File size: 5,970 Bytes
f5000d3
 
 
 
 
 
 
 
 
8fde02c
 
f5000d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fde02c
f5000d3
 
 
 
 
 
 
 
8fde02c
 
 
 
 
 
 
 
 
 
62d6f17
8fde02c
 
 
 
 
 
 
 
 
f5000d3
 
 
8fde02c
ed6358d
62d6f17
 
 
 
 
 
 
 
 
f5000d3
 
8fde02c
 
 
62d6f17
8fde02c
 
 
 
 
 
62d6f17
8fde02c
 
 
 
62d6f17
8fde02c
62d6f17
8fde02c
 
 
f5000d3
 
3ddc402
 
62d6f17
 
b16e19d
 
62d6f17
 
 
 
 
 
b16e19d
 
62d6f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fde02c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""

import csv
import json
import os
from typing import List
import datasets
import logging
import xml.etree.ElementTree as ET
import os

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={Shixuan An
},
year={2024}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    _URLS = _URLS
    VERSION = datasets.Version("1.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "image_id": datasets.Value("string"),
                "country": datasets.Value("string"),
                "type": datasets.Value("string"),
                "image_resolution": datasets.Features({
                    "width": datasets.Value("int32"),
                    "height": datasets.Value("int32"),
                    "depth": datasets.Value("int32"),
                }),
                "image_path": datasets.Value("string"),
                #"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
                "crack_type": datasets.Sequence(datasets.Value("string")),
                "crack_coordinates": datasets.Sequence(datasets.Features({
                    "x_min": datasets.Value("int32"),
                    "x_max": datasets.Value("int32"),
                    "y_min": datasets.Value("int32"),
                    "y_max": datasets.Value("int32"),
                })),
            }),
            homepage='https://data.mendeley.com/datasets/5ty2wb6gvg/1',
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        urls_to_download = {
            "dataset": "https://huggingface.co/datasets/ShixuanAn/RDD2020/resolve/main/RDD2020.zip"
        }

        # Download and extract the dataset using the dl_manager
        downloaded_files = dl_manager.download_and_extract(urls_to_download["dataset"])

        # Assuming the ZIP file extracts to a folder named 'RDD2020'
        extracted_path = os.path.join(downloaded_files, "RDD2020")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images_dir": os.path.join(extracted_path, "train", "images"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images_dir": os.path.join(extracted_path, "test1", "images"),
                    "split": "test1",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "images_dir": os.path.join(extracted_path, "test2", "images"),
                    "split": "test2",
                },
            ),
        ]

    def _generate_examples(self, extracted_path, annotations_dir, split):
        
        # Iterate over each country directory
        for country_dir in ['Czech', 'India', 'Japan']:
            images_dir = f"{extracted_path}/{country_dir}/images"
            annotations_dir = f"{extracted_path}/{country_dir}/annotations/xmls" if split == "train" else None

            # Iterate over each image in the country's image directory
            for image_file in os.listdir(images_dir):
                if not image_file.endswith('.jpg'):
                    continue

                image_id = f"{image_file.split('.')[0]}"
            
                image_path = os.path.join(images_dir, image_file)
                if annotations_dir:
                    annotation_file = image_id + '.xml'
                    annotation_path = os.path.join(annotations_dir, annotation_file)
                    if not os.path.exists(annotation_path):
                        continue
                    tree = ET.parse(annotation_path)
                    root = tree.getroot()
                    crack_type = []
                    crack_coordinates = []
                    for obj in root.findall('object'):
                        crack_type.append(obj.find('name').text)
                        bndbox = obj.find('bndbox')
                        coordinates = {
                            "x_min": int(bndbox.find('xmin').text),
                            "x_max": int(bndbox.find('xmax').text),
                            "y_min": int(bndbox.find('ymin').text),
                            "y_max": int(bndbox.find('ymax').text),
                        }
                        crack_coordinates.append(coordinates)
                else:
                    crack_type = []
                    crack_coordinates = []

                yield image_id, {
                    "image_id": image_id,
                    "country": country_dir,
                    "type": split,
                    "image_path": image_path,
                    "crack_type": crack_type,
                    "crack_coordinates": crack_coordinates,
                }