code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
182
| url
stringlengths 46
251
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def listen_to(signal):
"""Context Manager that listens to signals and records emissions
Example:
with listen_to(user_logged_in) as listener:
login_user(user)
# Assert that a single emittance of the specific args was seen.
listener.assert_heard_one(app, user=user))
# Of course, you can always just look at the list yourself
self.assertEqual(1, len(listener.heard))
"""
class _SignalsCaught:
def __init__(self):
self.heard = []
def add(self, *args, **kwargs):
"""The actual handler of the signal."""
self.heard.append((args, kwargs))
def assert_heard_one(self, *args, **kwargs):
"""The signal fired once, and with the arguments given"""
if len(self.heard) == 0:
raise AssertionError("No signals were fired")
elif len(self.heard) > 1:
msg = f"{len(self.heard)} signals were fired"
raise AssertionError(msg)
elif self.heard[0] != (args, kwargs):
raise AssertionError(
"One signal was heard, but with incorrect"
f" arguments: Got ({self.heard[0]}) expected"
f" ({args}, {kwargs})"
)
def assert_heard_none(self, *args, **kwargs):
"""The signal fired no times"""
if len(self.heard) >= 1:
msg = f"{len(self.heard)} signals were fired"
raise AssertionError(msg)
results = _SignalsCaught()
signal.connect(results.add)
try:
yield results
finally:
signal.disconnect(results.add) | Context Manager that listens to signals and records emissions
Example:
with listen_to(user_logged_in) as listener:
login_user(user)
# Assert that a single emittance of the specific args was seen.
listener.assert_heard_one(app, user=user))
# Of course, you can always just look at the list yourself
self.assertEqual(1, len(listener.heard)) | listen_to | python | maxcountryman/flask-login | tests/test_login.py | https://github.com/maxcountryman/flask-login/blob/master/tests/test_login.py | MIT |
def encode_cookie(payload, key=None):
"""
This will encode a ``str`` value into a cookie, and sign that cookie
with the app's secret key.
:param payload: The value to encode, as `str`.
:type payload: str
:param key: The key to use when creating the cookie digest. If not
specified, the SECRET_KEY value from app config will be used.
:type key: str
"""
return f"{payload}|{_cookie_digest(payload, key=key)}" | This will encode a ``str`` value into a cookie, and sign that cookie
with the app's secret key.
:param payload: The value to encode, as `str`.
:type payload: str
:param key: The key to use when creating the cookie digest. If not
specified, the SECRET_KEY value from app config will be used.
:type key: str | encode_cookie | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def decode_cookie(cookie, key=None):
"""
This decodes a cookie given by `encode_cookie`. If verification of the
cookie fails, ``None`` will be implicitly returned.
:param cookie: An encoded cookie.
:type cookie: str
:param key: The key to use when creating the cookie digest. If not
specified, the SECRET_KEY value from app config will be used.
:type key: str
"""
try:
payload, digest = cookie.rsplit("|", 1)
if hasattr(digest, "decode"):
digest = digest.decode("ascii") # pragma: no cover
except ValueError:
return
if hmac.compare_digest(_cookie_digest(payload, key=key), digest):
return payload | This decodes a cookie given by `encode_cookie`. If verification of the
cookie fails, ``None`` will be implicitly returned.
:param cookie: An encoded cookie.
:type cookie: str
:param key: The key to use when creating the cookie digest. If not
specified, the SECRET_KEY value from app config will be used.
:type key: str | decode_cookie | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def make_next_param(login_url, current_url):
"""
Reduces the scheme and host from a given URL so it can be passed to
the given `login` URL more efficiently.
:param login_url: The login URL being redirected to.
:type login_url: str
:param current_url: The URL to reduce.
:type current_url: str
"""
l_url = urlsplit(login_url)
c_url = urlsplit(current_url)
if (not l_url.scheme or l_url.scheme == c_url.scheme) and (
not l_url.netloc or l_url.netloc == c_url.netloc
):
return urlunsplit(("", "", c_url.path, c_url.query, ""))
return current_url | Reduces the scheme and host from a given URL so it can be passed to
the given `login` URL more efficiently.
:param login_url: The login URL being redirected to.
:type login_url: str
:param current_url: The URL to reduce.
:type current_url: str | make_next_param | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def expand_login_view(login_view):
"""
Returns the url for the login view, expanding the view name to a url if
needed.
:param login_view: The name of the login view or a URL for the login view.
:type login_view: str
"""
if login_view.startswith(("https://", "http://", "/")):
return login_view
return url_for(login_view) | Returns the url for the login view, expanding the view name to a url if
needed.
:param login_view: The name of the login view or a URL for the login view.
:type login_view: str | expand_login_view | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def login_url(login_view, next_url=None, next_field="next"):
"""
Creates a URL for redirecting to a login page. If only `login_view` is
provided, this will just return the URL for it. If `next_url` is provided,
however, this will append a ``next=URL`` parameter to the query string
so that the login view can redirect back to that URL. Flask-Login's default
unauthorized handler uses this function when redirecting to your login url.
To force the host name used, set `FORCE_HOST_FOR_REDIRECTS` to a host. This
prevents from redirecting to external sites if `SERVER_NAME` is not configured.
:param login_view: The name of the login view. (Alternately, the actual
URL to the login view.)
:type login_view: str
:param next_url: The URL to give the login view for redirection.
:type next_url: str
:param next_field: What field to store the next URL in. (It defaults to
``next``.)
:type next_field: str
"""
base = expand_login_view(login_view)
if next_url is None:
return base
parsed_result = urlsplit(base)
md = parse_qs(parsed_result.query, keep_blank_values=True)
md[next_field] = make_next_param(base, next_url)
netloc = current_app.config.get("FORCE_HOST_FOR_REDIRECTS") or parsed_result.netloc
parsed_result = parsed_result._replace(
netloc=netloc, query=urlencode(md, doseq=True)
)
return urlunsplit(parsed_result) | Creates a URL for redirecting to a login page. If only `login_view` is
provided, this will just return the URL for it. If `next_url` is provided,
however, this will append a ``next=URL`` parameter to the query string
so that the login view can redirect back to that URL. Flask-Login's default
unauthorized handler uses this function when redirecting to your login url.
To force the host name used, set `FORCE_HOST_FOR_REDIRECTS` to a host. This
prevents from redirecting to external sites if `SERVER_NAME` is not configured.
:param login_view: The name of the login view. (Alternately, the actual
URL to the login view.)
:type login_view: str
:param next_url: The URL to give the login view for redirection.
:type next_url: str
:param next_field: What field to store the next URL in. (It defaults to
``next``.)
:type next_field: str | login_url | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def login_fresh():
"""
This returns ``True`` if the current login is fresh.
"""
return session.get("_fresh", False) | This returns ``True`` if the current login is fresh. | login_fresh | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def login_remembered():
"""
This returns ``True`` if the current login is remembered across sessions.
"""
config = current_app.config
cookie_name = config.get("REMEMBER_COOKIE_NAME", COOKIE_NAME)
has_cookie = cookie_name in request.cookies and session.get("_remember") != "clear"
if has_cookie:
cookie = request.cookies[cookie_name]
user_id = decode_cookie(cookie)
return user_id is not None
return False | This returns ``True`` if the current login is remembered across sessions. | login_remembered | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def login_user(user, remember=False, duration=None, force=False, fresh=True):
"""
Logs a user in. You should pass the actual user object to this. If the
user's `is_active` property is ``False``, they will not be logged in
unless `force` is ``True``.
This will return ``True`` if the log in attempt succeeds, and ``False`` if
it fails (i.e. because the user is inactive).
:param user: The user object to log in.
:type user: object
:param remember: Whether to remember the user after their session expires.
Defaults to ``False``.
:type remember: bool
:param duration: The amount of time before the remember cookie expires. If
``None`` the value set in the settings is used. Defaults to ``None``.
:type duration: :class:`datetime.timedelta`
:param force: If the user is inactive, setting this to ``True`` will log
them in regardless. Defaults to ``False``.
:type force: bool
:param fresh: setting this to ``False`` will log in the user with a session
marked as not "fresh". Defaults to ``True``.
:type fresh: bool
"""
if not force and not user.is_active:
return False
user_id = getattr(user, current_app.login_manager.id_attribute)()
session["_user_id"] = user_id
session["_fresh"] = fresh
session["_id"] = current_app.login_manager._session_identifier_generator()
if remember:
session["_remember"] = "set"
if duration is not None:
try:
# equal to timedelta.total_seconds() but works with Python 2.6
session["_remember_seconds"] = (
duration.microseconds
+ (duration.seconds + duration.days * 24 * 3600) * 10**6
) / 10.0**6
except AttributeError as e:
raise Exception(
f"duration must be a datetime.timedelta, instead got: {duration}"
) from e
current_app.login_manager._update_request_context_with_user(user)
user_logged_in.send(current_app._get_current_object(), user=_get_user())
return True | Logs a user in. You should pass the actual user object to this. If the
user's `is_active` property is ``False``, they will not be logged in
unless `force` is ``True``.
This will return ``True`` if the log in attempt succeeds, and ``False`` if
it fails (i.e. because the user is inactive).
:param user: The user object to log in.
:type user: object
:param remember: Whether to remember the user after their session expires.
Defaults to ``False``.
:type remember: bool
:param duration: The amount of time before the remember cookie expires. If
``None`` the value set in the settings is used. Defaults to ``None``.
:type duration: :class:`datetime.timedelta`
:param force: If the user is inactive, setting this to ``True`` will log
them in regardless. Defaults to ``False``.
:type force: bool
:param fresh: setting this to ``False`` will log in the user with a session
marked as not "fresh". Defaults to ``True``.
:type fresh: bool | login_user | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def logout_user():
"""
Logs a user out. (You do not need to pass the actual user.) This will
also clean up the remember me cookie if it exists.
"""
user = _get_user()
if "_user_id" in session:
session.pop("_user_id")
if "_fresh" in session:
session.pop("_fresh")
if "_id" in session:
session.pop("_id")
cookie_name = current_app.config.get("REMEMBER_COOKIE_NAME", COOKIE_NAME)
if cookie_name in request.cookies:
session["_remember"] = "clear"
if "_remember_seconds" in session:
session.pop("_remember_seconds")
user_logged_out.send(current_app._get_current_object(), user=user)
current_app.login_manager._update_request_context_with_user()
return True | Logs a user out. (You do not need to pass the actual user.) This will
also clean up the remember me cookie if it exists. | logout_user | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def confirm_login():
"""
This sets the current session as fresh. Sessions become stale when they
are reloaded from a cookie.
"""
session["_fresh"] = True
session["_id"] = current_app.login_manager._session_identifier_generator()
user_login_confirmed.send(current_app._get_current_object()) | This sets the current session as fresh. Sessions become stale when they
are reloaded from a cookie. | confirm_login | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def login_required(func):
"""
If you decorate a view with this, it will ensure that the current user is
logged in and authenticated before calling the actual view. (If they are
not, it calls the :attr:`LoginManager.unauthorized` callback.) For
example::
@app.route('/post')
@login_required
def post():
pass
If there are only certain times you need to require that your user is
logged in, you can do so with::
if not current_user.is_authenticated:
return current_app.login_manager.unauthorized()
...which is essentially the code that this function adds to your views.
.. Note ::
Per `W3 guidelines for CORS preflight requests
<http://www.w3.org/TR/cors/#cross-origin-request-with-preflight-0>`_,
HTTP ``OPTIONS`` requests are exempt from login checks.
:param func: The view function to decorate.
:type func: function
"""
@wraps(func)
def decorated_view(*args, **kwargs):
if request.method in EXEMPT_METHODS:
pass
elif not current_user.is_authenticated:
return current_app.login_manager.unauthorized()
# flask 1.x compatibility
# current_app.ensure_sync is only available in Flask >= 2.0
if callable(getattr(current_app, "ensure_sync", None)):
return current_app.ensure_sync(func)(*args, **kwargs)
return func(*args, **kwargs)
return decorated_view | If you decorate a view with this, it will ensure that the current user is
logged in and authenticated before calling the actual view. (If they are
not, it calls the :attr:`LoginManager.unauthorized` callback.) For
example::
@app.route('/post')
@login_required
def post():
pass
If there are only certain times you need to require that your user is
logged in, you can do so with::
if not current_user.is_authenticated:
return current_app.login_manager.unauthorized()
...which is essentially the code that this function adds to your views.
.. Note ::
Per `W3 guidelines for CORS preflight requests
<http://www.w3.org/TR/cors/#cross-origin-request-with-preflight-0>`_,
HTTP ``OPTIONS`` requests are exempt from login checks.
:param func: The view function to decorate.
:type func: function | login_required | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def fresh_login_required(func):
"""
If you decorate a view with this, it will ensure that the current user's
login is fresh - i.e. their session was not restored from a 'remember me'
cookie. Sensitive operations, like changing a password or e-mail, should
be protected with this, to impede the efforts of cookie thieves.
If the user is not authenticated, :meth:`LoginManager.unauthorized` is
called as normal. If they are authenticated, but their session is not
fresh, it will call :meth:`LoginManager.needs_refresh` instead. (In that
case, you will need to provide a :attr:`LoginManager.refresh_view`.)
Behaves identically to the :func:`login_required` decorator with respect
to configuration variables.
.. Note ::
Per `W3 guidelines for CORS preflight requests
<http://www.w3.org/TR/cors/#cross-origin-request-with-preflight-0>`_,
HTTP ``OPTIONS`` requests are exempt from login checks.
:param func: The view function to decorate.
:type func: function
"""
@wraps(func)
def decorated_view(*args, **kwargs):
if request.method in EXEMPT_METHODS:
pass
elif not current_user.is_authenticated:
return current_app.login_manager.unauthorized()
elif not login_fresh():
return current_app.login_manager.needs_refresh()
try:
# current_app.ensure_sync available in Flask >= 2.0
return current_app.ensure_sync(func)(*args, **kwargs)
except AttributeError: # pragma: no cover
return func(*args, **kwargs)
return decorated_view | If you decorate a view with this, it will ensure that the current user's
login is fresh - i.e. their session was not restored from a 'remember me'
cookie. Sensitive operations, like changing a password or e-mail, should
be protected with this, to impede the efforts of cookie thieves.
If the user is not authenticated, :meth:`LoginManager.unauthorized` is
called as normal. If they are authenticated, but their session is not
fresh, it will call :meth:`LoginManager.needs_refresh` instead. (In that
case, you will need to provide a :attr:`LoginManager.refresh_view`.)
Behaves identically to the :func:`login_required` decorator with respect
to configuration variables.
.. Note ::
Per `W3 guidelines for CORS preflight requests
<http://www.w3.org/TR/cors/#cross-origin-request-with-preflight-0>`_,
HTTP ``OPTIONS`` requests are exempt from login checks.
:param func: The view function to decorate.
:type func: function | fresh_login_required | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def set_login_view(login_view, blueprint=None):
"""
Sets the login view for the app or blueprint. If a blueprint is passed,
the login view is set for this blueprint on ``blueprint_login_views``.
:param login_view: The user object to log in.
:type login_view: str
:param blueprint: The blueprint which this login view should be set on.
Defaults to ``None``.
:type blueprint: object
"""
num_login_views = len(current_app.login_manager.blueprint_login_views)
if blueprint is not None or num_login_views != 0:
(current_app.login_manager.blueprint_login_views[blueprint.name]) = login_view
if (
current_app.login_manager.login_view is not None
and None not in current_app.login_manager.blueprint_login_views
):
(
current_app.login_manager.blueprint_login_views[None]
) = current_app.login_manager.login_view
current_app.login_manager.login_view = None
else:
current_app.login_manager.login_view = login_view | Sets the login view for the app or blueprint. If a blueprint is passed,
the login view is set for this blueprint on ``blueprint_login_views``.
:param login_view: The user object to log in.
:type login_view: str
:param blueprint: The blueprint which this login view should be set on.
Defaults to ``None``.
:type blueprint: object | set_login_view | python | maxcountryman/flask-login | src/flask_login/utils.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/utils.py | MIT |
def init_app(self, app, add_context_processor=True):
"""
Configures an application. This registers an `after_request` call, and
attaches this `LoginManager` to it as `app.login_manager`.
:param app: The :class:`flask.Flask` object to configure.
:type app: :class:`flask.Flask`
:param add_context_processor: Whether to add a context processor to
the app that adds a `current_user` variable to the template.
Defaults to ``True``.
:type add_context_processor: bool
"""
app.login_manager = self
app.after_request(self._update_remember_cookie)
if add_context_processor:
app.context_processor(_user_context_processor) | Configures an application. This registers an `after_request` call, and
attaches this `LoginManager` to it as `app.login_manager`.
:param app: The :class:`flask.Flask` object to configure.
:type app: :class:`flask.Flask`
:param add_context_processor: Whether to add a context processor to
the app that adds a `current_user` variable to the template.
Defaults to ``True``.
:type add_context_processor: bool | init_app | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def unauthorized(self):
"""
This is called when the user is required to log in. If you register a
callback with :meth:`LoginManager.unauthorized_handler`, then it will
be called. Otherwise, it will take the following actions:
- Flash :attr:`LoginManager.login_message` to the user.
- If the app is using blueprints find the login view for
the current blueprint using `blueprint_login_views`. If the app
is not using blueprints or the login view for the current
blueprint is not specified use the value of `login_view`.
- Redirect the user to the login view. (The page they were
attempting to access will be passed in the ``next`` query
string variable, so you can redirect there if present instead
of the homepage. Alternatively, it will be added to the session
as ``next`` if USE_SESSION_FOR_NEXT is set.)
If :attr:`LoginManager.login_view` is not defined, then it will simply
raise a HTTP 401 (Unauthorized) error instead.
This should be returned from a view or before/after_request function,
otherwise the redirect will have no effect.
"""
user_unauthorized.send(current_app._get_current_object())
if self.unauthorized_callback:
return self.unauthorized_callback()
if request.blueprint in self.blueprint_login_views:
login_view = self.blueprint_login_views[request.blueprint]
else:
login_view = self.login_view
if not login_view:
abort(401)
if self.login_message:
if self.localize_callback is not None:
flash(
self.localize_callback(self.login_message),
category=self.login_message_category,
)
else:
flash(self.login_message, category=self.login_message_category)
config = current_app.config
if config.get("USE_SESSION_FOR_NEXT", USE_SESSION_FOR_NEXT):
login_url = expand_login_view(login_view)
session["_id"] = self._session_identifier_generator()
session["next"] = make_next_param(login_url, request.url)
redirect_url = make_login_url(login_view)
else:
redirect_url = make_login_url(login_view, next_url=request.url)
return redirect(redirect_url) | This is called when the user is required to log in. If you register a
callback with :meth:`LoginManager.unauthorized_handler`, then it will
be called. Otherwise, it will take the following actions:
- Flash :attr:`LoginManager.login_message` to the user.
- If the app is using blueprints find the login view for
the current blueprint using `blueprint_login_views`. If the app
is not using blueprints or the login view for the current
blueprint is not specified use the value of `login_view`.
- Redirect the user to the login view. (The page they were
attempting to access will be passed in the ``next`` query
string variable, so you can redirect there if present instead
of the homepage. Alternatively, it will be added to the session
as ``next`` if USE_SESSION_FOR_NEXT is set.)
If :attr:`LoginManager.login_view` is not defined, then it will simply
raise a HTTP 401 (Unauthorized) error instead.
This should be returned from a view or before/after_request function,
otherwise the redirect will have no effect. | unauthorized | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def user_loader(self, callback):
"""
This sets the callback for reloading a user from the session. The
function you set should take a user ID (a ``str``) and return a
user object, or ``None`` if the user does not exist.
:param callback: The callback for retrieving a user object.
:type callback: callable
"""
self._user_callback = callback
return self.user_callback | This sets the callback for reloading a user from the session. The
function you set should take a user ID (a ``str``) and return a
user object, or ``None`` if the user does not exist.
:param callback: The callback for retrieving a user object.
:type callback: callable | user_loader | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def user_callback(self):
"""Gets the user_loader callback set by user_loader decorator."""
return self._user_callback | Gets the user_loader callback set by user_loader decorator. | user_callback | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def request_loader(self, callback):
"""
This sets the callback for loading a user from a Flask request.
The function you set should take Flask request object and
return a user object, or `None` if the user does not exist.
:param callback: The callback for retrieving a user object.
:type callback: callable
"""
self._request_callback = callback
return self.request_callback | This sets the callback for loading a user from a Flask request.
The function you set should take Flask request object and
return a user object, or `None` if the user does not exist.
:param callback: The callback for retrieving a user object.
:type callback: callable | request_loader | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def request_callback(self):
"""Gets the request_loader callback set by request_loader decorator."""
return self._request_callback | Gets the request_loader callback set by request_loader decorator. | request_callback | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def unauthorized_handler(self, callback):
"""
This will set the callback for the `unauthorized` method, which among
other things is used by `login_required`. It takes no arguments, and
should return a response to be sent to the user instead of their
normal view.
:param callback: The callback for unauthorized users.
:type callback: callable
"""
self.unauthorized_callback = callback
return callback | This will set the callback for the `unauthorized` method, which among
other things is used by `login_required`. It takes no arguments, and
should return a response to be sent to the user instead of their
normal view.
:param callback: The callback for unauthorized users.
:type callback: callable | unauthorized_handler | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def needs_refresh_handler(self, callback):
"""
This will set the callback for the `needs_refresh` method, which among
other things is used by `fresh_login_required`. It takes no arguments,
and should return a response to be sent to the user instead of their
normal view.
:param callback: The callback for unauthorized users.
:type callback: callable
"""
self.needs_refresh_callback = callback
return callback | This will set the callback for the `needs_refresh` method, which among
other things is used by `fresh_login_required`. It takes no arguments,
and should return a response to be sent to the user instead of their
normal view.
:param callback: The callback for unauthorized users.
:type callback: callable | needs_refresh_handler | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def needs_refresh(self):
"""
This is called when the user is logged in, but they need to be
reauthenticated because their session is stale. If you register a
callback with `needs_refresh_handler`, then it will be called.
Otherwise, it will take the following actions:
- Flash :attr:`LoginManager.needs_refresh_message` to the user.
- Redirect the user to :attr:`LoginManager.refresh_view`. (The page
they were attempting to access will be passed in the ``next``
query string variable, so you can redirect there if present
instead of the homepage.)
If :attr:`LoginManager.refresh_view` is not defined, then it will
simply raise a HTTP 401 (Unauthorized) error instead.
This should be returned from a view or before/after_request function,
otherwise the redirect will have no effect.
"""
user_needs_refresh.send(current_app._get_current_object())
if self.needs_refresh_callback:
return self.needs_refresh_callback()
if not self.refresh_view:
abort(401)
if self.needs_refresh_message:
if self.localize_callback is not None:
flash(
self.localize_callback(self.needs_refresh_message),
category=self.needs_refresh_message_category,
)
else:
flash(
self.needs_refresh_message,
category=self.needs_refresh_message_category,
)
config = current_app.config
if config.get("USE_SESSION_FOR_NEXT", USE_SESSION_FOR_NEXT):
login_url = expand_login_view(self.refresh_view)
session["_id"] = self._session_identifier_generator()
session["next"] = make_next_param(login_url, request.url)
redirect_url = make_login_url(self.refresh_view)
else:
login_url = self.refresh_view
redirect_url = make_login_url(login_url, next_url=request.url)
return redirect(redirect_url) | This is called when the user is logged in, but they need to be
reauthenticated because their session is stale. If you register a
callback with `needs_refresh_handler`, then it will be called.
Otherwise, it will take the following actions:
- Flash :attr:`LoginManager.needs_refresh_message` to the user.
- Redirect the user to :attr:`LoginManager.refresh_view`. (The page
they were attempting to access will be passed in the ``next``
query string variable, so you can redirect there if present
instead of the homepage.)
If :attr:`LoginManager.refresh_view` is not defined, then it will
simply raise a HTTP 401 (Unauthorized) error instead.
This should be returned from a view or before/after_request function,
otherwise the redirect will have no effect. | needs_refresh | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def _update_request_context_with_user(self, user=None):
"""Store the given user as ctx.user."""
if user is None:
user = self.anonymous_user()
g._login_user = user | Store the given user as ctx.user. | _update_request_context_with_user | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def _load_user(self):
"""Loads user from session or remember_me cookie as applicable"""
if self._user_callback is None and self._request_callback is None:
raise Exception(
"Missing user_loader or request_loader. Refer to "
"http://flask-login.readthedocs.io/#how-it-works "
"for more info."
)
user_accessed.send(current_app._get_current_object())
# Check SESSION_PROTECTION
if self._session_protection_failed():
return self._update_request_context_with_user()
user = None
# Load user from Flask Session
user_id = session.get("_user_id")
if user_id is not None and self._user_callback is not None:
user = self._user_callback(user_id)
# Load user from Remember Me Cookie or Request Loader
if user is None:
config = current_app.config
cookie_name = config.get("REMEMBER_COOKIE_NAME", COOKIE_NAME)
has_cookie = (
cookie_name in request.cookies and session.get("_remember") != "clear"
)
if has_cookie:
cookie = request.cookies[cookie_name]
user = self._load_user_from_remember_cookie(cookie)
elif self._request_callback:
user = self._load_user_from_request(request)
return self._update_request_context_with_user(user) | Loads user from session or remember_me cookie as applicable | _load_user | python | maxcountryman/flask-login | src/flask_login/login_manager.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/login_manager.py | MIT |
def __eq__(self, other):
"""
Checks the equality of two `UserMixin` objects using `get_id`.
"""
if isinstance(other, UserMixin):
return self.get_id() == other.get_id()
return NotImplemented | Checks the equality of two `UserMixin` objects using `get_id`. | __eq__ | python | maxcountryman/flask-login | src/flask_login/mixins.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/mixins.py | MIT |
def __ne__(self, other):
"""
Checks the inequality of two `UserMixin` objects using `get_id`.
"""
equal = self.__eq__(other)
if equal is NotImplemented:
return NotImplemented
return not equal | Checks the inequality of two `UserMixin` objects using `get_id`. | __ne__ | python | maxcountryman/flask-login | src/flask_login/mixins.py | https://github.com/maxcountryman/flask-login/blob/master/src/flask_login/mixins.py | MIT |
def vector_shape(n_inducing: int) -> Tuple[int, int]:
"""Shape of a vector with n_inducing rows and 1 column."""
return (n_inducing, 1) | Shape of a vector with n_inducing rows and 1 column. | vector_shape | python | JaxGaussianProcesses/GPJax | tests/test_variational_families.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_variational_families.py | Apache-2.0 |
def matrix_shape(n_inducing: int) -> Tuple[int, int]:
"""Shape of a matrix with n_inducing rows and 1 column."""
return (n_inducing, n_inducing) | Shape of a matrix with n_inducing rows and 1 column. | matrix_shape | python | JaxGaussianProcesses/GPJax | tests/test_variational_families.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_variational_families.py | Apache-2.0 |
def vector_val(val: float) -> Callable[[int], Float[Array, "n_inducing 1"]]:
"""Vector of shape (n_inducing, 1) filled with val."""
def vector_val_fn(n_inducing: int):
return val * jnp.ones(vector_shape(n_inducing))
return vector_val_fn | Vector of shape (n_inducing, 1) filled with val. | vector_val | python | JaxGaussianProcesses/GPJax | tests/test_variational_families.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_variational_families.py | Apache-2.0 |
def diag_matrix_val(
val: float,
) -> Callable[[int], Float[Array, "n_inducing n_inducing"]]:
"""Diagonal matrix of shape (n_inducing, n_inducing) filled with val."""
def diag_matrix_fn(n_inducing: int) -> Float[Array, "n_inducing n_inducing"]:
return jnp.eye(n_inducing) * val
return diag_matrix_fn | Diagonal matrix of shape (n_inducing, n_inducing) filled with val. | diag_matrix_val | python | JaxGaussianProcesses/GPJax | tests/test_variational_families.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_variational_families.py | Apache-2.0 |
def fun(x, y):
"""In practice, the first argument will be the latent function values"""
return x**2 + y | In practice, the first argument will be the latent function values | test_quadrature.test_quadrature.test.fun | python | JaxGaussianProcesses/GPJax | tests/test_integrators.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_integrators.py | Apache-2.0 |
def approx_equal(res: jnp.ndarray, actual: jnp.ndarray) -> bool:
"""Check if two arrays are approximately equal."""
return jnp.linalg.norm(res - actual) < 1e-5 | Check if two arrays are approximately equal. | approx_equal | python | JaxGaussianProcesses/GPJax | tests/test_gaussian_distribution.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_gaussian_distribution.py | Apache-2.0 |
def test_arccosine_special_case(order: int):
"""For certain values of weight variance (1.0) and bias variance (0.0), we can test
our calculations using the Monte Carlo expansion of the arccosine kernel, e.g.
see Eq. (1) of https://cseweb.ucsd.edu/~saul/papers/nips09_kernel.pdf.
"""
kernel = ArcCosine(
weight_variance=jnp.array([1.0, 1.0]), bias_variance=1e-25, order=order
)
# Inputs close(ish) together
a = jnp.array([[0.0, 0.0]])
b = jnp.array([[2.0, 2.0]])
# calc cross-covariance exactly
Kab_exact = kernel.cross_covariance(a, b)
# calc cross-covariance using samples
weights = jax.random.normal(jr.PRNGKey(123), (10_000, 2)) # [S, d]
weights_a = jnp.matmul(weights, a.T) # [S, 1]
weights_b = jnp.matmul(weights, b.T) # [S, 1]
H_a = jnp.heaviside(weights_a, 0.5)
H_b = jnp.heaviside(weights_b, 0.5)
integrands = H_a * H_b * (weights_a**order) * (weights_b**order)
Kab_approx = 2.0 * jnp.mean(integrands)
assert jnp.max(Kab_approx - Kab_exact) < 1e-4 | For certain values of weight variance (1.0) and bias variance (0.0), we can test
our calculations using the Monte Carlo expansion of the arccosine kernel, e.g.
see Eq. (1) of https://cseweb.ucsd.edu/~saul/papers/nips09_kernel.pdf. | test_arccosine_special_case | python | JaxGaussianProcesses/GPJax | tests/test_kernels/test_nonstationary.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/tests/test_kernels/test_nonstationary.py | Apache-2.0 |
def __init__(
self,
num_datapoints: int,
integrator: AbstractIntegrator = GHQuadratureIntegrator(),
):
"""Initializes the likelihood.
Args:
num_datapoints (int): the number of data points.
integrator (AbstractIntegrator): The integrator to be used for computing expected log
likelihoods. Must be an instance of `AbstractIntegrator`.
"""
self.num_datapoints = num_datapoints
self.integrator = integrator | Initializes the likelihood.
Args:
num_datapoints (int): the number of data points.
integrator (AbstractIntegrator): The integrator to be used for computing expected log
likelihoods. Must be an instance of `AbstractIntegrator`. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/likelihoods.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/likelihoods.py | Apache-2.0 |
def _do_callback(_) -> int:
"""Perform the callback."""
jax.debug.callback(func, *args)
return _dummy_result | Perform the callback. | _callback._do_callback | python | JaxGaussianProcesses/GPJax | gpjax/scan.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/scan.py | Apache-2.0 |
def _not_callback(_) -> int:
"""Do nothing."""
return _dummy_result | Do nothing. | _callback._not_callback | python | JaxGaussianProcesses/GPJax | gpjax/scan.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/scan.py | Apache-2.0 |
def _callback(cond: ScalarBool, func: Callable, *args: Any) -> None:
r"""Callback a function for a given argument if a condition is true.
Args:
cond (bool): The condition.
func (Callable): The function to call.
*args (Any): The arguments to pass to the function.
"""
# lax.cond requires a result, so we use a dummy result.
_dummy_result = 0
def _do_callback(_) -> int:
"""Perform the callback."""
jax.debug.callback(func, *args)
return _dummy_result
def _not_callback(_) -> int:
"""Do nothing."""
return _dummy_result
_ = lax.cond(cond, _do_callback, _not_callback, operand=None) | # lax.cond requires a result, so we use a dummy result.
_dummy_result = 0
def _do_callback(_) -> int:
"""Perform the callback. | _callback | python | JaxGaussianProcesses/GPJax | gpjax/scan.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/scan.py | Apache-2.0 |
def _set_running(*args: Any) -> None:
"""Set the tqdm progress bar to running."""
_progress_bar.set_description("Running", refresh=False) | Set the tqdm progress bar to running. | _set_running | python | JaxGaussianProcesses/GPJax | gpjax/scan.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/scan.py | Apache-2.0 |
def _update_tqdm(*args: Any) -> None:
"""Update the tqdm progress bar with the latest objective value."""
_value, _iter_num = args
_progress_bar.update(_iter_num.item())
if log_value and _value is not None:
_progress_bar.set_postfix({"Value": f"{_value: .2f}"}) | Update the tqdm progress bar with the latest objective value. | _update_tqdm | python | JaxGaussianProcesses/GPJax | gpjax/scan.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/scan.py | Apache-2.0 |
def _close_tqdm(*args: Any) -> None:
"""Close the tqdm progress bar."""
_progress_bar.close() | Close the tqdm progress bar. | _close_tqdm | python | JaxGaussianProcesses/GPJax | gpjax/scan.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/scan.py | Apache-2.0 |
def get_batch(train_data: Dataset, batch_size: int, key: KeyArray) -> Dataset:
"""Batch the data into mini-batches. Sampling is done with replacement.
Args:
train_data (Dataset): The training dataset.
batch_size (int): The batch size.
key (KeyArray): The random key to use for the batch selection.
Returns
-------
Dataset: The batched dataset.
"""
x, y, n = train_data.X, train_data.y, train_data.n
# Subsample mini-batch indices with replacement.
indices = jr.choice(key, n, (batch_size,), replace=True)
return Dataset(X=x[indices], y=y[indices]) | Batch the data into mini-batches. Sampling is done with replacement.
Args:
train_data (Dataset): The training dataset.
batch_size (int): The batch size.
key (KeyArray): The random key to use for the batch selection.
Returns
-------
Dataset: The batched dataset. | get_batch | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_model(model: tp.Any) -> None:
"""Check that the model is a subclass of nnx.Module."""
if not isinstance(model, nnx.Module):
raise TypeError(
"Expected model to be a subclass of nnx.Module. "
f"Got {model} of type {type(model)}."
) | Check that the model is a subclass of nnx.Module. | _check_model | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_train_data(train_data: tp.Any) -> None:
"""Check that the train_data is of type gpjax.Dataset."""
if not isinstance(train_data, Dataset):
raise TypeError(
"Expected train_data to be of type gpjax.Dataset. "
f"Got {train_data} of type {type(train_data)}."
) | Check that the train_data is of type gpjax.Dataset. | _check_train_data | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_optim(optim: tp.Any) -> None:
"""Check that the optimiser is of type GradientTransformation."""
if not isinstance(optim, ox.GradientTransformation):
raise TypeError(
"Expected optim to be of type optax.GradientTransformation. "
f"Got {optim} of type {type(optim)}."
) | Check that the optimiser is of type GradientTransformation. | _check_optim | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_num_iters(num_iters: tp.Any) -> None:
"""Check that the number of iterations is of type int and positive."""
if not isinstance(num_iters, int):
raise TypeError(
"Expected num_iters to be of type int. "
f"Got {num_iters} of type {type(num_iters)}."
)
if num_iters <= 0:
raise ValueError(f"Expected num_iters to be positive. Got {num_iters}.") | Check that the number of iterations is of type int and positive. | _check_num_iters | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_log_rate(log_rate: tp.Any) -> None:
"""Check that the log rate is of type int and positive."""
if not isinstance(log_rate, int):
raise TypeError(
"Expected log_rate to be of type int. "
f"Got {log_rate} of type {type(log_rate)}."
)
if not log_rate > 0:
raise ValueError(f"Expected log_rate to be positive. Got {log_rate}.") | Check that the log rate is of type int and positive. | _check_log_rate | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_verbose(verbose: tp.Any) -> None:
"""Check that the verbose is of type bool."""
if not isinstance(verbose, bool):
raise TypeError(
"Expected verbose to be of type bool. "
f"Got {verbose} of type {type(verbose)}."
) | Check that the verbose is of type bool. | _check_verbose | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def _check_batch_size(batch_size: tp.Any) -> None:
"""Check that the batch size is of type int and positive if not minus 1."""
if not isinstance(batch_size, int):
raise TypeError(
"Expected batch_size to be of type int. "
f"Got {batch_size} of type {type(batch_size)}."
)
if not batch_size == -1 and not batch_size > 0:
raise ValueError(f"Expected batch_size to be positive or -1. Got {batch_size}.") | Check that the batch size is of type int and positive if not minus 1. | _check_batch_size | python | JaxGaussianProcesses/GPJax | gpjax/fit.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/fit.py | Apache-2.0 |
def lower_cholesky(A: LinearOperator) -> Triangular: # noqa: F811
"""Returns the lower Cholesky factor of a linear operator.
Args:
A: The input linear operator.
Returns:
Triangular: The lower Cholesky factor of A.
"""
if PSD not in A.annotations:
raise ValueError(
"Expected LinearOperator to be PSD, did you forget to use cola.PSD?"
)
return Triangular(jnp.linalg.cholesky(A.to_dense()), lower=True) | Returns the lower Cholesky factor of a linear operator.
Args:
A: The input linear operator.
Returns:
Triangular: The lower Cholesky factor of A. | lower_cholesky | python | JaxGaussianProcesses/GPJax | gpjax/lower_cholesky.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/lower_cholesky.py | Apache-2.0 |
def num_inducing(self) -> int:
"""The number of inducing inputs."""
return self.inducing_inputs.value.shape[0] | The number of inducing inputs. | num_inducing | python | JaxGaussianProcesses/GPJax | gpjax/variational_families.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/variational_families.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initialise the AbstractKernel class.
Args:
active_dims: the indices of the input dimensions
that are active in the kernel's evaluation, represented by a list of
integers or a slice object. Defaults to a full slice.
n_dims: the number of input dimensions of the kernel.
compute_engine: the computation engine that is used to compute the kernel's
cross-covariance and gram matrices. Defaults to DenseKernelComputation.
"""
active_dims = active_dims or slice(None)
_check_active_dims(active_dims)
_check_n_dims(n_dims)
self.active_dims, self.n_dims = _check_dims_compat(active_dims, n_dims)
self.compute_engine = compute_engine | Initialise the AbstractKernel class.
Args:
active_dims: the indices of the input dimensions
that are active in the kernel's evaluation, represented by a list of
integers or a slice object. Defaults to a full slice.
n_dims: the number of input dimensions of the kernel.
compute_engine: the computation engine that is used to compute the kernel's
cross-covariance and gram matrices. Defaults to DenseKernelComputation. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/base.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
degree: int = 2,
shift: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 0.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
degree: The degree of the polynomial.
shift: The shift parameter of the kernel.
variance: The variance of the kernel.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
super().__init__(active_dims, n_dims, compute_engine)
self.degree = degree
if isinstance(shift, nnx.Variable):
self.shift = shift
else:
self.shift = PositiveReal(shift)
if tp.TYPE_CHECKING:
self.shift = tp.cast(PositiveReal[ScalarArray], self.shift)
if isinstance(variance, nnx.Variable):
self.variance = variance
else:
self.variance = PositiveReal(variance)
if tp.TYPE_CHECKING:
self.variance = tp.cast(PositiveReal[ScalarArray], self.variance)
self.name = f"Polynomial (degree {self.degree})" | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
degree: The degree of the polynomial.
shift: The shift parameter of the kernel.
variance: The variance of the kernel.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/nonstationary/polynomial.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/nonstationary/polynomial.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
order: tp.Literal[0, 1, 2] = 0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
weight_variance: tp.Union[
WeightVarianceCompatible, nnx.Variable[WeightVariance]
] = 1.0,
bias_variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
order: The order of the kernel. Must be 0, 1 or 2.
variance: The variance of the kernel σ.
weight_variance: The weight variance of the kernel.
bias_variance: The bias variance of the kernel.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
if order not in [0, 1, 2]:
raise ValueError("ArcCosine kernel only implemented for orders 0, 1 and 2.")
self.order = order
if isinstance(weight_variance, nnx.Variable):
self.weight_variance = weight_variance
else:
self.weight_variance = PositiveReal(weight_variance)
if tp.TYPE_CHECKING:
self.weight_variance = tp.cast(
PositiveReal[WeightVariance], self.weight_variance
)
if isinstance(variance, nnx.Variable):
self.variance = variance
else:
self.variance = PositiveReal(variance)
if tp.TYPE_CHECKING:
self.variance = tp.cast(PositiveReal[ScalarArray], self.variance)
if isinstance(bias_variance, nnx.Variable):
self.bias_variance = bias_variance
else:
self.bias_variance = PositiveReal(bias_variance)
if tp.TYPE_CHECKING:
self.bias_variance = tp.cast(
PositiveReal[ScalarArray], self.bias_variance
)
self.name = f"ArcCosine (order {self.order})"
super().__init__(active_dims, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
order: The order of the kernel. Must be 0, 1 or 2.
variance: The variance of the kernel σ.
weight_variance: The weight variance of the kernel.
bias_variance: The bias variance of the kernel.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/nonstationary/arccosine.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/nonstationary/arccosine.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
super().__init__(active_dims, n_dims, compute_engine)
if isinstance(variance, nnx.Variable):
self.variance = variance
else:
self.variance = PositiveReal(variance)
if tp.TYPE_CHECKING:
self.variance = tp.cast(PositiveReal[ScalarArray], self.variance) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/nonstationary/linear.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/nonstationary/linear.py | Apache-2.0 |
def __call__(self, x: Float[Array, "D 1"], y: Float[Array, "D 1"]) -> None:
"""Superfluous for RFFs."""
raise RuntimeError("RFFs do not have a kernel function.") | Superfluous for RFFs. | __call__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/approximations/rff.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/approximations/rff.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
period: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
period: the period of the kernel p.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(period, nnx.Variable):
self.period = period
else:
self.period = PositiveReal(period)
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
period: the period of the kernel p.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/periodic.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/periodic.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = ConstantDiagonalKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix
"""
super().__init__(active_dims, 1.0, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/white.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/white.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
super().__init__(active_dims, n_dims, compute_engine)
self.n_dims = _validate_lengthscale(lengthscale, self.n_dims)
if isinstance(lengthscale, nnx.Variable):
self.lengthscale = lengthscale
else:
self.lengthscale = PositiveReal(lengthscale)
# static typing
if tp.TYPE_CHECKING:
self.lengthscale = tp.cast(PositiveReal[Lengthscale], self.lengthscale)
if isinstance(variance, nnx.Variable):
self.variance = variance
else:
self.variance = PositiveReal(variance)
# static typing
if tp.TYPE_CHECKING:
self.variance = tp.cast(PositiveReal[ScalarFloat], self.variance) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/base.py | Apache-2.0 |
def _check_lengthscale(lengthscale: tp.Any):
"""Check that the lengthscale is a valid value."""
if isinstance(lengthscale, nnx.Variable):
_check_lengthscale(lengthscale.value)
return
if not isinstance(lengthscale, (int, float, jnp.ndarray, list, tuple)):
raise TypeError(
f"Expected `lengthscale` to be a array-like. Got {lengthscale}."
)
if isinstance(lengthscale, (jnp.ndarray, list)):
ls_shape = jnp.shape(jnp.asarray(lengthscale))
if len(ls_shape) > 1:
raise ValueError(
f"Expected `lengthscale` to be a scalar or 1D array. "
f"Got `lengthscale` with shape {ls_shape}."
) | Check that the lengthscale is a valid value. | _check_lengthscale | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/base.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
alpha: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
alpha: the alpha parameter of the kernel α.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(alpha, nnx.Variable):
self.alpha = alpha
else:
self.alpha = PositiveReal(alpha)
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
alpha: the alpha parameter of the kernel α.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/rational_quadratic.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/rational_quadratic.py | Apache-2.0 |
def __init__(
self,
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[LengthscaleCompatible, nnx.Variable[Lengthscale]] = 1.0,
variance: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
power: tp.Union[ScalarFloat, nnx.Variable[ScalarArray]] = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = DenseKernelComputation(),
):
"""Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
power: the power of the kernel κ.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(power, nnx.Variable):
self.power = power
else:
self.power = SigmoidBounded(power)
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
active_dims: the indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
power: the power of the kernel κ.
n_dims: the number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: the computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/stationary/powered_exponential.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/stationary/powered_exponential.py | Apache-2.0 |
def __init__(
self,
laplacian: Num[Array, "N N"],
active_dims: tp.Union[list[int], slice, None] = None,
lengthscale: tp.Union[ScalarFloat, Float[Array, " D"], Parameter] = 1.0,
variance: tp.Union[ScalarFloat, Parameter] = 1.0,
smoothness: ScalarFloat = 1.0,
n_dims: tp.Union[int, None] = None,
compute_engine: AbstractKernelComputation = EigenKernelComputation(),
):
"""Initializes the kernel.
Args:
laplacian: the Laplacian matrix of the graph.
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
smoothness: the smoothness parameter of the Matérn kernel.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix.
"""
if isinstance(smoothness, Parameter):
self.smoothness = smoothness
else:
self.smoothness = PositiveReal(smoothness)
self.laplacian = Static(laplacian)
evals, eigenvectors = jnp.linalg.eigh(self.laplacian.value)
self.eigenvectors = Static(eigenvectors)
self.eigenvalues = Static(evals.reshape(-1, 1))
self.num_vertex = self.eigenvalues.value.shape[0]
super().__init__(active_dims, lengthscale, variance, n_dims, compute_engine) | Initializes the kernel.
Args:
laplacian: the Laplacian matrix of the graph.
active_dims: The indices of the input dimensions that the kernel operates on.
lengthscale: the lengthscale(s) of the kernel ℓ. If a scalar or an array of
length 1, the kernel is isotropic, meaning that the same lengthscale is
used for all input dimensions. If an array with length > 1, the kernel is
anisotropic, meaning that a different lengthscale is used for each input.
variance: the variance of the kernel σ.
smoothness: the smoothness parameter of the Matérn kernel.
n_dims: The number of input dimensions. If `lengthscale` is an array, this
argument is ignored.
compute_engine: The computation engine that the kernel uses to compute the
covariance matrix. | __init__ | python | JaxGaussianProcesses/GPJax | gpjax/kernels/non_euclidean/graph.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/kernels/non_euclidean/graph.py | Apache-2.0 |
def __post_init__(self):
"""
At initialisation we check that the posterior handlers and datasets are
consistent (i.e. have the same tags), and then initialise the posteriors, optimizing them using the
corresponding datasets.
"""
self.datasets = copy.copy(
self.datasets
) # Ensure initial datasets passed in to DecisionMaker are not mutated from within
if self.batch_size < 1:
raise ValueError(
f"Batch size must be greater than 0, got {self.batch_size}."
)
# Check that posterior handlers and datasets are consistent
if self.posterior_handlers.keys() != self.datasets.keys():
raise ValueError(
"Posterior handlers and datasets must have the same keys. "
f"Got posterior handlers keys {self.posterior_handlers.keys()} and "
f"datasets keys {self.datasets.keys()}."
)
# Initialize posteriors
self.posteriors: Dict[str, AbstractPosterior] = {}
for tag, posterior_handler in self.posterior_handlers.items():
self.posteriors[tag] = posterior_handler.get_posterior(
self.datasets[tag], optimize=True, key=self.key
) | At initialisation we check that the posterior handlers and datasets are
consistent (i.e. have the same tags), and then initialise the posteriors, optimizing them using the
corresponding datasets. | __post_init__ | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def ask(self, key: KeyArray) -> Float[Array, "B D"]:
"""
Get the point(s) to be queried next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "1 D"]: Point to be queried next
"""
raise NotImplementedError | Get the point(s) to be queried next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "1 D"]: Point to be queried next | ask | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def tell(self, observation_datasets: Mapping[str, Dataset], key: KeyArray):
"""
Add newly observed data to datasets and update the corresponding posteriors.
Args:
observation_datasets: dictionary of datasets containing new observations.
Tags are used to distinguish datasets, and correspond to tags in
`posterior_handlers` and `self.datasets`.
key: JAX PRNG key for controlling random state.
"""
if observation_datasets.keys() != self.datasets.keys():
raise ValueError(
"Observation datasets and existing datasets must have the same keys. "
f"Got observation datasets keys {observation_datasets.keys()} and "
f"existing datasets keys {self.datasets.keys()}."
)
for tag, observation_dataset in observation_datasets.items():
self.datasets[tag] += observation_dataset
for tag, posterior_handler in self.posterior_handlers.items():
key, _ = jr.split(key)
self.posteriors[tag] = posterior_handler.update_posterior(
self.datasets[tag], self.posteriors[tag], optimize=True, key=key
) | Add newly observed data to datasets and update the corresponding posteriors.
Args:
observation_datasets: dictionary of datasets containing new observations.
Tags are used to distinguish datasets, and correspond to tags in
`posterior_handlers` and `self.datasets`.
key: JAX PRNG key for controlling random state. | tell | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def run(
self, n_steps: int, black_box_function_evaluator: FunctionEvaluator
) -> Mapping[str, Dataset]:
"""
Run the decision making loop continuously for for `n_steps`. This is broken down
into three main steps:
1. Call the `ask` method to get the point to be queried next.
2. Call the `black_box_function_evaluator` to evaluate the black box functions
of interest at the point chosen to be queried.
3. Call the `tell` method to update the datasets and posteriors with the newly
observed data.
In addition to this, after the `ask` step, the functions in the `post_ask` list
are executed, taking as arguments the decision maker and the point chosen to be
queried next. Similarly, after the `tell` step, the functions in the `post_tell`
list are executed, taking the decision maker as the sole argument.
Args:
n_steps (int): Number of steps to run the decision making loop for.
black_box_function_evaluator (FunctionEvaluator): Function evaluator which
evaluates the black box functions of interest at supplied points.
Returns:
Mapping[str, Dataset]: Dictionary of datasets containing the observations
made throughout the decision making loop, as well as the initial data
supplied when initialising the `DecisionMaker`.
"""
for _ in range(n_steps):
query_point = self.ask(self.key)
for post_ask_method in self.post_ask:
post_ask_method(self, query_point)
self.key, _ = jr.split(self.key)
observation_datasets = black_box_function_evaluator(query_point)
self.tell(observation_datasets, self.key)
for post_tell_method in self.post_tell:
post_tell_method(self)
return self.datasets | Run the decision making loop continuously for for `n_steps`. This is broken down
into three main steps:
1. Call the `ask` method to get the point to be queried next.
2. Call the `black_box_function_evaluator` to evaluate the black box functions
of interest at the point chosen to be queried.
3. Call the `tell` method to update the datasets and posteriors with the newly
observed data.
In addition to this, after the `ask` step, the functions in the `post_ask` list
are executed, taking as arguments the decision maker and the point chosen to be
queried next. Similarly, after the `tell` step, the functions in the `post_tell`
list are executed, taking the decision maker as the sole argument.
Args:
n_steps (int): Number of steps to run the decision making loop for.
black_box_function_evaluator (FunctionEvaluator): Function evaluator which
evaluates the black box functions of interest at supplied points.
Returns:
Mapping[str, Dataset]: Dictionary of datasets containing the observations
made throughout the decision making loop, as well as the initial data
supplied when initialising the `DecisionMaker`. | run | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def ask(self, key: KeyArray) -> Float[Array, "B D"]:
"""
Get updated utility function(s) and return the point(s) which maximises it/them. This
method also stores the utility function(s) in
`self.current_utility_functions` so that they can be accessed after the ask
function has been called. This is useful for non-deterministic utility
functions, which may differ between calls to `ask` due to the splitting of
`self.key`.
Note that in general `SinglePointUtilityFunction`s are only capable of
generating one point to be queried at each iteration of the decision making loop
(i.e. `self.batch_size` must be 1). However, Thompson sampling can be used in a
batched setting by drawing a batch of different samples from the GP posterior.
This is done by calling `build_utility_function` with different keys
sequentilly, and optimising each of these individual samples in sequence in
order to obtain `self.batch_size` points to query next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "B D"]: Point(s) to be queried next.
"""
self.current_utility_functions = []
maximizers = []
# We currently only allow Thompson sampling to be run with batch size > 1. More
# batched utility functions may be added in the future.
if isinstance(self.utility_function_builder, ThompsonSampling) or (
(not isinstance(self.utility_function_builder, ThompsonSampling))
and (self.batch_size == 1)
):
# Draw 'self.batch_size' Thompson samples and optimize each of them in order to
# obtain 'self.batch_size' points to query next.
for _ in range(self.batch_size):
decision_function = (
self.utility_function_builder.build_utility_function(
self.posteriors, self.datasets, key
)
)
self.current_utility_functions.append(decision_function)
_, key = jr.split(key)
maximizer = self.utility_maximizer.maximize(
decision_function, self.search_space, key
)
maximizers.append(maximizer)
_, key = jr.split(key)
maximizers = jnp.concatenate(maximizers)
return maximizers
else:
raise NotImplementedError(
"Only Thompson sampling currently supports batch size > 1."
) | Get updated utility function(s) and return the point(s) which maximises it/them. This
method also stores the utility function(s) in
`self.current_utility_functions` so that they can be accessed after the ask
function has been called. This is useful for non-deterministic utility
functions, which may differ between calls to `ask` due to the splitting of
`self.key`.
Note that in general `SinglePointUtilityFunction`s are only capable of
generating one point to be queried at each iteration of the decision making loop
(i.e. `self.batch_size` must be 1). However, Thompson sampling can be used in a
batched setting by drawing a batch of different samples from the GP posterior.
This is done by calling `build_utility_function` with different keys
sequentilly, and optimising each of these individual samples in sequence in
order to obtain `self.batch_size` points to query next.
Args:
key (KeyArray): JAX PRNG key for controlling random state.
Returns:
Float[Array, "B D"]: Point(s) to be queried next. | ask | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/decision_maker.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/decision_maker.py | Apache-2.0 |
def build_function_evaluator(
functions: Dict[str, Callable[[Float[Array, "N D"]], Float[Array, "N 1"]]],
) -> FunctionEvaluator:
"""
Takes a dictionary of functions and returns a `FunctionEvaluator` which can be
used to evaluate each of the functions at a supplied set of points and return a
dictionary of datasets storing the evaluated points.
"""
return lambda x: {tag: Dataset(x, f(x)) for tag, f in functions.items()} | Takes a dictionary of functions and returns a `FunctionEvaluator` which can be
used to evaluate each of the functions at a supplied set of points and return a
dictionary of datasets storing the evaluated points. | build_function_evaluator | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utils.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utils.py | Apache-2.0 |
def get_best_latent_observation_val(
posterior: AbstractPosterior, dataset: Dataset
) -> Float[Array, ""]:
"""
Takes a posterior and dataset and returns the best (latent) function value in the
dataset, corresponding to the minimum of the posterior mean value evaluated at
locations in the dataset. In the noiseless case, this corresponds to the minimum
value in the dataset.
"""
return jnp.min(posterior(dataset.X, dataset).mean()) | Takes a posterior and dataset and returns the best (latent) function value in the
dataset, corresponding to the minimum of the posterior mean value evaluated at
locations in the dataset. In the noiseless case, this corresponds to the minimum
value in the dataset. | get_best_latent_observation_val | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utils.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utils.py | Apache-2.0 |
def get_posterior(
self, dataset: Dataset, optimize: bool, key: Optional[KeyArray] = None
) -> AbstractPosterior:
"""
Initialise (and optionally optimize) a posterior using the given dataset.
Args:
dataset: dataset to get posterior for.
optimize: whether to optimize the posterior hyperparameters.
key: a JAX PRNG key which is used for optimizing the posterior
hyperparameters.
Returns:
Posterior for the given dataset.
"""
posterior = self.prior * self.likelihood_builder(dataset.n)
if optimize:
if key is None:
raise ValueError(
"A key must be provided in order to optimize the posterior."
)
posterior = self._optimize_posterior(posterior, dataset, key)
return posterior | Initialise (and optionally optimize) a posterior using the given dataset.
Args:
dataset: dataset to get posterior for.
optimize: whether to optimize the posterior hyperparameters.
key: a JAX PRNG key which is used for optimizing the posterior
hyperparameters.
Returns:
Posterior for the given dataset. | get_posterior | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/posterior_handler.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/posterior_handler.py | Apache-2.0 |
def update_posterior(
self,
dataset: Dataset,
previous_posterior: AbstractPosterior,
optimize: bool,
key: Optional[KeyArray] = None,
) -> AbstractPosterior:
"""
Update the given posterior with the given dataset. This needs to be done when
the number of datapoints in the (training) dataset of the posterior changes, as
the `AbstractLikelihood` class requires the number of datapoints to be specified.
Hyperparameters may or may not be optimized, depending on the value of the
`optimize` parameter. Note that the updated poterior will be initialised with
the same prior hyperparameters as the previous posterior, but the likelihood
will be re-initialised with the new number of datapoints, and hyperparameters
set as in the `likelihood_builder` function.
Args:
dataset: dataset to get posterior for.
previous_posterior: posterior being updated. This is supplied as one may
wish to simply increase the number of datapoints in the likelihood, without
optimizing the posterior hyperparameters, in which case the previous
posterior can be used to obtain the previously set prior hyperparameters.
optimize: whether to optimize the posterior hyperparameters.
key: A JAX PRNG key which is used for optimizing the posterior
hyperparameters.
"""
posterior = previous_posterior.prior * self.likelihood_builder(dataset.n)
if optimize:
if key is None:
raise ValueError(
"A key must be provided in order to optimize the posterior."
)
posterior = self._optimize_posterior(posterior, dataset, key)
return posterior | Update the given posterior with the given dataset. This needs to be done when
the number of datapoints in the (training) dataset of the posterior changes, as
the `AbstractLikelihood` class requires the number of datapoints to be specified.
Hyperparameters may or may not be optimized, depending on the value of the
`optimize` parameter. Note that the updated poterior will be initialised with
the same prior hyperparameters as the previous posterior, but the likelihood
will be re-initialised with the new number of datapoints, and hyperparameters
set as in the `likelihood_builder` function.
Args:
dataset: dataset to get posterior for.
previous_posterior: posterior being updated. This is supplied as one may
wish to simply increase the number of datapoints in the likelihood, without
optimizing the posterior hyperparameters, in which case the previous
posterior can be used to obtain the previously set prior hyperparameters.
optimize: whether to optimize the posterior hyperparameters.
key: A JAX PRNG key which is used for optimizing the posterior
hyperparameters. | update_posterior | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/posterior_handler.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/posterior_handler.py | Apache-2.0 |
def _optimize_posterior(
self, posterior: AbstractPosterior, dataset: Dataset, key: KeyArray
) -> AbstractPosterior:
"""
Takes a posterior and corresponding dataset and optimizes the posterior using the
GPJax `fit` method.
Args:
posterior: Posterior being optimized.
dataset: Dataset used for optimizing posterior.
key: A JAX PRNG key for generating random numbers.
Returns:
Optimized posterior.
"""
opt_posterior, _ = gpx.fit(
model=posterior,
objective=self.optimization_objective,
train_data=dataset,
optim=self.optimizer,
num_iters=self.num_optimization_iters,
safe=True,
key=key,
verbose=False,
)
return opt_posterior | Takes a posterior and corresponding dataset and optimizes the posterior using the
GPJax `fit` method.
Args:
posterior: Posterior being optimized.
dataset: Dataset used for optimizing posterior.
key: A JAX PRNG key for generating random numbers.
Returns:
Optimized posterior. | _optimize_posterior | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/posterior_handler.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/posterior_handler.py | Apache-2.0 |
def sample(self, num_points: int, key: KeyArray) -> Float[Array, "N D"]:
"""Sample points from the search space.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled from the search space.
"""
raise NotImplementedError | Sample points from the search space.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled from the search space. | sample | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/search_space.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/search_space.py | Apache-2.0 |
def dimensionality(self) -> int:
"""Dimensionality of the search space.
Returns:
int: Dimensionality of the search space.
"""
raise NotImplementedError | Dimensionality of the search space.
Returns:
int: Dimensionality of the search space. | dimensionality | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/search_space.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/search_space.py | Apache-2.0 |
def sample(self, num_points: int, key: KeyArray) -> Float[Array, "N D"]:
"""Sample points from the search space using a Halton sequence.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled using the Halton sequence
from the search space.
"""
if num_points <= 0:
raise ValueError("Number of points must be greater than 0.")
initial_sample = tfp.mcmc.sample_halton_sequence(
dim=self.dimensionality, num_results=num_points, seed=key
)
return (
self.lower_bounds + (self.upper_bounds - self.lower_bounds) * initial_sample
) | Sample points from the search space using a Halton sequence.
Args:
num_points (int): Number of points to be sampled from the search space.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, "N D"]: `num_points` points sampled using the Halton sequence
from the search space. | sample | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/search_space.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/search_space.py | Apache-2.0 |
def _get_discrete_maximizer(
query_points: Float[Array, "N D"], utility_function: SinglePointUtilityFunction
) -> Float[Array, "1 D"]:
"""Get the point which maximises the utility function evaluated at a given set of points.
Args:
query_points: set of points at which to evaluate the utility function, as an array
of shape `[n_points, n_dims]`.
utility_function: the single point utility function to be evaluated at `query_points`.
Returns:
Array of shape `[1, n_dims]` representing the point which maximises the utility function.
"""
utility_function_values = utility_function(query_points)
max_utility_function_value_idx = jnp.argmax(
utility_function_values, axis=0, keepdims=True
)
best_sample_point = jnp.take_along_axis(
query_points, max_utility_function_value_idx, axis=0
)
return best_sample_point | Get the point which maximises the utility function evaluated at a given set of points.
Args:
query_points: set of points at which to evaluate the utility function, as an array
of shape `[n_points, n_dims]`.
utility_function: the single point utility function to be evaluated at `query_points`.
Returns:
Array of shape `[1, n_dims]` representing the point which maximises the utility function. | _get_discrete_maximizer | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def maximize(
self,
utility_function: SinglePointUtilityFunction,
search_space: AbstractSearchSpace,
key: KeyArray,
) -> Float[Array, "1 D"]:
"""Maximize the given utility function over the search space provided.
Args:
utility_function: utility function to be maximized.
search_space: search space over which to maximize the utility function.
key: JAX PRNG key.
Returns:
Float[Array, "1 D"]: Point at which the utility function is maximized.
"""
raise NotImplementedError | Maximize the given utility function over the search space provided.
Args:
utility_function: utility function to be maximized.
search_space: search space over which to maximize the utility function.
key: JAX PRNG key.
Returns:
Float[Array, "1 D"]: Point at which the utility function is maximized. | maximize | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def _scalar_utility_function(x: Float[Array, "1 D"]) -> ScalarFloat:
"""
The Jaxopt minimizer requires a function which returns a scalar. It calls the
utility function with one point at a time, so the utility function
returns an array of shape [1, 1], so we index to return a scalar. Note that
we also return the negative of the utility function - this is because
utility functions should be *maximimized* but the Jaxopt minimizer
minimizes functions.
"""
return -utility_function(x)[0][0] | The Jaxopt minimizer requires a function which returns a scalar. It calls the
utility function with one point at a time, so the utility function
returns an array of shape [1, 1], so we index to return a scalar. Note that
we also return the negative of the utility function - this is because
utility functions should be *maximimized* but the Jaxopt minimizer
minimizes functions. | maximize._scalar_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_maximizer.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_maximizer.py | Apache-2.0 |
def generate_dataset(
self, num_points: int, key: KeyArray, obs_stddev: float = 0.0
) -> Dataset:
"""
Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
obs_stddev (float): (Optional) standard deviation of Gaussian distributed
noise added to observations.
Returns:
Dataset: Dataset of points sampled from the test function.
"""
X = self.search_space.sample(num_points=num_points, key=key)
gaussian_noise = tfp.distributions.Normal(
jnp.zeros(num_points), obs_stddev * jnp.ones(num_points)
)
y = self.evaluate(X) + jnp.transpose(
gaussian_noise.sample(sample_shape=[1], seed=key)
)
return Dataset(X=X, y=y) | Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
obs_stddev (float): (Optional) standard deviation of Gaussian distributed
noise added to observations.
Returns:
Dataset: Dataset of points sampled from the test function. | generate_dataset | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/continuous_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/continuous_functions.py | Apache-2.0 |
def generate_test_points(
self, num_points: int, key: KeyArray
) -> Float[Array, "N D"]:
"""
Generate test points from the search space of the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, 'N D']: Test points sampled from the search space.
"""
return self.search_space.sample(num_points=num_points, key=key) | Generate test points from the search space of the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Float[Array, 'N D']: Test points sampled from the search space. | generate_test_points | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/continuous_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/continuous_functions.py | Apache-2.0 |
def evaluate(self, x: Float[Array, "N D"]) -> Float[Array, "N 1"]:
"""
Evaluate the test function at a set of points.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points.
"""
raise NotImplementedError | Evaluate the test function at a set of points.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points. | evaluate | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/continuous_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/continuous_functions.py | Apache-2.0 |
def generate_dataset(self, num_points: int, key: KeyArray) -> Dataset:
"""
Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Dataset: Dataset of points sampled from the test function.
"""
X = self.search_space.sample(num_points=num_points, key=key)
y = self.evaluate(X)
return Dataset(X=X, y=y) | Generate a toy dataset from the test function.
Args:
num_points (int): Number of points to sample.
key (KeyArray): JAX PRNG key.
Returns:
Dataset: Dataset of points sampled from the test function. | generate_dataset | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/non_conjugate_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/non_conjugate_functions.py | Apache-2.0 |
def evaluate(self, x: Float[Array, "N 1"]) -> Int[Array, "N 1"]:
"""
Evaluate the test function at a set of points. Function taken from
https://docs.jaxgaussianprocesses.com/_examples/poisson/#dataset.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points.
"""
key = jr.key(42)
f = lambda x: 2.0 * jnp.sin(3 * x) + 0.5 * x
return jr.poisson(key, jnp.exp(f(x))) | Evaluate the test function at a set of points. Function taken from
https://docs.jaxgaussianprocesses.com/_examples/poisson/#dataset.
Args:
x (Float[Array, 'N D']): Points to evaluate the test function at.
Returns:
Float[Array, 'N 1']: Values of the test function at the points. | evaluate | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/test_functions/non_conjugate_functions.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/test_functions/non_conjugate_functions.py | Apache-2.0 |
def build_utility_function(
self,
posteriors: Mapping[str, ConjugatePosterior],
datasets: Mapping[str, Dataset],
key: KeyArray,
) -> SinglePointUtilityFunction:
"""
Constructs the probability of improvement utility function
using the predictive posterior of the objective function.
Args:
posteriors (Mapping[str, AbstractPosterior]): Dictionary of posteriors to be
used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. Since
the probability of improvement is computed deterministically
from the predictive posterior, the key is not used.
Returns:
SinglePointUtilityFunction: the probability of improvement utility function.
"""
self.check_objective_present(posteriors, datasets)
objective_posterior = posteriors[OBJECTIVE]
if not isinstance(objective_posterior, ConjugatePosterior):
raise ValueError(
"Objective posterior must be a ConjugatePosterior to compute the Probability of Improvement using a Gaussian CDF."
)
objective_dataset = datasets[OBJECTIVE]
if (
objective_dataset.X is None
or objective_dataset.n == 0
or objective_dataset.y is None
):
raise ValueError(
"Objective dataset must be non-empty to compute the "
"Probability of Improvement (since we need a "
"`best_y` value)."
)
def probability_of_improvement(x_test: Num[Array, "N D"]):
best_y = get_best_latent_observation_val(
objective_posterior, objective_dataset
)
predictive_dist = objective_posterior.predict(x_test, objective_dataset)
normal_dist = tfp.distributions.Normal(
loc=predictive_dist.mean(),
scale=predictive_dist.stddev(),
)
return normal_dist.cdf(best_y).reshape(-1, 1)
return probability_of_improvement | Constructs the probability of improvement utility function
using the predictive posterior of the objective function.
Args:
posteriors (Mapping[str, AbstractPosterior]): Dictionary of posteriors to be
used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. Since
the probability of improvement is computed deterministically
from the predictive posterior, the key is not used.
Returns:
SinglePointUtilityFunction: the probability of improvement utility function. | build_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/probability_of_improvement.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/probability_of_improvement.py | Apache-2.0 |
def build_utility_function(
self,
posteriors: Mapping[str, ConjugatePosterior],
datasets: Mapping[str, Dataset],
key: KeyArray,
) -> SinglePointUtilityFunction:
"""
Draw an approximate sample from the posterior of the objective model and return
the *negative* of this sample as a utility function, as utility functions
are *maximised*.
Args:
posteriors (Mapping[str, ConjugatePosterior]): Dictionary of posteriors to
be used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. This can be
changed to draw different samples.
Returns:
SinglePointUtilityFunction: An appproximate sample from the objective model
posterior to to be *maximised* in order to decide which point to query
next.
"""
self.check_objective_present(posteriors, datasets)
objective_posterior = posteriors[OBJECTIVE]
if not isinstance(objective_posterior, ConjugatePosterior):
raise ValueError(
"Objective posterior must be a ConjugatePosterior to draw an approximate sample."
)
objective_dataset = datasets[OBJECTIVE]
thompson_sample = objective_posterior.sample_approx(
num_samples=1,
train_data=objective_dataset,
key=key,
num_features=self.num_features,
)
return lambda x: -1.0 * thompson_sample(x) # Utility functions are *maximised* | Draw an approximate sample from the posterior of the objective model and return
the *negative* of this sample as a utility function, as utility functions
are *maximised*.
Args:
posteriors (Mapping[str, ConjugatePosterior]): Dictionary of posteriors to
be used to form the utility function. One of the posteriors must correspond
to the `OBJECTIVE` key, as we sample from the objective posterior to form
the utility function.
datasets (Mapping[str, Dataset]): Dictionary of datasets which may be used
to form the utility function. Keys in `datasets` should correspond to
keys in `posteriors`. One of the datasets must correspond
to the `OBJECTIVE` key.
key (KeyArray): JAX PRNG key used for random number generation. This can be
changed to draw different samples.
Returns:
SinglePointUtilityFunction: An appproximate sample from the objective model
posterior to to be *maximised* in order to decide which point to query
next. | build_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/thompson_sampling.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/thompson_sampling.py | Apache-2.0 |
def check_objective_present(
self,
posteriors: Mapping[str, AbstractPosterior],
datasets: Mapping[str, Dataset],
) -> None:
"""
Check that the objective posterior and dataset are present in the posteriors and
datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
Raises:
ValueError: If the objective posterior or dataset are not present in the
posteriors or datasets.
"""
if OBJECTIVE not in posteriors.keys():
raise ValueError("Objective posterior not found in posteriors")
elif OBJECTIVE not in datasets.keys():
raise ValueError("Objective dataset not found in datasets") | Check that the objective posterior and dataset are present in the posteriors and
datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
Raises:
ValueError: If the objective posterior or dataset are not present in the
posteriors or datasets. | check_objective_present | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/base.py | Apache-2.0 |
def build_utility_function(
self,
posteriors: Mapping[str, AbstractPosterior],
datasets: Mapping[str, Dataset],
key: KeyArray,
) -> SinglePointUtilityFunction:
"""
Build a `UtilityFunction` from a set of posteriors and datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
key: JAX PRNG key used for random number generation.
Returns:
SinglePointUtilityFunction: Utility function to be *maximised* in order to
decide which point to query next.
"""
raise NotImplementedError | Build a `UtilityFunction` from a set of posteriors and datasets.
Args:
posteriors: dictionary of posteriors to be used to form the utility function.
datasets: dictionary of datasets which may be used to form the utility function.
key: JAX PRNG key used for random number generation.
Returns:
SinglePointUtilityFunction: Utility function to be *maximised* in order to
decide which point to query next. | build_utility_function | python | JaxGaussianProcesses/GPJax | gpjax/decision_making/utility_functions/base.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/gpjax/decision_making/utility_functions/base.py | Apache-2.0 |
def process_file(file: Path, out_file: Path | None = None, execute: bool = False):
"""Converts a python file to markdown using jupytext and nbconvert."""
out_dir = out_file.parent
command = f"cd {out_dir.as_posix()} && "
out_file = out_file.relative_to(out_dir).as_posix()
if execute:
command += f"jupytext --to ipynb {file} --output - "
command += (
f"| jupyter nbconvert --to markdown --execute --stdin --output {out_file}"
)
else:
command += f"jupytext --to markdown {file} --output {out_file}"
subprocess.run(command, shell=True, check=False) | Converts a python file to markdown using jupytext and nbconvert. | process_file | python | JaxGaussianProcesses/GPJax | docs/scripts/gen_examples.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/docs/scripts/gen_examples.py | Apache-2.0 |
def is_modified(file: Path, out_file: Path):
"""Check if the output file is older than the input file."""
return out_file.exists() and out_file.stat().st_mtime < file.stat().st_mtime | Check if the output file is older than the input file. | is_modified | python | JaxGaussianProcesses/GPJax | docs/scripts/gen_examples.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/docs/scripts/gen_examples.py | Apache-2.0 |
def confidence_ellipse(x, y, ax, n_std=3.0, facecolor="none", **kwargs):
"""
Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse
"""
x = np.array(x)
y = np.array(y)
if x.size != y.size:
raise ValueError("x and y must be the same size")
cov = np.cov(x, y)
pearson = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])
# Using a special case to obtain the eigenvalues of this
# two-dimensionl dataset.
ell_radius_x = np.sqrt(1 + pearson)
ell_radius_y = np.sqrt(1 - pearson)
ellipse = Ellipse(
(0, 0),
width=ell_radius_x * 2,
height=ell_radius_y * 2,
facecolor=facecolor,
**kwargs,
)
# Calculating the stdandard deviation of x from
# the squareroot of the variance and multiplying
# with the given number of standard deviations.
scale_x = np.sqrt(cov[0, 0]) * n_std
mean_x = np.mean(x)
# calculating the stdandard deviation of y ...
scale_y = np.sqrt(cov[1, 1]) * n_std
mean_y = np.mean(y)
transf = (
transforms.Affine2D()
.rotate_deg(45)
.scale(scale_x, scale_y)
.translate(mean_x, mean_y)
)
ellipse.set_transform(transf + ax.transData)
return ax.add_patch(ellipse) | Create a plot of the covariance confidence ellipse of *x* and *y*.
Parameters
----------
x, y : array-like, shape (n, )
Input data.
ax : matplotlib.axes.Axes
The axes object to draw the ellipse into.
n_std : float
The number of standard deviations to determine the ellipse's radiuses.
**kwargs
Forwarded to `~matplotlib.patches.Ellipse`
Returns
-------
matplotlib.patches.Ellipse | confidence_ellipse | python | JaxGaussianProcesses/GPJax | examples/utils.py | https://github.com/JaxGaussianProcesses/GPJax/blob/master/examples/utils.py | Apache-2.0 |
def pytest_addoption(parser):
"""Define pytest command-line option"""
group = parser.getgroup("jupyter_book")
group.addoption(
"--jb-tempdir",
dest="jb_tempdir",
default=None,
help="Specify a directory in which to create tempdirs",
) | Define pytest command-line option | pytest_addoption | python | jupyter-book/jupyter-book | conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/conftest.py | BSD-3-Clause |
def test_myst_init(cli: CliRunner, temp_with_override):
"""Test adding myst metadata to text files."""
path = temp_with_override.joinpath("tmp.md").absolute()
text = "TEST"
with open(path, "w") as ff:
ff.write(text)
init_myst_file(path, kernel="python3")
# Make sure it runs properly. Default kernel should be python3
new_text = path.read_text(encoding="utf8")
assert "format_name: myst" in new_text
assert "TEST" == new_text.strip().split("\n")[-1]
assert "name: python3" in new_text
# Make sure the CLI works too
with warnings.catch_warnings():
warnings.simplefilter("error")
result = cli.invoke(myst_init, f"{path} --kernel python3".split())
# old versions of jupytext give: UserWarning: myst-parse failed unexpectedly
assert result.exit_code == 0
# Non-existent kernel
with pytest.raises(Exception) as err:
init_myst_file(path, kernel="blah")
assert "Did not find kernel: blah" in str(err)
# Missing file
with pytest.raises(Exception) as err:
init_myst_file(path.joinpath("MISSING"), kernel="python3")
assert "Markdown file not found:" in str(err) | Test adding myst metadata to text files. | test_myst_init | python | jupyter-book/jupyter-book | tests/test_utils.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_utils.py | BSD-3-Clause |
def test_toc_startwithlist(cli: CliRunner, temp_with_override, file_regression):
"""Testing a basic _toc.yml for tableofcontents directive"""
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
path_toc = p_toc.joinpath("_toc_startwithlist.yml")
result = cli.invoke(
build,
[
p_toc.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"-W",
],
)
# print(result.output)
assert result.exit_code == 0
path_toc_directive = path_output.joinpath("_build", "html", "index.html")
# print(path_toc_directive.read_text(encoding="utf8"))
# get the tableofcontents markup
soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser")
toc = soup.find_all("div", class_="toctree-wrapper")
assert len(toc) == 1
file_regression.check(toc[0].prettify(), extension=".html", encoding="utf8") | Testing a basic _toc.yml for tableofcontents directive | test_toc_startwithlist | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_parts(cli: CliRunner, temp_with_override, file_regression):
"""Testing `header` in _toc.yml"""
path_input = temp_with_override.joinpath("mybook_input").absolute()
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
shutil.copytree(p_toc, path_input)
# setup correct files
(path_input / "subfolder" / "asubpage.md").unlink()
for i in range(4):
(path_input / "subfolder" / f"asubpage{i+1}.md").write_text(
f"# A subpage {i+1}\n", encoding="utf8"
)
path_toc = path_input.joinpath("_toc_parts.yml")
result = cli.invoke(
build,
[
path_input.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"-W",
],
)
# print(result.output)
assert result.exit_code == 0
path_index = path_output.joinpath("_build", "html", "index.html")
# get the tableofcontents markup
soup = BeautifulSoup(path_index.read_text(encoding="utf8"), "html.parser")
toc = soup.find_all("div", class_="toctree-wrapper")
assert len(toc) == 2
file_regression.check(
toc[0].prettify(),
basename="test_toc_parts_directive",
extension=f"{SPHINX_VERSION}.html",
encoding="utf8",
)
# check the sidebar structure is correct
file_regression.check(
soup.select(".bd-links")[0].prettify(),
basename="test_toc_parts_sidebar",
extension=f"{SPHINX_VERSION}.html",
encoding="utf8",
) | Testing `header` in _toc.yml | test_toc_parts | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_urllink(cli: CliRunner, temp_with_override, file_regression):
"""Testing with additional `url` link key in _toc.yml"""
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
path_toc = p_toc.joinpath("_toc_urllink.yml")
result = cli.invoke(
build,
[
p_toc.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
],
)
print(result.output)
assert result.exit_code == 0
path_toc_directive = path_output.joinpath("_build", "html", "index.html")
# get the tableofcontents markup
soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser")
toc = soup.find_all("div", class_="toctree-wrapper")
assert len(toc) == 1
file_regression.check(toc[0].prettify(), extension=".html", encoding="utf8") | Testing with additional `url` link key in _toc.yml | test_toc_urllink | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def test_toc_latex_parts(cli: CliRunner, temp_with_override, file_regression):
"""Testing LaTex output"""
path_input = temp_with_override.joinpath("mybook_input").absolute()
path_output = temp_with_override.joinpath("mybook").absolute()
# Regular TOC should work
p_toc = path_books.joinpath("toc")
shutil.copytree(p_toc, path_input)
# setup correct files
(path_input / "subfolder" / "asubpage.md").unlink()
for i in range(4):
(path_input / "subfolder" / f"asubpage{i+1}.md").write_text(
f"# A subpage {i+1}\n", encoding="utf8"
)
path_toc = path_input.joinpath("_toc_parts.yml")
result = cli.invoke(
build,
[
path_input.as_posix(),
"--path-output",
path_output.as_posix(),
"--toc",
path_toc.as_posix(),
"--builder",
"pdflatex",
"-W",
],
)
assert result.exit_code == 0, result.output
# reading the tex file
path_output_file = path_output.joinpath("_build", "latex", "toc-tests.tex")
file_content = TexSoup(path_output_file.read_text())
# checking the table of contents which is a list with '\begin{itemize}'
itemizes = file_content.find_all("itemize")
file_regression.check(
str(itemizes[0]) + "\n" + str(itemizes[1]), extension=".tex", encoding="utf8"
) | Testing LaTex output | test_toc_latex_parts | python | jupyter-book/jupyter-book | tests/test_tocdirective.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/test_tocdirective.py | BSD-3-Clause |
def build_resources(temp_with_override):
"""Copys ./books and ./books/tocs to a temporary directory and yields the paths
as `pathlib.Path` objects.
"""
src = Path(__file__).parent.resolve().joinpath("books").absolute()
dst = temp_with_override / "books"
shutil.copytree(src, dst)
yield Path(dst), Path(dst) / "toc"
shutil.rmtree(dst) | Copys ./books and ./books/tocs to a temporary directory and yields the paths
as `pathlib.Path` objects. | build_resources | python | jupyter-book/jupyter-book | tests/conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/conftest.py | BSD-3-Clause |
def pages(temp_with_override):
"""Copys ./pages to a temporary directory and yields the path as a `pathlib.Path`
object.
"""
src = Path(__file__).parent.joinpath("pages").absolute()
dst = temp_with_override / "pages"
shutil.copytree(src, dst)
yield Path(dst)
shutil.rmtree(dst) | Copys ./pages to a temporary directory and yields the path as a `pathlib.Path`
object. | pages | python | jupyter-book/jupyter-book | tests/conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/conftest.py | BSD-3-Clause |
def cli():
"""Provides a click.testing CliRunner object for invoking CLI commands."""
runner = CliRunner()
yield runner
del runner | Provides a click.testing CliRunner object for invoking CLI commands. | cli | python | jupyter-book/jupyter-book | tests/conftest.py | https://github.com/jupyter-book/jupyter-book/blob/master/tests/conftest.py | BSD-3-Clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.