code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
182
| url
stringlengths 46
251
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def ReceiveRRGResponses(
self,
client_id: str,
responses: Sequence[rrg_pb2.Response],
) -> None:
"""Receives and processes multiple responses from the RRG agent.
Args:
client_id: An identifier of the client for which we process the response.
responses: Responses to process.
"""
flow_responses = []
flow_rrg_logs: dict[tuple[int, int], dict[int, rrg_pb2.Log]] = {}
for response in responses:
flow_response: Union[
flows_pb2.FlowResponse,
flows_pb2.FlowStatus,
flows_pb2.FlowIterator,
]
if response.HasField("status"):
flow_response = flows_pb2.FlowStatus()
flow_response.network_bytes_sent = response.status.network_bytes_sent
# TODO: Populate `cpu_time_used` and `runtime_us`
if response.status.HasField("error"):
# TODO: Convert RRG error types to GRR error types.
flow_response.status = flows_pb2.FlowStatus.Status.ERROR
flow_response.error_message = response.status.error.message
else:
flow_response.status = flows_pb2.FlowStatus.Status.OK
elif response.HasField("result"):
flow_response = flows_pb2.FlowResponse()
flow_response.any_payload.CopyFrom(response.result)
elif response.HasField("log"):
request_rrg_logs = flow_rrg_logs.setdefault(
(response.flow_id, response.request_id), {}
)
request_rrg_logs[response.response_id] = response.log
continue
else:
raise ValueError(f"Unexpected response: {response}")
flow_response.client_id = client_id
flow_response.flow_id = f"{response.flow_id:016X}"
flow_response.request_id = response.request_id
flow_response.response_id = response.response_id
flow_responses.append(flow_response)
data_store.REL_DB.WriteFlowResponses(flow_responses)
for (flow_id, request_id), logs in flow_rrg_logs.items():
data_store.REL_DB.WriteFlowRRGLogs(
client_id=client_id,
flow_id=f"{flow_id:016X}",
request_id=request_id,
logs=logs,
) | Receives and processes multiple responses from the RRG agent.
Args:
client_id: An identifier of the client for which we process the response.
responses: Responses to process. | ReceiveRRGResponses | python | google/grr | grr/server/grr_response_server/frontend_lib.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/frontend_lib.py | Apache-2.0 |
def ReceiveRRGParcel(
self,
client_id: str,
parcel: rrg_pb2.Parcel,
) -> None:
"""Receives and processes a single parcel from the RRG agent.
Args:
client_id: An identifier of the client for which we process the response.
parcel: A parcel to process.
"""
self.ReceiveRRGParcels(client_id, [parcel]) | Receives and processes a single parcel from the RRG agent.
Args:
client_id: An identifier of the client for which we process the response.
parcel: A parcel to process. | ReceiveRRGParcel | python | google/grr | grr/server/grr_response_server/frontend_lib.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/frontend_lib.py | Apache-2.0 |
def ReceiveRRGParcels(
self,
client_id: str,
parcels: Sequence[rrg_pb2.Parcel],
) -> None:
"""Receives and processes multiple parcels from the RRG agent.
Args:
client_id: An identifier of the client for which we process the response.
parcels: Parcels to process.
"""
parcels_by_sink_name = {}
for parcel in parcels:
sink_name = rrg_pb2.Sink.Name(parcel.sink)
parcels_by_sink_name.setdefault(sink_name, []).append(parcel)
for sink_name, sink_parcels in parcels_by_sink_name.items():
RRG_PARCEL_COUNT.Increment(fields=[sink_name], delta=len(sink_parcels))
try:
sinks.AcceptMany(client_id, parcels)
except Exception: # pylint: disable=broad-exception-caught
# TODO: `AcceptMany` should raise an error that specifies
# which sink caused the exception. Then we don't have to increment the
# count for all sinks.
for sink_name in parcels_by_sink_name:
RRG_PARCEL_ACCEPT_ERRORS.Increment(fields=[sink_name])
logging.exception("Failed to process parcels for '%s'", client_id) | Receives and processes multiple parcels from the RRG agent.
Args:
client_id: An identifier of the client for which we process the response.
parcels: Parcels to process. | ReceiveRRGParcels | python | google/grr | grr/server/grr_response_server/frontend_lib.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/frontend_lib.py | Apache-2.0 |
def Start(self) -> None:
"""The first state of the flow.""" | The first state of the flow. | Start | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def End(self) -> None:
"""Final state.
This method is called prior to destruction of the flow.
""" | Final state.
This method is called prior to destruction of the flow. | End | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallState(
self,
next_state: str = "",
start_time: Optional[rdfvalue.RDFDatetime] = None,
responses: Optional[Sequence[rdf_structs.RDFStruct]] = None,
):
"""This method is used to schedule a new state on a different worker.
This is basically the same as CallFlow() except we are calling
ourselves. The state will be invoked at a later time.
Args:
next_state: The state in this flow to be invoked.
start_time: Start the flow at this time. This delays notification for
flow processing into the future. Note that the flow may still be
processed earlier if there are client responses waiting.
responses: If specified, responses to be passed to the next state.
Raises:
ValueError: The next state specified does not exist.
FlowError: Method shouldn't be used in this flow (only_protos_allowed).
"""
# Start method is special and not ran with `RunStateMethod` by `StartFlow`.
# Rather, we call `CallState` directly because it can be scheduled for the
# future (`start_time`), different than `RunStateMethod` that runs now.
if self.only_protos_allowed and next_state != "Start":
raise FlowError(
"`CallState` is not allowed for flows that only allow protos. Use"
" `CallStateProto` instead."
)
if not getattr(self, next_state):
raise ValueError("Next state %s is invalid." % next_state)
request_id = self.GetNextOutboundId()
if responses:
for index, r in enumerate(responses):
wrapped_response = rdf_flow_objects.FlowResponse(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=request_id,
response_id=index,
payload=r,
)
self.flow_responses.append(wrapped_response)
self.flow_responses.append(
rdf_flow_objects.FlowStatus(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=request_id,
response_id=len(responses) + 1,
status=rdf_flow_objects.FlowStatus.Status.OK,
)
)
nr_responses_expected = len(responses) + 1
else:
nr_responses_expected = 0
flow_request = rdf_flow_objects.FlowRequest(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=request_id,
next_state=next_state,
start_time=start_time,
nr_responses_expected=nr_responses_expected,
needs_processing=True,
)
self.flow_requests.append(flow_request) | This method is used to schedule a new state on a different worker.
This is basically the same as CallFlow() except we are calling
ourselves. The state will be invoked at a later time.
Args:
next_state: The state in this flow to be invoked.
start_time: Start the flow at this time. This delays notification for
flow processing into the future. Note that the flow may still be
processed earlier if there are client responses waiting.
responses: If specified, responses to be passed to the next state.
Raises:
ValueError: The next state specified does not exist.
FlowError: Method shouldn't be used in this flow (only_protos_allowed). | CallState | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallStateProto(
self,
next_state: str = "",
start_time: Optional[rdfvalue.RDFDatetime] = None,
responses: Optional[Sequence[pb_message.Message]] = None,
):
"""This method is used to schedule a new state on a different worker.
This is basically the same as CallFlow() except we are calling
ourselves. The state will be invoked at a later time.
Args:
next_state: The state in this flow to be invoked.
start_time: Start the flow at this time. This delays notification for
flow processing into the future. Note that the flow may still be
processed earlier if there are client responses waiting.
responses: If specified, responses to be passed to the next state.
Raises:
ValueError: The next state specified does not exist.
"""
if not getattr(self, next_state):
raise ValueError("Next state %s is invalid." % next_state)
request_id = self.GetNextOutboundId()
if responses:
for index, r in enumerate(responses):
_ValidateProto(r)
wrapped_response = flows_pb2.FlowResponse(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=request_id,
response_id=index,
)
wrapped_response.any_payload.Pack(r)
# TODO: Remove dynamic `payload` field.
wrapped_response.payload.Pack(r)
self.proto_flow_responses.append(wrapped_response)
self.proto_flow_responses.append(
flows_pb2.FlowStatus(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=request_id,
response_id=len(responses) + 1,
status=flows_pb2.FlowStatus.Status.OK,
)
)
nr_responses_expected = len(responses) + 1
else:
nr_responses_expected = 0
flow_request = flows_pb2.FlowRequest(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=request_id,
next_state=next_state,
nr_responses_expected=nr_responses_expected,
needs_processing=True,
)
if start_time is not None:
flow_request.start_time = int(start_time)
self.proto_flow_requests.append(flow_request) | This method is used to schedule a new state on a different worker.
This is basically the same as CallFlow() except we are calling
ourselves. The state will be invoked at a later time.
Args:
next_state: The state in this flow to be invoked.
start_time: Start the flow at this time. This delays notification for
flow processing into the future. Note that the flow may still be
processed earlier if there are client responses waiting.
responses: If specified, responses to be passed to the next state.
Raises:
ValueError: The next state specified does not exist. | CallStateProto | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallStateInline(
self,
messages: Optional[
Sequence[
Union[
rdf_flow_objects.FlowResponse,
rdf_flow_objects.FlowStatus,
rdf_flow_objects.FlowIterator,
],
]
] = None,
next_state: str = "",
request_data: Optional[Mapping[str, Any]] = None,
responses: Optional[flow_responses.Responses] = None,
):
"""Calls a state inline (immediately).
If `responses` is not specified, `messages` and `request_data` are used to
create a `flow_responses.Responses` object. Otherwise `responses` is used
as is.
Args:
messages: responses to be passed to the state (only used if `responses` is
not provided).
next_state: The state to be called.
request_data: An arbitrary dict to be passed to the called state (only
used if `responses` is not provided).
responses: Responses to pass to the state (as is). If not specified,
`messages` and `request_data` are used to create a
`flow_responses.Responses` object.
Raises:
FlowError: Method shouldn't be used in this flow (only_protos_allowed).
"""
if self.only_protos_allowed:
raise FlowError(
"`CallStateInline` is not allowed for flows that only allow protos."
" Use `CallStateInlineProtoWithResponses` or "
)
if responses is None:
responses = flow_responses.FakeResponses(messages, request_data)
getattr(self, next_state)(responses) | Calls a state inline (immediately).
If `responses` is not specified, `messages` and `request_data` are used to
create a `flow_responses.Responses` object. Otherwise `responses` is used
as is.
Args:
messages: responses to be passed to the state (only used if `responses` is
not provided).
next_state: The state to be called.
request_data: An arbitrary dict to be passed to the called state (only
used if `responses` is not provided).
responses: Responses to pass to the state (as is). If not specified,
`messages` and `request_data` are used to create a
`flow_responses.Responses` object.
Raises:
FlowError: Method shouldn't be used in this flow (only_protos_allowed). | CallStateInline | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallStateInlineProtoWithResponses(
self,
next_state: str = "",
responses: Optional[flow_responses.Responses[any_pb2.Any]] = None,
):
"""Calls a state inline (immediately).
The state must be annotated with `@UseProto2AnyResponses`.
Args:
next_state: The state to be called.
responses: Responses to pass to the state (as is).
"""
method = getattr(self, next_state)
# Raise if the method is not annotated with `@UseProto2AnyResponses`.
# This means it still expects RDFValues, we should use `CallStateInline`.
if (
not hasattr(method, "_proto2_any_responses")
or not method._proto2_any_responses # pylint: disable=protected-access
):
raise ValueError(
f"Method {method.__name__} is not annotated with"
" `@UseProto2AnyResponses`. Please use `CallStateInline` instead."
)
# Method expects Responses[any_pb2.Any].
if responses is not None:
# TODO: Remove this check once flow targets use pytype.
for r in responses:
if not isinstance(r, any_pb2.Any):
raise ValueError(
f"Expected Responses[any_pb2.Any] but got Responses[{type(r)}]"
)
method(responses) | Calls a state inline (immediately).
The state must be annotated with `@UseProto2AnyResponses`.
Args:
next_state: The state to be called.
responses: Responses to pass to the state (as is). | CallStateInlineProtoWithResponses | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallStateInlineProto(
self,
next_state: str = "",
messages: Optional[Sequence[pb_message.Message]] = None,
request_data: Optional[Mapping[str, Any]] = None,
) -> None:
"""Calls a state inline (immediately).
The state must be annotated with `@UseProto2AnyResponses`.
Args:
next_state: The state to be called.
messages: responses to be passed to the state.
request_data: An arbitrary dict to be passed to the called state
"""
method = getattr(self, next_state)
# Raise if the method is not annotated with `@UseProto2AnyResponses`.
# This means it still expects RDFValues, we should use `CallStateInline`.
if (
not hasattr(method, "_proto2_any_responses")
or not method._proto2_any_responses # pylint: disable=protected-access
):
raise ValueError(
f"Method {method.__name__} is not annotated with"
" `@UseProto2AnyResponses`. Please use `CallStateInline` instead."
)
# Use `messages` and make sure they're packed into `any_pb2.Any`s.
any_msgs: list[any_pb2.Any] = []
if messages is not None:
for r in messages:
_ValidateProto(r)
if isinstance(r, any_pb2.Any):
raise ValueError(
f"Expected unpacked proto message but got an any_pb2.Any: {r}"
)
any_msg = any_pb2.Any()
any_msg.Pack(r)
any_msgs.append(any_msg)
responses = flow_responses.FakeResponses(any_msgs, request_data)
method(responses) | Calls a state inline (immediately).
The state must be annotated with `@UseProto2AnyResponses`.
Args:
next_state: The state to be called.
messages: responses to be passed to the state.
request_data: An arbitrary dict to be passed to the called state | CallStateInlineProto | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def _GetAndCheckResourceLimits(self) -> _ResourceLimits:
"""Calculates and checks if the flow has exceeded any resource limits.
Returns:
A _ResourceLimits object with the calculated limits.
Raises:
FlowResourcesExceededError: If any resource limit has been exceeded.
"""
cpu_limit_ms = None
network_bytes_limit = None
runtime_limit_us = self.rdf_flow.runtime_limit_us
if self.rdf_flow.cpu_limit:
cpu_usage = self.rdf_flow.cpu_time_used
cpu_limit_ms = 1000 * max(
self.rdf_flow.cpu_limit
- cpu_usage.user_cpu_time
- cpu_usage.system_cpu_time,
0,
)
if cpu_limit_ms == 0:
raise flow.FlowResourcesExceededError(
"CPU limit exceeded for {} {}.".format(
self.rdf_flow.flow_class_name, self.rdf_flow.flow_id
)
)
if self.rdf_flow.network_bytes_limit:
network_bytes_limit = max(
self.rdf_flow.network_bytes_limit - self.rdf_flow.network_bytes_sent,
0,
)
if network_bytes_limit == 0:
raise flow.FlowResourcesExceededError(
"Network limit exceeded for {} {}.".format(
self.rdf_flow.flow_class_name, self.rdf_flow.flow_id
)
)
if runtime_limit_us and self.rdf_flow.runtime_us:
if self.rdf_flow.runtime_us < runtime_limit_us:
runtime_limit_us -= self.rdf_flow.runtime_us
else:
raise flow.FlowResourcesExceededError(
"Runtime limit exceeded for {} {}.".format(
self.rdf_flow.flow_class_name, self.rdf_flow.flow_id
)
)
return self._ResourceLimits(
cpu_limit_ms=cpu_limit_ms,
network_bytes_limit=network_bytes_limit,
runtime_limit_us=runtime_limit_us,
) | Calculates and checks if the flow has exceeded any resource limits.
Returns:
A _ResourceLimits object with the calculated limits.
Raises:
FlowResourcesExceededError: If any resource limit has been exceeded. | _GetAndCheckResourceLimits | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallClient(
self,
action_cls: Type[server_stubs.ClientActionStub],
request: Optional[rdfvalue.RDFValue] = None,
next_state: Optional[str] = None,
callback_state: Optional[str] = None,
request_data: Optional[Mapping[str, Any]] = None,
):
"""Calls the client asynchronously.
This sends a message to the client to invoke an Action. The run action may
send back many responses that will be queued by the framework until a status
message is sent by the client. The status message will cause the entire
transaction to be committed to the specified state.
Args:
action_cls: The function to call on the client.
request: The request to send to the client. Must be of the correct type
for the action.
next_state: The state in this flow, that responses to this message should
go to.
callback_state: (optional) The state to call whenever a new response is
arriving.
request_data: A dict which will be available in the RequestState
protobuf. The Responses object maintains a reference to this protobuf
for use in the execution of the state method. (so you can access this
data by responses.request).
Raises:
ValueError: The request passed to the client does not have the correct
type.
FlowError: Method shouldn't be used in this flow (only_protos_allowed).
"""
if self.only_protos_allowed:
raise FlowError(
"`CallClient` is not allowed for flows that only allow protos. Use"
" `CallClientProto` instead."
)
try:
action_identifier = action_registry.ID_BY_ACTION_STUB[action_cls]
except KeyError:
raise ValueError("Action class %s not known." % action_cls)
if action_cls.in_rdfvalue is None:
if request:
raise ValueError("Client action %s does not expect args." % action_cls)
else:
# Verify that the request type matches the client action requirements.
if not isinstance(request, action_cls.in_rdfvalue):
raise ValueError(
"Client action expected %s but got %s"
% (action_cls.in_rdfvalue, type(request))
)
outbound_id = self.GetNextOutboundId()
# Create a flow request.
flow_request = rdf_flow_objects.FlowRequest(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=outbound_id,
next_state=next_state,
callback_state=callback_state,
)
if request_data is not None:
flow_request.request_data = rdf_protodict.Dict().FromDict(request_data)
limits = self._GetAndCheckResourceLimits()
stub = action_registry.ACTION_STUB_BY_ID[action_identifier]
client_action_request = rdf_flows.GrrMessage(
session_id="%s/%s" % (self.rdf_flow.client_id, self.rdf_flow.flow_id),
name=stub.__name__,
request_id=outbound_id,
payload=request,
network_bytes_limit=limits.network_bytes_limit,
runtime_limit_us=limits.runtime_limit_us,
)
if limits.cpu_limit_ms is not None:
client_action_request.cpu_limit = limits.cpu_limit_ms / 1000.0
self.flow_requests.append(flow_request)
self.client_action_requests.append(client_action_request) | Calls the client asynchronously.
This sends a message to the client to invoke an Action. The run action may
send back many responses that will be queued by the framework until a status
message is sent by the client. The status message will cause the entire
transaction to be committed to the specified state.
Args:
action_cls: The function to call on the client.
request: The request to send to the client. Must be of the correct type
for the action.
next_state: The state in this flow, that responses to this message should
go to.
callback_state: (optional) The state to call whenever a new response is
arriving.
request_data: A dict which will be available in the RequestState
protobuf. The Responses object maintains a reference to this protobuf
for use in the execution of the state method. (so you can access this
data by responses.request).
Raises:
ValueError: The request passed to the client does not have the correct
type.
FlowError: Method shouldn't be used in this flow (only_protos_allowed). | CallClient | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallClientProto(
self,
action_cls: Type[server_stubs.ClientActionStub],
action_args: Optional[pb_message.Message] = None,
next_state: Optional[str] = None,
callback_state: Optional[str] = None,
request_data: Optional[dict[str, Any]] = None,
):
"""Calls the client asynchronously.
This sends a message to the client to invoke an Action. The run action may
send back many responses that will be queued by the framework until a status
message is sent by the client. The status message will cause the entire
transaction to be committed to the specified state.
Args:
action_cls: The function to call on the client.
action_args: The arguments to send to the client. Must be of the correct
type for the action.
next_state: The state in this flow, that responses to this message should
go to.
callback_state: (optional) The state to call whenever a new response is
arriving.
request_data: A dict which will be available in the RequestState
protobuf. The Responses object maintains a reference to this protobuf
for use in the execution of the state method. (so you can access this
data by responses.request).
Raises:
ValueError: The client action does not exist/is not registered.
TypeError: The arguments passed to the client does not have the correct
type.
"""
try:
action_registry.ID_BY_ACTION_STUB[action_cls]
except KeyError:
raise ValueError("Action class %s not known." % action_cls) from None
if action_cls.in_proto is None and action_args:
raise ValueError(
f"Client action {action_cls.__name__} does not expect args yet some"
f" were provided: {action_args}"
)
elif action_cls.in_proto is not None:
if action_args is None:
raise ValueError(
f"Client action {action_cls.__name__} expects args, but none were"
" provided."
)
# Verify that the action_args type matches the client action requirements.
if not isinstance(action_args, action_cls.in_proto):
raise ValueError(
"Client action expected %s but got %s"
% (action_cls.in_proto, type(action_args))
)
outbound_id = self.GetNextOutboundId()
# Create a flow request.
flow_request = flows_pb2.FlowRequest(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=outbound_id,
next_state=next_state,
callback_state=callback_state,
)
if request_data is not None:
flow_request.request_data.CopyFrom(
mig_protodict.FromNativeDictToProtoDict(request_data)
)
limits = self._GetAndCheckResourceLimits()
client_action_request = jobs_pb2.GrrMessage(
session_id="%s/%s" % (self.rdf_flow.client_id, self.rdf_flow.flow_id),
name=action_cls.__name__,
request_id=outbound_id,
network_bytes_limit=limits.network_bytes_limit,
runtime_limit_us=limits.runtime_limit_us,
)
if action_args:
# We rely on the fact that the in_proto and in_rdfvalue fields in the stub
# represent the same type. That is:
# cls.in_rdfvalue.protobuf == cls.in_proto
# We use that to manually build the proto as prescribed by the GrrMessage
# RDF class.
models_clients.SetGrrMessagePayload(
client_action_request, action_cls.in_rdfvalue.__name__, action_args
)
self.proto_flow_requests.append(flow_request)
self.proto_client_action_requests.append(client_action_request) | Calls the client asynchronously.
This sends a message to the client to invoke an Action. The run action may
send back many responses that will be queued by the framework until a status
message is sent by the client. The status message will cause the entire
transaction to be committed to the specified state.
Args:
action_cls: The function to call on the client.
action_args: The arguments to send to the client. Must be of the correct
type for the action.
next_state: The state in this flow, that responses to this message should
go to.
callback_state: (optional) The state to call whenever a new response is
arriving.
request_data: A dict which will be available in the RequestState
protobuf. The Responses object maintains a reference to this protobuf
for use in the execution of the state method. (so you can access this
data by responses.request).
Raises:
ValueError: The client action does not exist/is not registered.
TypeError: The arguments passed to the client does not have the correct
type. | CallClientProto | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallFlow(
self,
flow_name: Optional[str] = None,
next_state: Optional[str] = None,
request_data: Optional[Mapping[str, Any]] = None,
output_plugins: Optional[
Sequence[rdf_output_plugin.OutputPluginDescriptor]
] = None,
flow_args: Optional[rdf_structs.RDFStruct] = None,
) -> str:
"""Creates a new flow and send its responses to a state.
This creates a new flow. The flow may send back many responses which will be
queued by the framework until the flow terminates. The final status message
will cause the entire transaction to be committed to the specified state.
Args:
flow_name: The name of the flow to invoke.
next_state: The state in this flow, that responses to this message should
go to.
request_data: Any dict provided here will be available in the
RequestState protobuf. The Responses object maintains a reference to
this protobuf for use in the execution of the state method. (so you can
access this data by responses.request). There is no format mandated on
this data but it may be a serialized protobuf.
output_plugins: A list of output plugins to use for this flow.
flow_args: Arguments for the child flow.
Returns:
The flow_id of the child flow which was created.
Raises:
ValueError: The requested next state does not exist.
FlowError: Method shouldn't be used in this flow (only_protos_allowed).
"""
if self.only_protos_allowed:
raise FlowError(
"`CallFlow` is not allowed for flows that only allow protos. Use"
" `CallFlowProto` instead."
)
if not getattr(self, next_state):
raise ValueError("Next state %s is invalid." % next_state)
flow_request = rdf_flow_objects.FlowRequest(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=self.GetNextOutboundId(),
next_state=next_state,
)
if request_data is not None:
flow_request.request_data = rdf_protodict.Dict().FromDict(request_data)
self.flow_requests.append(flow_request)
flow_cls = FlowRegistry.FlowClassByName(flow_name)
return flow.StartFlow(
client_id=self.rdf_flow.client_id,
flow_cls=flow_cls,
parent=flow.FlowParent.FromFlow(self),
output_plugins=output_plugins,
flow_args=flow_args,
) | Creates a new flow and send its responses to a state.
This creates a new flow. The flow may send back many responses which will be
queued by the framework until the flow terminates. The final status message
will cause the entire transaction to be committed to the specified state.
Args:
flow_name: The name of the flow to invoke.
next_state: The state in this flow, that responses to this message should
go to.
request_data: Any dict provided here will be available in the
RequestState protobuf. The Responses object maintains a reference to
this protobuf for use in the execution of the state method. (so you can
access this data by responses.request). There is no format mandated on
this data but it may be a serialized protobuf.
output_plugins: A list of output plugins to use for this flow.
flow_args: Arguments for the child flow.
Returns:
The flow_id of the child flow which was created.
Raises:
ValueError: The requested next state does not exist.
FlowError: Method shouldn't be used in this flow (only_protos_allowed). | CallFlow | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def CallFlowProto(
self,
flow_name: Optional[str] = None,
next_state: Optional[str] = None,
request_data: Optional[dict[str, Any]] = None,
output_plugins: Optional[
Sequence[rdf_output_plugin.OutputPluginDescriptor]
] = None,
flow_args: Optional[pb_message.Message] = None,
) -> str:
"""Creates a new flow and send its responses to a state.
This creates a new flow. The flow may send back many responses which will be
queued by the framework until the flow terminates. The final status message
will cause the entire transaction to be committed to the specified state.
Args:
flow_name: The name of the flow to invoke.
next_state: The state in this flow, that responses to this message should
go to.
request_data: Any dict provided here will be available in the
RequestState protobuf. The Responses object maintains a reference to
this protobuf for use in the execution of the state method. (so you can
access this data by responses.request). There is no format mandated on
this data but it may be a serialized protobuf.
output_plugins: A list of output plugins to use for this flow.
flow_args: Arguments for the child flow.
Returns:
The flow_id of the child flow which was created.
Raises:
ValueError: The requested next state does not exist.
"""
if not getattr(self, next_state):
raise ValueError("Next state %s is invalid." % next_state)
flow_request = flows_pb2.FlowRequest(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
request_id=self.GetNextOutboundId(),
next_state=next_state,
)
if request_data is not None:
flow_request.request_data.CopyFrom(
mig_protodict.FromNativeDictToProtoDict(request_data)
)
self.proto_flow_requests.append(flow_request)
flow_cls = FlowRegistry.FlowClassByName(flow_name)
rdf_flow_args = None
if flow_args:
if flow_cls.args_type.protobuf != type(flow_args):
raise ValueError(
f"Flow {flow_name} expects args of type"
f" {flow_cls.args_type.protobuf} but got {type(flow_args)}"
)
# We try on a best-effort basis to convert the flow args to RDFValue.
rdf_flow_args = flow_cls.args_type.FromSerializedBytes(
flow_args.SerializeToString()
)
# TODO: Allow `StartFlow` to take proto args in.
return flow.StartFlow(
client_id=self.rdf_flow.client_id,
flow_cls=flow_cls,
parent=flow.FlowParent.FromFlow(self),
output_plugins=output_plugins,
flow_args=rdf_flow_args,
) | Creates a new flow and send its responses to a state.
This creates a new flow. The flow may send back many responses which will be
queued by the framework until the flow terminates. The final status message
will cause the entire transaction to be committed to the specified state.
Args:
flow_name: The name of the flow to invoke.
next_state: The state in this flow, that responses to this message should
go to.
request_data: Any dict provided here will be available in the
RequestState protobuf. The Responses object maintains a reference to
this protobuf for use in the execution of the state method. (so you can
access this data by responses.request). There is no format mandated on
this data but it may be a serialized protobuf.
output_plugins: A list of output plugins to use for this flow.
flow_args: Arguments for the child flow.
Returns:
The flow_id of the child flow which was created.
Raises:
ValueError: The requested next state does not exist. | CallFlowProto | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def SendReply(
self, response: rdfvalue.RDFValue, tag: Optional[str] = None
) -> None:
"""Allows this flow to send a message to its parent flow.
If this flow does not have a parent, the message is saved to the database
as flow result.
Args:
response: An RDFValue() instance to be sent to the parent.
tag: If specified, tag the result with this tag.
Raises:
ValueError: If responses is not of the correct type.
FlowError: Method shouldn't be used in this flow (only_protos_allowed).
"""
if self.only_protos_allowed:
raise FlowError(
"`SendReply` is not allowed for flows that only allow protos. Use"
" `SendReplyProto` instead."
)
if not isinstance(response, rdfvalue.RDFValue):
raise ValueError(
f"SendReply can only send RDFValues, got {type(response)}"
)
if not any(isinstance(response, t) for t in self.result_types):
logging.warning(
"Flow %s sends response of unexpected type %s.",
type(self).__name__,
type(response).__name__,
)
reply = rdf_flow_objects.FlowResult(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
hunt_id=self.rdf_flow.parent_hunt_id,
payload=response,
tag=tag,
)
if self.rdf_flow.parent_flow_id:
if isinstance(response, rdf_structs.RDFProtoStruct):
rdf_packed_payload = rdf_structs.AnyValue.Pack(response)
else:
# Should log for `GetMBR` flow which returns `RDFBytes`.
# Might fail for others that we're unaware but also return primitives.
logging.error(
"Flow %s sends response of unexpected type %s.",
self.__class__.__name__,
type(response),
)
rdf_packed_payload = None
flow_response = rdf_flow_objects.FlowResponse(
client_id=self.rdf_flow.client_id,
request_id=self.rdf_flow.parent_request_id,
response_id=self.GetNextResponseId(),
payload=response,
any_payload=rdf_packed_payload,
flow_id=self.rdf_flow.parent_flow_id,
tag=tag,
)
self.flow_responses.append(flow_response)
# For nested flows we want the replies to be written,
# but not to be processed by output plugins.
self.replies_to_write.append(reply)
else:
self.replies_to_write.append(reply)
self.replies_to_process.append(reply)
self.rdf_flow.num_replies_sent += 1
# Keeping track of result types/tags in a plain Python
# _num_replies_per_type_tag dict. In RDFValues/proto2 we have to represent
# dictionaries as lists of key-value pairs (i.e. there's no library
# support for dicts as data structures). Hence, updating a key would require
# iterating over the pairs - which might get expensive for hundreds of
# thousands of results. To avoid the issue we keep a non-serialized Python
# dict to be later accumulated into a serializable FlowResultCount
# in PersistState().
key = (type(response).__name__, tag or "")
self._num_replies_per_type_tag[key] += 1 | Allows this flow to send a message to its parent flow.
If this flow does not have a parent, the message is saved to the database
as flow result.
Args:
response: An RDFValue() instance to be sent to the parent.
tag: If specified, tag the result with this tag.
Raises:
ValueError: If responses is not of the correct type.
FlowError: Method shouldn't be used in this flow (only_protos_allowed). | SendReply | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def SendReplyProto(
self,
response: pb_message.Message,
tag: Optional[str] = None,
) -> None:
"""Allows this flow to save a flow result to the database.
In case of a child flow, results are also returned to the parent flow.
Args:
response: A protobuf instance to be sent to the parent.
tag: If specified, tag the result with this tag.
Raises:
TypeError: If responses is not of the correct type.
"""
if not isinstance(response, pb_message.Message):
raise TypeError(
f"SendReplyProto can only send Protobufs, got {type(response)}"
)
if not any(isinstance(response, t) for t in self.proto_result_types):
raise TypeError(
f"Flow {type(self).__name__} sends response of unexpected type"
f" {type(response).__name__}. Expected one of"
f" {self.proto_result_types}",
)
reply = flows_pb2.FlowResult(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
hunt_id=self.rdf_flow.parent_hunt_id,
tag=tag,
)
reply.payload.Pack(response)
self.proto_replies_to_write.append(reply)
if self.rdf_flow.parent_flow_id:
res = flows_pb2.FlowResponse(
client_id=self.rdf_flow.client_id,
request_id=self.rdf_flow.parent_request_id,
response_id=self.GetNextResponseId(),
flow_id=self.rdf_flow.parent_flow_id,
tag=tag,
)
res.payload.Pack(response)
res.any_payload.Pack(response)
self.proto_flow_responses.append(res)
else:
# We only want to process replies with output plugins if this is
# a parent flow (not nested).
self.proto_replies_to_process.append(reply)
self.rdf_flow.num_replies_sent += 1
# Keeping track of result types/tags in a plain Python
# _num_replies_per_type_tag dict. In RDFValues/proto2 we have to represent
# dictionaries as lists of key-value pairs (i.e. there's no library
# support for dicts as data structures). Hence, updating a key would require
# iterating over the pairs - which might get expensive for hundreds of
# thousands of results. To avoid the issue we keep a non-serialized Python
# dict to be later accumulated into a serializable FlowResultCount
# in PersistState().
key = (type(response).__name__, tag or "")
self._num_replies_per_type_tag[key] += 1 | Allows this flow to save a flow result to the database.
In case of a child flow, results are also returned to the parent flow.
Args:
response: A protobuf instance to be sent to the parent.
tag: If specified, tag the result with this tag.
Raises:
TypeError: If responses is not of the correct type. | SendReplyProto | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def SaveResourceUsage(self, status: rdf_flow_objects.FlowStatus) -> None:
"""Method to tally resources."""
user_cpu = status.cpu_time_used.user_cpu_time
system_cpu = status.cpu_time_used.system_cpu_time
self.rdf_flow.cpu_time_used.user_cpu_time += user_cpu
self.rdf_flow.cpu_time_used.system_cpu_time += system_cpu
self.rdf_flow.network_bytes_sent += status.network_bytes_sent
if not self.rdf_flow.runtime_us:
self.rdf_flow.runtime_us = rdfvalue.Duration(0)
if status.runtime_us:
self.rdf_flow.runtime_us += status.runtime_us
if self.rdf_flow.cpu_limit:
user_cpu_total = self.rdf_flow.cpu_time_used.user_cpu_time
system_cpu_total = self.rdf_flow.cpu_time_used.system_cpu_time
if self.rdf_flow.cpu_limit < (user_cpu_total + system_cpu_total):
# We have exceeded our CPU time limit, stop this flow.
raise flow.FlowResourcesExceededError(
"CPU limit exceeded for {} {}.".format(
self.rdf_flow.flow_class_name, self.rdf_flow.flow_id
)
)
if (
self.rdf_flow.network_bytes_limit
and self.rdf_flow.network_bytes_limit < self.rdf_flow.network_bytes_sent
):
# We have exceeded our byte limit, stop this flow.
raise flow.FlowResourcesExceededError(
"Network bytes limit exceeded {} {}.".format(
self.rdf_flow.flow_class_name, self.rdf_flow.flow_id
)
)
if (
self.rdf_flow.runtime_limit_us
and self.rdf_flow.runtime_limit_us < self.rdf_flow.runtime_us
):
raise flow.FlowResourcesExceededError(
"Runtime limit exceeded {} {}.".format(
self.rdf_flow.flow_class_name, self.rdf_flow.flow_id
)
) | Method to tally resources. | SaveResourceUsage | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def Error(
self,
error_message: Optional[str] = None,
backtrace: Optional[str] = None,
status: Optional[rdf_structs.EnumNamedValue] = None,
) -> None:
"""Terminates this flow with an error."""
flow_name = self.__class__.__name__
is_child = bool(self.rdf_flow.parent_flow_id)
exception_name = _ExtractExceptionName(error_message)
FLOW_ERRORS.Increment(fields=[flow_name, is_child, exception_name])
client_id = self.rdf_flow.client_id
flow_id = self.rdf_flow.flow_id
# backtrace is set for unexpected failures caught in a wildcard except
# branch, thus these should be logged as error. backtrace is None for
# faults that are anticipated in flows, thus should only be logged as
# warning.
if backtrace:
logging.error(
"Error in flow %s on %s: %s, %s",
flow_id,
client_id,
error_message,
backtrace,
)
else:
logging.warning(
"Error in flow %s on %s: %s:", flow_id, client_id, error_message
)
if self.rdf_flow.parent_flow_id or self.rdf_flow.parent_hunt_id:
status_msg = rdf_flow_objects.FlowStatus(
client_id=client_id,
request_id=self.rdf_flow.parent_request_id,
response_id=self.GetNextResponseId(),
cpu_time_used=self.rdf_flow.cpu_time_used,
network_bytes_sent=self.rdf_flow.network_bytes_sent,
runtime_us=self.rdf_flow.runtime_us,
error_message=error_message,
flow_id=self.rdf_flow.parent_flow_id,
backtrace=backtrace,
)
if status is not None:
status_msg.status = status
else:
status_msg.status = rdf_flow_objects.FlowStatus.Status.ERROR
if self.rdf_flow.parent_flow_id:
self.flow_responses.append(status_msg)
elif self.rdf_flow.parent_hunt_id:
hunt.StopHuntIfCPUOrNetworkLimitsExceeded(self.rdf_flow.parent_hunt_id)
self.rdf_flow.flow_state = self.rdf_flow.FlowState.ERROR
if backtrace is not None:
self.rdf_flow.backtrace = backtrace
if error_message is not None:
self.rdf_flow.error_message = error_message
self.NotifyCreatorOfError() | Terminates this flow with an error. | Error | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def _ClearAllRequestsAndResponses(self) -> None:
"""Clears all requests and responses."""
client_id = self.rdf_flow.client_id
flow_id = self.rdf_flow.flow_id
# Remove all requests queued for deletion that we delete in the call below.
self.completed_requests = [
r
for r in self.completed_requests
if r.client_id != client_id or r.flow_id != flow_id
]
data_store.REL_DB.DeleteAllFlowRequestsAndResponses(client_id, flow_id) | Clears all requests and responses. | _ClearAllRequestsAndResponses | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def NotifyAboutEnd(self) -> None:
"""Notify about the end of the flow."""
# Sum up number of replies to write with the number of already
# written results.
num_results = (
len(self.replies_to_write)
+ len(self.proto_replies_to_write)
+ data_store.REL_DB.CountFlowResults(
self.rdf_flow.client_id, self.rdf_flow.flow_id
)
)
flow_ref = objects_pb2.FlowReference(
client_id=self.rdf_flow.client_id, flow_id=self.rdf_flow.flow_id
)
notification_lib.Notify(
self.creator,
objects_pb2.UserNotification.Type.TYPE_FLOW_RUN_COMPLETED,
"Flow %s completed with %d %s"
% (
self.__class__.__name__,
num_results,
num_results == 1 and "result" or "results",
),
objects_pb2.ObjectReference(
reference_type=objects_pb2.ObjectReference.Type.FLOW, flow=flow_ref
),
) | Notify about the end of the flow. | NotifyAboutEnd | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def MarkDone(self, status=None):
"""Marks this flow as done."""
FLOW_COMPLETIONS.Increment(fields=[self.__class__.__name__])
# Notify our parent flow or hunt that we are done (if there's a parent flow
# or hunt).
if self.rdf_flow.parent_flow_id or self.rdf_flow.parent_hunt_id:
status = rdf_flow_objects.FlowStatus(
client_id=self.rdf_flow.client_id,
request_id=self.rdf_flow.parent_request_id,
response_id=self.GetNextResponseId(),
status=rdf_flow_objects.FlowStatus.Status.OK,
cpu_time_used=self.rdf_flow.cpu_time_used,
network_bytes_sent=self.rdf_flow.network_bytes_sent,
runtime_us=self.rdf_flow.runtime_us,
flow_id=self.rdf_flow.parent_flow_id,
)
if self.rdf_flow.parent_flow_id:
self.flow_responses.append(status)
elif self.rdf_flow.parent_hunt_id:
hunt.StopHuntIfCPUOrNetworkLimitsExceeded(self.rdf_flow.parent_hunt_id)
self.rdf_flow.flow_state = self.rdf_flow.FlowState.FINISHED
if self.ShouldSendNotifications():
self.NotifyAboutEnd() | Marks this flow as done. | MarkDone | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def Log(self, format_str: str, *args: object) -> None:
"""Logs the message using the flow's standard logging.
Args:
format_str: Format string
*args: arguments to the format string
"""
# If there are no formatting arguments given, we do not format the message.
# This behaviour is in-line with `logging.*` functions and allows one to log
# messages with `%` without weird workarounds.
if not args:
message = format_str
else:
message = format_str % args
log_entry = flows_pb2.FlowLogEntry(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
hunt_id=self.rdf_flow.parent_hunt_id,
message=message,
)
data_store.REL_DB.WriteFlowLogEntry(log_entry) | Logs the message using the flow's standard logging.
Args:
format_str: Format string
*args: arguments to the format string | Log | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def RunStateMethod(
self,
method_name: str,
request: Optional[rdf_flow_objects.FlowRequest] = None,
responses: Optional[
Sequence[
Union[
rdf_flow_objects.FlowResponse,
rdf_flow_objects.FlowStatus,
rdf_flow_objects.FlowIterator,
]
]
] = None,
) -> None:
"""Completes the request by calling the state method.
Args:
method_name: The name of the state method to call.
request: A RequestState protobuf.
responses: A list of FlowResponses, FlowStatuses, and FlowIterators
responding to the request.
Raises:
FlowError: Processing time for the flow has expired.
"""
client_id = self.rdf_flow.client_id
deadline = self.rdf_flow.processing_deadline
if deadline and rdfvalue.RDFDatetime.Now() > deadline:
raise FlowError(
"Processing time for flow %s on %s expired."
% (self.rdf_flow.flow_id, self.rdf_flow.client_id)
)
self.rdf_flow.current_state = method_name
if request and responses:
logging.debug(
"Running %s for flow %s on %s, %d responses.",
method_name,
self.rdf_flow.flow_id,
client_id,
len(responses),
)
else:
logging.debug(
"Running %s for flow %s on %s",
method_name,
self.rdf_flow.flow_id,
client_id,
)
try:
try:
method = getattr(self, method_name)
except AttributeError:
raise ValueError(
"Flow %s has no state method %s"
% (self.__class__.__name__, method_name)
) from None
# Prepare a responses object for the state method to use:
if responses is not None and (
hasattr(method, "_proto2_any_responses")
and method._proto2_any_responses # pylint: disable=protected-access
):
responses = flow_responses.Responses.FromResponsesProto2Any(
responses, request
)
else:
responses = flow_responses.Responses.FromResponses(
request=request, responses=responses
)
if responses.status is not None:
self.SaveResourceUsage(responses.status)
GRR_WORKER_STATES_RUN.Increment()
if method_name == "Start":
FLOW_STARTS.Increment(fields=[self.rdf_flow.flow_class_name])
method()
elif method_name == "End":
method()
else:
method(responses)
# TODO: Refactor output plugins to be internally proto-based.
if self.proto_replies_to_process:
rdf_replies = [
mig_flow_objects.ToRDFFlowResult(r)
for r in self.proto_replies_to_process
]
self.replies_to_process.extend(rdf_replies)
self.proto_replies_to_process = []
if self.replies_to_process:
if self.rdf_flow.parent_hunt_id and not self.rdf_flow.parent_flow_id:
self._ProcessRepliesWithHuntOutputPlugins(self.replies_to_process)
else:
self._ProcessRepliesWithFlowOutputPlugins(self.replies_to_process)
self.replies_to_process = []
except flow.FlowResourcesExceededError as e:
logging.info(
"Flow %s on %s exceeded resource limits: %s.",
self.rdf_flow.flow_id,
client_id,
str(e),
)
self.Error(error_message=str(e))
# We don't know here what exceptions can be thrown in the flow but we have
# to continue. Thus, we catch everything.
except Exception as e: # pylint: disable=broad-except
msg = str(e)
self.Error(error_message=msg, backtrace=traceback.format_exc()) | Completes the request by calling the state method.
Args:
method_name: The name of the state method to call.
request: A RequestState protobuf.
responses: A list of FlowResponses, FlowStatuses, and FlowIterators
responding to the request.
Raises:
FlowError: Processing time for the flow has expired. | RunStateMethod | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def ProcessAllReadyRequests(self) -> tuple[int, int]:
"""Processes all requests that are due to run.
Returns:
(processed, incrementally_processed) The number of completed processed
requests and the number of incrementally processed ones.
"""
request_dict = data_store.REL_DB.ReadFlowRequests(
self.rdf_flow.client_id,
self.rdf_flow.flow_id,
)
completed_requests = FindCompletedRequestsToProcess(
request_dict,
self.rdf_flow.next_request_to_process,
)
incremental_requests = FindIncrementalRequestsToProcess(
request_dict,
self.rdf_flow.next_request_to_process,
)
# When dealing with a callback flow, count all incremental requests even if
# `incremental_requests` is empty, as it's expected that messages might
# arrive in the wrong order and therefore not always be suitable for
# processing.
num_incremental = sum(
[1 for _, (req, _) in request_dict.items() if req.callback_state]
)
next_response_id_map = {}
# Process incremental requests' updates first. Incremental requests have
# the 'callback_state' attribute set and the callback state is called
# every time new responses arrive. Note that the id of the next expected
# response is kept in request's 'next_response_id' attribute to guarantee
# that responses are going to be processed in the right order.
for request, responses in incremental_requests:
request = mig_flow_objects.ToRDFFlowRequest(request)
if not self.IsRunning():
break
# Responses have to be processed in the correct order, no response
# can be skipped.
rdf_responses = []
for r in responses:
if isinstance(r, flows_pb2.FlowResponse):
rdf_responses.append(mig_flow_objects.ToRDFFlowResponse(r))
if isinstance(r, flows_pb2.FlowStatus):
rdf_responses.append(mig_flow_objects.ToRDFFlowStatus(r))
if isinstance(r, flows_pb2.FlowIterator):
rdf_responses.append(mig_flow_objects.ToRDFFlowIterator(r))
if rdf_responses:
# We do not sent incremental updates for FlowStatus updates.
# TODO: Check if the id of last message in to_process, the
# FlowStatus, is important to keep for the next_response_id map, as the
# flow is anyways complete then. If not we can skip adding the
# FlowStatus to the `to_process` list instead of filtering it out here.
flow_updates = [
r
for r in rdf_responses
if not isinstance(r, rdf_flow_objects.FlowStatus)
]
if flow_updates:
self.RunStateMethod(request.callback_state, request, flow_updates)
# If the request was processed, update the next_response_id.
next_response_id_map[request.request_id] = (
rdf_responses[-1].response_id + 1
)
if next_response_id_map:
data_store.REL_DB.UpdateIncrementalFlowRequests(
self.rdf_flow.client_id, self.rdf_flow.flow_id, next_response_id_map
)
# Process completed requests.
#
# If the flow gets a bunch of requests to process and processing one of
# them leads to flow termination, other requests should be ignored.
# Hence: self.IsRunning check in the loop's condition.
for request, responses in completed_requests:
if not self.IsRunning():
break
rdf_request = mig_flow_objects.ToRDFFlowRequest(request)
rdf_responses = []
for r in responses:
if isinstance(r, flows_pb2.FlowResponse):
rdf_responses.append(mig_flow_objects.ToRDFFlowResponse(r))
if isinstance(r, flows_pb2.FlowStatus):
rdf_responses.append(mig_flow_objects.ToRDFFlowStatus(r))
if isinstance(r, flows_pb2.FlowIterator):
rdf_responses.append(mig_flow_objects.ToRDFFlowIterator(r))
# If there's not even a `Status` response, we send `None` as response.
if not rdf_responses:
rdf_responses = None
self.RunStateMethod(request.next_state, rdf_request, rdf_responses)
self.rdf_flow.next_request_to_process += 1
self.completed_requests.append(request)
if (
completed_requests
and self.IsRunning()
and not self.outstanding_requests
):
self.RunStateMethod("End")
if (
self.rdf_flow.flow_state == self.rdf_flow.FlowState.RUNNING
and not self.outstanding_requests
):
self.MarkDone()
self.PersistState()
if not self.IsRunning():
# All requests and responses can now be deleted.
self._ClearAllRequestsAndResponses()
return len(completed_requests), num_incremental | Processes all requests that are due to run.
Returns:
(processed, incrementally_processed) The number of completed processed
requests and the number of incrementally processed ones. | ProcessAllReadyRequests | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def outstanding_requests(self) -> int:
"""Returns the number of all outstanding requests.
This is used to determine if the flow needs to be destroyed yet.
Returns:
the number of all outstanding requests.
"""
return (
self.rdf_flow.next_outbound_id - self.rdf_flow.next_request_to_process
) | Returns the number of all outstanding requests.
This is used to determine if the flow needs to be destroyed yet.
Returns:
the number of all outstanding requests. | outstanding_requests | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def FlushQueuedMessages(self) -> None:
"""Flushes queued messages."""
# TODO(amoser): This could be done in a single db call, might be worth
# optimizing.
if self.flow_requests or self.proto_flow_requests:
all_requests = [
mig_flow_objects.ToProtoFlowRequest(r) for r in self.flow_requests
] + self.proto_flow_requests
# We make a single DB call to write all requests. Contrary to what the
# name suggests, this method does more than writing the requests to the
# DB. It also tallies the flows that need processing and updates the
# next request to process. Writing the requests in separate calls can
# interfere with this process.
data_store.REL_DB.WriteFlowRequests(all_requests)
self.flow_requests = []
self.proto_flow_requests = []
if self.flow_responses:
flow_responses_proto = []
for r in self.flow_responses:
if isinstance(r, rdf_flow_objects.FlowResponse):
flow_responses_proto.append(mig_flow_objects.ToProtoFlowResponse(r))
if isinstance(r, rdf_flow_objects.FlowStatus):
flow_responses_proto.append(mig_flow_objects.ToProtoFlowStatus(r))
if isinstance(r, rdf_flow_objects.FlowIterator):
flow_responses_proto.append(mig_flow_objects.ToProtoFlowIterator(r))
data_store.REL_DB.WriteFlowResponses(flow_responses_proto)
self.flow_responses = []
if self.proto_flow_responses:
data_store.REL_DB.WriteFlowResponses(self.proto_flow_responses)
self.proto_flow_responses = []
if self.client_action_requests:
client_id = self.rdf_flow.client_id
for request in self.client_action_requests:
fleetspeak_utils.SendGrrMessageThroughFleetspeak(client_id, request)
self.client_action_requests = []
if self.proto_client_action_requests:
client_id = self.rdf_flow.client_id
for request in self.proto_client_action_requests:
fleetspeak_utils.SendGrrMessageProtoThroughFleetspeak(
client_id, request
)
self.proto_client_action_requests = []
for request in self.rrg_requests:
fleetspeak_utils.SendRrgRequest(self.rdf_flow.client_id, request)
self.rrg_requests = []
if self.completed_requests:
data_store.REL_DB.DeleteFlowRequests(self.completed_requests)
self.completed_requests = []
if self.proto_replies_to_write or self.replies_to_write:
all_results = self.proto_replies_to_write + [
mig_flow_objects.ToProtoFlowResult(r) for r in self.replies_to_write
]
# Write flow results to REL_DB, even if the flow is a nested flow.
data_store.REL_DB.WriteFlowResults(all_results)
if self.rdf_flow.parent_hunt_id:
hunt.StopHuntIfCPUOrNetworkLimitsExceeded(self.rdf_flow.parent_hunt_id)
self.proto_replies_to_write = []
self.replies_to_write = [] | Flushes queued messages. | FlushQueuedMessages | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def _ProcessRepliesWithHuntOutputPlugins(
self, replies: Sequence[rdf_flow_objects.FlowResult]
) -> None:
"""Applies output plugins to hunt results."""
hunt_obj = data_store.REL_DB.ReadHuntObject(self.rdf_flow.parent_hunt_id)
hunt_obj = mig_hunt_objects.ToRDFHunt(hunt_obj)
self.rdf_flow.output_plugins = hunt_obj.output_plugins
hunt_output_plugins_states = data_store.REL_DB.ReadHuntOutputPluginsStates(
self.rdf_flow.parent_hunt_id
)
hunt_output_plugins_states = [
mig_flow_runner.ToRDFOutputPluginState(s)
for s in hunt_output_plugins_states
]
self.rdf_flow.output_plugins_states = hunt_output_plugins_states
created_plugins = self._ProcessRepliesWithFlowOutputPlugins(replies)
for index, (plugin, state) in enumerate(
zip(created_plugins, hunt_output_plugins_states)
):
if plugin is None:
continue
# Only do the REL_DB call if the plugin state has actually changed.
s = state.plugin_state.Copy()
plugin.UpdateState(s)
if s != state.plugin_state:
def UpdateFn(
plugin_state: jobs_pb2.AttributedDict,
) -> jobs_pb2.AttributedDict:
plugin_state_rdf = mig_protodict.ToRDFAttributedDict(plugin_state)
plugin.UpdateState(plugin_state_rdf) # pylint: disable=cell-var-from-loop
plugin_state = mig_protodict.ToProtoAttributedDict(plugin_state_rdf)
return plugin_state
data_store.REL_DB.UpdateHuntOutputPluginState(
hunt_obj.hunt_id, index, UpdateFn
)
for plugin_def, created_plugin in zip(
hunt_obj.output_plugins, created_plugins
):
if created_plugin is not None:
HUNT_RESULTS_RAN_THROUGH_PLUGIN.Increment(
len(replies), fields=[plugin_def.plugin_name]
)
else:
HUNT_OUTPUT_PLUGIN_ERRORS.Increment(fields=[plugin_def.plugin_name]) | Applies output plugins to hunt results. | _ProcessRepliesWithHuntOutputPlugins | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def _ProcessRepliesWithFlowOutputPlugins(
self, replies: Sequence[rdf_flow_objects.FlowResult]
) -> Sequence[Optional[output_plugin_lib.OutputPlugin]]:
"""Processes replies with output plugins."""
created_output_plugins = []
for index, output_plugin_state in enumerate(
self.rdf_flow.output_plugins_states
):
plugin_descriptor = output_plugin_state.plugin_descriptor
output_plugin_cls = plugin_descriptor.GetPluginClass()
args = plugin_descriptor.args
output_plugin = output_plugin_cls(
source_urn=self.rdf_flow.long_flow_id, args=args
)
try:
output_plugin.ProcessResponses(
output_plugin_state.plugin_state,
replies,
)
output_plugin.Flush(output_plugin_state.plugin_state)
output_plugin.UpdateState(output_plugin_state.plugin_state)
data_store.REL_DB.WriteFlowOutputPluginLogEntry(
flows_pb2.FlowOutputPluginLogEntry(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
hunt_id=self.rdf_flow.parent_hunt_id,
output_plugin_id="%d" % index,
log_entry_type=flows_pb2.FlowOutputPluginLogEntry.LogEntryType.LOG,
message="Processed %d replies." % len(replies),
)
)
self.Log(
"Plugin %s successfully processed %d flow replies.",
plugin_descriptor,
len(replies),
)
created_output_plugins.append(output_plugin)
except Exception as e: # pylint: disable=broad-except
logging.exception(
"Plugin %s failed to process %d replies.",
plugin_descriptor,
len(replies),
)
created_output_plugins.append(None)
data_store.REL_DB.WriteFlowOutputPluginLogEntry(
flows_pb2.FlowOutputPluginLogEntry(
client_id=self.rdf_flow.client_id,
flow_id=self.rdf_flow.flow_id,
hunt_id=self.rdf_flow.parent_hunt_id,
output_plugin_id="%d" % index,
log_entry_type=flows_pb2.FlowOutputPluginLogEntry.LogEntryType.ERROR,
message="Error while processing %d replies: %s"
% (len(replies), str(e)),
)
)
self.Log(
"Plugin %s failed to process %d replies due to: %s",
plugin_descriptor,
len(replies),
e,
)
return created_output_plugins | Processes replies with output plugins. | _ProcessRepliesWithFlowOutputPlugins | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def MergeQueuedMessages(self, flow_obj: "FlowBase") -> None:
"""Merges queued messages."""
self.flow_requests.extend(flow_obj.flow_requests)
flow_obj.flow_requests = []
self.proto_flow_requests.extend(flow_obj.proto_flow_requests)
flow_obj.proto_flow_requests = []
self.flow_responses.extend(flow_obj.flow_responses)
flow_obj.flow_responses = []
self.proto_flow_responses.extend(flow_obj.proto_flow_responses)
flow_obj.proto_flow_responses = []
self.rrg_requests.extend(flow_obj.rrg_requests)
flow_obj.rrg_requests = []
self.client_action_requests.extend(flow_obj.client_action_requests)
flow_obj.client_action_requests = []
self.proto_client_action_requests.extend(
flow_obj.proto_client_action_requests
)
flow_obj.proto_client_action_requests = []
self.completed_requests.extend(flow_obj.completed_requests)
flow_obj.completed_requests = []
self.replies_to_write.extend(flow_obj.replies_to_write)
flow_obj.replies_to_write = []
self.proto_replies_to_write.extend(flow_obj.proto_replies_to_write)
flow_obj.proto_replies_to_write = [] | Merges queued messages. | MergeQueuedMessages | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def GetFilesArchiveMappings(
self, flow_results: Iterator[rdf_flow_objects.FlowResult]
) -> Iterator[ClientPathArchiveMapping]:
"""Returns a mapping used to generate flow results archive.
If this is implemented by a flow, then instead of generating
a general-purpose archive with all files referenced in the
results present, an archive would be generated with
just the files referenced in the mappings.
Args:
flow_results: An iterator for flow results.
Returns:
An iterator of mappings from REL_DB's ClientPaths to archive paths.
Raises:
NotImplementedError: if not implemented by a subclass.
"""
raise NotImplementedError("GetFilesArchiveMappings() not implemented") | Returns a mapping used to generate flow results archive.
If this is implemented by a flow, then instead of generating
a general-purpose archive with all files referenced in the
results present, an archive would be generated with
just the files referenced in the mappings.
Args:
flow_results: An iterator for flow results.
Returns:
An iterator of mappings from REL_DB's ClientPaths to archive paths.
Raises:
NotImplementedError: if not implemented by a subclass. | GetFilesArchiveMappings | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def _AccountForProtoResultMetadata(self):
"""Merges `_num_replies_per_type_tag` Counter with current ResultMetadata."""
self._result_metadata.is_metadata_set = True
for r in self._result_metadata.num_results_per_type_tag:
key = (r.type, r.tag)
# This removes the item from _num_replies_per_type_tag if it's present in
# result_metadata.
count = self._num_replies_per_type_tag.pop(key, 0)
r.count = r.count + count
# Iterate over remaining items - i.e. items that were not present in
# result_metadata.
for (
result_type,
result_tag,
), count in self._num_replies_per_type_tag.items():
self._result_metadata.num_results_per_type_tag.append(
flows_pb2.FlowResultCount(
type=result_type, tag=result_tag, count=count
)
)
self._num_replies_per_type_tag = collections.Counter()
self.rdf_flow.result_metadata = (
rdf_flow_objects.FlowResultMetadata().FromSerializedBytes(
self._result_metadata.SerializeToString()
)
) | Merges `_num_replies_per_type_tag` Counter with current ResultMetadata. | _AccountForProtoResultMetadata | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def PersistState(self) -> None:
"""Persists flow state."""
self._AccountForProtoResultMetadata()
self.rdf_flow.persistent_data = self.state
if self._store is not None:
self.rdf_flow.store = rdf_structs.AnyValue.PackProto2(self._store)
if self._progress is not None:
self.rdf_flow.progress = rdf_structs.AnyValue.PackProto2(self._progress) | Persists flow state. | PersistState | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def args(self, args: rdfvalue.RDFValue) -> None:
"""Updates both rdf and proto args."""
if not isinstance(args, self.args_type):
raise TypeError(
f"args must be of type {self.args_type}, got {type(args)} instead."
)
self.rdf_flow.args = args
self._proto_args = self.proto_args_type()
self._proto_args.ParseFromString(args.SerializeToBytes()) | Updates both rdf and proto args. | args | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def proto_args(self) -> _ProtoArgsT:
"""Returns the proto args."""
if self._proto_args is not None:
return self._proto_args
# We use `rdf_flow.args` as source of truth for now.
if self.rdf_flow.HasField("args"):
# Hope serialization is compatible
args = self.proto_args_type()
args.ParseFromString(self.args.SerializeToBytes())
self._proto_args = args
else:
self._proto_args = self.proto_args_type()
return self._proto_args | Returns the proto args. | proto_args | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def UseProto2AnyResponses(
state_method: Callable[
[FlowBase, flow_responses.Responses[any_pb2.Any]], None
],
) -> Callable[[FlowBase, flow_responses.Responses[any_pb2.Any]], None]:
"""Instructs flow execution not to use RDF magic for unpacking responses.
The current default behaviour of the flow execution is to do type lookup and
automagically unpack flow responses to "appropriate" type. This behaviour is
problematic for many reasons and methods that do not need to rely on it should
use this annotation.
Args:
state_method: A flow state method to annotate.
Returns:
A flow state method that will not have the problematic behaviour.
"""
@functools.wraps(state_method)
def Wrapper(self, responses: flow_responses.Responses) -> None:
return state_method(self, responses)
Wrapper._proto2_any_responses = True # pylint: disable=protected-access
return Wrapper | Instructs flow execution not to use RDF magic for unpacking responses.
The current default behaviour of the flow execution is to do type lookup and
automagically unpack flow responses to "appropriate" type. This behaviour is
problematic for many reasons and methods that do not need to rely on it should
use this annotation.
Args:
state_method: A flow state method to annotate.
Returns:
A flow state method that will not have the problematic behaviour. | UseProto2AnyResponses | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def _TerminateFlow(
proto_flow: flows_pb2.Flow,
reason: Optional[str] = None,
flow_state: rdf_structs.EnumNamedValue = rdf_flow_objects.Flow.FlowState.ERROR,
) -> None:
"""Does the actual termination."""
flow_cls = FlowRegistry.FlowClassByName(proto_flow.flow_class_name)
rdf_flow = mig_flow_objects.ToRDFFlow(proto_flow)
flow_obj = flow_cls(rdf_flow)
if not flow_obj.IsRunning():
# Nothing to do.
return
logging.info(
"Terminating flow %s on %s, reason: %s",
rdf_flow.flow_id,
rdf_flow.client_id,
reason,
)
rdf_flow.flow_state = flow_state
rdf_flow.error_message = reason
flow_obj.NotifyCreatorOfError()
proto_flow = mig_flow_objects.ToProtoFlow(rdf_flow)
data_store.REL_DB.UpdateFlow(
proto_flow.client_id,
proto_flow.flow_id,
flow_obj=proto_flow,
processing_on=None,
processing_since=None,
processing_deadline=None,
)
data_store.REL_DB.DeleteAllFlowRequestsAndResponses(
proto_flow.client_id, proto_flow.flow_id
) | Does the actual termination. | _TerminateFlow | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def TerminateFlow(
client_id: str,
flow_id: str,
reason: Optional[str] = None,
flow_state: rdf_structs.EnumNamedValue = rdf_flow_objects.Flow.FlowState.ERROR,
) -> None:
"""Terminates a flow and all of its children.
Args:
client_id: Client ID of a flow to terminate.
flow_id: Flow ID of a flow to terminate.
reason: String with a termination reason.
flow_state: Flow state to be assigned to a flow after termination. Defaults
to FlowState.ERROR.
"""
to_terminate = [data_store.REL_DB.ReadFlowObject(client_id, flow_id)]
while to_terminate:
next_to_terminate = []
for proto_flow in to_terminate:
_TerminateFlow(proto_flow, reason=reason, flow_state=flow_state)
next_to_terminate.extend(
data_store.REL_DB.ReadChildFlowObjects(
proto_flow.client_id, proto_flow.flow_id
)
)
to_terminate = next_to_terminate | Terminates a flow and all of its children.
Args:
client_id: Client ID of a flow to terminate.
flow_id: Flow ID of a flow to terminate.
reason: String with a termination reason.
flow_state: Flow state to be assigned to a flow after termination. Defaults
to FlowState.ERROR. | TerminateFlow | python | google/grr | grr/server/grr_response_server/flow_base.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flow_base.py | Apache-2.0 |
def GetKnowledgeBase(rdf_client_obj, allow_uninitialized=False):
"""Returns a knowledgebase from an rdf client object."""
if not allow_uninitialized:
if rdf_client_obj is None:
raise artifact_utils.KnowledgeBaseUninitializedError(
"No client snapshot given."
)
if rdf_client_obj.knowledge_base is None:
raise artifact_utils.KnowledgeBaseUninitializedError(
"KnowledgeBase empty for %s." % rdf_client_obj.client_id
)
kb = rdf_client_obj.knowledge_base
if not kb.os:
raise artifact_utils.KnowledgeBaseAttributesMissingError(
"KnowledgeBase missing OS for %s. Knowledgebase content: %s"
% (rdf_client_obj.client_id, kb)
)
if rdf_client_obj is None or rdf_client_obj.knowledge_base is None:
return rdf_client.KnowledgeBase()
version = rdf_client_obj.os_version.split(".")
kb = rdf_client_obj.knowledge_base
try:
kb.os_major_version = int(version[0])
if len(version) > 1:
kb.os_minor_version = int(version[1])
except ValueError:
pass
return kb | Returns a knowledgebase from an rdf client object. | GetKnowledgeBase | python | google/grr | grr/server/grr_response_server/artifact.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/artifact.py | Apache-2.0 |
def Start(self):
"""For each artifact, create subflows for each collector."""
self.state.knowledge_base = None
self.InitializeKnowledgeBase()
if self.client_os == "Linux":
self.CallFlow(
distro.CollectDistroInfo.__name__,
next_state=self._ProcessLinuxDistroInfo.__name__,
)
self.CallClient(
server_stubs.EnumerateUsers,
next_state=self._ProcessLinuxEnumerateUsers.__name__,
)
elif self.client_os == "Darwin":
list_users_dir_request = rdf_client_action.ListDirRequest()
list_users_dir_request.pathspec.pathtype = rdf_paths.PathSpec.PathType.OS
list_users_dir_request.pathspec.path = "/Users"
self.CallClient(
server_stubs.ListDirectory,
request=list_users_dir_request,
next_state=self._ProcessMacosListUsersDirectory.__name__,
)
elif self.client_os == "Windows":
# pylint: disable=line-too-long
# fmt: off
if self.rrg_support:
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows NT\CurrentVersion",
name="SystemRoot",
),
next_state=self._ProcessRRGWindowsEnvSystemRoot.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows\CurrentVersion",
name="ProgramFilesDir",
),
next_state=self._ProcessRRGWindowsEnvProgramFilesDir.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows\CurrentVersion",
name="ProgramFilesDir (x86)",
),
next_state=self._ProcessRRGWindowsEnvProgramFilesDirX86.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows\CurrentVersion",
name="CommonFilesDir",
),
next_state=self._ProcessRRGWindowsEnvCommonFilesDir.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows\CurrentVersion",
name="CommonFilesDir (x86)",
),
next_state=self._ProcessRRGWindowsEnvCommonFilesDirX86.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList",
name="ProgramData",
),
next_state=self._ProcessRRGWindowsEnvProgramData.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\Session Manager\Environment",
name="DriverData",
),
next_state=self._ProcessRRGWindowsEnvDriverData.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\Select",
name="Current",
),
next_state=self._ProcessRRGWindowsCurrentControlSet.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\Nls\CodePage",
name="ACP",
),
next_state=self._ProcessRRGWindowsCodePage.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Services\Tcpip\Parameters",
name="Domain",
),
next_state=self._ProcessRRGWindowsDomain.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\TimeZoneInformation",
name="TimeZoneKeyName",
),
next_state=self._ProcessRRGWindowsTimeZoneKeyName.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\Session Manager\Environment",
name="TEMP",
),
next_state=self._ProcessRRGWindowsEnvTemp.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\Session Manager\Environment",
name="Path",
),
next_state=self._ProcessRRGWindowsEnvPath.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\Session Manager\Environment",
name="ComSpec",
),
next_state=self._ProcessRRGWindowsEnvComSpec.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SYSTEM\CurrentControlSet\Control\Session Manager\Environment",
name="windir",
),
next_state=self._ProcessRRGWindowsEnvWindir.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList",
name="ProfilesDirectory",
),
next_state=self._ProcessRRGWindowsProfilesDirectory.__name__,
)
self.CallRRG(
action=rrg_pb2.GET_WINREG_VALUE,
args=rrg_get_winreg_value_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList",
name="AllUsersProfile",
),
next_state=self._ProcessRRGWindowsEnvAllUsersProfile.__name__,
)
self.CallRRG(
action=rrg_pb2.LIST_WINREG_KEYS,
args=rrg_list_winreg_keys_pb2.Args(
root=rrg_winreg_pb2.LOCAL_MACHINE,
key=r"SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList",
),
next_state=self._ProcessRRGWindowsProfileList.__name__,
)
# WMI queries are slow, so we consider them "heavyweight".
if not self.args.lightweight:
users = self.state.knowledge_base.users
self.CallRRG(
action=rrg_pb2.QUERY_WMI,
args=rrg_query_wmi_pb2.Args(
query=f"""
SELECT SID, Name, Domain
FROM Win32_UserAccount
WHERE LocalAccount = TRUE
AND ({" OR ".join(f"SID = '{user.sid}'" for user in users)})
""",
),
next_state=self._ProcessRRGWindowsWMIUserAccount.__name__,
)
else:
# TODO: There is no dedicated action for obtaining registry
# values. The existing artifact collector uses `GetFileStat` action for
# this which is horrible.
args = rdf_client_action.GetFileStatRequest()
args.pathspec.pathtype = rdf_paths.PathSpec.PathType.REGISTRY
args.pathspec.path = r"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SystemRoot"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvSystemRoot.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\ProgramFilesDir"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvProgramFilesDir.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\ProgramFilesDir (x86)"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvProgramFilesDirX86.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\CommonFilesDir"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvCommonFilesDir.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\CommonFilesDir (x86)"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvCommonFilesDirX86.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProgramData"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvProgramData.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment\DriverData"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvDriverData.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\Select\Current"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsCurrentControlSet.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\CodePage\ACP"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsCodePage.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters\Domain"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsDomain.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\TimeZoneInformation\TimeZoneKeyName"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsTimeZoneKeyName.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\TEMP"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvTemp.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\Path"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvPath.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment\ComSpec"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvComSpec.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\windir"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvWindir.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsProfilesDirectory.__name__,
)
args.pathspec.path = r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\AllUsersProfile"
self.CallClient(
server_stubs.GetFileStat,
args,
next_state=self._ProcessWindowsEnvAllUsersProfile.__name__,
)
args = rdf_file_finder.FileFinderArgs()
# TODO: There is no dedicated action for obtaining registry
# values but `STAT` action of the file-finder will get it. This should be
# refactored once registry-specific actions are available.
args.action.action_type = rdf_file_finder.FileFinderAction.Action.STAT
args.pathtype = rdf_paths.PathSpec.PathType.REGISTRY
args.paths = [r"HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\*\ProfileImagePath"]
# TODO: remove this when the registry+sandboxing bug
# is fixed.
args.implementation_type = rdf_paths.PathSpec.ImplementationType.DIRECT
self.CallClient(
server_stubs.VfsFileFinder,
args,
next_state=self._ProcessWindowsProfiles.__name__,
) | For each artifact, create subflows for each collector. | Start | python | google/grr | grr/server/grr_response_server/artifact.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/artifact.py | Apache-2.0 |
def End(self) -> None:
"""Finish up."""
if self.client_os == "Windows":
self.state.knowledge_base = mig_client.ToRDFKnowledgeBase(
artifact_utils.ExpandKnowledgebaseWindowsEnvVars(
mig_client.ToProtoKnowledgeBase(self.state.knowledge_base),
),
)
# TODO: `%LOCALAPPDATA%` is a very often used variable that we
# potentially not collect due to limitations of the Windows registry. For
# now, in case we did not collect it, we set it to the default Windows value
# (which should be the case almost always but is nevertheless not the most
# way of handling it).
#
# Alternatively, we could develop a more general way of handling default
# environment variable values in case they are missing.
if self.client_os == "Windows":
for user in self.state.knowledge_base.users:
if not user.localappdata:
self.Log(
"Missing `%%LOCALAPPDATA%%` for '%s', using Windows default",
user.username,
)
user.localappdata = rf"{user.userprofile}\AppData\Local"
self.SendReply(self.state.knowledge_base) | Finish up. | End | python | google/grr | grr/server/grr_response_server/artifact.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/artifact.py | Apache-2.0 |
def InitializeKnowledgeBase(self):
"""Get the existing KB or create a new one if none exists."""
# Always create a new KB to override any old values but keep os and
# version so we know which artifacts we can run.
self.state.knowledge_base = rdf_client.KnowledgeBase()
snapshot = data_store.REL_DB.ReadClientSnapshot(self.client_id)
if not snapshot or not snapshot.knowledge_base:
return
kb = snapshot.knowledge_base
state_kb = self.state.knowledge_base
state_kb.os = kb.os
state_kb.os_major_version = kb.os_major_version
state_kb.os_minor_version = kb.os_minor_version
if not state_kb.os_major_version and snapshot.os_version:
version = snapshot.os_version.split(".")
try:
state_kb.os_major_version = int(version[0])
if len(version) > 1:
state_kb.os_minor_version = int(version[1])
except ValueError:
pass | Get the existing KB or create a new one if none exists. | InitializeKnowledgeBase | python | google/grr | grr/server/grr_response_server/artifact.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/artifact.py | Apache-2.0 |
def UploadArtifactYamlFile(
file_content,
overwrite=True,
overwrite_system_artifacts=False,
):
"""Upload a yaml or json file as an artifact to the datastore."""
loaded_artifacts = []
registry_obj = artifact_registry.REGISTRY
# Make sure all artifacts are loaded so we don't accidentally overwrite one.
registry_obj.GetArtifacts(reload_datastore_artifacts=True)
new_artifacts = registry_obj.ArtifactsFromYaml(file_content)
# A quick syntax check before we upload anything.
for artifact_value in new_artifacts:
artifact_registry.ValidateSyntax(artifact_value)
for artifact_value in new_artifacts:
registry_obj.RegisterArtifact(
artifact_value,
source="datastore",
overwrite_if_exists=overwrite,
overwrite_system_artifacts=overwrite_system_artifacts,
)
data_store.REL_DB.WriteArtifact(
mig_artifacts.ToProtoArtifact(artifact_value)
)
loaded_artifacts.append(artifact_value)
name = artifact_value.name
logging.info("Uploaded artifact %s.", name)
# Once all artifacts are loaded we can validate dependencies. Note that we do
# not have to perform a syntax validation because it is already done after
# YAML is parsed.
for artifact_value in loaded_artifacts:
artifact_registry.ValidateDependencies(artifact_value) | Upload a yaml or json file as an artifact to the datastore. | UploadArtifactYamlFile | python | google/grr | grr/server/grr_response_server/artifact.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/artifact.py | Apache-2.0 |
def LoadArtifactsOnce():
"""Loads artifacts from the datastore and from the filesystem.
Datastore gets loaded second so it can override Artifacts in the files.
"""
artifact_registry.REGISTRY.AddDefaultSources() | Loads artifacts from the datastore and from the filesystem.
Datastore gets loaded second so it can override Artifacts in the files. | LoadArtifactsOnce | python | google/grr | grr/server/grr_response_server/artifact.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/artifact.py | Apache-2.0 |
def _HostPrefix(client_id):
"""Build a host prefix for a notification message based on a client id."""
if not client_id:
return ""
hostname = None
client_snapshot = data_store.REL_DB.ReadClientSnapshot(client_id)
if client_snapshot:
hostname = client_snapshot.knowledge_base.fqdn
if hostname:
return "%s: " % hostname
else:
return "" | Build a host prefix for a notification message based on a client id. | _HostPrefix | python | google/grr | grr/server/grr_response_server/notification.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/notification.py | Apache-2.0 |
def ClientIdFromObjectReference(
object_reference: objects_pb2.ObjectReference,
) -> Optional[str]:
"""Returns the client ID from the given object reference, or None."""
if object_reference.reference_type == objects_pb2.ObjectReference.CLIENT:
return object_reference.client.client_id
elif object_reference.reference_type == objects_pb2.ObjectReference.FLOW:
return object_reference.flow.client_id
elif object_reference.reference_type == objects_pb2.ObjectReference.VFS_FILE:
return object_reference.vfs_file.client_id
elif (
object_reference.reference_type
== objects_pb2.ObjectReference.APPROVAL_REQUEST
and object_reference.approval_request.approval_type
== objects_pb2.ApprovalRequest.ApprovalType.APPROVAL_TYPE_CLIENT
):
return object_reference.approval_request.subject_id
else:
return None | Returns the client ID from the given object reference, or None. | ClientIdFromObjectReference | python | google/grr | grr/server/grr_response_server/notification.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/notification.py | Apache-2.0 |
def Notify(
username: str,
notification_type: "objects_pb2.UserNotification.Type",
message: str,
object_reference: Optional[objects_pb2.ObjectReference],
) -> None:
"""Schedules a new-style REL_DB user notification."""
# Do not try to notify system users (e.g. Cron).
if username in access_control.SYSTEM_USERS:
return
if object_reference:
client_id = ClientIdFromObjectReference(object_reference)
if client_id:
message = _HostPrefix(client_id) + message
n = objects_pb2.UserNotification(
username=username,
notification_type=notification_type,
state=objects_pb2.UserNotification.State.STATE_PENDING,
message=message,
reference=object_reference,
)
data_store.REL_DB.WriteUserNotification(n) | Schedules a new-style REL_DB user notification. | Notify | python | google/grr | grr/server/grr_response_server/notification.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/notification.py | Apache-2.0 |
def InitGRRRootAPI():
"""Initializes the GRR root API."""
return api.GrrApi(
connector=api_shell_raw_access_lib.RawConnector(
context=api_call_context.ApiCallContext(username="GRRConfigUpdater"),
page_size=_GRR_API_PAGE_SIZE,
)
).root | Initializes the GRR root API. | InitGRRRootAPI | python | google/grr | grr/server/grr_response_server/maintenance_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/maintenance_utils.py | Apache-2.0 |
def UploadSignedConfigBlob(content, aff4_path, client_context=None, limit=None):
"""Upload a signed blob into the datastore.
Args:
content: File content to upload.
aff4_path: aff4 path to upload to.
client_context: The configuration contexts to use.
limit: The maximum size of the chunk to use.
Raises:
IOError: On failure to write.
"""
if limit is None:
limit = config.CONFIG["Datastore.maximum_blob_size"]
# Get the values of these parameters which apply to the client running on the
# target platform.
if client_context is None:
# Default to the windows client.
client_context = ["Platform:Windows", "Client Context"]
config.CONFIG.Validate(
parameters="PrivateKeys.executable_signing_private_key"
)
signing_key = config.CONFIG.Get(
"PrivateKeys.executable_signing_private_key", context=client_context
)
verification_key = config.CONFIG.Get(
"Client.executable_signing_public_key", context=client_context
)
signed_binary_utils.WriteSignedBinary(
rdfvalue.RDFURN(aff4_path),
content,
signing_key,
public_key=verification_key,
chunk_size=limit,
)
logging.info("Uploaded to %s", aff4_path) | Upload a signed blob into the datastore.
Args:
content: File content to upload.
aff4_path: aff4 path to upload to.
client_context: The configuration contexts to use.
limit: The maximum size of the chunk to use.
Raises:
IOError: On failure to write. | UploadSignedConfigBlob | python | google/grr | grr/server/grr_response_server/maintenance_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/maintenance_utils.py | Apache-2.0 |
def _CheckIfHuntTaskWasAssigned(self, client_id, hunt_id):
"""Will return True if hunt's task was assigned to this client before."""
flow_id = hunt_id
try:
cur_flow = data_store.REL_DB.ReadFlowObject(client_id, flow_id)
except db.UnknownFlowError:
return False
if cur_flow.parent_hunt_id != hunt_id:
raise RuntimeError(
"Cannot start Hunt {} on {} because unrelated {} already exists."
.format(hunt_id, client_id, cur_flow.long_flow_id)
)
return True | Will return True if hunt's task was assigned to this client before. | _CheckIfHuntTaskWasAssigned | python | google/grr | grr/server/grr_response_server/foreman.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/foreman.py | Apache-2.0 |
def _RunAction(self, rule, client_id):
"""Run all the actions specified in the rule.
Args:
rule: Rule which actions are to be executed.
client_id: Id of a client where rule's actions are to be executed.
Returns:
Number of actions started.
"""
actions_count = 0
try:
if self._CheckIfHuntTaskWasAssigned(client_id, rule.hunt_id):
raise flow.CanNotStartFlowWithExistingIdError(client_id, rule.hunt_id)
hunt.StartHuntFlowOnClient(client_id, rule.hunt_id)
logging.info(
"Foreman: Started hunt %s on client %s.", rule.hunt_id, client_id
)
actions_count += 1
except flow.CanNotStartFlowWithExistingIdError:
logging.info(
"Foreman: ignoring hunt %s on client %s: was started here before",
rule.hunt_id,
client_id,
)
# There could be all kinds of errors we don't know about when starting the
# hunt so we catch everything here.
except Exception as e: # pylint: disable=broad-except
logging.exception(
"Failure running hunt %s on client %s: %s", rule.hunt_id, client_id, e
)
return actions_count | Run all the actions specified in the rule.
Args:
rule: Rule which actions are to be executed.
client_id: Id of a client where rule's actions are to be executed.
Returns:
Number of actions started. | _RunAction | python | google/grr | grr/server/grr_response_server/foreman.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/foreman.py | Apache-2.0 |
def AssignTasksToClient(self, client_id):
"""Examines our rules and starts up flows based on the client.
Args:
client_id: Client id of the client for tasks to be assigned.
Returns:
Number of assigned tasks.
"""
proto_rules = data_store.REL_DB.ReadAllForemanRules()
rules = [
mig_foreman_rules.ToRDFForemanCondition(cond) for cond in proto_rules
]
if not rules:
return 0
last_foreman_run = self._GetLastForemanRunTime(client_id)
latest_rule_creation_time = max(rule.creation_time for rule in rules)
if latest_rule_creation_time > last_foreman_run:
# Update the latest checked rule on the client.
self._SetLastForemanRunTime(client_id, latest_rule_creation_time)
relevant_rules = []
expired_rules = []
now = rdfvalue.RDFDatetime.Now()
for rule in rules:
if rule.expiration_time < now:
expired_rules.append(rule)
elif rule.creation_time > last_foreman_run:
relevant_rules.append(rule)
actions_count = 0
if relevant_rules:
client_data = data_store.REL_DB.ReadClientFullInfo(client_id)
if client_data is None:
return
client_data = mig_objects.ToRDFClientFullInfo(client_data)
for rule in relevant_rules:
if rule.Evaluate(client_data):
actions_count += self._RunAction(rule, client_id)
if expired_rules:
for rule in expired_rules:
hunt.CompleteHuntIfExpirationTimeReached(rule.hunt_id)
data_store.REL_DB.RemoveExpiredForemanRules()
return actions_count | Examines our rules and starts up flows based on the client.
Args:
client_id: Client id of the client for tasks to be assigned.
Returns:
Number of assigned tasks. | AssignTasksToClient | python | google/grr | grr/server/grr_response_server/foreman.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/foreman.py | Apache-2.0 |
def GetNewEventId(self, event_time=None):
"""Return a unique Event ID string."""
if event_time is None:
event_time = int(time.time() * 1e6)
return "%s:%s:%s" % (event_time, socket.gethostname(), os.getpid()) | Return a unique Event ID string. | GetNewEventId | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def LogHttpAdminUIAccess(self, request, response):
"""Log an http based api call.
Args:
request: A WSGI request object.
response: A WSGI response object.
"""
# TODO(user): generate event_id elsewhere and use it for all the log
# messages that have to do with handling corresponding request.
event_id = self.GetNewEventId()
api_method = response.headers.get("X-API-Method", "unknown")
api_reason = "none"
if response.context:
approval = response.context.approval
if approval:
api_reason = approval.reason
log_msg = "%s API call [%s] by %s (reason: %s): %s [%d]" % (
event_id,
api_method,
request.user,
api_reason,
request.full_path,
response.status_code,
)
logging.info(log_msg)
if response.headers.get("X-No-Log") != "True":
entry = models_events.APIAuditEntryFromHttpRequestResponse(
request, response
)
data_store.REL_DB.WriteAPIAuditEntry(entry) | Log an http based api call.
Args:
request: A WSGI request object.
response: A WSGI response object. | LogHttpAdminUIAccess | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def LogHttpFrontendAccess(self, request, source=None, message_count=None):
"""Write a log entry for a Frontend or UI Request.
Args:
request: A HttpRequest protobuf.
source: Client id of the client initiating the request. Optional.
message_count: Number of messages received from the client. Optional.
"""
# TODO(user): generate event_id elsewhere and use it for all the log
# messages that have to do with handling corresponding request.
event_id = self.GetNewEventId()
log_msg = "%s-%s [%s]: %s %s %s %s (%d)" % (
event_id,
request.source_ip,
source or "<unknown>",
request.method,
request.url,
request.user_agent,
request.user,
message_count or 0,
)
logging.info(log_msg) | Write a log entry for a Frontend or UI Request.
Args:
request: A HttpRequest protobuf.
source: Client id of the client initiating the request. Optional.
message_count: Number of messages received from the client. Optional. | LogHttpFrontendAccess | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def flush(self):
"""Flush the buffer.
This is called when the buffer is really full, we just just drop one oldest
message.
"""
self.buffer = self.buffer[-self.capacity :] | Flush the buffer.
This is called when the buffer is really full, we just just drop one oldest
message. | flush | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def handleError(self, record):
"""Just ignore socket errors - the syslog server might come back.""" | Just ignore socket errors - the syslog server might come back. | handleError | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def __init__(self, *args, **kwargs):
"""Initializes LogMetricsHandler."""
super().__init__(*args, **kwargs)
self.setLevel(logging.ERROR) | Initializes LogMetricsHandler. | __init__ | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def emit(self, record: logging.LogRecord):
"""Overrides Handler.emit()."""
# From https://docs.python.org/3/library/logging.html#logging.Logger
# logging.error() and logging.exception() log with level ERROR.
# logging.critical() logs with level CRITICAL.
if record.levelno == logging.ERROR:
LOG_CALLS_COUNTER.Increment(fields=["ERROR"])
elif record.levelno == logging.CRITICAL:
LOG_CALLS_COUNTER.Increment(fields=["CRITICAL"]) | Overrides Handler.emit(). | emit | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def InitErrorLogsMonitoring():
"""Sets up error logs monitoring."""
logging.root.addHandler(ErrorLogsHandler())
logging.info("Initialized ErrorLogsHandler.") | Sets up error logs monitoring. | InitErrorLogsMonitoring | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def LogInit():
"""Configure the logging subsystem."""
logging.debug("Initializing Logging subsystem.")
# The root logger.
logger = logging.getLogger()
memory_handlers = [
m
for m in logger.handlers
if m.__class__.__name__ == "PreLoggingMemoryHandler"
]
# Clear all handers.
logger.handlers = list(GetLogHandlers())
SetLogLevels()
# Now flush the old messages into the log files.
for handler in memory_handlers:
for record in handler.buffer:
logger.handle(record) | Configure the logging subsystem. | LogInit | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def AppLogInit():
"""Initialize the Application Log.
This log is what will be used whenever someone does a log.LOGGER call. These
are used for more detailed application or event logs.
Returns:
GrrApplicationLogger object
"""
logging.debug("Initializing Application Logger.")
return GrrApplicationLogger() | Initialize the Application Log.
This log is what will be used whenever someone does a log.LOGGER call. These
are used for more detailed application or event logs.
Returns:
GrrApplicationLogger object | AppLogInit | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def ServerLoggingStartupInit():
"""Initialize the server logging configuration."""
global LOGGER
# `local_log` requires `Logging.path` configuration variable to be set. If it
# is not, we fallback to normal logging (as specified in the config or flags).
if local_log and config.CONFIG["Logging.path"]:
logging.debug("Using local LogInit from %s", local_log)
local_log.LogInit()
logging.debug("Using local AppLogInit from %s", local_log)
LOGGER = local_log.AppLogInit()
else:
LogInit()
LOGGER = AppLogInit()
InitErrorLogsMonitoring() | Initialize the server logging configuration. | ServerLoggingStartupInit | python | google/grr | grr/server/grr_response_server/server_logging.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/server_logging.py | Apache-2.0 |
def Run(self):
"""The actual cron job logic goes into this method.""" | The actual cron job logic goes into this method. | Run | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def StartRun(self, wait_for_start_event, signal_event, wait_for_write_event):
"""Starts a new run for the given cron job."""
# Signal that the cron thread has started. This way the cron scheduler
# will know that the task is not sitting in a threadpool queue, but is
# actually executing.
wait_for_start_event.set()
# Wait until the cron scheduler acknowledges the run. If it doesn't
# acknowledge, just return (it means that the cron scheduler considers
# this task as "not started" and has returned the lease so that another
# worker can pick it up).
if not signal_event.wait(TASK_STARTUP_WAIT):
return
try:
logging.info("Processing cron job: %s", self.job.cron_job_id)
self.run_state.started_at = rdfvalue.RDFDatetime.Now()
self.run_state.status = rdf_cronjobs.CronJobRun.CronJobRunStatus.RUNNING
data_store.REL_DB.WriteCronJobRun(
mig_cronjobs.ToProtoCronJobRun(self.run_state)
)
data_store.REL_DB.UpdateCronJob(
self.job.cron_job_id,
last_run_time=rdfvalue.RDFDatetime.Now(),
current_run_id=self.run_state.run_id,
forced_run_requested=False,
)
finally:
# Notify the cron scheduler that all the DB updates are done. At this
# point the cron scheduler can safely return this job's lease.
wait_for_write_event.set()
try:
self.Run()
self.run_state.status = rdf_cronjobs.CronJobRun.CronJobRunStatus.FINISHED
except LifetimeExceededError:
self.run_state.status = (
rdf_cronjobs.CronJobRun.CronJobRunStatus.LIFETIME_EXCEEDED
)
CRON_JOB_FAILURE.Increment(fields=[self.job.cron_job_id])
except Exception as e: # pylint: disable=broad-except
logging.exception(
"Cronjob %s failed with an error: %s", self.job.cron_job_id, e
)
CRON_JOB_FAILURE.Increment(fields=[self.job.cron_job_id])
self.run_state.status = rdf_cronjobs.CronJobRun.CronJobRunStatus.ERROR
self.run_state.backtrace = "{}\n\n{}".format(e, traceback.format_exc())
finally:
self.run_state.finished_at = rdfvalue.RDFDatetime.Now()
elapsed = self.run_state.finished_at - self.run_state.started_at
CRON_JOB_LATENCY.RecordEvent(
elapsed.ToFractional(rdfvalue.SECONDS), fields=[self.job.cron_job_id]
)
if self.job.lifetime:
expiration_time = self.run_state.started_at + self.job.lifetime
if self.run_state.finished_at > expiration_time:
self.run_state.status = (
rdf_cronjobs.CronJobRun.CronJobRunStatus.LIFETIME_EXCEEDED
)
CRON_JOB_TIMEOUT.Increment(fields=[self.job.cron_job_id])
data_store.REL_DB.WriteCronJobRun(
mig_cronjobs.ToProtoCronJobRun(self.run_state)
)
current_job = data_store.REL_DB.ReadCronJob(self.job.cron_job_id)
# If no other job was started while we were running, update last status
# information.
if current_job.current_run_id == self.run_state.run_id:
data_store.REL_DB.UpdateCronJob(
self.job.cron_job_id,
current_run_id=None,
last_run_status=int(self.run_state.status),
) | Starts a new run for the given cron job. | StartRun | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def HeartBeat(self):
"""Terminates a cronjob-run if it has exceeded its maximum runtime.
This is a no-op for cronjobs that allow overruns.
Raises:
LifetimeExceededError: If the cronjob has exceeded its maximum runtime.
"""
# In prod, self.job.lifetime is guaranteed to always be set, and is
# always equal to self.__class__.lifetime. Some tests however, do not
# set the job lifetime, which isn't great.
if self.allow_overruns or not self.job.lifetime:
return
runtime = rdfvalue.RDFDatetime.Now() - self.run_state.started_at
if runtime > self.lifetime:
raise LifetimeExceededError(
"Cronjob run has exceeded the maximum runtime of %s." % self.lifetime
) | Terminates a cronjob-run if it has exceeded its maximum runtime.
This is a no-op for cronjobs that allow overruns.
Raises:
LifetimeExceededError: If the cronjob has exceeded its maximum runtime. | HeartBeat | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def CreateJob(self, cron_args=None, job_id=None, enabled=True):
"""Creates a cron job that runs given flow with a given frequency.
Args:
cron_args: A protobuf of type rdf_cronjobs.CreateCronJobArgs.
job_id: Use this job_id instead of an autogenerated unique name (used for
system cron jobs - we want them to have well-defined persistent name).
enabled: If False, the job object will be created, but will be disabled.
Returns:
URN of the cron job created.
Raises:
ValueError: This function expects an arg protobuf that starts a
CreateAndRunGenericHuntFlow flow. If the args specify
something else, ValueError is raised.
"""
if not cron_args.flow_name:
raise ValueError("Unspecified flow name")
if not job_id:
# TODO: UInt16 is too small for randomly generated IDs.
uid = random.UInt16()
job_id = "%s_%s" % (cron_args.flow_name, uid)
args = rdf_cronjobs.CronJobAction(
action_type=rdf_cronjobs.CronJobAction.ActionType.HUNT_CRON_ACTION,
hunt_cron_action=rdf_cronjobs.HuntCronAction(
flow_name=cron_args.flow_name,
flow_args=cron_args.flow_args,
hunt_runner_args=cron_args.hunt_runner_args,
),
)
# TODO: Refactor to proto-only.
rdf_job = rdf_cronjobs.CronJob(
cron_job_id=job_id,
description=cron_args.description,
frequency=cron_args.frequency,
lifetime=cron_args.lifetime,
allow_overruns=cron_args.allow_overruns,
args=args,
enabled=enabled,
created_at=rdfvalue.RDFDatetime.Now(),
)
proto_job = mig_cronjobs.ToProtoCronJob(rdf_job)
data_store.REL_DB.WriteCronJob(proto_job)
return job_id | Creates a cron job that runs given flow with a given frequency.
Args:
cron_args: A protobuf of type rdf_cronjobs.CreateCronJobArgs.
job_id: Use this job_id instead of an autogenerated unique name (used for
system cron jobs - we want them to have well-defined persistent name).
enabled: If False, the job object will be created, but will be disabled.
Returns:
URN of the cron job created.
Raises:
ValueError: This function expects an arg protobuf that starts a
CreateAndRunGenericHuntFlow flow. If the args specify
something else, ValueError is raised. | CreateJob | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def ListJobs(self) -> Sequence[str]:
"""Returns a list of ids of all currently running cron jobs."""
return [job.cron_job_id for job in data_store.REL_DB.ReadCronJobs()] | Returns a list of ids of all currently running cron jobs. | ListJobs | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def ReadJobs(self) -> Sequence[rdf_cronjobs.CronJob]:
"""Returns a list of all currently running cron jobs."""
protos = data_store.REL_DB.ReadCronJobs()
return [mig_cronjobs.ToRDFCronJob(job) for job in protos] | Returns a list of all currently running cron jobs. | ReadJobs | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def EnableJob(self, job_id: str) -> None:
"""Enable cron job with the given id."""
return data_store.REL_DB.EnableCronJob(job_id) | Enable cron job with the given id. | EnableJob | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def DisableJob(self, job_id: str) -> None:
"""Disable cron job with the given id."""
return data_store.REL_DB.DisableCronJob(job_id) | Disable cron job with the given id. | DisableJob | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def DeleteJob(self, job_id: str) -> None:
"""Deletes cron job with the given URN."""
return data_store.REL_DB.DeleteCronJob(job_id) | Deletes cron job with the given URN. | DeleteJob | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def RunOnce(self, names: Sequence[str] = None) -> None:
"""Tries to lock and run cron jobs.
Args:
names: List of cron jobs to run. If unset, run them all.
Raises:
OneOrMoreCronJobsFailedError: if one or more individual cron jobs fail.
Note: a failure of a single cron job doesn't preclude other cron jobs
from running.
"""
proto_leased_jobs = data_store.REL_DB.LeaseCronJobs(
cronjob_ids=names,
lease_time=rdfvalue.Duration.From(10, rdfvalue.MINUTES),
)
logging.info("Leased %d cron jobs for processing.", len(proto_leased_jobs))
if not proto_leased_jobs:
return
rdf_leased_jobs = [
mig_cronjobs.ToRDFCronJob(job) for job in proto_leased_jobs
]
errors = {}
processed_count = 0
for job in sorted(rdf_leased_jobs, key=lambda j: j.cron_job_id):
if self.TerminateStuckRunIfNeeded(job):
continue
if not self.JobDueToRun(job):
continue
try:
if self.RunJob(job):
processed_count += 1
else:
logging.info(
"Can't schedule cron job %s on a thread pool "
"(all threads are busy or CPU load is high)",
job.cron_job_id,
)
break
except Exception as e: # pylint: disable=broad-except
logging.exception("Cron job %s has failed: %s", job.cron_job_id, e)
errors[job.cron_job_id] = e
logging.info("Processed %d cron jobs.", processed_count)
updated_proto_leased_jobs = [
mig_cronjobs.ToProtoCronJob(job) for job in rdf_leased_jobs
]
data_store.REL_DB.ReturnLeasedCronJobs(updated_proto_leased_jobs)
if errors:
raise OneOrMoreCronJobsFailedError(errors) | Tries to lock and run cron jobs.
Args:
names: List of cron jobs to run. If unset, run them all.
Raises:
OneOrMoreCronJobsFailedError: if one or more individual cron jobs fail.
Note: a failure of a single cron job doesn't preclude other cron jobs
from running. | RunOnce | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def TerminateStuckRunIfNeeded(self, job: rdf_cronjobs.CronJob) -> None:
"""Cleans up job state if the last run is stuck."""
if job.current_run_id and job.last_run_time and job.lifetime:
now = rdfvalue.RDFDatetime.Now()
# We add additional 10 minutes to give the job run a chance to kill itself
# during one of the HeartBeat calls (HeartBeat checks if a cron job is
# run is running too long and raises if it is).
expiration_time = (
job.last_run_time
+ job.lifetime
+ rdfvalue.Duration.From(10, rdfvalue.MINUTES)
)
if now > expiration_time:
proto_run = data_store.REL_DB.ReadCronJobRun(
job.cron_job_id, job.current_run_id
)
proto_run.status = (
flows_pb2.CronJobRun.CronJobRunStatus.LIFETIME_EXCEEDED
)
proto_run.finished_at = now.AsMicrosecondsSinceEpoch()
data_store.REL_DB.WriteCronJobRun(proto_run)
data_store.REL_DB.UpdateCronJob(
job.cron_job_id,
current_run_id=None,
last_run_status=proto_run.status,
)
CRON_JOB_LATENCY.RecordEvent(
(now - job.last_run_time).ToFractional(rdfvalue.SECONDS),
fields=[job.cron_job_id],
)
CRON_JOB_TIMEOUT.Increment(fields=[job.cron_job_id])
return True
return False | Cleans up job state if the last run is stuck. | TerminateStuckRunIfNeeded | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def RunJob(self, job: rdf_cronjobs.CronJob) -> None:
"""Does the actual work of the Cron, if the job is due to run.
Args:
job: The cronjob rdfvalue that should be run. Must be leased.
Returns:
A boolean indicating if this cron job was started or not. False may
be returned when the threadpool is already full.
Raises:
LockError: if the object is not locked.
ValueError: If the job argument is invalid.
"""
if not job.leased_until:
raise LockError("CronJob must be leased for Run() to be called.")
if job.leased_until < rdfvalue.RDFDatetime.Now():
raise LockError("CronJob lease expired for %s." % job.cron_job_id)
logging.info("Starting cron job: %s", job.cron_job_id)
if job.args.action_type == job.args.ActionType.SYSTEM_CRON_ACTION:
cls_name = job.args.system_cron_action.job_class_name
job_cls = SystemCronJobRegistry.CronJobClassByName(cls_name)
name = "%s runner" % cls_name
elif job.args.action_type == job.args.ActionType.HUNT_CRON_ACTION:
job_cls = CronJobRegistry.CronJobClassByName("RunHunt")
name = "Hunt runner"
else:
raise ValueError(
"CronJob %s doesn't have a valid args type set." % job.cron_job_id
)
run_state = rdf_cronjobs.CronJobRun(
cron_job_id=job.cron_job_id, status="RUNNING"
)
run_state.GenerateRunId()
run_obj = job_cls(run_state, job)
wait_for_start_event, signal_event, wait_for_write_event = (
threading.Event(),
threading.Event(),
threading.Event(),
)
try:
self._GetThreadPool().AddTask(
target=run_obj.StartRun,
args=(wait_for_start_event, signal_event, wait_for_write_event),
name=name,
blocking=False,
inline=False,
)
if not wait_for_start_event.wait(TASK_STARTUP_WAIT):
logging.error(
"Cron job run task for %s is too slow to start.", job.cron_job_id
)
# Most likely the thread pool is full and the task is sitting on the
# queue. Make sure we don't put more things on the queue by returning
# False.
return False
# We know that the cron job task has started, unblock it by setting
# the signal event. If signal_event is not set (this happens if the
# task sits on a ThreadPool's queue doing nothing, see the
# if-statement above) the task will just be a no-op when ThreadPool
# finally gets to it. This way we can ensure that we can safely return
# the lease and let another worker schedule the same job.
signal_event.set()
wait_for_write_event.wait(TASK_STARTUP_WAIT)
return True
except threadpool.Full:
return False | Does the actual work of the Cron, if the job is due to run.
Args:
job: The cronjob rdfvalue that should be run. Must be leased.
Returns:
A boolean indicating if this cron job was started or not. False may
be returned when the threadpool is already full.
Raises:
LockError: if the object is not locked.
ValueError: If the job argument is invalid. | RunJob | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def JobIsRunning(self, job):
"""Returns True if there's a currently running iteration of this job."""
return bool(job.current_run_id) | Returns True if there's a currently running iteration of this job. | JobIsRunning | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def JobDueToRun(self, job: rdf_cronjobs.CronJob) -> bool:
"""Determines if the given job is due for another run.
Args:
job: The cron job rdfvalue object.
Returns:
True if it is time to run based on the specified frequency.
"""
if not job.enabled:
return False
if job.forced_run_requested:
return True
now = rdfvalue.RDFDatetime.Now()
if (
job.last_run_time is not None
and job.last_run_time + job.frequency > now
):
return False
# No currently executing job - lets go.
if not job.current_run_id:
return True
# There is a job executing but we allow overruns.
if job.allow_overruns:
return True
return False | Determines if the given job is due for another run.
Args:
job: The cron job rdfvalue object.
Returns:
True if it is time to run based on the specified frequency. | JobDueToRun | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def DeleteOldRuns(
self, cutoff_timestamp: Optional[rdfvalue.RDFDatetime] = None
) -> None:
"""Deletes runs that were started before the timestamp given."""
if cutoff_timestamp is None:
raise ValueError("cutoff_timestamp can't be None")
return data_store.REL_DB.DeleteOldCronJobRuns(
cutoff_timestamp=cutoff_timestamp
) | Deletes runs that were started before the timestamp given. | DeleteOldRuns | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def ScheduleSystemCronJobs(names: Optional[Sequence[str]] = None) -> None:
"""Schedules all system cron jobs."""
errors = []
disabled_classes = config.CONFIG["Cron.disabled_cron_jobs"]
for name in disabled_classes:
try:
SystemCronJobRegistry.CronJobClassByName(name)
except ValueError:
errors.append("Cron job not found: %s." % name)
continue
if names is None:
names = SystemCronJobRegistry.SYSTEM_CRON_REGISTRY.keys()
for name in names:
cls = SystemCronJobRegistry.CronJobClassByName(name)
enabled = cls.enabled and name not in disabled_classes
system = rdf_cronjobs.CronJobAction.ActionType.SYSTEM_CRON_ACTION
args = rdf_cronjobs.CronJobAction(
action_type=system,
system_cron_action=rdf_cronjobs.SystemCronAction(job_class_name=name),
)
# TODO: Refactor to proto-only.
rdf_job = rdf_cronjobs.CronJob(
cron_job_id=name,
args=args,
enabled=enabled,
frequency=cls.frequency,
lifetime=cls.lifetime,
allow_overruns=cls.allow_overruns,
created_at=rdfvalue.RDFDatetime.Now(),
)
proto_job = mig_cronjobs.ToProtoCronJob(rdf_job)
data_store.REL_DB.WriteCronJob(proto_job)
if errors:
raise ValueError(
"Error(s) while parsing Cron.disabled_cron_jobs: %s" % errors
) | Schedules all system cron jobs. | ScheduleSystemCronJobs | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def Run(self):
"""Runs a working thread and waits for it to finish."""
self.RunAsync().join() | Runs a working thread and waits for it to finish. | Run | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def RunAsync(self):
"""Runs a working thread and returns immediately."""
self.running_thread = threading.Thread(
name=self.thread_name, target=self._RunLoop
)
self.running_thread.daemon = True
self.running_thread.start()
return self.running_thread | Runs a working thread and returns immediately. | RunAsync | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def InitializeCronWorkerOnce():
"""Init hook for cron job worker."""
global _cron_worker
# Start the cron thread if configured to.
if config.CONFIG["Cron.active"]:
_cron_worker = CronWorker()
_cron_worker.RunAsync() | Init hook for cron job worker. | InitializeCronWorkerOnce | python | google/grr | grr/server/grr_response_server/cronjobs.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/cronjobs.py | Apache-2.0 |
def SendGrrMessageThroughFleetspeak(
grr_id: str,
grr_msg: rdf_flows.GrrMessage,
) -> None:
"""Sends the given GrrMessage through FS with retrying.
The send operation is retried if a `grpc.RpcError` occurs.
The maximum number of retries corresponds to the config value
`Server.fleetspeak_send_retry_attempts`.
A retry is delayed by the number of seconds specified in the config value
`Server.fleetspeak_send_retry_sleep_time_secs`.
Args:
grr_id: ID of grr client to send message to.
grr_msg: GRR message to send.
"""
fs_msg = fs_common_pb2.Message(
message_type="GrrMessage",
destination=fs_common_pb2.Address(
client_id=GRRIDToFleetspeakID(grr_id), service_name="GRR"
),
)
fs_msg.data.Pack(grr_msg.AsPrimitiveProto())
if grr_msg.session_id is not None:
annotation = fs_msg.annotations.entries.add()
annotation.key, annotation.value = "flow_id", grr_msg.session_id.Basename()
if grr_msg.request_id is not None:
annotation = fs_msg.annotations.entries.add()
annotation.key, annotation.value = "request_id", str(grr_msg.request_id)
fleetspeak_connector.CONN.outgoing.InsertMessage(
fs_msg,
single_try_timeout=WRITE_SINGLE_TRY_TIMEOUT,
timeout=WRITE_TOTAL_TIMEOUT,
) | Sends the given GrrMessage through FS with retrying.
The send operation is retried if a `grpc.RpcError` occurs.
The maximum number of retries corresponds to the config value
`Server.fleetspeak_send_retry_attempts`.
A retry is delayed by the number of seconds specified in the config value
`Server.fleetspeak_send_retry_sleep_time_secs`.
Args:
grr_id: ID of grr client to send message to.
grr_msg: GRR message to send. | SendGrrMessageThroughFleetspeak | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def SendRrgRequest(
client_id: str,
request: rrg_pb2.Request,
) -> None:
"""Sends a RRG action request to the specified endpoint.
Args:
client_id: A unique endpoint identifier as recognized by GRR.
request: A request to send to the endpoint.
"""
message = fs_common_pb2.Message()
message.message_type = "rrg.Request"
message.destination.service_name = "RRG"
message.destination.client_id = GRRIDToFleetspeakID(client_id)
message.data.Pack(request)
# It is not entirely clear to me why we set these annotations below, but
# messages sent to Python agents do it, so we should do it as well.
message.annotations.entries.add(
key="flow_id",
value=str(request.flow_id),
)
message.annotations.entries.add(
key="request_id",
value=str(request.request_id),
)
fleetspeak_connector.CONN.outgoing.InsertMessage(
message,
single_try_timeout=WRITE_SINGLE_TRY_TIMEOUT,
timeout=WRITE_TOTAL_TIMEOUT,
) | Sends a RRG action request to the specified endpoint.
Args:
client_id: A unique endpoint identifier as recognized by GRR.
request: A request to send to the endpoint. | SendRrgRequest | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def KillFleetspeak(grr_id: str, force: bool) -> None:
"""Kills Fleespeak on the given client."""
die_req = fs_system_pb2.DieRequest(force=force)
fs_msg = fs_common_pb2.Message()
fs_msg.message_type = "Die"
fs_msg.destination.client_id = GRRIDToFleetspeakID(grr_id)
fs_msg.destination.service_name = "system"
fs_msg.data.Pack(die_req)
fleetspeak_connector.CONN.outgoing.InsertMessage(
fs_msg,
single_try_timeout=WRITE_SINGLE_TRY_TIMEOUT,
timeout=WRITE_TOTAL_TIMEOUT,
) | Kills Fleespeak on the given client. | KillFleetspeak | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def RestartFleetspeakGrrService(grr_id: str) -> None:
"""Restarts the GRR service on the given client."""
restart_req = fs_system_pb2.RestartServiceRequest(name="GRR")
fs_msg = fs_common_pb2.Message()
fs_msg.message_type = "RestartService"
fs_msg.destination.client_id = GRRIDToFleetspeakID(grr_id)
fs_msg.destination.service_name = "system"
fs_msg.data.Pack(restart_req)
fleetspeak_connector.CONN.outgoing.InsertMessage(
fs_msg,
single_try_timeout=WRITE_SINGLE_TRY_TIMEOUT,
timeout=WRITE_TOTAL_TIMEOUT,
) | Restarts the GRR service on the given client. | RestartFleetspeakGrrService | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def TSToRDFDatetime(ts):
"""Convert a protobuf.Timestamp to an RDFDatetime."""
return rdfvalue.RDFDatetime(ts.seconds * 1000000 + ts.nanos // 1000) | Convert a protobuf.Timestamp to an RDFDatetime. | TSToRDFDatetime | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def GetLabelsFromFleetspeak(client_id):
"""Returns labels for a Fleetspeak-enabled client.
Fleetspeak-enabled clients delegate labeling to Fleetspeak, as opposed to
using labels in the GRR config.
Args:
client_id: Id of the client to fetch Fleetspeak labels for.
Returns:
A list of client labels.
"""
res = fleetspeak_connector.CONN.outgoing.ListClients(
admin_pb2.ListClientsRequest(client_ids=[GRRIDToFleetspeakID(client_id)]),
single_try_timeout=READ_SINGLE_TRY_TIMEOUT,
timeout=READ_TOTAL_TIMEOUT,
)
if not res.clients or not res.clients[0].labels:
return []
grr_labels = []
label_prefix = config.CONFIG["Server.fleetspeak_label_prefix"]
for fs_label in res.clients[0].labels:
if fs_label.service_name != "client" or (
label_prefix and not fs_label.label.startswith(label_prefix)
):
continue
try:
grr_labels.append(fleetspeak_connector.label_map[fs_label.label])
except KeyError:
grr_labels.append(fs_label.label)
return grr_labels | Returns labels for a Fleetspeak-enabled client.
Fleetspeak-enabled clients delegate labeling to Fleetspeak, as opposed to
using labels in the GRR config.
Args:
client_id: Id of the client to fetch Fleetspeak labels for.
Returns:
A list of client labels. | GetLabelsFromFleetspeak | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def FetchClientResourceUsageRecords(
client_id: str,
start_range: timestamp_pb2.Timestamp,
end_range: timestamp_pb2.Timestamp,
) -> List[resource_pb2.ClientResourceUsageRecord]:
"""Returns aggregated resource usage metrics of a client from Fleetspeak.
Args:
client_id: Id of the client to fetch Fleetspeak resource usage records for.
start_range: Start timestamp of range.
end_range: end timestamp of range.
Returns:
A list of client resource usage records retrieved from Fleetspeak.
"""
res = fleetspeak_connector.CONN.outgoing.FetchClientResourceUsageRecords(
admin_pb2.FetchClientResourceUsageRecordsRequest(
client_id=GRRIDToFleetspeakID(client_id),
start_timestamp=start_range,
end_timestamp=end_range,
),
single_try_timeout=READ_SINGLE_TRY_TIMEOUT,
timeout=READ_TOTAL_TIMEOUT,
)
if not res.records:
return []
return list(res.records) | Returns aggregated resource usage metrics of a client from Fleetspeak.
Args:
client_id: Id of the client to fetch Fleetspeak resource usage records for.
start_range: Start timestamp of range.
end_range: end timestamp of range.
Returns:
A list of client resource usage records retrieved from Fleetspeak. | FetchClientResourceUsageRecords | python | google/grr | grr/server/grr_response_server/fleetspeak_utils.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/fleetspeak_utils.py | Apache-2.0 |
def __init__(self, certificate=None, private_key=None):
"""Creates a communicator.
Args:
certificate: Our own certificate.
private_key: Our own private key.
"""
self.private_key = private_key
self.certificate = certificate
self._ClearServerCipherCache()
# A cache for encrypted ciphers
self.encrypted_cipher_cache = utils.FastStore(max_size=50000) | Creates a communicator.
Args:
certificate: Our own certificate.
private_key: Our own private key. | __init__ | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def EncodeMessageList(cls, message_list, packed_message_list):
"""Encode the MessageList into the packed_message_list rdfvalue."""
# By default uncompress
uncompressed_data = message_list.SerializeToBytes()
packed_message_list.message_list = uncompressed_data
compressed_data = zlib.compress(uncompressed_data)
# Only compress if it buys us something.
if len(compressed_data) < len(uncompressed_data):
packed_message_list.compression = (
rdf_flows.PackedMessageList.CompressionType.ZCOMPRESSION
)
packed_message_list.message_list = compressed_data | Encode the MessageList into the packed_message_list rdfvalue. | EncodeMessageList | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def _GetServerCipher(self):
"""Returns the cipher for self.server_name."""
if self.server_cipher is not None:
expiry = self.server_cipher_age + rdfvalue.Duration.From(1, rdfvalue.DAYS)
if expiry > rdfvalue.RDFDatetime.Now():
return self.server_cipher
remote_public_key = self._GetRemotePublicKey(self.server_name)
self.server_cipher = communicator.Cipher(
self.common_name, self.private_key, remote_public_key
)
self.server_cipher_age = rdfvalue.RDFDatetime.Now()
return self.server_cipher | Returns the cipher for self.server_name. | _GetServerCipher | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def EncodeMessages(
self,
message_list,
result,
destination=None,
timestamp=None,
api_version=3,
):
"""Accepts a list of messages and encodes for transmission.
This function signs and then encrypts the payload.
Args:
message_list: A MessageList rdfvalue containing a list of GrrMessages.
result: A ClientCommunication rdfvalue which will be filled in.
destination: The CN of the remote system this should go to.
timestamp: A timestamp to use for the signed messages. If None - use the
current time.
api_version: The api version which this should be encoded in.
Returns:
A nonce (based on time) which is inserted to the encrypted payload. The
client can verify that the server is able to decrypt the message and
return the nonce.
Raises:
RuntimeError: If we do not support this api version.
"""
if api_version not in [3]:
raise RuntimeError(
"Unsupported api version: %s, expected 3." % api_version
)
remote_public_key = self._GetRemotePublicKey(destination)
cipher = communicator.Cipher(
self.common_name, self.private_key, remote_public_key
)
# Make a nonce for this transaction
if timestamp is None:
self.timestamp = timestamp = int(time.time() * 1000000)
packed_message_list = rdf_flows.PackedMessageList(timestamp=timestamp)
self.EncodeMessageList(message_list, packed_message_list)
result.encrypted_cipher_metadata = cipher.encrypted_cipher_metadata
# Include the encrypted cipher.
result.encrypted_cipher = cipher.encrypted_cipher
serialized_message_list = packed_message_list.SerializeToBytes()
# Encrypt the message symmetrically.
# New scheme cipher is signed plus hmac over message list.
result.packet_iv, result.encrypted = cipher.Encrypt(serialized_message_list)
# This is to support older endpoints.
result.hmac = cipher.HMAC(result.encrypted)
# Newer endpoints only look at this HMAC. It is recalculated for each packet
# in the session. Note that encrypted_cipher and encrypted_cipher_metadata
# do not change between all packets in this session.
result.full_hmac = cipher.HMAC(
result.encrypted,
result.encrypted_cipher,
result.encrypted_cipher_metadata,
result.packet_iv.SerializeToBytes(),
struct.pack("<I", api_version),
)
result.api_version = api_version
if isinstance(result, rdfvalue.RDFValue):
# Store the number of messages contained.
result.num_messages = len(message_list)
return timestamp | Accepts a list of messages and encodes for transmission.
This function signs and then encrypts the payload.
Args:
message_list: A MessageList rdfvalue containing a list of GrrMessages.
result: A ClientCommunication rdfvalue which will be filled in.
destination: The CN of the remote system this should go to.
timestamp: A timestamp to use for the signed messages. If None - use the
current time.
api_version: The api version which this should be encoded in.
Returns:
A nonce (based on time) which is inserted to the encrypted payload. The
client can verify that the server is able to decrypt the message and
return the nonce.
Raises:
RuntimeError: If we do not support this api version. | EncodeMessages | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def DecryptMessage(self, encrypted_response):
"""Decrypt the serialized, encrypted string.
Args:
encrypted_response: A serialized and encrypted string.
Returns:
a Packed_Message_List rdfvalue
"""
try:
response_comms = rdf_flows.ClientCommunication.FromSerializedBytes(
encrypted_response
)
return self.DecodeMessages(response_comms)
except (
rdfvalue.DecodeError,
type_info.TypeValueError,
ValueError,
AttributeError,
) as e:
raise DecodingError("Error while decrypting messages: %s" % e) | Decrypt the serialized, encrypted string.
Args:
encrypted_response: A serialized and encrypted string.
Returns:
a Packed_Message_List rdfvalue | DecryptMessage | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def DecompressMessageList(cls, packed_message_list):
"""Decompress the message data from packed_message_list.
Args:
packed_message_list: A PackedMessageList rdfvalue with some data in it.
Returns:
a MessageList rdfvalue.
Raises:
DecodingError: If decompression fails.
"""
compression = packed_message_list.compression
if compression == rdf_flows.PackedMessageList.CompressionType.UNCOMPRESSED:
data = packed_message_list.message_list
elif (
compression == rdf_flows.PackedMessageList.CompressionType.ZCOMPRESSION
):
try:
data = zlib.decompress(packed_message_list.message_list)
except zlib.error as e:
raise DecodingError("Failed to decompress: %s" % e)
else:
raise DecodingError("Compression scheme not supported")
try:
result = rdf_flows.MessageList.FromSerializedBytes(data)
except rdfvalue.DecodeError:
raise DecodingError("RDFValue parsing failed.")
return result | Decompress the message data from packed_message_list.
Args:
packed_message_list: A PackedMessageList rdfvalue with some data in it.
Returns:
a MessageList rdfvalue.
Raises:
DecodingError: If decompression fails. | DecompressMessageList | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def DecodeMessages(self, response_comms):
"""Extract and verify server message.
Args:
response_comms: A ClientCommunication rdfvalue
Returns:
list of messages and the CN where they came from.
Raises:
DecryptionError: If the message failed to decrypt properly.
"""
# Have we seen this cipher before?
cipher_verified = False
try:
cipher = self.encrypted_cipher_cache.Get(response_comms.encrypted_cipher)
GRR_ENCRYPTED_CIPHER_CACHE.Increment(fields=["hits"])
# Even though we have seen this encrypted cipher already, we should still
# make sure that all the other fields are sane and verify the HMAC.
cipher.VerifyReceivedHMAC(response_comms)
cipher_verified = True
# If we have the cipher in the cache, we know the source and
# should have a corresponding public key.
source = cipher.GetSource()
remote_public_key = self._GetRemotePublicKey(source)
except KeyError:
GRR_ENCRYPTED_CIPHER_CACHE.Increment(fields=["misses"])
cipher = communicator.ReceivedCipher(response_comms, self.private_key)
source = cipher.GetSource()
try:
remote_public_key = self._GetRemotePublicKey(source)
if cipher.VerifyCipherSignature(remote_public_key):
# At this point we know this cipher is legit, we can cache it.
self.encrypted_cipher_cache.Put(
response_comms.encrypted_cipher, cipher
)
cipher_verified = True
except UnknownClientCertError:
# We don't know who we are talking to.
remote_public_key = None
# Decrypt the message with the per packet IV.
plain = cipher.Decrypt(response_comms.encrypted, response_comms.packet_iv)
try:
packed_message_list = rdf_flows.PackedMessageList.FromSerializedBytes(
plain
)
except rdfvalue.DecodeError as e:
raise DecryptionError(e)
message_list = self.DecompressMessageList(packed_message_list)
# Are these messages authenticated?
# fmt: off
auth_state = self.VerifyMessageSignature(
response_comms,
packed_message_list,
cipher,
cipher_verified,
response_comms.api_version,
remote_public_key)
# fmt: on
# Mark messages as authenticated and where they came from.
for msg in message_list.job:
msg.auth_state = auth_state
msg.source = cipher.cipher_metadata.source
return (
message_list.job,
cipher.cipher_metadata.source,
packed_message_list.timestamp,
) | Extract and verify server message.
Args:
response_comms: A ClientCommunication rdfvalue
Returns:
list of messages and the CN where they came from.
Raises:
DecryptionError: If the message failed to decrypt properly. | DecodeMessages | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def VerifyMessageSignature(
self,
unused_response_comms,
packed_message_list,
cipher,
cipher_verified,
api_version,
remote_public_key,
):
"""Verify the message list signature.
This is the way the messages are verified in the client.
In the client we also check that the nonce returned by the server is correct
(the timestamp doubles as a nonce). If the nonce fails we deem the response
unauthenticated since it might have resulted from a replay attack.
Args:
packed_message_list: The PackedMessageList rdfvalue from the server.
cipher: The cipher belonging to the remote end.
cipher_verified: If True, the cipher's signature is not verified again.
api_version: The api version we should use.
remote_public_key: The public key of the source.
Returns:
An rdf_flows.GrrMessage.AuthorizationState.
Raises:
DecryptionError: if the message is corrupt.
"""
# This is not used atm since we only support a single api version (3).
_ = api_version
result = rdf_flows.GrrMessage.AuthorizationState.UNAUTHENTICATED
if cipher_verified or cipher.VerifyCipherSignature(remote_public_key):
GRR_AUTHENTICATED_MESSAGES.Increment()
result = rdf_flows.GrrMessage.AuthorizationState.AUTHENTICATED
# Check for replay attacks. We expect the server to return the same
# timestamp nonce we sent.
if packed_message_list.timestamp != self.timestamp: # pytype: disable=attribute-error
result = rdf_flows.GrrMessage.AuthorizationState.UNAUTHENTICATED
if not cipher.cipher_metadata:
# Fake the metadata
cipher.cipher_metadata = rdf_flows.CipherMetadata(
source=packed_message_list.source
)
return result | Verify the message list signature.
This is the way the messages are verified in the client.
In the client we also check that the nonce returned by the server is correct
(the timestamp doubles as a nonce). If the nonce fails we deem the response
unauthenticated since it might have resulted from a replay attack.
Args:
packed_message_list: The PackedMessageList rdfvalue from the server.
cipher: The cipher belonging to the remote end.
cipher_verified: If True, the cipher's signature is not verified again.
api_version: The api version we should use.
remote_public_key: The public key of the source.
Returns:
An rdf_flows.GrrMessage.AuthorizationState.
Raises:
DecryptionError: if the message is corrupt. | VerifyMessageSignature | python | google/grr | grr/server/grr_response_server/communicator.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/communicator.py | Apache-2.0 |
def ReceiveFetchedFileStat(
self,
stat_entry: rdf_client_fs.StatEntry,
request_data: Optional[Mapping[str, Any]] = None,
):
"""This method will be called for each new file stat successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
"""
del request_data # Unused.
if self.state.stop_at_stat:
status = rdf_file_finder.CollectFilesByKnownPathResult.Status.COLLECTED
self.state.progress.num_in_progress -= 1
self.state.progress.num_collected += 1
else:
status = rdf_file_finder.CollectFilesByKnownPathResult.Status.IN_PROGRESS
result = rdf_file_finder.CollectFilesByKnownPathResult(
stat=stat_entry, status=status
)
self.SendReply(result) | This method will be called for each new file stat successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call. | ReceiveFetchedFileStat | python | google/grr | grr/server/grr_response_server/flows/file.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flows/file.py | Apache-2.0 |
def ReceiveFetchedFileHash(
self,
stat_entry: rdf_client_fs.StatEntry,
file_hash: rdf_crypto.Hash,
request_data: Optional[Mapping[str, Any]] = None,
):
"""This method will be called for each new file hash successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
file_hash: rdf_crypto.Hash object with file hashes.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
"""
del request_data # Unused.
if self.state.stop_at_hash:
status = rdf_file_finder.CollectFilesByKnownPathResult.Status.COLLECTED
self.state.progress.num_in_progress -= 1
self.state.progress.num_collected += 1
else:
status = rdf_file_finder.CollectFilesByKnownPathResult.Status.IN_PROGRESS
result = rdf_file_finder.CollectFilesByKnownPathResult(
stat=stat_entry, hash=file_hash, status=status
)
self.SendReply(result) | This method will be called for each new file hash successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
file_hash: rdf_crypto.Hash object with file hashes.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call. | ReceiveFetchedFileHash | python | google/grr | grr/server/grr_response_server/flows/file.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flows/file.py | Apache-2.0 |
def ReceiveFetchedFile(
self,
stat_entry: rdf_client_fs.StatEntry,
file_hash: rdf_crypto.Hash,
request_data: Optional[Mapping[str, Any]] = None,
is_duplicate: bool = False,
):
"""This method will be called for each new file successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
file_hash: rdf_crypto.Hash object with file hashes.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
is_duplicate: If True, the file wasn't actually collected as its hash was
found in the filestore.
"""
del request_data, is_duplicate # Unused.
result = rdf_file_finder.CollectFilesByKnownPathResult(
stat=stat_entry,
hash=file_hash,
status=rdf_file_finder.CollectFilesByKnownPathResult.Status.COLLECTED,
)
self.SendReply(result)
self.state.progress.num_in_progress -= 1
self.state.progress.num_collected += 1 | This method will be called for each new file successfully fetched.
Args:
stat_entry: rdf_client_fs.StatEntry object describing the file.
file_hash: rdf_crypto.Hash object with file hashes.
request_data: Arbitrary dictionary that was passed to the corresponding
StartFileFetch call.
is_duplicate: If True, the file wasn't actually collected as its hash was
found in the filestore. | ReceiveFetchedFile | python | google/grr | grr/server/grr_response_server/flows/file.py | https://github.com/google/grr/blob/master/grr/server/grr_response_server/flows/file.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.