern is indicated via the
profile URI which is built using self.auth_pattern.
|
def compute_nats_and_bits_per_dim(data_dim,
latent_dim,
average_reconstruction,
average_prior):
with tf.name_scope(None, default_name="compute_nats_per_dim"):
data_dim = tf.cast(data_dim, average_reconstruction.dtype)
latent_dim = tf.cast(latent_dim, average_prior.dtype)
negative_log_likelihood = data_dim * average_reconstruction
negative_log_prior = latent_dim * average_prior
negative_elbo = negative_log_likelihood + negative_log_prior
nats_per_dim = tf.divide(negative_elbo, data_dim, name="nats_per_dim")
bits_per_dim = tf.divide(nats_per_dim, tf.log(2.), name="bits_per_dim")
return nats_per_dim, bits_per_dim
|
Computes negative ELBO, which is an upper bound on the negative likelihood.
Args:
data_dim: int-like indicating data dimensionality.
latent_dim: int-like indicating latent dimensionality.
average_reconstruction: Scalar Tensor indicating the reconstruction cost
averaged over all data dimensions and any data batches.
average_prior: Scalar Tensor indicating the negative log-prior probability
averaged over all latent dimensions and any data batches.
Returns:
Tuple of scalar Tensors, representing the nats and bits per data dimension
(e.g., subpixels) respectively.
|
def sendContact(self, context={}):
for recipient in self.recipients:
super(ContactFormMail, self).__init__(recipient, self.async)
self.sendEmail('contactForm', 'New contact form message', context)
|
Send contact form message to single or multiple recipients
|
def _build_matches(matches, uuids, no_filtered, fastmode=False):
result = []
for m in matches:
mk = m[0].uuid if not fastmode else m[0]
subset = [uuids[mk]]
for id_ in m[1:]:
uk = id_.uuid if not fastmode else id_
u = uuids[uk]
if u not in subset:
subset.append(u)
result.append(subset)
result += no_filtered
result.sort(key=len, reverse=True)
sresult = []
for r in result:
r.sort(key=lambda id_: id_.uuid)
sresult.append(r)
return sresult
|
Build a list with matching subsets
|
def has_adjacent_leaves_only(self):
leaves = self.leaves()
for i in range(len(leaves) - 1):
current_interval = leaves[i].interval
next_interval = leaves[i + 1].interval
if not current_interval.is_adjacent_before(next_interval):
return False
return True
|
Return ``True`` if the sync map fragments
which are the leaves of the sync map tree
are all adjacent.
:rtype: bool
.. versionadded:: 1.7.0
|
def define_zip_index_for_species(names_ppn_world,
number_names_ppn_world):
global cl
cl={}
for a,b in zip(names_ppn_world,number_names_ppn_world):
cl[a] = b
|
This just give back cl, that is the original index as it is read from files from a data file.
|
def send_msg_multi(name,
profile,
recipients=None,
rooms=None):
ret = {'name': name,
'changes': {},
'result': None,
'comment': ''}
if recipients is None and rooms is None:
ret['comment'] = "Recipients and rooms are empty, no need to send"
return ret
comment = ''
if recipients:
comment += ' users {0}'.format(recipients)
if rooms:
comment += ' rooms {0}'.format(rooms)
comment += ', message: {0}'.format(name)
if __opts__['test']:
ret['comment'] = 'Need to send' + comment
return ret
__salt__['xmpp.send_msg_multi'](
message=name,
recipients=recipients,
rooms=rooms,
profile=profile,
)
ret['result'] = True
ret['comment'] = 'Sent message to' + comment
return ret
|
Send a message to an list of recipients or rooms
.. code-block:: yaml
server-warning-message:
xmpp.send_msg:
- name: 'This is a server warning message'
- profile: my-xmpp-account
- recipients:
- [email protected]/salt
- rooms:
- [email protected]
name
The message to send to the XMPP user
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.