nodes
stringlengths
501
22.4k
edges
stringlengths
138
5.07k
code
stringlengths
108
19.3k
0, module; 1, function_definition; 2, function_name:find_nearest; 3, parameters; 4, block; 5, identifier:sorted_list; 6, identifier:x; 7, expression_statement; 8, if_statement; 9, comment:""" Find the nearest item of x from sorted array. :type array: list :param array: an iterable object that support inex :param x: a comparable value note: for finding the nearest item from a descending array, I recommend find_nearest(sorted_list[::-1], x). Because the built-in list[::-1] method is super fast. Usage:: >>> find_nearest([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5.1) 5 **中文文档** 在正序数组中, 返回最接近x的数。 """; 10, comparison_operator:x <= sorted_list[0]; 11, block; 12, elif_clause; 13, else_clause; 14, identifier:x; 15, subscript; 16, return_statement; 17, comparison_operator:x >= sorted_list[-1]; 18, block; 19, block; 20, identifier:sorted_list; 21, integer:0; 22, subscript; 23, identifier:x; 24, subscript; 25, return_statement; 26, expression_statement; 27, expression_statement; 28, if_statement; 29, identifier:sorted_list; 30, integer:0; 31, identifier:sorted_list; 32, unary_operator; 33, subscript; 34, assignment; 35, assignment; 36, comparison_operator:(x - lower) > (upper - x); 37, block; 38, else_clause; 39, integer:1; 40, identifier:sorted_list; 41, unary_operator; 42, identifier:lower; 43, call; 44, identifier:upper; 45, call; 46, parenthesized_expression; 47, parenthesized_expression; 48, return_statement; 49, block; 50, integer:1; 51, identifier:find_le; 52, argument_list; 53, identifier:find_ge; 54, argument_list; 55, binary_operator:x - lower; 56, binary_operator:upper - x; 57, identifier:upper; 58, return_statement; 59, identifier:sorted_list; 60, identifier:x; 61, identifier:sorted_list; 62, identifier:x; 63, identifier:x; 64, identifier:lower; 65, identifier:upper; 66, identifier:x; 67, identifier:lower
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 7, 9; 8, 10; 8, 11; 8, 12; 8, 13; 10, 14; 10, 15; 11, 16; 12, 17; 12, 18; 13, 19; 15, 20; 15, 21; 16, 22; 17, 23; 17, 24; 18, 25; 19, 26; 19, 27; 19, 28; 22, 29; 22, 30; 24, 31; 24, 32; 25, 33; 26, 34; 27, 35; 28, 36; 28, 37; 28, 38; 32, 39; 33, 40; 33, 41; 34, 42; 34, 43; 35, 44; 35, 45; 36, 46; 36, 47; 37, 48; 38, 49; 41, 50; 43, 51; 43, 52; 45, 53; 45, 54; 46, 55; 47, 56; 48, 57; 49, 58; 52, 59; 52, 60; 54, 61; 54, 62; 55, 63; 55, 64; 56, 65; 56, 66; 58, 67
def find_nearest(sorted_list, x): """ Find the nearest item of x from sorted array. :type array: list :param array: an iterable object that support inex :param x: a comparable value note: for finding the nearest item from a descending array, I recommend find_nearest(sorted_list[::-1], x). Because the built-in list[::-1] method is super fast. Usage:: >>> find_nearest([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5.1) 5 **中文文档** 在正序数组中, 返回最接近x的数。 """ if x <= sorted_list[0]: return sorted_list[0] elif x >= sorted_list[-1]: return sorted_list[-1] else: lower = find_le(sorted_list, x) upper = find_ge(sorted_list, x) if (x - lower) > (upper - x): return upper else: return lower
0, module; 1, function_definition; 2, function_name:_parse_dependencies; 3, parameters; 4, block; 5, identifier:string; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, for_statement; 13, expression_statement; 14, return_statement; 15, comment:""" This function actually parses the dependencies are sorts them into the buildable and given dependencies """; 16, assignment; 17, assignment; 18, call; 19, assignment; 20, assignment; 21, identifier:dependency; 22, identifier:unsorted_dependencies; 23, block; 24, assignment; 25, expression_list; 26, identifier:contents; 27, call; 28, identifier:unsorted_dependencies; 29, call; 30, identifier:_check_parameters; 31, argument_list; 32, identifier:buildable_dependencies; 33, list; 34, identifier:given_dependencies; 35, list; 36, if_statement; 37, identifier:string; 38, subscript; 39, identifier:buildable_dependencies; 40, identifier:given_dependencies; 41, identifier:string; 42, identifier:_get_contents_between; 43, argument_list; 44, attribute; 45, argument_list; 46, identifier:unsorted_dependencies; 47, tuple; 48, comparison_operator:dependency[0] == '?'; 49, block; 50, else_clause; 51, identifier:string; 52, slice; 53, identifier:string; 54, string; 55, string; 56, identifier:contents; 57, identifier:split; 58, string; 59, string; 60, subscript; 61, string; 62, expression_statement; 63, block; 64, binary_operator:string.index(')') + 1; 65, string_content:(; 66, string_content:); 67, string_content:,; 68, string_content:?; 69, identifier:dependency; 70, integer:0; 71, string_content:?; 72, call; 73, expression_statement; 74, call; 75, integer:1; 76, attribute; 77, argument_list; 78, call; 79, attribute; 80, argument_list; 81, identifier:given_dependencies; 82, identifier:append; 83, subscript; 84, attribute; 85, argument_list; 86, identifier:string; 87, identifier:index; 88, string; 89, identifier:dependency; 90, slice; 91, identifier:buildable_dependencies; 92, identifier:append; 93, identifier:dependency; 94, string_content:); 95, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 6, 15; 7, 16; 8, 17; 9, 18; 10, 19; 11, 20; 12, 21; 12, 22; 12, 23; 13, 24; 14, 25; 16, 26; 16, 27; 17, 28; 17, 29; 18, 30; 18, 31; 19, 32; 19, 33; 20, 34; 20, 35; 23, 36; 24, 37; 24, 38; 25, 39; 25, 40; 25, 41; 27, 42; 27, 43; 29, 44; 29, 45; 31, 46; 31, 47; 36, 48; 36, 49; 36, 50; 38, 51; 38, 52; 43, 53; 43, 54; 43, 55; 44, 56; 44, 57; 45, 58; 47, 59; 48, 60; 48, 61; 49, 62; 50, 63; 52, 64; 54, 65; 55, 66; 58, 67; 59, 68; 60, 69; 60, 70; 61, 71; 62, 72; 63, 73; 64, 74; 64, 75; 72, 76; 72, 77; 73, 78; 74, 79; 74, 80; 76, 81; 76, 82; 77, 83; 78, 84; 78, 85; 79, 86; 79, 87; 80, 88; 83, 89; 83, 90; 84, 91; 84, 92; 85, 93; 88, 94; 90, 95
def _parse_dependencies(string): """ This function actually parses the dependencies are sorts them into the buildable and given dependencies """ contents = _get_contents_between(string, '(', ')') unsorted_dependencies = contents.split(',') _check_parameters(unsorted_dependencies, ('?',)) buildable_dependencies = [] given_dependencies = [] for dependency in unsorted_dependencies: if dependency[0] == '?': given_dependencies.append(dependency[1:]) else: buildable_dependencies.append(dependency) string = string[string.index(')') + 1:] return buildable_dependencies, given_dependencies, string
0, module; 1, function_definition; 2, function_name:assert_output; 3, parameters; 4, block; 5, identifier:output; 6, identifier:assert_equal; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, if_statement; 11, comment:""" Check that two outputs have the same contents as one another, even if they aren't sorted yet """; 12, assignment; 13, assignment; 14, comparison_operator:sorted_output != sorted_assert; 15, block; 16, identifier:sorted_output; 17, call; 18, identifier:sorted_assert; 19, call; 20, identifier:sorted_output; 21, identifier:sorted_assert; 22, raise_statement; 23, identifier:sorted; 24, argument_list; 25, identifier:sorted; 26, argument_list; 27, call; 28, identifier:output; 29, identifier:assert_equal; 30, identifier:ValueError; 31, argument_list; 32, call; 33, attribute; 34, argument_list; 35, identifier:ASSERT_ERROR; 36, identifier:format; 37, identifier:sorted_output; 38, identifier:sorted_assert
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 9, 13; 10, 14; 10, 15; 12, 16; 12, 17; 13, 18; 13, 19; 14, 20; 14, 21; 15, 22; 17, 23; 17, 24; 19, 25; 19, 26; 22, 27; 24, 28; 26, 29; 27, 30; 27, 31; 31, 32; 32, 33; 32, 34; 33, 35; 33, 36; 34, 37; 34, 38
def assert_output(output, assert_equal): """ Check that two outputs have the same contents as one another, even if they aren't sorted yet """ sorted_output = sorted(output) sorted_assert = sorted(assert_equal) if sorted_output != sorted_assert: raise ValueError(ASSERT_ERROR.format(sorted_output, sorted_assert))
0, module; 1, function_definition; 2, function_name:sort; 3, parameters; 4, block; 5, identifier:self; 6, identifier:request; 7, default_parameter; 8, expression_statement; 9, expression_statement; 10, if_statement; 11, if_statement; 12, return_statement; 13, identifier:reverse; 14, False; 15, comment:"""Sort current collection."""; 16, assignment; 17, not_operator; 18, block; 19, identifier:reverse; 20, block; 21, call; 22, identifier:field; 23, call; 24, identifier:field; 25, return_statement; 26, expression_statement; 27, attribute; 28, argument_list; 29, attribute; 30, argument_list; 31, attribute; 32, assignment; 33, attribute; 34, identifier:order_by; 35, identifier:field; 36, attribute; 37, identifier:get; 38, attribute; 39, identifier:self; 40, identifier:collection; 41, identifier:field; 42, call; 43, identifier:self; 44, identifier:collection; 45, attribute; 46, identifier:fields; 47, identifier:self; 48, identifier:columns_sort; 49, attribute; 50, argument_list; 51, attribute; 52, identifier:_meta; 53, identifier:field; 54, identifier:desc; 55, identifier:self; 56, identifier:model
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 7, 13; 7, 14; 8, 15; 9, 16; 10, 17; 10, 18; 11, 19; 11, 20; 12, 21; 16, 22; 16, 23; 17, 24; 18, 25; 20, 26; 21, 27; 21, 28; 23, 29; 23, 30; 25, 31; 26, 32; 27, 33; 27, 34; 28, 35; 29, 36; 29, 37; 30, 38; 31, 39; 31, 40; 32, 41; 32, 42; 33, 43; 33, 44; 36, 45; 36, 46; 38, 47; 38, 48; 42, 49; 42, 50; 45, 51; 45, 52; 49, 53; 49, 54; 51, 55; 51, 56
def sort(self, request, reverse=False): """Sort current collection.""" field = self.model._meta.fields.get(self.columns_sort) if not field: return self.collection if reverse: field = field.desc() return self.collection.order_by(field)
0, module; 1, function_definition; 2, function_name:find_files; 3, parameters; 4, block; 5, default_parameter; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, default_parameter; 12, expression_statement; 13, expression_statement; 14, if_statement; 15, identifier:path; 16, string; 17, identifier:ext; 18, string; 19, identifier:level; 20, None; 21, identifier:typ; 22, identifier:list; 23, identifier:dirs; 24, False; 25, identifier:files; 26, True; 27, identifier:verbosity; 28, integer:0; 29, comment:""" Recursively find all files in the indicated directory Filter by the indicated file name extension (ext) Args: path (str): Root/base path to search. ext (str): File name extension. Only file paths that ".endswith()" this string will be returned level (int, optional): Depth of file tree to halt recursion at. None = full recursion to as deep as it goes 0 = nonrecursive, just provide a list of files at the root level of the tree 1 = one level of depth deeper in the tree typ (type): output type (default: list). if a mapping type is provided the keys will be the full paths (unique) dirs (bool): Whether to yield dir paths along with file paths (default: False) files (bool): Whether to yield file paths (default: True) `dirs=True`, `files=False` is equivalent to `ls -d` Returns: list of dicts: dict keys are { 'path', 'name', 'bytes', 'created', 'modified', 'accessed', 'permissions' } path (str): Full, absolute paths to file beneath the indicated directory and ending with `ext` name (str): File name only (everythin after the last slash in the path) size (int): File size in bytes created (datetime): File creation timestamp from file system modified (datetime): File modification timestamp from file system accessed (datetime): File access timestamp from file system permissions (int): File permissions bytes as a chown-style integer with a maximum of 4 digits type (str): One of 'file', 'dir', 'symlink->file', 'symlink->dir', 'symlink->broken' e.g.: 777 or 1755 Examples: >>> 'util.py' in [d['name'] for d in find_files(os.path.dirname(__file__), ext='.py', level=0)] True >>> (d for d in find_files(os.path.dirname(__file__), ext='.py') if d['name'] == 'util.py').next()['size'] > 1000 True There should be an __init__ file in the same directory as this script. And it should be at the top of the list. >>> sorted(d['name'] for d in find_files(os.path.dirname(__file__), ext='.py', level=0))[0] '__init__.py' >>> all(d['type'] in ('file','dir','symlink->file','symlink->dir','mount-point->file','mount-point->dir','block-device', 'symlink->broken','pipe','special','socket','unknown') for d in find_files(level=1, files=True, dirs=True)) True >>> os.path.join(os.path.dirname(__file__), '__init__.py') in find_files( ... os.path.dirname(__file__), ext='.py', level=0, typ=dict) True """; 30, assignment; 31, call; 32, block; 33, elif_clause; 34, else_clause; 35, identifier:gen; 36, call; 37, identifier:isinstance; 38, argument_list; 39, return_statement; 40, comparison_operator:typ is not None; 41, block; 42, block; 43, identifier:generate_files; 44, argument_list; 45, call; 46, attribute; 47, call; 48, identifier:typ; 49, None; 50, return_statement; 51, return_statement; 52, identifier:path; 53, keyword_argument; 54, keyword_argument; 55, keyword_argument; 56, keyword_argument; 57, keyword_argument; 58, identifier:typ; 59, argument_list; 60, identifier:collections; 61, identifier:Mapping; 62, identifier:typ; 63, generator_expression; 64, call; 65, identifier:gen; 66, identifier:ext; 67, identifier:ext; 68, identifier:level; 69, identifier:level; 70, identifier:dirs; 71, identifier:dirs; 72, identifier:files; 73, identifier:files; 74, identifier:verbosity; 75, identifier:verbosity; 76, tuple; 77, for_in_clause; 78, identifier:typ; 79, argument_list; 80, subscript; 81, identifier:ff; 82, identifier:ff; 83, identifier:gen; 84, identifier:gen; 85, identifier:ff; 86, string; 87, string_content:path
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 3, 11; 4, 12; 4, 13; 4, 14; 5, 15; 5, 16; 6, 17; 6, 18; 7, 19; 7, 20; 8, 21; 8, 22; 9, 23; 9, 24; 10, 25; 10, 26; 11, 27; 11, 28; 12, 29; 13, 30; 14, 31; 14, 32; 14, 33; 14, 34; 30, 35; 30, 36; 31, 37; 31, 38; 32, 39; 33, 40; 33, 41; 34, 42; 36, 43; 36, 44; 38, 45; 38, 46; 39, 47; 40, 48; 40, 49; 41, 50; 42, 51; 44, 52; 44, 53; 44, 54; 44, 55; 44, 56; 44, 57; 45, 58; 45, 59; 46, 60; 46, 61; 47, 62; 47, 63; 50, 64; 51, 65; 53, 66; 53, 67; 54, 68; 54, 69; 55, 70; 55, 71; 56, 72; 56, 73; 57, 74; 57, 75; 63, 76; 63, 77; 64, 78; 64, 79; 76, 80; 76, 81; 77, 82; 77, 83; 79, 84; 80, 85; 80, 86; 86, 87
def find_files(path='', ext='', level=None, typ=list, dirs=False, files=True, verbosity=0): """ Recursively find all files in the indicated directory Filter by the indicated file name extension (ext) Args: path (str): Root/base path to search. ext (str): File name extension. Only file paths that ".endswith()" this string will be returned level (int, optional): Depth of file tree to halt recursion at. None = full recursion to as deep as it goes 0 = nonrecursive, just provide a list of files at the root level of the tree 1 = one level of depth deeper in the tree typ (type): output type (default: list). if a mapping type is provided the keys will be the full paths (unique) dirs (bool): Whether to yield dir paths along with file paths (default: False) files (bool): Whether to yield file paths (default: True) `dirs=True`, `files=False` is equivalent to `ls -d` Returns: list of dicts: dict keys are { 'path', 'name', 'bytes', 'created', 'modified', 'accessed', 'permissions' } path (str): Full, absolute paths to file beneath the indicated directory and ending with `ext` name (str): File name only (everythin after the last slash in the path) size (int): File size in bytes created (datetime): File creation timestamp from file system modified (datetime): File modification timestamp from file system accessed (datetime): File access timestamp from file system permissions (int): File permissions bytes as a chown-style integer with a maximum of 4 digits type (str): One of 'file', 'dir', 'symlink->file', 'symlink->dir', 'symlink->broken' e.g.: 777 or 1755 Examples: >>> 'util.py' in [d['name'] for d in find_files(os.path.dirname(__file__), ext='.py', level=0)] True >>> (d for d in find_files(os.path.dirname(__file__), ext='.py') if d['name'] == 'util.py').next()['size'] > 1000 True There should be an __init__ file in the same directory as this script. And it should be at the top of the list. >>> sorted(d['name'] for d in find_files(os.path.dirname(__file__), ext='.py', level=0))[0] '__init__.py' >>> all(d['type'] in ('file','dir','symlink->file','symlink->dir','mount-point->file','mount-point->dir','block-device', 'symlink->broken','pipe','special','socket','unknown') for d in find_files(level=1, files=True, dirs=True)) True >>> os.path.join(os.path.dirname(__file__), '__init__.py') in find_files( ... os.path.dirname(__file__), ext='.py', level=0, typ=dict) True """ gen = generate_files(path, ext=ext, level=level, dirs=dirs, files=files, verbosity=verbosity) if isinstance(typ(), collections.Mapping): return typ((ff['path'], ff) for ff in gen) elif typ is not None: return typ(gen) else: return gen
0, module; 1, function_definition; 2, function_name:sort; 3, parameters; 4, block; 5, identifier:self; 6, identifier:request; 7, default_parameter; 8, expression_statement; 9, return_statement; 10, identifier:reverse; 11, False; 12, comment:"""Sort collection."""; 13, call; 14, identifier:sorted; 15, argument_list; 16, attribute; 17, keyword_argument; 18, keyword_argument; 19, identifier:self; 20, identifier:collection; 21, identifier:key; 22, lambda; 23, identifier:reverse; 24, identifier:reverse; 25, lambda_parameters; 26, call; 27, identifier:o; 28, identifier:getattr; 29, argument_list; 30, identifier:o; 31, attribute; 32, integer:0; 33, identifier:self; 34, identifier:columns_sort
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 7, 10; 7, 11; 8, 12; 9, 13; 13, 14; 13, 15; 15, 16; 15, 17; 15, 18; 16, 19; 16, 20; 17, 21; 17, 22; 18, 23; 18, 24; 22, 25; 22, 26; 25, 27; 26, 28; 26, 29; 29, 30; 29, 31; 29, 32; 31, 33; 31, 34
async def sort(self, request, reverse=False): """Sort collection.""" return sorted( self.collection, key=lambda o: getattr(o, self.columns_sort, 0), reverse=reverse)
0, module; 1, function_definition; 2, function_name:map_aliases_to_device_objects; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, expression_statement; 8, for_statement; 9, return_statement; 10, comment:""" A device object knows its rid, but not its alias. A portal object knows its device rids and aliases. This function adds an 'portals_aliases' key to all of the device objects so they can be sorted by alias. """; 11, assignment; 12, identifier:dev_o; 13, identifier:all_devices; 14, block; 15, identifier:all_devices; 16, identifier:all_devices; 17, call; 18, expression_statement; 19, attribute; 20, argument_list; 21, assignment; 22, identifier:self; 23, identifier:get_all_devices_in_portal; 24, subscript; 25, subscript; 26, identifier:dev_o; 27, string; 28, subscript; 29, subscript; 30, string_content:portals_aliases; 31, subscript; 32, string; 33, identifier:dev_o; 34, string; 35, subscript; 36, string; 37, string_content:aliases; 38, string_content:rid; 39, subscript; 40, integer:1; 41, string_content:info; 42, call; 43, integer:2; 44, attribute; 45, argument_list; 46, identifier:self; 47, identifier:get_portal_by_name; 48, call; 49, attribute; 50, argument_list; 51, identifier:self; 52, identifier:portal_name
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 6, 10; 7, 11; 8, 12; 8, 13; 8, 14; 9, 15; 11, 16; 11, 17; 14, 18; 17, 19; 17, 20; 18, 21; 19, 22; 19, 23; 21, 24; 21, 25; 24, 26; 24, 27; 25, 28; 25, 29; 27, 30; 28, 31; 28, 32; 29, 33; 29, 34; 31, 35; 31, 36; 32, 37; 34, 38; 35, 39; 35, 40; 36, 41; 39, 42; 39, 43; 42, 44; 42, 45; 44, 46; 44, 47; 45, 48; 48, 49; 48, 50; 49, 51; 49, 52
def map_aliases_to_device_objects(self): """ A device object knows its rid, but not its alias. A portal object knows its device rids and aliases. This function adds an 'portals_aliases' key to all of the device objects so they can be sorted by alias. """ all_devices = self.get_all_devices_in_portal() for dev_o in all_devices: dev_o['portals_aliases'] = self.get_portal_by_name( self.portal_name() )[2][1]['info']['aliases'][ dev_o['rid'] ] return all_devices
0, module; 1, function_definition; 2, function_name:print_sorted_device_list; 3, parameters; 4, block; 5, identifier:self; 6, default_parameter; 7, default_parameter; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, if_statement; 12, expression_statement; 13, identifier:device_list; 14, None; 15, identifier:sort_key; 16, string; 17, comment:""" Takes in a sort key and prints the device list according to that sort. Default sorts on serial number. Current supported sort options are: - name - sn - portals_aliases Can take optional device object list. """; 18, assignment; 19, assignment; 20, comparison_operator:sort_key == 'sn'; 21, block; 22, elif_clause; 23, elif_clause; 24, else_clause; 25, call; 26, string_content:sn; 27, identifier:dev_list; 28, conditional_expression:device_list if device_list is not None else self.get_all_devices_in_portal(); 29, identifier:sorted_dev_list; 30, list; 31, identifier:sort_key; 32, string; 33, expression_statement; 34, expression_statement; 35, for_statement; 36, comparison_operator:sort_key == 'name'; 37, block; 38, comparison_operator:sort_key == 'portals_aliases'; 39, block; 40, block; 41, attribute; 42, argument_list; 43, identifier:device_list; 44, comparison_operator:device_list is not None; 45, call; 46, string_content:sn; 47, assignment; 48, assignment; 49, identifier:key; 50, identifier:sort_keys; 51, block; 52, identifier:sort_key; 53, string; 54, expression_statement; 55, expression_statement; 56, for_statement; 57, identifier:sort_key; 58, string; 59, expression_statement; 60, expression_statement; 61, for_statement; 62, expression_statement; 63, expression_statement; 64, identifier:self; 65, identifier:print_device_list; 66, keyword_argument; 67, identifier:device_list; 68, None; 69, attribute; 70, argument_list; 71, identifier:sort_keys; 72, list_comprehension; 73, identifier:sort_keys; 74, call; 75, expression_statement; 76, string_content:name; 77, assignment; 78, assignment; 79, identifier:key; 80, identifier:sort_keys; 81, block; 82, string_content:portals_aliases; 83, assignment; 84, assignment; 85, identifier:key; 86, identifier:sort_keys; 87, block; 88, call; 89, assignment; 90, identifier:device_list; 91, identifier:sorted_dev_list; 92, identifier:self; 93, identifier:get_all_devices_in_portal; 94, subscript; 95, for_in_clause; 96, if_clause; 97, identifier:sorted; 98, argument_list; 99, call; 100, identifier:sort_keys; 101, list_comprehension; 102, identifier:sort_keys; 103, call; 104, expression_statement; 105, identifier:sort_keys; 106, list_comprehension; 107, identifier:sort_keys; 108, call; 109, expression_statement; 110, identifier:print; 111, argument_list; 112, identifier:sort_keys; 113, None; 114, identifier:k; 115, identifier:sort_key; 116, identifier:k; 117, identifier:dev_list; 118, comparison_operator:k[sort_key] is not None; 119, identifier:sort_keys; 120, attribute; 121, argument_list; 122, subscript; 123, line_continuation:\; 124, for_in_clause; 125, if_clause; 126, identifier:sorted; 127, argument_list; 128, call; 129, subscript; 130, for_in_clause; 131, if_clause; 132, identifier:sorted; 133, argument_list; 134, call; 135, call; 136, subscript; 137, None; 138, identifier:sorted_dev_list; 139, identifier:extend; 140, list_comprehension; 141, subscript; 142, identifier:sort_key; 143, identifier:k; 144, identifier:dev_list; 145, comparison_operator:k['info']['description'][sort_key] is not None; 146, identifier:sort_keys; 147, attribute; 148, argument_list; 149, identifier:k; 150, identifier:sort_key; 151, identifier:k; 152, identifier:dev_list; 153, comparison_operator:k[sort_key] is not None; 154, identifier:sort_keys; 155, attribute; 156, argument_list; 157, attribute; 158, argument_list; 159, identifier:k; 160, identifier:sort_key; 161, identifier:d; 162, for_in_clause; 163, if_clause; 164, subscript; 165, string; 166, subscript; 167, None; 168, identifier:sorted_dev_list; 169, identifier:extend; 170, list_comprehension; 171, subscript; 172, None; 173, identifier:sorted_dev_list; 174, identifier:extend; 175, list_comprehension; 176, string:"Sort key {!r} not recognized."; 177, identifier:format; 178, identifier:sort_key; 179, identifier:d; 180, identifier:dev_list; 181, comparison_operator:d['sn'] == key; 182, identifier:k; 183, string; 184, string_content:description; 185, subscript; 186, identifier:sort_key; 187, identifier:d; 188, for_in_clause; 189, line_continuation:\; 190, if_clause; 191, identifier:k; 192, identifier:sort_key; 193, identifier:d; 194, for_in_clause; 195, if_clause; 196, subscript; 197, identifier:key; 198, string_content:info; 199, subscript; 200, string; 201, identifier:d; 202, identifier:dev_list; 203, comparison_operator:d['info']['description'][sort_key] == key; 204, identifier:d; 205, identifier:dev_list; 206, comparison_operator:d[sort_key] == key; 207, identifier:d; 208, string; 209, identifier:k; 210, string; 211, string_content:description; 212, subscript; 213, identifier:key; 214, subscript; 215, identifier:key; 216, string_content:sn; 217, string_content:info; 218, subscript; 219, identifier:sort_key; 220, identifier:d; 221, identifier:sort_key; 222, subscript; 223, string; 224, identifier:d; 225, string; 226, string_content:description; 227, string_content:info
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 6, 13; 6, 14; 7, 15; 7, 16; 8, 17; 9, 18; 10, 19; 11, 20; 11, 21; 11, 22; 11, 23; 11, 24; 12, 25; 16, 26; 18, 27; 18, 28; 19, 29; 19, 30; 20, 31; 20, 32; 21, 33; 21, 34; 21, 35; 22, 36; 22, 37; 23, 38; 23, 39; 24, 40; 25, 41; 25, 42; 28, 43; 28, 44; 28, 45; 32, 46; 33, 47; 34, 48; 35, 49; 35, 50; 35, 51; 36, 52; 36, 53; 37, 54; 37, 55; 37, 56; 38, 57; 38, 58; 39, 59; 39, 60; 39, 61; 40, 62; 40, 63; 41, 64; 41, 65; 42, 66; 44, 67; 44, 68; 45, 69; 45, 70; 47, 71; 47, 72; 48, 73; 48, 74; 51, 75; 53, 76; 54, 77; 55, 78; 56, 79; 56, 80; 56, 81; 58, 82; 59, 83; 60, 84; 61, 85; 61, 86; 61, 87; 62, 88; 63, 89; 66, 90; 66, 91; 69, 92; 69, 93; 72, 94; 72, 95; 72, 96; 74, 97; 74, 98; 75, 99; 77, 100; 77, 101; 78, 102; 78, 103; 81, 104; 83, 105; 83, 106; 84, 107; 84, 108; 87, 109; 88, 110; 88, 111; 89, 112; 89, 113; 94, 114; 94, 115; 95, 116; 95, 117; 96, 118; 98, 119; 99, 120; 99, 121; 101, 122; 101, 123; 101, 124; 101, 125; 103, 126; 103, 127; 104, 128; 106, 129; 106, 130; 106, 131; 108, 132; 108, 133; 109, 134; 111, 135; 118, 136; 118, 137; 120, 138; 120, 139; 121, 140; 122, 141; 122, 142; 124, 143; 124, 144; 125, 145; 127, 146; 128, 147; 128, 148; 129, 149; 129, 150; 130, 151; 130, 152; 131, 153; 133, 154; 134, 155; 134, 156; 135, 157; 135, 158; 136, 159; 136, 160; 140, 161; 140, 162; 140, 163; 141, 164; 141, 165; 145, 166; 145, 167; 147, 168; 147, 169; 148, 170; 153, 171; 153, 172; 155, 173; 155, 174; 156, 175; 157, 176; 157, 177; 158, 178; 162, 179; 162, 180; 163, 181; 164, 182; 164, 183; 165, 184; 166, 185; 166, 186; 170, 187; 170, 188; 170, 189; 170, 190; 171, 191; 171, 192; 175, 193; 175, 194; 175, 195; 181, 196; 181, 197; 183, 198; 185, 199; 185, 200; 188, 201; 188, 202; 190, 203; 194, 204; 194, 205; 195, 206; 196, 207; 196, 208; 199, 209; 199, 210; 200, 211; 203, 212; 203, 213; 206, 214; 206, 215; 208, 216; 210, 217; 212, 218; 212, 219; 214, 220; 214, 221; 218, 222; 218, 223; 222, 224; 222, 225; 223, 226; 225, 227
def print_sorted_device_list(self, device_list=None, sort_key='sn'): """ Takes in a sort key and prints the device list according to that sort. Default sorts on serial number. Current supported sort options are: - name - sn - portals_aliases Can take optional device object list. """ dev_list = device_list if device_list is not None else self.get_all_devices_in_portal() sorted_dev_list = [] if sort_key == 'sn': sort_keys = [ k[sort_key] for k in dev_list if k[sort_key] is not None ] sort_keys = sorted(sort_keys) for key in sort_keys: sorted_dev_list.extend([ d for d in dev_list if d['sn'] == key ]) elif sort_key == 'name': sort_keys = [ k['info']['description'][sort_key]\ for k in dev_list if k['info']['description'][sort_key] is not None ] sort_keys = sorted(sort_keys) for key in sort_keys: sorted_dev_list.extend( [ d for d in dev_list\ if d['info']['description'][sort_key] == key ] ) elif sort_key == 'portals_aliases': sort_keys = [ k[sort_key] for k in dev_list if k[sort_key] is not None ] sort_keys = sorted(sort_keys) for key in sort_keys: sorted_dev_list.extend([ d for d in dev_list if d[sort_key] == key ]) else: print("Sort key {!r} not recognized.".format(sort_key)) sort_keys = None self.print_device_list(device_list=sorted_dev_list)
0, module; 1, function_definition; 2, function_name:compile_vocab; 3, parameters; 4, block; 5, identifier:docs; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, try_statement; 13, for_statement; 14, return_statement; 15, identifier:limit; 16, float:1e6; 17, identifier:verbose; 18, integer:0; 19, identifier:tokenizer; 20, call; 21, comment:"""Get the set of words used anywhere in a sequence of documents and assign an integer id This vectorizer is much faster than the scikit-learn version (and only requires low/constant RAM ?). >>> gen = ('label: ' + chr(ord('A') + i % 3)*3 for i in range(11)) >>> d = compile_vocab(gen, verbose=0) >>> d <gensim.corpora.dictionary.Dictionary ...> >>> print(d) Dictionary(4 unique tokens: [u'AAA', u'BBB', u'CCC', u'label']) >>> sorted(d.token2id.values()) [0, 1, 2, 3] >>> sorted(d.token2id.keys()) [u'AAA', u'BBB', u'CCC', u'label'] """; 22, assignment; 23, assignment; 24, block; 25, except_clause; 26, pattern_list; 27, call; 28, comment:# if isinstance(doc, (tuple, list)) and len(doc) == 2 and isinstance(doc[1], int):; 29, comment:# doc, score = docs; 30, block; 31, identifier:d; 32, identifier:Tokenizer; 33, argument_list; 34, identifier:tokenizer; 35, call; 36, identifier:d; 37, call; 38, expression_statement; 39, expression_statement; 40, tuple; 41, block; 42, identifier:i; 43, identifier:doc; 44, identifier:enumerate; 45, argument_list; 46, try_statement; 47, if_statement; 48, expression_statement; 49, if_statement; 50, keyword_argument; 51, keyword_argument; 52, keyword_argument; 53, identifier:make_tokenizer; 54, argument_list; 55, identifier:Dictionary; 56, argument_list; 57, assignment; 58, assignment; 59, identifier:AttributeError; 60, identifier:TypeError; 61, pass_statement; 62, identifier:docs; 63, comment:# in case docs is a values() queryset (dicts of records in a DB table); 64, block; 65, except_clause; 66, comparison_operator:i >= limit; 67, block; 68, call; 69, boolean_operator; 70, block; 71, identifier:stem; 72, None; 73, identifier:lower; 74, None; 75, identifier:strip; 76, None; 77, identifier:tokenizer; 78, identifier:limit; 79, call; 80, identifier:docs; 81, call; 82, expression_statement; 83, identifier:AttributeError; 84, comment:# doc already is a values_list; 85, block; 86, identifier:i; 87, identifier:limit; 88, break_statement; 89, attribute; 90, argument_list; 91, identifier:verbose; 92, not_operator; 93, expression_statement; 94, identifier:min; 95, argument_list; 96, attribute; 97, argument_list; 98, assignment; 99, if_statement; 100, identifier:d; 101, identifier:add_documents; 102, list; 103, binary_operator:i % 100; 104, call; 105, identifier:limit; 106, call; 107, identifier:docs; 108, identifier:iterator; 109, identifier:doc; 110, call; 111, not_operator; 112, block; 113, else_clause; 114, call; 115, identifier:i; 116, integer:100; 117, attribute; 118, argument_list; 119, attribute; 120, argument_list; 121, attribute; 122, argument_list; 123, call; 124, expression_statement; 125, block; 126, identifier:list; 127, argument_list; 128, identifier:log; 129, identifier:info; 130, call; 131, identifier:docs; 132, identifier:count; 133, identifier:doc; 134, identifier:values; 135, identifier:isinstance; 136, argument_list; 137, assignment; 138, expression_statement; 139, call; 140, attribute; 141, argument_list; 142, identifier:doc; 143, identifier:str; 144, identifier:doc; 145, call; 146, assignment; 147, identifier:tokenizer; 148, argument_list; 149, string; 150, identifier:format; 151, identifier:i; 152, subscript; 153, attribute; 154, argument_list; 155, identifier:doc; 156, call; 157, identifier:doc; 158, string_content:{}: {}; 159, call; 160, slice; 161, string; 162, identifier:join; 163, list_comprehension; 164, identifier:str; 165, argument_list; 166, identifier:repr; 167, argument_list; 168, integer:120; 169, string_content:; 170, call; 171, for_in_clause; 172, identifier:doc; 173, identifier:d; 174, identifier:str; 175, argument_list; 176, identifier:v; 177, identifier:doc; 178, identifier:v
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 6, 15; 6, 16; 7, 17; 7, 18; 8, 19; 8, 20; 9, 21; 10, 22; 11, 23; 12, 24; 12, 25; 13, 26; 13, 27; 13, 28; 13, 29; 13, 30; 14, 31; 20, 32; 20, 33; 22, 34; 22, 35; 23, 36; 23, 37; 24, 38; 24, 39; 25, 40; 25, 41; 26, 42; 26, 43; 27, 44; 27, 45; 30, 46; 30, 47; 30, 48; 30, 49; 33, 50; 33, 51; 33, 52; 35, 53; 35, 54; 37, 55; 37, 56; 38, 57; 39, 58; 40, 59; 40, 60; 41, 61; 45, 62; 46, 63; 46, 64; 46, 65; 47, 66; 47, 67; 48, 68; 49, 69; 49, 70; 50, 71; 50, 72; 51, 73; 51, 74; 52, 75; 52, 76; 54, 77; 57, 78; 57, 79; 58, 80; 58, 81; 64, 82; 65, 83; 65, 84; 65, 85; 66, 86; 66, 87; 67, 88; 68, 89; 68, 90; 69, 91; 69, 92; 70, 93; 79, 94; 79, 95; 81, 96; 81, 97; 82, 98; 85, 99; 89, 100; 89, 101; 90, 102; 92, 103; 93, 104; 95, 105; 95, 106; 96, 107; 96, 108; 98, 109; 98, 110; 99, 111; 99, 112; 99, 113; 102, 114; 103, 115; 103, 116; 104, 117; 104, 118; 106, 119; 106, 120; 110, 121; 110, 122; 111, 123; 112, 124; 113, 125; 114, 126; 114, 127; 117, 128; 117, 129; 118, 130; 119, 131; 119, 132; 121, 133; 121, 134; 123, 135; 123, 136; 124, 137; 125, 138; 127, 139; 130, 140; 130, 141; 136, 142; 136, 143; 137, 144; 137, 145; 138, 146; 139, 147; 139, 148; 140, 149; 140, 150; 141, 151; 141, 152; 145, 153; 145, 154; 146, 155; 146, 156; 148, 157; 149, 158; 152, 159; 152, 160; 153, 161; 153, 162; 154, 163; 156, 164; 156, 165; 159, 166; 159, 167; 160, 168; 161, 169; 163, 170; 163, 171; 165, 172; 167, 173; 170, 174; 170, 175; 171, 176; 171, 177; 175, 178
def compile_vocab(docs, limit=1e6, verbose=0, tokenizer=Tokenizer(stem=None, lower=None, strip=None)): """Get the set of words used anywhere in a sequence of documents and assign an integer id This vectorizer is much faster than the scikit-learn version (and only requires low/constant RAM ?). >>> gen = ('label: ' + chr(ord('A') + i % 3)*3 for i in range(11)) >>> d = compile_vocab(gen, verbose=0) >>> d <gensim.corpora.dictionary.Dictionary ...> >>> print(d) Dictionary(4 unique tokens: [u'AAA', u'BBB', u'CCC', u'label']) >>> sorted(d.token2id.values()) [0, 1, 2, 3] >>> sorted(d.token2id.keys()) [u'AAA', u'BBB', u'CCC', u'label'] """ tokenizer = make_tokenizer(tokenizer) d = Dictionary() try: limit = min(limit, docs.count()) docs = docs.iterator() except (AttributeError, TypeError): pass for i, doc in enumerate(docs): # if isinstance(doc, (tuple, list)) and len(doc) == 2 and isinstance(doc[1], int): # doc, score = docs try: # in case docs is a values() queryset (dicts of records in a DB table) doc = doc.values() except AttributeError: # doc already is a values_list if not isinstance(doc, str): doc = ' '.join([str(v) for v in doc]) else: doc = str(doc) if i >= limit: break d.add_documents([list(tokenizer(doc))]) if verbose and not i % 100: log.info('{}: {}'.format(i, repr(d)[:120])) return d
0, module; 1, function_definition; 2, function_name:find_point_in_section_list; 3, parameters; 4, block; 5, identifier:point; 6, identifier:section_list; 7, expression_statement; 8, if_statement; 9, if_statement; 10, try_statement; 11, comment:"""Returns the start of the section the given point belongs to. The given list is assumed to contain start points of consecutive sections, except for the final point, assumed to be the end point of the last section. For example, the list [5, 8, 30, 31] is interpreted as the following list of sections: [5-8), [8-30), [30-31], so the points -32, 4.5, 32 and 100 all match no section, while 5 and 7.5 match [5-8) and so for them the function returns 5, and 30, 30.7 and 31 all match [30-31]. Parameters --------- point : float The point for which to match a section. section_list : sortedcontainers.SortedList A list of start points of consecutive sections. Returns ------- float The start of the section the given point belongs to. None if no match was found. Example ------- >>> from sortedcontainers import SortedList >>> seclist = SortedList([5, 8, 30, 31]) >>> find_point_in_section_list(4, seclist) >>> find_point_in_section_list(5, seclist) 5 >>> find_point_in_section_list(27, seclist) 8 >>> find_point_in_section_list(31, seclist) 30 """; 12, boolean_operator; 13, block; 14, comparison_operator:point in section_list; 15, block; 16, block; 17, except_clause; 18, comparison_operator:point < section_list[0]; 19, comparison_operator:point > section_list[-1]; 20, return_statement; 21, identifier:point; 22, identifier:section_list; 23, if_statement; 24, expression_statement; 25, if_statement; 26, return_statement; 27, expression_statement; 28, return_statement; 29, identifier:IndexError; 30, block; 31, identifier:point; 32, subscript; 33, identifier:point; 34, subscript; 35, None; 36, comparison_operator:point == section_list[-1]; 37, block; 38, assignment; 39, comparison_operator:ind == 0; 40, block; 41, subscript; 42, assignment; 43, subscript; 44, return_statement; 45, identifier:section_list; 46, integer:0; 47, identifier:section_list; 48, unary_operator; 49, identifier:point; 50, subscript; 51, return_statement; 52, identifier:ind; 53, binary_operator:section_list.bisect(point)-1; 54, identifier:ind; 55, integer:0; 56, return_statement; 57, identifier:section_list; 58, identifier:ind; 59, identifier:ind; 60, call; 61, identifier:section_list; 62, binary_operator:ind-1; 63, None; 64, integer:1; 65, identifier:section_list; 66, unary_operator; 67, subscript; 68, call; 69, integer:1; 70, subscript; 71, attribute; 72, argument_list; 73, identifier:ind; 74, integer:1; 75, integer:1; 76, identifier:section_list; 77, unary_operator; 78, attribute; 79, argument_list; 80, identifier:section_list; 81, integer:0; 82, identifier:section_list; 83, identifier:bisect; 84, identifier:point; 85, integer:2; 86, identifier:section_list; 87, identifier:bisect; 88, identifier:point
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 8, 13; 9, 14; 9, 15; 10, 16; 10, 17; 12, 18; 12, 19; 13, 20; 14, 21; 14, 22; 15, 23; 15, 24; 15, 25; 15, 26; 16, 27; 16, 28; 17, 29; 17, 30; 18, 31; 18, 32; 19, 33; 19, 34; 20, 35; 23, 36; 23, 37; 24, 38; 25, 39; 25, 40; 26, 41; 27, 42; 28, 43; 30, 44; 32, 45; 32, 46; 34, 47; 34, 48; 36, 49; 36, 50; 37, 51; 38, 52; 38, 53; 39, 54; 39, 55; 40, 56; 41, 57; 41, 58; 42, 59; 42, 60; 43, 61; 43, 62; 44, 63; 48, 64; 50, 65; 50, 66; 51, 67; 53, 68; 53, 69; 56, 70; 60, 71; 60, 72; 62, 73; 62, 74; 66, 75; 67, 76; 67, 77; 68, 78; 68, 79; 70, 80; 70, 81; 71, 82; 71, 83; 72, 84; 77, 85; 78, 86; 78, 87; 79, 88
def find_point_in_section_list(point, section_list): """Returns the start of the section the given point belongs to. The given list is assumed to contain start points of consecutive sections, except for the final point, assumed to be the end point of the last section. For example, the list [5, 8, 30, 31] is interpreted as the following list of sections: [5-8), [8-30), [30-31], so the points -32, 4.5, 32 and 100 all match no section, while 5 and 7.5 match [5-8) and so for them the function returns 5, and 30, 30.7 and 31 all match [30-31]. Parameters --------- point : float The point for which to match a section. section_list : sortedcontainers.SortedList A list of start points of consecutive sections. Returns ------- float The start of the section the given point belongs to. None if no match was found. Example ------- >>> from sortedcontainers import SortedList >>> seclist = SortedList([5, 8, 30, 31]) >>> find_point_in_section_list(4, seclist) >>> find_point_in_section_list(5, seclist) 5 >>> find_point_in_section_list(27, seclist) 8 >>> find_point_in_section_list(31, seclist) 30 """ if point < section_list[0] or point > section_list[-1]: return None if point in section_list: if point == section_list[-1]: return section_list[-2] ind = section_list.bisect(point)-1 if ind == 0: return section_list[0] return section_list[ind] try: ind = section_list.bisect(point) return section_list[ind-1] except IndexError: return None
0, module; 1, function_definition; 2, function_name:find_range_ix_in_section_list; 3, parameters; 4, block; 5, identifier:start; 6, identifier:end; 7, identifier:section_list; 8, expression_statement; 9, if_statement; 10, if_statement; 11, if_statement; 12, return_statement; 13, comment:"""Returns the index range all sections belonging to the given range. The given list is assumed to contain start points of consecutive sections, except for the final point, assumed to be the end point of the last section. For example, the list [5, 8, 30, 31] is interpreted as the following list of sections: [5-8), [8-30), [30-31]. As such, this function will return [5,8] for the range (7,9) and [5,8,30] while for (7, 30). Parameters --------- start : float The start of the desired range. end : float The end of the desired range. section_list : sortedcontainers.SortedList A list of start points of consecutive sections. Returns ------- iterable The index range of all sections belonging to the given range. Example ------- >>> from sortedcontainers import SortedList >>> seclist = SortedList([5, 8, 30, 31]) >>> find_range_ix_in_section_list(3, 4, seclist) [0, 0] >>> find_range_ix_in_section_list(6, 7, seclist) [0, 1] >>> find_range_ix_in_section_list(7, 9, seclist) [0, 2] >>> find_range_ix_in_section_list(7, 30, seclist) [0, 3] >>> find_range_ix_in_section_list(7, 321, seclist) [0, 3] >>> find_range_ix_in_section_list(4, 321, seclist) [0, 3] """; 14, boolean_operator; 15, block; 16, comparison_operator:start < section_list[0]; 17, block; 18, else_clause; 19, comparison_operator:end > section_list[-1]; 20, block; 21, else_clause; 22, list; 23, comparison_operator:start > section_list[-1]; 24, comparison_operator:end < section_list[0]; 25, return_statement; 26, identifier:start; 27, subscript; 28, expression_statement; 29, block; 30, identifier:end; 31, subscript; 32, expression_statement; 33, block; 34, call; 35, binary_operator:section_list.index(end_section)+1; 36, identifier:start; 37, subscript; 38, identifier:end; 39, subscript; 40, list; 41, identifier:section_list; 42, integer:0; 43, assignment; 44, expression_statement; 45, identifier:section_list; 46, unary_operator; 47, assignment; 48, expression_statement; 49, attribute; 50, argument_list; 51, call; 52, integer:1; 53, identifier:section_list; 54, unary_operator; 55, identifier:section_list; 56, integer:0; 57, integer:0; 58, integer:0; 59, identifier:start_section; 60, subscript; 61, assignment; 62, integer:1; 63, identifier:end_section; 64, subscript; 65, assignment; 66, identifier:section_list; 67, identifier:index; 68, identifier:start_section; 69, attribute; 70, argument_list; 71, integer:1; 72, identifier:section_list; 73, integer:0; 74, identifier:start_section; 75, call; 76, identifier:section_list; 77, unary_operator; 78, identifier:end_section; 79, call; 80, identifier:section_list; 81, identifier:index; 82, identifier:end_section; 83, identifier:find_point_in_section_list; 84, argument_list; 85, integer:2; 86, identifier:find_point_in_section_list; 87, argument_list; 88, identifier:start; 89, identifier:section_list; 90, identifier:end; 91, identifier:section_list
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 8, 13; 9, 14; 9, 15; 10, 16; 10, 17; 10, 18; 11, 19; 11, 20; 11, 21; 12, 22; 14, 23; 14, 24; 15, 25; 16, 26; 16, 27; 17, 28; 18, 29; 19, 30; 19, 31; 20, 32; 21, 33; 22, 34; 22, 35; 23, 36; 23, 37; 24, 38; 24, 39; 25, 40; 27, 41; 27, 42; 28, 43; 29, 44; 31, 45; 31, 46; 32, 47; 33, 48; 34, 49; 34, 50; 35, 51; 35, 52; 37, 53; 37, 54; 39, 55; 39, 56; 40, 57; 40, 58; 43, 59; 43, 60; 44, 61; 46, 62; 47, 63; 47, 64; 48, 65; 49, 66; 49, 67; 50, 68; 51, 69; 51, 70; 54, 71; 60, 72; 60, 73; 61, 74; 61, 75; 64, 76; 64, 77; 65, 78; 65, 79; 69, 80; 69, 81; 70, 82; 75, 83; 75, 84; 77, 85; 79, 86; 79, 87; 84, 88; 84, 89; 87, 90; 87, 91
def find_range_ix_in_section_list(start, end, section_list): """Returns the index range all sections belonging to the given range. The given list is assumed to contain start points of consecutive sections, except for the final point, assumed to be the end point of the last section. For example, the list [5, 8, 30, 31] is interpreted as the following list of sections: [5-8), [8-30), [30-31]. As such, this function will return [5,8] for the range (7,9) and [5,8,30] while for (7, 30). Parameters --------- start : float The start of the desired range. end : float The end of the desired range. section_list : sortedcontainers.SortedList A list of start points of consecutive sections. Returns ------- iterable The index range of all sections belonging to the given range. Example ------- >>> from sortedcontainers import SortedList >>> seclist = SortedList([5, 8, 30, 31]) >>> find_range_ix_in_section_list(3, 4, seclist) [0, 0] >>> find_range_ix_in_section_list(6, 7, seclist) [0, 1] >>> find_range_ix_in_section_list(7, 9, seclist) [0, 2] >>> find_range_ix_in_section_list(7, 30, seclist) [0, 3] >>> find_range_ix_in_section_list(7, 321, seclist) [0, 3] >>> find_range_ix_in_section_list(4, 321, seclist) [0, 3] """ if start > section_list[-1] or end < section_list[0]: return [0, 0] if start < section_list[0]: start_section = section_list[0] else: start_section = find_point_in_section_list(start, section_list) if end > section_list[-1]: end_section = section_list[-2] else: end_section = find_point_in_section_list(end, section_list) return [ section_list.index(start_section), section_list.index(end_section)+1]
0, module; 1, function_definition; 2, function_name:find_range_in_section_list; 3, parameters; 4, block; 5, identifier:start; 6, identifier:end; 7, identifier:section_list; 8, expression_statement; 9, expression_statement; 10, return_statement; 11, comment:"""Returns all sections belonging to the given range. The given list is assumed to contain start points of consecutive sections, except for the final point, assumed to be the end point of the last section. For example, the list [5, 8, 30, 31] is interpreted as the following list of sections: [5-8), [8-30), [30-31]. As such, this function will return [5,8] for the range (7,9) and [5,8,30] while for (7, 30). Parameters --------- start : float The start of the desired range. end : float The end of the desired range. section_list : sortedcontainers.SortedList A list of start points of consecutive sections. Returns ------- iterable The starting points of all sections belonging to the given range. Example ------- >>> from sortedcontainers import SortedList >>> seclist = SortedList([5, 8, 30, 31]) >>> find_range_in_section_list(3, 4, seclist) [] >>> find_range_in_section_list(6, 7, seclist) [5] >>> find_range_in_section_list(7, 9, seclist) [5, 8] >>> find_range_in_section_list(7, 30, seclist) [5, 8, 30] >>> find_range_in_section_list(7, 321, seclist) [5, 8, 30] >>> find_range_in_section_list(4, 321, seclist) [5, 8, 30] """; 12, assignment; 13, subscript; 14, identifier:ind; 15, call; 16, identifier:section_list; 17, slice; 18, identifier:find_range_ix_in_section_list; 19, argument_list; 20, subscript; 21, subscript; 22, identifier:start; 23, identifier:end; 24, identifier:section_list; 25, identifier:ind; 26, integer:0; 27, identifier:ind; 28, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 8, 11; 9, 12; 10, 13; 12, 14; 12, 15; 13, 16; 13, 17; 15, 18; 15, 19; 17, 20; 17, 21; 19, 22; 19, 23; 19, 24; 20, 25; 20, 26; 21, 27; 21, 28
def find_range_in_section_list(start, end, section_list): """Returns all sections belonging to the given range. The given list is assumed to contain start points of consecutive sections, except for the final point, assumed to be the end point of the last section. For example, the list [5, 8, 30, 31] is interpreted as the following list of sections: [5-8), [8-30), [30-31]. As such, this function will return [5,8] for the range (7,9) and [5,8,30] while for (7, 30). Parameters --------- start : float The start of the desired range. end : float The end of the desired range. section_list : sortedcontainers.SortedList A list of start points of consecutive sections. Returns ------- iterable The starting points of all sections belonging to the given range. Example ------- >>> from sortedcontainers import SortedList >>> seclist = SortedList([5, 8, 30, 31]) >>> find_range_in_section_list(3, 4, seclist) [] >>> find_range_in_section_list(6, 7, seclist) [5] >>> find_range_in_section_list(7, 9, seclist) [5, 8] >>> find_range_in_section_list(7, 30, seclist) [5, 8, 30] >>> find_range_in_section_list(7, 321, seclist) [5, 8, 30] >>> find_range_in_section_list(4, 321, seclist) [5, 8, 30] """ ind = find_range_ix_in_section_list(start, end, section_list) return section_list[ind[0]: ind[1]]
0, module; 1, function_definition; 2, function_name:find_range_ix_in_point_list; 3, parameters; 4, block; 5, identifier:start; 6, identifier:end; 7, identifier:point_list; 8, expression_statement; 9, return_statement; 10, comment:"""Returns the index range all points inside the given range. Parameters --------- start : float The start of the desired range. end : float The end of the desired range. point_list : sortedcontainers.SortedList A list of points. Returns ------- iterable The index range of all points inside the given range. Example ------- >>> from sortedcontainers import SortedList >>> point_list = SortedList([5, 8, 15]) >>> find_range_ix_in_point_list(3, 4, point_list) [0, 0] >>> find_range_ix_in_point_list(3, 7, point_list) [0, 1] >>> find_range_ix_in_point_list(3, 8, point_list) [0, 2] >>> find_range_ix_in_point_list(4, 15, point_list) [0, 3] >>> find_range_ix_in_point_list(4, 321, point_list) [0, 3] >>> find_range_ix_in_point_list(6, 321, point_list) [1, 3] """; 11, list; 12, call; 13, call; 14, attribute; 15, argument_list; 16, attribute; 17, argument_list; 18, identifier:point_list; 19, identifier:bisect_left; 20, identifier:start; 21, identifier:point_list; 22, identifier:bisect_right; 23, identifier:end
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 8, 10; 9, 11; 11, 12; 11, 13; 12, 14; 12, 15; 13, 16; 13, 17; 14, 18; 14, 19; 15, 20; 16, 21; 16, 22; 17, 23
def find_range_ix_in_point_list(start, end, point_list): """Returns the index range all points inside the given range. Parameters --------- start : float The start of the desired range. end : float The end of the desired range. point_list : sortedcontainers.SortedList A list of points. Returns ------- iterable The index range of all points inside the given range. Example ------- >>> from sortedcontainers import SortedList >>> point_list = SortedList([5, 8, 15]) >>> find_range_ix_in_point_list(3, 4, point_list) [0, 0] >>> find_range_ix_in_point_list(3, 7, point_list) [0, 1] >>> find_range_ix_in_point_list(3, 8, point_list) [0, 2] >>> find_range_ix_in_point_list(4, 15, point_list) [0, 3] >>> find_range_ix_in_point_list(4, 321, point_list) [0, 3] >>> find_range_ix_in_point_list(6, 321, point_list) [1, 3] """ return [point_list.bisect_left(start), point_list.bisect_right(end)]
0, module; 1, function_definition; 2, function_name:parse_int_string; 3, parameters; 4, type; 5, block; 6, typed_parameter; 7, generic_type; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, for_statement; 15, return_statement; 16, identifier:int_string; 17, type; 18, identifier:List; 19, type_parameter; 20, comment:""" Given a string like "1 23 4-8 32 1", return a unique list of those integers in the string and the integers in the ranges in the string. Non-numbers ignored. Not necessarily sorted """; 21, assignment; 22, assignment; 23, assignment; 24, assignment; 25, assignment; 26, identifier:token; 27, identifier:tokens; 28, block; 29, call; 30, identifier:str; 31, type; 32, identifier:cleaned; 33, call; 34, identifier:cleaned; 35, call; 36, identifier:cleaned; 37, call; 38, identifier:tokens; 39, call; 40, identifier:indices; 41, type; 42, call; 43, if_statement; 44, identifier:list; 45, argument_list; 46, identifier:int; 47, attribute; 48, argument_list; 49, attribute; 50, argument_list; 51, attribute; 52, argument_list; 53, attribute; 54, argument_list; 55, generic_type; 56, identifier:set; 57, argument_list; 58, comparison_operator:"-" in token; 59, block; 60, else_clause; 61, identifier:indices; 62, string:" "; 63, identifier:join; 64, call; 65, identifier:cleaned; 66, identifier:replace; 67, string:" - "; 68, string:"-"; 69, identifier:cleaned; 70, identifier:replace; 71, string:","; 72, string:" "; 73, identifier:cleaned; 74, identifier:split; 75, string:" "; 76, identifier:Set; 77, type_parameter; 78, string:"-"; 79, identifier:token; 80, expression_statement; 81, if_statement; 82, expression_statement; 83, expression_statement; 84, expression_statement; 85, block; 86, attribute; 87, argument_list; 88, type; 89, assignment; 90, comparison_operator:len(endpoints) != 2; 91, block; 92, assignment; 93, assignment; 94, assignment; 95, try_statement; 96, call; 97, identifier:split; 98, identifier:int; 99, identifier:endpoints; 100, call; 101, call; 102, integer:2; 103, expression_statement; 104, continue_statement; 105, identifier:start; 106, call; 107, identifier:end; 108, binary_operator:int(endpoints[1]) + 1; 109, identifier:indices; 110, call; 111, block; 112, except_clause; 113, attribute; 114, argument_list; 115, attribute; 116, argument_list; 117, identifier:len; 118, argument_list; 119, call; 120, identifier:int; 121, argument_list; 122, call; 123, integer:1; 124, attribute; 125, argument_list; 126, expression_statement; 127, identifier:ValueError; 128, block; 129, identifier:int_string; 130, identifier:strip; 131, identifier:token; 132, identifier:split; 133, string:"-"; 134, identifier:endpoints; 135, attribute; 136, argument_list; 137, subscript; 138, identifier:int; 139, argument_list; 140, identifier:indices; 141, identifier:union; 142, identifier:indices; 143, call; 144, call; 145, expression_statement; 146, identifier:LOG; 147, identifier:info; 148, string:f"Dropping '{token}' as invalid - weird range."; 149, identifier:endpoints; 150, integer:0; 151, subscript; 152, identifier:set; 153, argument_list; 154, attribute; 155, argument_list; 156, call; 157, identifier:endpoints; 158, integer:1; 159, call; 160, identifier:indices; 161, identifier:add; 162, call; 163, attribute; 164, argument_list; 165, identifier:range; 166, argument_list; 167, identifier:int; 168, argument_list; 169, identifier:LOG; 170, identifier:info; 171, string:f"Dropping '{token}' as invalid - not an int."; 172, identifier:start; 173, identifier:end; 174, identifier:token
0, 1; 1, 2; 1, 3; 1, 4; 1, 5; 3, 6; 4, 7; 5, 8; 5, 9; 5, 10; 5, 11; 5, 12; 5, 13; 5, 14; 5, 15; 6, 16; 6, 17; 7, 18; 7, 19; 8, 20; 9, 21; 10, 22; 11, 23; 12, 24; 13, 25; 14, 26; 14, 27; 14, 28; 15, 29; 17, 30; 19, 31; 21, 32; 21, 33; 22, 34; 22, 35; 23, 36; 23, 37; 24, 38; 24, 39; 25, 40; 25, 41; 25, 42; 28, 43; 29, 44; 29, 45; 31, 46; 33, 47; 33, 48; 35, 49; 35, 50; 37, 51; 37, 52; 39, 53; 39, 54; 41, 55; 42, 56; 42, 57; 43, 58; 43, 59; 43, 60; 45, 61; 47, 62; 47, 63; 48, 64; 49, 65; 49, 66; 50, 67; 50, 68; 51, 69; 51, 70; 52, 71; 52, 72; 53, 73; 53, 74; 54, 75; 55, 76; 55, 77; 58, 78; 58, 79; 59, 80; 59, 81; 59, 82; 59, 83; 59, 84; 60, 85; 64, 86; 64, 87; 77, 88; 80, 89; 81, 90; 81, 91; 82, 92; 83, 93; 84, 94; 85, 95; 86, 96; 86, 97; 88, 98; 89, 99; 89, 100; 90, 101; 90, 102; 91, 103; 91, 104; 92, 105; 92, 106; 93, 107; 93, 108; 94, 109; 94, 110; 95, 111; 95, 112; 96, 113; 96, 114; 100, 115; 100, 116; 101, 117; 101, 118; 103, 119; 106, 120; 106, 121; 108, 122; 108, 123; 110, 124; 110, 125; 111, 126; 112, 127; 112, 128; 113, 129; 113, 130; 115, 131; 115, 132; 116, 133; 118, 134; 119, 135; 119, 136; 121, 137; 122, 138; 122, 139; 124, 140; 124, 141; 125, 142; 125, 143; 126, 144; 128, 145; 135, 146; 135, 147; 136, 148; 137, 149; 137, 150; 139, 151; 143, 152; 143, 153; 144, 154; 144, 155; 145, 156; 151, 157; 151, 158; 153, 159; 154, 160; 154, 161; 155, 162; 156, 163; 156, 164; 159, 165; 159, 166; 162, 167; 162, 168; 163, 169; 163, 170; 164, 171; 166, 172; 166, 173; 168, 174
def parse_int_string(int_string: str) -> List[int]: """ Given a string like "1 23 4-8 32 1", return a unique list of those integers in the string and the integers in the ranges in the string. Non-numbers ignored. Not necessarily sorted """ cleaned = " ".join(int_string.strip().split()) cleaned = cleaned.replace(" - ", "-") cleaned = cleaned.replace(",", " ") tokens = cleaned.split(" ") indices: Set[int] = set() for token in tokens: if "-" in token: endpoints = token.split("-") if len(endpoints) != 2: LOG.info(f"Dropping '{token}' as invalid - weird range.") continue start = int(endpoints[0]) end = int(endpoints[1]) + 1 indices = indices.union(indices, set(range(start, end))) else: try: indices.add(int(token)) except ValueError: LOG.info(f"Dropping '{token}' as invalid - not an int.") return list(indices)
0, module; 1, function_definition; 2, function_name:persistence2stats; 3, parameters; 4, block; 5, identifier:rev_docs; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, expression_statement; 16, expression_statement; 17, for_statement; 18, identifier:min_persisted; 19, integer:5; 20, identifier:min_visible; 21, integer:1209600; 22, identifier:include; 23, None; 24, identifier:exclude; 25, None; 26, identifier:verbose; 27, False; 28, comment:""" Processes a sorted and page-partitioned sequence of revision documents into and adds statistics to the 'persistence' field each token "added" in the revision persisted through future revisions. :Parameters: rev_docs : `iterable` ( `dict` ) JSON documents of revision data containing a 'diff' field as generated by ``dump2diffs``. It's assumed that rev_docs are partitioned by page and otherwise in chronological order. window_size : `int` The size of the window of revisions from which persistence data will be generated. min_persisted : `int` The minimum future revisions that a token must persist in order to be considered "persistent". min_visible : `int` The minimum number of seconds that a token must be visible in order to be considered "persistent". include : `func` A function that returns `True` when a token should be included in statistical processing exclude : `str` | `re.SRE_Pattern` A function that returns `True` when a token should *not* be included in statistical processing (Takes precedence over 'include') verbose : `bool` Prints out dots and stuff to stderr :Returns: A generator of rev_docs with a 'persistence' field containing statistics about individual tokens. """; 29, assignment; 30, assignment; 31, assignment; 32, assignment; 33, assignment; 34, identifier:rev_doc; 35, identifier:rev_docs; 36, block; 37, identifier:rev_docs; 38, call; 39, identifier:min_persisted; 40, call; 41, identifier:min_visible; 42, call; 43, identifier:include; 44, conditional_expression:include if include is not None else lambda t: True; 45, identifier:exclude; 46, conditional_expression:exclude if exclude is not None else lambda t: False; 47, expression_statement; 48, expression_statement; 49, expression_statement; 50, for_statement; 51, if_statement; 52, expression_statement; 53, expression_statement; 54, attribute; 55, argument_list; 56, identifier:int; 57, argument_list; 58, identifier:int; 59, argument_list; 60, identifier:include; 61, comparison_operator:include is not None; 62, lambda; 63, identifier:exclude; 64, comparison_operator:exclude is not None; 65, lambda; 66, assignment; 67, assignment; 68, assignment; 69, identifier:token_doc; 70, identifier:filtered_docs; 71, block; 72, identifier:verbose; 73, block; 74, call; 75, yield; 76, attribute; 77, identifier:normalize; 78, identifier:rev_docs; 79, identifier:min_persisted; 80, identifier:min_visible; 81, identifier:include; 82, None; 83, lambda_parameters; 84, True; 85, identifier:exclude; 86, None; 87, lambda_parameters; 88, False; 89, identifier:persistence_doc; 90, subscript; 91, identifier:stats_doc; 92, dictionary; 93, identifier:filtered_docs; 94, generator_expression; 95, if_statement; 96, expression_statement; 97, expression_statement; 98, expression_statement; 99, expression_statement; 100, comment:# Look for time threshold; 101, if_statement; 102, expression_statement; 103, expression_statement; 104, attribute; 105, argument_list; 106, identifier:rev_doc; 107, identifier:mwxml; 108, identifier:utilities; 109, identifier:t; 110, identifier:t; 111, identifier:rev_doc; 112, string; 113, pair; 114, pair; 115, pair; 116, pair; 117, pair; 118, pair; 119, pair; 120, pair; 121, identifier:t; 122, for_in_clause; 123, if_clause; 124, identifier:verbose; 125, block; 126, augmented_assignment; 127, augmented_assignment; 128, augmented_assignment; 129, augmented_assignment; 130, comparison_operator:token_doc['seconds_visible'] >= min_visible; 131, block; 132, else_clause; 133, call; 134, call; 135, subscript; 136, identifier:update; 137, identifier:stats_doc; 138, string_content:persistence; 139, string; 140, integer:0; 141, string; 142, integer:0; 143, string; 144, integer:0; 145, string; 146, integer:0; 147, string; 148, integer:0; 149, string; 150, integer:0; 151, string; 152, False; 153, string; 154, False; 155, identifier:t; 156, subscript; 157, boolean_operator; 158, expression_statement; 159, expression_statement; 160, subscript; 161, integer:1; 162, subscript; 163, call; 164, subscript; 165, line_continuation:\; 166, call; 167, subscript; 168, line_continuation:\; 169, call; 170, subscript; 171, identifier:min_visible; 172, expression_statement; 173, expression_statement; 174, comment:# Look for review threshold; 175, block; 176, attribute; 177, argument_list; 178, attribute; 179, argument_list; 180, identifier:rev_doc; 181, string; 182, string_content:tokens_added; 183, string_content:persistent_tokens; 184, string_content:non_self_persistent_tokens; 185, string_content:sum_log_persisted; 186, string_content:sum_log_non_self_persisted; 187, string_content:sum_log_seconds_visible; 188, string_content:censored; 189, string_content:non_self_censored; 190, identifier:persistence_doc; 191, string; 192, call; 193, not_operator; 194, call; 195, call; 196, identifier:stats_doc; 197, string; 198, identifier:stats_doc; 199, string; 200, identifier:log; 201, argument_list; 202, identifier:stats_doc; 203, string; 204, identifier:log; 205, argument_list; 206, identifier:stats_doc; 207, string; 208, identifier:log; 209, argument_list; 210, identifier:token_doc; 211, string; 212, augmented_assignment; 213, augmented_assignment; 214, expression_statement; 215, expression_statement; 216, comment:# Check for censoring; 217, if_statement; 218, attribute; 219, identifier:write; 220, string:"\n"; 221, attribute; 222, identifier:flush; 223, string_content:persistence; 224, string_content:tokens; 225, identifier:include; 226, argument_list; 227, call; 228, attribute; 229, argument_list; 230, attribute; 231, argument_list; 232, string_content:tokens_added; 233, string_content:sum_log_persisted; 234, binary_operator:token_doc['persisted'] + 1; 235, string_content:sum_log_non_self_persisted; 236, binary_operator:token_doc['non_self_persisted'] + 1; 237, string_content:sum_log_seconds_visible; 238, binary_operator:token_doc['seconds_visible'] + 1; 239, string_content:seconds_visible; 240, subscript; 241, integer:1; 242, subscript; 243, integer:1; 244, augmented_assignment; 245, augmented_assignment; 246, comparison_operator:persistence_doc['seconds_possible'] < min_visible; 247, block; 248, else_clause; 249, identifier:sys; 250, identifier:stderr; 251, identifier:sys; 252, identifier:stderr; 253, subscript; 254, identifier:exclude; 255, argument_list; 256, attribute; 257, identifier:write; 258, string:"."; 259, attribute; 260, identifier:flush; 261, subscript; 262, integer:1; 263, subscript; 264, integer:1; 265, subscript; 266, integer:1; 267, identifier:stats_doc; 268, string; 269, identifier:stats_doc; 270, string; 271, subscript; 272, line_continuation:\; 273, comparison_operator:token_doc['persisted'] >= min_persisted; 274, subscript; 275, line_continuation:\; 276, comparison_operator:token_doc['non_self_persisted'] >= min_persisted; 277, subscript; 278, identifier:min_visible; 279, expression_statement; 280, expression_statement; 281, block; 282, identifier:t; 283, string; 284, subscript; 285, identifier:sys; 286, identifier:stderr; 287, identifier:sys; 288, identifier:stderr; 289, identifier:token_doc; 290, string; 291, identifier:token_doc; 292, string; 293, identifier:token_doc; 294, string; 295, string_content:persistent_tokens; 296, string_content:non_self_persistent_tokens; 297, identifier:stats_doc; 298, string; 299, subscript; 300, identifier:min_persisted; 301, identifier:stats_doc; 302, string; 303, subscript; 304, identifier:min_persisted; 305, identifier:persistence_doc; 306, string; 307, assignment; 308, assignment; 309, if_statement; 310, if_statement; 311, string_content:text; 312, identifier:t; 313, string; 314, string_content:persisted; 315, string_content:non_self_persisted; 316, string_content:seconds_visible; 317, string_content:persistent_tokens; 318, identifier:token_doc; 319, string; 320, string_content:non_self_persistent_tokens; 321, identifier:token_doc; 322, string; 323, string_content:seconds_possible; 324, subscript; 325, True; 326, subscript; 327, True; 328, comparison_operator:persistence_doc['revisions_processed'] < min_persisted; 329, block; 330, comparison_operator:persistence_doc['non_self_processed'] < min_persisted; 331, block; 332, string_content:text; 333, string_content:persisted; 334, string_content:non_self_persisted; 335, identifier:stats_doc; 336, string; 337, identifier:stats_doc; 338, string; 339, subscript; 340, identifier:min_persisted; 341, expression_statement; 342, subscript; 343, identifier:min_persisted; 344, expression_statement; 345, string_content:censored; 346, string_content:non_self_censored; 347, identifier:persistence_doc; 348, string; 349, assignment; 350, identifier:persistence_doc; 351, string; 352, assignment; 353, string_content:revisions_processed; 354, subscript; 355, True; 356, string_content:non_self_processed; 357, subscript; 358, True; 359, identifier:stats_doc; 360, string; 361, identifier:stats_doc; 362, string; 363, string_content:censored; 364, string_content:non_self_censored
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 6, 18; 6, 19; 7, 20; 7, 21; 8, 22; 8, 23; 9, 24; 9, 25; 10, 26; 10, 27; 11, 28; 12, 29; 13, 30; 14, 31; 15, 32; 16, 33; 17, 34; 17, 35; 17, 36; 29, 37; 29, 38; 30, 39; 30, 40; 31, 41; 31, 42; 32, 43; 32, 44; 33, 45; 33, 46; 36, 47; 36, 48; 36, 49; 36, 50; 36, 51; 36, 52; 36, 53; 38, 54; 38, 55; 40, 56; 40, 57; 42, 58; 42, 59; 44, 60; 44, 61; 44, 62; 46, 63; 46, 64; 46, 65; 47, 66; 48, 67; 49, 68; 50, 69; 50, 70; 50, 71; 51, 72; 51, 73; 52, 74; 53, 75; 54, 76; 54, 77; 55, 78; 57, 79; 59, 80; 61, 81; 61, 82; 62, 83; 62, 84; 64, 85; 64, 86; 65, 87; 65, 88; 66, 89; 66, 90; 67, 91; 67, 92; 68, 93; 68, 94; 71, 95; 71, 96; 71, 97; 71, 98; 71, 99; 71, 100; 71, 101; 73, 102; 73, 103; 74, 104; 74, 105; 75, 106; 76, 107; 76, 108; 83, 109; 87, 110; 90, 111; 90, 112; 92, 113; 92, 114; 92, 115; 92, 116; 92, 117; 92, 118; 92, 119; 92, 120; 94, 121; 94, 122; 94, 123; 95, 124; 95, 125; 96, 126; 97, 127; 98, 128; 99, 129; 101, 130; 101, 131; 101, 132; 102, 133; 103, 134; 104, 135; 104, 136; 105, 137; 112, 138; 113, 139; 113, 140; 114, 141; 114, 142; 115, 143; 115, 144; 116, 145; 116, 146; 117, 147; 117, 148; 118, 149; 118, 150; 119, 151; 119, 152; 120, 153; 120, 154; 122, 155; 122, 156; 123, 157; 125, 158; 125, 159; 126, 160; 126, 161; 127, 162; 127, 163; 128, 164; 128, 165; 128, 166; 129, 167; 129, 168; 129, 169; 130, 170; 130, 171; 131, 172; 131, 173; 132, 174; 132, 175; 133, 176; 133, 177; 134, 178; 134, 179; 135, 180; 135, 181; 139, 182; 141, 183; 143, 184; 145, 185; 147, 186; 149, 187; 151, 188; 153, 189; 156, 190; 156, 191; 157, 192; 157, 193; 158, 194; 159, 195; 160, 196; 160, 197; 162, 198; 162, 199; 163, 200; 163, 201; 164, 202; 164, 203; 166, 204; 166, 205; 167, 206; 167, 207; 169, 208; 169, 209; 170, 210; 170, 211; 172, 212; 173, 213; 175, 214; 175, 215; 175, 216; 175, 217; 176, 218; 176, 219; 177, 220; 178, 221; 178, 222; 181, 223; 191, 224; 192, 225; 192, 226; 193, 227; 194, 228; 194, 229; 195, 230; 195, 231; 197, 232; 199, 233; 201, 234; 203, 235; 205, 236; 207, 237; 209, 238; 211, 239; 212, 240; 212, 241; 213, 242; 213, 243; 214, 244; 215, 245; 217, 246; 217, 247; 217, 248; 218, 249; 218, 250; 221, 251; 221, 252; 226, 253; 227, 254; 227, 255; 228, 256; 228, 257; 229, 258; 230, 259; 230, 260; 234, 261; 234, 262; 236, 263; 236, 264; 238, 265; 238, 266; 240, 267; 240, 268; 242, 269; 242, 270; 244, 271; 244, 272; 244, 273; 245, 274; 245, 275; 245, 276; 246, 277; 246, 278; 247, 279; 247, 280; 248, 281; 253, 282; 253, 283; 255, 284; 256, 285; 256, 286; 259, 287; 259, 288; 261, 289; 261, 290; 263, 291; 263, 292; 265, 293; 265, 294; 268, 295; 270, 296; 271, 297; 271, 298; 273, 299; 273, 300; 274, 301; 274, 302; 276, 303; 276, 304; 277, 305; 277, 306; 279, 307; 280, 308; 281, 309; 281, 310; 283, 311; 284, 312; 284, 313; 290, 314; 292, 315; 294, 316; 298, 317; 299, 318; 299, 319; 302, 320; 303, 321; 303, 322; 306, 323; 307, 324; 307, 325; 308, 326; 308, 327; 309, 328; 309, 329; 310, 330; 310, 331; 313, 332; 319, 333; 322, 334; 324, 335; 324, 336; 326, 337; 326, 338; 328, 339; 328, 340; 329, 341; 330, 342; 330, 343; 331, 344; 336, 345; 338, 346; 339, 347; 339, 348; 341, 349; 342, 350; 342, 351; 344, 352; 348, 353; 349, 354; 349, 355; 351, 356; 352, 357; 352, 358; 354, 359; 354, 360; 357, 361; 357, 362; 360, 363; 362, 364
def persistence2stats(rev_docs, min_persisted=5, min_visible=1209600, include=None, exclude=None, verbose=False): """ Processes a sorted and page-partitioned sequence of revision documents into and adds statistics to the 'persistence' field each token "added" in the revision persisted through future revisions. :Parameters: rev_docs : `iterable` ( `dict` ) JSON documents of revision data containing a 'diff' field as generated by ``dump2diffs``. It's assumed that rev_docs are partitioned by page and otherwise in chronological order. window_size : `int` The size of the window of revisions from which persistence data will be generated. min_persisted : `int` The minimum future revisions that a token must persist in order to be considered "persistent". min_visible : `int` The minimum number of seconds that a token must be visible in order to be considered "persistent". include : `func` A function that returns `True` when a token should be included in statistical processing exclude : `str` | `re.SRE_Pattern` A function that returns `True` when a token should *not* be included in statistical processing (Takes precedence over 'include') verbose : `bool` Prints out dots and stuff to stderr :Returns: A generator of rev_docs with a 'persistence' field containing statistics about individual tokens. """ rev_docs = mwxml.utilities.normalize(rev_docs) min_persisted = int(min_persisted) min_visible = int(min_visible) include = include if include is not None else lambda t: True exclude = exclude if exclude is not None else lambda t: False for rev_doc in rev_docs: persistence_doc = rev_doc['persistence'] stats_doc = { 'tokens_added': 0, 'persistent_tokens': 0, 'non_self_persistent_tokens': 0, 'sum_log_persisted': 0, 'sum_log_non_self_persisted': 0, 'sum_log_seconds_visible': 0, 'censored': False, 'non_self_censored': False } filtered_docs = (t for t in persistence_doc['tokens'] if include(t['text']) and not exclude(t['text'])) for token_doc in filtered_docs: if verbose: sys.stderr.write(".") sys.stderr.flush() stats_doc['tokens_added'] += 1 stats_doc['sum_log_persisted'] += log(token_doc['persisted'] + 1) stats_doc['sum_log_non_self_persisted'] += \ log(token_doc['non_self_persisted'] + 1) stats_doc['sum_log_seconds_visible'] += \ log(token_doc['seconds_visible'] + 1) # Look for time threshold if token_doc['seconds_visible'] >= min_visible: stats_doc['persistent_tokens'] += 1 stats_doc['non_self_persistent_tokens'] += 1 else: # Look for review threshold stats_doc['persistent_tokens'] += \ token_doc['persisted'] >= min_persisted stats_doc['non_self_persistent_tokens'] += \ token_doc['non_self_persisted'] >= min_persisted # Check for censoring if persistence_doc['seconds_possible'] < min_visible: stats_doc['censored'] = True stats_doc['non_self_censored'] = True else: if persistence_doc['revisions_processed'] < min_persisted: stats_doc['censored'] = True if persistence_doc['non_self_processed'] < min_persisted: stats_doc['non_self_censored'] = True if verbose: sys.stderr.write("\n") sys.stderr.flush() rev_doc['persistence'].update(stats_doc) yield rev_doc
0, module; 1, function_definition; 2, function_name:diffs2persistence; 3, parameters; 4, block; 5, identifier:rev_docs; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, expression_statement; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, comment:# Group the docs by page; 16, expression_statement; 17, for_statement; 18, identifier:window_size; 19, integer:50; 20, identifier:revert_radius; 21, integer:15; 22, identifier:sunset; 23, None; 24, identifier:verbose; 25, False; 26, comment:""" Processes a sorted and page-partitioned sequence of revision documents into and adds a 'persistence' field to them containing statistics about how each token "added" in the revision persisted through future revisions. :Parameters: rev_docs : `iterable` ( `dict` ) JSON documents of revision data containing a 'diff' field as generated by ``dump2diffs``. It's assumed that rev_docs are partitioned by page and otherwise in chronological order. window_size : `int` The size of the window of revisions from which persistence data will be generated. revert_radius : `int` The number of revisions back that a revert can reference. sunset : :class:`mwtypes.Timestamp` The date of the database dump we are generating from. This is used to apply a 'time visible' statistic. If not set, now() will be assumed. keep_diff : `bool` Do not drop the `diff` field from the revision document after processing is complete. verbose : `bool` Prints out dots and stuff to stderr :Returns: A generator of rev_docs with a 'persistence' field containing statistics about individual tokens. """; 27, assignment; 28, assignment; 29, assignment; 30, assignment; 31, assignment; 32, pattern_list; 33, identifier:page_docs; 34, block; 35, identifier:rev_docs; 36, call; 37, identifier:window_size; 38, call; 39, identifier:revert_radius; 40, call; 41, identifier:sunset; 42, conditional_expression:Timestamp(sunset) if sunset is not None \ else Timestamp(time.time()); 43, identifier:page_docs; 44, call; 45, identifier:page_title; 46, identifier:rev_docs; 47, if_statement; 48, comment:# We need a look-ahead to know how long this revision was visible; 49, expression_statement; 50, comment:# The window allows us to manage memory; 51, expression_statement; 52, comment:# The state does the actual processing work; 53, expression_statement; 54, while_statement; 55, while_statement; 56, if_statement; 57, attribute; 58, argument_list; 59, identifier:int; 60, argument_list; 61, identifier:int; 62, argument_list; 63, call; 64, comparison_operator:sunset is not None; 65, line_continuation:\; 66, call; 67, identifier:groupby; 68, argument_list; 69, identifier:verbose; 70, block; 71, assignment; 72, assignment; 73, assignment; 74, identifier:rev_docs; 75, block; 76, comparison_operator:len(window) > 0; 77, block; 78, identifier:verbose; 79, block; 80, attribute; 81, identifier:normalize; 82, identifier:rev_docs; 83, identifier:window_size; 84, identifier:revert_radius; 85, identifier:Timestamp; 86, argument_list; 87, identifier:sunset; 88, None; 89, identifier:Timestamp; 90, argument_list; 91, identifier:rev_docs; 92, keyword_argument; 93, expression_statement; 94, identifier:rev_docs; 95, call; 96, identifier:window; 97, call; 98, identifier:state; 99, call; 100, expression_statement; 101, expression_statement; 102, if_statement; 103, if_statement; 104, expression_statement; 105, if_statement; 106, call; 107, integer:0; 108, expression_statement; 109, expression_statement; 110, expression_statement; 111, expression_statement; 112, if_statement; 113, expression_statement; 114, identifier:mwxml; 115, identifier:utilities; 116, identifier:sunset; 117, call; 118, identifier:key; 119, lambda; 120, call; 121, identifier:peekable; 122, argument_list; 123, identifier:deque; 124, argument_list; 125, identifier:DiffState; 126, argument_list; 127, assignment; 128, assignment; 129, comparison_operator:next_doc is not None; 130, block; 131, else_clause; 132, comparison_operator:seconds_visible < 0; 133, block; 134, assignment; 135, comparison_operator:len(window) == window_size; 136, comment:# Time to start writing some stats; 137, block; 138, else_clause; 139, identifier:len; 140, argument_list; 141, assignment; 142, assignment; 143, assignment; 144, yield; 145, identifier:verbose; 146, block; 147, call; 148, attribute; 149, argument_list; 150, lambda_parameters; 151, subscript; 152, attribute; 153, argument_list; 154, identifier:rev_docs; 155, keyword_argument; 156, keyword_argument; 157, identifier:rev_doc; 158, call; 159, identifier:next_doc; 160, call; 161, identifier:next_doc; 162, None; 163, expression_statement; 164, block; 165, identifier:seconds_visible; 166, integer:0; 167, expression_statement; 168, expression_statement; 169, pattern_list; 170, line_continuation:\; 171, call; 172, call; 173, identifier:window_size; 174, expression_statement; 175, expression_statement; 176, expression_statement; 177, expression_statement; 178, expression_statement; 179, if_statement; 180, block; 181, identifier:window; 182, pattern_list; 183, call; 184, identifier:persistence; 185, call; 186, subscript; 187, identifier:persistence; 188, identifier:old_doc; 189, expression_statement; 190, expression_statement; 191, attribute; 192, argument_list; 193, identifier:time; 194, identifier:time; 195, identifier:d; 196, subscript; 197, string; 198, attribute; 199, identifier:write; 200, binary_operator:page_title + ": "; 201, identifier:maxlen; 202, identifier:window_size; 203, identifier:revert_radius; 204, identifier:revert_radius; 205, identifier:next; 206, argument_list; 207, attribute; 208, argument_list; 209, assignment; 210, expression_statement; 211, call; 212, assignment; 213, identifier:_; 214, identifier:tokens_added; 215, identifier:_; 216, attribute; 217, argument_list; 218, identifier:len; 219, argument_list; 220, assignment; 221, call; 222, assignment; 223, assignment; 224, yield; 225, identifier:verbose; 226, block; 227, expression_statement; 228, identifier:old_doc; 229, identifier:old_added; 230, attribute; 231, argument_list; 232, identifier:token_persistence; 233, argument_list; 234, identifier:old_doc; 235, string; 236, call; 237, call; 238, attribute; 239, identifier:write; 240, string:"\n"; 241, identifier:d; 242, string; 243, string_content:title; 244, identifier:sys; 245, identifier:stderr; 246, identifier:page_title; 247, string:": "; 248, identifier:rev_docs; 249, identifier:rev_docs; 250, identifier:peek; 251, None; 252, identifier:seconds_visible; 253, binary_operator:Timestamp(next_doc['timestamp']) - \ Timestamp(rev_doc['timestamp']); 254, assignment; 255, attribute; 256, argument_list; 257, identifier:seconds_visible; 258, integer:0; 259, identifier:state; 260, identifier:update_opdocs; 261, subscript; 262, subscript; 263, tuple; 264, identifier:window; 265, pattern_list; 266, subscript; 267, attribute; 268, argument_list; 269, identifier:persistence; 270, call; 271, subscript; 272, identifier:persistence; 273, identifier:old_doc; 274, expression_statement; 275, expression_statement; 276, call; 277, identifier:window; 278, identifier:popleft; 279, identifier:old_doc; 280, identifier:old_added; 281, identifier:window; 282, identifier:sunset; 283, string_content:persistence; 284, attribute; 285, argument_list; 286, attribute; 287, argument_list; 288, identifier:sys; 289, identifier:stderr; 290, string_content:page; 291, call; 292, line_continuation:\; 293, call; 294, identifier:seconds_visible; 295, binary_operator:sunset - Timestamp(rev_doc['timestamp']); 296, identifier:logger; 297, identifier:warn; 298, call; 299, identifier:rev_doc; 300, string; 301, subscript; 302, string; 303, subscript; 304, identifier:seconds_visible; 305, identifier:old_doc; 306, identifier:old_added; 307, identifier:window; 308, integer:0; 309, identifier:window; 310, identifier:append; 311, tuple; 312, identifier:token_persistence; 313, argument_list; 314, identifier:old_doc; 315, string; 316, call; 317, call; 318, attribute; 319, argument_list; 320, attribute; 321, identifier:write; 322, string:"_"; 323, attribute; 324, identifier:flush; 325, identifier:Timestamp; 326, argument_list; 327, identifier:Timestamp; 328, argument_list; 329, identifier:sunset; 330, call; 331, attribute; 332, argument_list; 333, string_content:sha1; 334, identifier:rev_doc; 335, string; 336, string_content:ops; 337, identifier:rev_doc; 338, string; 339, identifier:rev_doc; 340, identifier:tokens_added; 341, identifier:old_doc; 342, identifier:old_added; 343, identifier:window; 344, None; 345, string_content:persistence; 346, attribute; 347, argument_list; 348, attribute; 349, argument_list; 350, identifier:window; 351, identifier:append; 352, tuple; 353, identifier:sys; 354, identifier:stderr; 355, identifier:sys; 356, identifier:stderr; 357, subscript; 358, subscript; 359, identifier:Timestamp; 360, argument_list; 361, string:"Seconds visible {0} is less than zero."; 362, identifier:format; 363, identifier:seconds_visible; 364, string_content:diff; 365, string_content:user; 366, attribute; 367, identifier:write; 368, string:"."; 369, attribute; 370, identifier:flush; 371, identifier:rev_doc; 372, identifier:tokens_added; 373, identifier:next_doc; 374, string; 375, identifier:rev_doc; 376, string; 377, subscript; 378, identifier:sys; 379, identifier:stderr; 380, identifier:sys; 381, identifier:stderr; 382, string_content:timestamp; 383, string_content:timestamp; 384, identifier:rev_doc; 385, string; 386, string_content:timestamp
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 6, 18; 6, 19; 7, 20; 7, 21; 8, 22; 8, 23; 9, 24; 9, 25; 10, 26; 11, 27; 12, 28; 13, 29; 14, 30; 16, 31; 17, 32; 17, 33; 17, 34; 27, 35; 27, 36; 28, 37; 28, 38; 29, 39; 29, 40; 30, 41; 30, 42; 31, 43; 31, 44; 32, 45; 32, 46; 34, 47; 34, 48; 34, 49; 34, 50; 34, 51; 34, 52; 34, 53; 34, 54; 34, 55; 34, 56; 36, 57; 36, 58; 38, 59; 38, 60; 40, 61; 40, 62; 42, 63; 42, 64; 42, 65; 42, 66; 44, 67; 44, 68; 47, 69; 47, 70; 49, 71; 51, 72; 53, 73; 54, 74; 54, 75; 55, 76; 55, 77; 56, 78; 56, 79; 57, 80; 57, 81; 58, 82; 60, 83; 62, 84; 63, 85; 63, 86; 64, 87; 64, 88; 66, 89; 66, 90; 68, 91; 68, 92; 70, 93; 71, 94; 71, 95; 72, 96; 72, 97; 73, 98; 73, 99; 75, 100; 75, 101; 75, 102; 75, 103; 75, 104; 75, 105; 76, 106; 76, 107; 77, 108; 77, 109; 77, 110; 77, 111; 77, 112; 79, 113; 80, 114; 80, 115; 86, 116; 90, 117; 92, 118; 92, 119; 93, 120; 95, 121; 95, 122; 97, 123; 97, 124; 99, 125; 99, 126; 100, 127; 101, 128; 102, 129; 102, 130; 102, 131; 103, 132; 103, 133; 104, 134; 105, 135; 105, 136; 105, 137; 105, 138; 106, 139; 106, 140; 108, 141; 109, 142; 110, 143; 111, 144; 112, 145; 112, 146; 113, 147; 117, 148; 117, 149; 119, 150; 119, 151; 120, 152; 120, 153; 122, 154; 124, 155; 126, 156; 127, 157; 127, 158; 128, 159; 128, 160; 129, 161; 129, 162; 130, 163; 131, 164; 132, 165; 132, 166; 133, 167; 133, 168; 134, 169; 134, 170; 134, 171; 135, 172; 135, 173; 137, 174; 137, 175; 137, 176; 137, 177; 137, 178; 137, 179; 138, 180; 140, 181; 141, 182; 141, 183; 142, 184; 142, 185; 143, 186; 143, 187; 144, 188; 146, 189; 146, 190; 147, 191; 147, 192; 148, 193; 148, 194; 150, 195; 151, 196; 151, 197; 152, 198; 152, 199; 153, 200; 155, 201; 155, 202; 156, 203; 156, 204; 158, 205; 158, 206; 160, 207; 160, 208; 163, 209; 164, 210; 167, 211; 168, 212; 169, 213; 169, 214; 169, 215; 171, 216; 171, 217; 172, 218; 172, 219; 174, 220; 175, 221; 176, 222; 177, 223; 178, 224; 179, 225; 179, 226; 180, 227; 182, 228; 182, 229; 183, 230; 183, 231; 185, 232; 185, 233; 186, 234; 186, 235; 189, 236; 190, 237; 191, 238; 191, 239; 192, 240; 196, 241; 196, 242; 197, 243; 198, 244; 198, 245; 200, 246; 200, 247; 206, 248; 207, 249; 207, 250; 208, 251; 209, 252; 209, 253; 210, 254; 211, 255; 211, 256; 212, 257; 212, 258; 216, 259; 216, 260; 217, 261; 217, 262; 217, 263; 219, 264; 220, 265; 220, 266; 221, 267; 221, 268; 222, 269; 222, 270; 223, 271; 223, 272; 224, 273; 226, 274; 226, 275; 227, 276; 230, 277; 230, 278; 233, 279; 233, 280; 233, 281; 233, 282; 235, 283; 236, 284; 236, 285; 237, 286; 237, 287; 238, 288; 238, 289; 242, 290; 253, 291; 253, 292; 253, 293; 254, 294; 254, 295; 255, 296; 255, 297; 256, 298; 261, 299; 261, 300; 262, 301; 262, 302; 263, 303; 263, 304; 265, 305; 265, 306; 266, 307; 266, 308; 267, 309; 267, 310; 268, 311; 270, 312; 270, 313; 271, 314; 271, 315; 274, 316; 275, 317; 276, 318; 276, 319; 284, 320; 284, 321; 285, 322; 286, 323; 286, 324; 291, 325; 291, 326; 293, 327; 293, 328; 295, 329; 295, 330; 298, 331; 298, 332; 300, 333; 301, 334; 301, 335; 302, 336; 303, 337; 303, 338; 311, 339; 311, 340; 313, 341; 313, 342; 313, 343; 313, 344; 315, 345; 316, 346; 316, 347; 317, 348; 317, 349; 318, 350; 318, 351; 319, 352; 320, 353; 320, 354; 323, 355; 323, 356; 326, 357; 328, 358; 330, 359; 330, 360; 331, 361; 331, 362; 332, 363; 335, 364; 338, 365; 346, 366; 346, 367; 347, 368; 348, 369; 348, 370; 352, 371; 352, 372; 357, 373; 357, 374; 358, 375; 358, 376; 360, 377; 366, 378; 366, 379; 369, 380; 369, 381; 374, 382; 376, 383; 377, 384; 377, 385; 385, 386
def diffs2persistence(rev_docs, window_size=50, revert_radius=15, sunset=None, verbose=False): """ Processes a sorted and page-partitioned sequence of revision documents into and adds a 'persistence' field to them containing statistics about how each token "added" in the revision persisted through future revisions. :Parameters: rev_docs : `iterable` ( `dict` ) JSON documents of revision data containing a 'diff' field as generated by ``dump2diffs``. It's assumed that rev_docs are partitioned by page and otherwise in chronological order. window_size : `int` The size of the window of revisions from which persistence data will be generated. revert_radius : `int` The number of revisions back that a revert can reference. sunset : :class:`mwtypes.Timestamp` The date of the database dump we are generating from. This is used to apply a 'time visible' statistic. If not set, now() will be assumed. keep_diff : `bool` Do not drop the `diff` field from the revision document after processing is complete. verbose : `bool` Prints out dots and stuff to stderr :Returns: A generator of rev_docs with a 'persistence' field containing statistics about individual tokens. """ rev_docs = mwxml.utilities.normalize(rev_docs) window_size = int(window_size) revert_radius = int(revert_radius) sunset = Timestamp(sunset) if sunset is not None \ else Timestamp(time.time()) # Group the docs by page page_docs = groupby(rev_docs, key=lambda d: d['page']['title']) for page_title, rev_docs in page_docs: if verbose: sys.stderr.write(page_title + ": ") # We need a look-ahead to know how long this revision was visible rev_docs = peekable(rev_docs) # The window allows us to manage memory window = deque(maxlen=window_size) # The state does the actual processing work state = DiffState(revert_radius=revert_radius) while rev_docs: rev_doc = next(rev_docs) next_doc = rev_docs.peek(None) if next_doc is not None: seconds_visible = Timestamp(next_doc['timestamp']) - \ Timestamp(rev_doc['timestamp']) else: seconds_visible = sunset - Timestamp(rev_doc['timestamp']) if seconds_visible < 0: logger.warn("Seconds visible {0} is less than zero." .format(seconds_visible)) seconds_visible = 0 _, tokens_added, _ = \ state.update_opdocs(rev_doc['sha1'], rev_doc['diff']['ops'], (rev_doc['user'], seconds_visible)) if len(window) == window_size: # Time to start writing some stats old_doc, old_added = window[0] window.append((rev_doc, tokens_added)) persistence = token_persistence(old_doc, old_added, window, None) old_doc['persistence'] = persistence yield old_doc if verbose: sys.stderr.write(".") sys.stderr.flush() else: window.append((rev_doc, tokens_added)) while len(window) > 0: old_doc, old_added = window.popleft() persistence = token_persistence(old_doc, old_added, window, sunset) old_doc['persistence'] = persistence yield old_doc if verbose: sys.stderr.write("_") sys.stderr.flush() if verbose: sys.stderr.write("\n")
0, module; 1, function_definition; 2, function_name:_build_module_db; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, expression_statement; 8, for_statement; 9, for_statement; 10, comment:""" Build database of module callables sorted by line number. The database is a dictionary whose keys are module file names and whose values are lists of dictionaries containing name and line number of callables in that module """; 11, assignment; 12, pattern_list; 13, call; 14, block; 15, identifier:fname; 16, call; 17, block; 18, identifier:tdict; 19, call; 20, identifier:callable_name; 21, identifier:callable_dict; 22, attribute; 23, argument_list; 24, expression_statement; 25, expression_statement; 26, expression_statement; 27, attribute; 28, argument_list; 29, expression_statement; 30, attribute; 31, argument_list; 32, attribute; 33, identifier:items; 34, assignment; 35, assignment; 36, call; 37, identifier:tdict; 38, identifier:keys; 39, assignment; 40, identifier:collections; 41, identifier:defaultdict; 42, lambda; 43, attribute; 44, identifier:callables_db; 45, pattern_list; 46, subscript; 47, identifier:cname; 48, parenthesized_expression; 49, attribute; 50, argument_list; 51, subscript; 52, call; 53, list; 54, identifier:self; 55, identifier:_exh_obj; 56, identifier:fname; 57, identifier:line_no; 58, identifier:callable_dict; 59, string:"code_id"; 60, conditional_expression:"{cls_name}.__init__".format(cls_name=callable_name) if callable_dict["type"] == "class" else callable_name; 61, subscript; 62, identifier:append; 63, dictionary; 64, attribute; 65, identifier:fname; 66, identifier:sorted; 67, argument_list; 68, call; 69, comparison_operator:callable_dict["type"] == "class"; 70, identifier:callable_name; 71, identifier:tdict; 72, identifier:fname; 73, pair; 74, pair; 75, identifier:self; 76, identifier:_module_obj_db; 77, subscript; 78, keyword_argument; 79, attribute; 80, argument_list; 81, subscript; 82, string:"class"; 83, string:"name"; 84, identifier:cname; 85, string:"line"; 86, identifier:line_no; 87, identifier:tdict; 88, identifier:fname; 89, identifier:key; 90, lambda; 91, string:"{cls_name}.__init__"; 92, identifier:format; 93, keyword_argument; 94, identifier:callable_dict; 95, string:"type"; 96, lambda_parameters; 97, subscript; 98, identifier:cls_name; 99, identifier:callable_name; 100, identifier:idict; 101, identifier:idict; 102, string:"line"
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 6, 10; 7, 11; 8, 12; 8, 13; 8, 14; 9, 15; 9, 16; 9, 17; 11, 18; 11, 19; 12, 20; 12, 21; 13, 22; 13, 23; 14, 24; 14, 25; 14, 26; 16, 27; 16, 28; 17, 29; 19, 30; 19, 31; 22, 32; 22, 33; 24, 34; 25, 35; 26, 36; 27, 37; 27, 38; 29, 39; 30, 40; 30, 41; 31, 42; 32, 43; 32, 44; 34, 45; 34, 46; 35, 47; 35, 48; 36, 49; 36, 50; 39, 51; 39, 52; 42, 53; 43, 54; 43, 55; 45, 56; 45, 57; 46, 58; 46, 59; 48, 60; 49, 61; 49, 62; 50, 63; 51, 64; 51, 65; 52, 66; 52, 67; 60, 68; 60, 69; 60, 70; 61, 71; 61, 72; 63, 73; 63, 74; 64, 75; 64, 76; 67, 77; 67, 78; 68, 79; 68, 80; 69, 81; 69, 82; 73, 83; 73, 84; 74, 85; 74, 86; 77, 87; 77, 88; 78, 89; 78, 90; 79, 91; 79, 92; 80, 93; 81, 94; 81, 95; 90, 96; 90, 97; 93, 98; 93, 99; 96, 100; 97, 101; 97, 102
def _build_module_db(self): """ Build database of module callables sorted by line number. The database is a dictionary whose keys are module file names and whose values are lists of dictionaries containing name and line number of callables in that module """ tdict = collections.defaultdict(lambda: []) for callable_name, callable_dict in self._exh_obj.callables_db.items(): fname, line_no = callable_dict["code_id"] cname = ( "{cls_name}.__init__".format(cls_name=callable_name) if callable_dict["type"] == "class" else callable_name ) tdict[fname].append({"name": cname, "line": line_no}) for fname in tdict.keys(): self._module_obj_db[fname] = sorted( tdict[fname], key=lambda idict: idict["line"] )
0, module; 1, function_definition; 2, function_name:_sorted_keys_items; 3, parameters; 4, block; 5, identifier:dobj; 6, expression_statement; 7, expression_statement; 8, for_statement; 9, comment:"""Return dictionary items sorted by key."""; 10, assignment; 11, identifier:key; 12, identifier:keys; 13, block; 14, identifier:keys; 15, call; 16, expression_statement; 17, identifier:sorted; 18, argument_list; 19, yield; 20, call; 21, expression_list; 22, attribute; 23, argument_list; 24, identifier:key; 25, subscript; 26, identifier:dobj; 27, identifier:keys; 28, identifier:dobj; 29, identifier:key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 6, 9; 7, 10; 8, 11; 8, 12; 8, 13; 10, 14; 10, 15; 13, 16; 15, 17; 15, 18; 16, 19; 18, 20; 19, 21; 20, 22; 20, 23; 21, 24; 21, 25; 22, 26; 22, 27; 25, 28; 25, 29
def _sorted_keys_items(dobj): """Return dictionary items sorted by key.""" keys = sorted(dobj.keys()) for key in keys: yield key, dobj[key]
0, module; 1, function_definition; 2, function_name:subdict_by_keys; 3, parameters; 4, block; 5, identifier:dict_obj; 6, identifier:keys; 7, expression_statement; 8, return_statement; 9, comment:"""Returns a sub-dict composed solely of the given keys. Parameters ---------- dict_obj : dict The dict to create a sub-dict from. keys : list of str The keys to keep in the sub-dict. Keys not present in the given dict will be ignored. Returns ------- dict A sub-dict of the given dict composed solely of the given keys. Example: -------- >>> dict_obj = {'a': 1, 'b': 2, 'c': 3, 'd': 4} >>> subdict = subdict_by_keys(dict_obj, ['b', 'd', 'e']) >>> print(sorted(subdict.items())) [('b', 2), ('d', 4)] """; 10, dictionary_comprehension; 11, pair; 12, for_in_clause; 13, identifier:k; 14, subscript; 15, identifier:k; 16, call; 17, identifier:dict_obj; 18, identifier:k; 19, attribute; 20, argument_list; 21, call; 22, identifier:intersection; 23, call; 24, identifier:set; 25, argument_list; 26, attribute; 27, argument_list; 28, identifier:keys; 29, identifier:dict_obj; 30, identifier:keys
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 7, 9; 8, 10; 10, 11; 10, 12; 11, 13; 11, 14; 12, 15; 12, 16; 14, 17; 14, 18; 16, 19; 16, 20; 19, 21; 19, 22; 20, 23; 21, 24; 21, 25; 23, 26; 23, 27; 25, 28; 26, 29; 26, 30
def subdict_by_keys(dict_obj, keys): """Returns a sub-dict composed solely of the given keys. Parameters ---------- dict_obj : dict The dict to create a sub-dict from. keys : list of str The keys to keep in the sub-dict. Keys not present in the given dict will be ignored. Returns ------- dict A sub-dict of the given dict composed solely of the given keys. Example: -------- >>> dict_obj = {'a': 1, 'b': 2, 'c': 3, 'd': 4} >>> subdict = subdict_by_keys(dict_obj, ['b', 'd', 'e']) >>> print(sorted(subdict.items())) [('b', 2), ('d', 4)] """ return {k: dict_obj[k] for k in set(keys).intersection(dict_obj.keys())}
0, module; 1, function_definition; 2, function_name:deep_merge_dict; 3, parameters; 4, block; 5, identifier:base; 6, identifier:priority; 7, expression_statement; 8, if_statement; 9, expression_statement; 10, for_statement; 11, return_statement; 12, comment:"""Recursively merges the two given dicts into a single dict. Treating base as the the initial point of the resulting merged dict, and considering the nested dictionaries as trees, they are merged os: 1. Every path to every leaf in priority would be represented in the result. 2. Subtrees of base are overwritten if a leaf is found in the corresponding path in priority. 3. The invariant that all priority leaf nodes remain leafs is maintained. Parameters ---------- base : dict The first, lower-priority, dict to merge. priority : dict The second, higher-priority, dict to merge. Returns ------- dict A recursive merge of the two given dicts. Example: -------- >>> base = {'a': 1, 'b': 2, 'c': {'d': 4}, 'e': 5} >>> priority = {'a': {'g': 7}, 'c': 3, 'e': 5, 'f': 6} >>> result = deep_merge_dict(base, priority) >>> print(sorted(result.items())) [('a', {'g': 7}), ('b', 2), ('c', 3), ('e', 5), ('f', 6)] """; 13, boolean_operator; 14, block; 15, assignment; 16, identifier:key; 17, call; 18, block; 19, identifier:result; 20, not_operator; 21, not_operator; 22, return_statement; 23, identifier:result; 24, call; 25, attribute; 26, argument_list; 27, if_statement; 28, call; 29, call; 30, identifier:priority; 31, attribute; 32, argument_list; 33, identifier:priority; 34, identifier:keys; 35, comparison_operator:key in base; 36, block; 37, else_clause; 38, identifier:isinstance; 39, argument_list; 40, identifier:isinstance; 41, argument_list; 42, identifier:copy; 43, identifier:deepcopy; 44, identifier:base; 45, identifier:key; 46, identifier:base; 47, expression_statement; 48, block; 49, identifier:base; 50, identifier:dict; 51, identifier:priority; 52, identifier:dict; 53, assignment; 54, expression_statement; 55, subscript; 56, call; 57, assignment; 58, identifier:result; 59, identifier:key; 60, identifier:deep_merge_dict; 61, argument_list; 62, subscript; 63, subscript; 64, subscript; 65, subscript; 66, identifier:result; 67, identifier:key; 68, identifier:priority; 69, identifier:key; 70, identifier:base; 71, identifier:key; 72, identifier:priority; 73, identifier:key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 7, 12; 8, 13; 8, 14; 9, 15; 10, 16; 10, 17; 10, 18; 11, 19; 13, 20; 13, 21; 14, 22; 15, 23; 15, 24; 17, 25; 17, 26; 18, 27; 20, 28; 21, 29; 22, 30; 24, 31; 24, 32; 25, 33; 25, 34; 27, 35; 27, 36; 27, 37; 28, 38; 28, 39; 29, 40; 29, 41; 31, 42; 31, 43; 32, 44; 35, 45; 35, 46; 36, 47; 37, 48; 39, 49; 39, 50; 41, 51; 41, 52; 47, 53; 48, 54; 53, 55; 53, 56; 54, 57; 55, 58; 55, 59; 56, 60; 56, 61; 57, 62; 57, 63; 61, 64; 61, 65; 62, 66; 62, 67; 63, 68; 63, 69; 64, 70; 64, 71; 65, 72; 65, 73
def deep_merge_dict(base, priority): """Recursively merges the two given dicts into a single dict. Treating base as the the initial point of the resulting merged dict, and considering the nested dictionaries as trees, they are merged os: 1. Every path to every leaf in priority would be represented in the result. 2. Subtrees of base are overwritten if a leaf is found in the corresponding path in priority. 3. The invariant that all priority leaf nodes remain leafs is maintained. Parameters ---------- base : dict The first, lower-priority, dict to merge. priority : dict The second, higher-priority, dict to merge. Returns ------- dict A recursive merge of the two given dicts. Example: -------- >>> base = {'a': 1, 'b': 2, 'c': {'d': 4}, 'e': 5} >>> priority = {'a': {'g': 7}, 'c': 3, 'e': 5, 'f': 6} >>> result = deep_merge_dict(base, priority) >>> print(sorted(result.items())) [('a', {'g': 7}), ('b', 2), ('c', 3), ('e', 5), ('f', 6)] """ if not isinstance(base, dict) or not isinstance(priority, dict): return priority result = copy.deepcopy(base) for key in priority.keys(): if key in base: result[key] = deep_merge_dict(base[key], priority[key]) else: result[key] = priority[key] return result
0, module; 1, function_definition; 2, function_name:norm_int_dict; 3, parameters; 4, block; 5, identifier:int_dict; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, return_statement; 11, comment:"""Normalizes values in the given dict with int values. Parameters ---------- int_dict : list A dict object mapping each key to an int value. Returns ------- dict A dict where each key is mapped to its relative part in the sum of all dict values. Example ------- >>> dict_obj = {'a': 3, 'b': 5, 'c': 2} >>> result = norm_int_dict(dict_obj) >>> print(sorted(result.items())) [('a', 0.3), ('b', 0.5), ('c', 0.2)] """; 12, assignment; 13, assignment; 14, identifier:key; 15, identifier:norm_dict; 16, block; 17, identifier:norm_dict; 18, identifier:norm_dict; 19, call; 20, identifier:val_sum; 21, call; 22, expression_statement; 23, attribute; 24, argument_list; 25, identifier:sum; 26, argument_list; 27, assignment; 28, identifier:int_dict; 29, identifier:copy; 30, call; 31, subscript; 32, binary_operator:norm_dict[key] / val_sum; 33, attribute; 34, argument_list; 35, identifier:norm_dict; 36, identifier:key; 37, subscript; 38, identifier:val_sum; 39, identifier:norm_dict; 40, identifier:values; 41, identifier:norm_dict; 42, identifier:key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 6, 11; 7, 12; 8, 13; 9, 14; 9, 15; 9, 16; 10, 17; 12, 18; 12, 19; 13, 20; 13, 21; 16, 22; 19, 23; 19, 24; 21, 25; 21, 26; 22, 27; 23, 28; 23, 29; 26, 30; 27, 31; 27, 32; 30, 33; 30, 34; 31, 35; 31, 36; 32, 37; 32, 38; 33, 39; 33, 40; 37, 41; 37, 42
def norm_int_dict(int_dict): """Normalizes values in the given dict with int values. Parameters ---------- int_dict : list A dict object mapping each key to an int value. Returns ------- dict A dict where each key is mapped to its relative part in the sum of all dict values. Example ------- >>> dict_obj = {'a': 3, 'b': 5, 'c': 2} >>> result = norm_int_dict(dict_obj) >>> print(sorted(result.items())) [('a', 0.3), ('b', 0.5), ('c', 0.2)] """ norm_dict = int_dict.copy() val_sum = sum(norm_dict.values()) for key in norm_dict: norm_dict[key] = norm_dict[key] / val_sum return norm_dict
0, module; 1, function_definition; 2, function_name:sum_num_dicts; 3, parameters; 4, block; 5, identifier:dicts; 6, default_parameter; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, if_statement; 11, return_statement; 12, identifier:normalize; 13, False; 14, comment:"""Sums the given dicts into a single dict mapping each key to the sum of its mappings in all given dicts. Parameters ---------- dicts : list A list of dict objects mapping each key to an numeric value. normalize : bool, default False Indicated whether to normalize all values by value sum. Returns ------- dict A dict where each key is mapped to the sum of its mappings in all given dicts. Example ------- >>> dict1 = {'a': 3, 'b': 2} >>> dict2 = {'a':7, 'c': 8} >>> result = sum_num_dicts([dict1, dict2]) >>> print(sorted(result.items())) [('a', 10), ('b', 2), ('c', 8)] >>> result = sum_num_dicts([dict1, dict2], normalize=True) >>> print(sorted(result.items())) [('a', 0.5), ('b', 0.1), ('c', 0.4)] """; 15, assignment; 16, identifier:dicti; 17, identifier:dicts; 18, block; 19, identifier:normalize; 20, block; 21, identifier:sum_dict; 22, identifier:sum_dict; 23, dictionary; 24, for_statement; 25, return_statement; 26, identifier:key; 27, identifier:dicti; 28, block; 29, call; 30, expression_statement; 31, identifier:norm_int_dict; 32, argument_list; 33, assignment; 34, identifier:sum_dict; 35, subscript; 36, binary_operator:sum_dict.get(key, 0) + dicti[key]; 37, identifier:sum_dict; 38, identifier:key; 39, call; 40, subscript; 41, attribute; 42, argument_list; 43, identifier:dicti; 44, identifier:key; 45, identifier:sum_dict; 46, identifier:get; 47, identifier:key; 48, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 6, 13; 7, 14; 8, 15; 9, 16; 9, 17; 9, 18; 10, 19; 10, 20; 11, 21; 15, 22; 15, 23; 18, 24; 20, 25; 24, 26; 24, 27; 24, 28; 25, 29; 28, 30; 29, 31; 29, 32; 30, 33; 32, 34; 33, 35; 33, 36; 35, 37; 35, 38; 36, 39; 36, 40; 39, 41; 39, 42; 40, 43; 40, 44; 41, 45; 41, 46; 42, 47; 42, 48
def sum_num_dicts(dicts, normalize=False): """Sums the given dicts into a single dict mapping each key to the sum of its mappings in all given dicts. Parameters ---------- dicts : list A list of dict objects mapping each key to an numeric value. normalize : bool, default False Indicated whether to normalize all values by value sum. Returns ------- dict A dict where each key is mapped to the sum of its mappings in all given dicts. Example ------- >>> dict1 = {'a': 3, 'b': 2} >>> dict2 = {'a':7, 'c': 8} >>> result = sum_num_dicts([dict1, dict2]) >>> print(sorted(result.items())) [('a', 10), ('b', 2), ('c', 8)] >>> result = sum_num_dicts([dict1, dict2], normalize=True) >>> print(sorted(result.items())) [('a', 0.5), ('b', 0.1), ('c', 0.4)] """ sum_dict = {} for dicti in dicts: for key in dicti: sum_dict[key] = sum_dict.get(key, 0) + dicti[key] if normalize: return norm_int_dict(sum_dict) return sum_dict
0, module; 1, function_definition; 2, function_name:reverse_dict; 3, parameters; 4, block; 5, identifier:dict_obj; 6, expression_statement; 7, expression_statement; 8, for_statement; 9, for_statement; 10, return_statement; 11, comment:"""Reverse a dict, so each value in it maps to a sorted list of its keys. Parameters ---------- dict_obj : dict A key-value dict. Returns ------- dict A dict where each value maps to a sorted list of all the unique keys that mapped to it. Example ------- >>> dicti = {'a': 1, 'b': 3, 'c': 1} >>> reverse_dict(dicti) {1: ['a', 'c'], 3: ['b']} """; 12, assignment; 13, identifier:key; 14, identifier:dict_obj; 15, block; 16, identifier:key; 17, identifier:new_dict; 18, block; 19, identifier:new_dict; 20, identifier:new_dict; 21, dictionary; 22, expression_statement; 23, expression_statement; 24, call; 25, assignment; 26, identifier:add_to_dict_val_set; 27, argument_list; 28, subscript; 29, call; 30, keyword_argument; 31, keyword_argument; 32, keyword_argument; 33, identifier:new_dict; 34, identifier:key; 35, identifier:sorted; 36, argument_list; 37, identifier:dict_obj; 38, identifier:new_dict; 39, identifier:key; 40, subscript; 41, identifier:val; 42, identifier:key; 43, subscript; 44, keyword_argument; 45, identifier:dict_obj; 46, identifier:key; 47, identifier:new_dict; 48, identifier:key; 49, identifier:reverse; 50, False
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 6, 11; 7, 12; 8, 13; 8, 14; 8, 15; 9, 16; 9, 17; 9, 18; 10, 19; 12, 20; 12, 21; 15, 22; 18, 23; 22, 24; 23, 25; 24, 26; 24, 27; 25, 28; 25, 29; 27, 30; 27, 31; 27, 32; 28, 33; 28, 34; 29, 35; 29, 36; 30, 37; 30, 38; 31, 39; 31, 40; 32, 41; 32, 42; 36, 43; 36, 44; 40, 45; 40, 46; 43, 47; 43, 48; 44, 49; 44, 50
def reverse_dict(dict_obj): """Reverse a dict, so each value in it maps to a sorted list of its keys. Parameters ---------- dict_obj : dict A key-value dict. Returns ------- dict A dict where each value maps to a sorted list of all the unique keys that mapped to it. Example ------- >>> dicti = {'a': 1, 'b': 3, 'c': 1} >>> reverse_dict(dicti) {1: ['a', 'c'], 3: ['b']} """ new_dict = {} for key in dict_obj: add_to_dict_val_set(dict_obj=new_dict, key=dict_obj[key], val=key) for key in new_dict: new_dict[key] = sorted(new_dict[key], reverse=False) return new_dict
0, module; 1, function_definition; 2, function_name:flatten_dict; 3, parameters; 4, block; 5, identifier:dict_obj; 6, default_parameter; 7, default_parameter; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, function_definition; 12, function_definition; 13, expression_statement; 14, return_statement; 15, identifier:separator; 16, string; 17, identifier:flatten_lists; 18, False; 19, comment:"""Flattens the given dict into a single-level dict with flattend keys. Parameters ---------- dict_obj : dict A possibly nested dict. separator : str, optional The character to use as a separator between keys. Defaults to '.'. flatten_lists : bool, optional If True, list values are also flattened. False by default. Returns ------- dict A shallow dict, where no value is a dict in itself, and keys are concatenations of original key paths separated with the given separator. Example ------- >>> dicti = {'a': 1, 'b': {'g': 4, 'o': 9}, 'x': [4, 'd']} >>> flat = flatten_dict(dicti) >>> sorted(flat.items()) [('a', 1), ('b.g', 4), ('b.o', 9), ('x.0', 4), ('x.1', 'd')] """; 20, assignment; 21, assignment; 22, function_name:_flatten_key_val; 23, parameters; 24, block; 25, function_name:_flatten; 26, parameters; 27, block; 28, call; 29, identifier:flat; 30, string_content:.; 31, identifier:reducer; 32, call; 33, identifier:flat; 34, dictionary; 35, identifier:key; 36, identifier:val; 37, identifier:parent; 38, expression_statement; 39, try_statement; 40, identifier:d; 41, default_parameter; 42, try_statement; 43, identifier:_flatten; 44, argument_list; 45, identifier:_get_key_reducer; 46, argument_list; 47, assignment; 48, block; 49, except_clause; 50, identifier:parent; 51, None; 52, block; 53, except_clause; 54, identifier:dict_obj; 55, identifier:separator; 56, identifier:flat_key; 57, call; 58, expression_statement; 59, identifier:TypeError; 60, block; 61, for_statement; 62, identifier:AttributeError; 63, block; 64, identifier:reducer; 65, argument_list; 66, call; 67, expression_statement; 68, pattern_list; 69, call; 70, block; 71, if_statement; 72, for_statement; 73, identifier:parent; 74, identifier:key; 75, identifier:_flatten; 76, argument_list; 77, assignment; 78, identifier:key; 79, identifier:val; 80, attribute; 81, argument_list; 82, expression_statement; 83, call; 84, block; 85, pattern_list; 86, call; 87, block; 88, identifier:val; 89, identifier:flat_key; 90, subscript; 91, identifier:val; 92, identifier:d; 93, identifier:items; 94, call; 95, identifier:isinstance; 96, argument_list; 97, raise_statement; 98, identifier:i; 99, identifier:value; 100, identifier:enumerate; 101, argument_list; 102, expression_statement; 103, identifier:flat; 104, identifier:flat_key; 105, identifier:_flatten_key_val; 106, argument_list; 107, identifier:d; 108, tuple; 109, identifier:TypeError; 110, identifier:d; 111, call; 112, identifier:key; 113, identifier:val; 114, identifier:parent; 115, identifier:str; 116, identifier:bytes; 117, identifier:_flatten_key_val; 118, argument_list; 119, call; 120, identifier:value; 121, identifier:parent; 122, identifier:str; 123, argument_list; 124, identifier:i
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 6, 15; 6, 16; 7, 17; 7, 18; 8, 19; 9, 20; 10, 21; 11, 22; 11, 23; 11, 24; 12, 25; 12, 26; 12, 27; 13, 28; 14, 29; 16, 30; 20, 31; 20, 32; 21, 33; 21, 34; 23, 35; 23, 36; 23, 37; 24, 38; 24, 39; 26, 40; 26, 41; 27, 42; 28, 43; 28, 44; 32, 45; 32, 46; 38, 47; 39, 48; 39, 49; 41, 50; 41, 51; 42, 52; 42, 53; 44, 54; 46, 55; 47, 56; 47, 57; 48, 58; 49, 59; 49, 60; 52, 61; 53, 62; 53, 63; 57, 64; 57, 65; 58, 66; 60, 67; 61, 68; 61, 69; 61, 70; 63, 71; 63, 72; 65, 73; 65, 74; 66, 75; 66, 76; 67, 77; 68, 78; 68, 79; 69, 80; 69, 81; 70, 82; 71, 83; 71, 84; 72, 85; 72, 86; 72, 87; 76, 88; 76, 89; 77, 90; 77, 91; 80, 92; 80, 93; 82, 94; 83, 95; 83, 96; 84, 97; 85, 98; 85, 99; 86, 100; 86, 101; 87, 102; 90, 103; 90, 104; 94, 105; 94, 106; 96, 107; 96, 108; 97, 109; 101, 110; 102, 111; 106, 112; 106, 113; 106, 114; 108, 115; 108, 116; 111, 117; 111, 118; 118, 119; 118, 120; 118, 121; 119, 122; 119, 123; 123, 124
def flatten_dict(dict_obj, separator='.', flatten_lists=False): """Flattens the given dict into a single-level dict with flattend keys. Parameters ---------- dict_obj : dict A possibly nested dict. separator : str, optional The character to use as a separator between keys. Defaults to '.'. flatten_lists : bool, optional If True, list values are also flattened. False by default. Returns ------- dict A shallow dict, where no value is a dict in itself, and keys are concatenations of original key paths separated with the given separator. Example ------- >>> dicti = {'a': 1, 'b': {'g': 4, 'o': 9}, 'x': [4, 'd']} >>> flat = flatten_dict(dicti) >>> sorted(flat.items()) [('a', 1), ('b.g', 4), ('b.o', 9), ('x.0', 4), ('x.1', 'd')] """ reducer = _get_key_reducer(separator) flat = {} def _flatten_key_val(key, val, parent): flat_key = reducer(parent, key) try: _flatten(val, flat_key) except TypeError: flat[flat_key] = val def _flatten(d, parent=None): try: for key, val in d.items(): _flatten_key_val(key, val, parent) except AttributeError: if isinstance(d, (str, bytes)): raise TypeError for i, value in enumerate(d): _flatten_key_val(str(i), value, parent) _flatten(dict_obj) return flat
0, module; 1, function_definition; 2, function_name:key_value_nested_generator; 3, parameters; 4, block; 5, identifier:dict_obj; 6, expression_statement; 7, for_statement; 8, comment:"""Recursively iterate over key-value pairs of nested dictionaries. Parameters ---------- dict_obj : dict The outer-most dict to iterate on. Returns ------- generator A generator over key-value pairs in all nested dictionaries. Example ------- >>> dicti = {'a': 1, 'b': {'c': 3, 'd': 4}} >>> print(sorted(list(key_value_nested_generator(dicti)))) [('a', 1), ('c', 3), ('d', 4)] """; 9, pattern_list; 10, call; 11, block; 12, identifier:key; 13, identifier:value; 14, attribute; 15, argument_list; 16, if_statement; 17, identifier:dict_obj; 18, identifier:items; 19, call; 20, block; 21, else_clause; 22, identifier:isinstance; 23, argument_list; 24, for_statement; 25, block; 26, identifier:value; 27, identifier:dict; 28, pattern_list; 29, call; 30, block; 31, expression_statement; 32, identifier:key; 33, identifier:value; 34, identifier:key_value_nested_generator; 35, argument_list; 36, expression_statement; 37, yield; 38, identifier:value; 39, yield; 40, expression_list; 41, expression_list; 42, identifier:key; 43, identifier:value; 44, identifier:key; 45, identifier:value
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 6, 8; 7, 9; 7, 10; 7, 11; 9, 12; 9, 13; 10, 14; 10, 15; 11, 16; 14, 17; 14, 18; 16, 19; 16, 20; 16, 21; 19, 22; 19, 23; 20, 24; 21, 25; 23, 26; 23, 27; 24, 28; 24, 29; 24, 30; 25, 31; 28, 32; 28, 33; 29, 34; 29, 35; 30, 36; 31, 37; 35, 38; 36, 39; 37, 40; 39, 41; 40, 42; 40, 43; 41, 44; 41, 45
def key_value_nested_generator(dict_obj): """Recursively iterate over key-value pairs of nested dictionaries. Parameters ---------- dict_obj : dict The outer-most dict to iterate on. Returns ------- generator A generator over key-value pairs in all nested dictionaries. Example ------- >>> dicti = {'a': 1, 'b': {'c': 3, 'd': 4}} >>> print(sorted(list(key_value_nested_generator(dicti)))) [('a', 1), ('c', 3), ('d', 4)] """ for key, value in dict_obj.items(): if isinstance(value, dict): for key, value in key_value_nested_generator(value): yield key, value else: yield key, value
0, module; 1, function_definition; 2, function_name:key_tuple_value_nested_generator; 3, parameters; 4, block; 5, identifier:dict_obj; 6, expression_statement; 7, for_statement; 8, comment:"""Recursively iterate over key-tuple-value pairs of nested dictionaries. Parameters ---------- dict_obj : dict The outer-most dict to iterate on. Returns ------- generator A generator over key-tuple-value pairs in all nested dictionaries. Example ------- >>> dicti = {'a': 1, 'b': {'c': 3, 'd': 4}} >>> print(sorted(list(key_tuple_value_nested_generator(dicti)))) [(('a',), 1), (('b', 'c'), 3), (('b', 'd'), 4)] """; 9, pattern_list; 10, call; 11, block; 12, identifier:key; 13, identifier:value; 14, attribute; 15, argument_list; 16, if_statement; 17, identifier:dict_obj; 18, identifier:items; 19, call; 20, block; 21, else_clause; 22, identifier:isinstance; 23, argument_list; 24, for_statement; 25, block; 26, identifier:value; 27, identifier:dict; 28, pattern_list; 29, call; 30, block; 31, expression_statement; 32, identifier:nested_key; 33, identifier:value; 34, identifier:key_tuple_value_nested_generator; 35, argument_list; 36, expression_statement; 37, yield; 38, identifier:value; 39, yield; 40, expression_list; 41, expression_list; 42, call; 43, identifier:value; 44, binary_operator:tuple([key]) + nested_key; 45, identifier:value; 46, identifier:tuple; 47, argument_list; 48, call; 49, identifier:nested_key; 50, list; 51, identifier:tuple; 52, argument_list; 53, identifier:key; 54, list; 55, identifier:key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 6, 8; 7, 9; 7, 10; 7, 11; 9, 12; 9, 13; 10, 14; 10, 15; 11, 16; 14, 17; 14, 18; 16, 19; 16, 20; 16, 21; 19, 22; 19, 23; 20, 24; 21, 25; 23, 26; 23, 27; 24, 28; 24, 29; 24, 30; 25, 31; 28, 32; 28, 33; 29, 34; 29, 35; 30, 36; 31, 37; 35, 38; 36, 39; 37, 40; 39, 41; 40, 42; 40, 43; 41, 44; 41, 45; 42, 46; 42, 47; 44, 48; 44, 49; 47, 50; 48, 51; 48, 52; 50, 53; 52, 54; 54, 55
def key_tuple_value_nested_generator(dict_obj): """Recursively iterate over key-tuple-value pairs of nested dictionaries. Parameters ---------- dict_obj : dict The outer-most dict to iterate on. Returns ------- generator A generator over key-tuple-value pairs in all nested dictionaries. Example ------- >>> dicti = {'a': 1, 'b': {'c': 3, 'd': 4}} >>> print(sorted(list(key_tuple_value_nested_generator(dicti)))) [(('a',), 1), (('b', 'c'), 3), (('b', 'd'), 4)] """ for key, value in dict_obj.items(): if isinstance(value, dict): for nested_key, value in key_tuple_value_nested_generator(value): yield tuple([key]) + nested_key, value else: yield tuple([key]), value
0, module; 1, function_definition; 2, function_name:_sort_dd_skips; 3, parameters; 4, block; 5, identifier:configs; 6, identifier:dd_indices_all; 7, expression_statement; 8, expression_statement; 9, if_statement; 10, comment:# determine skips; 11, expression_statement; 12, expression_statement; 13, comment:# now determine the configurations; 14, expression_statement; 15, for_statement; 16, return_statement; 17, comment:"""Given a set of dipole-dipole configurations, sort them according to their current skip. Parameters ---------- configs: Nx4 numpy.ndarray Dipole-Dipole configurations Returns ------- dd_configs_sorted: dict dictionary with the skip as keys, and arrays/lists with indices to these skips. """; 18, assignment; 19, call; 20, block; 21, assignment; 22, assignment; 23, assignment; 24, identifier:skip; 25, identifier:available_skips; 26, block; 27, identifier:dd_configs_sorted; 28, identifier:config_current_skips; 29, call; 30, attribute; 31, argument_list; 32, return_statement; 33, identifier:available_skips_raw; 34, call; 35, identifier:available_skips; 36, call; 37, identifier:dd_configs_sorted; 38, dictionary; 39, expression_statement; 40, expression_statement; 41, attribute; 42, argument_list; 43, identifier:np; 44, identifier:all; 45, call; 46, dictionary; 47, attribute; 48, argument_list; 49, attribute; 50, argument_list; 51, assignment; 52, assignment; 53, identifier:np; 54, identifier:abs; 55, binary_operator:configs[:, 1] - configs[:, 0]; 56, attribute; 57, argument_list; 58, pair; 59, identifier:np; 60, identifier:unique; 61, identifier:config_current_skips; 62, subscript; 63, identifier:astype; 64, identifier:int; 65, identifier:indices; 66, subscript; 67, subscript; 68, subscript; 69, subscript; 70, subscript; 71, identifier:np; 72, identifier:isnan; 73, identifier:config_current_skips; 74, integer:0; 75, list; 76, identifier:available_skips_raw; 77, unary_operator; 78, call; 79, integer:0; 80, identifier:dd_configs_sorted; 81, binary_operator:skip - 1; 82, identifier:dd_indices_all; 83, identifier:indices; 84, identifier:configs; 85, slice; 86, integer:1; 87, identifier:configs; 88, slice; 89, integer:0; 90, call; 91, attribute; 92, argument_list; 93, identifier:skip; 94, integer:1; 95, attribute; 96, argument_list; 97, identifier:np; 98, identifier:where; 99, comparison_operator:config_current_skips == skip; 100, identifier:np; 101, identifier:isnan; 102, identifier:available_skips_raw; 103, identifier:config_current_skips; 104, identifier:skip
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 7, 17; 8, 18; 9, 19; 9, 20; 11, 21; 12, 22; 14, 23; 15, 24; 15, 25; 15, 26; 16, 27; 18, 28; 18, 29; 19, 30; 19, 31; 20, 32; 21, 33; 21, 34; 22, 35; 22, 36; 23, 37; 23, 38; 26, 39; 26, 40; 29, 41; 29, 42; 30, 43; 30, 44; 31, 45; 32, 46; 34, 47; 34, 48; 36, 49; 36, 50; 39, 51; 40, 52; 41, 53; 41, 54; 42, 55; 45, 56; 45, 57; 46, 58; 47, 59; 47, 60; 48, 61; 49, 62; 49, 63; 50, 64; 51, 65; 51, 66; 52, 67; 52, 68; 55, 69; 55, 70; 56, 71; 56, 72; 57, 73; 58, 74; 58, 75; 62, 76; 62, 77; 66, 78; 66, 79; 67, 80; 67, 81; 68, 82; 68, 83; 69, 84; 69, 85; 69, 86; 70, 87; 70, 88; 70, 89; 77, 90; 78, 91; 78, 92; 81, 93; 81, 94; 90, 95; 90, 96; 91, 97; 91, 98; 92, 99; 95, 100; 95, 101; 96, 102; 99, 103; 99, 104
def _sort_dd_skips(configs, dd_indices_all): """Given a set of dipole-dipole configurations, sort them according to their current skip. Parameters ---------- configs: Nx4 numpy.ndarray Dipole-Dipole configurations Returns ------- dd_configs_sorted: dict dictionary with the skip as keys, and arrays/lists with indices to these skips. """ config_current_skips = np.abs(configs[:, 1] - configs[:, 0]) if np.all(np.isnan(config_current_skips)): return {0: []} # determine skips available_skips_raw = np.unique(config_current_skips) available_skips = available_skips_raw[ ~np.isnan(available_skips_raw) ].astype(int) # now determine the configurations dd_configs_sorted = {} for skip in available_skips: indices = np.where(config_current_skips == skip)[0] dd_configs_sorted[skip - 1] = dd_indices_all[indices] return dd_configs_sorted
0, module; 1, function_definition; 2, function_name:plot_pseudodepths; 3, parameters; 4, block; 5, identifier:configs; 6, identifier:nr_electrodes; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, dictionary_splat_pattern; 12, expression_statement; 13, comment:# for each configuration type we have different ways of computing; 14, comment:# pseudodepths; 15, expression_statement; 16, expression_statement; 17, comment:# sort the configurations into the various types of configurations; 18, expression_statement; 19, expression_statement; 20, comment:# loop through all measurement types; 21, expression_statement; 22, expression_statement; 23, for_statement; 24, if_statement; 25, identifier:spacing; 26, integer:1; 27, identifier:grid; 28, None; 29, identifier:ctypes; 30, None; 31, identifier:dd_merge; 32, False; 33, identifier:kwargs; 34, comment:"""Plot pseudodepths for the measurements. If grid is given, then the actual electrode positions are used, and the parameter 'spacing' is ignored' Parameters ---------- configs: :class:`numpy.ndarray` Nx4 array containing the quadrupoles for different measurements nr_electrodes: int The overall number of electrodes of the dataset. This is used to plot the surface electrodes spacing: float, optional assumed distance between electrodes. Default=1 grid: crtomo.grid.crt_grid instance, optional grid instance. Used to infer real electrode positions ctypes: list of strings, optional a list of configuration types that will be plotted. All configurations that can not be sorted into these types will not be plotted! Possible types: * dd * schlumberger dd_merge: bool, optional if True, merge all skips. Otherwise, generate individual plots for each skip Returns ------- figs: matplotlib.figure.Figure instance or list of Figure instances if only one type was plotted, then the figure instance is returned. Otherwise, return a list of figure instances. axes: axes object or list of axes ojects plot axes Examples -------- .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (1, 2, 4, 3), (1, 2, 5, 4), (1, 2, 6, 5), (2, 3, 5, 4), (2, 3, 6, 5), (3, 4, 6, 5), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=6, spacing=1, ctypes=['dd', ]) .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (4, 7, 5, 6), (3, 8, 5, 6), (2, 9, 5, 6), (1, 10, 5, 6), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=10, spacing=1, ctypes=['schlumberger', ]) """; 35, assignment; 36, assignment; 37, assignment; 38, assignment; 39, assignment; 40, assignment; 41, identifier:key; 42, call; 43, block; 44, comparison_operator:len(figs) == 1; 45, block; 46, else_clause; 47, identifier:pseudo_d_functions; 48, dictionary; 49, identifier:titles; 50, dictionary; 51, identifier:only_types; 52, boolean_operator; 53, identifier:results; 54, call; 55, identifier:figs; 56, list; 57, identifier:axes; 58, list; 59, identifier:sorted; 60, argument_list; 61, expression_statement; 62, if_statement; 63, expression_statement; 64, comment:# it is possible that we want to generate multiple plots for one; 65, comment:# type of measurement, i.e., to separate skips of dipole-dipole; 66, comment:# measurements. Therefore we generate two lists:; 67, comment:# 1) list of list of indices to plot; 68, comment:# 2) corresponding labels; 69, if_statement; 70, expression_statement; 71, comment:# generate plots; 72, for_statement; 73, call; 74, integer:1; 75, return_statement; 76, block; 77, pair; 78, pair; 79, pair; 80, pair; 81, pair; 82, pair; 83, identifier:ctypes; 84, list; 85, attribute; 86, argument_list; 87, call; 88, call; 89, comparison_operator:key == 'not_sorted'; 90, block; 91, assignment; 92, boolean_operator; 93, block; 94, else_clause; 95, assignment; 96, pattern_list; 97, call; 98, block; 99, identifier:len; 100, argument_list; 101, expression_list; 102, return_statement; 103, string; 104, identifier:_pseudodepths_dd_simple; 105, string; 106, identifier:_pseudodepths_schlumberger; 107, string; 108, identifier:_pseudodepths_wenner; 109, string; 110, string; 111, string; 112, string; 113, string; 114, string; 115, string; 116, identifier:fT; 117, identifier:filter; 118, identifier:configs; 119, keyword_argument; 120, attribute; 121, argument_list; 122, identifier:print; 123, argument_list; 124, identifier:key; 125, string; 126, continue_statement; 127, identifier:index_dict; 128, subscript; 129, comparison_operator:key == 'dd'; 130, not_operator; 131, expression_statement; 132, expression_statement; 133, for_statement; 134, comment:# merge all indices; 135, block; 136, identifier:grid; 137, None; 138, identifier:indices; 139, identifier:label_add; 140, identifier:zip; 141, argument_list; 142, if_statement; 143, expression_statement; 144, expression_statement; 145, expression_statement; 146, expression_statement; 147, comment:# plot electrodes; 148, if_statement; 149, expression_statement; 150, expression_statement; 151, expression_statement; 152, expression_statement; 153, expression_statement; 154, expression_statement; 155, expression_statement; 156, identifier:figs; 157, subscript; 158, subscript; 159, expression_list; 160, string_content:dd; 161, string_content:schlumberger; 162, string_content:wenner; 163, string_content:dd; 164, string_content:dipole-dipole configurations; 165, string_content:schlumberger; 166, string_content:Schlumberger configurations; 167, string_content:wenner; 168, string_content:Wenner configurations; 169, string_content:dd; 170, identifier:settings; 171, dictionary; 172, identifier:results; 173, identifier:keys; 174, string; 175, identifier:key; 176, string_content:not_sorted; 177, identifier:results; 178, identifier:key; 179, identifier:key; 180, string; 181, identifier:dd_merge; 182, assignment; 183, assignment; 184, identifier:skip; 185, call; 186, block; 187, expression_statement; 188, expression_statement; 189, expression_statement; 190, identifier:plot_list; 191, identifier:labels_add; 192, comparison_operator:len(indices) == 0; 193, block; 194, assignment; 195, assignment; 196, assignment; 197, call; 198, comparison_operator:grid is not None; 199, block; 200, else_clause; 201, call; 202, call; 203, call; 204, call; 205, call; 206, call; 207, call; 208, identifier:figs; 209, integer:0; 210, identifier:axes; 211, integer:0; 212, identifier:figs; 213, identifier:axes; 214, pair; 215, string_content:plotting:; 216, string_content:dd; 217, identifier:plot_list; 218, list; 219, identifier:labels_add; 220, list; 221, identifier:sorted; 222, argument_list; 223, expression_statement; 224, expression_statement; 225, assignment; 226, call; 227, assignment; 228, call; 229, integer:0; 230, continue_statement; 231, identifier:ddc; 232, subscript; 233, pattern_list; 234, call; 235, pattern_list; 236, call; 237, attribute; 238, argument_list; 239, identifier:grid; 240, None; 241, expression_statement; 242, expression_statement; 243, block; 244, attribute; 245, argument_list; 246, attribute; 247, argument_list; 248, attribute; 249, argument_list; 250, attribute; 251, argument_list; 252, attribute; 253, argument_list; 254, attribute; 255, argument_list; 256, attribute; 257, argument_list; 258, string; 259, identifier:only_types; 260, call; 261, call; 262, call; 263, identifier:plot_list; 264, list; 265, identifier:print; 266, argument_list; 267, identifier:labels_add; 268, list; 269, identifier:len; 270, argument_list; 271, identifier:configs; 272, identifier:indices; 273, identifier:px; 274, identifier:pz; 275, subscript; 276, argument_list; 277, identifier:fig; 278, identifier:ax; 279, attribute; 280, argument_list; 281, identifier:ax; 282, identifier:scatter; 283, identifier:px; 284, identifier:pz; 285, keyword_argument; 286, keyword_argument; 287, assignment; 288, call; 289, expression_statement; 290, identifier:ax; 291, identifier:set_title; 292, binary_operator:titles[key] + label_add; 293, identifier:ax; 294, identifier:set_aspect; 295, string; 296, identifier:ax; 297, identifier:set_xlabel; 298, string; 299, identifier:ax; 300, identifier:set_ylabel; 301, string; 302, identifier:fig; 303, identifier:tight_layout; 304, identifier:figs; 305, identifier:append; 306, identifier:fig; 307, identifier:axes; 308, identifier:append; 309, identifier:ax; 310, string_content:only_types; 311, attribute; 312, argument_list; 313, attribute; 314, argument_list; 315, attribute; 316, argument_list; 317, call; 318, string; 319, identifier:plot_list; 320, string; 321, identifier:indices; 322, identifier:pseudo_d_functions; 323, identifier:key; 324, identifier:ddc; 325, identifier:spacing; 326, identifier:grid; 327, identifier:plt; 328, identifier:subplots; 329, keyword_argument; 330, identifier:color; 331, string; 332, identifier:alpha; 333, float:0.5; 334, identifier:electrodes; 335, call; 336, attribute; 337, argument_list; 338, call; 339, subscript; 340, identifier:label_add; 341, string_content:equal; 342, string_content:x [m]; 343, string_content:x [z]; 344, identifier:index_dict; 345, identifier:keys; 346, identifier:plot_list; 347, identifier:append; 348, subscript; 349, identifier:labels_add; 350, identifier:append; 351, call; 352, attribute; 353, argument_list; 354, string_content:schlumberger; 355, identifier:figsize; 356, tuple; 357, string_content:k; 358, attribute; 359, argument_list; 360, identifier:ax; 361, identifier:scatter; 362, subscript; 363, subscript; 364, keyword_argument; 365, keyword_argument; 366, attribute; 367, argument_list; 368, identifier:titles; 369, identifier:key; 370, identifier:index_dict; 371, identifier:skip; 372, attribute; 373, argument_list; 374, identifier:np; 375, identifier:hstack; 376, call; 377, binary_operator:15 / 2.54; 378, binary_operator:5 / 2.54; 379, identifier:grid; 380, identifier:get_electrode_positions; 381, identifier:electrodes; 382, slice; 383, integer:0; 384, identifier:electrodes; 385, slice; 386, integer:1; 387, identifier:color; 388, string; 389, identifier:label; 390, string; 391, identifier:ax; 392, identifier:scatter; 393, binary_operator:np.arange(0, nr_electrodes) * spacing; 394, call; 395, keyword_argument; 396, keyword_argument; 397, string; 398, identifier:format; 399, identifier:skip; 400, attribute; 401, argument_list; 402, integer:15; 403, float:2.54; 404, integer:5; 405, float:2.54; 406, string_content:b; 407, string_content:electrodes; 408, call; 409, identifier:spacing; 410, attribute; 411, argument_list; 412, identifier:color; 413, string; 414, identifier:label; 415, string; 416, string_content:- skip {0}; 417, identifier:index_dict; 418, identifier:values; 419, attribute; 420, argument_list; 421, identifier:np; 422, identifier:zeros; 423, identifier:nr_electrodes; 424, string_content:b; 425, string_content:electrodes; 426, identifier:np; 427, identifier:arange; 428, integer:0; 429, identifier:nr_electrodes
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 3, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 4, 22; 4, 23; 4, 24; 7, 25; 7, 26; 8, 27; 8, 28; 9, 29; 9, 30; 10, 31; 10, 32; 11, 33; 12, 34; 15, 35; 16, 36; 18, 37; 19, 38; 21, 39; 22, 40; 23, 41; 23, 42; 23, 43; 24, 44; 24, 45; 24, 46; 35, 47; 35, 48; 36, 49; 36, 50; 37, 51; 37, 52; 38, 53; 38, 54; 39, 55; 39, 56; 40, 57; 40, 58; 42, 59; 42, 60; 43, 61; 43, 62; 43, 63; 43, 64; 43, 65; 43, 66; 43, 67; 43, 68; 43, 69; 43, 70; 43, 71; 43, 72; 44, 73; 44, 74; 45, 75; 46, 76; 48, 77; 48, 78; 48, 79; 50, 80; 50, 81; 50, 82; 52, 83; 52, 84; 54, 85; 54, 86; 60, 87; 61, 88; 62, 89; 62, 90; 63, 91; 69, 92; 69, 93; 69, 94; 70, 95; 72, 96; 72, 97; 72, 98; 73, 99; 73, 100; 75, 101; 76, 102; 77, 103; 77, 104; 78, 105; 78, 106; 79, 107; 79, 108; 80, 109; 80, 110; 81, 111; 81, 112; 82, 113; 82, 114; 84, 115; 85, 116; 85, 117; 86, 118; 86, 119; 87, 120; 87, 121; 88, 122; 88, 123; 89, 124; 89, 125; 90, 126; 91, 127; 91, 128; 92, 129; 92, 130; 93, 131; 93, 132; 93, 133; 94, 134; 94, 135; 95, 136; 95, 137; 96, 138; 96, 139; 97, 140; 97, 141; 98, 142; 98, 143; 98, 144; 98, 145; 98, 146; 98, 147; 98, 148; 98, 149; 98, 150; 98, 151; 98, 152; 98, 153; 98, 154; 98, 155; 100, 156; 101, 157; 101, 158; 102, 159; 103, 160; 105, 161; 107, 162; 109, 163; 110, 164; 111, 165; 112, 166; 113, 167; 114, 168; 115, 169; 119, 170; 119, 171; 120, 172; 120, 173; 123, 174; 123, 175; 125, 176; 128, 177; 128, 178; 129, 179; 129, 180; 130, 181; 131, 182; 132, 183; 133, 184; 133, 185; 133, 186; 135, 187; 135, 188; 135, 189; 141, 190; 141, 191; 142, 192; 142, 193; 143, 194; 144, 195; 145, 196; 146, 197; 148, 198; 148, 199; 148, 200; 149, 201; 150, 202; 151, 203; 152, 204; 153, 205; 154, 206; 155, 207; 157, 208; 157, 209; 158, 210; 158, 211; 159, 212; 159, 213; 171, 214; 174, 215; 180, 216; 182, 217; 182, 218; 183, 219; 183, 220; 185, 221; 185, 222; 186, 223; 186, 224; 187, 225; 188, 226; 189, 227; 192, 228; 192, 229; 193, 230; 194, 231; 194, 232; 195, 233; 195, 234; 196, 235; 196, 236; 197, 237; 197, 238; 198, 239; 198, 240; 199, 241; 199, 242; 200, 243; 201, 244; 201, 245; 202, 246; 202, 247; 203, 248; 203, 249; 204, 250; 204, 251; 205, 252; 205, 253; 206, 254; 206, 255; 207, 256; 207, 257; 214, 258; 214, 259; 222, 260; 223, 261; 224, 262; 225, 263; 225, 264; 226, 265; 226, 266; 227, 267; 227, 268; 228, 269; 228, 270; 232, 271; 232, 272; 233, 273; 233, 274; 234, 275; 234, 276; 235, 277; 235, 278; 236, 279; 236, 280; 237, 281; 237, 282; 238, 283; 238, 284; 238, 285; 238, 286; 241, 287; 242, 288; 243, 289; 244, 290; 244, 291; 245, 292; 246, 293; 246, 294; 247, 295; 248, 296; 248, 297; 249, 298; 250, 299; 250, 300; 251, 301; 252, 302; 252, 303; 254, 304; 254, 305; 255, 306; 256, 307; 256, 308; 257, 309; 258, 310; 260, 311; 260, 312; 261, 313; 261, 314; 262, 315; 262, 316; 264, 317; 266, 318; 266, 319; 268, 320; 270, 321; 275, 322; 275, 323; 276, 324; 276, 325; 276, 326; 279, 327; 279, 328; 280, 329; 285, 330; 285, 331; 286, 332; 286, 333; 287, 334; 287, 335; 288, 336; 288, 337; 289, 338; 292, 339; 292, 340; 295, 341; 298, 342; 301, 343; 311, 344; 311, 345; 313, 346; 313, 347; 314, 348; 315, 349; 315, 350; 316, 351; 317, 352; 317, 353; 318, 354; 329, 355; 329, 356; 331, 357; 335, 358; 335, 359; 336, 360; 336, 361; 337, 362; 337, 363; 337, 364; 337, 365; 338, 366; 338, 367; 339, 368; 339, 369; 348, 370; 348, 371; 351, 372; 351, 373; 352, 374; 352, 375; 353, 376; 356, 377; 356, 378; 358, 379; 358, 380; 362, 381; 362, 382; 362, 383; 363, 384; 363, 385; 363, 386; 364, 387; 364, 388; 365, 389; 365, 390; 366, 391; 366, 392; 367, 393; 367, 394; 367, 395; 367, 396; 372, 397; 372, 398; 373, 399; 376, 400; 376, 401; 377, 402; 377, 403; 378, 404; 378, 405; 388, 406; 390, 407; 393, 408; 393, 409; 394, 410; 394, 411; 395, 412; 395, 413; 396, 414; 396, 415; 397, 416; 400, 417; 400, 418; 408, 419; 408, 420; 410, 421; 410, 422; 411, 423; 413, 424; 415, 425; 419, 426; 419, 427; 420, 428; 420, 429
def plot_pseudodepths(configs, nr_electrodes, spacing=1, grid=None, ctypes=None, dd_merge=False, **kwargs): """Plot pseudodepths for the measurements. If grid is given, then the actual electrode positions are used, and the parameter 'spacing' is ignored' Parameters ---------- configs: :class:`numpy.ndarray` Nx4 array containing the quadrupoles for different measurements nr_electrodes: int The overall number of electrodes of the dataset. This is used to plot the surface electrodes spacing: float, optional assumed distance between electrodes. Default=1 grid: crtomo.grid.crt_grid instance, optional grid instance. Used to infer real electrode positions ctypes: list of strings, optional a list of configuration types that will be plotted. All configurations that can not be sorted into these types will not be plotted! Possible types: * dd * schlumberger dd_merge: bool, optional if True, merge all skips. Otherwise, generate individual plots for each skip Returns ------- figs: matplotlib.figure.Figure instance or list of Figure instances if only one type was plotted, then the figure instance is returned. Otherwise, return a list of figure instances. axes: axes object or list of axes ojects plot axes Examples -------- .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (1, 2, 4, 3), (1, 2, 5, 4), (1, 2, 6, 5), (2, 3, 5, 4), (2, 3, 6, 5), (3, 4, 6, 5), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=6, spacing=1, ctypes=['dd', ]) .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (4, 7, 5, 6), (3, 8, 5, 6), (2, 9, 5, 6), (1, 10, 5, 6), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=10, spacing=1, ctypes=['schlumberger', ]) """ # for each configuration type we have different ways of computing # pseudodepths pseudo_d_functions = { 'dd': _pseudodepths_dd_simple, 'schlumberger': _pseudodepths_schlumberger, 'wenner': _pseudodepths_wenner, } titles = { 'dd': 'dipole-dipole configurations', 'schlumberger': 'Schlumberger configurations', 'wenner': 'Wenner configurations', } # sort the configurations into the various types of configurations only_types = ctypes or ['dd', ] results = fT.filter(configs, settings={'only_types': only_types, }) # loop through all measurement types figs = [] axes = [] for key in sorted(results.keys()): print('plotting: ', key) if key == 'not_sorted': continue index_dict = results[key] # it is possible that we want to generate multiple plots for one # type of measurement, i.e., to separate skips of dipole-dipole # measurements. Therefore we generate two lists: # 1) list of list of indices to plot # 2) corresponding labels if key == 'dd' and not dd_merge: plot_list = [] labels_add = [] for skip in sorted(index_dict.keys()): plot_list.append(index_dict[skip]) labels_add.append(' - skip {0}'.format(skip)) else: # merge all indices plot_list = [np.hstack(index_dict.values()), ] print('schlumberger', plot_list) labels_add = ['', ] grid = None # generate plots for indices, label_add in zip(plot_list, labels_add): if len(indices) == 0: continue ddc = configs[indices] px, pz = pseudo_d_functions[key](ddc, spacing, grid) fig, ax = plt.subplots(figsize=(15 / 2.54, 5 / 2.54)) ax.scatter(px, pz, color='k', alpha=0.5) # plot electrodes if grid is not None: electrodes = grid.get_electrode_positions() ax.scatter( electrodes[:, 0], electrodes[:, 1], color='b', label='electrodes', ) else: ax.scatter( np.arange(0, nr_electrodes) * spacing, np.zeros(nr_electrodes), color='b', label='electrodes', ) ax.set_title(titles[key] + label_add) ax.set_aspect('equal') ax.set_xlabel('x [m]') ax.set_ylabel('x [z]') fig.tight_layout() figs.append(fig) axes.append(ax) if len(figs) == 1: return figs[0], axes[0] else: return figs, axes
0, module; 1, function_definition; 2, function_name:gen_reciprocals; 3, parameters; 4, block; 5, identifier:self; 6, default_parameter; 7, expression_statement; 8, comment:# Switch AB and MN; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, comment:# # Sort by current dipoles; 13, expression_statement; 14, expression_statement; 15, if_statement; 16, return_statement; 17, identifier:append; 18, False; 19, comment:""" Generate reciprocal configurations, sort by AB, and optionally append to configurations. Parameters ---------- append : bool Append reciprocals to configs (the default is False). Examples -------- >>> cfgs = ConfigManager(nr_of_electrodes=5) >>> nor = cfgs.gen_dipole_dipole(skipc=0) >>> rec = cfgs.gen_reciprocals(append=True) >>> print(cfgs.configs) [[1 2 3 4] [1 2 4 5] [2 3 4 5] [3 4 1 2] [4 5 1 2] [4 5 2 3]] """; 20, assignment; 21, assignment; 22, assignment; 23, assignment; 24, assignment; 25, identifier:append; 26, block; 27, identifier:reciprocals; 28, identifier:reciprocals; 29, subscript; 30, subscript; 31, call; 32, subscript; 33, call; 34, identifier:ind; 35, call; 36, identifier:reciprocals; 37, subscript; 38, expression_statement; 39, call; 40, slice; 41, slice; 42, identifier:reciprocals; 43, slice; 44, slice; 45, attribute; 46, argument_list; 47, identifier:reciprocals; 48, slice; 49, slice; 50, attribute; 51, argument_list; 52, attribute; 53, argument_list; 54, identifier:reciprocals; 55, identifier:ind; 56, assignment; 57, attribute; 58, argument_list; 59, unary_operator; 60, integer:0; 61, integer:2; 62, identifier:np; 63, identifier:sort; 64, subscript; 65, keyword_argument; 66, integer:2; 67, integer:4; 68, identifier:np; 69, identifier:sort; 70, subscript; 71, keyword_argument; 72, identifier:np; 73, identifier:lexsort; 74, tuple; 75, attribute; 76, call; 77, attribute; 78, identifier:copy; 79, integer:1; 80, identifier:reciprocals; 81, slice; 82, slice; 83, identifier:axis; 84, integer:1; 85, identifier:reciprocals; 86, slice; 87, slice; 88, identifier:axis; 89, integer:1; 90, subscript; 91, subscript; 92, subscript; 93, subscript; 94, identifier:self; 95, identifier:configs; 96, attribute; 97, argument_list; 98, identifier:self; 99, identifier:configs; 100, integer:0; 101, integer:2; 102, integer:2; 103, integer:4; 104, identifier:reciprocals; 105, slice; 106, integer:3; 107, identifier:reciprocals; 108, slice; 109, integer:2; 110, identifier:reciprocals; 111, slice; 112, integer:1; 113, identifier:reciprocals; 114, slice; 115, integer:0; 116, identifier:np; 117, identifier:vstack; 118, tuple; 119, attribute; 120, identifier:reciprocals; 121, identifier:self; 122, identifier:configs
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 6, 17; 6, 18; 7, 19; 9, 20; 10, 21; 11, 22; 13, 23; 14, 24; 15, 25; 15, 26; 16, 27; 20, 28; 20, 29; 21, 30; 21, 31; 22, 32; 22, 33; 23, 34; 23, 35; 24, 36; 24, 37; 26, 38; 29, 39; 29, 40; 29, 41; 30, 42; 30, 43; 30, 44; 31, 45; 31, 46; 32, 47; 32, 48; 32, 49; 33, 50; 33, 51; 35, 52; 35, 53; 37, 54; 37, 55; 38, 56; 39, 57; 39, 58; 41, 59; 44, 60; 44, 61; 45, 62; 45, 63; 46, 64; 46, 65; 49, 66; 49, 67; 50, 68; 50, 69; 51, 70; 51, 71; 52, 72; 52, 73; 53, 74; 56, 75; 56, 76; 57, 77; 57, 78; 59, 79; 64, 80; 64, 81; 64, 82; 65, 83; 65, 84; 70, 85; 70, 86; 70, 87; 71, 88; 71, 89; 74, 90; 74, 91; 74, 92; 74, 93; 75, 94; 75, 95; 76, 96; 76, 97; 77, 98; 77, 99; 82, 100; 82, 101; 87, 102; 87, 103; 90, 104; 90, 105; 90, 106; 91, 107; 91, 108; 91, 109; 92, 110; 92, 111; 92, 112; 93, 113; 93, 114; 93, 115; 96, 116; 96, 117; 97, 118; 118, 119; 118, 120; 119, 121; 119, 122
def gen_reciprocals(self, append=False): """ Generate reciprocal configurations, sort by AB, and optionally append to configurations. Parameters ---------- append : bool Append reciprocals to configs (the default is False). Examples -------- >>> cfgs = ConfigManager(nr_of_electrodes=5) >>> nor = cfgs.gen_dipole_dipole(skipc=0) >>> rec = cfgs.gen_reciprocals(append=True) >>> print(cfgs.configs) [[1 2 3 4] [1 2 4 5] [2 3 4 5] [3 4 1 2] [4 5 1 2] [4 5 2 3]] """ # Switch AB and MN reciprocals = self.configs.copy()[:, ::-1] reciprocals[:, 0:2] = np.sort(reciprocals[:, 0:2], axis=1) reciprocals[:, 2:4] = np.sort(reciprocals[:, 2:4], axis=1) # # Sort by current dipoles ind = np.lexsort((reciprocals[:, 3], reciprocals[:, 2], reciprocals[:, 1], reciprocals[:, 0])) reciprocals = reciprocals[ind] if append: self.configs = np.vstack((self.configs, reciprocals)) return reciprocals
0, module; 1, function_definition; 2, function_name:load_seit_data; 3, parameters; 4, block; 5, identifier:directory; 6, default_parameter; 7, default_parameter; 8, dictionary_splat_pattern; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, comment:# check that the number of frequencies matches the number of data files; 13, if_statement; 14, comment:# load data; 15, expression_statement; 16, for_statement; 17, expression_statement; 18, return_statement; 19, identifier:frequency_file; 20, string; 21, identifier:data_prefix; 22, string; 23, identifier:kwargs; 24, comment:"""Load sEIT data from data directory. This function loads data previously exported from reda using reda.exporters.crtomo.write_files_to_directory Parameters ---------- directory : string input directory frequency_file : string, optional file (located in directory) that contains the frequencies data_prefix: string, optional for each frequency a corresponding data file must be present in the input directory. Frequencies and files are matched by sorting the frequencies AND the filenames, retrieved using glob and the data_prefix Returns ------- df : pandas.DataFrame A DataFrame suitable for the sEIT container electrodes : None No electrode data is imported topography : None No topography data is imported """; 25, assignment; 26, assignment; 27, comparison_operator:frequencies.size != len(data_files); 28, block; 29, assignment; 30, pattern_list; 31, call; 32, block; 33, assignment; 34, expression_list; 35, string_content:frequencies.dat; 36, string_content:volt_; 37, identifier:frequencies; 38, call; 39, identifier:data_files; 40, call; 41, attribute; 42, call; 43, raise_statement; 44, identifier:data_list; 45, list; 46, identifier:frequency; 47, identifier:filename; 48, identifier:zip; 49, argument_list; 50, expression_statement; 51, expression_statement; 52, expression_statement; 53, identifier:df; 54, call; 55, identifier:df; 56, None; 57, None; 58, attribute; 59, argument_list; 60, identifier:sorted; 61, argument_list; 62, identifier:frequencies; 63, identifier:size; 64, identifier:len; 65, argument_list; 66, call; 67, identifier:frequencies; 68, identifier:data_files; 69, assignment; 70, assignment; 71, call; 72, attribute; 73, argument_list; 74, identifier:np; 75, identifier:loadtxt; 76, binary_operator:directory + os.sep + frequency_file; 77, call; 78, identifier:data_files; 79, identifier:Exception; 80, argument_list; 81, identifier:subdata; 82, call; 83, subscript; 84, identifier:frequency; 85, attribute; 86, argument_list; 87, identifier:pd; 88, identifier:concat; 89, identifier:data_list; 90, binary_operator:directory + os.sep; 91, identifier:frequency_file; 92, identifier:glob; 93, argument_list; 94, string; 95, identifier:load_mod_file; 96, argument_list; 97, identifier:subdata; 98, string; 99, identifier:data_list; 100, identifier:append; 101, identifier:subdata; 102, identifier:directory; 103, attribute; 104, binary_operator:directory + os.sep + data_prefix + '*'; 105, string_content:number of frequencies does not match number of data files; 106, identifier:filename; 107, string_content:frequency; 108, identifier:os; 109, identifier:sep; 110, binary_operator:directory + os.sep + data_prefix; 111, string; 112, binary_operator:directory + os.sep; 113, identifier:data_prefix; 114, string_content:*; 115, identifier:directory; 116, attribute; 117, identifier:os; 118, identifier:sep
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 6, 19; 6, 20; 7, 21; 7, 22; 8, 23; 9, 24; 10, 25; 11, 26; 13, 27; 13, 28; 15, 29; 16, 30; 16, 31; 16, 32; 17, 33; 18, 34; 20, 35; 22, 36; 25, 37; 25, 38; 26, 39; 26, 40; 27, 41; 27, 42; 28, 43; 29, 44; 29, 45; 30, 46; 30, 47; 31, 48; 31, 49; 32, 50; 32, 51; 32, 52; 33, 53; 33, 54; 34, 55; 34, 56; 34, 57; 38, 58; 38, 59; 40, 60; 40, 61; 41, 62; 41, 63; 42, 64; 42, 65; 43, 66; 49, 67; 49, 68; 50, 69; 51, 70; 52, 71; 54, 72; 54, 73; 58, 74; 58, 75; 59, 76; 61, 77; 65, 78; 66, 79; 66, 80; 69, 81; 69, 82; 70, 83; 70, 84; 71, 85; 71, 86; 72, 87; 72, 88; 73, 89; 76, 90; 76, 91; 77, 92; 77, 93; 80, 94; 82, 95; 82, 96; 83, 97; 83, 98; 85, 99; 85, 100; 86, 101; 90, 102; 90, 103; 93, 104; 94, 105; 96, 106; 98, 107; 103, 108; 103, 109; 104, 110; 104, 111; 110, 112; 110, 113; 111, 114; 112, 115; 112, 116; 116, 117; 116, 118
def load_seit_data(directory, frequency_file='frequencies.dat', data_prefix='volt_', **kwargs): """Load sEIT data from data directory. This function loads data previously exported from reda using reda.exporters.crtomo.write_files_to_directory Parameters ---------- directory : string input directory frequency_file : string, optional file (located in directory) that contains the frequencies data_prefix: string, optional for each frequency a corresponding data file must be present in the input directory. Frequencies and files are matched by sorting the frequencies AND the filenames, retrieved using glob and the data_prefix Returns ------- df : pandas.DataFrame A DataFrame suitable for the sEIT container electrodes : None No electrode data is imported topography : None No topography data is imported """ frequencies = np.loadtxt(directory + os.sep + frequency_file) data_files = sorted(glob(directory + os.sep + data_prefix + '*')) # check that the number of frequencies matches the number of data files if frequencies.size != len(data_files): raise Exception( 'number of frequencies does not match number of data files') # load data data_list = [] for frequency, filename in zip(frequencies, data_files): subdata = load_mod_file(filename) subdata['frequency'] = frequency data_list.append(subdata) df = pd.concat(data_list) return df, None, None
0, module; 1, function_definition; 2, function_name:_query_attr_sort_fn; 3, parameters; 4, block; 5, identifier:self; 6, identifier:attr_val; 7, expression_statement; 8, expression_statement; 9, if_statement; 10, comment:"""Used to order where keys by most selective key first"""; 11, assignment; 12, comparison_operator:attr in self._indexes; 13, block; 14, else_clause; 15, pattern_list; 16, identifier:attr_val; 17, identifier:attr; 18, attribute; 19, expression_statement; 20, if_statement; 21, block; 22, identifier:attr; 23, identifier:v; 24, identifier:self; 25, identifier:_indexes; 26, assignment; 27, comparison_operator:v in idx; 28, block; 29, else_clause; 30, return_statement; 31, identifier:idx; 32, subscript; 33, identifier:v; 34, identifier:idx; 35, return_statement; 36, block; 37, float:1e9; 38, attribute; 39, identifier:attr; 40, call; 41, return_statement; 42, identifier:self; 43, identifier:_indexes; 44, identifier:len; 45, argument_list; 46, integer:0; 47, subscript; 48, identifier:idx; 49, identifier:v
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 7, 10; 8, 11; 9, 12; 9, 13; 9, 14; 11, 15; 11, 16; 12, 17; 12, 18; 13, 19; 13, 20; 14, 21; 15, 22; 15, 23; 18, 24; 18, 25; 19, 26; 20, 27; 20, 28; 20, 29; 21, 30; 26, 31; 26, 32; 27, 33; 27, 34; 28, 35; 29, 36; 30, 37; 32, 38; 32, 39; 35, 40; 36, 41; 38, 42; 38, 43; 40, 44; 40, 45; 41, 46; 45, 47; 47, 48; 47, 49
def _query_attr_sort_fn(self, attr_val): """Used to order where keys by most selective key first""" attr, v = attr_val if attr in self._indexes: idx = self._indexes[attr] if v in idx: return len(idx[v]) else: return 0 else: return 1e9
0, module; 1, function_definition; 2, function_name:sort; 3, parameters; 4, block; 5, identifier:self; 6, identifier:key; 7, default_parameter; 8, expression_statement; 9, if_statement; 10, return_statement; 11, identifier:reverse; 12, False; 13, comment:"""Sort Table in place, using given fields as sort key. @param key: if this is a string, it is a comma-separated list of field names, optionally followed by 'desc' to indicate descending sort instead of the default ascending sort; if a list or tuple, it is a list or tuple of field names or field names with ' desc' appended; if it is a function, then it is the function to be used as the sort key function @param reverse: (default=False) set to True if results should be in reverse order @type reverse: bool @return: self """; 14, call; 15, block; 16, else_clause; 17, identifier:self; 18, identifier:isinstance; 19, argument_list; 20, if_statement; 21, expression_statement; 22, comment:# special optimization if all orders are ascending or descending; 23, if_statement; 24, comment:# sorting given a sort key function; 25, block; 26, identifier:key; 27, tuple; 28, call; 29, block; 30, else_clause; 31, assignment; 32, call; 33, block; 34, elif_clause; 35, else_clause; 36, expression_statement; 37, expression_statement; 38, identifier:basestring; 39, identifier:list; 40, identifier:tuple; 41, identifier:isinstance; 42, argument_list; 43, expression_statement; 44, expression_statement; 45, comment:# attr definitions were already resolved to a sequence by the caller; 46, block; 47, identifier:attrs; 48, list_comprehension; 49, identifier:all; 50, generator_expression; 51, expression_statement; 52, call; 53, block; 54, comment:# mix of ascending and descending sorts, have to do succession of sorts; 55, comment:# leftmost attr is the most primary sort key, so reverse attr_orders to do; 56, comment:# succession of sorts from right to left; 57, block; 58, assignment; 59, call; 60, identifier:key; 61, identifier:basestring; 62, assignment; 63, assignment; 64, if_statement; 65, identifier:attr; 66, for_in_clause; 67, comparison_operator:order == 'asc'; 68, for_in_clause; 69, call; 70, identifier:all; 71, generator_expression; 72, expression_statement; 73, expression_statement; 74, identifier:keyfn; 75, identifier:key; 76, attribute; 77, argument_list; 78, identifier:attrdefs; 79, list_comprehension; 80, identifier:attr_orders; 81, list_comprehension; 82, call; 83, block; 84, else_clause; 85, pattern_list; 86, identifier:attr_orders; 87, identifier:order; 88, string; 89, pattern_list; 90, identifier:attr_orders; 91, attribute; 92, argument_list; 93, comparison_operator:order == 'desc'; 94, for_in_clause; 95, call; 96, call; 97, attribute; 98, identifier:sort; 99, keyword_argument; 100, keyword_argument; 101, call; 102, for_in_clause; 103, subscript; 104, for_in_clause; 105, identifier:isinstance; 106, argument_list; 107, expression_statement; 108, block; 109, identifier:attr; 110, identifier:order; 111, string_content:asc; 112, identifier:attr; 113, identifier:order; 114, attribute; 115, identifier:sort; 116, keyword_argument; 117, keyword_argument; 118, identifier:order; 119, string; 120, pattern_list; 121, identifier:attr_orders; 122, attribute; 123, argument_list; 124, identifier:do_all; 125, generator_expression; 126, identifier:self; 127, identifier:obs; 128, identifier:key; 129, identifier:keyfn; 130, identifier:reverse; 131, identifier:reverse; 132, attribute; 133, argument_list; 134, identifier:s; 135, call; 136, parenthesized_expression; 137, slice; 138, identifier:a; 139, identifier:attrdefs; 140, subscript; 141, identifier:basestring; 142, assignment; 143, expression_statement; 144, identifier:self; 145, identifier:obs; 146, identifier:key; 147, call; 148, identifier:reverse; 149, identifier:reverse; 150, string_content:desc; 151, identifier:attr; 152, identifier:order; 153, attribute; 154, identifier:sort; 155, keyword_argument; 156, keyword_argument; 157, call; 158, for_in_clause; 159, identifier:s; 160, identifier:strip; 161, attribute; 162, argument_list; 163, binary_operator:a.split()+['asc', ]; 164, integer:2; 165, identifier:key; 166, integer:0; 167, identifier:attr_orders; 168, list_comprehension; 169, assignment; 170, identifier:attrgetter; 171, argument_list; 172, identifier:self; 173, identifier:obs; 174, identifier:key; 175, call; 176, identifier:reverse; 177, not_operator; 178, attribute; 179, argument_list; 180, pattern_list; 181, call; 182, identifier:key; 183, identifier:split; 184, string; 185, call; 186, list; 187, subscript; 188, for_in_clause; 189, identifier:attr_orders; 190, identifier:key; 191, list_splat; 192, identifier:attrgetter; 193, argument_list; 194, identifier:reverse; 195, attribute; 196, identifier:sort; 197, keyword_argument; 198, keyword_argument; 199, identifier:attr; 200, identifier:order; 201, identifier:reversed; 202, argument_list; 203, string_content:,; 204, attribute; 205, argument_list; 206, string; 207, parenthesized_expression; 208, slice; 209, identifier:a; 210, identifier:key; 211, identifier:attrs; 212, list_splat; 213, identifier:self; 214, identifier:obs; 215, identifier:key; 216, call; 217, identifier:reverse; 218, parenthesized_expression; 219, identifier:attr_orders; 220, identifier:a; 221, identifier:split; 222, string_content:asc; 223, binary_operator:a.split()+['asc', ]; 224, integer:2; 225, identifier:attrs; 226, identifier:attrgetter; 227, argument_list; 228, comparison_operator:order == "desc"; 229, call; 230, list; 231, identifier:attr; 232, identifier:order; 233, string:"desc"; 234, attribute; 235, argument_list; 236, string; 237, identifier:a; 238, identifier:split; 239, string_content:asc
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 7, 11; 7, 12; 8, 13; 9, 14; 9, 15; 9, 16; 10, 17; 14, 18; 14, 19; 15, 20; 15, 21; 15, 22; 15, 23; 16, 24; 16, 25; 19, 26; 19, 27; 20, 28; 20, 29; 20, 30; 21, 31; 23, 32; 23, 33; 23, 34; 23, 35; 25, 36; 25, 37; 27, 38; 27, 39; 27, 40; 28, 41; 28, 42; 29, 43; 29, 44; 30, 45; 30, 46; 31, 47; 31, 48; 32, 49; 32, 50; 33, 51; 34, 52; 34, 53; 35, 54; 35, 55; 35, 56; 35, 57; 36, 58; 37, 59; 42, 60; 42, 61; 43, 62; 44, 63; 46, 64; 48, 65; 48, 66; 50, 67; 50, 68; 51, 69; 52, 70; 52, 71; 53, 72; 57, 73; 58, 74; 58, 75; 59, 76; 59, 77; 62, 78; 62, 79; 63, 80; 63, 81; 64, 82; 64, 83; 64, 84; 66, 85; 66, 86; 67, 87; 67, 88; 68, 89; 68, 90; 69, 91; 69, 92; 71, 93; 71, 94; 72, 95; 73, 96; 76, 97; 76, 98; 77, 99; 77, 100; 79, 101; 79, 102; 81, 103; 81, 104; 82, 105; 82, 106; 83, 107; 84, 108; 85, 109; 85, 110; 88, 111; 89, 112; 89, 113; 91, 114; 91, 115; 92, 116; 92, 117; 93, 118; 93, 119; 94, 120; 94, 121; 95, 122; 95, 123; 96, 124; 96, 125; 97, 126; 97, 127; 99, 128; 99, 129; 100, 130; 100, 131; 101, 132; 101, 133; 102, 134; 102, 135; 103, 136; 103, 137; 104, 138; 104, 139; 106, 140; 106, 141; 107, 142; 108, 143; 114, 144; 114, 145; 116, 146; 116, 147; 117, 148; 117, 149; 119, 150; 120, 151; 120, 152; 122, 153; 122, 154; 123, 155; 123, 156; 125, 157; 125, 158; 132, 159; 132, 160; 135, 161; 135, 162; 136, 163; 137, 164; 140, 165; 140, 166; 142, 167; 142, 168; 143, 169; 147, 170; 147, 171; 153, 172; 153, 173; 155, 174; 155, 175; 156, 176; 156, 177; 157, 178; 157, 179; 158, 180; 158, 181; 161, 182; 161, 183; 162, 184; 163, 185; 163, 186; 168, 187; 168, 188; 169, 189; 169, 190; 171, 191; 175, 192; 175, 193; 177, 194; 178, 195; 178, 196; 179, 197; 179, 198; 180, 199; 180, 200; 181, 201; 181, 202; 184, 203; 185, 204; 185, 205; 186, 206; 187, 207; 187, 208; 188, 209; 188, 210; 191, 211; 193, 212; 195, 213; 195, 214; 197, 215; 197, 216; 198, 217; 198, 218; 202, 219; 204, 220; 204, 221; 206, 222; 207, 223; 208, 224; 212, 225; 216, 226; 216, 227; 218, 228; 223, 229; 223, 230; 227, 231; 228, 232; 228, 233; 229, 234; 229, 235; 230, 236; 234, 237; 234, 238; 236, 239
def sort(self, key, reverse=False): """Sort Table in place, using given fields as sort key. @param key: if this is a string, it is a comma-separated list of field names, optionally followed by 'desc' to indicate descending sort instead of the default ascending sort; if a list or tuple, it is a list or tuple of field names or field names with ' desc' appended; if it is a function, then it is the function to be used as the sort key function @param reverse: (default=False) set to True if results should be in reverse order @type reverse: bool @return: self """ if isinstance(key, (basestring, list, tuple)): if isinstance(key, basestring): attrdefs = [s.strip() for s in key.split(',')] attr_orders = [(a.split()+['asc', ])[:2] for a in attrdefs] else: # attr definitions were already resolved to a sequence by the caller if isinstance(key[0], basestring): attr_orders = [(a.split()+['asc', ])[:2] for a in key] else: attr_orders = key attrs = [attr for attr, order in attr_orders] # special optimization if all orders are ascending or descending if all(order == 'asc' for attr, order in attr_orders): self.obs.sort(key=attrgetter(*attrs), reverse=reverse) elif all(order == 'desc' for attr, order in attr_orders): self.obs.sort(key=attrgetter(*attrs), reverse=not reverse) else: # mix of ascending and descending sorts, have to do succession of sorts # leftmost attr is the most primary sort key, so reverse attr_orders to do # succession of sorts from right to left do_all(self.obs.sort(key=attrgetter(attr), reverse=(order == "desc")) for attr, order in reversed(attr_orders)) else: # sorting given a sort key function keyfn = key self.obs.sort(key=keyfn, reverse=reverse) return self
0, module; 1, function_definition; 2, function_name:sort_window_ids; 3, parameters; 4, block; 5, identifier:winid_list; 6, default_parameter; 7, expression_statement; 8, import_statement; 9, expression_statement; 10, expression_statement; 11, return_statement; 12, identifier:order; 13, string; 14, comment:""" Orders window ids by most recently used """; 15, aliased_import; 16, assignment; 17, assignment; 18, identifier:sorted_win_ids; 19, string_content:mru; 20, dotted_name; 21, identifier:ut; 22, identifier:winid_order; 23, call; 24, identifier:sorted_win_ids; 25, call; 26, identifier:utool; 27, attribute; 28, argument_list; 29, attribute; 30, argument_list; 31, identifier:XCtrl; 32, identifier:sorted_window_ids; 33, identifier:order; 34, identifier:ut; 35, identifier:isect; 36, identifier:winid_order; 37, identifier:winid_list
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 6, 13; 7, 14; 8, 15; 9, 16; 10, 17; 11, 18; 13, 19; 15, 20; 15, 21; 16, 22; 16, 23; 17, 24; 17, 25; 20, 26; 23, 27; 23, 28; 25, 29; 25, 30; 27, 31; 27, 32; 28, 33; 29, 34; 29, 35; 30, 36; 30, 37
def sort_window_ids(winid_list, order='mru'): """ Orders window ids by most recently used """ import utool as ut winid_order = XCtrl.sorted_window_ids(order) sorted_win_ids = ut.isect(winid_order, winid_list) return sorted_win_ids
0, module; 1, function_definition; 2, function_name:glob; 3, parameters; 4, block; 5, identifier:dpath; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, default_parameter; 12, default_parameter; 13, dictionary_splat_pattern; 14, expression_statement; 15, expression_statement; 16, expression_statement; 17, return_statement; 18, identifier:pattern; 19, None; 20, identifier:recursive; 21, False; 22, identifier:with_files; 23, True; 24, identifier:with_dirs; 25, True; 26, identifier:maxdepth; 27, None; 28, identifier:exclude_dirs; 29, list; 30, identifier:fullpath; 31, True; 32, identifier:kwargs; 33, comment:r""" Globs directory for pattern DEPRICATED: use pathlib.glob instead Args: dpath (str): directory path or pattern pattern (str or list): pattern or list of patterns (use only if pattern is not in dpath) recursive (bool): (default = False) with_files (bool): (default = True) with_dirs (bool): (default = True) maxdepth (None): (default = None) exclude_dirs (list): (default = []) Returns: list: path_list SeeAlso: iglob CommandLine: python -m utool.util_path --test-glob python -m utool.util_path --exec-glob:1 Example: >>> # ENABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> from os.path import dirname >>> import utool as ut >>> dpath = dirname(ut.__file__) >>> pattern = '__*.py' >>> recursive = True >>> with_files = True >>> with_dirs = True >>> maxdepth = None >>> fullpath = False >>> exclude_dirs = ['_internal', join(dpath, 'experimental')] >>> print('exclude_dirs = ' + ut.repr2(exclude_dirs)) >>> path_list = glob(dpath, pattern, recursive, with_files, with_dirs, >>> maxdepth, exclude_dirs, fullpath) >>> path_list = sorted(path_list) >>> result = ('path_list = %s' % (ut.repr3(path_list),)) >>> result = result.replace(r'\\', '/') >>> print(result) path_list = [ '__init__.py', '__main__.py', 'tests/__init__.py', ] Example: >>> # DISABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> import utool as ut >>> dpath = dirname(ut.__file__) + '/__*.py' >>> path_list = glob(dpath) >>> result = ('path_list = %s' % (str(path_list),)) >>> print(result) """; 34, assignment; 35, assignment; 36, identifier:path_list; 37, identifier:gen; 38, call; 39, identifier:path_list; 40, call; 41, identifier:iglob; 42, argument_list; 43, identifier:list; 44, argument_list; 45, identifier:dpath; 46, identifier:pattern; 47, keyword_argument; 48, keyword_argument; 49, keyword_argument; 50, keyword_argument; 51, keyword_argument; 52, keyword_argument; 53, dictionary_splat; 54, identifier:gen; 55, identifier:recursive; 56, identifier:recursive; 57, identifier:with_files; 58, identifier:with_files; 59, identifier:with_dirs; 60, identifier:with_dirs; 61, identifier:maxdepth; 62, identifier:maxdepth; 63, identifier:fullpath; 64, identifier:fullpath; 65, identifier:exclude_dirs; 66, identifier:exclude_dirs; 67, identifier:kwargs
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 3, 11; 3, 12; 3, 13; 4, 14; 4, 15; 4, 16; 4, 17; 6, 18; 6, 19; 7, 20; 7, 21; 8, 22; 8, 23; 9, 24; 9, 25; 10, 26; 10, 27; 11, 28; 11, 29; 12, 30; 12, 31; 13, 32; 14, 33; 15, 34; 16, 35; 17, 36; 34, 37; 34, 38; 35, 39; 35, 40; 38, 41; 38, 42; 40, 43; 40, 44; 42, 45; 42, 46; 42, 47; 42, 48; 42, 49; 42, 50; 42, 51; 42, 52; 42, 53; 44, 54; 47, 55; 47, 56; 48, 57; 48, 58; 49, 59; 49, 60; 50, 61; 50, 62; 51, 63; 51, 64; 52, 65; 52, 66; 53, 67
def glob(dpath, pattern=None, recursive=False, with_files=True, with_dirs=True, maxdepth=None, exclude_dirs=[], fullpath=True, **kwargs): r""" Globs directory for pattern DEPRICATED: use pathlib.glob instead Args: dpath (str): directory path or pattern pattern (str or list): pattern or list of patterns (use only if pattern is not in dpath) recursive (bool): (default = False) with_files (bool): (default = True) with_dirs (bool): (default = True) maxdepth (None): (default = None) exclude_dirs (list): (default = []) Returns: list: path_list SeeAlso: iglob CommandLine: python -m utool.util_path --test-glob python -m utool.util_path --exec-glob:1 Example: >>> # ENABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> from os.path import dirname >>> import utool as ut >>> dpath = dirname(ut.__file__) >>> pattern = '__*.py' >>> recursive = True >>> with_files = True >>> with_dirs = True >>> maxdepth = None >>> fullpath = False >>> exclude_dirs = ['_internal', join(dpath, 'experimental')] >>> print('exclude_dirs = ' + ut.repr2(exclude_dirs)) >>> path_list = glob(dpath, pattern, recursive, with_files, with_dirs, >>> maxdepth, exclude_dirs, fullpath) >>> path_list = sorted(path_list) >>> result = ('path_list = %s' % (ut.repr3(path_list),)) >>> result = result.replace(r'\\', '/') >>> print(result) path_list = [ '__init__.py', '__main__.py', 'tests/__init__.py', ] Example: >>> # DISABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> import utool as ut >>> dpath = dirname(ut.__file__) + '/__*.py' >>> path_list = glob(dpath) >>> result = ('path_list = %s' % (str(path_list),)) >>> print(result) """ gen = iglob(dpath, pattern, recursive=recursive, with_files=with_files, with_dirs=with_dirs, maxdepth=maxdepth, fullpath=fullpath, exclude_dirs=exclude_dirs, **kwargs) path_list = list(gen) return path_list
0, module; 1, function_definition; 2, function_name:list_images; 3, parameters; 4, block; 5, identifier:img_dpath_; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, expression_statement; 12, comment:#if not QUIET:; 13, comment:# print(ignore_list); 14, if_statement; 15, expression_statement; 16, expression_statement; 17, expression_statement; 18, expression_statement; 19, expression_statement; 20, comment:# Get all the files in a directory recursively; 21, expression_statement; 22, for_statement; 23, if_statement; 24, return_statement; 25, identifier:ignore_list; 26, list; 27, identifier:recursive; 28, False; 29, identifier:fullpath; 30, False; 31, identifier:full; 32, None; 33, identifier:sort; 34, True; 35, comment:r""" Returns a list of images in a directory. By default returns relative paths. TODO: rename to ls_images TODO: Change all instances of fullpath to full Args: img_dpath_ (str): ignore_list (list): (default = []) recursive (bool): (default = False) fullpath (bool): (default = False) full (None): (default = None) sort (bool): (default = True) Returns: list: gname_list CommandLine: python -m utool.util_path --exec-list_images Example: >>> # DISABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> img_dpath_ = '?' >>> ignore_list = [] >>> recursive = False >>> fullpath = False >>> full = None >>> sort = True >>> gname_list = list_images(img_dpath_, ignore_list, recursive, >>> fullpath, full, sort) >>> result = ('gname_list = %s' % (str(gname_list),)) >>> print(result) """; 36, comparison_operator:full is not None; 37, block; 38, assignment; 39, assignment; 40, assignment; 41, assignment; 42, call; 43, assignment; 44, pattern_list; 45, call; 46, block; 47, identifier:sort; 48, block; 49, identifier:gname_list; 50, identifier:full; 51, None; 52, expression_statement; 53, identifier:img_dpath_; 54, call; 55, identifier:img_dpath; 56, call; 57, identifier:ignore_set; 58, call; 59, identifier:gname_list_; 60, list; 61, identifier:assertpath; 62, argument_list; 63, identifier:true_imgpath; 64, call; 65, identifier:root; 66, identifier:dlist; 67, identifier:flist; 68, attribute; 69, argument_list; 70, expression_statement; 71, expression_statement; 72, comment:# Ignore directories; 73, if_statement; 74, for_statement; 75, if_statement; 76, expression_statement; 77, assignment; 78, attribute; 79, argument_list; 80, identifier:realpath; 81, argument_list; 82, identifier:set; 83, argument_list; 84, identifier:img_dpath; 85, identifier:truepath; 86, argument_list; 87, identifier:os; 88, identifier:walk; 89, identifier:true_imgpath; 90, assignment; 91, assignment; 92, call; 93, block; 94, identifier:fname; 95, call; 96, block; 97, not_operator; 98, block; 99, assignment; 100, identifier:fullpath; 101, boolean_operator; 102, identifier:util_str; 103, identifier:ensure_unicode; 104, identifier:img_dpath_; 105, identifier:img_dpath_; 106, identifier:ignore_list; 107, identifier:img_dpath; 108, identifier:root; 109, call; 110, identifier:rel_dpath; 111, call; 112, identifier:any; 113, argument_list; 114, continue_statement; 115, identifier:iter; 116, argument_list; 117, expression_statement; 118, expression_statement; 119, if_statement; 120, if_statement; 121, identifier:recursive; 122, break_statement; 123, identifier:gname_list; 124, call; 125, identifier:fullpath; 126, identifier:full; 127, attribute; 128, argument_list; 129, identifier:relpath; 130, argument_list; 131, list_comprehension; 132, identifier:flist; 133, assignment; 134, assignment; 135, call; 136, block; 137, call; 138, comment:# Ignore Files; 139, block; 140, identifier:sorted; 141, argument_list; 142, identifier:util_str; 143, identifier:ensure_unicode; 144, identifier:root; 145, identifier:root; 146, identifier:img_dpath; 147, comparison_operator:dname in ignore_set; 148, for_in_clause; 149, identifier:fname; 150, call; 151, identifier:gname; 152, call; 153, attribute; 154, argument_list; 155, expression_statement; 156, identifier:fpath_has_imgext; 157, argument_list; 158, if_statement; 159, if_statement; 160, identifier:gname_list_; 161, identifier:dname; 162, identifier:ignore_set; 163, identifier:dname; 164, call; 165, attribute; 166, argument_list; 167, attribute; 168, argument_list; 169, identifier:gname; 170, identifier:startswith; 171, string; 172, assignment; 173, identifier:gname; 174, comparison_operator:gname in ignore_set; 175, block; 176, identifier:fullpath; 177, block; 178, else_clause; 179, identifier:dirsplit; 180, argument_list; 181, identifier:util_str; 182, identifier:ensure_unicode; 183, identifier:fname; 184, call; 185, identifier:replace; 186, string; 187, string; 188, string_content:./; 189, identifier:gname; 190, subscript; 191, identifier:gname; 192, identifier:ignore_set; 193, continue_statement; 194, expression_statement; 195, expression_statement; 196, block; 197, identifier:rel_dpath; 198, identifier:join; 199, argument_list; 200, string_content; 201, string_content:/; 202, identifier:gname; 203, slice; 204, assignment; 205, call; 206, expression_statement; 207, identifier:rel_dpath; 208, identifier:fname; 209, escape_sequence:\\; 210, integer:2; 211, identifier:gpath; 212, call; 213, attribute; 214, argument_list; 215, call; 216, identifier:join; 217, argument_list; 218, identifier:gname_list_; 219, identifier:append; 220, identifier:gpath; 221, attribute; 222, argument_list; 223, identifier:img_dpath; 224, identifier:gname; 225, identifier:gname_list_; 226, identifier:append; 227, identifier:gname
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 4, 22; 4, 23; 4, 24; 6, 25; 6, 26; 7, 27; 7, 28; 8, 29; 8, 30; 9, 31; 9, 32; 10, 33; 10, 34; 11, 35; 14, 36; 14, 37; 15, 38; 16, 39; 17, 40; 18, 41; 19, 42; 21, 43; 22, 44; 22, 45; 22, 46; 23, 47; 23, 48; 24, 49; 36, 50; 36, 51; 37, 52; 38, 53; 38, 54; 39, 55; 39, 56; 40, 57; 40, 58; 41, 59; 41, 60; 42, 61; 42, 62; 43, 63; 43, 64; 44, 65; 44, 66; 44, 67; 45, 68; 45, 69; 46, 70; 46, 71; 46, 72; 46, 73; 46, 74; 46, 75; 48, 76; 52, 77; 54, 78; 54, 79; 56, 80; 56, 81; 58, 82; 58, 83; 62, 84; 64, 85; 64, 86; 68, 87; 68, 88; 69, 89; 70, 90; 71, 91; 73, 92; 73, 93; 74, 94; 74, 95; 74, 96; 75, 97; 75, 98; 76, 99; 77, 100; 77, 101; 78, 102; 78, 103; 79, 104; 81, 105; 83, 106; 86, 107; 90, 108; 90, 109; 91, 110; 91, 111; 92, 112; 92, 113; 93, 114; 95, 115; 95, 116; 96, 117; 96, 118; 96, 119; 96, 120; 97, 121; 98, 122; 99, 123; 99, 124; 101, 125; 101, 126; 109, 127; 109, 128; 111, 129; 111, 130; 113, 131; 116, 132; 117, 133; 118, 134; 119, 135; 119, 136; 120, 137; 120, 138; 120, 139; 124, 140; 124, 141; 127, 142; 127, 143; 128, 144; 130, 145; 130, 146; 131, 147; 131, 148; 133, 149; 133, 150; 134, 151; 134, 152; 135, 153; 135, 154; 136, 155; 137, 156; 137, 157; 139, 158; 139, 159; 141, 160; 147, 161; 147, 162; 148, 163; 148, 164; 150, 165; 150, 166; 152, 167; 152, 168; 153, 169; 153, 170; 154, 171; 155, 172; 157, 173; 158, 174; 158, 175; 159, 176; 159, 177; 159, 178; 164, 179; 164, 180; 165, 181; 165, 182; 166, 183; 167, 184; 167, 185; 168, 186; 168, 187; 171, 188; 172, 189; 172, 190; 174, 191; 174, 192; 175, 193; 177, 194; 177, 195; 178, 196; 180, 197; 184, 198; 184, 199; 186, 200; 187, 201; 190, 202; 190, 203; 194, 204; 195, 205; 196, 206; 199, 207; 199, 208; 200, 209; 203, 210; 204, 211; 204, 212; 205, 213; 205, 214; 206, 215; 212, 216; 212, 217; 213, 218; 213, 219; 214, 220; 215, 221; 215, 222; 217, 223; 217, 224; 221, 225; 221, 226; 222, 227
def list_images(img_dpath_, ignore_list=[], recursive=False, fullpath=False, full=None, sort=True): r""" Returns a list of images in a directory. By default returns relative paths. TODO: rename to ls_images TODO: Change all instances of fullpath to full Args: img_dpath_ (str): ignore_list (list): (default = []) recursive (bool): (default = False) fullpath (bool): (default = False) full (None): (default = None) sort (bool): (default = True) Returns: list: gname_list CommandLine: python -m utool.util_path --exec-list_images Example: >>> # DISABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> img_dpath_ = '?' >>> ignore_list = [] >>> recursive = False >>> fullpath = False >>> full = None >>> sort = True >>> gname_list = list_images(img_dpath_, ignore_list, recursive, >>> fullpath, full, sort) >>> result = ('gname_list = %s' % (str(gname_list),)) >>> print(result) """ #if not QUIET: # print(ignore_list) if full is not None: fullpath = fullpath or full img_dpath_ = util_str.ensure_unicode(img_dpath_) img_dpath = realpath(img_dpath_) ignore_set = set(ignore_list) gname_list_ = [] assertpath(img_dpath) # Get all the files in a directory recursively true_imgpath = truepath(img_dpath) for root, dlist, flist in os.walk(true_imgpath): root = util_str.ensure_unicode(root) rel_dpath = relpath(root, img_dpath) # Ignore directories if any([dname in ignore_set for dname in dirsplit(rel_dpath)]): continue for fname in iter(flist): fname = util_str.ensure_unicode(fname) gname = join(rel_dpath, fname).replace('\\', '/') if gname.startswith('./'): gname = gname[2:] if fpath_has_imgext(gname): # Ignore Files if gname in ignore_set: continue if fullpath: gpath = join(img_dpath, gname) gname_list_.append(gpath) else: gname_list_.append(gname) if not recursive: break if sort: gname_list = sorted(gname_list_) return gname_list
0, module; 1, function_definition; 2, function_name:isect; 3, parameters; 4, block; 5, identifier:list1; 6, identifier:list2; 7, expression_statement; 8, expression_statement; 9, return_statement; 10, comment:r""" returns list1 elements that are also in list2. preserves order of list1 intersect_ordered Args: list1 (list): list2 (list): Returns: list: new_list Example: >>> # DISABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> list1 = ['featweight_rowid', 'feature_rowid', 'config_rowid', 'featweight_forground_weight'] >>> list2 = [u'featweight_rowid'] >>> result = intersect_ordered(list1, list2) >>> print(result) ['featweight_rowid'] Timeit: def timeit_func(func, *args): niter = 10 times = [] for count in range(niter): with ut.Timer(verbose=False) as t: _ = func(*args) times.append(t.ellapsed) return sum(times) / niter grid = { 'size1': [1000, 5000, 10000, 50000], 'size2': [1000, 5000, 10000, 50000], #'overlap': [0, 1], } data = [] for kw in ut.all_dict_combinations(grid): pool = np.arange(kw['size1'] * 2) size2 = size1 = kw['size1'] size2 = kw['size2'] list1 = (np.random.rand(size1) * size1).astype(np.int32).tolist() list1 = ut.random_sample(pool, size1).tolist() list2 = ut.random_sample(pool, size2).tolist() list1 = set(list1) list2 = set(list2) kw['ut'] = timeit_func(ut.isect, list1, list2) #kw['np1'] = timeit_func(np.intersect1d, list1, list2) #kw['py1'] = timeit_func(lambda a, b: set.intersection(set(a), set(b)), list1, list2) kw['py2'] = timeit_func(lambda a, b: sorted(set.intersection(set(a), set(b))), list1, list2) data.append(kw) import pandas as pd pd.options.display.max_rows = 1000 pd.options.display.width = 1000 df = pd.DataFrame.from_dict(data) data_keys = list(grid.keys()) other_keys = ut.setdiff(df.columns, data_keys) df = df.reindex_axis(data_keys + other_keys, axis=1) df['abs_change'] = df['ut'] - df['py2'] df['pct_change'] = df['abs_change'] / df['ut'] * 100 #print(df.sort('abs_change', ascending=False)) print(str(df).split('\n')[0]) for row in df.values: argmin = row[len(data_keys):len(data_keys) + len(other_keys)].argmin() + len(data_keys) print(' ' + ', '.join([ '%6d' % (r) if x < len(data_keys) else ( ut.color_text('%8.6f' % (r,), 'blue') if x == argmin else '%8.6f' % (r,)) for x, r in enumerate(row) ])) %timeit ut.isect(list1, list2) %timeit np.intersect1d(list1, list2, assume_unique=True) %timeit set.intersection(set(list1), set(list2)) #def highlight_max(s): # ''' # highlight the maximum in a Series yellow. # ''' # is_max = s == s.max() # return ['background-color: yellow' if v else '' for v in is_max] #df.style.apply(highlight_max) """; 11, assignment; 12, list_comprehension; 13, identifier:set2; 14, call; 15, identifier:item; 16, for_in_clause; 17, if_clause; 18, identifier:set; 19, argument_list; 20, identifier:item; 21, identifier:list1; 22, comparison_operator:item in set2; 23, identifier:list2; 24, identifier:item; 25, identifier:set2
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 7, 10; 8, 11; 9, 12; 11, 13; 11, 14; 12, 15; 12, 16; 12, 17; 14, 18; 14, 19; 16, 20; 16, 21; 17, 22; 19, 23; 22, 24; 22, 25
def isect(list1, list2): r""" returns list1 elements that are also in list2. preserves order of list1 intersect_ordered Args: list1 (list): list2 (list): Returns: list: new_list Example: >>> # DISABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> list1 = ['featweight_rowid', 'feature_rowid', 'config_rowid', 'featweight_forground_weight'] >>> list2 = [u'featweight_rowid'] >>> result = intersect_ordered(list1, list2) >>> print(result) ['featweight_rowid'] Timeit: def timeit_func(func, *args): niter = 10 times = [] for count in range(niter): with ut.Timer(verbose=False) as t: _ = func(*args) times.append(t.ellapsed) return sum(times) / niter grid = { 'size1': [1000, 5000, 10000, 50000], 'size2': [1000, 5000, 10000, 50000], #'overlap': [0, 1], } data = [] for kw in ut.all_dict_combinations(grid): pool = np.arange(kw['size1'] * 2) size2 = size1 = kw['size1'] size2 = kw['size2'] list1 = (np.random.rand(size1) * size1).astype(np.int32).tolist() list1 = ut.random_sample(pool, size1).tolist() list2 = ut.random_sample(pool, size2).tolist() list1 = set(list1) list2 = set(list2) kw['ut'] = timeit_func(ut.isect, list1, list2) #kw['np1'] = timeit_func(np.intersect1d, list1, list2) #kw['py1'] = timeit_func(lambda a, b: set.intersection(set(a), set(b)), list1, list2) kw['py2'] = timeit_func(lambda a, b: sorted(set.intersection(set(a), set(b))), list1, list2) data.append(kw) import pandas as pd pd.options.display.max_rows = 1000 pd.options.display.width = 1000 df = pd.DataFrame.from_dict(data) data_keys = list(grid.keys()) other_keys = ut.setdiff(df.columns, data_keys) df = df.reindex_axis(data_keys + other_keys, axis=1) df['abs_change'] = df['ut'] - df['py2'] df['pct_change'] = df['abs_change'] / df['ut'] * 100 #print(df.sort('abs_change', ascending=False)) print(str(df).split('\n')[0]) for row in df.values: argmin = row[len(data_keys):len(data_keys) + len(other_keys)].argmin() + len(data_keys) print(' ' + ', '.join([ '%6d' % (r) if x < len(data_keys) else ( ut.color_text('%8.6f' % (r,), 'blue') if x == argmin else '%8.6f' % (r,)) for x, r in enumerate(row) ])) %timeit ut.isect(list1, list2) %timeit np.intersect1d(list1, list2, assume_unique=True) %timeit set.intersection(set(list1), set(list2)) #def highlight_max(s): # ''' # highlight the maximum in a Series yellow. # ''' # is_max = s == s.max() # return ['background-color: yellow' if v else '' for v in is_max] #df.style.apply(highlight_max) """ set2 = set(list2) return [item for item in list1 if item in set2]
0, module; 1, function_definition; 2, function_name:argsort; 3, parameters; 4, block; 5, list_splat_pattern; 6, dictionary_splat_pattern; 7, expression_statement; 8, if_statement; 9, identifier:args; 10, identifier:kwargs; 11, comment:""" like np.argsort but for lists Args: *args: multiple lists to sort by **kwargs: reverse (bool): sort order is descending if True else acscending CommandLine: python -m utool.util_list argsort Example: >>> # DISABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> result = ut.argsort({'a': 3, 'b': 2, 'c': 100}) >>> print(result) """; 12, boolean_operator; 13, block; 14, else_clause; 15, comparison_operator:len(args) == 1; 16, call; 17, expression_statement; 18, expression_statement; 19, expression_statement; 20, return_statement; 21, block; 22, call; 23, integer:1; 24, identifier:isinstance; 25, argument_list; 26, assignment; 27, assignment; 28, assignment; 29, call; 30, expression_statement; 31, return_statement; 32, identifier:len; 33, argument_list; 34, subscript; 35, identifier:dict; 36, identifier:dict_; 37, subscript; 38, identifier:index_list; 39, call; 40, identifier:value_list; 41, call; 42, identifier:sortedby2; 43, argument_list; 44, assignment; 45, call; 46, identifier:args; 47, identifier:args; 48, integer:0; 49, identifier:args; 50, integer:0; 51, identifier:list; 52, argument_list; 53, identifier:list; 54, argument_list; 55, identifier:index_list; 56, identifier:value_list; 57, identifier:index_list; 58, call; 59, identifier:sortedby2; 60, argument_list; 61, call; 62, call; 63, identifier:list; 64, argument_list; 65, identifier:index_list; 66, list_splat; 67, dictionary_splat; 68, attribute; 69, argument_list; 70, attribute; 71, argument_list; 72, call; 73, identifier:args; 74, identifier:kwargs; 75, identifier:dict_; 76, identifier:keys; 77, identifier:dict_; 78, identifier:values; 79, identifier:range; 80, argument_list; 81, call; 82, identifier:len; 83, argument_list; 84, subscript; 85, identifier:args; 86, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 5, 9; 6, 10; 7, 11; 8, 12; 8, 13; 8, 14; 12, 15; 12, 16; 13, 17; 13, 18; 13, 19; 13, 20; 14, 21; 15, 22; 15, 23; 16, 24; 16, 25; 17, 26; 18, 27; 19, 28; 20, 29; 21, 30; 21, 31; 22, 32; 22, 33; 25, 34; 25, 35; 26, 36; 26, 37; 27, 38; 27, 39; 28, 40; 28, 41; 29, 42; 29, 43; 30, 44; 31, 45; 33, 46; 34, 47; 34, 48; 37, 49; 37, 50; 39, 51; 39, 52; 41, 53; 41, 54; 43, 55; 43, 56; 44, 57; 44, 58; 45, 59; 45, 60; 52, 61; 54, 62; 58, 63; 58, 64; 60, 65; 60, 66; 60, 67; 61, 68; 61, 69; 62, 70; 62, 71; 64, 72; 66, 73; 67, 74; 68, 75; 68, 76; 70, 77; 70, 78; 72, 79; 72, 80; 80, 81; 81, 82; 81, 83; 83, 84; 84, 85; 84, 86
def argsort(*args, **kwargs): """ like np.argsort but for lists Args: *args: multiple lists to sort by **kwargs: reverse (bool): sort order is descending if True else acscending CommandLine: python -m utool.util_list argsort Example: >>> # DISABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> result = ut.argsort({'a': 3, 'b': 2, 'c': 100}) >>> print(result) """ if len(args) == 1 and isinstance(args[0], dict): dict_ = args[0] index_list = list(dict_.keys()) value_list = list(dict_.values()) return sortedby2(index_list, value_list) else: index_list = list(range(len(args[0]))) return sortedby2(index_list, *args, **kwargs)
0, module; 1, function_definition; 2, function_name:argsort2; 3, parameters; 4, block; 5, identifier:indexable; 6, default_parameter; 7, default_parameter; 8, expression_statement; 9, comment:# Create an iterator of value/key pairs; 10, if_statement; 11, comment:# Sort by values and extract the keys; 12, if_statement; 13, return_statement; 14, identifier:key; 15, None; 16, identifier:reverse; 17, False; 18, comment:""" Returns the indices that would sort a indexable object. This is similar to np.argsort, but it is written in pure python and works on both lists and dictionaries. Args: indexable (list or dict): indexable to sort by Returns: list: indices: list of indices such that sorts the indexable Example: >>> # DISABLE_DOCTEST >>> import utool as ut >>> # argsort works on dicts >>> dict_ = indexable = {'a': 3, 'b': 2, 'c': 100} >>> indices = ut.argsort2(indexable) >>> assert list(ut.take(dict_, indices)) == sorted(dict_.values()) >>> # argsort works on lists >>> indexable = [100, 2, 432, 10] >>> indices = ut.argsort2(indexable) >>> assert list(ut.take(indexable, indices)) == sorted(indexable) >>> # argsort works on iterators >>> indexable = reversed(range(100)) >>> indices = ut.argsort2(indexable) >>> assert indices[0] == 99 """; 19, call; 20, block; 21, else_clause; 22, comparison_operator:key is None; 23, block; 24, else_clause; 25, identifier:indices; 26, identifier:isinstance; 27, argument_list; 28, expression_statement; 29, block; 30, identifier:key; 31, None; 32, expression_statement; 33, block; 34, identifier:indexable; 35, identifier:dict; 36, assignment; 37, expression_statement; 38, assignment; 39, expression_statement; 40, identifier:vk_iter; 41, generator_expression; 42, assignment; 43, identifier:indices; 44, list_comprehension; 45, assignment; 46, tuple; 47, for_in_clause; 48, identifier:vk_iter; 49, generator_expression; 50, identifier:k; 51, for_in_clause; 52, identifier:indices; 53, list_comprehension; 54, identifier:v; 55, identifier:k; 56, pattern_list; 57, call; 58, tuple; 59, for_in_clause; 60, pattern_list; 61, call; 62, identifier:k; 63, for_in_clause; 64, identifier:k; 65, identifier:v; 66, attribute; 67, argument_list; 68, identifier:v; 69, identifier:k; 70, pattern_list; 71, call; 72, identifier:v; 73, identifier:k; 74, identifier:sorted; 75, argument_list; 76, pattern_list; 77, call; 78, identifier:indexable; 79, identifier:items; 80, identifier:k; 81, identifier:v; 82, identifier:enumerate; 83, argument_list; 84, identifier:vk_iter; 85, keyword_argument; 86, identifier:v; 87, identifier:k; 88, identifier:sorted; 89, argument_list; 90, identifier:indexable; 91, identifier:reverse; 92, identifier:reverse; 93, identifier:vk_iter; 94, keyword_argument; 95, keyword_argument; 96, identifier:key; 97, lambda; 98, identifier:reverse; 99, identifier:reverse; 100, lambda_parameters; 101, call; 102, identifier:vk; 103, identifier:key; 104, argument_list; 105, subscript; 106, identifier:vk; 107, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 6, 14; 6, 15; 7, 16; 7, 17; 8, 18; 10, 19; 10, 20; 10, 21; 12, 22; 12, 23; 12, 24; 13, 25; 19, 26; 19, 27; 20, 28; 21, 29; 22, 30; 22, 31; 23, 32; 24, 33; 27, 34; 27, 35; 28, 36; 29, 37; 32, 38; 33, 39; 36, 40; 36, 41; 37, 42; 38, 43; 38, 44; 39, 45; 41, 46; 41, 47; 42, 48; 42, 49; 44, 50; 44, 51; 45, 52; 45, 53; 46, 54; 46, 55; 47, 56; 47, 57; 49, 58; 49, 59; 51, 60; 51, 61; 53, 62; 53, 63; 56, 64; 56, 65; 57, 66; 57, 67; 58, 68; 58, 69; 59, 70; 59, 71; 60, 72; 60, 73; 61, 74; 61, 75; 63, 76; 63, 77; 66, 78; 66, 79; 70, 80; 70, 81; 71, 82; 71, 83; 75, 84; 75, 85; 76, 86; 76, 87; 77, 88; 77, 89; 83, 90; 85, 91; 85, 92; 89, 93; 89, 94; 89, 95; 94, 96; 94, 97; 95, 98; 95, 99; 97, 100; 97, 101; 100, 102; 101, 103; 101, 104; 104, 105; 105, 106; 105, 107
def argsort2(indexable, key=None, reverse=False): """ Returns the indices that would sort a indexable object. This is similar to np.argsort, but it is written in pure python and works on both lists and dictionaries. Args: indexable (list or dict): indexable to sort by Returns: list: indices: list of indices such that sorts the indexable Example: >>> # DISABLE_DOCTEST >>> import utool as ut >>> # argsort works on dicts >>> dict_ = indexable = {'a': 3, 'b': 2, 'c': 100} >>> indices = ut.argsort2(indexable) >>> assert list(ut.take(dict_, indices)) == sorted(dict_.values()) >>> # argsort works on lists >>> indexable = [100, 2, 432, 10] >>> indices = ut.argsort2(indexable) >>> assert list(ut.take(indexable, indices)) == sorted(indexable) >>> # argsort works on iterators >>> indexable = reversed(range(100)) >>> indices = ut.argsort2(indexable) >>> assert indices[0] == 99 """ # Create an iterator of value/key pairs if isinstance(indexable, dict): vk_iter = ((v, k) for k, v in indexable.items()) else: vk_iter = ((v, k) for k, v in enumerate(indexable)) # Sort by values and extract the keys if key is None: indices = [k for v, k in sorted(vk_iter, reverse=reverse)] else: indices = [k for v, k in sorted(vk_iter, key=lambda vk: key(vk[0]), reverse=reverse)] return indices
0, module; 1, function_definition; 2, function_name:issorted; 3, parameters; 4, block; 5, identifier:list_; 6, default_parameter; 7, expression_statement; 8, return_statement; 9, identifier:op; 10, attribute; 11, comment:""" Determines if a list is sorted Args: list_ (list): op (func): sorted operation (default=operator.le) Returns: bool : True if the list is sorted """; 12, call; 13, identifier:operator; 14, identifier:le; 15, identifier:all; 16, generator_expression; 17, call; 18, for_in_clause; 19, identifier:op; 20, argument_list; 21, identifier:ix; 22, call; 23, subscript; 24, subscript; 25, identifier:range; 26, argument_list; 27, identifier:list_; 28, identifier:ix; 29, identifier:list_; 30, binary_operator:ix + 1; 31, binary_operator:len(list_) - 1; 32, identifier:ix; 33, integer:1; 34, call; 35, integer:1; 36, identifier:len; 37, argument_list; 38, identifier:list_
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 6, 9; 6, 10; 7, 11; 8, 12; 10, 13; 10, 14; 12, 15; 12, 16; 16, 17; 16, 18; 17, 19; 17, 20; 18, 21; 18, 22; 20, 23; 20, 24; 22, 25; 22, 26; 23, 27; 23, 28; 24, 29; 24, 30; 26, 31; 30, 32; 30, 33; 31, 34; 31, 35; 34, 36; 34, 37; 37, 38
def issorted(list_, op=operator.le): """ Determines if a list is sorted Args: list_ (list): op (func): sorted operation (default=operator.le) Returns: bool : True if the list is sorted """ return all(op(list_[ix], list_[ix + 1]) for ix in range(len(list_) - 1))
0, module; 1, function_definition; 2, function_name:list_alignment; 3, parameters; 4, block; 5, identifier:list1; 6, identifier:list2; 7, default_parameter; 8, expression_statement; 9, import_statement; 10, expression_statement; 11, if_statement; 12, return_statement; 13, identifier:missing; 14, False; 15, comment:""" Assumes list items are unique Args: list1 (list): a list of unique items to be aligned list2 (list): a list of unique items in a desired ordering missing (bool): True if list2 can contain items not in list1 Returns: list: sorting that will map list1 onto list2 CommandLine: python -m utool.util_list list_alignment Example: >>> # ENABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> import utool as ut >>> list1 = ['b', 'c', 'a'] >>> list2 = ['a', 'b', 'c'] >>> sortx = list_alignment(list1, list2) >>> list1_aligned = take(list1, sortx) >>> assert list1_aligned == list2 Example1: >>> # ENABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> import utool as ut >>> list1 = ['b', 'c', 'a'] >>> list2 = ['a', 'a2', 'b', 'c', 'd'] >>> sortx = ut.list_alignment(list1, list2, missing=True) >>> print('sortx = %r' % (sortx,)) >>> list1_aligned = ut.none_take(list1, sortx) >>> result = ('list1_aligned = %s' % (ut.repr2(list1_aligned),)) >>> print(result) list1_aligned = ['a', None, 'b', 'c', None] """; 16, aliased_import; 17, assignment; 18, identifier:missing; 19, block; 20, else_clause; 21, identifier:sortx; 22, dotted_name; 23, identifier:ut; 24, identifier:item1_to_idx; 25, call; 26, expression_statement; 27, block; 28, identifier:utool; 29, identifier:make_index_lookup; 30, argument_list; 31, assignment; 32, expression_statement; 33, identifier:list1; 34, identifier:sortx; 35, call; 36, assignment; 37, attribute; 38, argument_list; 39, identifier:sortx; 40, call; 41, identifier:ut; 42, identifier:dict_take; 43, identifier:item1_to_idx; 44, identifier:list2; 45, None; 46, attribute; 47, argument_list; 48, identifier:ut; 49, identifier:take; 50, identifier:item1_to_idx; 51, identifier:list2
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 7, 13; 7, 14; 8, 15; 9, 16; 10, 17; 11, 18; 11, 19; 11, 20; 12, 21; 16, 22; 16, 23; 17, 24; 17, 25; 19, 26; 20, 27; 22, 28; 25, 29; 25, 30; 26, 31; 27, 32; 30, 33; 31, 34; 31, 35; 32, 36; 35, 37; 35, 38; 36, 39; 36, 40; 37, 41; 37, 42; 38, 43; 38, 44; 38, 45; 40, 46; 40, 47; 46, 48; 46, 49; 47, 50; 47, 51
def list_alignment(list1, list2, missing=False): """ Assumes list items are unique Args: list1 (list): a list of unique items to be aligned list2 (list): a list of unique items in a desired ordering missing (bool): True if list2 can contain items not in list1 Returns: list: sorting that will map list1 onto list2 CommandLine: python -m utool.util_list list_alignment Example: >>> # ENABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> import utool as ut >>> list1 = ['b', 'c', 'a'] >>> list2 = ['a', 'b', 'c'] >>> sortx = list_alignment(list1, list2) >>> list1_aligned = take(list1, sortx) >>> assert list1_aligned == list2 Example1: >>> # ENABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> import utool as ut >>> list1 = ['b', 'c', 'a'] >>> list2 = ['a', 'a2', 'b', 'c', 'd'] >>> sortx = ut.list_alignment(list1, list2, missing=True) >>> print('sortx = %r' % (sortx,)) >>> list1_aligned = ut.none_take(list1, sortx) >>> result = ('list1_aligned = %s' % (ut.repr2(list1_aligned),)) >>> print(result) list1_aligned = ['a', None, 'b', 'c', None] """ import utool as ut item1_to_idx = make_index_lookup(list1) if missing: sortx = ut.dict_take(item1_to_idx, list2, None) else: sortx = ut.take(item1_to_idx, list2) return sortx
0, module; 1, function_definition; 2, function_name:hash_data; 3, parameters; 4, block; 5, identifier:data; 6, default_parameter; 7, default_parameter; 8, expression_statement; 9, if_statement; 10, if_statement; 11, if_statement; 12, identifier:hashlen; 13, None; 14, identifier:alphabet; 15, None; 16, comment:r""" Get a unique hash depending on the state of the data. Args: data (object): any sort of loosely organized data hashlen (None): (default = None) alphabet (None): (default = None) Returns: str: text - hash string CommandLine: python -m utool.util_hash hash_data Example: >>> # ENABLE_DOCTEST >>> from utool.util_hash import * # NOQA >>> import utool as ut >>> counter = [0] >>> failed = [] >>> def check_hash(input_, want=None): >>> count = counter[0] = counter[0] + 1 >>> got = ut.hash_data(input_) >>> print('({}) {}'.format(count, got)) >>> if want is not None and not got.startswith(want): >>> failed.append((got, input_, count, want)) >>> check_hash('1', 'wuvrng') >>> check_hash(['1'], 'dekbfpby') >>> check_hash(tuple(['1']), 'dekbfpby') >>> check_hash(b'12', 'marreflbv') >>> check_hash([b'1', b'2'], 'nwfs') >>> check_hash(['1', '2', '3'], 'arfrp') >>> check_hash(['1', np.array([1,2,3]), '3'], 'uyqwcq') >>> check_hash('123', 'ehkgxk') >>> check_hash(zip([1, 2, 3], [4, 5, 6]), 'mjcpwa') >>> import numpy as np >>> rng = np.random.RandomState(0) >>> check_hash(rng.rand(100000), 'bdwosuey') >>> for got, input_, count, want in failed: >>> print('failed {} on {}'.format(count, input_)) >>> print('got={}, want={}'.format(got, want)) >>> assert not failed """; 17, comparison_operator:alphabet is None; 18, block; 19, comparison_operator:hashlen is None; 20, block; 21, boolean_operator; 22, comment:# Make a special hash for empty data; 23, block; 24, else_clause; 25, identifier:alphabet; 26, None; 27, expression_statement; 28, identifier:hashlen; 29, None; 30, expression_statement; 31, call; 32, comparison_operator:len(data) == 0; 33, expression_statement; 34, block; 35, assignment; 36, assignment; 37, identifier:isinstance; 38, argument_list; 39, call; 40, integer:0; 41, assignment; 42, expression_statement; 43, expression_statement; 44, comment:# Get a 128 character hex string; 45, expression_statement; 46, comment:# Shorten length of string (by increasing base); 47, expression_statement; 48, comment:# Truncate; 49, expression_statement; 50, return_statement; 51, identifier:alphabet; 52, identifier:ALPHABET_27; 53, identifier:hashlen; 54, identifier:HASH_LEN2; 55, identifier:data; 56, identifier:stringlike; 57, identifier:len; 58, argument_list; 59, identifier:text; 60, parenthesized_expression; 61, assignment; 62, call; 63, assignment; 64, assignment; 65, assignment; 66, identifier:text; 67, identifier:data; 68, binary_operator:alphabet[0] * hashlen; 69, identifier:hasher; 70, call; 71, identifier:_update_hasher; 72, argument_list; 73, identifier:text; 74, call; 75, identifier:hashstr2; 76, call; 77, identifier:text; 78, subscript; 79, subscript; 80, identifier:hashlen; 81, attribute; 82, argument_list; 83, identifier:hasher; 84, identifier:data; 85, attribute; 86, argument_list; 87, identifier:convert_hexstr_to_bigbase; 88, argument_list; 89, identifier:hashstr2; 90, slice; 91, identifier:alphabet; 92, integer:0; 93, identifier:hashlib; 94, identifier:sha512; 95, identifier:hasher; 96, identifier:hexdigest; 97, identifier:text; 98, identifier:alphabet; 99, keyword_argument; 100, identifier:hashlen; 101, identifier:bigbase; 102, call; 103, identifier:len; 104, argument_list; 105, identifier:alphabet
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 6, 13; 7, 14; 7, 15; 8, 16; 9, 17; 9, 18; 10, 19; 10, 20; 11, 21; 11, 22; 11, 23; 11, 24; 17, 25; 17, 26; 18, 27; 19, 28; 19, 29; 20, 30; 21, 31; 21, 32; 23, 33; 24, 34; 27, 35; 30, 36; 31, 37; 31, 38; 32, 39; 32, 40; 33, 41; 34, 42; 34, 43; 34, 44; 34, 45; 34, 46; 34, 47; 34, 48; 34, 49; 34, 50; 35, 51; 35, 52; 36, 53; 36, 54; 38, 55; 38, 56; 39, 57; 39, 58; 41, 59; 41, 60; 42, 61; 43, 62; 45, 63; 47, 64; 49, 65; 50, 66; 58, 67; 60, 68; 61, 69; 61, 70; 62, 71; 62, 72; 63, 73; 63, 74; 64, 75; 64, 76; 65, 77; 65, 78; 68, 79; 68, 80; 70, 81; 70, 82; 72, 83; 72, 84; 74, 85; 74, 86; 76, 87; 76, 88; 78, 89; 78, 90; 79, 91; 79, 92; 81, 93; 81, 94; 85, 95; 85, 96; 88, 97; 88, 98; 88, 99; 90, 100; 99, 101; 99, 102; 102, 103; 102, 104; 104, 105
def hash_data(data, hashlen=None, alphabet=None): r""" Get a unique hash depending on the state of the data. Args: data (object): any sort of loosely organized data hashlen (None): (default = None) alphabet (None): (default = None) Returns: str: text - hash string CommandLine: python -m utool.util_hash hash_data Example: >>> # ENABLE_DOCTEST >>> from utool.util_hash import * # NOQA >>> import utool as ut >>> counter = [0] >>> failed = [] >>> def check_hash(input_, want=None): >>> count = counter[0] = counter[0] + 1 >>> got = ut.hash_data(input_) >>> print('({}) {}'.format(count, got)) >>> if want is not None and not got.startswith(want): >>> failed.append((got, input_, count, want)) >>> check_hash('1', 'wuvrng') >>> check_hash(['1'], 'dekbfpby') >>> check_hash(tuple(['1']), 'dekbfpby') >>> check_hash(b'12', 'marreflbv') >>> check_hash([b'1', b'2'], 'nwfs') >>> check_hash(['1', '2', '3'], 'arfrp') >>> check_hash(['1', np.array([1,2,3]), '3'], 'uyqwcq') >>> check_hash('123', 'ehkgxk') >>> check_hash(zip([1, 2, 3], [4, 5, 6]), 'mjcpwa') >>> import numpy as np >>> rng = np.random.RandomState(0) >>> check_hash(rng.rand(100000), 'bdwosuey') >>> for got, input_, count, want in failed: >>> print('failed {} on {}'.format(count, input_)) >>> print('got={}, want={}'.format(got, want)) >>> assert not failed """ if alphabet is None: alphabet = ALPHABET_27 if hashlen is None: hashlen = HASH_LEN2 if isinstance(data, stringlike) and len(data) == 0: # Make a special hash for empty data text = (alphabet[0] * hashlen) else: hasher = hashlib.sha512() _update_hasher(hasher, data) # Get a 128 character hex string text = hasher.hexdigest() # Shorten length of string (by increasing base) hashstr2 = convert_hexstr_to_bigbase(text, alphabet, bigbase=len(alphabet)) # Truncate text = hashstr2[:hashlen] return text
0, module; 1, function_definition; 2, function_name:quick_search; 3, parameters; 4, block; 5, identifier:self; 6, identifier:name; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, expression_statement; 11, if_statement; 12, expression_statement; 13, if_statement; 14, expression_statement; 15, return_statement; 16, identifier:platform; 17, None; 18, identifier:sort_by; 19, None; 20, identifier:desc; 21, True; 22, comment:""" Quick search method that allows you to search for a game using only the title and the platform :param name: string :param platform: int :param sort_by: string :param desc: bool :return: pybomb.clients.Response """; 23, comparison_operator:platform is None; 24, block; 25, else_clause; 26, assignment; 27, comparison_operator:sort_by is not None; 28, block; 29, assignment; 30, identifier:response; 31, identifier:platform; 32, None; 33, expression_statement; 34, block; 35, identifier:search_params; 36, dictionary; 37, identifier:sort_by; 38, None; 39, expression_statement; 40, if_statement; 41, expression_statement; 42, identifier:response; 43, call; 44, assignment; 45, expression_statement; 46, pair; 47, call; 48, identifier:desc; 49, block; 50, else_clause; 51, assignment; 52, attribute; 53, argument_list; 54, identifier:query_filter; 55, call; 56, assignment; 57, string:"filter"; 58, identifier:query_filter; 59, attribute; 60, argument_list; 61, expression_statement; 62, block; 63, subscript; 64, call; 65, identifier:self; 66, identifier:_query; 67, identifier:search_params; 68, attribute; 69, argument_list; 70, identifier:query_filter; 71, call; 72, identifier:self; 73, identifier:_validate_sort_field; 74, identifier:sort_by; 75, assignment; 76, expression_statement; 77, identifier:search_params; 78, string:"sort"; 79, attribute; 80, argument_list; 81, string:"name:{0}"; 82, identifier:format; 83, identifier:name; 84, attribute; 85, argument_list; 86, identifier:direction; 87, attribute; 88, assignment; 89, string:"{0}:{1}"; 90, identifier:format; 91, identifier:sort_by; 92, identifier:direction; 93, string:"name:{0},platforms:{1}"; 94, identifier:format; 95, identifier:name; 96, identifier:platform; 97, identifier:self; 98, identifier:SORT_ORDER_DESCENDING; 99, identifier:direction; 100, attribute; 101, identifier:self; 102, identifier:SORT_ORDER_ASCENDING
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 7, 16; 7, 17; 8, 18; 8, 19; 9, 20; 9, 21; 10, 22; 11, 23; 11, 24; 11, 25; 12, 26; 13, 27; 13, 28; 14, 29; 15, 30; 23, 31; 23, 32; 24, 33; 25, 34; 26, 35; 26, 36; 27, 37; 27, 38; 28, 39; 28, 40; 28, 41; 29, 42; 29, 43; 33, 44; 34, 45; 36, 46; 39, 47; 40, 48; 40, 49; 40, 50; 41, 51; 43, 52; 43, 53; 44, 54; 44, 55; 45, 56; 46, 57; 46, 58; 47, 59; 47, 60; 49, 61; 50, 62; 51, 63; 51, 64; 52, 65; 52, 66; 53, 67; 55, 68; 55, 69; 56, 70; 56, 71; 59, 72; 59, 73; 60, 74; 61, 75; 62, 76; 63, 77; 63, 78; 64, 79; 64, 80; 68, 81; 68, 82; 69, 83; 71, 84; 71, 85; 75, 86; 75, 87; 76, 88; 79, 89; 79, 90; 80, 91; 80, 92; 84, 93; 84, 94; 85, 95; 85, 96; 87, 97; 87, 98; 88, 99; 88, 100; 100, 101; 100, 102
def quick_search(self, name, platform=None, sort_by=None, desc=True): """ Quick search method that allows you to search for a game using only the title and the platform :param name: string :param platform: int :param sort_by: string :param desc: bool :return: pybomb.clients.Response """ if platform is None: query_filter = "name:{0}".format(name) else: query_filter = "name:{0},platforms:{1}".format(name, platform) search_params = {"filter": query_filter} if sort_by is not None: self._validate_sort_field(sort_by) if desc: direction = self.SORT_ORDER_DESCENDING else: direction = self.SORT_ORDER_ASCENDING search_params["sort"] = "{0}:{1}".format(sort_by, direction) response = self._query(search_params) return response
0, module; 1, function_definition; 2, function_name:sort_protein_group; 3, parameters; 4, block; 5, identifier:pgroup; 6, identifier:sortfunctions; 7, identifier:sortfunc_index; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, for_statement; 13, return_statement; 14, comment:"""Recursive function that sorts protein group by a number of sorting functions."""; 15, assignment; 16, assignment; 17, augmented_assignment; 18, identifier:subgroup; 19, identifier:subgroups; 20, block; 21, identifier:pgroup_out; 22, identifier:pgroup_out; 23, list; 24, identifier:subgroups; 25, call; 26, identifier:sortfunc_index; 27, integer:1; 28, if_statement; 29, subscript; 30, argument_list; 31, boolean_operator; 32, block; 33, else_clause; 34, identifier:sortfunctions; 35, identifier:sortfunc_index; 36, identifier:pgroup; 37, comparison_operator:len(subgroup) > 1; 38, comparison_operator:sortfunc_index < len(sortfunctions); 39, expression_statement; 40, block; 41, call; 42, integer:1; 43, identifier:sortfunc_index; 44, call; 45, call; 46, expression_statement; 47, identifier:len; 48, argument_list; 49, identifier:len; 50, argument_list; 51, attribute; 52, argument_list; 53, call; 54, identifier:subgroup; 55, identifier:sortfunctions; 56, identifier:pgroup_out; 57, identifier:extend; 58, call; 59, attribute; 60, argument_list; 61, identifier:sort_protein_group; 62, argument_list; 63, identifier:pgroup_out; 64, identifier:extend; 65, identifier:subgroup; 66, identifier:subgroup; 67, identifier:sortfunctions; 68, identifier:sortfunc_index
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 8, 14; 9, 15; 10, 16; 11, 17; 12, 18; 12, 19; 12, 20; 13, 21; 15, 22; 15, 23; 16, 24; 16, 25; 17, 26; 17, 27; 20, 28; 25, 29; 25, 30; 28, 31; 28, 32; 28, 33; 29, 34; 29, 35; 30, 36; 31, 37; 31, 38; 32, 39; 33, 40; 37, 41; 37, 42; 38, 43; 38, 44; 39, 45; 40, 46; 41, 47; 41, 48; 44, 49; 44, 50; 45, 51; 45, 52; 46, 53; 48, 54; 50, 55; 51, 56; 51, 57; 52, 58; 53, 59; 53, 60; 58, 61; 58, 62; 59, 63; 59, 64; 60, 65; 62, 66; 62, 67; 62, 68
def sort_protein_group(pgroup, sortfunctions, sortfunc_index): """Recursive function that sorts protein group by a number of sorting functions.""" pgroup_out = [] subgroups = sortfunctions[sortfunc_index](pgroup) sortfunc_index += 1 for subgroup in subgroups: if len(subgroup) > 1 and sortfunc_index < len(sortfunctions): pgroup_out.extend(sort_protein_group(subgroup, sortfunctions, sortfunc_index)) else: pgroup_out.extend(subgroup) return pgroup_out
0, module; 1, function_definition; 2, function_name:sort_amounts; 3, parameters; 4, block; 5, identifier:proteins; 6, identifier:sort_index; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, return_statement; 11, comment:"""Generic function for sorting peptides and psms. Assumes a higher number is better for what is passed at sort_index position in protein."""; 12, assignment; 13, identifier:protein; 14, identifier:proteins; 15, block; 16, list_comprehension; 17, identifier:amounts; 18, dictionary; 19, expression_statement; 20, try_statement; 21, identifier:v; 22, for_in_clause; 23, assignment; 24, block; 25, except_clause; 26, pattern_list; 27, call; 28, identifier:amount_x_for_protein; 29, subscript; 30, expression_statement; 31, identifier:KeyError; 32, block; 33, identifier:k; 34, identifier:v; 35, identifier:sorted; 36, argument_list; 37, identifier:protein; 38, identifier:sort_index; 39, call; 40, expression_statement; 41, call; 42, keyword_argument; 43, attribute; 44, argument_list; 45, assignment; 46, attribute; 47, argument_list; 48, identifier:reverse; 49, True; 50, subscript; 51, identifier:append; 52, identifier:protein; 53, subscript; 54, list; 55, identifier:amounts; 56, identifier:items; 57, identifier:amounts; 58, identifier:amount_x_for_protein; 59, identifier:amounts; 60, identifier:amount_x_for_protein; 61, identifier:protein
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 9, 13; 9, 14; 9, 15; 10, 16; 12, 17; 12, 18; 15, 19; 15, 20; 16, 21; 16, 22; 19, 23; 20, 24; 20, 25; 22, 26; 22, 27; 23, 28; 23, 29; 24, 30; 25, 31; 25, 32; 26, 33; 26, 34; 27, 35; 27, 36; 29, 37; 29, 38; 30, 39; 32, 40; 36, 41; 36, 42; 39, 43; 39, 44; 40, 45; 41, 46; 41, 47; 42, 48; 42, 49; 43, 50; 43, 51; 44, 52; 45, 53; 45, 54; 46, 55; 46, 56; 50, 57; 50, 58; 53, 59; 53, 60; 54, 61
def sort_amounts(proteins, sort_index): """Generic function for sorting peptides and psms. Assumes a higher number is better for what is passed at sort_index position in protein.""" amounts = {} for protein in proteins: amount_x_for_protein = protein[sort_index] try: amounts[amount_x_for_protein].append(protein) except KeyError: amounts[amount_x_for_protein] = [protein] return [v for k, v in sorted(amounts.items(), reverse=True)]
0, module; 1, function_definition; 2, function_name:greedy_max_inden_setcover; 3, parameters; 4, block; 5, identifier:candidate_sets_dict; 6, identifier:items; 7, default_parameter; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, expression_statement; 13, while_statement; 14, expression_statement; 15, expression_statement; 16, return_statement; 17, identifier:max_covers; 18, None; 19, comment:""" greedy algorithm for maximum independent set cover Covers items with sets from candidate sets. Could be made faster. CommandLine: python -m utool.util_alg --test-greedy_max_inden_setcover Example0: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> candidate_sets_dict = {'a': [5, 3], 'b': [2, 3, 5], ... 'c': [4, 8], 'd': [7, 6, 2, 1]} >>> items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> max_covers = None >>> tup = greedy_max_inden_setcover(candidate_sets_dict, items, max_covers) >>> (uncovered_items, covered_items_list, accepted_keys) = tup >>> result = ut.repr4((uncovered_items, sorted(list(accepted_keys))), nl=False) >>> print(result) ([0, 9], ['a', 'c', 'd']) Example1: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> candidate_sets_dict = {'a': [5, 3], 'b': [2, 3, 5], ... 'c': [4, 8], 'd': [7, 6, 2, 1]} >>> items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> max_covers = 1 >>> tup = greedy_max_inden_setcover(candidate_sets_dict, items, max_covers) >>> (uncovered_items, covered_items_list, accepted_keys) = tup >>> result = ut.repr4((uncovered_items, sorted(list(accepted_keys))), nl=False) >>> print(result) ([0, 3, 4, 5, 8, 9], ['d']) """; 20, assignment; 21, assignment; 22, assignment; 23, assignment; 24, True; 25, comment:# Break if we have enough covers; 26, block; 27, assignment; 28, assignment; 29, identifier:covertup; 30, identifier:uncovered_set; 31, call; 32, identifier:rejected_keys; 33, call; 34, identifier:accepted_keys; 35, call; 36, identifier:covered_items_list; 37, list; 38, if_statement; 39, expression_statement; 40, expression_statement; 41, comment:# Loop over candidates to find the biggested unadded cover set; 42, for_statement; 43, comment:# Add the set to the cover; 44, if_statement; 45, expression_statement; 46, expression_statement; 47, expression_statement; 48, comment:# Add values in this key to the cover; 49, expression_statement; 50, identifier:uncovered_items; 51, call; 52, identifier:covertup; 53, expression_list; 54, identifier:set; 55, argument_list; 56, identifier:set; 57, argument_list; 58, identifier:set; 59, argument_list; 60, boolean_operator; 61, block; 62, assignment; 63, assignment; 64, pattern_list; 65, call; 66, block; 67, comparison_operator:maxkey is None; 68, block; 69, assignment; 70, call; 71, call; 72, call; 73, identifier:list; 74, argument_list; 75, identifier:uncovered_items; 76, identifier:covered_items_list; 77, identifier:accepted_keys; 78, identifier:items; 79, comparison_operator:max_covers is not None; 80, comparison_operator:len(covered_items_list) >= max_covers; 81, break_statement; 82, identifier:maxkey; 83, None; 84, identifier:maxlen; 85, unary_operator; 86, identifier:key; 87, identifier:candidate_items; 88, attribute; 89, argument_list; 90, if_statement; 91, comment:#print('Checking %r' % (key,)); 92, expression_statement; 93, comment:# len(uncovered_set.intersection(candidate_items)) == lenval:; 94, if_statement; 95, identifier:maxkey; 96, None; 97, break_statement; 98, identifier:maxval; 99, subscript; 100, attribute; 101, argument_list; 102, attribute; 103, argument_list; 104, attribute; 105, argument_list; 106, identifier:uncovered_set; 107, identifier:max_covers; 108, None; 109, call; 110, identifier:max_covers; 111, integer:1; 112, identifier:six; 113, identifier:iteritems; 114, identifier:candidate_sets_dict; 115, boolean_operator; 116, block; 117, assignment; 118, call; 119, block; 120, else_clause; 121, identifier:candidate_sets_dict; 122, identifier:maxkey; 123, identifier:accepted_keys; 124, identifier:add; 125, identifier:maxkey; 126, identifier:covered_items_list; 127, identifier:append; 128, call; 129, identifier:uncovered_set; 130, identifier:difference_update; 131, identifier:maxval; 132, identifier:len; 133, argument_list; 134, comparison_operator:key in rejected_keys; 135, comparison_operator:key in accepted_keys; 136, continue_statement; 137, identifier:lenval; 138, call; 139, attribute; 140, argument_list; 141, if_statement; 142, block; 143, identifier:list; 144, argument_list; 145, identifier:covered_items_list; 146, identifier:key; 147, identifier:rejected_keys; 148, identifier:key; 149, identifier:accepted_keys; 150, identifier:len; 151, argument_list; 152, identifier:uncovered_set; 153, identifier:issuperset; 154, identifier:candidate_items; 155, comparison_operator:lenval > maxlen; 156, block; 157, expression_statement; 158, identifier:maxval; 159, identifier:candidate_items; 160, identifier:lenval; 161, identifier:maxlen; 162, expression_statement; 163, expression_statement; 164, call; 165, assignment; 166, assignment; 167, attribute; 168, argument_list; 169, identifier:maxkey; 170, identifier:key; 171, identifier:maxlen; 172, identifier:lenval; 173, identifier:rejected_keys; 174, identifier:add; 175, identifier:key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 7, 17; 7, 18; 8, 19; 9, 20; 10, 21; 11, 22; 12, 23; 13, 24; 13, 25; 13, 26; 14, 27; 15, 28; 16, 29; 20, 30; 20, 31; 21, 32; 21, 33; 22, 34; 22, 35; 23, 36; 23, 37; 26, 38; 26, 39; 26, 40; 26, 41; 26, 42; 26, 43; 26, 44; 26, 45; 26, 46; 26, 47; 26, 48; 26, 49; 27, 50; 27, 51; 28, 52; 28, 53; 31, 54; 31, 55; 33, 56; 33, 57; 35, 58; 35, 59; 38, 60; 38, 61; 39, 62; 40, 63; 42, 64; 42, 65; 42, 66; 44, 67; 44, 68; 45, 69; 46, 70; 47, 71; 49, 72; 51, 73; 51, 74; 53, 75; 53, 76; 53, 77; 55, 78; 60, 79; 60, 80; 61, 81; 62, 82; 62, 83; 63, 84; 63, 85; 64, 86; 64, 87; 65, 88; 65, 89; 66, 90; 66, 91; 66, 92; 66, 93; 66, 94; 67, 95; 67, 96; 68, 97; 69, 98; 69, 99; 70, 100; 70, 101; 71, 102; 71, 103; 72, 104; 72, 105; 74, 106; 79, 107; 79, 108; 80, 109; 80, 110; 85, 111; 88, 112; 88, 113; 89, 114; 90, 115; 90, 116; 92, 117; 94, 118; 94, 119; 94, 120; 99, 121; 99, 122; 100, 123; 100, 124; 101, 125; 102, 126; 102, 127; 103, 128; 104, 129; 104, 130; 105, 131; 109, 132; 109, 133; 115, 134; 115, 135; 116, 136; 117, 137; 117, 138; 118, 139; 118, 140; 119, 141; 120, 142; 128, 143; 128, 144; 133, 145; 134, 146; 134, 147; 135, 148; 135, 149; 138, 150; 138, 151; 139, 152; 139, 153; 140, 154; 141, 155; 141, 156; 142, 157; 144, 158; 151, 159; 155, 160; 155, 161; 156, 162; 156, 163; 157, 164; 162, 165; 163, 166; 164, 167; 164, 168; 165, 169; 165, 170; 166, 171; 166, 172; 167, 173; 167, 174; 168, 175
def greedy_max_inden_setcover(candidate_sets_dict, items, max_covers=None): """ greedy algorithm for maximum independent set cover Covers items with sets from candidate sets. Could be made faster. CommandLine: python -m utool.util_alg --test-greedy_max_inden_setcover Example0: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> candidate_sets_dict = {'a': [5, 3], 'b': [2, 3, 5], ... 'c': [4, 8], 'd': [7, 6, 2, 1]} >>> items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> max_covers = None >>> tup = greedy_max_inden_setcover(candidate_sets_dict, items, max_covers) >>> (uncovered_items, covered_items_list, accepted_keys) = tup >>> result = ut.repr4((uncovered_items, sorted(list(accepted_keys))), nl=False) >>> print(result) ([0, 9], ['a', 'c', 'd']) Example1: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> candidate_sets_dict = {'a': [5, 3], 'b': [2, 3, 5], ... 'c': [4, 8], 'd': [7, 6, 2, 1]} >>> items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> max_covers = 1 >>> tup = greedy_max_inden_setcover(candidate_sets_dict, items, max_covers) >>> (uncovered_items, covered_items_list, accepted_keys) = tup >>> result = ut.repr4((uncovered_items, sorted(list(accepted_keys))), nl=False) >>> print(result) ([0, 3, 4, 5, 8, 9], ['d']) """ uncovered_set = set(items) rejected_keys = set() accepted_keys = set() covered_items_list = [] while True: # Break if we have enough covers if max_covers is not None and len(covered_items_list) >= max_covers: break maxkey = None maxlen = -1 # Loop over candidates to find the biggested unadded cover set for key, candidate_items in six.iteritems(candidate_sets_dict): if key in rejected_keys or key in accepted_keys: continue #print('Checking %r' % (key,)) lenval = len(candidate_items) # len(uncovered_set.intersection(candidate_items)) == lenval: if uncovered_set.issuperset(candidate_items): if lenval > maxlen: maxkey = key maxlen = lenval else: rejected_keys.add(key) # Add the set to the cover if maxkey is None: break maxval = candidate_sets_dict[maxkey] accepted_keys.add(maxkey) covered_items_list.append(list(maxval)) # Add values in this key to the cover uncovered_set.difference_update(maxval) uncovered_items = list(uncovered_set) covertup = uncovered_items, covered_items_list, accepted_keys return covertup
0, module; 1, function_definition; 2, function_name:setcover_greedy; 3, parameters; 4, block; 5, identifier:candidate_sets_dict; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, expression_statement; 11, import_statement; 12, expression_statement; 13, comment:# If candset_weights or item_values not given use the length as defaults; 14, if_statement; 15, if_statement; 16, if_statement; 17, if_statement; 18, expression_statement; 19, comment:# While we still need covers; 20, while_statement; 21, return_statement; 22, identifier:items; 23, None; 24, identifier:set_weights; 25, None; 26, identifier:item_values; 27, None; 28, identifier:max_weight; 29, None; 30, comment:r""" Greedy algorithm for various covering problems. approximation gaurentees depending on specifications like set_weights and item values Set Cover: log(len(items) + 1) approximation algorithm Weighted Maximum Cover: 1 - 1/e == .632 approximation algorithm Generalized maximum coverage is not implemented References: https://en.wikipedia.org/wiki/Maximum_coverage_problem Example: >>> # DISABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> candidate_sets_dict = { >>> 'a': [1, 2, 3, 8, 9, 0], >>> 'b': [1, 2, 3, 4, 5], >>> 'c': [4, 5, 7], >>> 'd': [5, 6, 7], >>> 'e': [6, 7, 8, 9, 0], >>> } >>> max_weight = None >>> items = None >>> set_weights = None >>> item_values = None >>> greedy_soln = ut.sort_dict(ut.setcover_greedy(candidate_sets_dict)) >>> exact_soln = ut.sort_dict(ut.setcover_ilp(candidate_sets_dict)) >>> print('greedy_soln = %r' % (greedy_soln,)) >>> print('exact_soln = %r' % (exact_soln,)) """; 31, aliased_import; 32, assignment; 33, comparison_operator:items is None; 34, block; 35, comparison_operator:set_weights is None; 36, block; 37, else_clause; 38, comparison_operator:item_values is None; 39, block; 40, else_clause; 41, comparison_operator:max_weight is None; 42, block; 43, assignment; 44, boolean_operator; 45, comment:# Find candiate set with the most uncovered items; 46, block; 47, identifier:solution_cover; 48, dotted_name; 49, identifier:ut; 50, identifier:solution_cover; 51, dictionary; 52, identifier:items; 53, None; 54, expression_statement; 55, identifier:set_weights; 56, None; 57, expression_statement; 58, block; 59, identifier:item_values; 60, None; 61, expression_statement; 62, block; 63, identifier:max_weight; 64, None; 65, expression_statement; 66, identifier:avail_covers; 67, dictionary_comprehension; 68, comparison_operator:get_weight(solution_cover) < max_weight; 69, comparison_operator:len(avail_covers) > 0; 70, expression_statement; 71, expression_statement; 72, expression_statement; 73, if_statement; 74, expression_statement; 75, comment:# Add values in this key to the cover; 76, expression_statement; 77, expression_statement; 78, comment:# Remove chosen set from available options and covered items; 79, comment:# from remaining available sets; 80, delete_statement; 81, for_statement; 82, identifier:utool; 83, assignment; 84, assignment; 85, function_definition; 86, assignment; 87, function_definition; 88, assignment; 89, pair; 90, for_in_clause; 91, call; 92, identifier:max_weight; 93, call; 94, integer:0; 95, call; 96, assignment; 97, assignment; 98, comparison_operator:uncovered_values[chosen_idx] <= 0; 99, comment:# needlessly adding value-less items; 100, block; 101, assignment; 102, assignment; 103, assignment; 104, subscript; 105, identifier:vals; 106, call; 107, block; 108, identifier:items; 109, call; 110, identifier:get_weight; 111, identifier:len; 112, function_name:get_weight; 113, parameters; 114, block; 115, identifier:get_value; 116, identifier:len; 117, function_name:get_value; 118, parameters; 119, block; 120, identifier:max_weight; 121, call; 122, identifier:key; 123, call; 124, pattern_list; 125, call; 126, identifier:get_weight; 127, argument_list; 128, identifier:len; 129, argument_list; 130, attribute; 131, argument_list; 132, identifier:uncovered_values; 133, call; 134, identifier:chosen_idx; 135, call; 136, subscript; 137, integer:0; 138, break_statement; 139, identifier:chosen_key; 140, subscript; 141, identifier:chosen_set; 142, subscript; 143, subscript; 144, subscript; 145, identifier:avail_covers; 146, identifier:chosen_key; 147, attribute; 148, argument_list; 149, expression_statement; 150, attribute; 151, argument_list; 152, identifier:solution_cover; 153, expression_statement; 154, identifier:vals; 155, expression_statement; 156, identifier:get_weight; 157, argument_list; 158, identifier:set; 159, argument_list; 160, identifier:key; 161, identifier:val; 162, attribute; 163, argument_list; 164, identifier:solution_cover; 165, identifier:avail_covers; 166, identifier:avail_covers; 167, identifier:values; 168, identifier:list; 169, argument_list; 170, attribute; 171, argument_list; 172, identifier:uncovered_values; 173, identifier:chosen_idx; 174, call; 175, identifier:chosen_idx; 176, identifier:avail_covers; 177, identifier:chosen_key; 178, identifier:solution_cover; 179, identifier:chosen_key; 180, identifier:candidate_sets_dict; 181, identifier:chosen_key; 182, identifier:avail_covers; 183, identifier:values; 184, call; 185, identifier:ut; 186, identifier:flatten; 187, call; 188, call; 189, call; 190, identifier:candidate_sets_dict; 191, identifier:val; 192, identifier:candidate_sets_dict; 193, identifier:items; 194, call; 195, identifier:ut; 196, identifier:argmax; 197, identifier:uncovered_values; 198, identifier:list; 199, argument_list; 200, attribute; 201, argument_list; 202, attribute; 203, argument_list; 204, identifier:sum; 205, argument_list; 206, identifier:sum; 207, argument_list; 208, identifier:map; 209, argument_list; 210, call; 211, identifier:vals; 212, identifier:difference_update; 213, identifier:chosen_set; 214, identifier:candidate_sets_dict; 215, identifier:values; 216, list_comprehension; 217, list_comprehension; 218, identifier:get_value; 219, call; 220, attribute; 221, argument_list; 222, subscript; 223, for_in_clause; 224, subscript; 225, for_in_clause; 226, attribute; 227, argument_list; 228, identifier:avail_covers; 229, identifier:keys; 230, identifier:set_weights; 231, identifier:key; 232, identifier:key; 233, call; 234, identifier:item_values; 235, identifier:v; 236, identifier:v; 237, identifier:vals; 238, identifier:avail_covers; 239, identifier:values; 240, attribute; 241, argument_list; 242, identifier:solution_cover; 243, identifier:keys
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 6, 22; 6, 23; 7, 24; 7, 25; 8, 26; 8, 27; 9, 28; 9, 29; 10, 30; 11, 31; 12, 32; 14, 33; 14, 34; 15, 35; 15, 36; 15, 37; 16, 38; 16, 39; 16, 40; 17, 41; 17, 42; 18, 43; 20, 44; 20, 45; 20, 46; 21, 47; 31, 48; 31, 49; 32, 50; 32, 51; 33, 52; 33, 53; 34, 54; 35, 55; 35, 56; 36, 57; 37, 58; 38, 59; 38, 60; 39, 61; 40, 62; 41, 63; 41, 64; 42, 65; 43, 66; 43, 67; 44, 68; 44, 69; 46, 70; 46, 71; 46, 72; 46, 73; 46, 74; 46, 75; 46, 76; 46, 77; 46, 78; 46, 79; 46, 80; 46, 81; 48, 82; 54, 83; 57, 84; 58, 85; 61, 86; 62, 87; 65, 88; 67, 89; 67, 90; 68, 91; 68, 92; 69, 93; 69, 94; 70, 95; 71, 96; 72, 97; 73, 98; 73, 99; 73, 100; 74, 101; 76, 102; 77, 103; 80, 104; 81, 105; 81, 106; 81, 107; 83, 108; 83, 109; 84, 110; 84, 111; 85, 112; 85, 113; 85, 114; 86, 115; 86, 116; 87, 117; 87, 118; 87, 119; 88, 120; 88, 121; 89, 122; 89, 123; 90, 124; 90, 125; 91, 126; 91, 127; 93, 128; 93, 129; 95, 130; 95, 131; 96, 132; 96, 133; 97, 134; 97, 135; 98, 136; 98, 137; 100, 138; 101, 139; 101, 140; 102, 141; 102, 142; 103, 143; 103, 144; 104, 145; 104, 146; 106, 147; 106, 148; 107, 149; 109, 150; 109, 151; 113, 152; 114, 153; 118, 154; 119, 155; 121, 156; 121, 157; 123, 158; 123, 159; 124, 160; 124, 161; 125, 162; 125, 163; 127, 164; 129, 165; 130, 166; 130, 167; 133, 168; 133, 169; 135, 170; 135, 171; 136, 172; 136, 173; 140, 174; 140, 175; 142, 176; 142, 177; 143, 178; 143, 179; 144, 180; 144, 181; 147, 182; 147, 183; 149, 184; 150, 185; 150, 186; 151, 187; 153, 188; 155, 189; 157, 190; 159, 191; 162, 192; 162, 193; 169, 194; 170, 195; 170, 196; 171, 197; 174, 198; 174, 199; 184, 200; 184, 201; 187, 202; 187, 203; 188, 204; 188, 205; 189, 206; 189, 207; 194, 208; 194, 209; 199, 210; 200, 211; 200, 212; 201, 213; 202, 214; 202, 215; 205, 216; 207, 217; 209, 218; 209, 219; 210, 220; 210, 221; 216, 222; 216, 223; 217, 224; 217, 225; 219, 226; 219, 227; 220, 228; 220, 229; 222, 230; 222, 231; 223, 232; 223, 233; 224, 234; 224, 235; 225, 236; 225, 237; 226, 238; 226, 239; 233, 240; 233, 241; 240, 242; 240, 243
def setcover_greedy(candidate_sets_dict, items=None, set_weights=None, item_values=None, max_weight=None): r""" Greedy algorithm for various covering problems. approximation gaurentees depending on specifications like set_weights and item values Set Cover: log(len(items) + 1) approximation algorithm Weighted Maximum Cover: 1 - 1/e == .632 approximation algorithm Generalized maximum coverage is not implemented References: https://en.wikipedia.org/wiki/Maximum_coverage_problem Example: >>> # DISABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> candidate_sets_dict = { >>> 'a': [1, 2, 3, 8, 9, 0], >>> 'b': [1, 2, 3, 4, 5], >>> 'c': [4, 5, 7], >>> 'd': [5, 6, 7], >>> 'e': [6, 7, 8, 9, 0], >>> } >>> max_weight = None >>> items = None >>> set_weights = None >>> item_values = None >>> greedy_soln = ut.sort_dict(ut.setcover_greedy(candidate_sets_dict)) >>> exact_soln = ut.sort_dict(ut.setcover_ilp(candidate_sets_dict)) >>> print('greedy_soln = %r' % (greedy_soln,)) >>> print('exact_soln = %r' % (exact_soln,)) """ import utool as ut solution_cover = {} # If candset_weights or item_values not given use the length as defaults if items is None: items = ut.flatten(candidate_sets_dict.values()) if set_weights is None: get_weight = len else: def get_weight(solution_cover): sum([set_weights[key] for key in solution_cover.keys()]) if item_values is None: get_value = len else: def get_value(vals): sum([item_values[v] for v in vals]) if max_weight is None: max_weight = get_weight(candidate_sets_dict) avail_covers = {key: set(val) for key, val in candidate_sets_dict.items()} # While we still need covers while get_weight(solution_cover) < max_weight and len(avail_covers) > 0: # Find candiate set with the most uncovered items avail_covers.values() uncovered_values = list(map(get_value, avail_covers.values())) chosen_idx = ut.argmax(uncovered_values) if uncovered_values[chosen_idx] <= 0: # needlessly adding value-less items break chosen_key = list(avail_covers.keys())[chosen_idx] # Add values in this key to the cover chosen_set = avail_covers[chosen_key] solution_cover[chosen_key] = candidate_sets_dict[chosen_key] # Remove chosen set from available options and covered items # from remaining available sets del avail_covers[chosen_key] for vals in avail_covers.values(): vals.difference_update(chosen_set) return solution_cover
0, module; 1, function_definition; 2, function_name:knapsack_greedy; 3, parameters; 4, block; 5, identifier:items; 6, identifier:maxweight; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, for_statement; 12, return_statement; 13, comment:r""" non-optimal greedy version of knapsack algorithm does not sort input. Sort the input by largest value first if desired. Args: `items` (tuple): is a sequence of tuples `(value, weight, id_)`, where `value` is a scalar and `weight` is a non-negative integer, and `id_` is an item identifier. `maxweight` (scalar): is a non-negative integer. CommandLine: python -m utool.util_alg --exec-knapsack_greedy Example: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> items = [(4, 12, 0), (2, 1, 1), (6, 4, 2), (1, 1, 3), (2, 2, 4)] >>> maxweight = 15 >>> total_value, items_subset = knapsack_greedy(items, maxweight) >>> result = 'total_value = %r\n' % (total_value,) >>> result += 'items_subset = %r' % (items_subset,) >>> print(result) total_value = 7 items_subset = [(4, 12, 0), (2, 1, 1), (1, 1, 3)] """; 14, assignment; 15, assignment; 16, assignment; 17, identifier:item; 18, identifier:items; 19, block; 20, expression_list; 21, identifier:items_subset; 22, list; 23, identifier:total_weight; 24, integer:0; 25, identifier:total_value; 26, integer:0; 27, expression_statement; 28, if_statement; 29, identifier:total_value; 30, identifier:items_subset; 31, assignment; 32, comparison_operator:total_weight + weight > maxweight; 33, block; 34, else_clause; 35, pattern_list; 36, subscript; 37, binary_operator:total_weight + weight; 38, identifier:maxweight; 39, continue_statement; 40, block; 41, identifier:value; 42, identifier:weight; 43, identifier:item; 44, slice; 45, identifier:total_weight; 46, identifier:weight; 47, expression_statement; 48, expression_statement; 49, expression_statement; 50, integer:0; 51, integer:2; 52, call; 53, augmented_assignment; 54, augmented_assignment; 55, attribute; 56, argument_list; 57, identifier:total_weight; 58, identifier:weight; 59, identifier:total_value; 60, identifier:value; 61, identifier:items_subset; 62, identifier:append; 63, identifier:item
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 7, 13; 8, 14; 9, 15; 10, 16; 11, 17; 11, 18; 11, 19; 12, 20; 14, 21; 14, 22; 15, 23; 15, 24; 16, 25; 16, 26; 19, 27; 19, 28; 20, 29; 20, 30; 27, 31; 28, 32; 28, 33; 28, 34; 31, 35; 31, 36; 32, 37; 32, 38; 33, 39; 34, 40; 35, 41; 35, 42; 36, 43; 36, 44; 37, 45; 37, 46; 40, 47; 40, 48; 40, 49; 44, 50; 44, 51; 47, 52; 48, 53; 49, 54; 52, 55; 52, 56; 53, 57; 53, 58; 54, 59; 54, 60; 55, 61; 55, 62; 56, 63
def knapsack_greedy(items, maxweight): r""" non-optimal greedy version of knapsack algorithm does not sort input. Sort the input by largest value first if desired. Args: `items` (tuple): is a sequence of tuples `(value, weight, id_)`, where `value` is a scalar and `weight` is a non-negative integer, and `id_` is an item identifier. `maxweight` (scalar): is a non-negative integer. CommandLine: python -m utool.util_alg --exec-knapsack_greedy Example: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> items = [(4, 12, 0), (2, 1, 1), (6, 4, 2), (1, 1, 3), (2, 2, 4)] >>> maxweight = 15 >>> total_value, items_subset = knapsack_greedy(items, maxweight) >>> result = 'total_value = %r\n' % (total_value,) >>> result += 'items_subset = %r' % (items_subset,) >>> print(result) total_value = 7 items_subset = [(4, 12, 0), (2, 1, 1), (1, 1, 3)] """ items_subset = [] total_weight = 0 total_value = 0 for item in items: value, weight = item[0:2] if total_weight + weight > maxweight: continue else: items_subset.append(item) total_weight += weight total_value += value return total_value, items_subset
0, module; 1, function_definition; 2, function_name:factors; 3, parameters; 4, block; 5, identifier:n; 6, expression_statement; 7, return_statement; 8, comment:""" Computes all the integer factors of the number `n` Example: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> result = sorted(ut.factors(10)) >>> print(result) [1, 2, 5, 10] References: http://stackoverflow.com/questions/6800193/finding-all-the-factors """; 9, call; 10, identifier:set; 11, argument_list; 12, call; 13, identifier:reduce; 14, argument_list; 15, attribute; 16, generator_expression; 17, identifier:list; 18, identifier:__add__; 19, list; 20, for_in_clause; 21, if_clause; 22, identifier:i; 23, binary_operator:n // i; 24, identifier:i; 25, call; 26, comparison_operator:n % i == 0; 27, identifier:n; 28, identifier:i; 29, identifier:range; 30, argument_list; 31, binary_operator:n % i; 32, integer:0; 33, integer:1; 34, binary_operator:int(n ** 0.5) + 1; 35, identifier:n; 36, identifier:i; 37, call; 38, integer:1; 39, identifier:int; 40, argument_list; 41, binary_operator:n ** 0.5; 42, identifier:n; 43, float:0.5
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 6, 8; 7, 9; 9, 10; 9, 11; 11, 12; 12, 13; 12, 14; 14, 15; 14, 16; 15, 17; 15, 18; 16, 19; 16, 20; 16, 21; 19, 22; 19, 23; 20, 24; 20, 25; 21, 26; 23, 27; 23, 28; 25, 29; 25, 30; 26, 31; 26, 32; 30, 33; 30, 34; 31, 35; 31, 36; 34, 37; 34, 38; 37, 39; 37, 40; 40, 41; 41, 42; 41, 43
def factors(n): """ Computes all the integer factors of the number `n` Example: >>> # ENABLE_DOCTEST >>> from utool.util_alg import * # NOQA >>> import utool as ut >>> result = sorted(ut.factors(10)) >>> print(result) [1, 2, 5, 10] References: http://stackoverflow.com/questions/6800193/finding-all-the-factors """ return set(reduce(list.__add__, ([i, n // i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0)))
0, module; 1, function_definition; 2, function_name:dict_stack; 3, parameters; 4, block; 5, identifier:dict_list; 6, default_parameter; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, expression_statement; 11, return_statement; 12, identifier:key_prefix; 13, string; 14, comment:r""" stacks values from two dicts into a new dict where the values are list of the input values. the keys are the same. DEPRICATE in favor of dict_stack2 Args: dict_list (list): list of dicts with similar keys Returns: dict dict_stacked CommandLine: python -m utool.util_dict --test-dict_stack python -m utool.util_dict --test-dict_stack:1 Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict1_ = {'a': 1, 'b': 2} >>> dict2_ = {'a': 2, 'b': 3, 'c': 4} >>> dict_stacked = dict_stack([dict1_, dict2_]) >>> result = ut.repr2(dict_stacked, sorted_=True) >>> print(result) {'a': [1, 2], 'b': [2, 3], 'c': [4]} Example1: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> # Get equivalent behavior with dict_stack2? >>> # Almost, as long as None is not part of the list >>> dict1_ = {'a': 1, 'b': 2} >>> dict2_ = {'a': 2, 'b': 3, 'c': 4} >>> dict_stacked_ = dict_stack2([dict1_, dict2_]) >>> dict_stacked = {key: ut.filter_Nones(val) for key, val in dict_stacked_.items()} >>> result = ut.repr2(dict_stacked, sorted_=True) >>> print(result) {'a': [1, 2], 'b': [2, 3], 'c': [4]} """; 15, assignment; 16, identifier:dict_; 17, identifier:dict_list; 18, block; 19, assignment; 20, identifier:dict_stacked; 21, identifier:dict_stacked_; 22, call; 23, for_statement; 24, identifier:dict_stacked; 25, call; 26, identifier:defaultdict; 27, argument_list; 28, pattern_list; 29, call; 30, block; 31, identifier:dict; 32, argument_list; 33, identifier:list; 34, identifier:key; 35, identifier:val; 36, attribute; 37, argument_list; 38, expression_statement; 39, identifier:dict_stacked_; 40, identifier:six; 41, identifier:iteritems; 42, identifier:dict_; 43, call; 44, attribute; 45, argument_list; 46, subscript; 47, identifier:append; 48, identifier:val; 49, identifier:dict_stacked_; 50, binary_operator:key_prefix + key; 51, identifier:key_prefix; 52, identifier:key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 6, 13; 7, 14; 8, 15; 9, 16; 9, 17; 9, 18; 10, 19; 11, 20; 15, 21; 15, 22; 18, 23; 19, 24; 19, 25; 22, 26; 22, 27; 23, 28; 23, 29; 23, 30; 25, 31; 25, 32; 27, 33; 28, 34; 28, 35; 29, 36; 29, 37; 30, 38; 32, 39; 36, 40; 36, 41; 37, 42; 38, 43; 43, 44; 43, 45; 44, 46; 44, 47; 45, 48; 46, 49; 46, 50; 50, 51; 50, 52
def dict_stack(dict_list, key_prefix=''): r""" stacks values from two dicts into a new dict where the values are list of the input values. the keys are the same. DEPRICATE in favor of dict_stack2 Args: dict_list (list): list of dicts with similar keys Returns: dict dict_stacked CommandLine: python -m utool.util_dict --test-dict_stack python -m utool.util_dict --test-dict_stack:1 Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict1_ = {'a': 1, 'b': 2} >>> dict2_ = {'a': 2, 'b': 3, 'c': 4} >>> dict_stacked = dict_stack([dict1_, dict2_]) >>> result = ut.repr2(dict_stacked, sorted_=True) >>> print(result) {'a': [1, 2], 'b': [2, 3], 'c': [4]} Example1: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> # Get equivalent behavior with dict_stack2? >>> # Almost, as long as None is not part of the list >>> dict1_ = {'a': 1, 'b': 2} >>> dict2_ = {'a': 2, 'b': 3, 'c': 4} >>> dict_stacked_ = dict_stack2([dict1_, dict2_]) >>> dict_stacked = {key: ut.filter_Nones(val) for key, val in dict_stacked_.items()} >>> result = ut.repr2(dict_stacked, sorted_=True) >>> print(result) {'a': [1, 2], 'b': [2, 3], 'c': [4]} """ dict_stacked_ = defaultdict(list) for dict_ in dict_list: for key, val in six.iteritems(dict_): dict_stacked_[key_prefix + key].append(val) dict_stacked = dict(dict_stacked_) return dict_stacked
0, module; 1, function_definition; 2, function_name:invert_dict; 3, parameters; 4, block; 5, identifier:dict_; 6, default_parameter; 7, expression_statement; 8, if_statement; 9, return_statement; 10, identifier:unique_vals; 11, True; 12, comment:""" Reverses the keys and values in a dictionary. Set unique_vals to False if the values in the dict are not unique. Args: dict_ (dict_): dictionary unique_vals (bool): if False, inverted keys are returned in a list. Returns: dict: inverted_dict CommandLine: python -m utool.util_dict --test-invert_dict Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {'a': 1, 'b': 2} >>> inverted_dict = invert_dict(dict_) >>> result = ut.repr4(inverted_dict, nl=False) >>> print(result) {1: 'a', 2: 'b'} Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = OrderedDict([(2, 'good',), (1, 'ok',), (0, 'junk',), (None, 'UNKNOWN',)]) >>> inverted_dict = invert_dict(dict_) >>> result = ut.repr4(inverted_dict, nl=False) >>> print(result) {'good': 2, 'ok': 1, 'junk': 0, 'UNKNOWN': None} Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {'a': 1, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': 2} >>> inverted_dict = invert_dict(dict_, unique_vals=False) >>> inverted_dict = ut.map_dict_vals(sorted, inverted_dict) >>> result = ut.repr4(inverted_dict, nl=False) >>> print(result) {0: ['b', 'c', 'd', 'e'], 1: ['a'], 2: ['f']} """; 13, identifier:unique_vals; 14, block; 15, else_clause; 16, identifier:inverted_dict; 17, expression_statement; 18, expression_statement; 19, block; 20, assignment; 21, assignment; 22, expression_statement; 23, identifier:inverted_items; 24, list_comprehension; 25, identifier:inverted_dict; 26, call; 27, assignment; 28, tuple; 29, for_in_clause; 30, call; 31, argument_list; 32, identifier:inverted_dict; 33, call; 34, identifier:val; 35, identifier:key; 36, pattern_list; 37, call; 38, identifier:type; 39, argument_list; 40, identifier:inverted_items; 41, identifier:group_items; 42, argument_list; 43, identifier:key; 44, identifier:val; 45, attribute; 46, argument_list; 47, identifier:dict_; 48, call; 49, call; 50, identifier:six; 51, identifier:iteritems; 52, identifier:dict_; 53, attribute; 54, argument_list; 55, attribute; 56, argument_list; 57, identifier:dict_; 58, identifier:keys; 59, identifier:dict_; 60, identifier:values
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 6, 10; 6, 11; 7, 12; 8, 13; 8, 14; 8, 15; 9, 16; 14, 17; 14, 18; 15, 19; 17, 20; 18, 21; 19, 22; 20, 23; 20, 24; 21, 25; 21, 26; 22, 27; 24, 28; 24, 29; 26, 30; 26, 31; 27, 32; 27, 33; 28, 34; 28, 35; 29, 36; 29, 37; 30, 38; 30, 39; 31, 40; 33, 41; 33, 42; 36, 43; 36, 44; 37, 45; 37, 46; 39, 47; 42, 48; 42, 49; 45, 50; 45, 51; 46, 52; 48, 53; 48, 54; 49, 55; 49, 56; 53, 57; 53, 58; 55, 59; 55, 60
def invert_dict(dict_, unique_vals=True): """ Reverses the keys and values in a dictionary. Set unique_vals to False if the values in the dict are not unique. Args: dict_ (dict_): dictionary unique_vals (bool): if False, inverted keys are returned in a list. Returns: dict: inverted_dict CommandLine: python -m utool.util_dict --test-invert_dict Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {'a': 1, 'b': 2} >>> inverted_dict = invert_dict(dict_) >>> result = ut.repr4(inverted_dict, nl=False) >>> print(result) {1: 'a', 2: 'b'} Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = OrderedDict([(2, 'good',), (1, 'ok',), (0, 'junk',), (None, 'UNKNOWN',)]) >>> inverted_dict = invert_dict(dict_) >>> result = ut.repr4(inverted_dict, nl=False) >>> print(result) {'good': 2, 'ok': 1, 'junk': 0, 'UNKNOWN': None} Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {'a': 1, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': 2} >>> inverted_dict = invert_dict(dict_, unique_vals=False) >>> inverted_dict = ut.map_dict_vals(sorted, inverted_dict) >>> result = ut.repr4(inverted_dict, nl=False) >>> print(result) {0: ['b', 'c', 'd', 'e'], 1: ['a'], 2: ['f']} """ if unique_vals: inverted_items = [(val, key) for key, val in six.iteritems(dict_)] inverted_dict = type(dict_)(inverted_items) else: inverted_dict = group_items(dict_.keys(), dict_.values()) return inverted_dict
0, module; 1, function_definition; 2, function_name:groupby_tags; 3, parameters; 4, block; 5, identifier:item_list; 6, identifier:tags_list; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, return_statement; 11, comment:r""" case where an item can belong to multiple groups Args: item_list (list): tags_list (list): Returns: dict: groupid_to_items CommandLine: python -m utool.util_dict --test-groupby_tags Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> tagged_item_list = { >>> 'spam': ['meat', 'protein', 'food'], >>> 'eggs': ['protein', 'food'], >>> 'cheese': ['dairy', 'protein', 'food'], >>> 'jam': ['fruit', 'food'], >>> 'banana': ['weapon', 'fruit', 'food'], >>> } >>> item_list = list(tagged_item_list.keys()) >>> tags_list = list(tagged_item_list.values()) >>> groupid_to_items = groupby_tags(item_list, tags_list) >>> groupid_to_items = ut.map_vals(sorted, groupid_to_items) >>> result = ('groupid_to_items = %s' % (ut.repr4(groupid_to_items),)) >>> print(result) groupid_to_items = { 'dairy': ['cheese'], 'food': ['banana', 'cheese', 'eggs', 'jam', 'spam'], 'fruit': ['banana', 'jam'], 'meat': ['spam'], 'protein': ['cheese', 'eggs', 'spam'], 'weapon': ['banana'], } """; 12, assignment; 13, pattern_list; 14, call; 15, block; 16, identifier:groupid_to_items; 17, identifier:groupid_to_items; 18, call; 19, identifier:tags; 20, identifier:item; 21, identifier:zip; 22, argument_list; 23, for_statement; 24, identifier:defaultdict; 25, argument_list; 26, identifier:tags_list; 27, identifier:item_list; 28, identifier:tag; 29, identifier:tags; 30, block; 31, identifier:list; 32, expression_statement; 33, call; 34, attribute; 35, argument_list; 36, subscript; 37, identifier:append; 38, identifier:item; 39, identifier:groupid_to_items; 40, identifier:tag
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 9, 13; 9, 14; 9, 15; 10, 16; 12, 17; 12, 18; 13, 19; 13, 20; 14, 21; 14, 22; 15, 23; 18, 24; 18, 25; 22, 26; 22, 27; 23, 28; 23, 29; 23, 30; 25, 31; 30, 32; 32, 33; 33, 34; 33, 35; 34, 36; 34, 37; 35, 38; 36, 39; 36, 40
def groupby_tags(item_list, tags_list): r""" case where an item can belong to multiple groups Args: item_list (list): tags_list (list): Returns: dict: groupid_to_items CommandLine: python -m utool.util_dict --test-groupby_tags Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> tagged_item_list = { >>> 'spam': ['meat', 'protein', 'food'], >>> 'eggs': ['protein', 'food'], >>> 'cheese': ['dairy', 'protein', 'food'], >>> 'jam': ['fruit', 'food'], >>> 'banana': ['weapon', 'fruit', 'food'], >>> } >>> item_list = list(tagged_item_list.keys()) >>> tags_list = list(tagged_item_list.values()) >>> groupid_to_items = groupby_tags(item_list, tags_list) >>> groupid_to_items = ut.map_vals(sorted, groupid_to_items) >>> result = ('groupid_to_items = %s' % (ut.repr4(groupid_to_items),)) >>> print(result) groupid_to_items = { 'dairy': ['cheese'], 'food': ['banana', 'cheese', 'eggs', 'jam', 'spam'], 'fruit': ['banana', 'jam'], 'meat': ['spam'], 'protein': ['cheese', 'eggs', 'spam'], 'weapon': ['banana'], } """ groupid_to_items = defaultdict(list) for tags, item in zip(tags_list, item_list): for tag in tags: groupid_to_items[tag].append(item) return groupid_to_items
0, module; 1, function_definition; 2, function_name:group_items; 3, parameters; 4, block; 5, identifier:items; 6, default_parameter; 7, default_parameter; 8, expression_statement; 9, if_statement; 10, comment:# Initialize a dict of lists; 11, expression_statement; 12, comment:# Insert each item into the correct group; 13, for_statement; 14, return_statement; 15, identifier:by; 16, None; 17, identifier:sorted_; 18, True; 19, comment:""" Groups a list of items by group id. Args: items (list): a list of the values to be grouped. if `by` is None, then each item is assumed to be a (groupid, value) pair. by (list): a corresponding list to group items by. if specified, these are used as the keys to group values in `items` sorted_ (bool): if True preserves the ordering of items within groups (default = True) FIXME. the opposite is true Returns: dict: groupid_to_items: maps a groupid to a list of items SeeAlso: group_indices - first part of a a more fine grained grouping algorithm apply_gropuing - second part of a more fine grained grouping algorithm CommandLine: python -m utool.util_dict --test-group_items Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> items = ['ham', 'jam', 'spam', 'eggs', 'cheese', 'bannana'] >>> by = ['protein', 'fruit', 'protein', 'protein', 'dairy', 'fruit'] >>> groupid_to_items = ut.group_items(items, iter(by)) >>> result = ut.repr2(groupid_to_items) >>> print(result) {'dairy': ['cheese'], 'fruit': ['jam', 'bannana'], 'protein': ['ham', 'spam', 'eggs']} """; 20, comparison_operator:by is not None; 21, block; 22, else_clause; 23, assignment; 24, pattern_list; 25, identifier:pairs; 26, block; 27, identifier:groupid_to_items; 28, identifier:by; 29, None; 30, expression_statement; 31, if_statement; 32, block; 33, identifier:groupid_to_items; 34, call; 35, identifier:groupid; 36, identifier:item; 37, expression_statement; 38, assignment; 39, identifier:sorted_; 40, comment:# Sort by groupid for cache efficiency (does this even do anything?); 41, comment:# I forgot why this is needed? Determenism?; 42, block; 43, expression_statement; 44, identifier:defaultdict; 45, argument_list; 46, call; 47, identifier:pairs; 48, call; 49, try_statement; 50, assignment; 51, identifier:list; 52, attribute; 53, argument_list; 54, identifier:list; 55, argument_list; 56, block; 57, except_clause; 58, identifier:pairs; 59, identifier:items; 60, subscript; 61, identifier:append; 62, identifier:item; 63, call; 64, expression_statement; 65, identifier:TypeError; 66, comment:# Python 3 does not allow sorting mixed types; 67, block; 68, identifier:groupid_to_items; 69, identifier:groupid; 70, identifier:zip; 71, argument_list; 72, assignment; 73, expression_statement; 74, identifier:by; 75, identifier:items; 76, identifier:pairs; 77, call; 78, assignment; 79, identifier:sorted; 80, argument_list; 81, identifier:pairs; 82, call; 83, identifier:pairs; 84, keyword_argument; 85, identifier:sorted; 86, argument_list; 87, identifier:key; 88, call; 89, identifier:pairs; 90, keyword_argument; 91, attribute; 92, argument_list; 93, identifier:key; 94, lambda; 95, identifier:op; 96, identifier:itemgetter; 97, integer:0; 98, lambda_parameters; 99, call; 100, identifier:tup; 101, identifier:str; 102, argument_list; 103, subscript; 104, identifier:tup; 105, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 6, 15; 6, 16; 7, 17; 7, 18; 8, 19; 9, 20; 9, 21; 9, 22; 11, 23; 13, 24; 13, 25; 13, 26; 14, 27; 20, 28; 20, 29; 21, 30; 21, 31; 22, 32; 23, 33; 23, 34; 24, 35; 24, 36; 26, 37; 30, 38; 31, 39; 31, 40; 31, 41; 31, 42; 32, 43; 34, 44; 34, 45; 37, 46; 38, 47; 38, 48; 42, 49; 43, 50; 45, 51; 46, 52; 46, 53; 48, 54; 48, 55; 49, 56; 49, 57; 50, 58; 50, 59; 52, 60; 52, 61; 53, 62; 55, 63; 56, 64; 57, 65; 57, 66; 57, 67; 60, 68; 60, 69; 63, 70; 63, 71; 64, 72; 67, 73; 71, 74; 71, 75; 72, 76; 72, 77; 73, 78; 77, 79; 77, 80; 78, 81; 78, 82; 80, 83; 80, 84; 82, 85; 82, 86; 84, 87; 84, 88; 86, 89; 86, 90; 88, 91; 88, 92; 90, 93; 90, 94; 91, 95; 91, 96; 92, 97; 94, 98; 94, 99; 98, 100; 99, 101; 99, 102; 102, 103; 103, 104; 103, 105
def group_items(items, by=None, sorted_=True): """ Groups a list of items by group id. Args: items (list): a list of the values to be grouped. if `by` is None, then each item is assumed to be a (groupid, value) pair. by (list): a corresponding list to group items by. if specified, these are used as the keys to group values in `items` sorted_ (bool): if True preserves the ordering of items within groups (default = True) FIXME. the opposite is true Returns: dict: groupid_to_items: maps a groupid to a list of items SeeAlso: group_indices - first part of a a more fine grained grouping algorithm apply_gropuing - second part of a more fine grained grouping algorithm CommandLine: python -m utool.util_dict --test-group_items Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> items = ['ham', 'jam', 'spam', 'eggs', 'cheese', 'bannana'] >>> by = ['protein', 'fruit', 'protein', 'protein', 'dairy', 'fruit'] >>> groupid_to_items = ut.group_items(items, iter(by)) >>> result = ut.repr2(groupid_to_items) >>> print(result) {'dairy': ['cheese'], 'fruit': ['jam', 'bannana'], 'protein': ['ham', 'spam', 'eggs']} """ if by is not None: pairs = list(zip(by, items)) if sorted_: # Sort by groupid for cache efficiency (does this even do anything?) # I forgot why this is needed? Determenism? try: pairs = sorted(pairs, key=op.itemgetter(0)) except TypeError: # Python 3 does not allow sorting mixed types pairs = sorted(pairs, key=lambda tup: str(tup[0])) else: pairs = items # Initialize a dict of lists groupid_to_items = defaultdict(list) # Insert each item into the correct group for groupid, item in pairs: groupid_to_items[groupid].append(item) return groupid_to_items
0, module; 1, function_definition; 2, function_name:hierarchical_map_vals; 3, parameters; 4, block; 5, identifier:func; 6, identifier:node; 7, default_parameter; 8, default_parameter; 9, expression_statement; 10, comment:#if not isinstance(node, dict):; 11, if_statement; 12, identifier:max_depth; 13, None; 14, identifier:depth; 15, integer:0; 16, comment:""" node is a dict tree like structure with leaves of type list TODO: move to util_dict CommandLine: python -m utool.util_dict --exec-hierarchical_map_vals Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> item_list = [1, 2, 3, 4, 5, 6, 7, 8] >>> groupids_list = [[1, 2, 1, 2, 1, 2, 1, 2], [3, 2, 2, 2, 3, 1, 1, 1]] >>> tree = ut.hierarchical_group_items(item_list, groupids_list) >>> len_tree = ut.hierarchical_map_vals(len, tree) >>> result = ('len_tree = ' + ut.repr4(len_tree, nl=1)) >>> print(result) len_tree = { 1: {1: 1, 2: 1, 3: 2}, 2: {1: 2, 2: 2}, } Example1: >>> # DISABLE_DOCTEST >>> # UNSTABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> depth = 4 >>> item_list = list(range(2 ** (depth + 1))) >>> num = len(item_list) // 2 >>> groupids_list = [] >>> total = 0 >>> for level in range(depth): ... num2 = len(item_list) // int((num * 2)) ... #nonflat_levelids = [([total + 2 * x + 1] * num + [total + 2 * x + 2] * num) for x in range(num2)] ... nonflat_levelids = [([1] * num + [2] * num) for x in range(num2)] ... levelids = ut.flatten(nonflat_levelids) ... groupids_list.append(levelids) ... total += num2 * 2 ... num //= 2 >>> print('groupids_list = %s' % (ut.repr4(groupids_list, nl=1),)) >>> print('depth = %r' % (len(groupids_list),)) >>> tree = ut.hierarchical_group_items(item_list, groupids_list) >>> print('tree = ' + ut.repr4(tree, nl=None)) >>> flat_tree_values = list(ut.iflatten_dict_values(tree)) >>> assert sorted(flat_tree_values) == sorted(item_list) >>> print('flat_tree_values = ' + str(flat_tree_values)) >>> #print('flat_tree_keys = ' + str(list(ut.iflatten_dict_keys(tree)))) >>> #print('iflatten_dict_items = ' + str(list(ut.iflatten_dict_items(tree)))) >>> len_tree = ut.hierarchical_map_vals(len, tree, max_depth=4) >>> result = ('len_tree = ' + ut.repr4(len_tree, nl=None)) >>> print(result) """; 17, not_operator; 18, block; 19, elif_clause; 20, else_clause; 21, call; 22, return_statement; 23, boolean_operator; 24, comment:#return func(node); 25, block; 26, comment:# recursion; 27, comment:#return {key: hierarchical_map_vals(func, val, max_depth, depth + 1) for key, val in six.iteritems(node)}; 28, comment:#keyval_list = [(key, hierarchical_map_vals(func, val, max_depth, depth + 1)) for key, val in six.iteritems(node)]; 29, block; 30, identifier:hasattr; 31, argument_list; 32, call; 33, comparison_operator:max_depth is not None; 34, comparison_operator:depth >= max_depth; 35, return_statement; 36, comment:#return {key: func(val) for key, val in six.iteritems(node)}; 37, expression_statement; 38, if_statement; 39, identifier:node; 40, string; 41, identifier:func; 42, argument_list; 43, identifier:max_depth; 44, None; 45, identifier:depth; 46, identifier:max_depth; 47, call; 48, assignment; 49, call; 50, block; 51, else_clause; 52, string_content:items; 53, identifier:node; 54, identifier:map_dict_vals; 55, argument_list; 56, identifier:keyval_list; 57, list_comprehension; 58, identifier:isinstance; 59, argument_list; 60, return_statement; 61, block; 62, identifier:func; 63, identifier:node; 64, tuple; 65, for_in_clause; 66, identifier:node; 67, identifier:OrderedDict; 68, call; 69, return_statement; 70, identifier:key; 71, call; 72, pattern_list; 73, call; 74, identifier:OrderedDict; 75, argument_list; 76, call; 77, identifier:hierarchical_map_vals; 78, argument_list; 79, identifier:key; 80, identifier:val; 81, attribute; 82, argument_list; 83, identifier:keyval_list; 84, identifier:dict; 85, argument_list; 86, identifier:func; 87, identifier:val; 88, identifier:max_depth; 89, binary_operator:depth + 1; 90, identifier:node; 91, identifier:items; 92, identifier:keyval_list; 93, identifier:depth; 94, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 4, 9; 4, 10; 4, 11; 7, 12; 7, 13; 8, 14; 8, 15; 9, 16; 11, 17; 11, 18; 11, 19; 11, 20; 17, 21; 18, 22; 19, 23; 19, 24; 19, 25; 20, 26; 20, 27; 20, 28; 20, 29; 21, 30; 21, 31; 22, 32; 23, 33; 23, 34; 25, 35; 25, 36; 29, 37; 29, 38; 31, 39; 31, 40; 32, 41; 32, 42; 33, 43; 33, 44; 34, 45; 34, 46; 35, 47; 37, 48; 38, 49; 38, 50; 38, 51; 40, 52; 42, 53; 47, 54; 47, 55; 48, 56; 48, 57; 49, 58; 49, 59; 50, 60; 51, 61; 55, 62; 55, 63; 57, 64; 57, 65; 59, 66; 59, 67; 60, 68; 61, 69; 64, 70; 64, 71; 65, 72; 65, 73; 68, 74; 68, 75; 69, 76; 71, 77; 71, 78; 72, 79; 72, 80; 73, 81; 73, 82; 75, 83; 76, 84; 76, 85; 78, 86; 78, 87; 78, 88; 78, 89; 81, 90; 81, 91; 85, 92; 89, 93; 89, 94
def hierarchical_map_vals(func, node, max_depth=None, depth=0): """ node is a dict tree like structure with leaves of type list TODO: move to util_dict CommandLine: python -m utool.util_dict --exec-hierarchical_map_vals Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> item_list = [1, 2, 3, 4, 5, 6, 7, 8] >>> groupids_list = [[1, 2, 1, 2, 1, 2, 1, 2], [3, 2, 2, 2, 3, 1, 1, 1]] >>> tree = ut.hierarchical_group_items(item_list, groupids_list) >>> len_tree = ut.hierarchical_map_vals(len, tree) >>> result = ('len_tree = ' + ut.repr4(len_tree, nl=1)) >>> print(result) len_tree = { 1: {1: 1, 2: 1, 3: 2}, 2: {1: 2, 2: 2}, } Example1: >>> # DISABLE_DOCTEST >>> # UNSTABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> depth = 4 >>> item_list = list(range(2 ** (depth + 1))) >>> num = len(item_list) // 2 >>> groupids_list = [] >>> total = 0 >>> for level in range(depth): ... num2 = len(item_list) // int((num * 2)) ... #nonflat_levelids = [([total + 2 * x + 1] * num + [total + 2 * x + 2] * num) for x in range(num2)] ... nonflat_levelids = [([1] * num + [2] * num) for x in range(num2)] ... levelids = ut.flatten(nonflat_levelids) ... groupids_list.append(levelids) ... total += num2 * 2 ... num //= 2 >>> print('groupids_list = %s' % (ut.repr4(groupids_list, nl=1),)) >>> print('depth = %r' % (len(groupids_list),)) >>> tree = ut.hierarchical_group_items(item_list, groupids_list) >>> print('tree = ' + ut.repr4(tree, nl=None)) >>> flat_tree_values = list(ut.iflatten_dict_values(tree)) >>> assert sorted(flat_tree_values) == sorted(item_list) >>> print('flat_tree_values = ' + str(flat_tree_values)) >>> #print('flat_tree_keys = ' + str(list(ut.iflatten_dict_keys(tree)))) >>> #print('iflatten_dict_items = ' + str(list(ut.iflatten_dict_items(tree)))) >>> len_tree = ut.hierarchical_map_vals(len, tree, max_depth=4) >>> result = ('len_tree = ' + ut.repr4(len_tree, nl=None)) >>> print(result) """ #if not isinstance(node, dict): if not hasattr(node, 'items'): return func(node) elif max_depth is not None and depth >= max_depth: #return func(node) return map_dict_vals(func, node) #return {key: func(val) for key, val in six.iteritems(node)} else: # recursion #return {key: hierarchical_map_vals(func, val, max_depth, depth + 1) for key, val in six.iteritems(node)} #keyval_list = [(key, hierarchical_map_vals(func, val, max_depth, depth + 1)) for key, val in six.iteritems(node)] keyval_list = [(key, hierarchical_map_vals(func, val, max_depth, depth + 1)) for key, val in node.items()] if isinstance(node, OrderedDict): return OrderedDict(keyval_list) else: return dict(keyval_list)
0, module; 1, function_definition; 2, function_name:sort_dict; 3, parameters; 4, block; 5, identifier:dict_; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, expression_statement; 10, if_statement; 11, if_statement; 12, expression_statement; 13, expression_statement; 14, return_statement; 15, identifier:part; 16, string; 17, identifier:key; 18, None; 19, identifier:reverse; 20, False; 21, comment:""" sorts a dictionary by its values or its keys Args: dict_ (dict_): a dictionary part (str): specifies to sort by keys or values key (Optional[func]): a function that takes specified part and returns a sortable value reverse (bool): (Defaults to False) - True for descinding order. False for ascending order. Returns: OrderedDict: sorted dictionary CommandLine: python -m utool.util_dict sort_dict Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {'a': 3, 'c': 2, 'b': 1} >>> results = [] >>> results.append(sort_dict(dict_, 'keys')) >>> results.append(sort_dict(dict_, 'vals')) >>> results.append(sort_dict(dict_, 'vals', lambda x: -x)) >>> result = ut.repr4(results) >>> print(result) [ {'a': 3, 'b': 1, 'c': 2}, {'b': 1, 'c': 2, 'a': 3}, {'a': 3, 'c': 2, 'b': 1}, ] """; 22, comparison_operator:part == 'keys'; 23, block; 24, elif_clause; 25, else_clause; 26, comparison_operator:key is None; 27, block; 28, else_clause; 29, assignment; 30, assignment; 31, identifier:sorted_dict; 32, string_content:keys; 33, identifier:part; 34, string; 35, expression_statement; 36, comparison_operator:part in {'vals', 'values'}; 37, block; 38, block; 39, identifier:key; 40, None; 41, expression_statement; 42, block; 43, identifier:sorted_items; 44, call; 45, identifier:sorted_dict; 46, call; 47, string_content:keys; 48, assignment; 49, identifier:part; 50, set; 51, expression_statement; 52, raise_statement; 53, assignment; 54, function_definition; 55, identifier:sorted; 56, argument_list; 57, identifier:OrderedDict; 58, argument_list; 59, identifier:index; 60, integer:0; 61, string; 62, string; 63, assignment; 64, call; 65, identifier:_key; 66, call; 67, function_name:_key; 68, parameters; 69, block; 70, call; 71, keyword_argument; 72, keyword_argument; 73, identifier:sorted_items; 74, string_content:vals; 75, string_content:values; 76, identifier:index; 77, integer:1; 78, identifier:ValueError; 79, argument_list; 80, attribute; 81, argument_list; 82, identifier:item; 83, return_statement; 84, attribute; 85, argument_list; 86, identifier:key; 87, identifier:_key; 88, identifier:reverse; 89, identifier:reverse; 90, binary_operator:'Unknown method part=%r' % (part,); 91, identifier:op; 92, identifier:itemgetter; 93, identifier:index; 94, call; 95, identifier:six; 96, identifier:iteritems; 97, identifier:dict_; 98, string; 99, tuple; 100, identifier:key; 101, argument_list; 102, string_content:Unknown method part=%r; 103, identifier:part; 104, subscript; 105, identifier:item; 106, identifier:index
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 6, 15; 6, 16; 7, 17; 7, 18; 8, 19; 8, 20; 9, 21; 10, 22; 10, 23; 10, 24; 10, 25; 11, 26; 11, 27; 11, 28; 12, 29; 13, 30; 14, 31; 16, 32; 22, 33; 22, 34; 23, 35; 24, 36; 24, 37; 25, 38; 26, 39; 26, 40; 27, 41; 28, 42; 29, 43; 29, 44; 30, 45; 30, 46; 34, 47; 35, 48; 36, 49; 36, 50; 37, 51; 38, 52; 41, 53; 42, 54; 44, 55; 44, 56; 46, 57; 46, 58; 48, 59; 48, 60; 50, 61; 50, 62; 51, 63; 52, 64; 53, 65; 53, 66; 54, 67; 54, 68; 54, 69; 56, 70; 56, 71; 56, 72; 58, 73; 61, 74; 62, 75; 63, 76; 63, 77; 64, 78; 64, 79; 66, 80; 66, 81; 68, 82; 69, 83; 70, 84; 70, 85; 71, 86; 71, 87; 72, 88; 72, 89; 79, 90; 80, 91; 80, 92; 81, 93; 83, 94; 84, 95; 84, 96; 85, 97; 90, 98; 90, 99; 94, 100; 94, 101; 98, 102; 99, 103; 101, 104; 104, 105; 104, 106
def sort_dict(dict_, part='keys', key=None, reverse=False): """ sorts a dictionary by its values or its keys Args: dict_ (dict_): a dictionary part (str): specifies to sort by keys or values key (Optional[func]): a function that takes specified part and returns a sortable value reverse (bool): (Defaults to False) - True for descinding order. False for ascending order. Returns: OrderedDict: sorted dictionary CommandLine: python -m utool.util_dict sort_dict Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {'a': 3, 'c': 2, 'b': 1} >>> results = [] >>> results.append(sort_dict(dict_, 'keys')) >>> results.append(sort_dict(dict_, 'vals')) >>> results.append(sort_dict(dict_, 'vals', lambda x: -x)) >>> result = ut.repr4(results) >>> print(result) [ {'a': 3, 'b': 1, 'c': 2}, {'b': 1, 'c': 2, 'a': 3}, {'a': 3, 'c': 2, 'b': 1}, ] """ if part == 'keys': index = 0 elif part in {'vals', 'values'}: index = 1 else: raise ValueError('Unknown method part=%r' % (part,)) if key is None: _key = op.itemgetter(index) else: def _key(item): return key(item[index]) sorted_items = sorted(six.iteritems(dict_), key=_key, reverse=reverse) sorted_dict = OrderedDict(sorted_items) return sorted_dict
0, module; 1, function_definition; 2, function_name:order_dict_by; 3, parameters; 4, block; 5, identifier:dict_; 6, identifier:key_order; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, return_statement; 13, comment:r""" Reorders items in a dictionary according to a custom key order Args: dict_ (dict_): a dictionary key_order (list): custom key order Returns: OrderedDict: sorted_dict CommandLine: python -m utool.util_dict --exec-order_dict_by Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {1: 1, 2: 2, 3: 3, 4: 4} >>> key_order = [4, 2, 3, 1] >>> sorted_dict = order_dict_by(dict_, key_order) >>> result = ('sorted_dict = %s' % (ut.repr4(sorted_dict, nl=False),)) >>> print(result) >>> assert result == 'sorted_dict = {4: 4, 2: 2, 3: 3, 1: 1}' """; 14, assignment; 15, assignment; 16, assignment; 17, assignment; 18, identifier:sorted_dict; 19, identifier:dict_keys; 20, call; 21, identifier:other_keys; 22, binary_operator:dict_keys - set(key_order); 23, identifier:key_order; 24, call; 25, identifier:sorted_dict; 26, call; 27, identifier:set; 28, argument_list; 29, identifier:dict_keys; 30, call; 31, attribute; 32, argument_list; 33, identifier:OrderedDict; 34, generator_expression; 35, call; 36, identifier:set; 37, argument_list; 38, identifier:it; 39, identifier:chain; 40, identifier:key_order; 41, identifier:other_keys; 42, tuple; 43, for_in_clause; 44, if_clause; 45, attribute; 46, argument_list; 47, identifier:key_order; 48, identifier:key; 49, subscript; 50, identifier:key; 51, identifier:key_order; 52, comparison_operator:key in dict_keys; 53, identifier:dict_; 54, identifier:keys; 55, identifier:dict_; 56, identifier:key; 57, identifier:key; 58, identifier:dict_keys
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 7, 13; 8, 14; 9, 15; 10, 16; 11, 17; 12, 18; 14, 19; 14, 20; 15, 21; 15, 22; 16, 23; 16, 24; 17, 25; 17, 26; 20, 27; 20, 28; 22, 29; 22, 30; 24, 31; 24, 32; 26, 33; 26, 34; 28, 35; 30, 36; 30, 37; 31, 38; 31, 39; 32, 40; 32, 41; 34, 42; 34, 43; 34, 44; 35, 45; 35, 46; 37, 47; 42, 48; 42, 49; 43, 50; 43, 51; 44, 52; 45, 53; 45, 54; 49, 55; 49, 56; 52, 57; 52, 58
def order_dict_by(dict_, key_order): r""" Reorders items in a dictionary according to a custom key order Args: dict_ (dict_): a dictionary key_order (list): custom key order Returns: OrderedDict: sorted_dict CommandLine: python -m utool.util_dict --exec-order_dict_by Example: >>> # ENABLE_DOCTEST >>> from utool.util_dict import * # NOQA >>> import utool as ut >>> dict_ = {1: 1, 2: 2, 3: 3, 4: 4} >>> key_order = [4, 2, 3, 1] >>> sorted_dict = order_dict_by(dict_, key_order) >>> result = ('sorted_dict = %s' % (ut.repr4(sorted_dict, nl=False),)) >>> print(result) >>> assert result == 'sorted_dict = {4: 4, 2: 2, 3: 3, 1: 1}' """ dict_keys = set(dict_.keys()) other_keys = dict_keys - set(key_order) key_order = it.chain(key_order, other_keys) sorted_dict = OrderedDict( (key, dict_[key]) for key in key_order if key in dict_keys ) return sorted_dict
0, module; 1, function_definition; 2, function_name:iteritems_sorted; 3, parameters; 4, block; 5, identifier:dict_; 6, expression_statement; 7, if_statement; 8, comment:""" change to iteritems ordered """; 9, call; 10, block; 11, else_clause; 12, identifier:isinstance; 13, argument_list; 14, return_statement; 15, block; 16, identifier:dict_; 17, identifier:OrderedDict; 18, call; 19, return_statement; 20, attribute; 21, argument_list; 22, call; 23, identifier:six; 24, identifier:iteritems; 25, identifier:dict_; 26, identifier:iter; 27, argument_list; 28, call; 29, identifier:sorted; 30, argument_list; 31, call; 32, attribute; 33, argument_list; 34, identifier:six; 35, identifier:iteritems; 36, identifier:dict_
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 6, 8; 7, 9; 7, 10; 7, 11; 9, 12; 9, 13; 10, 14; 11, 15; 13, 16; 13, 17; 14, 18; 15, 19; 18, 20; 18, 21; 19, 22; 20, 23; 20, 24; 21, 25; 22, 26; 22, 27; 27, 28; 28, 29; 28, 30; 30, 31; 31, 32; 31, 33; 32, 34; 32, 35; 33, 36
def iteritems_sorted(dict_): """ change to iteritems ordered """ if isinstance(dict_, OrderedDict): return six.iteritems(dict_) else: return iter(sorted(six.iteritems(dict_)))
0, module; 1, function_definition; 2, function_name:clean_line_profile_text; 3, parameters; 4, block; 5, identifier:text; 6, expression_statement; 7, comment:#; 8, expression_statement; 9, comment:#profile_block_list = fix_rawprofile_blocks(profile_block_list); 10, comment:#---; 11, comment:# FIXME can be written much nicer; 12, expression_statement; 13, comment:# Sort the blocks by time; 14, expression_statement; 15, expression_statement; 16, for_statement; 17, comment:# Rejoin output text; 18, expression_statement; 19, comment:#---; 20, comment:# Hack in a profile summary; 21, expression_statement; 22, expression_statement; 23, return_statement; 24, comment:""" Sorts the output from line profile by execution time Removes entries which were not run """; 25, assignment; 26, assignment; 27, assignment; 28, assignment; 29, pattern_list; 30, identifier:sorted_lists; 31, block; 32, assignment; 33, assignment; 34, assignment; 35, expression_list; 36, identifier:profile_block_list; 37, call; 38, pattern_list; 39, call; 40, identifier:sorted_lists; 41, call; 42, identifier:newlist; 43, subscript; 44, identifier:key; 45, identifier:val; 46, expression_statement; 47, identifier:output_text; 48, call; 49, identifier:summary_text; 50, call; 51, identifier:output_text; 52, identifier:output_text; 53, identifier:output_text; 54, identifier:summary_text; 55, identifier:parse_rawprofile_blocks; 56, argument_list; 57, identifier:prefix_list; 58, identifier:timemap; 59, identifier:parse_timemap_from_blocks; 60, argument_list; 61, identifier:sorted; 62, argument_list; 63, identifier:prefix_list; 64, slice; 65, call; 66, attribute; 67, argument_list; 68, identifier:get_summary; 69, argument_list; 70, identifier:text; 71, identifier:profile_block_list; 72, call; 73, keyword_argument; 74, attribute; 75, argument_list; 76, string; 77, identifier:join; 78, identifier:newlist; 79, identifier:profile_block_list; 80, attribute; 81, argument_list; 82, identifier:key; 83, call; 84, identifier:newlist; 85, identifier:extend; 86, identifier:val; 87, string_content; 88, identifier:six; 89, identifier:iteritems; 90, identifier:timemap; 91, attribute; 92, argument_list; 93, escape_sequence:\n; 94, identifier:operator; 95, identifier:itemgetter; 96, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 4, 22; 4, 23; 6, 24; 8, 25; 12, 26; 14, 27; 15, 28; 16, 29; 16, 30; 16, 31; 18, 32; 21, 33; 22, 34; 23, 35; 25, 36; 25, 37; 26, 38; 26, 39; 27, 40; 27, 41; 28, 42; 28, 43; 29, 44; 29, 45; 31, 46; 32, 47; 32, 48; 33, 49; 33, 50; 34, 51; 34, 52; 35, 53; 35, 54; 37, 55; 37, 56; 38, 57; 38, 58; 39, 59; 39, 60; 41, 61; 41, 62; 43, 63; 43, 64; 46, 65; 48, 66; 48, 67; 50, 68; 50, 69; 56, 70; 60, 71; 62, 72; 62, 73; 65, 74; 65, 75; 66, 76; 66, 77; 67, 78; 69, 79; 72, 80; 72, 81; 73, 82; 73, 83; 74, 84; 74, 85; 75, 86; 76, 87; 80, 88; 80, 89; 81, 90; 83, 91; 83, 92; 87, 93; 91, 94; 91, 95; 92, 96
def clean_line_profile_text(text): """ Sorts the output from line profile by execution time Removes entries which were not run """ # profile_block_list = parse_rawprofile_blocks(text) #profile_block_list = fix_rawprofile_blocks(profile_block_list) #--- # FIXME can be written much nicer prefix_list, timemap = parse_timemap_from_blocks(profile_block_list) # Sort the blocks by time sorted_lists = sorted(six.iteritems(timemap), key=operator.itemgetter(0)) newlist = prefix_list[:] for key, val in sorted_lists: newlist.extend(val) # Rejoin output text output_text = '\n'.join(newlist) #--- # Hack in a profile summary summary_text = get_summary(profile_block_list) output_text = output_text return output_text, summary_text
0, module; 1, function_definition; 2, function_name:list_str; 3, parameters; 4, block; 5, identifier:list_; 6, dictionary_splat_pattern; 7, expression_statement; 8, import_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, expression_statement; 16, expression_statement; 17, comment:# Doesn't actually put in trailing comma if on same line; 18, expression_statement; 19, expression_statement; 20, expression_statement; 21, expression_statement; 22, expression_statement; 23, expression_statement; 24, if_statement; 25, if_statement; 26, if_statement; 27, comment:# TODO: rectify with dict_truncate; 28, expression_statement; 29, if_statement; 30, return_statement; 31, identifier:listkw; 32, comment:r""" Makes a pretty list string Args: list_ (list): input list **listkw: nl, newlines, packed, truncate, nobr, nobraces, itemsep, trailing_sep, truncatekw, strvals, recursive, indent_, precision, use_numpy, with_dtype, force_dtype, stritems, strkeys, align, explicit, sorted_, key_order, key_order_metric, maxlen Returns: str: retstr CommandLine: python -m utool.util_str --test-list_str python -m utool.util_str --exec-list_str --truncate=True python -m utool.util_str --exec-list_str --truncate=0 Example: >>> # ENABLE_DOCTEST >>> from utool.util_str import * # NOQA >>> import utool as ut >>> list_ = [[(('--verbose-qt', '--verbqt'), 1, False, ''), >>> (('--verbose-qt', '--verbqt'), 1, False, ''), >>> (('--verbose-qt', '--verbqt'), 1, False, ''), >>> (('--verbose-qt', '--verbqt'), 1, False, '')], >>> [(['--nodyn'], 1, False, ''), (['--nodyn'], 1, False, '')]] >>> listkw = {'nl': 2} >>> result = list_str(list_, **listkw) >>> print(result) [ [ (('--verbose-qt', '--verbqt'), 1, False, ''), (('--verbose-qt', '--verbqt'), 1, False, ''), (('--verbose-qt', '--verbqt'), 1, False, ''), (('--verbose-qt', '--verbqt'), 1, False, ''), ], [ (['--nodyn'], 1, False, ''), (['--nodyn'], 1, False, ''), ], ] """; 33, aliased_import; 34, assignment; 35, assignment; 36, assignment; 37, assignment; 38, assignment; 39, assignment; 40, assignment; 41, assignment; 42, assignment; 43, assignment; 44, assignment; 45, assignment; 46, assignment; 47, assignment; 48, identifier:nobraces; 49, block; 50, elif_clause; 51, elif_clause; 52, else_clause; 53, comparison_operator:len(itemstr_list) == 0; 54, block; 55, boolean_operator; 56, block; 57, else_clause; 58, assignment; 59, identifier:do_truncate; 60, block; 61, identifier:retstr; 62, dotted_name; 63, identifier:ut; 64, identifier:newlines; 65, call; 66, identifier:packed; 67, call; 68, identifier:truncate; 69, call; 70, subscript; 71, call; 72, subscript; 73, call; 74, subscript; 75, call; 76, identifier:nobraces; 77, call; 78, identifier:itemsep; 79, call; 80, identifier:trailing_sep; 81, call; 82, identifier:with_comma; 83, True; 84, identifier:itemstr_list; 85, call; 86, identifier:is_tuple; 87, call; 88, identifier:is_set; 89, call; 90, identifier:is_onetup; 91, boolean_operator; 92, expression_statement; 93, identifier:is_tuple; 94, block; 95, identifier:is_set; 96, block; 97, block; 98, call; 99, integer:0; 100, expression_statement; 101, comparison_operator:newlines is not False; 102, parenthesized_expression; 103, expression_statement; 104, if_statement; 105, block; 106, identifier:do_truncate; 107, boolean_operator; 108, expression_statement; 109, expression_statement; 110, identifier:utool; 111, attribute; 112, argument_list; 113, attribute; 114, argument_list; 115, attribute; 116, argument_list; 117, identifier:listkw; 118, string; 119, identifier:_rectify_countdown_or_bool; 120, argument_list; 121, identifier:listkw; 122, string; 123, identifier:_rectify_countdown_or_bool; 124, argument_list; 125, identifier:listkw; 126, string; 127, identifier:_rectify_countdown_or_bool; 128, argument_list; 129, attribute; 130, argument_list; 131, attribute; 132, argument_list; 133, attribute; 134, argument_list; 135, identifier:get_itemstr_list; 136, argument_list; 137, identifier:isinstance; 138, argument_list; 139, identifier:isinstance; 140, argument_list; 141, call; 142, comparison_operator:len(list_) <= 1; 143, assignment; 144, expression_statement; 145, expression_statement; 146, expression_statement; 147, identifier:len; 148, argument_list; 149, assignment; 150, identifier:newlines; 151, False; 152, boolean_operator; 153, assignment; 154, identifier:nobraces; 155, block; 156, else_clause; 157, expression_statement; 158, expression_statement; 159, if_statement; 160, expression_statement; 161, comparison_operator:truncate is not False; 162, parenthesized_expression; 163, assignment; 164, assignment; 165, identifier:listkw; 166, identifier:pop; 167, string; 168, call; 169, identifier:listkw; 170, identifier:pop; 171, string; 172, False; 173, identifier:listkw; 174, identifier:pop; 175, string; 176, False; 177, string_content:nl; 178, identifier:newlines; 179, string_content:truncate; 180, identifier:truncate; 181, string_content:packed; 182, identifier:packed; 183, identifier:listkw; 184, identifier:pop; 185, string; 186, call; 187, identifier:listkw; 188, identifier:get; 189, string; 190, string; 191, identifier:listkw; 192, identifier:get; 193, string; 194, True; 195, identifier:list_; 196, dictionary_splat; 197, identifier:list_; 198, identifier:tuple; 199, identifier:list_; 200, tuple; 201, identifier:isinstance; 202, argument_list; 203, call; 204, integer:1; 205, pattern_list; 206, expression_list; 207, assignment; 208, assignment; 209, assignment; 210, identifier:itemstr_list; 211, identifier:newlines; 212, False; 213, comparison_operator:newlines is True; 214, comparison_operator:newlines > 0; 215, identifier:sep; 216, conditional_expression:',\n' if with_comma else '\n'; 217, expression_statement; 218, if_statement; 219, expression_statement; 220, block; 221, assignment; 222, assignment; 223, identifier:is_onetup; 224, block; 225, assignment; 226, identifier:truncate; 227, False; 228, boolean_operator; 229, identifier:truncatekw; 230, call; 231, identifier:retstr; 232, call; 233, string_content:nl; 234, attribute; 235, argument_list; 236, string_content:packed; 237, string_content:truncate; 238, string_content:nobr; 239, attribute; 240, argument_list; 241, string_content:itemsep; 242, string_content:; 243, string_content:trailing_sep; 244, identifier:listkw; 245, identifier:set; 246, identifier:frozenset; 247, attribute; 248, identifier:list_; 249, parenthesized_expression; 250, identifier:len; 251, argument_list; 252, identifier:lbr; 253, identifier:rbr; 254, string; 255, string; 256, pattern_list; 257, expression_list; 258, pattern_list; 259, expression_list; 260, pattern_list; 261, expression_list; 262, identifier:newlines; 263, True; 264, identifier:newlines; 265, integer:0; 266, string; 267, identifier:with_comma; 268, string; 269, assignment; 270, identifier:trailing_sep; 271, block; 272, assignment; 273, if_statement; 274, expression_statement; 275, identifier:sep; 276, conditional_expression:',' + itemsep if with_comma else itemsep; 277, identifier:body_str; 278, call; 279, expression_statement; 280, identifier:retstr; 281, parenthesized_expression; 282, comparison_operator:truncate is True; 283, comparison_operator:truncate == 0; 284, attribute; 285, argument_list; 286, identifier:truncate_str; 287, argument_list; 288, identifier:listkw; 289, identifier:pop; 290, string; 291, integer:1; 292, identifier:listkw; 293, identifier:pop; 294, string; 295, False; 296, identifier:ut; 297, identifier:oset; 298, identifier:tuple; 299, identifier:list_; 300, identifier:lbr; 301, identifier:rbr; 302, string; 303, string; 304, identifier:lbr; 305, identifier:rbr; 306, string; 307, string; 308, identifier:lbr; 309, identifier:rbr; 310, string; 311, string; 312, string_content; 313, string_content; 314, identifier:body_str; 315, call; 316, expression_statement; 317, identifier:retstr; 318, identifier:body_str; 319, identifier:packed; 320, comment:# DEPRICATE?; 321, block; 322, else_clause; 323, assignment; 324, binary_operator:',' + itemsep; 325, identifier:with_comma; 326, identifier:itemsep; 327, attribute; 328, argument_list; 329, augmented_assignment; 330, binary_operator:lbr + body_str + rbr; 331, identifier:truncate; 332, True; 333, identifier:truncate; 334, integer:0; 335, identifier:listkw; 336, identifier:get; 337, string; 338, dictionary; 339, identifier:retstr; 340, dictionary_splat; 341, string_content:newlines; 342, string_content:nobraces; 343, string_content:(; 344, string_content:); 345, string_content:{; 346, string_content:}; 347, string_content:[; 348, string_content:]; 349, escape_sequence:\n; 350, escape_sequence:\n; 351, attribute; 352, argument_list; 353, augmented_assignment; 354, expression_statement; 355, expression_statement; 356, if_statement; 357, expression_statement; 358, block; 359, identifier:retstr; 360, identifier:braced_body_str; 361, string; 362, identifier:itemsep; 363, identifier:sep; 364, identifier:join; 365, identifier:itemstr_list; 366, identifier:body_str; 367, string; 368, binary_operator:lbr + body_str; 369, identifier:rbr; 370, string_content:truncatekw; 371, identifier:truncatekw; 372, identifier:sep; 373, identifier:join; 374, identifier:itemstr_list; 375, identifier:body_str; 376, string; 377, assignment; 378, assignment; 379, identifier:trailing_sep; 380, block; 381, assignment; 382, expression_statement; 383, if_statement; 384, expression_statement; 385, string_content:,; 386, string_content:,; 387, identifier:lbr; 388, identifier:body_str; 389, string_content:,; 390, identifier:joinstr; 391, binary_operator:sep + itemsep * len(lbr); 392, identifier:body_str; 393, call; 394, expression_statement; 395, identifier:braced_body_str; 396, parenthesized_expression; 397, assignment; 398, identifier:trailing_sep; 399, block; 400, assignment; 401, identifier:sep; 402, binary_operator:itemsep * len(lbr); 403, attribute; 404, argument_list; 405, augmented_assignment; 406, binary_operator:lbr + '' + body_str + '' + rbr; 407, identifier:body_str; 408, call; 409, expression_statement; 410, identifier:braced_body_str; 411, parenthesized_expression; 412, identifier:itemsep; 413, call; 414, identifier:joinstr; 415, identifier:join; 416, list_comprehension; 417, identifier:body_str; 418, string; 419, binary_operator:lbr + '' + body_str + ''; 420, identifier:rbr; 421, attribute; 422, argument_list; 423, augmented_assignment; 424, binary_operator:lbr + '\n' + body_str + '\n' + rbr; 425, identifier:len; 426, argument_list; 427, identifier:itemstr; 428, for_in_clause; 429, string_content:,; 430, binary_operator:lbr + '' + body_str; 431, string; 432, identifier:sep; 433, identifier:join; 434, list_comprehension; 435, identifier:body_str; 436, string; 437, binary_operator:lbr + '\n' + body_str + '\n'; 438, identifier:rbr; 439, identifier:lbr; 440, identifier:itemstr; 441, identifier:itemstr_list; 442, binary_operator:lbr + ''; 443, identifier:body_str; 444, call; 445, for_in_clause; 446, string_content:,; 447, binary_operator:lbr + '\n' + body_str; 448, string; 449, identifier:lbr; 450, string; 451, attribute; 452, argument_list; 453, identifier:itemstr; 454, identifier:itemstr_list; 455, binary_operator:lbr + '\n'; 456, identifier:body_str; 457, string_content; 458, identifier:ut; 459, identifier:indent; 460, identifier:itemstr; 461, identifier:lbr; 462, string; 463, escape_sequence:\n; 464, string_content; 465, escape_sequence:\n
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 4, 22; 4, 23; 4, 24; 4, 25; 4, 26; 4, 27; 4, 28; 4, 29; 4, 30; 6, 31; 7, 32; 8, 33; 9, 34; 10, 35; 11, 36; 12, 37; 13, 38; 14, 39; 15, 40; 16, 41; 18, 42; 19, 43; 20, 44; 21, 45; 22, 46; 23, 47; 24, 48; 24, 49; 24, 50; 24, 51; 24, 52; 25, 53; 25, 54; 26, 55; 26, 56; 26, 57; 28, 58; 29, 59; 29, 60; 30, 61; 33, 62; 33, 63; 34, 64; 34, 65; 35, 66; 35, 67; 36, 68; 36, 69; 37, 70; 37, 71; 38, 72; 38, 73; 39, 74; 39, 75; 40, 76; 40, 77; 41, 78; 41, 79; 42, 80; 42, 81; 43, 82; 43, 83; 44, 84; 44, 85; 45, 86; 45, 87; 46, 88; 46, 89; 47, 90; 47, 91; 49, 92; 50, 93; 50, 94; 51, 95; 51, 96; 52, 97; 53, 98; 53, 99; 54, 100; 55, 101; 55, 102; 56, 103; 56, 104; 57, 105; 58, 106; 58, 107; 60, 108; 60, 109; 62, 110; 65, 111; 65, 112; 67, 113; 67, 114; 69, 115; 69, 116; 70, 117; 70, 118; 71, 119; 71, 120; 72, 121; 72, 122; 73, 123; 73, 124; 74, 125; 74, 126; 75, 127; 75, 128; 77, 129; 77, 130; 79, 131; 79, 132; 81, 133; 81, 134; 85, 135; 85, 136; 87, 137; 87, 138; 89, 139; 89, 140; 91, 141; 91, 142; 92, 143; 94, 144; 96, 145; 97, 146; 98, 147; 98, 148; 100, 149; 101, 150; 101, 151; 102, 152; 103, 153; 104, 154; 104, 155; 104, 156; 105, 157; 105, 158; 105, 159; 105, 160; 107, 161; 107, 162; 108, 163; 109, 164; 111, 165; 111, 166; 112, 167; 112, 168; 113, 169; 113, 170; 114, 171; 114, 172; 115, 173; 115, 174; 116, 175; 116, 176; 118, 177; 120, 178; 122, 179; 124, 180; 126, 181; 128, 182; 129, 183; 129, 184; 130, 185; 130, 186; 131, 187; 131, 188; 132, 189; 132, 190; 133, 191; 133, 192; 134, 193; 134, 194; 136, 195; 136, 196; 138, 197; 138, 198; 140, 199; 140, 200; 141, 201; 141, 202; 142, 203; 142, 204; 143, 205; 143, 206; 144, 207; 145, 208; 146, 209; 148, 210; 149, 211; 149, 212; 152, 213; 152, 214; 153, 215; 153, 216; 155, 217; 155, 218; 155, 219; 156, 220; 157, 221; 158, 222; 159, 223; 159, 224; 160, 225; 161, 226; 161, 227; 162, 228; 163, 229; 163, 230; 164, 231; 164, 232; 167, 233; 168, 234; 168, 235; 171, 236; 175, 237; 185, 238; 186, 239; 186, 240; 189, 241; 190, 242; 193, 243; 196, 244; 200, 245; 200, 246; 200, 247; 202, 248; 202, 249; 203, 250; 203, 251; 205, 252; 205, 253; 206, 254; 206, 255; 207, 256; 207, 257; 208, 258; 208, 259; 209, 260; 209, 261; 213, 262; 213, 263; 214, 264; 214, 265; 216, 266; 216, 267; 216, 268; 217, 269; 218, 270; 218, 271; 219, 272; 220, 273; 220, 274; 221, 275; 221, 276; 222, 277; 222, 278; 224, 279; 225, 280; 225, 281; 228, 282; 228, 283; 230, 284; 230, 285; 232, 286; 232, 287; 234, 288; 234, 289; 235, 290; 235, 291; 239, 292; 239, 293; 240, 294; 240, 295; 247, 296; 247, 297; 249, 298; 251, 299; 256, 300; 256, 301; 257, 302; 257, 303; 258, 304; 258, 305; 259, 306; 259, 307; 260, 308; 260, 309; 261, 310; 261, 311; 266, 312; 268, 313; 269, 314; 269, 315; 271, 316; 272, 317; 272, 318; 273, 319; 273, 320; 273, 321; 273, 322; 274, 323; 276, 324; 276, 325; 276, 326; 278, 327; 278, 328; 279, 329; 281, 330; 282, 331; 282, 332; 283, 333; 283, 334; 284, 335; 284, 336; 285, 337; 285, 338; 287, 339; 287, 340; 290, 341; 294, 342; 302, 343; 303, 344; 306, 345; 307, 346; 310, 347; 311, 348; 312, 349; 313, 350; 315, 351; 315, 352; 316, 353; 321, 354; 321, 355; 321, 356; 321, 357; 322, 358; 323, 359; 323, 360; 324, 361; 324, 362; 327, 363; 327, 364; 328, 365; 329, 366; 329, 367; 330, 368; 330, 369; 337, 370; 340, 371; 351, 372; 351, 373; 352, 374; 353, 375; 353, 376; 354, 377; 355, 378; 356, 379; 356, 380; 357, 381; 358, 382; 358, 383; 358, 384; 361, 385; 367, 386; 368, 387; 368, 388; 376, 389; 377, 390; 377, 391; 378, 392; 378, 393; 380, 394; 381, 395; 381, 396; 382, 397; 383, 398; 383, 399; 384, 400; 391, 401; 391, 402; 393, 403; 393, 404; 394, 405; 396, 406; 397, 407; 397, 408; 399, 409; 400, 410; 400, 411; 402, 412; 402, 413; 403, 414; 403, 415; 404, 416; 405, 417; 405, 418; 406, 419; 406, 420; 408, 421; 408, 422; 409, 423; 411, 424; 413, 425; 413, 426; 416, 427; 416, 428; 418, 429; 419, 430; 419, 431; 421, 432; 421, 433; 422, 434; 423, 435; 423, 436; 424, 437; 424, 438; 426, 439; 428, 440; 428, 441; 430, 442; 430, 443; 434, 444; 434, 445; 436, 446; 437, 447; 437, 448; 442, 449; 442, 450; 444, 451; 444, 452; 445, 453; 445, 454; 447, 455; 447, 456; 448, 457; 451, 458; 451, 459; 452, 460; 455, 461; 455, 462; 457, 463; 462, 464; 464, 465
def list_str(list_, **listkw): r""" Makes a pretty list string Args: list_ (list): input list **listkw: nl, newlines, packed, truncate, nobr, nobraces, itemsep, trailing_sep, truncatekw, strvals, recursive, indent_, precision, use_numpy, with_dtype, force_dtype, stritems, strkeys, align, explicit, sorted_, key_order, key_order_metric, maxlen Returns: str: retstr CommandLine: python -m utool.util_str --test-list_str python -m utool.util_str --exec-list_str --truncate=True python -m utool.util_str --exec-list_str --truncate=0 Example: >>> # ENABLE_DOCTEST >>> from utool.util_str import * # NOQA >>> import utool as ut >>> list_ = [[(('--verbose-qt', '--verbqt'), 1, False, ''), >>> (('--verbose-qt', '--verbqt'), 1, False, ''), >>> (('--verbose-qt', '--verbqt'), 1, False, ''), >>> (('--verbose-qt', '--verbqt'), 1, False, '')], >>> [(['--nodyn'], 1, False, ''), (['--nodyn'], 1, False, '')]] >>> listkw = {'nl': 2} >>> result = list_str(list_, **listkw) >>> print(result) [ [ (('--verbose-qt', '--verbqt'), 1, False, ''), (('--verbose-qt', '--verbqt'), 1, False, ''), (('--verbose-qt', '--verbqt'), 1, False, ''), (('--verbose-qt', '--verbqt'), 1, False, ''), ], [ (['--nodyn'], 1, False, ''), (['--nodyn'], 1, False, ''), ], ] """ import utool as ut newlines = listkw.pop('nl', listkw.pop('newlines', 1)) packed = listkw.pop('packed', False) truncate = listkw.pop('truncate', False) listkw['nl'] = _rectify_countdown_or_bool(newlines) listkw['truncate'] = _rectify_countdown_or_bool(truncate) listkw['packed'] = _rectify_countdown_or_bool(packed) nobraces = listkw.pop('nobr', listkw.pop('nobraces', False)) itemsep = listkw.get('itemsep', ' ') # Doesn't actually put in trailing comma if on same line trailing_sep = listkw.get('trailing_sep', True) with_comma = True itemstr_list = get_itemstr_list(list_, **listkw) is_tuple = isinstance(list_, tuple) is_set = isinstance(list_, (set, frozenset, ut.oset)) is_onetup = isinstance(list_, (tuple)) and len(list_) <= 1 if nobraces: lbr, rbr = '', '' elif is_tuple: lbr, rbr = '(', ')' elif is_set: lbr, rbr = '{', '}' else: lbr, rbr = '[', ']' if len(itemstr_list) == 0: newlines = False if newlines is not False and (newlines is True or newlines > 0): sep = ',\n' if with_comma else '\n' if nobraces: body_str = sep.join(itemstr_list) if trailing_sep: body_str += ',' retstr = body_str else: if packed: # DEPRICATE? joinstr = sep + itemsep * len(lbr) body_str = joinstr.join([itemstr for itemstr in itemstr_list]) if trailing_sep: body_str += ',' braced_body_str = (lbr + '' + body_str + '' + rbr) else: body_str = sep.join([ ut.indent(itemstr) for itemstr in itemstr_list]) if trailing_sep: body_str += ',' braced_body_str = (lbr + '\n' + body_str + '\n' + rbr) retstr = braced_body_str else: sep = ',' + itemsep if with_comma else itemsep body_str = sep.join(itemstr_list) if is_onetup: body_str += ',' retstr = (lbr + body_str + rbr) # TODO: rectify with dict_truncate do_truncate = truncate is not False and (truncate is True or truncate == 0) if do_truncate: truncatekw = listkw.get('truncatekw', {}) retstr = truncate_str(retstr, **truncatekw) return retstr
0, module; 1, function_definition; 2, function_name:generate_psms_quanted; 3, parameters; 4, block; 5, identifier:quantdb; 6, identifier:tsvfn; 7, identifier:isob_header; 8, identifier:oldheader; 9, default_parameter; 10, default_parameter; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, for_statement; 15, identifier:isobaric; 16, False; 17, identifier:precursor; 18, False; 19, comment:"""Takes dbfn and connects, gets quants for each line in tsvfn, sorts them in line by using keys in quantheader list."""; 20, assignment; 21, assignment; 22, pattern_list; 23, call; 24, block; 25, pattern_list; 26, call; 27, identifier:quant; 28, call; 29, identifier:rownr; 30, identifier:psm; 31, identifier:enumerate; 32, argument_list; 33, expression_statement; 34, if_statement; 35, if_statement; 36, expression_statement; 37, identifier:allquants; 38, identifier:sqlfields; 39, attribute; 40, argument_list; 41, identifier:next; 42, argument_list; 43, call; 44, assignment; 45, identifier:precursor; 46, block; 47, identifier:isobaric; 48, block; 49, else_clause; 50, yield; 51, identifier:quantdb; 52, identifier:select_all_psm_quants; 53, identifier:isobaric; 54, identifier:precursor; 55, identifier:allquants; 56, attribute; 57, argument_list; 58, identifier:outpsm; 59, dictionary_comprehension; 60, expression_statement; 61, if_statement; 62, expression_statement; 63, expression_statement; 64, while_statement; 65, expression_statement; 66, block; 67, identifier:outpsm; 68, identifier:readers; 69, identifier:generate_tsv_psms; 70, identifier:tsvfn; 71, identifier:oldheader; 72, pair; 73, for_in_clause; 74, assignment; 75, comparison_operator:pquant is None; 76, block; 77, call; 78, assignment; 79, comparison_operator:quant[0] == rownr; 80, block; 81, call; 82, try_statement; 83, identifier:x; 84, identifier:y; 85, pattern_list; 86, call; 87, identifier:pquant; 88, subscript; 89, identifier:pquant; 90, None; 91, expression_statement; 92, attribute; 93, argument_list; 94, identifier:isoquants; 95, dictionary; 96, subscript; 97, identifier:rownr; 98, expression_statement; 99, try_statement; 100, attribute; 101, argument_list; 102, block; 103, except_clause; 104, identifier:x; 105, identifier:y; 106, attribute; 107, argument_list; 108, identifier:quant; 109, subscript; 110, assignment; 111, identifier:outpsm; 112, identifier:update; 113, dictionary; 114, identifier:quant; 115, integer:0; 116, call; 117, block; 118, except_clause; 119, identifier:outpsm; 120, identifier:update; 121, call; 122, expression_statement; 123, identifier:StopIteration; 124, comment:# last PSM, needs explicit yield/break or it will not be yielded; 125, block; 126, identifier:psm; 127, identifier:items; 128, identifier:sqlfields; 129, string; 130, identifier:pquant; 131, string; 132, pair; 133, attribute; 134, argument_list; 135, expression_statement; 136, identifier:StopIteration; 137, comment:# last PSM, break from while loop or it is not yielded at all; 138, block; 139, identifier:get_quant_NAs; 140, argument_list; 141, assignment; 142, expression_statement; 143, break_statement; 144, string_content:precursor; 145, string_content:NA; 146, attribute; 147, call; 148, identifier:isoquants; 149, identifier:update; 150, dictionary; 151, assignment; 152, break_statement; 153, identifier:isoquants; 154, identifier:isob_header; 155, identifier:quant; 156, call; 157, yield; 158, identifier:mzidtsvdata; 159, identifier:HEADER_PRECURSOR_QUANT; 160, identifier:str; 161, argument_list; 162, pair; 163, identifier:quant; 164, call; 165, identifier:next; 166, argument_list; 167, identifier:outpsm; 168, identifier:pquant; 169, subscript; 170, call; 171, identifier:next; 172, argument_list; 173, identifier:allquants; 174, identifier:quant; 175, subscript; 176, identifier:str; 177, argument_list; 178, identifier:allquants; 179, identifier:sqlfields; 180, string; 181, subscript; 182, string_content:isochan; 183, identifier:quant; 184, subscript; 185, identifier:sqlfields; 186, string; 187, string_content:isoquant
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 4, 11; 4, 12; 4, 13; 4, 14; 9, 15; 9, 16; 10, 17; 10, 18; 11, 19; 12, 20; 13, 21; 14, 22; 14, 23; 14, 24; 20, 25; 20, 26; 21, 27; 21, 28; 22, 29; 22, 30; 23, 31; 23, 32; 24, 33; 24, 34; 24, 35; 24, 36; 25, 37; 25, 38; 26, 39; 26, 40; 28, 41; 28, 42; 32, 43; 33, 44; 34, 45; 34, 46; 35, 47; 35, 48; 35, 49; 36, 50; 39, 51; 39, 52; 40, 53; 40, 54; 42, 55; 43, 56; 43, 57; 44, 58; 44, 59; 46, 60; 46, 61; 46, 62; 48, 63; 48, 64; 48, 65; 49, 66; 50, 67; 56, 68; 56, 69; 57, 70; 57, 71; 59, 72; 59, 73; 60, 74; 61, 75; 61, 76; 62, 77; 63, 78; 64, 79; 64, 80; 65, 81; 66, 82; 72, 83; 72, 84; 73, 85; 73, 86; 74, 87; 74, 88; 75, 89; 75, 90; 76, 91; 77, 92; 77, 93; 78, 94; 78, 95; 79, 96; 79, 97; 80, 98; 80, 99; 81, 100; 81, 101; 82, 102; 82, 103; 85, 104; 85, 105; 86, 106; 86, 107; 88, 108; 88, 109; 91, 110; 92, 111; 92, 112; 93, 113; 96, 114; 96, 115; 98, 116; 99, 117; 99, 118; 100, 119; 100, 120; 101, 121; 102, 122; 103, 123; 103, 124; 103, 125; 106, 126; 106, 127; 109, 128; 109, 129; 110, 130; 110, 131; 113, 132; 116, 133; 116, 134; 117, 135; 118, 136; 118, 137; 118, 138; 121, 139; 121, 140; 122, 141; 125, 142; 125, 143; 129, 144; 131, 145; 132, 146; 132, 147; 133, 148; 133, 149; 134, 150; 135, 151; 138, 152; 140, 153; 140, 154; 141, 155; 141, 156; 142, 157; 146, 158; 146, 159; 147, 160; 147, 161; 150, 162; 151, 163; 151, 164; 156, 165; 156, 166; 157, 167; 161, 168; 162, 169; 162, 170; 164, 171; 164, 172; 166, 173; 169, 174; 169, 175; 170, 176; 170, 177; 172, 178; 175, 179; 175, 180; 177, 181; 180, 182; 181, 183; 181, 184; 184, 185; 184, 186; 186, 187
def generate_psms_quanted(quantdb, tsvfn, isob_header, oldheader, isobaric=False, precursor=False): """Takes dbfn and connects, gets quants for each line in tsvfn, sorts them in line by using keys in quantheader list.""" allquants, sqlfields = quantdb.select_all_psm_quants(isobaric, precursor) quant = next(allquants) for rownr, psm in enumerate(readers.generate_tsv_psms(tsvfn, oldheader)): outpsm = {x: y for x, y in psm.items()} if precursor: pquant = quant[sqlfields['precursor']] if pquant is None: pquant = 'NA' outpsm.update({mzidtsvdata.HEADER_PRECURSOR_QUANT: str(pquant)}) if isobaric: isoquants = {} while quant[0] == rownr: isoquants.update({quant[sqlfields['isochan']]: str(quant[sqlfields['isoquant']])}) try: quant = next(allquants) except StopIteration: # last PSM, break from while loop or it is not yielded at all break outpsm.update(get_quant_NAs(isoquants, isob_header)) else: try: quant = next(allquants) except StopIteration: # last PSM, needs explicit yield/break or it will not be yielded yield outpsm break yield outpsm
0, module; 1, function_definition; 2, function_name:nx_dag_node_rank; 3, parameters; 4, block; 5, identifier:graph; 6, default_parameter; 7, expression_statement; 8, import_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, if_statement; 13, identifier:nodes; 14, None; 15, comment:""" Returns rank of nodes that define the "level" each node is on in a topological sort. This is the same as the Graphviz dot rank. Ignore: simple_graph = ut.simplify_graph(exi_graph) adj_dict = ut.nx_to_adj_dict(simple_graph) import plottool as pt pt.qt4ensure() pt.show_nx(graph) Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> adj_dict = {0: [5], 1: [5], 2: [1], 3: [4], 4: [0], 5: [], 6: [4], 7: [9], 8: [6], 9: [1]} >>> nodes = [2, 1, 5] >>> f_graph = ut.nx_from_adj_dict(adj_dict, nx.DiGraph) >>> graph = f_graph.reverse() >>> #ranks = ut.nx_dag_node_rank(graph, nodes) >>> ranks = ut.nx_dag_node_rank(graph, nodes) >>> result = ('ranks = %r' % (ranks,)) >>> print(result) ranks = [3, 2, 1] """; 16, aliased_import; 17, assignment; 18, assignment; 19, assignment; 20, comparison_operator:nodes is None; 21, block; 22, else_clause; 23, dotted_name; 24, identifier:ut; 25, identifier:source; 26, subscript; 27, identifier:longest_paths; 28, call; 29, identifier:node_to_rank; 30, call; 31, identifier:nodes; 32, None; 33, return_statement; 34, block; 35, identifier:utool; 36, call; 37, integer:0; 38, identifier:dict; 39, argument_list; 40, attribute; 41, argument_list; 42, identifier:node_to_rank; 43, expression_statement; 44, return_statement; 45, identifier:list; 46, argument_list; 47, list_comprehension; 48, identifier:ut; 49, identifier:map_dict_vals; 50, identifier:len; 51, identifier:longest_paths; 52, assignment; 53, identifier:ranks; 54, call; 55, tuple; 56, for_in_clause; 57, identifier:ranks; 58, call; 59, attribute; 60, argument_list; 61, identifier:target; 62, call; 63, identifier:target; 64, call; 65, attribute; 66, argument_list; 67, identifier:ut; 68, identifier:nx_source_nodes; 69, identifier:graph; 70, identifier:dag_longest_path; 71, argument_list; 72, attribute; 73, argument_list; 74, identifier:ut; 75, identifier:dict_take; 76, identifier:node_to_rank; 77, identifier:nodes; 78, identifier:graph; 79, identifier:source; 80, identifier:target; 81, identifier:graph; 82, identifier:nodes
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 6, 13; 6, 14; 7, 15; 8, 16; 9, 17; 10, 18; 11, 19; 12, 20; 12, 21; 12, 22; 16, 23; 16, 24; 17, 25; 17, 26; 18, 27; 18, 28; 19, 29; 19, 30; 20, 31; 20, 32; 21, 33; 22, 34; 23, 35; 26, 36; 26, 37; 28, 38; 28, 39; 30, 40; 30, 41; 33, 42; 34, 43; 34, 44; 36, 45; 36, 46; 39, 47; 40, 48; 40, 49; 41, 50; 41, 51; 43, 52; 44, 53; 46, 54; 47, 55; 47, 56; 52, 57; 52, 58; 54, 59; 54, 60; 55, 61; 55, 62; 56, 63; 56, 64; 58, 65; 58, 66; 59, 67; 59, 68; 60, 69; 62, 70; 62, 71; 64, 72; 64, 73; 65, 74; 65, 75; 66, 76; 66, 77; 71, 78; 71, 79; 71, 80; 72, 81; 72, 82
def nx_dag_node_rank(graph, nodes=None): """ Returns rank of nodes that define the "level" each node is on in a topological sort. This is the same as the Graphviz dot rank. Ignore: simple_graph = ut.simplify_graph(exi_graph) adj_dict = ut.nx_to_adj_dict(simple_graph) import plottool as pt pt.qt4ensure() pt.show_nx(graph) Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> adj_dict = {0: [5], 1: [5], 2: [1], 3: [4], 4: [0], 5: [], 6: [4], 7: [9], 8: [6], 9: [1]} >>> nodes = [2, 1, 5] >>> f_graph = ut.nx_from_adj_dict(adj_dict, nx.DiGraph) >>> graph = f_graph.reverse() >>> #ranks = ut.nx_dag_node_rank(graph, nodes) >>> ranks = ut.nx_dag_node_rank(graph, nodes) >>> result = ('ranks = %r' % (ranks,)) >>> print(result) ranks = [3, 2, 1] """ import utool as ut source = list(ut.nx_source_nodes(graph))[0] longest_paths = dict([(target, dag_longest_path(graph, source, target)) for target in graph.nodes()]) node_to_rank = ut.map_dict_vals(len, longest_paths) if nodes is None: return node_to_rank else: ranks = ut.dict_take(node_to_rank, nodes) return ranks
0, module; 1, function_definition; 2, function_name:simplify_graph; 3, parameters; 4, block; 5, identifier:graph; 6, expression_statement; 7, import_statement; 8, expression_statement; 9, expression_statement; 10, if_statement; 11, expression_statement; 12, if_statement; 13, expression_statement; 14, expression_statement; 15, expression_statement; 16, expression_statement; 17, return_statement; 18, comment:""" strips out everything but connectivity Args: graph (nx.Graph): Returns: nx.Graph: new_graph CommandLine: python3 -m utool.util_graph simplify_graph --show python2 -m utool.util_graph simplify_graph --show python2 -c "import networkx as nx; print(nx.__version__)" python3 -c "import networkx as nx; print(nx.__version__)" Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> graph = nx.DiGraph([('a', 'b'), ('a', 'c'), ('a', 'e'), >>> ('a', 'd'), ('b', 'd'), ('c', 'e'), >>> ('d', 'e'), ('c', 'e'), ('c', 'd')]) >>> new_graph = simplify_graph(graph) >>> result = ut.repr2(list(new_graph.edges())) >>> #adj_list = sorted(list(nx.generate_adjlist(new_graph))) >>> #result = ut.repr2(adj_list) >>> print(result) [(0, 1), (0, 2), (0, 3), (0, 4), (1, 3), (2, 3), (2, 4), (3, 4)] ['0 1 2 3 4', '1 3 4', '2 4', '3', '4 3'] """; 19, aliased_import; 20, assignment; 21, assignment; 22, call; 23, block; 24, else_clause; 25, assignment; 26, call; 27, block; 28, else_clause; 29, assignment; 30, assignment; 31, call; 32, call; 33, identifier:new_graph; 34, dotted_name; 35, identifier:ut; 36, identifier:nodes; 37, call; 38, identifier:node_lookup; 39, call; 40, attribute; 41, argument_list; 42, expression_statement; 43, block; 44, identifier:new_nodes; 45, call; 46, attribute; 47, argument_list; 48, expression_statement; 49, block; 50, identifier:cls; 51, attribute; 52, identifier:new_graph; 53, call; 54, attribute; 55, argument_list; 56, attribute; 57, argument_list; 58, identifier:utool; 59, identifier:sorted; 60, argument_list; 61, attribute; 62, argument_list; 63, identifier:graph; 64, identifier:is_multigraph; 65, assignment; 66, expression_statement; 67, attribute; 68, argument_list; 69, identifier:graph; 70, identifier:is_multigraph; 71, assignment; 72, expression_statement; 73, identifier:graph; 74, identifier:__class__; 75, identifier:cls; 76, argument_list; 77, identifier:new_graph; 78, identifier:add_nodes_from; 79, identifier:new_nodes; 80, identifier:new_graph; 81, identifier:add_edges_from; 82, identifier:new_edges; 83, call; 84, identifier:ut; 85, identifier:make_index_lookup; 86, identifier:nodes; 87, identifier:edges; 88, call; 89, assignment; 90, identifier:ut; 91, identifier:take; 92, identifier:node_lookup; 93, identifier:nodes; 94, identifier:new_edges; 95, list_comprehension; 96, assignment; 97, identifier:list; 98, argument_list; 99, identifier:list; 100, argument_list; 101, identifier:edges; 102, call; 103, tuple; 104, for_in_clause; 105, identifier:new_edges; 106, list_comprehension; 107, call; 108, call; 109, identifier:list; 110, argument_list; 111, subscript; 112, subscript; 113, subscript; 114, dictionary; 115, identifier:e; 116, identifier:edges; 117, tuple; 118, for_in_clause; 119, attribute; 120, argument_list; 121, attribute; 122, argument_list; 123, call; 124, identifier:node_lookup; 125, subscript; 126, identifier:node_lookup; 127, subscript; 128, identifier:e; 129, integer:2; 130, subscript; 131, subscript; 132, identifier:e; 133, identifier:edges; 134, identifier:graph; 135, identifier:nodes; 136, identifier:graph; 137, identifier:edges; 138, keyword_argument; 139, attribute; 140, argument_list; 141, identifier:e; 142, integer:0; 143, identifier:e; 144, integer:1; 145, identifier:node_lookup; 146, subscript; 147, identifier:node_lookup; 148, subscript; 149, identifier:keys; 150, True; 151, identifier:graph; 152, identifier:edges; 153, identifier:e; 154, integer:0; 155, identifier:e; 156, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 6, 18; 7, 19; 8, 20; 9, 21; 10, 22; 10, 23; 10, 24; 11, 25; 12, 26; 12, 27; 12, 28; 13, 29; 14, 30; 15, 31; 16, 32; 17, 33; 19, 34; 19, 35; 20, 36; 20, 37; 21, 38; 21, 39; 22, 40; 22, 41; 23, 42; 24, 43; 25, 44; 25, 45; 26, 46; 26, 47; 27, 48; 28, 49; 29, 50; 29, 51; 30, 52; 30, 53; 31, 54; 31, 55; 32, 56; 32, 57; 34, 58; 37, 59; 37, 60; 39, 61; 39, 62; 40, 63; 40, 64; 42, 65; 43, 66; 45, 67; 45, 68; 46, 69; 46, 70; 48, 71; 49, 72; 51, 73; 51, 74; 53, 75; 53, 76; 54, 77; 54, 78; 55, 79; 56, 80; 56, 81; 57, 82; 60, 83; 61, 84; 61, 85; 62, 86; 65, 87; 65, 88; 66, 89; 67, 90; 67, 91; 68, 92; 68, 93; 71, 94; 71, 95; 72, 96; 83, 97; 83, 98; 88, 99; 88, 100; 89, 101; 89, 102; 95, 103; 95, 104; 96, 105; 96, 106; 98, 107; 100, 108; 102, 109; 102, 110; 103, 111; 103, 112; 103, 113; 103, 114; 104, 115; 104, 116; 106, 117; 106, 118; 107, 119; 107, 120; 108, 121; 108, 122; 110, 123; 111, 124; 111, 125; 112, 126; 112, 127; 113, 128; 113, 129; 117, 130; 117, 131; 118, 132; 118, 133; 119, 134; 119, 135; 121, 136; 121, 137; 122, 138; 123, 139; 123, 140; 125, 141; 125, 142; 127, 143; 127, 144; 130, 145; 130, 146; 131, 147; 131, 148; 138, 149; 138, 150; 139, 151; 139, 152; 146, 153; 146, 154; 148, 155; 148, 156
def simplify_graph(graph): """ strips out everything but connectivity Args: graph (nx.Graph): Returns: nx.Graph: new_graph CommandLine: python3 -m utool.util_graph simplify_graph --show python2 -m utool.util_graph simplify_graph --show python2 -c "import networkx as nx; print(nx.__version__)" python3 -c "import networkx as nx; print(nx.__version__)" Example: >>> # ENABLE_DOCTEST >>> from utool.util_graph import * # NOQA >>> import utool as ut >>> graph = nx.DiGraph([('a', 'b'), ('a', 'c'), ('a', 'e'), >>> ('a', 'd'), ('b', 'd'), ('c', 'e'), >>> ('d', 'e'), ('c', 'e'), ('c', 'd')]) >>> new_graph = simplify_graph(graph) >>> result = ut.repr2(list(new_graph.edges())) >>> #adj_list = sorted(list(nx.generate_adjlist(new_graph))) >>> #result = ut.repr2(adj_list) >>> print(result) [(0, 1), (0, 2), (0, 3), (0, 4), (1, 3), (2, 3), (2, 4), (3, 4)] ['0 1 2 3 4', '1 3 4', '2 4', '3', '4 3'] """ import utool as ut nodes = sorted(list(graph.nodes())) node_lookup = ut.make_index_lookup(nodes) if graph.is_multigraph(): edges = list(graph.edges(keys=True)) else: edges = list(graph.edges()) new_nodes = ut.take(node_lookup, nodes) if graph.is_multigraph(): new_edges = [(node_lookup[e[0]], node_lookup[e[1]], e[2], {}) for e in edges] else: new_edges = [(node_lookup[e[0]], node_lookup[e[1]]) for e in edges] cls = graph.__class__ new_graph = cls() new_graph.add_nodes_from(new_nodes) new_graph.add_edges_from(new_edges) return new_graph
0, module; 1, function_definition; 2, function_name:get_uniprot_evidence_level; 3, parameters; 4, block; 5, identifier:header; 6, expression_statement; 7, expression_statement; 8, for_statement; 9, return_statement; 10, comment:"""Returns uniprot protein existence evidence level for a fasta header. Evidence levels are 1-5, but we return 5 - x since sorting still demands that higher is better."""; 11, assignment; 12, identifier:item; 13, identifier:header; 14, block; 15, unary_operator; 16, identifier:header; 17, call; 18, expression_statement; 19, try_statement; 20, integer:1; 21, attribute; 22, argument_list; 23, assignment; 24, block; 25, except_clause; 26, identifier:header; 27, identifier:split; 28, identifier:item; 29, call; 30, if_statement; 31, identifier:IndexError; 32, block; 33, attribute; 34, argument_list; 35, comparison_operator:item[0] == 'PE'; 36, block; 37, continue_statement; 38, identifier:item; 39, identifier:split; 40, string; 41, subscript; 42, string; 43, return_statement; 44, string_content:=; 45, identifier:item; 46, integer:0; 47, string_content:PE; 48, binary_operator:5 - int(item[1]); 49, integer:5; 50, call; 51, identifier:int; 52, argument_list; 53, subscript; 54, identifier:item; 55, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 6, 10; 7, 11; 8, 12; 8, 13; 8, 14; 9, 15; 11, 16; 11, 17; 14, 18; 14, 19; 15, 20; 17, 21; 17, 22; 18, 23; 19, 24; 19, 25; 21, 26; 21, 27; 23, 28; 23, 29; 24, 30; 25, 31; 25, 32; 29, 33; 29, 34; 30, 35; 30, 36; 32, 37; 33, 38; 33, 39; 34, 40; 35, 41; 35, 42; 36, 43; 40, 44; 41, 45; 41, 46; 42, 47; 43, 48; 48, 49; 48, 50; 50, 51; 50, 52; 52, 53; 53, 54; 53, 55
def get_uniprot_evidence_level(header): """Returns uniprot protein existence evidence level for a fasta header. Evidence levels are 1-5, but we return 5 - x since sorting still demands that higher is better.""" header = header.split() for item in header: item = item.split('=') try: if item[0] == 'PE': return 5 - int(item[1]) except IndexError: continue return -1
0, module; 1, function_definition; 2, function_name:sorted; 3, parameters; 4, block; 5, identifier:self; 6, identifier:by; 7, dictionary_splat_pattern; 8, expression_statement; 9, expression_statement; 10, return_statement; 11, identifier:kwargs; 12, comment:"""Sort array by a column. Parameters ========== by: str Name of the columns to sort by(e.g. 'time'). """; 13, assignment; 14, call; 15, identifier:sort_idc; 16, call; 17, attribute; 18, argument_list; 19, attribute; 20, argument_list; 21, identifier:self; 22, identifier:__class__; 23, subscript; 24, keyword_argument; 25, keyword_argument; 26, keyword_argument; 27, identifier:np; 28, identifier:argsort; 29, subscript; 30, dictionary_splat; 31, identifier:self; 32, identifier:sort_idc; 33, identifier:h5loc; 34, attribute; 35, identifier:split_h5; 36, attribute; 37, identifier:name; 38, attribute; 39, identifier:self; 40, identifier:by; 41, identifier:kwargs; 42, identifier:self; 43, identifier:h5loc; 44, identifier:self; 45, identifier:split_h5; 46, identifier:self; 47, identifier:name
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 9, 13; 10, 14; 13, 15; 13, 16; 14, 17; 14, 18; 16, 19; 16, 20; 17, 21; 17, 22; 18, 23; 18, 24; 18, 25; 18, 26; 19, 27; 19, 28; 20, 29; 20, 30; 23, 31; 23, 32; 24, 33; 24, 34; 25, 35; 25, 36; 26, 37; 26, 38; 29, 39; 29, 40; 30, 41; 34, 42; 34, 43; 36, 44; 36, 45; 38, 46; 38, 47
def sorted(self, by, **kwargs): """Sort array by a column. Parameters ========== by: str Name of the columns to sort by(e.g. 'time'). """ sort_idc = np.argsort(self[by], **kwargs) return self.__class__( self[sort_idc], h5loc=self.h5loc, split_h5=self.split_h5, name=self.name )
0, module; 1, function_definition; 2, function_name:pmt_angles; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, if_statement; 8, return_statement; 9, comment:"""A list of PMT directions sorted by PMT channel, on DU-1, floor-1"""; 10, comparison_operator:self._pmt_angles == []; 11, block; 12, attribute; 13, attribute; 14, list; 15, expression_statement; 16, expression_statement; 17, identifier:self; 18, identifier:_pmt_angles; 19, identifier:self; 20, identifier:_pmt_angles; 21, assignment; 22, assignment; 23, identifier:mask; 24, binary_operator:(self.pmts.du == 1) & (self.pmts.floor == 1); 25, attribute; 26, subscript; 27, parenthesized_expression; 28, parenthesized_expression; 29, identifier:self; 30, identifier:_pmt_angles; 31, attribute; 32, identifier:mask; 33, comparison_operator:self.pmts.du == 1; 34, comparison_operator:self.pmts.floor == 1; 35, attribute; 36, identifier:dir; 37, attribute; 38, integer:1; 39, attribute; 40, integer:1; 41, identifier:self; 42, identifier:pmts; 43, attribute; 44, identifier:du; 45, attribute; 46, identifier:floor; 47, identifier:self; 48, identifier:pmts; 49, identifier:self; 50, identifier:pmts
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 6, 9; 7, 10; 7, 11; 8, 12; 10, 13; 10, 14; 11, 15; 11, 16; 12, 17; 12, 18; 13, 19; 13, 20; 15, 21; 16, 22; 21, 23; 21, 24; 22, 25; 22, 26; 24, 27; 24, 28; 25, 29; 25, 30; 26, 31; 26, 32; 27, 33; 28, 34; 31, 35; 31, 36; 33, 37; 33, 38; 34, 39; 34, 40; 35, 41; 35, 42; 37, 43; 37, 44; 39, 45; 39, 46; 43, 47; 43, 48; 45, 49; 45, 50
def pmt_angles(self): """A list of PMT directions sorted by PMT channel, on DU-1, floor-1""" if self._pmt_angles == []: mask = (self.pmts.du == 1) & (self.pmts.floor == 1) self._pmt_angles = self.pmts.dir[mask] return self._pmt_angles
0, module; 1, function_definition; 2, function_name:_get_point; 3, parameters; 4, block; 5, identifier:self; 6, identifier:profile; 7, identifier:point; 8, expression_statement; 9, expression_statement; 10, try_statement; 11, comment:""" Finds the given point in the profile, or adds it in sorted z order. """; 12, assignment; 13, block; 14, except_clause; 15, identifier:cur_points_z; 16, list_comprehension; 17, expression_statement; 18, return_statement; 19, identifier:ValueError; 20, block; 21, attribute; 22, for_in_clause; 23, assignment; 24, subscript; 25, expression_statement; 26, expression_statement; 27, expression_statement; 28, expression_statement; 29, expression_statement; 30, return_statement; 31, attribute; 32, identifier:z; 33, identifier:p; 34, attribute; 35, identifier:cur_idx; 36, call; 37, attribute; 38, identifier:cur_idx; 39, assignment; 40, assignment; 41, assignment; 42, assignment; 43, call; 44, identifier:new_point; 45, identifier:p; 46, identifier:location; 47, identifier:profile; 48, identifier:elements; 49, attribute; 50, argument_list; 51, identifier:profile; 52, identifier:elements; 53, identifier:new_idx; 54, call; 55, identifier:new_point; 56, call; 57, attribute; 58, call; 59, attribute; 60, attribute; 61, attribute; 62, argument_list; 63, identifier:cur_points_z; 64, identifier:index; 65, attribute; 66, identifier:bisect_left; 67, argument_list; 68, identifier:Point; 69, argument_list; 70, identifier:new_point; 71, identifier:location; 72, identifier:sPoint; 73, argument_list; 74, identifier:new_point; 75, identifier:time; 76, identifier:profile; 77, identifier:time; 78, attribute; 79, identifier:insert; 80, identifier:new_idx; 81, identifier:new_point; 82, identifier:point; 83, identifier:z; 84, identifier:cur_points_z; 85, attribute; 86, identifier:point; 87, identifier:profile; 88, identifier:elements; 89, identifier:point; 90, identifier:z
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 8, 11; 9, 12; 10, 13; 10, 14; 12, 15; 12, 16; 13, 17; 13, 18; 14, 19; 14, 20; 16, 21; 16, 22; 17, 23; 18, 24; 20, 25; 20, 26; 20, 27; 20, 28; 20, 29; 20, 30; 21, 31; 21, 32; 22, 33; 22, 34; 23, 35; 23, 36; 24, 37; 24, 38; 25, 39; 26, 40; 27, 41; 28, 42; 29, 43; 30, 44; 31, 45; 31, 46; 34, 47; 34, 48; 36, 49; 36, 50; 37, 51; 37, 52; 39, 53; 39, 54; 40, 55; 40, 56; 41, 57; 41, 58; 42, 59; 42, 60; 43, 61; 43, 62; 49, 63; 49, 64; 50, 65; 54, 66; 54, 67; 56, 68; 56, 69; 57, 70; 57, 71; 58, 72; 58, 73; 59, 74; 59, 75; 60, 76; 60, 77; 61, 78; 61, 79; 62, 80; 62, 81; 65, 82; 65, 83; 67, 84; 67, 85; 73, 86; 78, 87; 78, 88; 85, 89; 85, 90
def _get_point(self, profile, point): """ Finds the given point in the profile, or adds it in sorted z order. """ cur_points_z = [p.location.z for p in profile.elements] try: cur_idx = cur_points_z.index(point.z) return profile.elements[cur_idx] except ValueError: new_idx = bisect_left(cur_points_z, point.z) new_point = Point() new_point.location = sPoint(point) new_point.time = profile.time profile.elements.insert(new_idx, new_point) return new_point
0, module; 1, function_definition; 2, function_name:metadata_sorter; 3, parameters; 4, block; 5, identifier:x; 6, identifier:y; 7, expression_statement; 8, if_statement; 9, if_statement; 10, comment:""" Sort metadata keys by priority. """; 11, comparison_operator:x == y; 12, block; 13, boolean_operator; 14, block; 15, elif_clause; 16, elif_clause; 17, else_clause; 18, identifier:x; 19, identifier:y; 20, return_statement; 21, comparison_operator:x in METADATA_SORTER_FIRST; 22, comparison_operator:y in METADATA_SORTER_FIRST; 23, return_statement; 24, comparison_operator:x in METADATA_SORTER_FIRST; 25, block; 26, comparison_operator:y in METADATA_SORTER_FIRST; 27, block; 28, block; 29, integer:0; 30, identifier:x; 31, identifier:METADATA_SORTER_FIRST; 32, identifier:y; 33, identifier:METADATA_SORTER_FIRST; 34, conditional_expression:-1 if METADATA_SORTER_FIRST.index(x) < METADATA_SORTER_FIRST.index(y) else 1; 35, identifier:x; 36, identifier:METADATA_SORTER_FIRST; 37, return_statement; 38, identifier:y; 39, identifier:METADATA_SORTER_FIRST; 40, return_statement; 41, if_statement; 42, unary_operator; 43, comparison_operator:METADATA_SORTER_FIRST.index(x) < METADATA_SORTER_FIRST.index(y); 44, integer:1; 45, unary_operator; 46, integer:1; 47, boolean_operator; 48, block; 49, elif_clause; 50, elif_clause; 51, else_clause; 52, integer:1; 53, call; 54, call; 55, integer:1; 56, call; 57, call; 58, return_statement; 59, call; 60, block; 61, call; 62, block; 63, block; 64, attribute; 65, argument_list; 66, attribute; 67, argument_list; 68, attribute; 69, argument_list; 70, attribute; 71, argument_list; 72, call; 73, attribute; 74, argument_list; 75, return_statement; 76, attribute; 77, argument_list; 78, return_statement; 79, return_statement; 80, identifier:METADATA_SORTER_FIRST; 81, identifier:index; 82, identifier:x; 83, identifier:METADATA_SORTER_FIRST; 84, identifier:index; 85, identifier:y; 86, identifier:x; 87, identifier:startswith; 88, string; 89, identifier:y; 90, identifier:startswith; 91, string; 92, identifier:cmp; 93, argument_list; 94, identifier:x; 95, identifier:startswith; 96, string; 97, integer:1; 98, identifier:y; 99, identifier:startswith; 100, string; 101, unary_operator; 102, call; 103, string_content:_; 104, string_content:_; 105, subscript; 106, subscript; 107, string_content:_; 108, string_content:_; 109, integer:1; 110, identifier:cmp; 111, argument_list; 112, identifier:x; 113, slice; 114, identifier:y; 115, slice; 116, identifier:x; 117, identifier:y; 118, integer:1; 119, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 7, 10; 8, 11; 8, 12; 9, 13; 9, 14; 9, 15; 9, 16; 9, 17; 11, 18; 11, 19; 12, 20; 13, 21; 13, 22; 14, 23; 15, 24; 15, 25; 16, 26; 16, 27; 17, 28; 20, 29; 21, 30; 21, 31; 22, 32; 22, 33; 23, 34; 24, 35; 24, 36; 25, 37; 26, 38; 26, 39; 27, 40; 28, 41; 34, 42; 34, 43; 34, 44; 37, 45; 40, 46; 41, 47; 41, 48; 41, 49; 41, 50; 41, 51; 42, 52; 43, 53; 43, 54; 45, 55; 47, 56; 47, 57; 48, 58; 49, 59; 49, 60; 50, 61; 50, 62; 51, 63; 53, 64; 53, 65; 54, 66; 54, 67; 56, 68; 56, 69; 57, 70; 57, 71; 58, 72; 59, 73; 59, 74; 60, 75; 61, 76; 61, 77; 62, 78; 63, 79; 64, 80; 64, 81; 65, 82; 66, 83; 66, 84; 67, 85; 68, 86; 68, 87; 69, 88; 70, 89; 70, 90; 71, 91; 72, 92; 72, 93; 73, 94; 73, 95; 74, 96; 75, 97; 76, 98; 76, 99; 77, 100; 78, 101; 79, 102; 88, 103; 91, 104; 93, 105; 93, 106; 96, 107; 100, 108; 101, 109; 102, 110; 102, 111; 105, 112; 105, 113; 106, 114; 106, 115; 111, 116; 111, 117; 113, 118; 115, 119
def metadata_sorter(x, y): """ Sort metadata keys by priority. """ if x == y: return 0 if x in METADATA_SORTER_FIRST and y in METADATA_SORTER_FIRST: return -1 if METADATA_SORTER_FIRST.index(x) < METADATA_SORTER_FIRST.index(y) else 1 elif x in METADATA_SORTER_FIRST: return -1 elif y in METADATA_SORTER_FIRST: return 1 else: if x.startswith('_') and y.startswith('_'): return cmp(x[1:], y[1:]) elif x.startswith('_'): return 1 elif y.startswith('_'): return -1 else: return cmp(x, y)
0, module; 1, function_definition; 2, function_name:setRepayments; 3, parameters; 4, block; 5, identifier:self; 6, list_splat_pattern; 7, dictionary_splat_pattern; 8, expression_statement; 9, function_definition; 10, try_statement; 11, expression_statement; 12, expression_statement; 13, return_statement; 14, identifier:args; 15, identifier:kwargs; 16, comment:"""Adds the repayments for this loan to a 'repayments' field. Repayments are MambuRepayment objects. Repayments get sorted by due date. Returns the number of requests done to Mambu. .. todo:: since pagination logic was added, is not always true that just 1 request was done. It may be more! But since request counter singleton holds true information about how many requests were done to Mambu, in fact this return value may be obsolete """; 17, function_name:duedate; 18, parameters; 19, block; 20, block; 21, except_clause; 22, assignment; 23, assignment; 24, integer:1; 25, identifier:repayment; 26, expression_statement; 27, try_statement; 28, expression_statement; 29, as_pattern; 30, block; 31, attribute; 32, call; 33, subscript; 34, identifier:reps; 35, comment:"""Util function used for sorting repayments according to due Date"""; 36, block; 37, except_clause; 38, assignment; 39, identifier:AttributeError; 40, as_pattern_target; 41, import_from_statement; 42, expression_statement; 43, expression_statement; 44, identifier:reps; 45, identifier:attrs; 46, identifier:sorted; 47, argument_list; 48, identifier:self; 49, string; 50, return_statement; 51, as_pattern; 52, block; 53, identifier:reps; 54, call; 55, identifier:ae; 56, relative_import; 57, dotted_name; 58, assignment; 59, assignment; 60, attribute; 61, keyword_argument; 62, string_content:repayments; 63, subscript; 64, identifier:KeyError; 65, as_pattern_target; 66, return_statement; 67, attribute; 68, argument_list; 69, import_prefix; 70, dotted_name; 71, identifier:MambuRepayments; 72, attribute; 73, identifier:MambuRepayments; 74, identifier:reps; 75, call; 76, identifier:reps; 77, identifier:attrs; 78, identifier:key; 79, identifier:duedate; 80, identifier:repayment; 81, string; 82, identifier:kerr; 83, call; 84, identifier:self; 85, identifier:mamburepaymentsclass; 86, keyword_argument; 87, list_splat; 88, dictionary_splat; 89, identifier:mamburepayment; 90, identifier:self; 91, identifier:mamburepaymentsclass; 92, attribute; 93, argument_list; 94, string_content:dueDate; 95, attribute; 96, argument_list; 97, identifier:entid; 98, subscript; 99, identifier:args; 100, identifier:kwargs; 101, identifier:self; 102, identifier:mamburepaymentsclass; 103, keyword_argument; 104, list_splat; 105, dictionary_splat; 106, identifier:datetime; 107, identifier:now; 108, identifier:self; 109, string; 110, identifier:entid; 111, subscript; 112, identifier:args; 113, identifier:kwargs; 114, string_content:id; 115, identifier:self; 116, string; 117, string_content:id
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 6, 14; 7, 15; 8, 16; 9, 17; 9, 18; 9, 19; 10, 20; 10, 21; 11, 22; 12, 23; 13, 24; 18, 25; 19, 26; 19, 27; 20, 28; 21, 29; 21, 30; 22, 31; 22, 32; 23, 33; 23, 34; 26, 35; 27, 36; 27, 37; 28, 38; 29, 39; 29, 40; 30, 41; 30, 42; 30, 43; 31, 44; 31, 45; 32, 46; 32, 47; 33, 48; 33, 49; 36, 50; 37, 51; 37, 52; 38, 53; 38, 54; 40, 55; 41, 56; 41, 57; 42, 58; 43, 59; 47, 60; 47, 61; 49, 62; 50, 63; 51, 64; 51, 65; 52, 66; 54, 67; 54, 68; 56, 69; 56, 70; 57, 71; 58, 72; 58, 73; 59, 74; 59, 75; 60, 76; 60, 77; 61, 78; 61, 79; 63, 80; 63, 81; 65, 82; 66, 83; 67, 84; 67, 85; 68, 86; 68, 87; 68, 88; 70, 89; 72, 90; 72, 91; 75, 92; 75, 93; 81, 94; 83, 95; 83, 96; 86, 97; 86, 98; 87, 99; 88, 100; 92, 101; 92, 102; 93, 103; 93, 104; 93, 105; 95, 106; 95, 107; 98, 108; 98, 109; 103, 110; 103, 111; 104, 112; 105, 113; 109, 114; 111, 115; 111, 116; 116, 117
def setRepayments(self, *args, **kwargs): """Adds the repayments for this loan to a 'repayments' field. Repayments are MambuRepayment objects. Repayments get sorted by due date. Returns the number of requests done to Mambu. .. todo:: since pagination logic was added, is not always true that just 1 request was done. It may be more! But since request counter singleton holds true information about how many requests were done to Mambu, in fact this return value may be obsolete """ def duedate(repayment): """Util function used for sorting repayments according to due Date""" try: return repayment['dueDate'] except KeyError as kerr: return datetime.now() try: reps = self.mamburepaymentsclass(entid=self['id'], *args, **kwargs) except AttributeError as ae: from .mamburepayment import MambuRepayments self.mamburepaymentsclass = MambuRepayments reps = self.mamburepaymentsclass(entid=self['id'], *args, **kwargs) reps.attrs = sorted(reps.attrs, key=duedate) self['repayments'] = reps return 1
0, module; 1, function_definition; 2, function_name:setTransactions; 3, parameters; 4, block; 5, identifier:self; 6, list_splat_pattern; 7, dictionary_splat_pattern; 8, expression_statement; 9, function_definition; 10, try_statement; 11, expression_statement; 12, expression_statement; 13, return_statement; 14, identifier:args; 15, identifier:kwargs; 16, comment:"""Adds the transactions for this loan to a 'transactions' field. Transactions are MambuTransaction objects. Transactions get sorted by transaction id. Returns the number of requests done to Mambu. .. todo:: since pagination logic was added, is not always true that just 1 request was done. It may be more! But since request counter singleton holds true information about how many requests were done to Mambu, in fact this return value may be obsolete """; 17, function_name:transactionid; 18, parameters; 19, block; 20, block; 21, except_clause; 22, assignment; 23, assignment; 24, integer:1; 25, identifier:transaction; 26, expression_statement; 27, try_statement; 28, expression_statement; 29, as_pattern; 30, block; 31, attribute; 32, call; 33, subscript; 34, identifier:trans; 35, comment:"""Util function used for sorting transactions according to id"""; 36, block; 37, except_clause; 38, assignment; 39, identifier:AttributeError; 40, as_pattern_target; 41, import_from_statement; 42, expression_statement; 43, expression_statement; 44, identifier:trans; 45, identifier:attrs; 46, identifier:sorted; 47, argument_list; 48, identifier:self; 49, string; 50, return_statement; 51, as_pattern; 52, block; 53, identifier:trans; 54, call; 55, identifier:ae; 56, relative_import; 57, dotted_name; 58, assignment; 59, assignment; 60, attribute; 61, keyword_argument; 62, string_content:transactions; 63, subscript; 64, identifier:KeyError; 65, as_pattern_target; 66, return_statement; 67, attribute; 68, argument_list; 69, import_prefix; 70, dotted_name; 71, identifier:MambuTransactions; 72, attribute; 73, identifier:MambuTransactions; 74, identifier:trans; 75, call; 76, identifier:trans; 77, identifier:attrs; 78, identifier:key; 79, identifier:transactionid; 80, identifier:transaction; 81, string; 82, identifier:kerr; 83, None; 84, identifier:self; 85, identifier:mambutransactionsclass; 86, keyword_argument; 87, list_splat; 88, dictionary_splat; 89, identifier:mambutransaction; 90, identifier:self; 91, identifier:mambutransactionsclass; 92, attribute; 93, argument_list; 94, string_content:transactionId; 95, identifier:entid; 96, subscript; 97, identifier:args; 98, identifier:kwargs; 99, identifier:self; 100, identifier:mambutransactionsclass; 101, keyword_argument; 102, list_splat; 103, dictionary_splat; 104, identifier:self; 105, string; 106, identifier:entid; 107, subscript; 108, identifier:args; 109, identifier:kwargs; 110, string_content:id; 111, identifier:self; 112, string; 113, string_content:id
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 6, 14; 7, 15; 8, 16; 9, 17; 9, 18; 9, 19; 10, 20; 10, 21; 11, 22; 12, 23; 13, 24; 18, 25; 19, 26; 19, 27; 20, 28; 21, 29; 21, 30; 22, 31; 22, 32; 23, 33; 23, 34; 26, 35; 27, 36; 27, 37; 28, 38; 29, 39; 29, 40; 30, 41; 30, 42; 30, 43; 31, 44; 31, 45; 32, 46; 32, 47; 33, 48; 33, 49; 36, 50; 37, 51; 37, 52; 38, 53; 38, 54; 40, 55; 41, 56; 41, 57; 42, 58; 43, 59; 47, 60; 47, 61; 49, 62; 50, 63; 51, 64; 51, 65; 52, 66; 54, 67; 54, 68; 56, 69; 56, 70; 57, 71; 58, 72; 58, 73; 59, 74; 59, 75; 60, 76; 60, 77; 61, 78; 61, 79; 63, 80; 63, 81; 65, 82; 66, 83; 67, 84; 67, 85; 68, 86; 68, 87; 68, 88; 70, 89; 72, 90; 72, 91; 75, 92; 75, 93; 81, 94; 86, 95; 86, 96; 87, 97; 88, 98; 92, 99; 92, 100; 93, 101; 93, 102; 93, 103; 96, 104; 96, 105; 101, 106; 101, 107; 102, 108; 103, 109; 105, 110; 107, 111; 107, 112; 112, 113
def setTransactions(self, *args, **kwargs): """Adds the transactions for this loan to a 'transactions' field. Transactions are MambuTransaction objects. Transactions get sorted by transaction id. Returns the number of requests done to Mambu. .. todo:: since pagination logic was added, is not always true that just 1 request was done. It may be more! But since request counter singleton holds true information about how many requests were done to Mambu, in fact this return value may be obsolete """ def transactionid(transaction): """Util function used for sorting transactions according to id""" try: return transaction['transactionId'] except KeyError as kerr: return None try: trans = self.mambutransactionsclass(entid=self['id'], *args, **kwargs) except AttributeError as ae: from .mambutransaction import MambuTransactions self.mambutransactionsclass = MambuTransactions trans = self.mambutransactionsclass(entid=self['id'], *args, **kwargs) trans.attrs = sorted(trans.attrs, key=transactionid) self['transactions'] = trans return 1
0, module; 1, function_definition; 2, function_name:setActivities; 3, parameters; 4, block; 5, identifier:self; 6, list_splat_pattern; 7, dictionary_splat_pattern; 8, expression_statement; 9, function_definition; 10, try_statement; 11, expression_statement; 12, expression_statement; 13, return_statement; 14, identifier:args; 15, identifier:kwargs; 16, comment:"""Adds the activities for this group to a 'activities' field. Activities are MambuActivity objects. Activities get sorted by activity timestamp. Returns the number of requests done to Mambu. """; 17, function_name:activityDate; 18, parameters; 19, block; 20, block; 21, except_clause; 22, assignment; 23, assignment; 24, integer:1; 25, identifier:activity; 26, expression_statement; 27, try_statement; 28, expression_statement; 29, as_pattern; 30, block; 31, attribute; 32, call; 33, subscript; 34, identifier:activities; 35, comment:"""Util function used for sorting activities according to timestamp"""; 36, block; 37, except_clause; 38, assignment; 39, identifier:AttributeError; 40, as_pattern_target; 41, import_from_statement; 42, expression_statement; 43, expression_statement; 44, identifier:activities; 45, identifier:attrs; 46, identifier:sorted; 47, argument_list; 48, identifier:self; 49, string; 50, return_statement; 51, as_pattern; 52, block; 53, identifier:activities; 54, call; 55, identifier:ae; 56, relative_import; 57, dotted_name; 58, assignment; 59, assignment; 60, attribute; 61, keyword_argument; 62, string_content:activities; 63, subscript; 64, identifier:KeyError; 65, as_pattern_target; 66, return_statement; 67, attribute; 68, argument_list; 69, import_prefix; 70, dotted_name; 71, identifier:MambuActivities; 72, attribute; 73, identifier:MambuActivities; 74, identifier:activities; 75, call; 76, identifier:activities; 77, identifier:attrs; 78, identifier:key; 79, identifier:activityDate; 80, subscript; 81, string; 82, identifier:kerr; 83, None; 84, identifier:self; 85, identifier:mambuactivitiesclass; 86, keyword_argument; 87, list_splat; 88, dictionary_splat; 89, identifier:mambuactivity; 90, identifier:self; 91, identifier:mambuactivitiesclass; 92, attribute; 93, argument_list; 94, identifier:activity; 95, string; 96, string_content:timestamp; 97, identifier:groupId; 98, subscript; 99, identifier:args; 100, identifier:kwargs; 101, identifier:self; 102, identifier:mambuactivitiesclass; 103, keyword_argument; 104, list_splat; 105, dictionary_splat; 106, string_content:activity; 107, identifier:self; 108, string; 109, identifier:groupId; 110, subscript; 111, identifier:args; 112, identifier:kwargs; 113, string_content:encodedKey; 114, identifier:self; 115, string; 116, string_content:encodedKey
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 6, 14; 7, 15; 8, 16; 9, 17; 9, 18; 9, 19; 10, 20; 10, 21; 11, 22; 12, 23; 13, 24; 18, 25; 19, 26; 19, 27; 20, 28; 21, 29; 21, 30; 22, 31; 22, 32; 23, 33; 23, 34; 26, 35; 27, 36; 27, 37; 28, 38; 29, 39; 29, 40; 30, 41; 30, 42; 30, 43; 31, 44; 31, 45; 32, 46; 32, 47; 33, 48; 33, 49; 36, 50; 37, 51; 37, 52; 38, 53; 38, 54; 40, 55; 41, 56; 41, 57; 42, 58; 43, 59; 47, 60; 47, 61; 49, 62; 50, 63; 51, 64; 51, 65; 52, 66; 54, 67; 54, 68; 56, 69; 56, 70; 57, 71; 58, 72; 58, 73; 59, 74; 59, 75; 60, 76; 60, 77; 61, 78; 61, 79; 63, 80; 63, 81; 65, 82; 66, 83; 67, 84; 67, 85; 68, 86; 68, 87; 68, 88; 70, 89; 72, 90; 72, 91; 75, 92; 75, 93; 80, 94; 80, 95; 81, 96; 86, 97; 86, 98; 87, 99; 88, 100; 92, 101; 92, 102; 93, 103; 93, 104; 93, 105; 95, 106; 98, 107; 98, 108; 103, 109; 103, 110; 104, 111; 105, 112; 108, 113; 110, 114; 110, 115; 115, 116
def setActivities(self, *args, **kwargs): """Adds the activities for this group to a 'activities' field. Activities are MambuActivity objects. Activities get sorted by activity timestamp. Returns the number of requests done to Mambu. """ def activityDate(activity): """Util function used for sorting activities according to timestamp""" try: return activity['activity']['timestamp'] except KeyError as kerr: return None try: activities = self.mambuactivitiesclass(groupId=self['encodedKey'], *args, **kwargs) except AttributeError as ae: from .mambuactivity import MambuActivities self.mambuactivitiesclass = MambuActivities activities = self.mambuactivitiesclass(groupId=self['encodedKey'], *args, **kwargs) activities.attrs = sorted(activities.attrs, key=activityDate) self['activities'] = activities return 1
0, module; 1, function_definition; 2, function_name:compactor; 3, parameters; 4, block; 5, identifier:conf; 6, expression_statement; 7, comment:# Get the database handle; 8, expression_statement; 9, comment:# Get the limits container; 10, expression_statement; 11, comment:# Get the compactor configuration; 12, expression_statement; 13, comment:# Make sure compaction is enabled; 14, if_statement; 15, comment:# Select the bucket key getter; 16, expression_statement; 17, expression_statement; 18, comment:# Now enter our loop; 19, while_statement; 20, comment:""" The compactor daemon. This fuction watches the sorted set containing bucket keys that need to be compacted, performing the necessary compaction. :param conf: A turnstile.config.Config instance containing the configuration for the compactor daemon. Note that a ControlDaemon is also started, so appropriate configuration for that must also be present, as must appropriate Redis connection information. """; 21, assignment; 22, assignment; 23, assignment; 24, comparison_operator:get_int(config, 'max_updates', 0) <= 0; 25, comment:# We'll just warn about it, since they could be running; 26, comment:# the compactor with a different configuration file; 27, block; 28, assignment; 29, call; 30, True; 31, comment:# Get a bucket key to compact; 32, block; 33, identifier:db; 34, call; 35, identifier:limit_map; 36, call; 37, identifier:config; 38, subscript; 39, call; 40, integer:0; 41, expression_statement; 42, identifier:key_getter; 43, call; 44, attribute; 45, argument_list; 46, try_statement; 47, comment:# Ignore version 1 keys--they can't be compacted; 48, if_statement; 49, comment:# Get the corresponding limit class; 50, try_statement; 51, expression_statement; 52, comment:# OK, we now have the limit (which we really only need for; 53, comment:# the bucket class); let's compact the bucket; 54, try_statement; 55, attribute; 56, argument_list; 57, identifier:LimitContainer; 58, argument_list; 59, identifier:conf; 60, string; 61, identifier:get_int; 62, argument_list; 63, call; 64, attribute; 65, argument_list; 66, identifier:LOG; 67, identifier:info; 68, string:"Compactor initialized"; 69, block; 70, except_clause; 71, comparison_operator:buck_key.version < 2; 72, block; 73, block; 74, except_clause; 75, call; 76, block; 77, except_clause; 78, else_clause; 79, identifier:conf; 80, identifier:get_database; 81, string; 82, identifier:conf; 83, identifier:db; 84, string_content:compactor; 85, identifier:config; 86, string; 87, integer:0; 88, attribute; 89, argument_list; 90, identifier:GetBucketKey; 91, identifier:factory; 92, identifier:config; 93, identifier:db; 94, expression_statement; 95, as_pattern; 96, comment:# Warn about invalid bucket keys; 97, block; 98, attribute; 99, integer:2; 100, continue_statement; 101, expression_statement; 102, identifier:KeyError; 103, comment:# Warn about missing limits; 104, block; 105, attribute; 106, argument_list; 107, expression_statement; 108, identifier:Exception; 109, block; 110, block; 111, string_content:compactor; 112, string_content:max_updates; 113, identifier:LOG; 114, identifier:warning; 115, concatenated_string; 116, assignment; 117, identifier:ValueError; 118, as_pattern_target; 119, expression_statement; 120, continue_statement; 121, identifier:buck_key; 122, identifier:version; 123, assignment; 124, expression_statement; 125, continue_statement; 126, identifier:LOG; 127, identifier:debug; 128, binary_operator:"Compacting bucket %s" % buck_key; 129, call; 130, expression_statement; 131, expression_statement; 132, string:"Compaction is not enabled. Enable it by "; 133, string:"setting a positive integer value for "; 134, string:"'compactor.max_updates' in the configuration."; 135, identifier:buck_key; 136, call; 137, identifier:exc; 138, call; 139, identifier:limit; 140, subscript; 141, call; 142, string:"Compacting bucket %s"; 143, identifier:buck_key; 144, identifier:compact_bucket; 145, argument_list; 146, call; 147, call; 148, attribute; 149, argument_list; 150, attribute; 151, argument_list; 152, identifier:limit_map; 153, attribute; 154, attribute; 155, argument_list; 156, identifier:db; 157, identifier:buck_key; 158, identifier:limit; 159, attribute; 160, argument_list; 161, attribute; 162, argument_list; 163, attribute; 164, identifier:decode; 165, call; 166, identifier:LOG; 167, identifier:warning; 168, binary_operator:"Error interpreting bucket key: %s" % exc; 169, identifier:buck_key; 170, identifier:uuid; 171, identifier:LOG; 172, identifier:warning; 173, binary_operator:"Unable to compact bucket for limit %s" % buck_key.uuid; 174, identifier:LOG; 175, identifier:exception; 176, binary_operator:"Failed to compact bucket %s" % buck_key; 177, identifier:LOG; 178, identifier:debug; 179, binary_operator:"Finished compacting bucket %s" % buck_key; 180, identifier:limits; 181, identifier:BucketKey; 182, identifier:key_getter; 183, argument_list; 184, string:"Error interpreting bucket key: %s"; 185, identifier:exc; 186, string:"Unable to compact bucket for limit %s"; 187, attribute; 188, string:"Failed to compact bucket %s"; 189, identifier:buck_key; 190, string:"Finished compacting bucket %s"; 191, identifier:buck_key; 192, identifier:buck_key; 193, identifier:uuid
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 6, 20; 8, 21; 10, 22; 12, 23; 14, 24; 14, 25; 14, 26; 14, 27; 16, 28; 17, 29; 19, 30; 19, 31; 19, 32; 21, 33; 21, 34; 22, 35; 22, 36; 23, 37; 23, 38; 24, 39; 24, 40; 27, 41; 28, 42; 28, 43; 29, 44; 29, 45; 32, 46; 32, 47; 32, 48; 32, 49; 32, 50; 32, 51; 32, 52; 32, 53; 32, 54; 34, 55; 34, 56; 36, 57; 36, 58; 38, 59; 38, 60; 39, 61; 39, 62; 41, 63; 43, 64; 43, 65; 44, 66; 44, 67; 45, 68; 46, 69; 46, 70; 48, 71; 48, 72; 50, 73; 50, 74; 51, 75; 54, 76; 54, 77; 54, 78; 55, 79; 55, 80; 56, 81; 58, 82; 58, 83; 60, 84; 62, 85; 62, 86; 62, 87; 63, 88; 63, 89; 64, 90; 64, 91; 65, 92; 65, 93; 69, 94; 70, 95; 70, 96; 70, 97; 71, 98; 71, 99; 72, 100; 73, 101; 74, 102; 74, 103; 74, 104; 75, 105; 75, 106; 76, 107; 77, 108; 77, 109; 78, 110; 81, 111; 86, 112; 88, 113; 88, 114; 89, 115; 94, 116; 95, 117; 95, 118; 97, 119; 97, 120; 98, 121; 98, 122; 101, 123; 104, 124; 104, 125; 105, 126; 105, 127; 106, 128; 107, 129; 109, 130; 110, 131; 115, 132; 115, 133; 115, 134; 116, 135; 116, 136; 118, 137; 119, 138; 123, 139; 123, 140; 124, 141; 128, 142; 128, 143; 129, 144; 129, 145; 130, 146; 131, 147; 136, 148; 136, 149; 138, 150; 138, 151; 140, 152; 140, 153; 141, 154; 141, 155; 145, 156; 145, 157; 145, 158; 146, 159; 146, 160; 147, 161; 147, 162; 148, 163; 148, 164; 149, 165; 150, 166; 150, 167; 151, 168; 153, 169; 153, 170; 154, 171; 154, 172; 155, 173; 159, 174; 159, 175; 160, 176; 161, 177; 161, 178; 162, 179; 163, 180; 163, 181; 165, 182; 165, 183; 168, 184; 168, 185; 173, 186; 173, 187; 176, 188; 176, 189; 179, 190; 179, 191; 187, 192; 187, 193
def compactor(conf): """ The compactor daemon. This fuction watches the sorted set containing bucket keys that need to be compacted, performing the necessary compaction. :param conf: A turnstile.config.Config instance containing the configuration for the compactor daemon. Note that a ControlDaemon is also started, so appropriate configuration for that must also be present, as must appropriate Redis connection information. """ # Get the database handle db = conf.get_database('compactor') # Get the limits container limit_map = LimitContainer(conf, db) # Get the compactor configuration config = conf['compactor'] # Make sure compaction is enabled if get_int(config, 'max_updates', 0) <= 0: # We'll just warn about it, since they could be running # the compactor with a different configuration file LOG.warning("Compaction is not enabled. Enable it by " "setting a positive integer value for " "'compactor.max_updates' in the configuration.") # Select the bucket key getter key_getter = GetBucketKey.factory(config, db) LOG.info("Compactor initialized") # Now enter our loop while True: # Get a bucket key to compact try: buck_key = limits.BucketKey.decode(key_getter()) except ValueError as exc: # Warn about invalid bucket keys LOG.warning("Error interpreting bucket key: %s" % exc) continue # Ignore version 1 keys--they can't be compacted if buck_key.version < 2: continue # Get the corresponding limit class try: limit = limit_map[buck_key.uuid] except KeyError: # Warn about missing limits LOG.warning("Unable to compact bucket for limit %s" % buck_key.uuid) continue LOG.debug("Compacting bucket %s" % buck_key) # OK, we now have the limit (which we really only need for # the bucket class); let's compact the bucket try: compact_bucket(db, buck_key, limit) except Exception: LOG.exception("Failed to compact bucket %s" % buck_key) else: LOG.debug("Finished compacting bucket %s" % buck_key)
0, module; 1, function_definition; 2, function_name:get; 3, parameters; 4, block; 5, identifier:self; 6, identifier:now; 7, expression_statement; 8, with_statement; 9, comment:""" Get a bucket key to compact. If none are available, returns None. This uses a configured lock to ensure that the bucket key is popped off the sorted set in an atomic fashion. :param now: The current time, as a float. Used to ensure the bucket key has been aged sufficiently to be quiescent. :returns: A bucket key ready for compaction, or None if no bucket keys are available or none have aged sufficiently. """; 10, with_clause; 11, block; 12, with_item; 13, expression_statement; 14, comment:# Did we get any items?; 15, if_statement; 16, comment:# Drop the item we got; 17, expression_statement; 18, expression_statement; 19, return_statement; 20, attribute; 21, assignment; 22, not_operator; 23, block; 24, assignment; 25, call; 26, identifier:item; 27, identifier:self; 28, identifier:lock; 29, identifier:items; 30, call; 31, identifier:items; 32, return_statement; 33, identifier:item; 34, subscript; 35, attribute; 36, argument_list; 37, attribute; 38, argument_list; 39, None; 40, identifier:items; 41, integer:0; 42, attribute; 43, identifier:zrem; 44, identifier:item; 45, attribute; 46, identifier:zrangebyscore; 47, attribute; 48, integer:0; 49, binary_operator:now - self.min_age; 50, keyword_argument; 51, keyword_argument; 52, identifier:self; 53, identifier:db; 54, identifier:self; 55, identifier:db; 56, identifier:self; 57, identifier:key; 58, identifier:now; 59, attribute; 60, identifier:start; 61, integer:0; 62, identifier:num; 63, integer:1; 64, identifier:self; 65, identifier:min_age
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 7, 9; 8, 10; 8, 11; 10, 12; 11, 13; 11, 14; 11, 15; 11, 16; 11, 17; 11, 18; 11, 19; 12, 20; 13, 21; 15, 22; 15, 23; 17, 24; 18, 25; 19, 26; 20, 27; 20, 28; 21, 29; 21, 30; 22, 31; 23, 32; 24, 33; 24, 34; 25, 35; 25, 36; 30, 37; 30, 38; 32, 39; 34, 40; 34, 41; 35, 42; 35, 43; 36, 44; 37, 45; 37, 46; 38, 47; 38, 48; 38, 49; 38, 50; 38, 51; 42, 52; 42, 53; 45, 54; 45, 55; 47, 56; 47, 57; 49, 58; 49, 59; 50, 60; 50, 61; 51, 62; 51, 63; 59, 64; 59, 65
def get(self, now): """ Get a bucket key to compact. If none are available, returns None. This uses a configured lock to ensure that the bucket key is popped off the sorted set in an atomic fashion. :param now: The current time, as a float. Used to ensure the bucket key has been aged sufficiently to be quiescent. :returns: A bucket key ready for compaction, or None if no bucket keys are available or none have aged sufficiently. """ with self.lock: items = self.db.zrangebyscore(self.key, 0, now - self.min_age, start=0, num=1) # Did we get any items? if not items: return None # Drop the item we got item = items[0] self.db.zrem(item) return item
0, module; 1, function_definition; 2, function_name:get; 3, parameters; 4, block; 5, identifier:self; 6, identifier:now; 7, expression_statement; 8, expression_statement; 9, return_statement; 10, comment:""" Get a bucket key to compact. If none are available, returns None. This uses a Lua script to ensure that the bucket key is popped off the sorted set in an atomic fashion. :param now: The current time, as a float. Used to ensure the bucket key has been aged sufficiently to be quiescent. :returns: A bucket key ready for compaction, or None if no bucket keys are available or none have aged sufficiently. """; 11, assignment; 12, conditional_expression:items[0] if items else None; 13, identifier:items; 14, call; 15, subscript; 16, identifier:items; 17, None; 18, attribute; 19, argument_list; 20, identifier:items; 21, integer:0; 22, identifier:self; 23, identifier:script; 24, keyword_argument; 25, keyword_argument; 26, identifier:keys; 27, list; 28, identifier:args; 29, list; 30, attribute; 31, binary_operator:now - self.min_age; 32, identifier:self; 33, identifier:key; 34, identifier:now; 35, attribute; 36, identifier:self; 37, identifier:min_age
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 7, 10; 8, 11; 9, 12; 11, 13; 11, 14; 12, 15; 12, 16; 12, 17; 14, 18; 14, 19; 15, 20; 15, 21; 18, 22; 18, 23; 19, 24; 19, 25; 24, 26; 24, 27; 25, 28; 25, 29; 27, 30; 29, 31; 30, 32; 30, 33; 31, 34; 31, 35; 35, 36; 35, 37
def get(self, now): """ Get a bucket key to compact. If none are available, returns None. This uses a Lua script to ensure that the bucket key is popped off the sorted set in an atomic fashion. :param now: The current time, as a float. Used to ensure the bucket key has been aged sufficiently to be quiescent. :returns: A bucket key ready for compaction, or None if no bucket keys are available or none have aged sufficiently. """ items = self.script(keys=[self.key], args=[now - self.min_age]) return items[0] if items else None
0, module; 1, function_definition; 2, function_name:create; 3, parameters; 4, block; 5, identifier:self; 6, identifier:query; 7, keyword_separator; 8, default_parameter; 9, expression_statement; 10, if_statement; 11, expression_statement; 12, return_statement; 13, identifier:dc; 14, None; 15, comment:"""Creates a new prepared query Parameters: Query (Object): Query definition dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. Returns: Object: New query ID The create operation expects a body that defines the prepared query, like this example:: { "Name": "my-query", "Session": "adf4238a-882b-9ddc-4a9d-5b6758e4159e", "Token": "", "Near": "node1", "Service": { "Service": "redis", "Failover": { "NearestN": 3, "Datacenters": ["dc1", "dc2"] }, "OnlyPassing": False, "Tags": ["master", "!experimental"] }, "DNS": { "TTL": timedelta(seconds=10) } } Only the **Service** field inside the **Service** structure is mandatory, all other fields will take their default values if they are not included. **Name** is an optional friendly name that can be used to execute a query instead of using its ID. **Session** provides a way to automatically remove a prepared query when the given session is invalidated. This is optional, and if not given the prepared query must be manually removed when no longer needed. **Token**, if specified, is a captured ACL Token that is reused as the ACL Token every time the query is executed. This allows queries to be executed by clients with lesser or even no ACL Token, so this should be used with care. The token itself can only be seen by clients with a management token. If the **Token** field is left blank or omitted, the client's ACL Token will be used to determine if they have access to the service being queried. If the client does not supply an ACL Token, the anonymous token will be used. **Near** allows specifying a particular node to sort near based on distance sorting using Network Coordinates. The nearest instance to the specified node will be returned first, and subsequent nodes in the response will be sorted in ascending order of estimated round-trip times. If the node given does not exist, the nodes in the response will be shuffled. Using the magic **_agent** value is supported, and will automatically return results nearest the agent servicing the request. If unspecified, the response will be shuffled by default. The set of fields inside the **Service** structure define the query's behavior. **Service** is the name of the service to query. This is required. **Failover** contains two fields, both of which are optional, and determine what happens if no healthy nodes are available in the local datacenter when the query is executed. It allows the use of nodes in other datacenters with very little configuration. If **NearestN** is set to a value greater than zero, then the query will be forwarded to up to **NearestN** other datacenters based on their estimated network round trip time using Network Coordinates from the WAN gossip pool. The median round trip time from the server handling the query to the servers in the remote datacenter is used to determine the priority. The default value is zero. All Consul servers must be running version 0.6.0 or above in order for this feature to work correctly. If any servers are not running the required version of Consul they will be considered last since they won't have any available network coordinate information. **Datacenters** contains a fixed list of remote datacenters to forward the query to if there are no healthy nodes in the local datacenter. Datacenters are queried in the order given in the list. If this option is combined with **NearestN**, then the **NearestN** queries will be performed first, followed by the list given by **Datacenters**. A given datacenter will only be queried one time during a failover, even if it is selected by both **NearestN** and is listed in **Datacenters**. The default value is an empty list. **OnlyPassing** controls the behavior of the query's health check filtering. If this is set to false, the results will include nodes with checks in the passing as well as the warning states. If this is set to true, only nodes with checks in the passing state will be returned. The default value is False. **Tags** provides a list of service tags to filter the query results. For a service to pass the tag filter it must have all of the required tags, and none of the excluded tags (prefixed with ``!``). The default value is an empty list, which does no tag filtering. **TTL** in the **DNS** structure is a duration string that can use "s" as a suffix for seconds. It controls how the TTL is set when query results are served over DNS. If this isn't specified, then the Consul agent configuration for the given service will be used (see DNS Caching). If this is specified, it will take precedence over any Consul agent-specific configuration. If no TTL is specified here or at the Consul agent level, then the TTL will default to 0. It returns the ID of the created query:: { "ID": "8f246b77-f3e1-ff88-5b48-8ec93abf3e05" } """; 16, comparison_operator:"Token" in query; 17, comment:# in case of a full token object...; 18, block; 19, assignment; 20, attribute; 21, string:"Token"; 22, identifier:query; 23, expression_statement; 24, identifier:response; 25, await; 26, identifier:response; 27, identifier:body; 28, assignment; 29, call; 30, subscript; 31, call; 32, attribute; 33, argument_list; 34, identifier:query; 35, string:"Token"; 36, identifier:extract_attr; 37, argument_list; 38, attribute; 39, identifier:post; 40, string:"/v1/query"; 41, keyword_argument; 42, keyword_argument; 43, subscript; 44, keyword_argument; 45, identifier:self; 46, identifier:_api; 47, identifier:params; 48, dictionary; 49, identifier:data; 50, identifier:query; 51, identifier:query; 52, string:"Token"; 53, identifier:keys; 54, list; 55, pair; 56, string:"ID"; 57, string:"dc"; 58, identifier:dc
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 4, 9; 4, 10; 4, 11; 4, 12; 8, 13; 8, 14; 9, 15; 10, 16; 10, 17; 10, 18; 11, 19; 12, 20; 16, 21; 16, 22; 18, 23; 19, 24; 19, 25; 20, 26; 20, 27; 23, 28; 25, 29; 28, 30; 28, 31; 29, 32; 29, 33; 30, 34; 30, 35; 31, 36; 31, 37; 32, 38; 32, 39; 33, 40; 33, 41; 33, 42; 37, 43; 37, 44; 38, 45; 38, 46; 41, 47; 41, 48; 42, 49; 42, 50; 43, 51; 43, 52; 44, 53; 44, 54; 48, 55; 54, 56; 55, 57; 55, 58
async def create(self, query, *, dc=None): """Creates a new prepared query Parameters: Query (Object): Query definition dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. Returns: Object: New query ID The create operation expects a body that defines the prepared query, like this example:: { "Name": "my-query", "Session": "adf4238a-882b-9ddc-4a9d-5b6758e4159e", "Token": "", "Near": "node1", "Service": { "Service": "redis", "Failover": { "NearestN": 3, "Datacenters": ["dc1", "dc2"] }, "OnlyPassing": False, "Tags": ["master", "!experimental"] }, "DNS": { "TTL": timedelta(seconds=10) } } Only the **Service** field inside the **Service** structure is mandatory, all other fields will take their default values if they are not included. **Name** is an optional friendly name that can be used to execute a query instead of using its ID. **Session** provides a way to automatically remove a prepared query when the given session is invalidated. This is optional, and if not given the prepared query must be manually removed when no longer needed. **Token**, if specified, is a captured ACL Token that is reused as the ACL Token every time the query is executed. This allows queries to be executed by clients with lesser or even no ACL Token, so this should be used with care. The token itself can only be seen by clients with a management token. If the **Token** field is left blank or omitted, the client's ACL Token will be used to determine if they have access to the service being queried. If the client does not supply an ACL Token, the anonymous token will be used. **Near** allows specifying a particular node to sort near based on distance sorting using Network Coordinates. The nearest instance to the specified node will be returned first, and subsequent nodes in the response will be sorted in ascending order of estimated round-trip times. If the node given does not exist, the nodes in the response will be shuffled. Using the magic **_agent** value is supported, and will automatically return results nearest the agent servicing the request. If unspecified, the response will be shuffled by default. The set of fields inside the **Service** structure define the query's behavior. **Service** is the name of the service to query. This is required. **Failover** contains two fields, both of which are optional, and determine what happens if no healthy nodes are available in the local datacenter when the query is executed. It allows the use of nodes in other datacenters with very little configuration. If **NearestN** is set to a value greater than zero, then the query will be forwarded to up to **NearestN** other datacenters based on their estimated network round trip time using Network Coordinates from the WAN gossip pool. The median round trip time from the server handling the query to the servers in the remote datacenter is used to determine the priority. The default value is zero. All Consul servers must be running version 0.6.0 or above in order for this feature to work correctly. If any servers are not running the required version of Consul they will be considered last since they won't have any available network coordinate information. **Datacenters** contains a fixed list of remote datacenters to forward the query to if there are no healthy nodes in the local datacenter. Datacenters are queried in the order given in the list. If this option is combined with **NearestN**, then the **NearestN** queries will be performed first, followed by the list given by **Datacenters**. A given datacenter will only be queried one time during a failover, even if it is selected by both **NearestN** and is listed in **Datacenters**. The default value is an empty list. **OnlyPassing** controls the behavior of the query's health check filtering. If this is set to false, the results will include nodes with checks in the passing as well as the warning states. If this is set to true, only nodes with checks in the passing state will be returned. The default value is False. **Tags** provides a list of service tags to filter the query results. For a service to pass the tag filter it must have all of the required tags, and none of the excluded tags (prefixed with ``!``). The default value is an empty list, which does no tag filtering. **TTL** in the **DNS** structure is a duration string that can use "s" as a suffix for seconds. It controls how the TTL is set when query results are served over DNS. If this isn't specified, then the Consul agent configuration for the given service will be used (see DNS Caching). If this is specified, it will take precedence over any Consul agent-specific configuration. If no TTL is specified here or at the Consul agent level, then the TTL will default to 0. It returns the ID of the created query:: { "ID": "8f246b77-f3e1-ff88-5b48-8ec93abf3e05" } """ if "Token" in query: # in case of a full token object... query["Token"] = extract_attr(query["Token"], keys=["ID"]) response = await self._api.post("/v1/query", params={"dc": dc}, data=query) return response.body
0, module; 1, function_definition; 2, function_name:execute; 3, parameters; 4, block; 5, identifier:self; 6, identifier:query; 7, keyword_separator; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, default_parameter; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, return_statement; 16, identifier:dc; 17, None; 18, identifier:near; 19, None; 20, identifier:limit; 21, None; 22, identifier:consistency; 23, None; 24, comment:"""Executes a prepared query Parameters: query (ObjectID): Query ID dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. near (str): Sort the resulting list in ascending order based on the estimated round trip time from that node limit (int): Limit the list's size to the given number of nodes consistency (Consistency): Force consistency Returns: Object: Raises: NotFound: the query does not exist Returns a body like this:: { "Service": "redis", "Nodes": [ { "Node": { "Node": "foobar", "Address": "10.1.10.12", "TaggedAddresses": { "lan": "10.1.10.12", "wan": "10.1.10.12" } }, "Service": { "ID": "redis", "Service": "redis", "Tags": None, "Port": 8000 }, "Checks": [ { "Node": "foobar", "CheckID": "service:redis", "Name": "Service 'redis' check", "Status": "passing", "Notes": "", "Output": "", "ServiceID": "redis", "ServiceName": "redis" }, { "Node": "foobar", "CheckID": "serfHealth", "Name": "Serf Health Status", "Status": "passing", "Notes": "", "Output": "", "ServiceID": "", "ServiceName": "" } ], "DNS": { "TTL": timedelta(seconds=10) }, "Datacenter": "dc3", "Failovers": 2 } ] } The **Nodes** section contains the list of healthy nodes providing the given service, as specified by the constraints of the prepared query. **Service** has the service name that the query was selecting. This is useful for context in case an empty list of nodes is returned. **DNS** has information used when serving the results over DNS. This is just a copy of the structure given when the prepared query was created. **Datacenter** has the datacenter that ultimately provided the list of nodes and **Failovers** has the number of remote datacenters that were queried while executing the query. This provides some insight into where the data came from. This will be zero during non-failover operations where there were healthy nodes found in the local datacenter. """; 25, assignment; 26, assignment; 27, attribute; 28, identifier:query_id; 29, call; 30, identifier:response; 31, await; 32, identifier:response; 33, identifier:body; 34, identifier:extract_attr; 35, argument_list; 36, call; 37, identifier:query; 38, keyword_argument; 39, attribute; 40, argument_list; 41, identifier:keys; 42, list; 43, attribute; 44, identifier:get; 45, binary_operator:"/v1/query/%s/execute" % query_id; 46, keyword_argument; 47, keyword_argument; 48, string:"ID"; 49, identifier:self; 50, identifier:_api; 51, string:"/v1/query/%s/execute"; 52, identifier:query_id; 53, identifier:params; 54, dictionary; 55, identifier:consistency; 56, identifier:consistency; 57, pair; 58, pair; 59, pair; 60, string:"dc"; 61, identifier:dc; 62, string:"near"; 63, identifier:near; 64, string:"limit"; 65, identifier:limit
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 3, 11; 4, 12; 4, 13; 4, 14; 4, 15; 8, 16; 8, 17; 9, 18; 9, 19; 10, 20; 10, 21; 11, 22; 11, 23; 12, 24; 13, 25; 14, 26; 15, 27; 25, 28; 25, 29; 26, 30; 26, 31; 27, 32; 27, 33; 29, 34; 29, 35; 31, 36; 35, 37; 35, 38; 36, 39; 36, 40; 38, 41; 38, 42; 39, 43; 39, 44; 40, 45; 40, 46; 40, 47; 42, 48; 43, 49; 43, 50; 45, 51; 45, 52; 46, 53; 46, 54; 47, 55; 47, 56; 54, 57; 54, 58; 54, 59; 57, 60; 57, 61; 58, 62; 58, 63; 59, 64; 59, 65
async def execute(self, query, *, dc=None, near=None, limit=None, consistency=None): """Executes a prepared query Parameters: query (ObjectID): Query ID dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. near (str): Sort the resulting list in ascending order based on the estimated round trip time from that node limit (int): Limit the list's size to the given number of nodes consistency (Consistency): Force consistency Returns: Object: Raises: NotFound: the query does not exist Returns a body like this:: { "Service": "redis", "Nodes": [ { "Node": { "Node": "foobar", "Address": "10.1.10.12", "TaggedAddresses": { "lan": "10.1.10.12", "wan": "10.1.10.12" } }, "Service": { "ID": "redis", "Service": "redis", "Tags": None, "Port": 8000 }, "Checks": [ { "Node": "foobar", "CheckID": "service:redis", "Name": "Service 'redis' check", "Status": "passing", "Notes": "", "Output": "", "ServiceID": "redis", "ServiceName": "redis" }, { "Node": "foobar", "CheckID": "serfHealth", "Name": "Serf Health Status", "Status": "passing", "Notes": "", "Output": "", "ServiceID": "", "ServiceName": "" } ], "DNS": { "TTL": timedelta(seconds=10) }, "Datacenter": "dc3", "Failovers": 2 } ] } The **Nodes** section contains the list of healthy nodes providing the given service, as specified by the constraints of the prepared query. **Service** has the service name that the query was selecting. This is useful for context in case an empty list of nodes is returned. **DNS** has information used when serving the results over DNS. This is just a copy of the structure given when the prepared query was created. **Datacenter** has the datacenter that ultimately provided the list of nodes and **Failovers** has the number of remote datacenters that were queried while executing the query. This provides some insight into where the data came from. This will be zero during non-failover operations where there were healthy nodes found in the local datacenter. """ query_id = extract_attr(query, keys=["ID"]) response = await self._api.get( "/v1/query/%s/execute" % query_id, params={"dc": dc, "near": near, "limit": limit}, consistency=consistency) return response.body
0, module; 1, function_definition; 2, function_name:headerSortAscending; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, comment:""" Sorts the column at the current header index by ascending order. """; 10, call; 11, call; 12, attribute; 13, argument_list; 14, attribute; 15, argument_list; 16, identifier:self; 17, identifier:setSortingEnabled; 18, True; 19, identifier:self; 20, identifier:sortByColumn; 21, attribute; 22, attribute; 23, identifier:self; 24, identifier:_headerIndex; 25, attribute; 26, identifier:AscendingOrder; 27, identifier:QtCore; 28, identifier:Qt
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 6, 9; 7, 10; 8, 11; 10, 12; 10, 13; 11, 14; 11, 15; 12, 16; 12, 17; 13, 18; 14, 19; 14, 20; 15, 21; 15, 22; 21, 23; 21, 24; 22, 25; 22, 26; 25, 27; 25, 28
def headerSortAscending( self ): """ Sorts the column at the current header index by ascending order. """ self.setSortingEnabled(True) self.sortByColumn(self._headerIndex, QtCore.Qt.AscendingOrder)
0, module; 1, function_definition; 2, function_name:headerSortDescending; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, comment:""" Sorts the column at the current header index by descending order. """; 10, call; 11, call; 12, attribute; 13, argument_list; 14, attribute; 15, argument_list; 16, identifier:self; 17, identifier:setSortingEnabled; 18, True; 19, identifier:self; 20, identifier:sortByColumn; 21, attribute; 22, attribute; 23, identifier:self; 24, identifier:_headerIndex; 25, attribute; 26, identifier:DescendingOrder; 27, identifier:QtCore; 28, identifier:Qt
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 6, 9; 7, 10; 8, 11; 10, 12; 10, 13; 11, 14; 11, 15; 12, 16; 12, 17; 13, 18; 14, 19; 14, 20; 15, 21; 15, 22; 21, 23; 21, 24; 22, 25; 22, 26; 25, 27; 25, 28
def headerSortDescending( self ): """ Sorts the column at the current header index by descending order. """ self.setSortingEnabled(True) self.sortByColumn(self._headerIndex, QtCore.Qt.DescendingOrder)
0, module; 1, function_definition; 2, function_name:nodes; 3, parameters; 4, block; 5, identifier:self; 6, keyword_separator; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, return_statement; 15, identifier:dc; 16, None; 17, identifier:near; 18, None; 19, identifier:watch; 20, None; 21, identifier:consistency; 22, None; 23, comment:"""Lists nodes in a given DC Parameters: dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. near (str): Sort the node list in ascending order based on the estimated round trip time from that node. watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: CollectionMeta: where value is a list It returns a body like this:: [ { "Node": "baz", "Address": "10.1.10.11", "TaggedAddresses": { "lan": "10.1.10.11", "wan": "10.1.10.11" } }, { "Node": "foobar", "Address": "10.1.10.12", "TaggedAddresses": { "lan": "10.1.10.11", "wan": "10.1.10.12" } } ] """; 24, assignment; 25, assignment; 26, call; 27, identifier:params; 28, dictionary; 29, identifier:response; 30, await; 31, identifier:consul; 32, argument_list; 33, pair; 34, pair; 35, call; 36, identifier:response; 37, string:"dc"; 38, identifier:dc; 39, string:"near"; 40, identifier:near; 41, attribute; 42, argument_list; 43, attribute; 44, identifier:get; 45, string:"/v1/catalog/nodes"; 46, keyword_argument; 47, keyword_argument; 48, keyword_argument; 49, identifier:self; 50, identifier:_api; 51, identifier:params; 52, identifier:params; 53, identifier:watch; 54, identifier:watch; 55, identifier:consistency; 56, identifier:consistency
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 4, 11; 4, 12; 4, 13; 4, 14; 7, 15; 7, 16; 8, 17; 8, 18; 9, 19; 9, 20; 10, 21; 10, 22; 11, 23; 12, 24; 13, 25; 14, 26; 24, 27; 24, 28; 25, 29; 25, 30; 26, 31; 26, 32; 28, 33; 28, 34; 30, 35; 32, 36; 33, 37; 33, 38; 34, 39; 34, 40; 35, 41; 35, 42; 41, 43; 41, 44; 42, 45; 42, 46; 42, 47; 42, 48; 43, 49; 43, 50; 46, 51; 46, 52; 47, 53; 47, 54; 48, 55; 48, 56
async def nodes(self, *, dc=None, near=None, watch=None, consistency=None): """Lists nodes in a given DC Parameters: dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. near (str): Sort the node list in ascending order based on the estimated round trip time from that node. watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: CollectionMeta: where value is a list It returns a body like this:: [ { "Node": "baz", "Address": "10.1.10.11", "TaggedAddresses": { "lan": "10.1.10.11", "wan": "10.1.10.11" } }, { "Node": "foobar", "Address": "10.1.10.12", "TaggedAddresses": { "lan": "10.1.10.11", "wan": "10.1.10.12" } } ] """ params = {"dc": dc, "near": near} response = await self._api.get("/v1/catalog/nodes", params=params, watch=watch, consistency=consistency) return consul(response)
0, module; 1, function_definition; 2, function_name:checks; 3, parameters; 4, block; 5, identifier:self; 6, identifier:service; 7, keyword_separator; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, default_parameter; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, expression_statement; 16, return_statement; 17, identifier:dc; 18, None; 19, identifier:near; 20, None; 21, identifier:watch; 22, None; 23, identifier:consistency; 24, None; 25, comment:"""Returns the checks of a service Parameters: dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. near (str): With a node name will sort the node list in ascending order based on the estimated round trip time from that node watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: CollectionMeta: where value is a list of checks """; 26, assignment; 27, assignment; 28, assignment; 29, call; 30, identifier:service_id; 31, call; 32, identifier:params; 33, dictionary; 34, identifier:response; 35, await; 36, identifier:consul; 37, argument_list; 38, identifier:extract_attr; 39, argument_list; 40, pair; 41, pair; 42, call; 43, identifier:response; 44, identifier:service; 45, keyword_argument; 46, string:"dc"; 47, identifier:dc; 48, string:"near"; 49, identifier:near; 50, attribute; 51, argument_list; 52, identifier:keys; 53, list; 54, attribute; 55, identifier:get; 56, string:"/v1/health/checks"; 57, identifier:service_id; 58, keyword_argument; 59, keyword_argument; 60, keyword_argument; 61, string:"ServiceID"; 62, string:"ID"; 63, identifier:self; 64, identifier:_api; 65, identifier:params; 66, identifier:params; 67, identifier:watch; 68, identifier:watch; 69, identifier:consistency; 70, identifier:consistency
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 3, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 8, 17; 8, 18; 9, 19; 9, 20; 10, 21; 10, 22; 11, 23; 11, 24; 12, 25; 13, 26; 14, 27; 15, 28; 16, 29; 26, 30; 26, 31; 27, 32; 27, 33; 28, 34; 28, 35; 29, 36; 29, 37; 31, 38; 31, 39; 33, 40; 33, 41; 35, 42; 37, 43; 39, 44; 39, 45; 40, 46; 40, 47; 41, 48; 41, 49; 42, 50; 42, 51; 45, 52; 45, 53; 50, 54; 50, 55; 51, 56; 51, 57; 51, 58; 51, 59; 51, 60; 53, 61; 53, 62; 54, 63; 54, 64; 58, 65; 58, 66; 59, 67; 59, 68; 60, 69; 60, 70
async def checks(self, service, *, dc=None, near=None, watch=None, consistency=None): """Returns the checks of a service Parameters: dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. near (str): With a node name will sort the node list in ascending order based on the estimated round trip time from that node watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: CollectionMeta: where value is a list of checks """ service_id = extract_attr(service, keys=["ServiceID", "ID"]) params = {"dc": dc, "near": near} response = await self._api.get("/v1/health/checks", service_id, params=params, watch=watch, consistency=consistency) return consul(response)
0, module; 1, function_definition; 2, function_name:_get_alphabetical_members; 3, parameters; 4, block; 5, identifier:obj; 6, identifier:predicate; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, return_statement; 12, comment:"""Get members of an object, sorted alphabetically. Parameters ---------- obj An object. predicate : callable Callable that takes an attribute and returns a bool of whether the attribute should be returned or not. Returns ------- members : `dict` Dictionary of - Keys: attribute name - Values: attribute The dictionary is ordered according to the attribute name. Notes ----- This uses the insertion-order-preserved nature of `dict` in Python 3.6+. See also -------- `inspect.getmembers` """; 13, assignment; 14, assignment; 15, call; 16, dictionary_comprehension; 17, identifier:fields; 18, call; 19, identifier:keys; 20, call; 21, attribute; 22, argument_list; 23, pair; 24, for_in_clause; 25, identifier:dict; 26, argument_list; 27, identifier:list; 28, argument_list; 29, identifier:keys; 30, identifier:sort; 31, identifier:k; 32, subscript; 33, identifier:k; 34, identifier:keys; 35, call; 36, call; 37, identifier:fields; 38, identifier:k; 39, attribute; 40, argument_list; 41, attribute; 42, argument_list; 43, identifier:inspect; 44, identifier:getmembers; 45, identifier:obj; 46, identifier:predicate; 47, identifier:fields; 48, identifier:keys
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 7, 12; 8, 13; 9, 14; 10, 15; 11, 16; 13, 17; 13, 18; 14, 19; 14, 20; 15, 21; 15, 22; 16, 23; 16, 24; 18, 25; 18, 26; 20, 27; 20, 28; 21, 29; 21, 30; 23, 31; 23, 32; 24, 33; 24, 34; 26, 35; 28, 36; 32, 37; 32, 38; 35, 39; 35, 40; 36, 41; 36, 42; 39, 43; 39, 44; 40, 45; 40, 46; 41, 47; 41, 48
def _get_alphabetical_members(obj, predicate): """Get members of an object, sorted alphabetically. Parameters ---------- obj An object. predicate : callable Callable that takes an attribute and returns a bool of whether the attribute should be returned or not. Returns ------- members : `dict` Dictionary of - Keys: attribute name - Values: attribute The dictionary is ordered according to the attribute name. Notes ----- This uses the insertion-order-preserved nature of `dict` in Python 3.6+. See also -------- `inspect.getmembers` """ fields = dict(inspect.getmembers(obj, predicate)) keys = list(fields.keys()) keys.sort() return {k: fields[k] for k in keys}
0, module; 1, function_definition; 2, function_name:_argsort; 3, parameters; 4, block; 5, identifier:y_score; 6, default_parameter; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, if_statement; 11, return_statement; 12, identifier:k; 13, None; 14, comment:""" Returns the indexes in descending order of the top k score or all scores if k is None """; 15, assignment; 16, assignment; 17, comparison_operator:k is not None; 18, block; 19, identifier:argsort; 20, identifier:ranks; 21, call; 22, identifier:argsort; 23, subscript; 24, identifier:k; 25, None; 26, expression_statement; 27, attribute; 28, argument_list; 29, identifier:ranks; 30, slice; 31, assignment; 32, identifier:y_score; 33, identifier:argsort; 34, unary_operator; 35, identifier:argsort; 36, subscript; 37, integer:1; 38, identifier:argsort; 39, slice; 40, integer:0; 41, identifier:k
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 6, 13; 7, 14; 8, 15; 9, 16; 10, 17; 10, 18; 11, 19; 15, 20; 15, 21; 16, 22; 16, 23; 17, 24; 17, 25; 18, 26; 21, 27; 21, 28; 23, 29; 23, 30; 26, 31; 27, 32; 27, 33; 30, 34; 31, 35; 31, 36; 34, 37; 36, 38; 36, 39; 39, 40; 39, 41
def _argsort(y_score, k=None): """ Returns the indexes in descending order of the top k score or all scores if k is None """ ranks = y_score.argsort() argsort = ranks[::-1] if k is not None: argsort = argsort[0:k] return argsort
0, module; 1, function_definition; 2, function_name:assemble; 3, parameters; 4, comment:# type: (AbstractModule, *AbstractModule, **Any) -> SeqRecord; 5, block; 6, identifier:self; 7, identifier:module; 8, list_splat_pattern; 9, dictionary_splat_pattern; 10, expression_statement; 11, expression_statement; 12, return_statement; 13, identifier:modules; 14, identifier:kwargs; 15, comment:"""Assemble the provided modules into the vector. Arguments: module (`~moclo.base.modules.AbstractModule`): a module to insert in the vector. modules (`~moclo.base.modules.AbstractModule`, optional): additional modules to insert in the vector. The order of the parameters is not important, since modules will be sorted by their start overhang in the function. Returns: `~Bio.SeqRecord.SeqRecord`: the assembled sequence with sequence annotations inherited from the vector and the modules. Raises: `~moclo.errors.DuplicateModules`: when two different modules share the same start overhang, leading in possibly non-deterministic constructs. `~moclo.errors.MissingModule`: when a module has an end overhang that is not shared by any other module, leading to a partial construct only `~moclo.errors.InvalidSequence`: when one of the modules does not match the required module structure (missing site, wrong overhang, etc.). `~moclo.errors.UnusedModules`: when some modules were not used during the assembly (mostly caused by duplicate parts). """; 16, assignment; 17, call; 18, identifier:mgr; 19, call; 20, attribute; 21, argument_list; 22, identifier:AssemblyManager; 23, argument_list; 24, identifier:mgr; 25, identifier:assemble; 26, keyword_argument; 27, keyword_argument; 28, keyword_argument; 29, keyword_argument; 30, identifier:vector; 31, identifier:self; 32, identifier:modules; 33, binary_operator:[module] + list(modules); 34, identifier:name; 35, call; 36, identifier:id_; 37, call; 38, list; 39, call; 40, attribute; 41, argument_list; 42, attribute; 43, argument_list; 44, identifier:module; 45, identifier:list; 46, argument_list; 47, identifier:kwargs; 48, identifier:get; 49, string:"name"; 50, string:"assembly"; 51, identifier:kwargs; 52, identifier:get; 53, string:"id"; 54, string:"assembly"; 55, identifier:modules
0, 1; 1, 2; 1, 3; 1, 4; 1, 5; 3, 6; 3, 7; 3, 8; 3, 9; 5, 10; 5, 11; 5, 12; 8, 13; 9, 14; 10, 15; 11, 16; 12, 17; 16, 18; 16, 19; 17, 20; 17, 21; 19, 22; 19, 23; 20, 24; 20, 25; 23, 26; 23, 27; 23, 28; 23, 29; 26, 30; 26, 31; 27, 32; 27, 33; 28, 34; 28, 35; 29, 36; 29, 37; 33, 38; 33, 39; 35, 40; 35, 41; 37, 42; 37, 43; 38, 44; 39, 45; 39, 46; 40, 47; 40, 48; 41, 49; 41, 50; 42, 51; 42, 52; 43, 53; 43, 54; 46, 55
def assemble(self, module, *modules, **kwargs): # type: (AbstractModule, *AbstractModule, **Any) -> SeqRecord """Assemble the provided modules into the vector. Arguments: module (`~moclo.base.modules.AbstractModule`): a module to insert in the vector. modules (`~moclo.base.modules.AbstractModule`, optional): additional modules to insert in the vector. The order of the parameters is not important, since modules will be sorted by their start overhang in the function. Returns: `~Bio.SeqRecord.SeqRecord`: the assembled sequence with sequence annotations inherited from the vector and the modules. Raises: `~moclo.errors.DuplicateModules`: when two different modules share the same start overhang, leading in possibly non-deterministic constructs. `~moclo.errors.MissingModule`: when a module has an end overhang that is not shared by any other module, leading to a partial construct only `~moclo.errors.InvalidSequence`: when one of the modules does not match the required module structure (missing site, wrong overhang, etc.). `~moclo.errors.UnusedModules`: when some modules were not used during the assembly (mostly caused by duplicate parts). """ mgr = AssemblyManager( vector=self, modules=[module] + list(modules), name=kwargs.get("name", "assembly"), id_=kwargs.get("id", "assembly"), ) return mgr.assemble()
0, module; 1, function_definition; 2, function_name:getPortSideView; 3, parameters; 4, type; 5, block; 6, identifier:self; 7, identifier:side; 8, generic_type; 9, expression_statement; 10, if_statement; 11, identifier:List; 12, type_parameter; 13, comment:""" Returns a sublist view for all ports of given side. :attention: Use this only after port sides are fixed! This is currently the case after running the {@link org.eclipse.elk.alg.layered.intermediate.PortListSorter}. Non-structural changes to this list are reflected in the original list. A structural modification is any operation that adds or deletes one or more elements; merely setting the value of an element is not a structural modification. Sublist indices can be cached using {@link LNode#cachePortSides()}. :param side: a port side :return: an iterable for the ports of given side """; 14, comparison_operator:side == PortSide.WEST; 15, block; 16, elif_clause; 17, elif_clause; 18, elif_clause; 19, else_clause; 20, type; 21, identifier:side; 22, attribute; 23, return_statement; 24, comparison_operator:side == PortSide.EAST; 25, block; 26, comparison_operator:side == PortSide.NORTH; 27, block; 28, comparison_operator:side == PortSide.SOUTH; 29, block; 30, block; 31, string:"LPort"; 32, identifier:PortSide; 33, identifier:WEST; 34, attribute; 35, identifier:side; 36, attribute; 37, return_statement; 38, identifier:side; 39, attribute; 40, return_statement; 41, identifier:side; 42, attribute; 43, return_statement; 44, raise_statement; 45, identifier:self; 46, identifier:west; 47, identifier:PortSide; 48, identifier:EAST; 49, attribute; 50, identifier:PortSide; 51, identifier:NORTH; 52, attribute; 53, identifier:PortSide; 54, identifier:SOUTH; 55, attribute; 56, call; 57, identifier:self; 58, identifier:east; 59, identifier:self; 60, identifier:north; 61, identifier:self; 62, identifier:south; 63, identifier:ValueError; 64, argument_list; 65, identifier:side
0, 1; 1, 2; 1, 3; 1, 4; 1, 5; 3, 6; 3, 7; 4, 8; 5, 9; 5, 10; 8, 11; 8, 12; 9, 13; 10, 14; 10, 15; 10, 16; 10, 17; 10, 18; 10, 19; 12, 20; 14, 21; 14, 22; 15, 23; 16, 24; 16, 25; 17, 26; 17, 27; 18, 28; 18, 29; 19, 30; 20, 31; 22, 32; 22, 33; 23, 34; 24, 35; 24, 36; 25, 37; 26, 38; 26, 39; 27, 40; 28, 41; 28, 42; 29, 43; 30, 44; 34, 45; 34, 46; 36, 47; 36, 48; 37, 49; 39, 50; 39, 51; 40, 52; 42, 53; 42, 54; 43, 55; 44, 56; 49, 57; 49, 58; 52, 59; 52, 60; 55, 61; 55, 62; 56, 63; 56, 64; 64, 65
def getPortSideView(self, side) -> List["LPort"]: """ Returns a sublist view for all ports of given side. :attention: Use this only after port sides are fixed! This is currently the case after running the {@link org.eclipse.elk.alg.layered.intermediate.PortListSorter}. Non-structural changes to this list are reflected in the original list. A structural modification is any operation that adds or deletes one or more elements; merely setting the value of an element is not a structural modification. Sublist indices can be cached using {@link LNode#cachePortSides()}. :param side: a port side :return: an iterable for the ports of given side """ if side == PortSide.WEST: return self.west elif side == PortSide.EAST: return self.east elif side == PortSide.NORTH: return self.north elif side == PortSide.SOUTH: return self.south else: raise ValueError(side)
0, module; 1, function_definition; 2, function_name:sort_untl; 3, parameters; 4, block; 5, identifier:self; 6, identifier:sort_structure; 7, expression_statement; 8, expression_statement; 9, comment:"""Sort the UNTL Python object by the index of a sort structure pre-ordered list. """; 10, call; 11, attribute; 12, argument_list; 13, attribute; 14, identifier:sort; 15, keyword_argument; 16, identifier:self; 17, identifier:children; 18, identifier:key; 19, lambda; 20, lambda_parameters; 21, call; 22, identifier:obj; 23, attribute; 24, argument_list; 25, identifier:sort_structure; 26, identifier:index; 27, attribute; 28, identifier:obj; 29, identifier:tag
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 7, 9; 8, 10; 10, 11; 10, 12; 11, 13; 11, 14; 12, 15; 13, 16; 13, 17; 15, 18; 15, 19; 19, 20; 19, 21; 20, 22; 21, 23; 21, 24; 23, 25; 23, 26; 24, 27; 27, 28; 27, 29
def sort_untl(self, sort_structure): """Sort the UNTL Python object by the index of a sort structure pre-ordered list. """ self.children.sort(key=lambda obj: sort_structure.index(obj.tag))
0, module; 1, function_definition; 2, function_name:top; 3, parameters; 4, block; 5, identifier:self; 6, identifier:sort_by; 7, expression_statement; 8, expression_statement; 9, return_statement; 10, comment:"""Get the best results according to your custom sort method."""; 11, assignment; 12, identifier:sort; 13, identifier:sort; 14, call; 15, identifier:sorted; 16, argument_list; 17, attribute; 18, keyword_argument; 19, identifier:self; 20, identifier:results; 21, identifier:key; 22, identifier:sort_by
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 7, 10; 8, 11; 9, 12; 11, 13; 11, 14; 14, 15; 14, 16; 16, 17; 16, 18; 17, 19; 17, 20; 18, 21; 18, 22
def top(self, sort_by): """Get the best results according to your custom sort method.""" sort = sorted(self.results, key=sort_by) return sort
0, module; 1, function_definition; 2, function_name:_read_elem_nodes; 3, parameters; 4, block; 5, identifier:self; 6, identifier:fid; 7, expression_statement; 8, expression_statement; 9, comment:# # prepare nodes; 10, comment:# nodes_sorted = np.zeros((number_of_nodes, 3), dtype=float); 11, comment:# nodes = np.zeros((number_of_nodes, 3), dtype=float); 12, comment:# read in nodes; 13, expression_statement; 14, for_statement; 15, comment:# round node coordinates to 5th decimal point. Sometimes this is; 16, comment:# important when we deal with mal-formatted node data; 17, expression_statement; 18, comment:# check for CutMcK; 19, comment:# The check is based on the first node, but if one node was renumbered,; 20, comment:# so were all the others.; 21, if_statement; 22, comment:# Rearrange nodes when CutMcK was used.; 23, if_statement; 24, comment:# prepare node dict; 25, expression_statement; 26, expression_statement; 27, expression_statement; 28, expression_statement; 29, comment:""" Read the nodes from an opened elem.dat file. Correct for CutMcK transformations. We store three typed of nodes in the dict 'nodes': * "raw" : as read from the elem.dat file * "presort" : pre-sorted so we can directly read node numbers from a elec.dat file and use them as indices. * "sorted" : completely sorted as in the original grid (before any CutMcK) For completeness, we also store the following keys: * "cutmck_index" : Array containing the indices in "presort" to obtain the "sorted" values: nodes['sorted'] = nodes['presort'] [nodes['cutmck_index'], :] * "rev_cutmck_index" : argsort(cutmck_index) """; 30, assignment; 31, assignment; 32, identifier:nr; 33, call; 34, block; 35, assignment; 36, parenthesized_expression; 37, block; 38, else_clause; 39, parenthesized_expression; 40, block; 41, else_clause; 42, assignment; 43, assignment; 44, assignment; 45, assignment; 46, identifier:nodes; 47, dictionary; 48, identifier:nodes_raw; 49, call; 50, identifier:range; 51, argument_list; 52, expression_statement; 53, expression_statement; 54, subscript; 55, call; 56, comparison_operator:nodes_raw[:, 0] != list(range(1, nodes_raw.shape[0])); 57, expression_statement; 58, expression_statement; 59, block; 60, subscript; 61, expression_statement; 62, expression_statement; 63, for_statement; 64, comment:# sort them; 65, expression_statement; 66, expression_statement; 67, expression_statement; 68, expression_statement; 69, block; 70, subscript; 71, identifier:nodes_raw; 72, subscript; 73, identifier:nodes_sorted; 74, attribute; 75, identifier:nodes; 76, attribute; 77, subscript; 78, attribute; 79, argument_list; 80, integer:0; 81, subscript; 82, assignment; 83, assignment; 84, identifier:nodes_raw; 85, slice; 86, slice; 87, attribute; 88, argument_list; 89, subscript; 90, call; 91, assignment; 92, call; 93, expression_statement; 94, attribute; 95, string; 96, assignment; 97, assignment; 98, identifier:node; 99, call; 100, block; 101, assignment; 102, assignment; 103, assignment; 104, assignment; 105, expression_statement; 106, expression_statement; 107, identifier:nodes; 108, string; 109, identifier:nodes; 110, string; 111, identifier:self; 112, identifier:nodes; 113, identifier:self; 114, identifier:nr_of_nodes; 115, attribute; 116, integer:0; 117, identifier:np; 118, identifier:empty; 119, tuple; 120, keyword_argument; 121, attribute; 122, string; 123, identifier:node_line; 124, call; 125, subscript; 126, call; 127, integer:1; 128, integer:3; 129, identifier:np; 130, identifier:round; 131, subscript; 132, integer:5; 133, identifier:nodes_raw; 134, slice; 135, integer:0; 136, identifier:list; 137, argument_list; 138, subscript; 139, True; 140, identifier:print; 141, argument_list; 142, assignment; 143, identifier:self; 144, identifier:header; 145, string_content:cutmck; 146, identifier:nodes_cutmck; 147, call; 148, identifier:nodes_cutmck_index; 149, call; 150, identifier:range; 151, argument_list; 152, expression_statement; 153, expression_statement; 154, expression_statement; 155, expression_statement; 156, identifier:nodes_sorted; 157, subscript; 158, subscript; 159, identifier:nodes_cutmck; 160, subscript; 161, identifier:nodes_cutmck_index; 162, subscript; 163, call; 164, assignment; 165, assignment; 166, string_content:raw; 167, string_content:sorted; 168, subscript; 169, identifier:shape; 170, subscript; 171, integer:3; 172, identifier:dtype; 173, identifier:float; 174, identifier:self; 175, identifier:header; 176, string_content:nr_nodes; 177, attribute; 178, argument_list; 179, identifier:nodes_raw; 180, identifier:nr; 181, slice; 182, attribute; 183, argument_list; 184, identifier:nodes_raw; 185, slice; 186, slice; 187, call; 188, attribute; 189, string; 190, string; 191, subscript; 192, False; 193, attribute; 194, argument_list; 195, attribute; 196, argument_list; 197, integer:0; 198, subscript; 199, assignment; 200, assignment; 201, assignment; 202, assignment; 203, identifier:nodes_cutmck; 204, identifier:nodes_cutmck_index; 205, slice; 206, identifier:nodes; 207, string; 208, identifier:nodes; 209, string; 210, identifier:nodes; 211, string; 212, attribute; 213, argument_list; 214, identifier:nodes_sorted; 215, identifier:nodes_raw; 216, subscript; 217, identifier:nodes_raw; 218, identifier:nodes; 219, string; 220, attribute; 221, string; 222, call; 223, identifier:lstrip; 224, identifier:np; 225, identifier:fromstring; 226, identifier:node_line; 227, keyword_argument; 228, keyword_argument; 229, integer:1; 230, integer:3; 231, identifier:range; 232, argument_list; 233, identifier:self; 234, identifier:header; 235, string_content:cutmck; 236, string_content:This grid was sorted using CutMcK. The nodes were resorted!; 237, attribute; 238, string; 239, identifier:np; 240, identifier:empty_like; 241, identifier:nodes_raw; 242, identifier:np; 243, identifier:zeros; 244, subscript; 245, keyword_argument; 246, attribute; 247, string; 248, identifier:new_index; 249, call; 250, subscript; 251, subscript; 252, subscript; 253, subscript; 254, subscript; 255, subscript; 256, string_content:presort; 257, string_content:cutmck_index; 258, string_content:rev_cutmck_index; 259, identifier:np; 260, identifier:argsort; 261, identifier:nodes_cutmck_index; 262, identifier:nodes; 263, string; 264, string_content:raw; 265, identifier:self; 266, identifier:header; 267, string_content:nr_nodes; 268, attribute; 269, argument_list; 270, identifier:dtype; 271, identifier:float; 272, identifier:sep; 273, string; 274, integer:1; 275, subscript; 276, identifier:self; 277, identifier:header; 278, string_content:cutmck; 279, attribute; 280, integer:0; 281, identifier:dtype; 282, identifier:int; 283, identifier:self; 284, identifier:header; 285, string_content:nr_nodes; 286, attribute; 287, argument_list; 288, identifier:nodes_cutmck; 289, subscript; 290, slice; 291, identifier:nodes_raw; 292, identifier:node; 293, slice; 294, identifier:nodes_cutmck; 295, subscript; 296, integer:0; 297, identifier:new_index; 298, integer:0; 299, identifier:nodes_cutmck_index; 300, identifier:node; 301, identifier:new_index; 302, integer:0; 303, string_content:presort; 304, identifier:fid; 305, identifier:readline; 306, string_content:; 307, attribute; 308, integer:0; 309, identifier:nodes_raw; 310, identifier:shape; 311, identifier:np; 312, identifier:where; 313, comparison_operator:nodes_raw[:, 0].astype(int) == (node + 1); 314, identifier:new_index; 315, integer:0; 316, integer:1; 317, integer:3; 318, integer:1; 319, integer:3; 320, identifier:new_index; 321, integer:0; 322, identifier:nodes_raw; 323, identifier:shape; 324, call; 325, parenthesized_expression; 326, attribute; 327, argument_list; 328, binary_operator:node + 1; 329, subscript; 330, identifier:astype; 331, identifier:int; 332, identifier:node; 333, integer:1; 334, identifier:nodes_raw; 335, slice; 336, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 4, 22; 4, 23; 4, 24; 4, 25; 4, 26; 4, 27; 4, 28; 7, 29; 8, 30; 13, 31; 14, 32; 14, 33; 14, 34; 17, 35; 21, 36; 21, 37; 21, 38; 23, 39; 23, 40; 23, 41; 25, 42; 26, 43; 27, 44; 28, 45; 30, 46; 30, 47; 31, 48; 31, 49; 33, 50; 33, 51; 34, 52; 34, 53; 35, 54; 35, 55; 36, 56; 37, 57; 37, 58; 38, 59; 39, 60; 40, 61; 40, 62; 40, 63; 40, 64; 40, 65; 40, 66; 40, 67; 40, 68; 41, 69; 42, 70; 42, 71; 43, 72; 43, 73; 44, 74; 44, 75; 45, 76; 45, 77; 49, 78; 49, 79; 51, 80; 51, 81; 52, 82; 53, 83; 54, 84; 54, 85; 54, 86; 55, 87; 55, 88; 56, 89; 56, 90; 57, 91; 58, 92; 59, 93; 60, 94; 60, 95; 61, 96; 62, 97; 63, 98; 63, 99; 63, 100; 65, 101; 66, 102; 67, 103; 68, 104; 69, 105; 69, 106; 70, 107; 70, 108; 72, 109; 72, 110; 74, 111; 74, 112; 76, 113; 76, 114; 77, 115; 77, 116; 78, 117; 78, 118; 79, 119; 79, 120; 81, 121; 81, 122; 82, 123; 82, 124; 83, 125; 83, 126; 86, 127; 86, 128; 87, 129; 87, 130; 88, 131; 88, 132; 89, 133; 89, 134; 89, 135; 90, 136; 90, 137; 91, 138; 91, 139; 92, 140; 92, 141; 93, 142; 94, 143; 94, 144; 95, 145; 96, 146; 96, 147; 97, 148; 97, 149; 99, 150; 99, 151; 100, 152; 100, 153; 100, 154; 100, 155; 101, 156; 101, 157; 102, 158; 102, 159; 103, 160; 103, 161; 104, 162; 104, 163; 105, 164; 106, 165; 108, 166; 110, 167; 115, 168; 115, 169; 119, 170; 119, 171; 120, 172; 120, 173; 121, 174; 121, 175; 122, 176; 124, 177; 124, 178; 125, 179; 125, 180; 125, 181; 126, 182; 126, 183; 131, 184; 131, 185; 131, 186; 137, 187; 138, 188; 138, 189; 141, 190; 142, 191; 142, 192; 147, 193; 147, 194; 149, 195; 149, 196; 151, 197; 151, 198; 152, 199; 153, 200; 154, 201; 155, 202; 157, 203; 157, 204; 157, 205; 158, 206; 158, 207; 160, 208; 160, 209; 162, 210; 162, 211; 163, 212; 163, 213; 164, 214; 164, 215; 165, 216; 165, 217; 168, 218; 168, 219; 170, 220; 170, 221; 177, 222; 177, 223; 182, 224; 182, 225; 183, 226; 183, 227; 183, 228; 186, 229; 186, 230; 187, 231; 187, 232; 188, 233; 188, 234; 189, 235; 190, 236; 191, 237; 191, 238; 193, 239; 193, 240; 194, 241; 195, 242; 195, 243; 196, 244; 196, 245; 198, 246; 198, 247; 199, 248; 199, 249; 200, 250; 200, 251; 201, 252; 201, 253; 202, 254; 202, 255; 207, 256; 209, 257; 211, 258; 212, 259; 212, 260; 213, 261; 216, 262; 216, 263; 219, 264; 220, 265; 220, 266; 221, 267; 222, 268; 222, 269; 227, 270; 227, 271; 228, 272; 228, 273; 232, 274; 232, 275; 237, 276; 237, 277; 238, 278; 244, 279; 244, 280; 245, 281; 245, 282; 246, 283; 246, 284; 247, 285; 249, 286; 249, 287; 250, 288; 250, 289; 250, 290; 251, 291; 251, 292; 251, 293; 252, 294; 252, 295; 252, 296; 253, 297; 253, 298; 254, 299; 254, 300; 255, 301; 255, 302; 263, 303; 268, 304; 268, 305; 273, 306; 275, 307; 275, 308; 279, 309; 279, 310; 286, 311; 286, 312; 287, 313; 289, 314; 289, 315; 290, 316; 290, 317; 293, 318; 293, 319; 295, 320; 295, 321; 307, 322; 307, 323; 313, 324; 313, 325; 324, 326; 324, 327; 325, 328; 326, 329; 326, 330; 327, 331; 328, 332; 328, 333; 329, 334; 329, 335; 329, 336
def _read_elem_nodes(self, fid): """ Read the nodes from an opened elem.dat file. Correct for CutMcK transformations. We store three typed of nodes in the dict 'nodes': * "raw" : as read from the elem.dat file * "presort" : pre-sorted so we can directly read node numbers from a elec.dat file and use them as indices. * "sorted" : completely sorted as in the original grid (before any CutMcK) For completeness, we also store the following keys: * "cutmck_index" : Array containing the indices in "presort" to obtain the "sorted" values: nodes['sorted'] = nodes['presort'] [nodes['cutmck_index'], :] * "rev_cutmck_index" : argsort(cutmck_index) """ nodes = {} # # prepare nodes # nodes_sorted = np.zeros((number_of_nodes, 3), dtype=float) # nodes = np.zeros((number_of_nodes, 3), dtype=float) # read in nodes nodes_raw = np.empty((self.header['nr_nodes'], 3), dtype=float) for nr in range(0, self.header['nr_nodes']): node_line = fid.readline().lstrip() nodes_raw[nr, :] = np.fromstring( node_line, dtype=float, sep=' ') # round node coordinates to 5th decimal point. Sometimes this is # important when we deal with mal-formatted node data nodes_raw[:, 1:3] = np.round(nodes_raw[:, 1:3], 5) # check for CutMcK # The check is based on the first node, but if one node was renumbered, # so were all the others. if(nodes_raw[:, 0] != list(range(1, nodes_raw.shape[0]))): self.header['cutmck'] = True print( 'This grid was sorted using CutMcK. The nodes were resorted!') else: self.header['cutmck'] = False # Rearrange nodes when CutMcK was used. if(self.header['cutmck']): nodes_cutmck = np.empty_like(nodes_raw) nodes_cutmck_index = np.zeros(nodes_raw.shape[0], dtype=int) for node in range(0, self.header['nr_nodes']): new_index = np.where(nodes_raw[:, 0].astype(int) == (node + 1)) nodes_cutmck[new_index[0], 1:3] = nodes_raw[node, 1:3] nodes_cutmck[new_index[0], 0] = new_index[0] nodes_cutmck_index[node] = new_index[0] # sort them nodes_sorted = nodes_cutmck[nodes_cutmck_index, :] nodes['presort'] = nodes_cutmck nodes['cutmck_index'] = nodes_cutmck_index nodes['rev_cutmck_index'] = np.argsort(nodes_cutmck_index) else: nodes_sorted = nodes_raw nodes['presort'] = nodes_raw # prepare node dict nodes['raw'] = nodes_raw nodes['sorted'] = nodes_sorted self.nodes = nodes self.nr_of_nodes = nodes['raw'].shape[0]
0, module; 1, function_definition; 2, function_name:list; 3, parameters; 4, block; 5, identifier:self; 6, default_parameter; 7, default_parameter; 8, default_parameter; 9, default_parameter; 10, default_parameter; 11, default_parameter; 12, default_parameter; 13, default_parameter; 14, default_parameter; 15, default_parameter; 16, default_parameter; 17, expression_statement; 18, expression_statement; 19, expression_statement; 20, expression_statement; 21, if_statement; 22, if_statement; 23, expression_statement; 24, expression_statement; 25, expression_statement; 26, expression_statement; 27, expression_statement; 28, expression_statement; 29, expression_statement; 30, expression_statement; 31, return_statement; 32, identifier:source_ids; 33, None; 34, identifier:seniority; 35, string:"all"; 36, identifier:stage; 37, None; 38, identifier:date_start; 39, string:"1494539999"; 40, identifier:date_end; 41, identifier:TIMESTAMP_NOW; 42, identifier:filter_id; 43, None; 44, identifier:page; 45, integer:1; 46, identifier:limit; 47, integer:30; 48, identifier:sort_by; 49, string; 50, identifier:filter_reference; 51, None; 52, identifier:order_by; 53, None; 54, comment:""" Retreive all profiles that match the query param. Args: date_end: <string> REQUIRED (default to timestamp of now) profiles' last date of reception date_start: <string> REQUIRED (default to "1494539999") profiles' first date of reception filter_id: <string> limit: <int> (default to 30) number of fetched profiles/page page: <int> REQUIRED default to 1 number of the page associated to the pagination seniority: <string> defaut to "all" profiles' seniority ("all", "senior", "junior") sort_by: <string> source_ids: <array of strings> REQUIRED stage: <string> Returns Retrieve the profiles data as <dict> """; 55, assignment; 56, assignment; 57, assignment; 58, identifier:filter_id; 59, block; 60, identifier:filter_reference; 61, block; 62, assignment; 63, assignment; 64, assignment; 65, assignment; 66, assignment; 67, assignment; 68, assignment; 69, assignment; 70, call; 71, string_content:ranking; 72, identifier:query_params; 73, dictionary; 74, subscript; 75, call; 76, subscript; 77, call; 78, expression_statement; 79, expression_statement; 80, subscript; 81, call; 82, subscript; 83, call; 84, subscript; 85, call; 86, subscript; 87, call; 88, subscript; 89, call; 90, subscript; 91, call; 92, subscript; 93, identifier:order_by; 94, identifier:response; 95, call; 96, attribute; 97, argument_list; 98, identifier:query_params; 99, string:"date_end"; 100, identifier:_validate_timestamp; 101, argument_list; 102, identifier:query_params; 103, string:"date_start"; 104, identifier:_validate_timestamp; 105, argument_list; 106, assignment; 107, assignment; 108, identifier:query_params; 109, string:"limit"; 110, identifier:_validate_limit; 111, argument_list; 112, identifier:query_params; 113, string:"page"; 114, identifier:_validate_page; 115, argument_list; 116, identifier:query_params; 117, string:"seniority"; 118, identifier:_validate_seniority; 119, argument_list; 120, identifier:query_params; 121, string:"sort_by"; 122, identifier:_validate_sort_by; 123, argument_list; 124, identifier:query_params; 125, string:"source_ids"; 126, attribute; 127, argument_list; 128, identifier:query_params; 129, string:"stage"; 130, identifier:_validate_stage; 131, argument_list; 132, identifier:query_params; 133, string:"order_by"; 134, attribute; 135, argument_list; 136, identifier:response; 137, identifier:json; 138, identifier:date_end; 139, string:"date_end"; 140, identifier:date_start; 141, string:"date_start"; 142, subscript; 143, call; 144, subscript; 145, call; 146, identifier:limit; 147, identifier:page; 148, identifier:seniority; 149, identifier:sort_by; 150, identifier:json; 151, identifier:dumps; 152, call; 153, identifier:stage; 154, attribute; 155, identifier:get; 156, string:"profiles"; 157, identifier:query_params; 158, identifier:query_params; 159, string:"filter_id"; 160, identifier:_validate_filter_id; 161, argument_list; 162, identifier:query_params; 163, string:"filter_reference"; 164, identifier:_validate_filter_reference; 165, argument_list; 166, identifier:_validate_source_ids; 167, argument_list; 168, identifier:self; 169, identifier:client; 170, identifier:filter_id; 171, identifier:filter_reference; 172, identifier:source_ids
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 3, 10; 3, 11; 3, 12; 3, 13; 3, 14; 3, 15; 3, 16; 4, 17; 4, 18; 4, 19; 4, 20; 4, 21; 4, 22; 4, 23; 4, 24; 4, 25; 4, 26; 4, 27; 4, 28; 4, 29; 4, 30; 4, 31; 6, 32; 6, 33; 7, 34; 7, 35; 8, 36; 8, 37; 9, 38; 9, 39; 10, 40; 10, 41; 11, 42; 11, 43; 12, 44; 12, 45; 13, 46; 13, 47; 14, 48; 14, 49; 15, 50; 15, 51; 16, 52; 16, 53; 17, 54; 18, 55; 19, 56; 20, 57; 21, 58; 21, 59; 22, 60; 22, 61; 23, 62; 24, 63; 25, 64; 26, 65; 27, 66; 28, 67; 29, 68; 30, 69; 31, 70; 49, 71; 55, 72; 55, 73; 56, 74; 56, 75; 57, 76; 57, 77; 59, 78; 61, 79; 62, 80; 62, 81; 63, 82; 63, 83; 64, 84; 64, 85; 65, 86; 65, 87; 66, 88; 66, 89; 67, 90; 67, 91; 68, 92; 68, 93; 69, 94; 69, 95; 70, 96; 70, 97; 74, 98; 74, 99; 75, 100; 75, 101; 76, 102; 76, 103; 77, 104; 77, 105; 78, 106; 79, 107; 80, 108; 80, 109; 81, 110; 81, 111; 82, 112; 82, 113; 83, 114; 83, 115; 84, 116; 84, 117; 85, 118; 85, 119; 86, 120; 86, 121; 87, 122; 87, 123; 88, 124; 88, 125; 89, 126; 89, 127; 90, 128; 90, 129; 91, 130; 91, 131; 92, 132; 92, 133; 95, 134; 95, 135; 96, 136; 96, 137; 101, 138; 101, 139; 105, 140; 105, 141; 106, 142; 106, 143; 107, 144; 107, 145; 111, 146; 115, 147; 119, 148; 123, 149; 126, 150; 126, 151; 127, 152; 131, 153; 134, 154; 134, 155; 135, 156; 135, 157; 142, 158; 142, 159; 143, 160; 143, 161; 144, 162; 144, 163; 145, 164; 145, 165; 152, 166; 152, 167; 154, 168; 154, 169; 161, 170; 165, 171; 167, 172
def list(self, source_ids=None, seniority="all", stage=None, date_start="1494539999", date_end=TIMESTAMP_NOW, filter_id=None, page=1, limit=30, sort_by='ranking', filter_reference=None, order_by=None): """ Retreive all profiles that match the query param. Args: date_end: <string> REQUIRED (default to timestamp of now) profiles' last date of reception date_start: <string> REQUIRED (default to "1494539999") profiles' first date of reception filter_id: <string> limit: <int> (default to 30) number of fetched profiles/page page: <int> REQUIRED default to 1 number of the page associated to the pagination seniority: <string> defaut to "all" profiles' seniority ("all", "senior", "junior") sort_by: <string> source_ids: <array of strings> REQUIRED stage: <string> Returns Retrieve the profiles data as <dict> """ query_params = {} query_params["date_end"] = _validate_timestamp(date_end, "date_end") query_params["date_start"] = _validate_timestamp(date_start, "date_start") if filter_id: query_params["filter_id"] = _validate_filter_id(filter_id) if filter_reference: query_params["filter_reference"] = _validate_filter_reference(filter_reference) query_params["limit"] = _validate_limit(limit) query_params["page"] = _validate_page(page) query_params["seniority"] = _validate_seniority(seniority) query_params["sort_by"] = _validate_sort_by(sort_by) query_params["source_ids"] = json.dumps(_validate_source_ids(source_ids)) query_params["stage"] = _validate_stage(stage) query_params["order_by"] = order_by response = self.client.get("profiles", query_params) return response.json()
0, module; 1, function_definition; 2, function_name:get_hypergeometric_stats; 3, parameters; 4, block; 5, identifier:N; 6, identifier:indices; 7, expression_statement; 8, assert_statement; 9, assert_statement; 10, expression_statement; 11, expression_statement; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, expression_statement; 16, expression_statement; 17, expression_statement; 18, while_statement; 19, return_statement; 20, comment:"""Calculates hypergeom. p-values and fold enrichments for all cutoffs. Parameters ---------- N: int The length of the list indices: `numpy.ndarray` with ``dtype=np.uint16`` The (sorted) indices of the "1's" in the list. """; 21, call; 22, boolean_operator; 23, assignment; 24, assignment; 25, assignment; 26, assignment; 27, assignment; 28, assignment; 29, assignment; 30, assignment; 31, comparison_operator:n < N; 32, block; 33, expression_list; 34, identifier:isinstance; 35, argument_list; 36, call; 37, line_continuation:\; 38, call; 39, identifier:K; 40, attribute; 41, identifier:pvals; 42, call; 43, identifier:folds; 44, call; 45, subscript; 46, float:1.0; 47, subscript; 48, float:1.0; 49, identifier:n; 50, integer:0; 51, identifier:k; 52, integer:0; 53, identifier:p; 54, float:1.0; 55, identifier:n; 56, identifier:N; 57, if_statement; 58, expression_statement; 59, comment:# calculate hypergeometric p-value; 60, expression_statement; 61, comment:# calculate fold enrichment; 62, expression_statement; 63, identifier:pvals; 64, identifier:folds; 65, identifier:N; 66, tuple; 67, identifier:isinstance; 68, argument_list; 69, attribute; 70, argument_list; 71, identifier:indices; 72, identifier:size; 73, attribute; 74, argument_list; 75, attribute; 76, argument_list; 77, identifier:pvals; 78, integer:0; 79, identifier:folds; 80, integer:0; 81, boolean_operator; 82, comment:# "add one"; 83, comment:# calculate f(k+1; N,K,n+1) from f(k; N,K,n); 84, block; 85, else_clause; 86, augmented_assignment; 87, assignment; 88, assignment; 89, identifier:int; 90, attribute; 91, identifier:indices; 92, attribute; 93, identifier:np; 94, identifier:issubdtype; 95, attribute; 96, attribute; 97, identifier:np; 98, identifier:empty; 99, binary_operator:N+1; 100, keyword_argument; 101, identifier:np; 102, identifier:empty; 103, binary_operator:N+1; 104, keyword_argument; 105, comparison_operator:k < K; 106, comparison_operator:indices[k] == n; 107, expression_statement; 108, expression_statement; 109, comment:# "add zero"; 110, comment:# calculate f(k; N,K,n+1) from f(k; N,K,n); 111, block; 112, identifier:n; 113, integer:1; 114, subscript; 115, call; 116, subscript; 117, binary_operator:k / (K*(n/float(N))); 118, identifier:np; 119, identifier:integer; 120, identifier:np; 121, identifier:ndarray; 122, identifier:indices; 123, identifier:dtype; 124, identifier:np; 125, identifier:uint16; 126, identifier:N; 127, integer:1; 128, identifier:dtype; 129, attribute; 130, identifier:N; 131, integer:1; 132, identifier:dtype; 133, attribute; 134, identifier:k; 135, identifier:K; 136, subscript; 137, identifier:n; 138, augmented_assignment; 139, augmented_assignment; 140, expression_statement; 141, identifier:pvals; 142, identifier:n; 143, identifier:get_hgp; 144, argument_list; 145, identifier:folds; 146, identifier:n; 147, identifier:k; 148, parenthesized_expression; 149, identifier:np; 150, identifier:float64; 151, identifier:np; 152, identifier:float64; 153, identifier:indices; 154, identifier:k; 155, identifier:p; 156, parenthesized_expression; 157, identifier:k; 158, integer:1; 159, augmented_assignment; 160, identifier:p; 161, identifier:k; 162, identifier:N; 163, identifier:K; 164, identifier:n; 165, binary_operator:K*(n/float(N)); 166, binary_operator:float((n+1) * (K-k)) / \ float((N-n) * (k+1)); 167, identifier:p; 168, parenthesized_expression; 169, identifier:K; 170, parenthesized_expression; 171, call; 172, line_continuation:\; 173, call; 174, binary_operator:float((n+1) * (N-K-n+k)) / float((N-n) * (n-k+1)); 175, binary_operator:n/float(N); 176, identifier:float; 177, argument_list; 178, identifier:float; 179, argument_list; 180, call; 181, call; 182, identifier:n; 183, call; 184, binary_operator:(n+1) * (K-k); 185, binary_operator:(N-n) * (k+1); 186, identifier:float; 187, argument_list; 188, identifier:float; 189, argument_list; 190, identifier:float; 191, argument_list; 192, parenthesized_expression; 193, parenthesized_expression; 194, parenthesized_expression; 195, parenthesized_expression; 196, binary_operator:(n+1) * (N-K-n+k); 197, binary_operator:(N-n) * (n-k+1); 198, identifier:N; 199, binary_operator:n+1; 200, binary_operator:K-k; 201, binary_operator:N-n; 202, binary_operator:k+1; 203, parenthesized_expression; 204, parenthesized_expression; 205, parenthesized_expression; 206, parenthesized_expression; 207, identifier:n; 208, integer:1; 209, identifier:K; 210, identifier:k; 211, identifier:N; 212, identifier:n; 213, identifier:k; 214, integer:1; 215, binary_operator:n+1; 216, binary_operator:N-K-n+k; 217, binary_operator:N-n; 218, binary_operator:n-k+1; 219, identifier:n; 220, integer:1; 221, binary_operator:N-K-n; 222, identifier:k; 223, identifier:N; 224, identifier:n; 225, binary_operator:n-k; 226, integer:1; 227, binary_operator:N-K; 228, identifier:n; 229, identifier:n; 230, identifier:k; 231, identifier:N; 232, identifier:K
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 4, 18; 4, 19; 7, 20; 8, 21; 9, 22; 10, 23; 11, 24; 12, 25; 13, 26; 14, 27; 15, 28; 16, 29; 17, 30; 18, 31; 18, 32; 19, 33; 21, 34; 21, 35; 22, 36; 22, 37; 22, 38; 23, 39; 23, 40; 24, 41; 24, 42; 25, 43; 25, 44; 26, 45; 26, 46; 27, 47; 27, 48; 28, 49; 28, 50; 29, 51; 29, 52; 30, 53; 30, 54; 31, 55; 31, 56; 32, 57; 32, 58; 32, 59; 32, 60; 32, 61; 32, 62; 33, 63; 33, 64; 35, 65; 35, 66; 36, 67; 36, 68; 38, 69; 38, 70; 40, 71; 40, 72; 42, 73; 42, 74; 44, 75; 44, 76; 45, 77; 45, 78; 47, 79; 47, 80; 57, 81; 57, 82; 57, 83; 57, 84; 57, 85; 58, 86; 60, 87; 62, 88; 66, 89; 66, 90; 68, 91; 68, 92; 69, 93; 69, 94; 70, 95; 70, 96; 73, 97; 73, 98; 74, 99; 74, 100; 75, 101; 75, 102; 76, 103; 76, 104; 81, 105; 81, 106; 84, 107; 84, 108; 85, 109; 85, 110; 85, 111; 86, 112; 86, 113; 87, 114; 87, 115; 88, 116; 88, 117; 90, 118; 90, 119; 92, 120; 92, 121; 95, 122; 95, 123; 96, 124; 96, 125; 99, 126; 99, 127; 100, 128; 100, 129; 103, 130; 103, 131; 104, 132; 104, 133; 105, 134; 105, 135; 106, 136; 106, 137; 107, 138; 108, 139; 111, 140; 114, 141; 114, 142; 115, 143; 115, 144; 116, 145; 116, 146; 117, 147; 117, 148; 129, 149; 129, 150; 133, 151; 133, 152; 136, 153; 136, 154; 138, 155; 138, 156; 139, 157; 139, 158; 140, 159; 144, 160; 144, 161; 144, 162; 144, 163; 144, 164; 148, 165; 156, 166; 159, 167; 159, 168; 165, 169; 165, 170; 166, 171; 166, 172; 166, 173; 168, 174; 170, 175; 171, 176; 171, 177; 173, 178; 173, 179; 174, 180; 174, 181; 175, 182; 175, 183; 177, 184; 179, 185; 180, 186; 180, 187; 181, 188; 181, 189; 183, 190; 183, 191; 184, 192; 184, 193; 185, 194; 185, 195; 187, 196; 189, 197; 191, 198; 192, 199; 193, 200; 194, 201; 195, 202; 196, 203; 196, 204; 197, 205; 197, 206; 199, 207; 199, 208; 200, 209; 200, 210; 201, 211; 201, 212; 202, 213; 202, 214; 203, 215; 204, 216; 205, 217; 206, 218; 215, 219; 215, 220; 216, 221; 216, 222; 217, 223; 217, 224; 218, 225; 218, 226; 221, 227; 221, 228; 225, 229; 225, 230; 227, 231; 227, 232
def get_hypergeometric_stats(N, indices): """Calculates hypergeom. p-values and fold enrichments for all cutoffs. Parameters ---------- N: int The length of the list indices: `numpy.ndarray` with ``dtype=np.uint16`` The (sorted) indices of the "1's" in the list. """ assert isinstance(N, (int, np.integer)) assert isinstance(indices, np.ndarray) and \ np.issubdtype(indices.dtype, np.uint16) K = indices.size pvals = np.empty(N+1, dtype=np.float64) folds = np.empty(N+1, dtype=np.float64) pvals[0] = 1.0 folds[0] = 1.0 n = 0 k = 0 p = 1.0 while n < N: if k < K and indices[k] == n: # "add one" # calculate f(k+1; N,K,n+1) from f(k; N,K,n) p *= (float((n+1) * (K-k)) / \ float((N-n) * (k+1))) k += 1 else: # "add zero" # calculate f(k; N,K,n+1) from f(k; N,K,n) p *= (float((n+1) * (N-K-n+k)) / float((N-n) * (n-k+1))) n += 1 # calculate hypergeometric p-value pvals[n] = get_hgp(p, k, N, K, n) # calculate fold enrichment folds[n] = k / (K*(n/float(N))) return pvals, folds
0, module; 1, function_definition; 2, function_name:sort_dictionary_list; 3, parameters; 4, block; 5, identifier:dict_list; 6, identifier:sort_key; 7, expression_statement; 8, if_statement; 9, expression_statement; 10, return_statement; 11, comment:""" sorts a list of dictionaries based on the value of the sort_key dict_list - a list of dictionaries sort_key - a string that identifies the key to sort the dictionaries with. Test sorting a list of dictionaries: >>> sort_dictionary_list([{'b' : 1, 'value' : 2}, {'c' : 2, 'value' : 3}, {'a' : 3, 'value' : 1}], 'value') [{'a': 3, 'value': 1}, {'b': 1, 'value': 2}, {'c': 2, 'value': 3}] """; 12, boolean_operator; 13, block; 14, call; 15, identifier:dict_list; 16, not_operator; 17, comparison_operator:len(dict_list) == 0; 18, return_statement; 19, attribute; 20, argument_list; 21, identifier:dict_list; 22, call; 23, integer:0; 24, identifier:dict_list; 25, identifier:dict_list; 26, identifier:sort; 27, keyword_argument; 28, identifier:len; 29, argument_list; 30, identifier:key; 31, call; 32, identifier:dict_list; 33, identifier:itemgetter; 34, argument_list; 35, identifier:sort_key
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 8, 13; 9, 14; 10, 15; 12, 16; 12, 17; 13, 18; 14, 19; 14, 20; 16, 21; 17, 22; 17, 23; 18, 24; 19, 25; 19, 26; 20, 27; 22, 28; 22, 29; 27, 30; 27, 31; 29, 32; 31, 33; 31, 34; 34, 35
def sort_dictionary_list(dict_list, sort_key): """ sorts a list of dictionaries based on the value of the sort_key dict_list - a list of dictionaries sort_key - a string that identifies the key to sort the dictionaries with. Test sorting a list of dictionaries: >>> sort_dictionary_list([{'b' : 1, 'value' : 2}, {'c' : 2, 'value' : 3}, {'a' : 3, 'value' : 1}], 'value') [{'a': 3, 'value': 1}, {'b': 1, 'value': 2}, {'c': 2, 'value': 3}] """ if not dict_list or len(dict_list) == 0: return dict_list dict_list.sort(key=itemgetter(sort_key)) return dict_list
0, module; 1, function_definition; 2, function_name:render; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, return_statement; 11, comment:""" Render the menu into a sorted by order multi dict """; 12, assignment; 13, assignment; 14, pattern_list; 15, call; 16, block; 17, call; 18, identifier:menu_list; 19, list; 20, identifier:menu_index; 21, integer:0; 22, identifier:_; 23, identifier:menu; 24, attribute; 25, argument_list; 26, expression_statement; 27, expression_statement; 28, expression_statement; 29, if_statement; 30, for_statement; 31, expression_statement; 32, if_statement; 33, expression_statement; 34, attribute; 35, argument_list; 36, call; 37, identifier:items; 38, assignment; 39, assignment; 40, assignment; 41, comparison_operator:"visible" in menu["kwargs"]; 42, block; 43, identifier:s; 44, subscript; 45, block; 46, assignment; 47, subscript; 48, block; 49, else_clause; 50, augmented_assignment; 51, identifier:self; 52, identifier:_sort; 53, identifier:menu_list; 54, attribute; 55, argument_list; 56, identifier:subnav; 57, list; 58, subscript; 59, call; 60, subscript; 61, False; 62, string:"visible"; 63, subscript; 64, expression_statement; 65, identifier:menu; 66, string:"subnav"; 67, if_statement; 68, if_statement; 69, expression_statement; 70, expression_statement; 71, expression_statement; 72, expression_statement; 73, identifier:_kwargs; 74, subscript; 75, identifier:menu; 76, string:"title"; 77, expression_statement; 78, expression_statement; 79, block; 80, identifier:menu_index; 81, integer:1; 82, identifier:copy; 83, identifier:deepcopy; 84, attribute; 85, subscript; 86, string:"_id"; 87, identifier:str; 88, argument_list; 89, subscript; 90, string:"active"; 91, identifier:menu; 92, string:"kwargs"; 93, assignment; 94, subscript; 95, block; 96, comparison_operator:s["endpoint"] == request.endpoint; 97, block; 98, assignment; 99, augmented_assignment; 100, assignment; 101, call; 102, identifier:menu; 103, string:"kwargs"; 104, call; 105, call; 106, expression_statement; 107, identifier:self; 108, identifier:MENU; 109, identifier:menu; 110, string:"kwargs"; 111, identifier:menu_index; 112, identifier:menu; 113, string:"kwargs"; 114, subscript; 115, call; 116, identifier:s; 117, string:"title"; 118, expression_statement; 119, subscript; 120, attribute; 121, expression_statement; 122, expression_statement; 123, subscript; 124, call; 125, identifier:menu_index; 126, integer:1; 127, subscript; 128, call; 129, attribute; 130, argument_list; 131, attribute; 132, argument_list; 133, attribute; 134, argument_list; 135, augmented_assignment; 136, subscript; 137, string:"visible"; 138, attribute; 139, argument_list; 140, assignment; 141, identifier:s; 142, string:"endpoint"; 143, identifier:request; 144, identifier:endpoint; 145, assignment; 146, assignment; 147, identifier:s; 148, string:"visible"; 149, attribute; 150, argument_list; 151, identifier:s; 152, string:"_id"; 153, identifier:str; 154, argument_list; 155, identifier:subnav; 156, identifier:append; 157, identifier:s; 158, identifier:_kwargs; 159, identifier:update; 160, dictionary; 161, identifier:menu_list; 162, identifier:append; 163, identifier:_kwargs; 164, identifier:menu_list; 165, identifier:subnav; 166, identifier:menu; 167, string:"kwargs"; 168, identifier:self; 169, identifier:_test_visibility; 170, subscript; 171, subscript; 172, call; 173, subscript; 174, True; 175, subscript; 176, True; 177, identifier:self; 178, identifier:_test_visibility; 179, subscript; 180, identifier:menu_index; 181, pair; 182, pair; 183, pair; 184, subscript; 185, string:"visible"; 186, identifier:s; 187, string:"title"; 188, attribute; 189, argument_list; 190, identifier:s; 191, string:"active"; 192, subscript; 193, string:"active"; 194, identifier:s; 195, string:"visible"; 196, string:"subnav"; 197, call; 198, string:"order"; 199, subscript; 200, string:"title"; 201, call; 202, identifier:menu; 203, string:"kwargs"; 204, identifier:self; 205, identifier:_get_title; 206, subscript; 207, identifier:menu; 208, string:"kwargs"; 209, attribute; 210, argument_list; 211, identifier:menu; 212, string:"order"; 213, attribute; 214, argument_list; 215, identifier:s; 216, string:"title"; 217, identifier:self; 218, identifier:_sort; 219, identifier:subnav; 220, identifier:self; 221, identifier:_get_title; 222, subscript; 223, identifier:menu; 224, string:"title"
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 6, 11; 7, 12; 8, 13; 9, 14; 9, 15; 9, 16; 10, 17; 12, 18; 12, 19; 13, 20; 13, 21; 14, 22; 14, 23; 15, 24; 15, 25; 16, 26; 16, 27; 16, 28; 16, 29; 16, 30; 16, 31; 16, 32; 16, 33; 17, 34; 17, 35; 24, 36; 24, 37; 26, 38; 27, 39; 28, 40; 29, 41; 29, 42; 30, 43; 30, 44; 30, 45; 31, 46; 32, 47; 32, 48; 32, 49; 33, 50; 34, 51; 34, 52; 35, 53; 36, 54; 36, 55; 38, 56; 38, 57; 39, 58; 39, 59; 40, 60; 40, 61; 41, 62; 41, 63; 42, 64; 44, 65; 44, 66; 45, 67; 45, 68; 45, 69; 45, 70; 45, 71; 45, 72; 46, 73; 46, 74; 47, 75; 47, 76; 48, 77; 48, 78; 49, 79; 50, 80; 50, 81; 54, 82; 54, 83; 55, 84; 58, 85; 58, 86; 59, 87; 59, 88; 60, 89; 60, 90; 63, 91; 63, 92; 64, 93; 67, 94; 67, 95; 68, 96; 68, 97; 69, 98; 70, 99; 71, 100; 72, 101; 74, 102; 74, 103; 77, 104; 78, 105; 79, 106; 84, 107; 84, 108; 85, 109; 85, 110; 88, 111; 89, 112; 89, 113; 93, 114; 93, 115; 94, 116; 94, 117; 95, 118; 96, 119; 96, 120; 97, 121; 97, 122; 98, 123; 98, 124; 99, 125; 99, 126; 100, 127; 100, 128; 101, 129; 101, 130; 104, 131; 104, 132; 105, 133; 105, 134; 106, 135; 114, 136; 114, 137; 115, 138; 115, 139; 118, 140; 119, 141; 119, 142; 120, 143; 120, 144; 121, 145; 122, 146; 123, 147; 123, 148; 124, 149; 124, 150; 127, 151; 127, 152; 128, 153; 128, 154; 129, 155; 129, 156; 130, 157; 131, 158; 131, 159; 132, 160; 133, 161; 133, 162; 134, 163; 135, 164; 135, 165; 136, 166; 136, 167; 138, 168; 138, 169; 139, 170; 140, 171; 140, 172; 145, 173; 145, 174; 146, 175; 146, 176; 149, 177; 149, 178; 150, 179; 154, 180; 160, 181; 160, 182; 160, 183; 170, 184; 170, 185; 171, 186; 171, 187; 172, 188; 172, 189; 173, 190; 173, 191; 175, 192; 175, 193; 179, 194; 179, 195; 181, 196; 181, 197; 182, 198; 182, 199; 183, 200; 183, 201; 184, 202; 184, 203; 188, 204; 188, 205; 189, 206; 192, 207; 192, 208; 197, 209; 197, 210; 199, 211; 199, 212; 201, 213; 201, 214; 206, 215; 206, 216; 209, 217; 209, 218; 210, 219; 213, 220; 213, 221; 214, 222; 222, 223; 222, 224
def render(self): """ Render the menu into a sorted by order multi dict """ menu_list = [] menu_index = 0 for _, menu in copy.deepcopy(self.MENU).items(): subnav = [] menu["kwargs"]["_id"] = str(menu_index) menu["kwargs"]["active"] = False if "visible" in menu["kwargs"]: menu["kwargs"]["visible"] = self._test_visibility(menu["kwargs"]["visible"]) for s in menu["subnav"]: if s["title"]: s["title"] = self._get_title(s["title"]) if s["endpoint"] == request.endpoint: s["active"] = True menu["kwargs"]["active"] = True s["visible"] = self._test_visibility(s["visible"]) menu_index += 1 s["_id"] = str(menu_index) subnav.append(s) _kwargs = menu["kwargs"] if menu["title"]: _kwargs.update({ "subnav": self._sort(subnav), "order": menu["order"], "title": self._get_title(menu["title"]) }) menu_list.append(_kwargs) else: menu_list += subnav menu_index += 1 return self._sort(menu_list)
0, module; 1, function_definition; 2, function_name:vote_mean; 3, parameters; 4, block; 5, identifier:candidates; 6, identifier:votes; 7, identifier:n_winners; 8, expression_statement; 9, expression_statement; 10, for_statement; 11, for_statement; 12, expression_statement; 13, expression_statement; 14, expression_statement; 15, expression_statement; 16, for_statement; 17, return_statement; 18, comment:"""Perform mean voting based on votes. Mean voting computes the mean preference for each of the artifact candidates from the votes and sorts the candidates in the mean preference order. Ties are resolved randomly. :param candidates: All candidates in the vote :param votes: Votes from the agents :param int n_winners: The number of vote winners """; 19, assignment; 20, identifier:vote; 21, identifier:votes; 22, block; 23, identifier:s; 24, identifier:sums; 25, block; 26, assignment; 27, call; 28, assignment; 29, assignment; 30, identifier:e; 31, identifier:best; 32, block; 33, identifier:d; 34, identifier:sums; 35, dictionary_comprehension; 36, for_statement; 37, expression_statement; 38, identifier:ordering; 39, call; 40, attribute; 41, argument_list; 42, identifier:best; 43, subscript; 44, identifier:d; 45, list; 46, for_statement; 47, pair; 48, for_in_clause; 49, identifier:v; 50, identifier:vote; 51, block; 52, assignment; 53, identifier:list; 54, argument_list; 55, identifier:ordering; 56, identifier:sort; 57, keyword_argument; 58, keyword_argument; 59, identifier:ordering; 60, slice; 61, identifier:c; 62, identifier:candidates; 63, block; 64, call; 65, list; 66, identifier:candidate; 67, identifier:candidates; 68, expression_statement; 69, subscript; 70, binary_operator:sum(sums[s]) / len(sums[s]); 71, call; 72, identifier:key; 73, call; 74, identifier:reverse; 75, True; 76, call; 77, if_statement; 78, identifier:str; 79, argument_list; 80, call; 81, identifier:sums; 82, identifier:s; 83, call; 84, call; 85, attribute; 86, argument_list; 87, attribute; 88, argument_list; 89, identifier:min; 90, argument_list; 91, comparison_operator:str(c) == e[0]; 92, block; 93, identifier:candidate; 94, attribute; 95, argument_list; 96, identifier:sum; 97, argument_list; 98, identifier:len; 99, argument_list; 100, identifier:sums; 101, identifier:items; 102, identifier:operator; 103, identifier:itemgetter; 104, integer:1; 105, identifier:n_winners; 106, call; 107, call; 108, subscript; 109, expression_statement; 110, subscript; 111, identifier:append; 112, subscript; 113, subscript; 114, subscript; 115, identifier:len; 116, argument_list; 117, identifier:str; 118, argument_list; 119, identifier:e; 120, integer:0; 121, call; 122, identifier:sums; 123, call; 124, identifier:v; 125, integer:1; 126, identifier:sums; 127, identifier:s; 128, identifier:sums; 129, identifier:s; 130, identifier:ordering; 131, identifier:c; 132, attribute; 133, argument_list; 134, identifier:str; 135, argument_list; 136, identifier:d; 137, identifier:append; 138, tuple; 139, subscript; 140, identifier:c; 141, subscript; 142, identifier:v; 143, integer:0; 144, identifier:e; 145, integer:1
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 8, 18; 9, 19; 10, 20; 10, 21; 10, 22; 11, 23; 11, 24; 11, 25; 12, 26; 13, 27; 14, 28; 15, 29; 16, 30; 16, 31; 16, 32; 17, 33; 19, 34; 19, 35; 22, 36; 25, 37; 26, 38; 26, 39; 27, 40; 27, 41; 28, 42; 28, 43; 29, 44; 29, 45; 32, 46; 35, 47; 35, 48; 36, 49; 36, 50; 36, 51; 37, 52; 39, 53; 39, 54; 40, 55; 40, 56; 41, 57; 41, 58; 43, 59; 43, 60; 46, 61; 46, 62; 46, 63; 47, 64; 47, 65; 48, 66; 48, 67; 51, 68; 52, 69; 52, 70; 54, 71; 57, 72; 57, 73; 58, 74; 58, 75; 60, 76; 63, 77; 64, 78; 64, 79; 68, 80; 69, 81; 69, 82; 70, 83; 70, 84; 71, 85; 71, 86; 73, 87; 73, 88; 76, 89; 76, 90; 77, 91; 77, 92; 79, 93; 80, 94; 80, 95; 83, 96; 83, 97; 84, 98; 84, 99; 85, 100; 85, 101; 87, 102; 87, 103; 88, 104; 90, 105; 90, 106; 91, 107; 91, 108; 92, 109; 94, 110; 94, 111; 95, 112; 97, 113; 99, 114; 106, 115; 106, 116; 107, 117; 107, 118; 108, 119; 108, 120; 109, 121; 110, 122; 110, 123; 112, 124; 112, 125; 113, 126; 113, 127; 114, 128; 114, 129; 116, 130; 118, 131; 121, 132; 121, 133; 123, 134; 123, 135; 132, 136; 132, 137; 133, 138; 135, 139; 138, 140; 138, 141; 139, 142; 139, 143; 141, 144; 141, 145
def vote_mean(candidates, votes, n_winners): """Perform mean voting based on votes. Mean voting computes the mean preference for each of the artifact candidates from the votes and sorts the candidates in the mean preference order. Ties are resolved randomly. :param candidates: All candidates in the vote :param votes: Votes from the agents :param int n_winners: The number of vote winners """ sums = {str(candidate): [] for candidate in candidates} for vote in votes: for v in vote: sums[str(v[0])].append(v[1]) for s in sums: sums[s] = sum(sums[s]) / len(sums[s]) ordering = list(sums.items()) ordering.sort(key=operator.itemgetter(1), reverse=True) best = ordering[:min(n_winners, len(ordering))] d = [] for e in best: for c in candidates: if str(c) == e[0]: d.append((c, e[1])) return d
0, module; 1, function_definition; 2, function_name:vote; 3, parameters; 4, block; 5, identifier:self; 6, identifier:candidates; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, return_statement; 11, comment:"""Rank artifact candidates. The voting is needed for the agents living in societies using social decision making. The function should return a sorted list of (candidate, evaluation)-tuples. Depending on the social choice function used, the evaluation might be omitted from the actual decision making, or only a number of (the highest ranking) candidates may be used. This basic implementation ranks candidates based on :meth:`~creamas.core.agent.CreativeAgent.evaluate`. :param candidates: list of :py:class:`~creamas.core.artifact.Artifact` objects to be ranked :returns: Ordered list of (candidate, evaluation)-tuples """; 12, assignment; 13, call; 14, identifier:ranks; 15, identifier:ranks; 16, list_comprehension; 17, attribute; 18, argument_list; 19, tuple; 20, for_in_clause; 21, identifier:ranks; 22, identifier:sort; 23, keyword_argument; 24, keyword_argument; 25, identifier:c; 26, subscript; 27, identifier:c; 28, identifier:candidates; 29, identifier:key; 30, call; 31, identifier:reverse; 32, True; 33, call; 34, integer:0; 35, attribute; 36, argument_list; 37, attribute; 38, argument_list; 39, identifier:operator; 40, identifier:itemgetter; 41, integer:1; 42, identifier:self; 43, identifier:evaluate; 44, identifier:c
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 9, 13; 10, 14; 12, 15; 12, 16; 13, 17; 13, 18; 16, 19; 16, 20; 17, 21; 17, 22; 18, 23; 18, 24; 19, 25; 19, 26; 20, 27; 20, 28; 23, 29; 23, 30; 24, 31; 24, 32; 26, 33; 26, 34; 30, 35; 30, 36; 33, 37; 33, 38; 35, 39; 35, 40; 36, 41; 37, 42; 37, 43; 38, 44
def vote(self, candidates): """Rank artifact candidates. The voting is needed for the agents living in societies using social decision making. The function should return a sorted list of (candidate, evaluation)-tuples. Depending on the social choice function used, the evaluation might be omitted from the actual decision making, or only a number of (the highest ranking) candidates may be used. This basic implementation ranks candidates based on :meth:`~creamas.core.agent.CreativeAgent.evaluate`. :param candidates: list of :py:class:`~creamas.core.artifact.Artifact` objects to be ranked :returns: Ordered list of (candidate, evaluation)-tuples """ ranks = [(c, self.evaluate(c)[0]) for c in candidates] ranks.sort(key=operator.itemgetter(1), reverse=True) return ranks
0, module; 1, function_definition; 2, function_name:gather_votes; 3, parameters; 4, block; 5, identifier:self; 6, identifier:candidates; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, return_statement; 11, comment:"""Gather votes for the given candidates from the agents in the environment. Returned votes are anonymous, i.e. they cannot be tracked to any individual agent afterwards. :returns: A list of votes. Each vote is a list of ``(artifact, preference)`` -tuples sorted in a preference order of a single agent. """; 12, assignment; 13, identifier:a; 14, call; 15, block; 16, identifier:votes; 17, identifier:votes; 18, list; 19, attribute; 20, argument_list; 21, expression_statement; 22, expression_statement; 23, identifier:self; 24, identifier:get_agents; 25, keyword_argument; 26, assignment; 27, call; 28, identifier:addr; 29, False; 30, identifier:vote; 31, call; 32, attribute; 33, argument_list; 34, attribute; 35, argument_list; 36, identifier:votes; 37, identifier:append; 38, identifier:vote; 39, identifier:a; 40, identifier:vote; 41, identifier:candidates
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 4, 7; 4, 8; 4, 9; 4, 10; 7, 11; 8, 12; 9, 13; 9, 14; 9, 15; 10, 16; 12, 17; 12, 18; 14, 19; 14, 20; 15, 21; 15, 22; 19, 23; 19, 24; 20, 25; 21, 26; 22, 27; 25, 28; 25, 29; 26, 30; 26, 31; 27, 32; 27, 33; 31, 34; 31, 35; 32, 36; 32, 37; 33, 38; 34, 39; 34, 40; 35, 41
def gather_votes(self, candidates): """Gather votes for the given candidates from the agents in the environment. Returned votes are anonymous, i.e. they cannot be tracked to any individual agent afterwards. :returns: A list of votes. Each vote is a list of ``(artifact, preference)`` -tuples sorted in a preference order of a single agent. """ votes = [] for a in self.get_agents(addr=False): vote = a.vote(candidates) votes.append(vote) return votes
0, module; 1, function_definition; 2, function_name:sort_by; 3, parameters; 4, block; 5, identifier:self; 6, identifier:fieldName; 7, default_parameter; 8, expression_statement; 9, return_statement; 10, identifier:reverse; 11, False; 12, string; 13, call; 14, string_content:sort_by - Return a copy of this collection, sorted by the given fieldName. The fieldName is accessed the same way as other filtering, so it supports custom properties, etc. @param fieldName <str> - The name of the field on which to sort by @param reverse <bool> Default False - If True, list will be in reverse order. @return <QueryableList> - A QueryableList of the same type with the elements sorted based on arguments.; 15, attribute; 16, argument_list; 17, identifier:self; 18, identifier:__class__; 19, call; 20, identifier:sorted; 21, argument_list; 22, identifier:self; 23, keyword_argument; 24, keyword_argument; 25, identifier:key; 26, lambda; 27, identifier:reverse; 28, identifier:reverse; 29, lambda_parameters; 30, call; 31, identifier:item; 32, attribute; 33, argument_list; 34, identifier:self; 35, identifier:_get_item_value; 36, identifier:item; 37, identifier:fieldName
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 7, 10; 7, 11; 8, 12; 9, 13; 12, 14; 13, 15; 13, 16; 15, 17; 15, 18; 16, 19; 19, 20; 19, 21; 21, 22; 21, 23; 21, 24; 23, 25; 23, 26; 24, 27; 24, 28; 26, 29; 26, 30; 29, 31; 30, 32; 30, 33; 32, 34; 32, 35; 33, 36; 33, 37
def sort_by(self, fieldName, reverse=False): ''' sort_by - Return a copy of this collection, sorted by the given fieldName. The fieldName is accessed the same way as other filtering, so it supports custom properties, etc. @param fieldName <str> - The name of the field on which to sort by @param reverse <bool> Default False - If True, list will be in reverse order. @return <QueryableList> - A QueryableList of the same type with the elements sorted based on arguments. ''' return self.__class__( sorted(self, key = lambda item : self._get_item_value(item, fieldName), reverse=reverse) )
0, module; 1, function_definition; 2, function_name:sorted_items; 3, parameters; 4, block; 5, identifier:d; 6, default_parameter; 7, default_parameter; 8, expression_statement; 9, comment:# wrap the key func so it operates on the first element of each item; 10, function_definition; 11, return_statement; 12, identifier:key; 13, identifier:__identity; 14, identifier:reverse; 15, False; 16, comment:""" Return the items of the dictionary sorted by the keys >>> sample = dict(foo=20, bar=42, baz=10) >>> tuple(sorted_items(sample)) (('bar', 42), ('baz', 10), ('foo', 20)) >>> reverse_string = lambda s: ''.join(reversed(s)) >>> tuple(sorted_items(sample, key=reverse_string)) (('foo', 20), ('bar', 42), ('baz', 10)) >>> tuple(sorted_items(sample, reverse=True)) (('foo', 20), ('baz', 10), ('bar', 42)) """; 17, function_name:pairkey_key; 18, parameters; 19, block; 20, call; 21, identifier:item; 22, return_statement; 23, identifier:sorted; 24, argument_list; 25, call; 26, call; 27, keyword_argument; 28, keyword_argument; 29, identifier:key; 30, argument_list; 31, attribute; 32, argument_list; 33, identifier:key; 34, identifier:pairkey_key; 35, identifier:reverse; 36, identifier:reverse; 37, subscript; 38, identifier:d; 39, identifier:items; 40, identifier:item; 41, integer:0
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 6, 13; 7, 14; 7, 15; 8, 16; 10, 17; 10, 18; 10, 19; 11, 20; 18, 21; 19, 22; 20, 23; 20, 24; 22, 25; 24, 26; 24, 27; 24, 28; 25, 29; 25, 30; 26, 31; 26, 32; 27, 33; 27, 34; 28, 35; 28, 36; 30, 37; 31, 38; 31, 39; 37, 40; 37, 41
def sorted_items(d, key=__identity, reverse=False): """ Return the items of the dictionary sorted by the keys >>> sample = dict(foo=20, bar=42, baz=10) >>> tuple(sorted_items(sample)) (('bar', 42), ('baz', 10), ('foo', 20)) >>> reverse_string = lambda s: ''.join(reversed(s)) >>> tuple(sorted_items(sample, key=reverse_string)) (('foo', 20), ('bar', 42), ('baz', 10)) >>> tuple(sorted_items(sample, reverse=True)) (('foo', 20), ('baz', 10), ('bar', 42)) """ # wrap the key func so it operates on the first element of each item def pairkey_key(item): return key(item[0]) return sorted(d.items(), key=pairkey_key, reverse=reverse)
0, module; 1, function_definition; 2, function_name:merge_range_pairs; 3, parameters; 4, block; 5, identifier:prs; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, expression_statement; 12, while_statement; 13, return_statement; 14, string; 15, assignment; 16, assignment; 17, assignment; 18, assignment; 19, assignment; 20, comparison_operator:x < len(sprs); 21, block; 22, identifier:new_prs; 23, string_content:Takes in a list of pairs specifying ranges and returns a sorted list of merged, sorted ranges.; 24, identifier:new_prs; 25, list; 26, identifier:sprs; 27, list_comprehension; 28, identifier:sprs; 29, call; 30, identifier:merged; 31, False; 32, identifier:x; 33, integer:0; 34, identifier:x; 35, call; 36, expression_statement; 37, expression_statement; 38, for_statement; 39, if_statement; 40, expression_statement; 41, call; 42, for_in_clause; 43, identifier:sorted; 44, argument_list; 45, identifier:len; 46, argument_list; 47, assignment; 48, assignment; 49, identifier:y; 50, call; 51, block; 52, comparison_operator:new_pair not in new_prs; 53, block; 54, assignment; 55, identifier:sorted; 56, argument_list; 57, identifier:p; 58, identifier:prs; 59, identifier:sprs; 60, identifier:sprs; 61, identifier:newx; 62, binary_operator:x + 1; 63, identifier:new_pair; 64, call; 65, identifier:range; 66, argument_list; 67, if_statement; 68, identifier:new_pair; 69, identifier:new_prs; 70, expression_statement; 71, identifier:x; 72, identifier:newx; 73, identifier:p; 74, identifier:x; 75, integer:1; 76, identifier:list; 77, argument_list; 78, binary_operator:x + 1; 79, call; 80, comparison_operator:new_pair[0] <= sprs[y][0] - 1 <= new_pair[1]; 81, block; 82, call; 83, subscript; 84, identifier:x; 85, integer:1; 86, identifier:len; 87, argument_list; 88, subscript; 89, binary_operator:sprs[y][0] - 1; 90, subscript; 91, expression_statement; 92, expression_statement; 93, expression_statement; 94, attribute; 95, argument_list; 96, identifier:sprs; 97, identifier:x; 98, identifier:sprs; 99, identifier:new_pair; 100, integer:0; 101, subscript; 102, integer:1; 103, identifier:new_pair; 104, integer:1; 105, assignment; 106, assignment; 107, assignment; 108, identifier:new_prs; 109, identifier:append; 110, identifier:new_pair; 111, subscript; 112, integer:0; 113, subscript; 114, call; 115, subscript; 116, call; 117, identifier:newx; 118, binary_operator:y + 1; 119, identifier:sprs; 120, identifier:y; 121, identifier:new_pair; 122, integer:0; 123, identifier:min; 124, argument_list; 125, identifier:new_pair; 126, integer:1; 127, identifier:max; 128, argument_list; 129, identifier:y; 130, integer:1; 131, subscript; 132, subscript; 133, subscript; 134, subscript; 135, identifier:new_pair; 136, integer:0; 137, subscript; 138, integer:0; 139, identifier:new_pair; 140, integer:1; 141, subscript; 142, integer:1; 143, identifier:sprs; 144, identifier:y; 145, identifier:sprs; 146, identifier:y
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 6, 14; 7, 15; 8, 16; 9, 17; 10, 18; 11, 19; 12, 20; 12, 21; 13, 22; 14, 23; 15, 24; 15, 25; 16, 26; 16, 27; 17, 28; 17, 29; 18, 30; 18, 31; 19, 32; 19, 33; 20, 34; 20, 35; 21, 36; 21, 37; 21, 38; 21, 39; 21, 40; 27, 41; 27, 42; 29, 43; 29, 44; 35, 45; 35, 46; 36, 47; 37, 48; 38, 49; 38, 50; 38, 51; 39, 52; 39, 53; 40, 54; 41, 55; 41, 56; 42, 57; 42, 58; 44, 59; 46, 60; 47, 61; 47, 62; 48, 63; 48, 64; 50, 65; 50, 66; 51, 67; 52, 68; 52, 69; 53, 70; 54, 71; 54, 72; 56, 73; 62, 74; 62, 75; 64, 76; 64, 77; 66, 78; 66, 79; 67, 80; 67, 81; 70, 82; 77, 83; 78, 84; 78, 85; 79, 86; 79, 87; 80, 88; 80, 89; 80, 90; 81, 91; 81, 92; 81, 93; 82, 94; 82, 95; 83, 96; 83, 97; 87, 98; 88, 99; 88, 100; 89, 101; 89, 102; 90, 103; 90, 104; 91, 105; 92, 106; 93, 107; 94, 108; 94, 109; 95, 110; 101, 111; 101, 112; 105, 113; 105, 114; 106, 115; 106, 116; 107, 117; 107, 118; 111, 119; 111, 120; 113, 121; 113, 122; 114, 123; 114, 124; 115, 125; 115, 126; 116, 127; 116, 128; 118, 129; 118, 130; 124, 131; 124, 132; 128, 133; 128, 134; 131, 135; 131, 136; 132, 137; 132, 138; 133, 139; 133, 140; 134, 141; 134, 142; 137, 143; 137, 144; 141, 145; 141, 146
def merge_range_pairs(prs): '''Takes in a list of pairs specifying ranges and returns a sorted list of merged, sorted ranges.''' new_prs = [] sprs = [sorted(p) for p in prs] sprs = sorted(sprs) merged = False x = 0 while x < len(sprs): newx = x + 1 new_pair = list(sprs[x]) for y in range(x + 1, len(sprs)): if new_pair[0] <= sprs[y][0] - 1 <= new_pair[1]: new_pair[0] = min(new_pair[0], sprs[y][0]) new_pair[1] = max(new_pair[1], sprs[y][1]) newx = y + 1 if new_pair not in new_prs: new_prs.append(new_pair) x = newx return new_prs
0, module; 1, function_definition; 2, function_name:fixed_point; 3, parameters; 4, block; 5, identifier:is_zero; 6, identifier:plus; 7, identifier:minus; 8, identifier:f; 9, identifier:x; 10, expression_statement; 11, decorated_definition; 12, return_statement; 13, comment:""" Get the least fixed point when it can be computed piecewise. .. testsetup:: from proso.func import fixed_point .. doctest:: >>> sorted(fixed_point( ... is_zero=lambda xs: len(xs) == 0, ... plus=lambda xs, ys: xs + ys, ... minus=lambda xs, ys: [x for x in xs if x not in ys], ... f=lambda xs: [x + 1 for x in xs if x < 10], ... x=[0, 5, 8] ... )) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Args: is_zero: function returning True if the given value is zero plus: function taking two values and returning their addition minus: function taking two values and returning ther difference f: function computing the expected value x: initial value Returns: The least fixed point. """; 14, decorator; 15, function_definition; 16, call; 17, identifier:memo_Y; 18, function_name:_fixed_point; 19, parameters; 20, block; 21, identifier:_fixed_point; 22, argument_list; 23, identifier:fixed_point_fun; 24, function_definition; 25, return_statement; 26, identifier:x; 27, call; 28, function_name:__fixed_point; 29, parameters; 30, block; 31, identifier:__fixed_point; 32, identifier:f; 33, argument_list; 34, identifier:collected; 35, identifier:new; 36, expression_statement; 37, if_statement; 38, return_statement; 39, identifier:x; 40, assignment; 41, call; 42, block; 43, call; 44, identifier:diff; 45, call; 46, identifier:is_zero; 47, argument_list; 48, return_statement; 49, identifier:fixed_point_fun; 50, argument_list; 51, identifier:minus; 52, argument_list; 53, identifier:diff; 54, identifier:collected; 55, call; 56, call; 57, identifier:new; 58, identifier:collected; 59, identifier:plus; 60, argument_list; 61, identifier:f; 62, argument_list; 63, identifier:collected; 64, identifier:diff; 65, identifier:diff
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 3, 8; 3, 9; 4, 10; 4, 11; 4, 12; 10, 13; 11, 14; 11, 15; 12, 16; 14, 17; 15, 18; 15, 19; 15, 20; 16, 21; 16, 22; 19, 23; 20, 24; 20, 25; 22, 26; 22, 27; 24, 28; 24, 29; 24, 30; 25, 31; 27, 32; 27, 33; 29, 34; 29, 35; 30, 36; 30, 37; 30, 38; 33, 39; 36, 40; 37, 41; 37, 42; 38, 43; 40, 44; 40, 45; 41, 46; 41, 47; 42, 48; 43, 49; 43, 50; 45, 51; 45, 52; 47, 53; 48, 54; 50, 55; 50, 56; 52, 57; 52, 58; 55, 59; 55, 60; 56, 61; 56, 62; 60, 63; 60, 64; 62, 65
def fixed_point(is_zero, plus, minus, f, x): """ Get the least fixed point when it can be computed piecewise. .. testsetup:: from proso.func import fixed_point .. doctest:: >>> sorted(fixed_point( ... is_zero=lambda xs: len(xs) == 0, ... plus=lambda xs, ys: xs + ys, ... minus=lambda xs, ys: [x for x in xs if x not in ys], ... f=lambda xs: [x + 1 for x in xs if x < 10], ... x=[0, 5, 8] ... )) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Args: is_zero: function returning True if the given value is zero plus: function taking two values and returning their addition minus: function taking two values and returning ther difference f: function computing the expected value x: initial value Returns: The least fixed point. """ @memo_Y def _fixed_point(fixed_point_fun): def __fixed_point(collected, new): diff = minus(new, collected) if is_zero(diff): return collected return fixed_point_fun(plus(collected, diff), f(diff)) return __fixed_point return _fixed_point(x, f(x))
0, module; 1, function_definition; 2, function_name:connections_from_graph; 3, parameters; 4, block; 5, identifier:env; 6, identifier:G; 7, default_parameter; 8, expression_statement; 9, if_statement; 10, if_statement; 11, expression_statement; 12, if_statement; 13, comment:# Sort agent addresses to the order they were added to the environment.; 14, expression_statement; 15, expression_statement; 16, expression_statement; 17, expression_statement; 18, identifier:edge_data; 19, False; 20, comment:"""Create connections for agents in the given environment from the given NetworkX graph structure. :param env: Environment where the agents live. The environment should be derived from :class:`~creamas.core.environment.Environment`, :class:`~creamas.mp.MultiEnvironment` or :class:`~creamas.ds.DistributedEnvironment`. :param G: NetworkX graph structure, either :class:`networkx.graph.Graph` or :class:`networkx.digraph.DiGraph`. The graph needs to have the same number of nodes as the environment has agents (excluding the managers). :param bool edge_data: If ``True``, edge data from the given graph is copied to the agents' :attr:`connections`. .. note:: By design, manager agents are excluded from the connections and should not be counted towards environment's agent count. The created connections are stored in each agent's :attr:`~creamas.core.agent.CreativeAgent.connections` and the possible edge data is stored as key-value pairs in the connection dictionary. The agents are sorted by their environments' hosts and ports before each agent is mapped to a node in **G**. This should cause some network generation methods in NetworkX, e.g. :func:`~networkx.generators.random_graphs.connected_watts_strogatz_graph`, to create more connections between agents in the same environment and/or node when using :class:`~creamas.mp.MultiEnvironment` or :class:`~creamas.ds.DistributedEnvironment`. """; 21, not_operator; 22, block; 23, not_operator; 24, block; 25, assignment; 26, comparison_operator:len(addrs) != len(G); 27, block; 28, assignment; 29, call; 30, assignment; 31, call; 32, call; 33, raise_statement; 34, call; 35, raise_statement; 36, identifier:addrs; 37, call; 38, call; 39, call; 40, raise_statement; 41, identifier:addrs; 42, call; 43, identifier:_addrs2nodes; 44, argument_list; 45, identifier:conn_map; 46, call; 47, attribute; 48, argument_list; 49, identifier:issubclass; 50, argument_list; 51, call; 52, identifier:hasattr; 53, argument_list; 54, call; 55, attribute; 56, argument_list; 57, identifier:len; 58, argument_list; 59, identifier:len; 60, argument_list; 61, call; 62, identifier:sort_addrs; 63, argument_list; 64, identifier:addrs; 65, identifier:G; 66, identifier:_edges2conns; 67, argument_list; 68, identifier:env; 69, identifier:create_connections; 70, identifier:conn_map; 71, attribute; 72, tuple; 73, identifier:TypeError; 74, argument_list; 75, identifier:env; 76, string; 77, identifier:TypeError; 78, argument_list; 79, identifier:env; 80, identifier:get_agents; 81, keyword_argument; 82, identifier:addrs; 83, identifier:G; 84, identifier:ValueError; 85, argument_list; 86, identifier:addrs; 87, identifier:G; 88, identifier:edge_data; 89, identifier:G; 90, identifier:__class__; 91, identifier:Graph; 92, identifier:DiGraph; 93, concatenated_string; 94, string_content:get_agents; 95, string:"Parameter 'env' must have get_agents."; 96, identifier:addr; 97, True; 98, call; 99, string:"Graph structure must be derived from Networkx's "; 100, string:"Graph or DiGraph."; 101, attribute; 102, argument_list; 103, concatenated_string; 104, identifier:format; 105, call; 106, call; 107, string:"The number of graph nodes and agents in the "; 108, string:"environment (excluding the manager agent) must "; 109, string:"match. Now got {} nodes and {} agents."; 110, identifier:len; 111, argument_list; 112, identifier:len; 113, argument_list; 114, identifier:G; 115, identifier:addrs
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 3, 6; 3, 7; 4, 8; 4, 9; 4, 10; 4, 11; 4, 12; 4, 13; 4, 14; 4, 15; 4, 16; 4, 17; 7, 18; 7, 19; 8, 20; 9, 21; 9, 22; 10, 23; 10, 24; 11, 25; 12, 26; 12, 27; 14, 28; 15, 29; 16, 30; 17, 31; 21, 32; 22, 33; 23, 34; 24, 35; 25, 36; 25, 37; 26, 38; 26, 39; 27, 40; 28, 41; 28, 42; 29, 43; 29, 44; 30, 45; 30, 46; 31, 47; 31, 48; 32, 49; 32, 50; 33, 51; 34, 52; 34, 53; 35, 54; 37, 55; 37, 56; 38, 57; 38, 58; 39, 59; 39, 60; 40, 61; 42, 62; 42, 63; 44, 64; 44, 65; 46, 66; 46, 67; 47, 68; 47, 69; 48, 70; 50, 71; 50, 72; 51, 73; 51, 74; 53, 75; 53, 76; 54, 77; 54, 78; 55, 79; 55, 80; 56, 81; 58, 82; 60, 83; 61, 84; 61, 85; 63, 86; 67, 87; 67, 88; 71, 89; 71, 90; 72, 91; 72, 92; 74, 93; 76, 94; 78, 95; 81, 96; 81, 97; 85, 98; 93, 99; 93, 100; 98, 101; 98, 102; 101, 103; 101, 104; 102, 105; 102, 106; 103, 107; 103, 108; 103, 109; 105, 110; 105, 111; 106, 112; 106, 113; 111, 114; 113, 115
def connections_from_graph(env, G, edge_data=False): """Create connections for agents in the given environment from the given NetworkX graph structure. :param env: Environment where the agents live. The environment should be derived from :class:`~creamas.core.environment.Environment`, :class:`~creamas.mp.MultiEnvironment` or :class:`~creamas.ds.DistributedEnvironment`. :param G: NetworkX graph structure, either :class:`networkx.graph.Graph` or :class:`networkx.digraph.DiGraph`. The graph needs to have the same number of nodes as the environment has agents (excluding the managers). :param bool edge_data: If ``True``, edge data from the given graph is copied to the agents' :attr:`connections`. .. note:: By design, manager agents are excluded from the connections and should not be counted towards environment's agent count. The created connections are stored in each agent's :attr:`~creamas.core.agent.CreativeAgent.connections` and the possible edge data is stored as key-value pairs in the connection dictionary. The agents are sorted by their environments' hosts and ports before each agent is mapped to a node in **G**. This should cause some network generation methods in NetworkX, e.g. :func:`~networkx.generators.random_graphs.connected_watts_strogatz_graph`, to create more connections between agents in the same environment and/or node when using :class:`~creamas.mp.MultiEnvironment` or :class:`~creamas.ds.DistributedEnvironment`. """ if not issubclass(G.__class__, (Graph, DiGraph)): raise TypeError("Graph structure must be derived from Networkx's " "Graph or DiGraph.") if not hasattr(env, 'get_agents'): raise TypeError("Parameter 'env' must have get_agents.") addrs = env.get_agents(addr=True) if len(addrs) != len(G): raise ValueError("The number of graph nodes and agents in the " "environment (excluding the manager agent) must " "match. Now got {} nodes and {} agents." .format(len(G), len(addrs))) # Sort agent addresses to the order they were added to the environment. addrs = sort_addrs(addrs) _addrs2nodes(addrs, G) conn_map = _edges2conns(G, edge_data) env.create_connections(conn_map)
0, module; 1, function_definition; 2, function_name:is_python_script; 3, parameters; 4, block; 5, identifier:filename; 6, expression_statement; 7, if_statement; 8, if_statement; 9, try_statement; 10, return_statement; 11, string; 12, call; 13, block; 14, not_operator; 15, block; 16, block; 17, except_clause; 18, False; 19, string_content:Checks a file to see if it's a python script of some sort.; 20, attribute; 21, argument_list; 22, return_statement; 23, call; 24, return_statement; 25, with_statement; 26, identifier:IOError; 27, block; 28, call; 29, identifier:endswith; 30, string; 31, True; 32, attribute; 33, argument_list; 34, False; 35, with_clause; 36, block; 37, pass_statement; 38, attribute; 39, argument_list; 40, string_content:.py; 41, attribute; 42, identifier:isfile; 43, identifier:filename; 44, with_item; 45, if_statement; 46, return_statement; 47, identifier:filename; 48, identifier:lower; 49, identifier:os; 50, identifier:path; 51, as_pattern; 52, comparison_operator:fp.read(2) != b'#!'; 53, block; 54, call; 55, call; 56, as_pattern_target; 57, call; 58, string; 59, return_statement; 60, attribute; 61, argument_list; 62, identifier:open; 63, argument_list; 64, identifier:fp; 65, attribute; 66, argument_list; 67, string_content:#!; 68, False; 69, identifier:re; 70, identifier:match; 71, string; 72, call; 73, identifier:filename; 74, string; 75, identifier:fp; 76, identifier:read; 77, integer:2; 78, string_content:.*python; 79, identifier:str_; 80, argument_list; 81, string_content:rb; 82, call; 83, attribute; 84, argument_list; 85, identifier:fp; 86, identifier:readline
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 6, 11; 7, 12; 7, 13; 8, 14; 8, 15; 9, 16; 9, 17; 10, 18; 11, 19; 12, 20; 12, 21; 13, 22; 14, 23; 15, 24; 16, 25; 17, 26; 17, 27; 20, 28; 20, 29; 21, 30; 22, 31; 23, 32; 23, 33; 24, 34; 25, 35; 25, 36; 27, 37; 28, 38; 28, 39; 30, 40; 32, 41; 32, 42; 33, 43; 35, 44; 36, 45; 36, 46; 38, 47; 38, 48; 41, 49; 41, 50; 44, 51; 45, 52; 45, 53; 46, 54; 51, 55; 51, 56; 52, 57; 52, 58; 53, 59; 54, 60; 54, 61; 55, 62; 55, 63; 56, 64; 57, 65; 57, 66; 58, 67; 59, 68; 60, 69; 60, 70; 61, 71; 61, 72; 63, 73; 63, 74; 65, 75; 65, 76; 66, 77; 71, 78; 72, 79; 72, 80; 74, 81; 80, 82; 82, 83; 82, 84; 83, 85; 83, 86
def is_python_script(filename): '''Checks a file to see if it's a python script of some sort. ''' if filename.lower().endswith('.py'): return True if not os.path.isfile(filename): return False try: with open(filename, 'rb') as fp: if fp.read(2) != b'#!': return False return re.match(r'.*python', str_(fp.readline())) except IOError: pass return False
0, module; 1, function_definition; 2, function_name:_prepare_data; 3, parameters; 4, block; 5, identifier:self; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, for_statement; 10, expression_statement; 11, for_statement; 12, comment:"""Prepare data before rendering When plotting very large datasets, we don't want to include data points which are outside the x-axis limits. LaTeX is very slow and consumes a lot of memory otherwise. Limiting the data points is only (easily) possible when the data are sorted. """; 13, assignment; 14, assignment; 15, identifier:series; 16, attribute; 17, block; 18, assignment; 19, identifier:series; 20, attribute; 21, block; 22, pattern_list; 23, expression_list; 24, attribute; 25, list; 26, identifier:self; 27, identifier:plot_series_list; 28, expression_statement; 29, expression_statement; 30, expression_statement; 31, comment:# only limit data when the data is sorted; 32, if_statement; 33, expression_statement; 34, attribute; 35, list; 36, identifier:self; 37, identifier:shaded_regions_list; 38, expression_statement; 39, expression_statement; 40, expression_statement; 41, comment:# only limit data when the data is sorted; 42, if_statement; 43, expression_statement; 44, identifier:xmin; 45, identifier:xmax; 46, subscript; 47, subscript; 48, identifier:self; 49, identifier:prepared_plot_series_list; 50, assignment; 51, assignment; 52, assignment; 53, comparison_operator:sorted(x) == list(x); 54, block; 55, call; 56, identifier:self; 57, identifier:prepared_shaded_regions_list; 58, assignment; 59, assignment; 60, assignment; 61, comparison_operator:sorted(x) == list(x); 62, block; 63, call; 64, attribute; 65, string; 66, attribute; 67, string; 68, identifier:prepared_series; 69, call; 70, identifier:data; 71, subscript; 72, pattern_list; 73, call; 74, call; 75, call; 76, expression_statement; 77, if_statement; 78, if_statement; 79, expression_statement; 80, attribute; 81, argument_list; 82, identifier:prepared_series; 83, call; 84, identifier:data; 85, subscript; 86, pattern_list; 87, call; 88, call; 89, call; 90, expression_statement; 91, if_statement; 92, if_statement; 93, expression_statement; 94, attribute; 95, argument_list; 96, identifier:self; 97, identifier:limits; 98, string_content:xmin; 99, identifier:self; 100, identifier:limits; 101, string_content:xmax; 102, attribute; 103, argument_list; 104, identifier:prepared_series; 105, string; 106, identifier:x; 107, identifier:_; 108, identifier:_; 109, identifier:_; 110, identifier:zip; 111, argument_list; 112, identifier:sorted; 113, argument_list; 114, identifier:list; 115, argument_list; 116, assignment; 117, comparison_operator:xmin is not None; 118, block; 119, else_clause; 120, comparison_operator:xmax is not None; 121, block; 122, else_clause; 123, assignment; 124, attribute; 125, identifier:append; 126, identifier:prepared_series; 127, attribute; 128, argument_list; 129, identifier:prepared_series; 130, string; 131, identifier:x; 132, identifier:_; 133, identifier:_; 134, identifier:zip; 135, argument_list; 136, identifier:sorted; 137, argument_list; 138, identifier:list; 139, argument_list; 140, assignment; 141, comparison_operator:xmin is not None; 142, block; 143, else_clause; 144, comparison_operator:xmax is not None; 145, block; 146, else_clause; 147, assignment; 148, attribute; 149, identifier:append; 150, identifier:prepared_series; 151, identifier:series; 152, identifier:copy; 153, string_content:data; 154, list_splat; 155, identifier:x; 156, identifier:x; 157, identifier:x; 158, call; 159, identifier:xmin; 160, None; 161, expression_statement; 162, if_statement; 163, block; 164, identifier:xmax; 165, None; 166, expression_statement; 167, block; 168, subscript; 169, subscript; 170, identifier:self; 171, identifier:prepared_plot_series_list; 172, identifier:series; 173, identifier:copy; 174, string_content:data; 175, list_splat; 176, identifier:x; 177, identifier:x; 178, identifier:x; 179, call; 180, identifier:xmin; 181, None; 182, expression_statement; 183, if_statement; 184, block; 185, identifier:xmax; 186, None; 187, expression_statement; 188, block; 189, subscript; 190, subscript; 191, identifier:self; 192, identifier:prepared_shaded_regions_list; 193, identifier:data; 194, attribute; 195, argument_list; 196, assignment; 197, comparison_operator:min_idx > 0; 198, block; 199, expression_statement; 200, assignment; 201, expression_statement; 202, identifier:prepared_series; 203, string; 204, identifier:data; 205, slice; 206, identifier:data; 207, attribute; 208, argument_list; 209, assignment; 210, comparison_operator:min_idx > 0; 211, block; 212, expression_statement; 213, assignment; 214, expression_statement; 215, identifier:prepared_series; 216, string; 217, identifier:data; 218, slice; 219, identifier:np; 220, identifier:array; 221, identifier:x; 222, identifier:min_idx; 223, call; 224, identifier:min_idx; 225, integer:0; 226, expression_statement; 227, assignment; 228, identifier:max_idx; 229, binary_operator:x.searchsorted(xmax) + 1; 230, assignment; 231, string_content:data; 232, identifier:min_idx; 233, identifier:max_idx; 234, identifier:np; 235, identifier:array; 236, identifier:x; 237, identifier:min_idx; 238, call; 239, identifier:min_idx; 240, integer:0; 241, expression_statement; 242, assignment; 243, identifier:max_idx; 244, binary_operator:x.searchsorted(xmax) + 1; 245, assignment; 246, string_content:data; 247, identifier:min_idx; 248, identifier:max_idx; 249, attribute; 250, argument_list; 251, augmented_assignment; 252, identifier:min_idx; 253, None; 254, call; 255, integer:1; 256, identifier:max_idx; 257, None; 258, attribute; 259, argument_list; 260, augmented_assignment; 261, identifier:min_idx; 262, None; 263, call; 264, integer:1; 265, identifier:max_idx; 266, None; 267, identifier:x; 268, identifier:searchsorted; 269, identifier:xmin; 270, identifier:min_idx; 271, integer:1; 272, attribute; 273, argument_list; 274, identifier:x; 275, identifier:searchsorted; 276, identifier:xmin; 277, identifier:min_idx; 278, integer:1; 279, attribute; 280, argument_list; 281, identifier:x; 282, identifier:searchsorted; 283, identifier:xmax; 284, identifier:x; 285, identifier:searchsorted; 286, identifier:xmax
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 4, 11; 6, 12; 7, 13; 8, 14; 9, 15; 9, 16; 9, 17; 10, 18; 11, 19; 11, 20; 11, 21; 13, 22; 13, 23; 14, 24; 14, 25; 16, 26; 16, 27; 17, 28; 17, 29; 17, 30; 17, 31; 17, 32; 17, 33; 18, 34; 18, 35; 20, 36; 20, 37; 21, 38; 21, 39; 21, 40; 21, 41; 21, 42; 21, 43; 22, 44; 22, 45; 23, 46; 23, 47; 24, 48; 24, 49; 28, 50; 29, 51; 30, 52; 32, 53; 32, 54; 33, 55; 34, 56; 34, 57; 38, 58; 39, 59; 40, 60; 42, 61; 42, 62; 43, 63; 46, 64; 46, 65; 47, 66; 47, 67; 50, 68; 50, 69; 51, 70; 51, 71; 52, 72; 52, 73; 53, 74; 53, 75; 54, 76; 54, 77; 54, 78; 54, 79; 55, 80; 55, 81; 58, 82; 58, 83; 59, 84; 59, 85; 60, 86; 60, 87; 61, 88; 61, 89; 62, 90; 62, 91; 62, 92; 62, 93; 63, 94; 63, 95; 64, 96; 64, 97; 65, 98; 66, 99; 66, 100; 67, 101; 69, 102; 69, 103; 71, 104; 71, 105; 72, 106; 72, 107; 72, 108; 72, 109; 73, 110; 73, 111; 74, 112; 74, 113; 75, 114; 75, 115; 76, 116; 77, 117; 77, 118; 77, 119; 78, 120; 78, 121; 78, 122; 79, 123; 80, 124; 80, 125; 81, 126; 83, 127; 83, 128; 85, 129; 85, 130; 86, 131; 86, 132; 86, 133; 87, 134; 87, 135; 88, 136; 88, 137; 89, 138; 89, 139; 90, 140; 91, 141; 91, 142; 91, 143; 92, 144; 92, 145; 92, 146; 93, 147; 94, 148; 94, 149; 95, 150; 102, 151; 102, 152; 105, 153; 111, 154; 113, 155; 115, 156; 116, 157; 116, 158; 117, 159; 117, 160; 118, 161; 118, 162; 119, 163; 120, 164; 120, 165; 121, 166; 122, 167; 123, 168; 123, 169; 124, 170; 124, 171; 127, 172; 127, 173; 130, 174; 135, 175; 137, 176; 139, 177; 140, 178; 140, 179; 141, 180; 141, 181; 142, 182; 142, 183; 143, 184; 144, 185; 144, 186; 145, 187; 146, 188; 147, 189; 147, 190; 148, 191; 148, 192; 154, 193; 158, 194; 158, 195; 161, 196; 162, 197; 162, 198; 163, 199; 166, 200; 167, 201; 168, 202; 168, 203; 169, 204; 169, 205; 175, 206; 179, 207; 179, 208; 182, 209; 183, 210; 183, 211; 184, 212; 187, 213; 188, 214; 189, 215; 189, 216; 190, 217; 190, 218; 194, 219; 194, 220; 195, 221; 196, 222; 196, 223; 197, 224; 197, 225; 198, 226; 199, 227; 200, 228; 200, 229; 201, 230; 203, 231; 205, 232; 205, 233; 207, 234; 207, 235; 208, 236; 209, 237; 209, 238; 210, 239; 210, 240; 211, 241; 212, 242; 213, 243; 213, 244; 214, 245; 216, 246; 218, 247; 218, 248; 223, 249; 223, 250; 226, 251; 227, 252; 227, 253; 229, 254; 229, 255; 230, 256; 230, 257; 238, 258; 238, 259; 241, 260; 242, 261; 242, 262; 244, 263; 244, 264; 245, 265; 245, 266; 249, 267; 249, 268; 250, 269; 251, 270; 251, 271; 254, 272; 254, 273; 258, 274; 258, 275; 259, 276; 260, 277; 260, 278; 263, 279; 263, 280; 272, 281; 272, 282; 273, 283; 279, 284; 279, 285; 280, 286
def _prepare_data(self): """Prepare data before rendering When plotting very large datasets, we don't want to include data points which are outside the x-axis limits. LaTeX is very slow and consumes a lot of memory otherwise. Limiting the data points is only (easily) possible when the data are sorted. """ xmin, xmax = self.limits['xmin'], self.limits['xmax'] self.prepared_plot_series_list = [] for series in self.plot_series_list: prepared_series = series.copy() data = prepared_series['data'] x, _, _, _ = zip(*data) # only limit data when the data is sorted if sorted(x) == list(x): x = np.array(x) if xmin is not None: min_idx = x.searchsorted(xmin) if min_idx > 0: min_idx -= 1 else: min_idx = None if xmax is not None: max_idx = x.searchsorted(xmax) + 1 else: max_idx = None prepared_series['data'] = data[min_idx:max_idx] self.prepared_plot_series_list.append(prepared_series) self.prepared_shaded_regions_list = [] for series in self.shaded_regions_list: prepared_series = series.copy() data = prepared_series['data'] x, _, _ = zip(*data) # only limit data when the data is sorted if sorted(x) == list(x): x = np.array(x) if xmin is not None: min_idx = x.searchsorted(xmin) if min_idx > 0: min_idx -= 1 else: min_idx = None if xmax is not None: max_idx = x.searchsorted(xmax) + 1 else: max_idx = None prepared_series['data'] = data[min_idx:max_idx] self.prepared_shaded_regions_list.append(prepared_series)
0, module; 1, function_definition; 2, function_name:by_user; 3, parameters; 4, block; 5, identifier:config; 6, expression_statement; 7, expression_statement; 8, expression_statement; 9, expression_statement; 10, expression_statement; 11, comment:"""Display LDAP group membership sorted by user."""; 12, assignment; 13, call; 14, assignment; 15, call; 16, identifier:client; 17, call; 18, attribute; 19, argument_list; 20, identifier:audit_api; 21, call; 22, attribute; 23, argument_list; 24, identifier:Client; 25, argument_list; 26, identifier:client; 27, identifier:prepare_connection; 28, identifier:API; 29, argument_list; 30, identifier:CLI; 31, identifier:parse_membership; 32, string; 33, call; 34, identifier:client; 35, string_content:Groups by User; 36, attribute; 37, argument_list; 38, identifier:audit_api; 39, identifier:by_user
0, 1; 1, 2; 1, 3; 1, 4; 3, 5; 4, 6; 4, 7; 4, 8; 4, 9; 4, 10; 6, 11; 7, 12; 8, 13; 9, 14; 10, 15; 12, 16; 12, 17; 13, 18; 13, 19; 14, 20; 14, 21; 15, 22; 15, 23; 17, 24; 17, 25; 18, 26; 18, 27; 21, 28; 21, 29; 22, 30; 22, 31; 23, 32; 23, 33; 29, 34; 32, 35; 33, 36; 33, 37; 36, 38; 36, 39
def by_user(config): """Display LDAP group membership sorted by user.""" client = Client() client.prepare_connection() audit_api = API(client) CLI.parse_membership('Groups by User', audit_api.by_user())