code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
182
url
stringlengths
46
251
license
stringclasses
4 values
def score_test(self, params_constrained, k_constraints=None, exog_extra=None, observed=True): """score test for restrictions or for omitted variables The covariance matrix for the score is based on the Hessian, i.e. observed information matrix or optionally on the expected information matrix.. Parameters ---------- params_constrained : array_like estimated parameter of the restricted model. This can be the parameter estimate for the current when testing for omitted variables. k_constraints : int or None Number of constraints that were used in the estimation of params restricted relative to the number of exog in the model. This must be provided if no exog_extra are given. If exog_extra is not None, then k_constraints is assumed to be zero if it is None. exog_extra : None or array_like Explanatory variables that are jointly tested for inclusion in the model, i.e. omitted variables. observed : bool If True, then the observed Hessian is used in calculating the covariance matrix of the score. If false then the expected information matrix is used. Returns ------- chi2_stat : float chisquare statistic for the score test p-value : float P-value of the score test based on the chisquare distribution. df : int Degrees of freedom used in the p-value calculation. This is equal to the number of constraints. Notes ----- not yet verified for case with scale not equal to 1. """ if exog_extra is None: if k_constraints is None: raise ValueError('if exog_extra is None, then k_constraints' 'needs to be given') score = self.score(params_constrained) hessian = self.hessian(params_constrained, observed=observed) else: # exog_extra = np.asarray(exog_extra) if k_constraints is None: k_constraints = 0 ex = np.column_stack((self.exog, exog_extra)) k_constraints += ex.shape[1] - self.exog.shape[1] score_factor = self.score_factor(params_constrained) score = (score_factor[:, None] * ex).sum(0) hessian_factor = self.hessian_factor(params_constrained, observed=observed) hessian = -np.dot(ex.T * hessian_factor, ex) from scipy import stats # TODO check sign, why minus? chi2stat = -score.dot(np.linalg.solve(hessian, score[:, None])) pval = stats.chi2.sf(chi2stat, k_constraints) # return a stats results instance instead? Contrast? return chi2stat, pval, k_constraints
score test for restrictions or for omitted variables The covariance matrix for the score is based on the Hessian, i.e. observed information matrix or optionally on the expected information matrix.. Parameters ---------- params_constrained : array_like estimated parameter of the restricted model. This can be the parameter estimate for the current when testing for omitted variables. k_constraints : int or None Number of constraints that were used in the estimation of params restricted relative to the number of exog in the model. This must be provided if no exog_extra are given. If exog_extra is not None, then k_constraints is assumed to be zero if it is None. exog_extra : None or array_like Explanatory variables that are jointly tested for inclusion in the model, i.e. omitted variables. observed : bool If True, then the observed Hessian is used in calculating the covariance matrix of the score. If false then the expected information matrix is used. Returns ------- chi2_stat : float chisquare statistic for the score test p-value : float P-value of the score test based on the chisquare distribution. df : int Degrees of freedom used in the p-value calculation. This is equal to the number of constraints. Notes ----- not yet verified for case with scale not equal to 1.
score_test
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def _update_history(self, tmp_result, mu, history): """ Helper method to update history during iterative fit. """ history['params'].append(tmp_result.params) history['deviance'].append(self.family.deviance(self.endog, mu, self.var_weights, self.freq_weights, self.scale)) return history
Helper method to update history during iterative fit.
_update_history
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def estimate_scale(self, mu): """ Estimate the dispersion/scale. Type of scale can be chose in the fit method. Parameters ---------- mu : ndarray mu is the mean response estimate Returns ------- Estimate of scale Notes ----- The default scale for Binomial, Poisson and Negative Binomial families is 1. The default for the other families is Pearson's Chi-Square estimate. See Also -------- statsmodels.genmod.generalized_linear_model.GLM.fit """ if not self.scaletype: if isinstance(self.family, (families.Binomial, families.Poisson, families.NegativeBinomial)): return 1. else: return self._estimate_x2_scale(mu) if isinstance(self.scaletype, float): return np.array(self.scaletype) if isinstance(self.scaletype, str): if self.scaletype.lower() == 'x2': return self._estimate_x2_scale(mu) elif self.scaletype.lower() == 'dev': return (self.family.deviance(self.endog, mu, self.var_weights, self.freq_weights, 1.) / (self.df_resid)) else: raise ValueError("Scale %s with type %s not understood" % (self.scaletype, type(self.scaletype))) else: raise ValueError("Scale %s with type %s not understood" % (self.scaletype, type(self.scaletype)))
Estimate the dispersion/scale. Type of scale can be chose in the fit method. Parameters ---------- mu : ndarray mu is the mean response estimate Returns ------- Estimate of scale Notes ----- The default scale for Binomial, Poisson and Negative Binomial families is 1. The default for the other families is Pearson's Chi-Square estimate. See Also -------- statsmodels.genmod.generalized_linear_model.GLM.fit
estimate_scale
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def estimate_tweedie_power(self, mu, method='brentq', low=1.01, high=5.): """ Tweedie specific function to estimate scale and the variance parameter. The variance parameter is also referred to as p, xi, or shape. Parameters ---------- mu : array_like Fitted mean response variable method : str, defaults to 'brentq' Scipy optimizer used to solve the Pearson equation. Only brentq currently supported. low : float, optional Low end of the bracketing interval [a,b] to be used in the search for the power. Defaults to 1.01. high : float, optional High end of the bracketing interval [a,b] to be used in the search for the power. Defaults to 5. Returns ------- power : float The estimated shape or power. """ if method == 'brentq': from scipy.optimize import brentq def psi_p(power, mu): scale = ((self.iweights * (self.endog - mu) ** 2 / (mu ** power)).sum() / self.df_resid) return (np.sum(self.iweights * ((self.endog - mu) ** 2 / (scale * (mu ** power)) - 1) * np.log(mu)) / self.freq_weights.sum()) power = brentq(psi_p, low, high, args=(mu)) else: raise NotImplementedError('Only brentq can currently be used') return power
Tweedie specific function to estimate scale and the variance parameter. The variance parameter is also referred to as p, xi, or shape. Parameters ---------- mu : array_like Fitted mean response variable method : str, defaults to 'brentq' Scipy optimizer used to solve the Pearson equation. Only brentq currently supported. low : float, optional Low end of the bracketing interval [a,b] to be used in the search for the power. Defaults to 1.01. high : float, optional High end of the bracketing interval [a,b] to be used in the search for the power. Defaults to 5. Returns ------- power : float The estimated shape or power.
estimate_tweedie_power
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def predict(self, params, exog=None, exposure=None, offset=None, which="mean", linear=None): """ Return predicted values for a design matrix Parameters ---------- params : array_like Parameters / coefficients of a GLM. exog : array_like, optional Design / exogenous data. Is exog is None, model exog is used. exposure : array_like, optional Exposure time values, only can be used with the log link function. See notes for details. offset : array_like, optional Offset values. See notes for details. which : 'mean', 'linear', 'var'(optional) Statitistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. inverse of the model's link function of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var_unscaled' variance of endog implied by the likelihood model. This does not include scale or var_weights. linear : bool The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. Returns ------- An array of fitted values Notes ----- Any `exposure` and `offset` provided here take precedence over the `exposure` and `offset` used in the model fit. If `exog` is passed as an argument here, then any `exposure` and `offset` values in the fit will be ignored. Exposure values must be strictly positive. """ if linear is not None: msg = 'linear keyword is deprecated, use which="linear"' warnings.warn(msg, FutureWarning) if linear is True: which = "linear" # Use fit offset if appropriate if offset is None and exog is None and hasattr(self, 'offset'): offset = self.offset elif offset is None: offset = 0. if exposure is not None and not isinstance(self.family.link, families.links.Log): raise ValueError("exposure can only be used with the log link " "function") # Use fit exposure if appropriate if exposure is None and exog is None and hasattr(self, 'exposure'): # Already logged exposure = self.exposure elif exposure is None: exposure = 0. else: exposure = np.log(np.asarray(exposure)) if exog is None: exog = self.exog linpred = np.dot(exog, params) + offset + exposure if which == "mean": return self.family.fitted(linpred) elif which == "linear": return linpred elif which == "var_unscaled": mean = self.family.fitted(linpred) var_ = self.family.variance(mean) return var_ else: raise ValueError(f'The which value "{which}" is not recognized')
Return predicted values for a design matrix Parameters ---------- params : array_like Parameters / coefficients of a GLM. exog : array_like, optional Design / exogenous data. Is exog is None, model exog is used. exposure : array_like, optional Exposure time values, only can be used with the log link function. See notes for details. offset : array_like, optional Offset values. See notes for details. which : 'mean', 'linear', 'var'(optional) Statitistic to predict. Default is 'mean'. - 'mean' returns the conditional expectation of endog E(y | x), i.e. inverse of the model's link function of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var_unscaled' variance of endog implied by the likelihood model. This does not include scale or var_weights. linear : bool The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. If True, returns the linear predicted values. If False or None, then the statistic specified by ``which`` will be returned. Returns ------- An array of fitted values Notes ----- Any `exposure` and `offset` provided here take precedence over the `exposure` and `offset` used in the model fit. If `exog` is passed as an argument here, then any `exposure` and `offset` values in the fit will be ignored. Exposure values must be strictly positive.
predict
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def get_distribution(self, params, scale=None, exog=None, exposure=None, offset=None, var_weights=1., n_trials=1.): """ Return a instance of the predictive distribution. Parameters ---------- params : array_like The model parameters. scale : scalar The scale parameter. exog : array_like The predictor variable matrix. offset : array_like or None Offset variable for predicted mean. exposure : array_like or None Log(exposure) will be added to the linear prediction. var_weights : array_like 1d array of variance (analytic) weights. The default is None. n_trials : int Number of trials for the binomial distribution. The default is 1 which corresponds to a Bernoulli random variable. Returns ------- gen Instance of a scipy frozen distribution based on estimated parameters. Use the ``rvs`` method to generate random values. Notes ----- Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced. """ scale = float_like(scale, "scale", optional=True) # use scale=1, independent of QMLE scale for discrete if isinstance(self.family, (families.Binomial, families.Poisson, families.NegativeBinomial)): scale = 1. mu = self.predict(params, exog, exposure, offset, which="mean") kwds = {} if (np.any(n_trials != 1) and isinstance(self.family, families.Binomial)): kwds["n_trials"] = n_trials distr = self.family.get_distribution(mu, scale, var_weights=var_weights, **kwds) return distr
Return a instance of the predictive distribution. Parameters ---------- params : array_like The model parameters. scale : scalar The scale parameter. exog : array_like The predictor variable matrix. offset : array_like or None Offset variable for predicted mean. exposure : array_like or None Log(exposure) will be added to the linear prediction. var_weights : array_like 1d array of variance (analytic) weights. The default is None. n_trials : int Number of trials for the binomial distribution. The default is 1 which corresponds to a Bernoulli random variable. Returns ------- gen Instance of a scipy frozen distribution based on estimated parameters. Use the ``rvs`` method to generate random values. Notes ----- Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced.
get_distribution
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def fit(self, start_params=None, maxiter=100, method='IRLS', tol=1e-8, scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None, full_output=True, disp=False, max_start_irls=3, **kwargs): """ Fits a generalized linear model for a given family. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is family-specific and is given by the ``family.starting_mu(endog)``. If start_params is given then the initial mean will be calculated as ``np.dot(exog, start_params)``. maxiter : int, optional Default is 100. method : str Default is 'IRLS' for iteratively reweighted least squares. Otherwise gradient optimization is used. tol : float Convergence tolerance. Default is 1e-8. scale : str or float, optional `scale` can be 'X2', 'dev', or a float The default value is None, which uses `X2` for Gamma, Gaussian, and Inverse Gaussian. `X2` is Pearson's chi-square divided by `df_resid`. The default is 1 for the Binomial and Poisson families. `dev` is the deviance divided by df_resid cov_type : str The type of parameter estimate covariance matrix to compute. cov_kwds : dict-like Extra arguments for calculating the covariance of the parameter estimates. use_t : bool If True, the Student t-distribution is used for inference. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. Not used if methhod is IRLS. disp : bool, optional Set to True to print convergence messages. Not used if method is IRLS. max_start_irls : int The number of IRLS iterations used to obtain starting values for gradient optimization. Only relevant if `method` is set to something other than 'IRLS'. atol : float, optional (available with IRLS fits) The absolute tolerance criterion that must be satisfied. Defaults to ``tol``. Convergence is attained when: :math:`rtol * prior + atol > abs(current - prior)` rtol : float, optional (available with IRLS fits) The relative tolerance criterion that must be satisfied. Defaults to 0 which means ``rtol`` is not used. Convergence is attained when: :math:`rtol * prior + atol > abs(current - prior)` tol_criterion : str, optional (available with IRLS fits) Defaults to ``'deviance'``. Can optionally be ``'params'``. wls_method : str, optional (available with IRLS fits) options are 'lstsq', 'pinv' and 'qr' specifies which linear algebra function to use for the irls optimization. Default is `lstsq` which uses the same underlying svd based approach as 'pinv', but is faster during iterations. 'lstsq' and 'pinv' regularize the estimate in singular and near-singular cases by truncating small singular values based on `rcond` of the respective numpy.linalg function. 'qr' is only valid for cases that are not singular nor near-singular. optim_hessian : {'eim', 'oim'}, optional (available with scipy optimizer fits) When 'oim'--the default--the observed Hessian is used in fitting. 'eim' is the expected Hessian. This may provide more stable fits, but adds assumption that the Hessian is correctly specified. Notes ----- If method is 'IRLS', then an additional keyword 'attach_wls' is available. This is currently for internal use only and might change in future versions. If attach_wls' is true, then the final WLS instance of the IRLS iteration is attached to the results instance as `results_wls` attribute. """ if isinstance(scale, str): scale = scale.lower() if scale not in ("x2", "dev"): raise ValueError( "scale must be either X2 or dev when a string." ) elif scale is not None: # GH-6627 try: scale = float(scale) except Exception as exc: raise type(exc)( "scale must be a float if given and no a string." ) self.scaletype = scale if method.lower() == "irls": if cov_type.lower() == 'eim': cov_type = 'nonrobust' return self._fit_irls(start_params=start_params, maxiter=maxiter, tol=tol, scale=scale, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t, **kwargs) else: self._optim_hessian = kwargs.get('optim_hessian') if self._optim_hessian is not None: del kwargs['optim_hessian'] self._tmp_like_exog = np.empty_like(self.exog, dtype=float) fit_ = self._fit_gradient(start_params=start_params, method=method, maxiter=maxiter, tol=tol, scale=scale, full_output=full_output, disp=disp, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t, max_start_irls=max_start_irls, **kwargs) del self._optim_hessian del self._tmp_like_exog return fit_
Fits a generalized linear model for a given family. Parameters ---------- start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is family-specific and is given by the ``family.starting_mu(endog)``. If start_params is given then the initial mean will be calculated as ``np.dot(exog, start_params)``. maxiter : int, optional Default is 100. method : str Default is 'IRLS' for iteratively reweighted least squares. Otherwise gradient optimization is used. tol : float Convergence tolerance. Default is 1e-8. scale : str or float, optional `scale` can be 'X2', 'dev', or a float The default value is None, which uses `X2` for Gamma, Gaussian, and Inverse Gaussian. `X2` is Pearson's chi-square divided by `df_resid`. The default is 1 for the Binomial and Poisson families. `dev` is the deviance divided by df_resid cov_type : str The type of parameter estimate covariance matrix to compute. cov_kwds : dict-like Extra arguments for calculating the covariance of the parameter estimates. use_t : bool If True, the Student t-distribution is used for inference. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. Not used if methhod is IRLS. disp : bool, optional Set to True to print convergence messages. Not used if method is IRLS. max_start_irls : int The number of IRLS iterations used to obtain starting values for gradient optimization. Only relevant if `method` is set to something other than 'IRLS'. atol : float, optional (available with IRLS fits) The absolute tolerance criterion that must be satisfied. Defaults to ``tol``. Convergence is attained when: :math:`rtol * prior + atol > abs(current - prior)` rtol : float, optional (available with IRLS fits) The relative tolerance criterion that must be satisfied. Defaults to 0 which means ``rtol`` is not used. Convergence is attained when: :math:`rtol * prior + atol > abs(current - prior)` tol_criterion : str, optional (available with IRLS fits) Defaults to ``'deviance'``. Can optionally be ``'params'``. wls_method : str, optional (available with IRLS fits) options are 'lstsq', 'pinv' and 'qr' specifies which linear algebra function to use for the irls optimization. Default is `lstsq` which uses the same underlying svd based approach as 'pinv', but is faster during iterations. 'lstsq' and 'pinv' regularize the estimate in singular and near-singular cases by truncating small singular values based on `rcond` of the respective numpy.linalg function. 'qr' is only valid for cases that are not singular nor near-singular. optim_hessian : {'eim', 'oim'}, optional (available with scipy optimizer fits) When 'oim'--the default--the observed Hessian is used in fitting. 'eim' is the expected Hessian. This may provide more stable fits, but adds assumption that the Hessian is correctly specified. Notes ----- If method is 'IRLS', then an additional keyword 'attach_wls' is available. This is currently for internal use only and might change in future versions. If attach_wls' is true, then the final WLS instance of the IRLS iteration is attached to the results instance as `results_wls` attribute.
fit
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def _fit_gradient(self, start_params=None, method="newton", maxiter=100, tol=1e-8, full_output=True, disp=True, scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None, max_start_irls=3, **kwargs): """ Fits a generalized linear model for a given family iteratively using the scipy gradient optimizers. """ # fix scale during optimization, see #4616 scaletype = self.scaletype self.scaletype = 1. if (max_start_irls > 0) and (start_params is None): irls_rslt = self._fit_irls(start_params=start_params, maxiter=max_start_irls, tol=tol, scale=1., cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs) start_params = irls_rslt.params del irls_rslt rslt = super().fit(start_params=start_params, maxiter=maxiter, full_output=full_output, method=method, disp=disp, **kwargs) # reset scaletype to original self.scaletype = scaletype mu = self.predict(rslt.params) scale = self.estimate_scale(mu) if rslt.normalized_cov_params is None: cov_p = None else: cov_p = rslt.normalized_cov_params / scale if cov_type.lower() == 'eim': oim = False cov_type = 'nonrobust' else: oim = True try: cov_p = np.linalg.inv(-self.hessian(rslt.params, observed=oim)) / scale except LinAlgError: warnings.warn('Inverting hessian failed, no bse or cov_params ' 'available', HessianInversionWarning) cov_p = None results_class = getattr(self, '_results_class', GLMResults) results_class_wrapper = getattr(self, '_results_class_wrapper', GLMResultsWrapper) glm_results = results_class(self, rslt.params, cov_p, scale, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t) # TODO: iteration count is not always available history = {'iteration': 0} if full_output: glm_results.mle_retvals = rslt.mle_retvals if 'iterations' in rslt.mle_retvals: history['iteration'] = rslt.mle_retvals['iterations'] glm_results.method = method glm_results.fit_history = history return results_class_wrapper(glm_results)
Fits a generalized linear model for a given family iteratively using the scipy gradient optimizers.
_fit_gradient
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def _fit_irls(self, start_params=None, maxiter=100, tol=1e-8, scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): """ Fits a generalized linear model for a given family using iteratively reweighted least squares (IRLS). """ attach_wls = kwargs.pop('attach_wls', False) atol = kwargs.get('atol') rtol = kwargs.get('rtol', 0.) tol_criterion = kwargs.get('tol_criterion', 'deviance') wls_method = kwargs.get('wls_method', 'lstsq') atol = tol if atol is None else atol endog = self.endog wlsexog = self.exog if start_params is None: start_params = np.zeros(self.exog.shape[1]) mu = self.family.starting_mu(self.endog) lin_pred = self.family.predict(mu) else: lin_pred = np.dot(wlsexog, start_params) + self._offset_exposure mu = self.family.fitted(lin_pred) self.scale = self.estimate_scale(mu) dev = self.family.deviance(self.endog, mu, self.var_weights, self.freq_weights, self.scale) if np.isnan(dev): raise ValueError("The first guess on the deviance function " "returned a nan. This could be a boundary " " problem and should be reported.") # first guess on the deviance is assumed to be scaled by 1. # params are none to start, so they line up with the deviance history = dict(params=[np.inf, start_params], deviance=[np.inf, dev]) converged = False criterion = history[tol_criterion] # This special case is used to get the likelihood for a specific # params vector. if maxiter == 0: mu = self.family.fitted(lin_pred) self.scale = self.estimate_scale(mu) wls_results = lm.RegressionResults(self, start_params, None) iteration = 0 for iteration in range(maxiter): self.weights = (self.iweights * self.n_trials * self.family.weights(mu)) wlsendog = (lin_pred + self.family.link.deriv(mu) * (self.endog-mu) - self._offset_exposure) wls_mod = reg_tools._MinimalWLS(wlsendog, wlsexog, self.weights, check_endog=True, check_weights=True) wls_results = wls_mod.fit(method=wls_method) lin_pred = np.dot(self.exog, wls_results.params) lin_pred += self._offset_exposure mu = self.family.fitted(lin_pred) history = self._update_history(wls_results, mu, history) self.scale = self.estimate_scale(mu) if endog.squeeze().ndim == 1 and np.allclose(mu - endog, 0): msg = ("Perfect separation or prediction detected, " "parameter may not be identified") warnings.warn(msg, category=PerfectSeparationWarning) converged = _check_convergence(criterion, iteration + 1, atol, rtol) if converged: break self.mu = mu if maxiter > 0: # Only if iterative used wls_method2 = 'pinv' if wls_method == 'lstsq' else wls_method wls_model = lm.WLS(wlsendog, wlsexog, self.weights) wls_results = wls_model.fit(method=wls_method2) glm_results = GLMResults(self, wls_results.params, wls_results.normalized_cov_params, self.scale, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t) glm_results.method = "IRLS" glm_results.mle_settings = {} glm_results.mle_settings['wls_method'] = wls_method glm_results.mle_settings['optimizer'] = glm_results.method if (maxiter > 0) and (attach_wls is True): glm_results.results_wls = wls_results history['iteration'] = iteration + 1 glm_results.fit_history = history glm_results.converged = converged return GLMResultsWrapper(glm_results)
Fits a generalized linear model for a given family using iteratively reweighted least squares (IRLS).
_fit_irls
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def fit_constrained(self, constraints, start_params=None, **fit_kwds): """fit the model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- constraints : formula expression or tuple If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- results : Results instance """ from statsmodels.base._constraints import ( LinearConstraints, fit_constrained, ) from statsmodels.formula._manager import FormulaManager # same pattern as in base.LikelihoodModel.t_test lc = FormulaManager().get_linear_constraints(constraints, self.exog_names) R, q = lc.constraint_matrix, lc.constraint_values # TODO: add start_params option, need access to tranformation # fit_constrained needs to do the transformation params, cov, res_constr = fit_constrained(self, R, q, start_params=start_params, fit_kwds=fit_kwds) # create dummy results Instance, TODO: wire up properly res = self.fit(start_params=params, maxiter=0) # we get a wrapper back res._results.params = params res._results.cov_params_default = cov cov_type = fit_kwds.get('cov_type', 'nonrobust') if cov_type != 'nonrobust': res._results.normalized_cov_params = cov / res_constr.scale else: res._results.normalized_cov_params = None res._results.scale = res_constr.scale k_constr = len(q) res._results.df_resid += k_constr res._results.df_model -= k_constr res._results.constraints = LinearConstraints.from_formula_parser(lc) res._results.k_constr = k_constr res._results.results_constrained = res_constr return res
fit the model subject to linear equality constraints The constraints are of the form `R params = q` where R is the constraint_matrix and q is the vector of constraint_values. The estimation creates a new model with transformed design matrix, exog, and converts the results back to the original parameterization. Parameters ---------- constraints : formula expression or tuple If it is a tuple, then the constraint needs to be given by two arrays (constraint_matrix, constraint_value), i.e. (R, q). Otherwise, the constraints can be given as strings or list of strings. see t_test for details start_params : None or array_like starting values for the optimization. `start_params` needs to be given in the original parameter space and are internally transformed. **fit_kwds : keyword arguments fit_kwds are used in the optimization of the transformed model. Returns ------- results : Results instance
fit_constrained
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def offset_name(self): """ Name of the offset variable if available. If offset is not a pd.Series, defaults to 'offset'. """ return self._offset_name
Name of the offset variable if available. If offset is not a pd.Series, defaults to 'offset'.
offset_name
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def exposure_name(self): """ Name of the exposure variable if available. If exposure is not a pd.Series, defaults to 'exposure'. """ return self._exposure_name
Name of the exposure variable if available. If exposure is not a pd.Series, defaults to 'exposure'.
exposure_name
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def freq_weights_name(self): """ Name of the freq weights variable if available. If freq_weights is not a pd.Series, defaults to 'freq_weights'. """ return self._freq_weights_name
Name of the freq weights variable if available. If freq_weights is not a pd.Series, defaults to 'freq_weights'.
freq_weights_name
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def var_weights_name(self): """ Name of var weights variable if available. If var_weights is not a pd.Series, defaults to 'var_weights'. """ return self._var_weights_name
Name of var weights variable if available. If var_weights is not a pd.Series, defaults to 'var_weights'.
var_weights_name
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_response(self): """ Response residuals. The response residuals are defined as `endog` - `fittedvalues` """ return self._n_trials * (self._endog-self.mu)
Response residuals. The response residuals are defined as `endog` - `fittedvalues`
resid_response
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_pearson(self): """ Pearson residuals. The Pearson residuals are defined as (`endog` - `mu`)/sqrt(VAR(`mu`)) where VAR is the distribution specific variance function. See statsmodels.families.family and statsmodels.families.varfuncs for more information. """ return (np.sqrt(self._n_trials) * (self._endog-self.mu) * np.sqrt(self._var_weights) / np.sqrt(self.family.variance(self.mu)))
Pearson residuals. The Pearson residuals are defined as (`endog` - `mu`)/sqrt(VAR(`mu`)) where VAR is the distribution specific variance function. See statsmodels.families.family and statsmodels.families.varfuncs for more information.
resid_pearson
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_working(self): """ Working residuals. The working residuals are defined as `resid_response`/link'(`mu`). See statsmodels.family.links for the derivatives of the link functions. They are defined analytically. """ # Isn't self.resid_response is already adjusted by _n_trials? val = (self.resid_response * self.family.link.deriv(self.mu)) val *= self._n_trials return val
Working residuals. The working residuals are defined as `resid_response`/link'(`mu`). See statsmodels.family.links for the derivatives of the link functions. They are defined analytically.
resid_working
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_anscombe(self): """ Anscombe residuals. See statsmodels.families.family for distribution- specific Anscombe residuals. Currently, the unscaled residuals are provided. In a future version, the scaled residuals will be provided. """ return self.resid_anscombe_scaled
Anscombe residuals. See statsmodels.families.family for distribution- specific Anscombe residuals. Currently, the unscaled residuals are provided. In a future version, the scaled residuals will be provided.
resid_anscombe
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_anscombe_scaled(self): """ Scaled Anscombe residuals. See statsmodels.families.family for distribution-specific Anscombe residuals. """ return self.family.resid_anscombe(self._endog, self.fittedvalues, var_weights=self._var_weights, scale=self.scale)
Scaled Anscombe residuals. See statsmodels.families.family for distribution-specific Anscombe residuals.
resid_anscombe_scaled
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_anscombe_unscaled(self): """ Unscaled Anscombe residuals. See statsmodels.families.family for distribution-specific Anscombe residuals. """ return self.family.resid_anscombe(self._endog, self.fittedvalues, var_weights=self._var_weights, scale=1.)
Unscaled Anscombe residuals. See statsmodels.families.family for distribution-specific Anscombe residuals.
resid_anscombe_unscaled
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def resid_deviance(self): """ Deviance residuals. See statsmodels.families.family for distribution- specific deviance residuals. """ dev = self.family.resid_dev(self._endog, self.fittedvalues, var_weights=self._var_weights, scale=1.) return dev
Deviance residuals. See statsmodels.families.family for distribution- specific deviance residuals.
resid_deviance
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def pearson_chi2(self): """ Pearson's Chi-Squared statistic is defined as the sum of the squares of the Pearson residuals. """ chisq = (self._endog - self.mu)**2 / self.family.variance(self.mu) chisq *= self._iweights * self._n_trials chisqsum = np.sum(chisq) return chisqsum
Pearson's Chi-Squared statistic is defined as the sum of the squares of the Pearson residuals.
pearson_chi2
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def fittedvalues(self): """ The estimated mean response. This is the value of the inverse of the link function at lin_pred, where lin_pred is the linear predicted value obtained by multiplying the design matrix by the coefficient vector. """ return self.mu
The estimated mean response. This is the value of the inverse of the link function at lin_pred, where lin_pred is the linear predicted value obtained by multiplying the design matrix by the coefficient vector.
fittedvalues
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def mu(self): """ See GLM docstring. """ return self.model.predict(self.params)
See GLM docstring.
mu
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def null(self): """ Fitted values of the null model """ endog = self._endog model = self.model exog = np.ones((len(endog), 1)) kwargs = model._get_init_kwds().copy() kwargs.pop('family') for key in getattr(model, '_null_drop_keys', []): del kwargs[key] start_params = np.atleast_1d(self.family.link(endog.mean())) oe = self.model._offset_exposure if not (np.size(oe) == 1 and oe == 0): with warnings.catch_warnings(): warnings.simplefilter("ignore", DomainWarning) mod = GLM(endog, exog, family=self.family, **kwargs) fitted = mod.fit(start_params=start_params).fittedvalues else: # correct if fitted is identical across observations wls_model = lm.WLS(endog, exog, weights=self._iweights * self._n_trials) fitted = wls_model.fit().fittedvalues return fitted
Fitted values of the null model
null
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def deviance(self): """ See statsmodels.families.family for the distribution-specific deviance functions. """ return self.family.deviance(self._endog, self.mu, self._var_weights, self._freq_weights)
See statsmodels.families.family for the distribution-specific deviance functions.
deviance
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def null_deviance(self): """The value of the deviance function for the model fit with a constant as the only regressor.""" return self.family.deviance(self._endog, self.null, self._var_weights, self._freq_weights)
The value of the deviance function for the model fit with a constant as the only regressor.
null_deviance
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def llnull(self): """ Log-likelihood of the model fit with a constant as the only regressor """ return self.family.loglike(self._endog, self.null, var_weights=self._var_weights, freq_weights=self._freq_weights, scale=self.scale)
Log-likelihood of the model fit with a constant as the only regressor
llnull
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def llf_scaled(self, scale=None): """ Return the log-likelihood at the given scale, using the estimated scale if the provided scale is None. In the Gaussian case with linear link, the concentrated log-likelihood is returned. """ _modelfamily = self.family if scale is None: if (isinstance(self.family, families.Gaussian) and isinstance(self.family.link, families.links.Power) and (self.family.link.power == 1.)): # Scale for the concentrated Gaussian log likelihood # (profile log likelihood with the scale parameter # profiled out). scale = (np.power(self._endog - self.mu, 2) * self._iweights).sum() scale /= self.model.wnobs else: scale = self.scale val = _modelfamily.loglike(self._endog, self.mu, var_weights=self._var_weights, freq_weights=self._freq_weights, scale=scale) return val
Return the log-likelihood at the given scale, using the estimated scale if the provided scale is None. In the Gaussian case with linear link, the concentrated log-likelihood is returned.
llf_scaled
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def llf(self): """ Value of the loglikelihood function evalued at params. See statsmodels.families.family for distribution-specific loglikelihoods. The result uses the concentrated log-likelihood if the family is Gaussian and the link is linear, otherwise it uses the non-concentrated log-likelihood evaluated at the estimated scale. """ return self.llf_scaled()
Value of the loglikelihood function evalued at params. See statsmodels.families.family for distribution-specific loglikelihoods. The result uses the concentrated log-likelihood if the family is Gaussian and the link is linear, otherwise it uses the non-concentrated log-likelihood evaluated at the estimated scale.
llf
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def pseudo_rsquared(self, kind="cs"): """ Pseudo R-squared Cox-Snell likelihood ratio pseudo R-squared is valid for both discrete and continuous data. McFadden's pseudo R-squared is only valid for discrete data. Cox & Snell's pseudo-R-squared: 1 - exp((llnull - llf)*(2/nobs)) McFadden's pseudo-R-squared: 1 - (llf / llnull) Parameters ---------- kind : P"cs", "mcf"} Type of pseudo R-square to return Returns ------- float Pseudo R-squared """ kind = kind.lower() if kind.startswith("mcf"): prsq = 1 - self.llf / self.llnull elif kind.startswith("cox") or kind in ["cs", "lr"]: prsq = 1 - np.exp((self.llnull - self.llf) * (2 / self.nobs)) else: raise ValueError("only McFadden and Cox-Snell are available") return prsq
Pseudo R-squared Cox-Snell likelihood ratio pseudo R-squared is valid for both discrete and continuous data. McFadden's pseudo R-squared is only valid for discrete data. Cox & Snell's pseudo-R-squared: 1 - exp((llnull - llf)*(2/nobs)) McFadden's pseudo-R-squared: 1 - (llf / llnull) Parameters ---------- kind : P"cs", "mcf"} Type of pseudo R-square to return Returns ------- float Pseudo R-squared
pseudo_rsquared
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def aic(self): """ Akaike Information Criterion -2 * `llf` + 2 * (`df_model` + 1) """ return self.info_criteria("aic")
Akaike Information Criterion -2 * `llf` + 2 * (`df_model` + 1)
aic
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def bic(self): """ Bayes Information Criterion `deviance` - `df_resid` * log(`nobs`) .. warning:: The current definition is based on the deviance rather than the log-likelihood. This is not consistent with the AIC definition, and after 0.13 both will make use of the log-likelihood definition. Notes ----- The log-likelihood version is defined -2 * `llf` + (`df_model` + 1)*log(n) """ if _use_bic_helper.use_bic_llf not in (True, False): warnings.warn( "The bic value is computed using the deviance formula. After " "0.13 this will change to the log-likelihood based formula. " "This change has no impact on the relative rank of models " "compared using BIC. You can directly access the " "log-likelihood version using the `bic_llf` attribute. You " "can suppress this message by calling " "statsmodels.genmod.generalized_linear_model.SET_USE_BIC_LLF " "with True to get the LLF-based version now or False to retain" "the deviance version.", FutureWarning ) if bool(_use_bic_helper.use_bic_llf): return self.bic_llf return self.bic_deviance
Bayes Information Criterion `deviance` - `df_resid` * log(`nobs`) .. warning:: The current definition is based on the deviance rather than the log-likelihood. This is not consistent with the AIC definition, and after 0.13 both will make use of the log-likelihood definition. Notes ----- The log-likelihood version is defined -2 * `llf` + (`df_model` + 1)*log(n)
bic
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def bic_deviance(self): """ Bayes Information Criterion Based on the deviance, `deviance` - `df_resid` * log(`nobs`) """ return (self.deviance - (self.model.wnobs - self.df_model - 1) * np.log(self.model.wnobs))
Bayes Information Criterion Based on the deviance, `deviance` - `df_resid` * log(`nobs`)
bic_deviance
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def bic_llf(self): """ Bayes Information Criterion Based on the log-likelihood, -2 * `llf` + log(n) * (`df_model` + 1) """ return self.info_criteria("bic")
Bayes Information Criterion Based on the log-likelihood, -2 * `llf` + log(n) * (`df_model` + 1)
bic_llf
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def info_criteria(self, crit, scale=None, dk_params=0): """Return an information criterion for the model. Parameters ---------- crit : string One of 'aic', 'bic', or 'qaic'. scale : float The scale parameter estimated using the parent model, used only for qaic. dk_params : int or float Correction to the number of parameters used in the information criterion. By default, only mean parameters are included, the scale parameter is not included in the parameter count. Use ``dk_params=1`` to include scale in the parameter count. Returns ------- Value of information criterion. Notes ----- The quasi-Akaike Information criterion (qaic) is -2 * `llf`/`scale` + 2 * (`df_model` + 1). It may not give meaningful results except for Poisson and related models. The QAIC (ic_type='qaic') must be evaluated with a provided scale parameter. Two QAIC values are only comparable if they are calculated using the same scale parameter. The scale parameter should be estimated using the largest model among all models being compared. References ---------- Burnham KP, Anderson KR (2002). Model Selection and Multimodel Inference; Springer New York. """ crit = crit.lower() k_params = self.df_model + 1 + dk_params if crit == "aic": return -2 * self.llf + 2 * k_params elif crit == "bic": nobs = self.df_model + self.df_resid + 1 bic = -2*self.llf + k_params*np.log(nobs) return bic elif crit == "qaic": f = self.model.family fl = (families.Poisson, families.NegativeBinomial, families.Binomial) if not isinstance(f, fl): msg = "QAIC is only valid for Binomial, Poisson and " msg += "Negative Binomial families." warnings.warn(msg) llf = self.llf_scaled(scale=1) return -2 * llf/scale + 2 * k_params
Return an information criterion for the model. Parameters ---------- crit : string One of 'aic', 'bic', or 'qaic'. scale : float The scale parameter estimated using the parent model, used only for qaic. dk_params : int or float Correction to the number of parameters used in the information criterion. By default, only mean parameters are included, the scale parameter is not included in the parameter count. Use ``dk_params=1`` to include scale in the parameter count. Returns ------- Value of information criterion. Notes ----- The quasi-Akaike Information criterion (qaic) is -2 * `llf`/`scale` + 2 * (`df_model` + 1). It may not give meaningful results except for Poisson and related models. The QAIC (ic_type='qaic') must be evaluated with a provided scale parameter. Two QAIC values are only comparable if they are calculated using the same scale parameter. The scale parameter should be estimated using the largest model among all models being compared. References ---------- Burnham KP, Anderson KR (2002). Model Selection and Multimodel Inference; Springer New York.
info_criteria
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def get_prediction(self, exog=None, exposure=None, offset=None, transform=True, which=None, linear=None, average=False, agg_weights=None, row_labels=None): """ Compute prediction results for GLM compatible models. Options and return class depend on whether "which" is None or not. Parameters ---------- exog : array_like, optional The values for which you want to predict. exposure : array_like, optional Exposure time values, only can be used with the log link function. offset : array_like, optional Offset values. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. which : 'mean', 'linear', 'var'(optional) Statitistic to predict. Default is 'mean'. If which is None, then the deprecated keyword "linear" applies. If which is not None, then a generic Prediction results class will be returned. Some options are only available if which is not None. See notes. - 'mean' returns the conditional expectation of endog E(y | x), i.e. inverse of the model's link function of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var_unscaled' variance of endog implied by the likelihood model. This does not include scale or var_weights. linear : bool The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. If which is None, then the linear keyword is used, otherwise it will be ignored. If True and which is None, the linear predicted values are returned. If False or None, then the statistic specified by ``which`` will be returned. average : bool Keyword is only used if ``which`` is not None. If average is True, then the mean prediction is computed, that is, predictions are computed for individual exog and then the average over observation is used. If average is False, then the results are the predictions for all observations, i.e. same length as ``exog``. agg_weights : ndarray, optional Keyword is only used if ``which`` is not None. Aggregation weights, only used if average is True. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. Returns ------- prediction_results : instance of a PredictionResults class. The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. The Results class of the return depends on the value of ``which``. See Also -------- GLM.predict GLMResults.predict Notes ----- Changes in statsmodels 0.14: The ``which`` keyword has been added. If ``which`` is None, then the behavior is the same as in previous versions, and returns the mean and linear prediction results. If the ``which`` keyword is not None, then a generic prediction results class is returned and is not backwards compatible with the old prediction results class, e.g. column names of summary_frame differs. There are more choices for the returned predicted statistic using ``which``. More choices will be added in the next release. Two additional keyword, average and agg_weights options are now also available if ``which`` is not None. In a future version ``which`` will become not None and the backwards compatible prediction results class will be removed. """ import statsmodels.regression._prediction as linpred pred_kwds = {'exposure': exposure, 'offset': offset, 'which': 'linear'} if which is None: # two calls to a get_prediction duplicates exog generation if patsy res_linpred = linpred.get_prediction(self, exog=exog, transform=transform, row_labels=row_labels, pred_kwds=pred_kwds) pred_kwds['which'] = 'mean' res = pred.get_prediction_glm(self, exog=exog, transform=transform, row_labels=row_labels, linpred=res_linpred, link=self.model.family.link, pred_kwds=pred_kwds) else: # new generic version, if 'which' is specified pred_kwds = {'exposure': exposure, 'offset': offset} # not yet, only applies to count families # y_values is explicit so we can add it to the docstring # if y_values is not None: # pred_kwds["y_values"] = y_values res = pred.get_prediction( self, exog=exog, which=which, transform=transform, row_labels=row_labels, average=average, agg_weights=agg_weights, pred_kwds=pred_kwds ) return res
Compute prediction results for GLM compatible models. Options and return class depend on whether "which" is None or not. Parameters ---------- exog : array_like, optional The values for which you want to predict. exposure : array_like, optional Exposure time values, only can be used with the log link function. offset : array_like, optional Offset values. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. which : 'mean', 'linear', 'var'(optional) Statitistic to predict. Default is 'mean'. If which is None, then the deprecated keyword "linear" applies. If which is not None, then a generic Prediction results class will be returned. Some options are only available if which is not None. See notes. - 'mean' returns the conditional expectation of endog E(y | x), i.e. inverse of the model's link function of linear predictor. - 'linear' returns the linear predictor of the mean function. - 'var_unscaled' variance of endog implied by the likelihood model. This does not include scale or var_weights. linear : bool The ``linear` keyword is deprecated and will be removed, use ``which`` keyword instead. If which is None, then the linear keyword is used, otherwise it will be ignored. If True and which is None, the linear predicted values are returned. If False or None, then the statistic specified by ``which`` will be returned. average : bool Keyword is only used if ``which`` is not None. If average is True, then the mean prediction is computed, that is, predictions are computed for individual exog and then the average over observation is used. If average is False, then the results are the predictions for all observations, i.e. same length as ``exog``. agg_weights : ndarray, optional Keyword is only used if ``which`` is not None. Aggregation weights, only used if average is True. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. Returns ------- prediction_results : instance of a PredictionResults class. The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. The Results class of the return depends on the value of ``which``. See Also -------- GLM.predict GLMResults.predict Notes ----- Changes in statsmodels 0.14: The ``which`` keyword has been added. If ``which`` is None, then the behavior is the same as in previous versions, and returns the mean and linear prediction results. If the ``which`` keyword is not None, then a generic prediction results class is returned and is not backwards compatible with the old prediction results class, e.g. column names of summary_frame differs. There are more choices for the returned predicted statistic using ``which``. More choices will be added in the next release. Two additional keyword, average and agg_weights options are now also available if ``which`` is not None. In a future version ``which`` will become not None and the backwards compatible prediction results class will be removed.
get_prediction
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def get_hat_matrix_diag(self, observed=True): """ Compute the diagonal of the hat matrix Parameters ---------- observed : bool If true, then observed hessian is used in the hat matrix computation. If false, then the expected hessian is used. In the case of a canonical link function both are the same. Returns ------- hat_matrix_diag : ndarray The diagonal of the hat matrix computed from the observed or expected hessian. """ weights = self.model.hessian_factor(self.params, observed=observed) wexog = np.sqrt(weights)[:, None] * self.model.exog hd = (wexog * np.linalg.pinv(wexog).T).sum(1) return hd
Compute the diagonal of the hat matrix Parameters ---------- observed : bool If true, then observed hessian is used in the hat matrix computation. If false, then the expected hessian is used. In the case of a canonical link function both are the same. Returns ------- hat_matrix_diag : ndarray The diagonal of the hat matrix computed from the observed or expected hessian.
get_hat_matrix_diag
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def get_influence(self, observed=True): """ Get an instance of GLMInfluence with influence and outlier measures Parameters ---------- observed : bool If true, then observed hessian is used in the hat matrix computation. If false, then the expected hessian is used. In the case of a canonical link function both are the same. Returns ------- infl : GLMInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.GLMInfluence """ from statsmodels.stats.outliers_influence import GLMInfluence weights = self.model.hessian_factor(self.params, observed=observed) weights_sqrt = np.sqrt(weights) wexog = weights_sqrt[:, None] * self.model.exog wendog = weights_sqrt * self.model.endog # using get_hat_matrix_diag has duplicated computation hat_matrix_diag = self.get_hat_matrix_diag(observed=observed) infl = GLMInfluence(self, endog=wendog, exog=wexog, resid=self.resid_pearson / np.sqrt(self.scale), hat_matrix_diag=hat_matrix_diag) return infl
Get an instance of GLMInfluence with influence and outlier measures Parameters ---------- observed : bool If true, then observed hessian is used in the hat matrix computation. If false, then the expected hessian is used. In the case of a canonical link function both are the same. Returns ------- infl : GLMInfluence instance The instance has methods to calculate the main influence and outlier measures as attributes. See Also -------- statsmodels.stats.outliers_influence.GLMInfluence
get_influence
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def get_distribution(self, exog=None, exposure=None, offset=None, var_weights=1., n_trials=1.): """ Return a instance of the predictive distribution. Parameters ---------- scale : scalar The scale parameter. exog : array_like The predictor variable matrix. offset : array_like or None Offset variable for predicted mean. exposure : array_like or None Log(exposure) will be added to the linear prediction. var_weights : array_like 1d array of variance (analytic) weights. The default is None. n_trials : int Number of trials for the binomial distribution. The default is 1 which corresponds to a Bernoulli random variable. Returns ------- gen Instance of a scipy frozen distribution based on estimated parameters. Use the ``rvs`` method to generate random values. Notes ----- Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced. """ # Note this is mostly a copy of GLM.get_prediction # calling here results.predict avoids the exog check and trasnform if isinstance(self.model.family, (families.Binomial, families.Poisson, families.NegativeBinomial)): # use scale=1, independent of QMLE scale for discrete scale = 1. if self.scale != 1.: msg = "using scale=1, no exess dispersion in distribution" warnings.warn(msg, UserWarning) else: scale = self.scale mu = self.predict(exog, exposure, offset, which="mean") kwds = {} if (np.any(n_trials != 1) and isinstance(self.model.family, families.Binomial)): kwds["n_trials"] = n_trials distr = self.model.family.get_distribution( mu, scale, var_weights=var_weights, **kwds) return distr
Return a instance of the predictive distribution. Parameters ---------- scale : scalar The scale parameter. exog : array_like The predictor variable matrix. offset : array_like or None Offset variable for predicted mean. exposure : array_like or None Log(exposure) will be added to the linear prediction. var_weights : array_like 1d array of variance (analytic) weights. The default is None. n_trials : int Number of trials for the binomial distribution. The default is 1 which corresponds to a Bernoulli random variable. Returns ------- gen Instance of a scipy frozen distribution based on estimated parameters. Use the ``rvs`` method to generate random values. Notes ----- Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced.
get_distribution
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Warning: offset, exposure and weights (var_weights and freq_weights) are not supported by margeff. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available from the returned object. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. For interpretations of these methods see notes below. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- DiscreteMargins : marginal effects instance Returns an object that holds the marginal effects, standard errors, confidence intervals, etc. See `statsmodels.discrete.discrete_margins.DiscreteMargins` for more information. Notes ----- Interpretations of methods: - 'dydx' - change in `endog` for a change in `exog`. - 'eyex' - proportional change in `endog` for a proportional change in `exog`. - 'dyex' - change in `endog` for a proportional change in `exog`. - 'eydx' - proportional change in `endog` for a change in `exog`. When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. Status : unsupported features offset, exposure and weights. Default handling of freq_weights for average effect "overall" might change. """ if getattr(self.model, "offset", None) is not None: raise NotImplementedError("Margins with offset are not available.") if (np.any(self.model.var_weights != 1) or np.any(self.model.freq_weights != 1)): warnings.warn("weights are not taken into account by margeff") from statsmodels.discrete.discrete_margins import DiscreteMargins return DiscreteMargins(self, (at, method, atexog, dummy, count))
Get marginal effects of the fitted model. Warning: offset, exposure and weights (var_weights and freq_weights) are not supported by margeff. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is all only margeff will be available from the returned object. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. For interpretations of these methods see notes below. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- DiscreteMargins : marginal effects instance Returns an object that holds the marginal effects, standard errors, confidence intervals, etc. See `statsmodels.discrete.discrete_margins.DiscreteMargins` for more information. Notes ----- Interpretations of methods: - 'dydx' - change in `endog` for a change in `exog`. - 'eyex' - proportional change in `endog` for a proportional change in `exog`. - 'dyex' - change in `endog` for a proportional change in `exog`. - 'eydx' - proportional change in `endog` for a change in `exog`. When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. Status : unsupported features offset, exposure and weights. Default handling of freq_weights for average effect "overall" might change.
get_margeff
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def summary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the Regression Results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Model Family:', [self.family.__class__.__name__]), ('Link Function:', [self.family.link.__class__.__name__]), ('Method:', [self.method]), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.fit_history['iteration']]), ] try: prsquared = self.pseudo_rsquared(kind="cs") except ValueError: prsquared = np.nan top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Scale:', ["%#8.5g" % self.scale]), ('Log-Likelihood:', None), ('Deviance:', ["%#8.5g" % self.deviance]), ('Pearson chi2:', ["%#6.3g" % self.pearson_chi2]), ('Pseudo R-squ. (CS):', ["%#6.4g" % prsquared]) ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) if title is None: title = "Generalized Linear Model Regression Results" # create summary tables from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) if hasattr(self, 'constraints'): smry.add_extra_txt(['Model has been estimated subject to linear ' 'equality constraints.']) return smry
Summarize the Regression Results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results
summary
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def summary2(self, yname=None, xname=None, title=None, alpha=.05, float_format="%.4f"): """Experimental summary for regression Results Parameters ---------- yname : str Name of the dependent variable (optional) xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format : str print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : class to hold summary results """ from statsmodels.iolib import summary2 smry = summary2.Summary() with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) if hasattr(self, 'constraints'): smry.add_text('Model has been estimated subject to linear ' 'equality constraints.') return smry
Experimental summary for regression Results Parameters ---------- yname : str Name of the dependent variable (optional) xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format : str print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary : class to hold summary results
summary2
python
statsmodels/statsmodels
statsmodels/genmod/generalized_linear_model.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/generalized_linear_model.py
BSD-3-Clause
def mat(self, dim, term): """ Returns the term'th basis matrix, which is a dim x dim matrix. """ raise NotImplementedError
Returns the term'th basis matrix, which is a dim x dim matrix.
mat
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def objective(self, params): """ Calculate the gradient of the QIF objective function. Parameters ---------- params : array_like The model parameters at which the gradient is evaluated. Returns ------- grad : array_like The gradient vector of the QIF objective function. gn_deriv : array_like The gradients of each estimating equation with respect to the parameter. """ endog = self.endog exog = self.exog lpr = np.dot(exog, params) mean = self.family.link.inverse(lpr) va = self.family.variance(mean) # Mean derivative idl = self.family.link.inverse_deriv(lpr) idl2 = self.family.link.inverse_deriv2(lpr) vd = self.family.variance.deriv(mean) m = self.cov_struct.num_terms p = exog.shape[1] d = p * m gn = np.zeros(d) gi = np.zeros(d) gi_deriv = np.zeros((d, p)) gn_deriv = np.zeros((d, p)) cn_deriv = [0] * p cmat = np.zeros((d, d)) fastvar = self.family.variance is varfuncs.constant fastlink = isinstance( self.family.link, # TODO: Remove links.identity after deprecation final (links.Identity, links.identity) ) for ix in self.groups_ix: sd = np.sqrt(va[ix]) resid = endog[ix] - mean[ix] sresid = resid / sd deriv = exog[ix, :] * idl[ix, None] jj = 0 for j in range(m): # The derivative of each term in (5) of Qu et al. # There are four terms involving beta in a product. # Iterated application of the product rule gives # the gradient as a sum of four terms. c = self.cov_struct.mat(len(ix), j) crs1 = np.dot(c, sresid) / sd gi[jj:jj+p] = np.dot(deriv.T, crs1) crs2 = np.dot(c, -deriv / sd[:, None]) / sd[:, None] gi_deriv[jj:jj+p, :] = np.dot(deriv.T, crs2) if not (fastlink and fastvar): for k in range(p): m1 = np.dot(exog[ix, :].T, idl2[ix] * exog[ix, k] * crs1) if not fastvar: vx = -0.5 * vd[ix] * deriv[:, k] / va[ix]**1.5 m2 = np.dot(deriv.T, vx * np.dot(c, sresid)) m3 = np.dot(deriv.T, np.dot(c, vx * resid) / sd) else: m2, m3 = 0, 0 gi_deriv[jj:jj+p, k] += m1 + m2 + m3 jj += p for j in range(p): u = np.outer(gi, gi_deriv[:, j]) cn_deriv[j] += u + u.T gn += gi gn_deriv += gi_deriv cmat += np.outer(gi, gi) ngrp = len(self.groups_ix) gn /= ngrp gn_deriv /= ngrp cmat /= ngrp**2 qif = np.dot(gn, np.linalg.solve(cmat, gn)) gcg = np.zeros(p) for j in range(p): cn_deriv[j] /= len(self.groups_ix)**2 u = np.linalg.solve(cmat, cn_deriv[j]).T u = np.linalg.solve(cmat, u) gcg[j] = np.dot(gn, np.dot(u, gn)) grad = 2 * np.dot(gn_deriv.T, np.linalg.solve(cmat, gn)) - gcg return qif, grad, cmat, gn, gn_deriv
Calculate the gradient of the QIF objective function. Parameters ---------- params : array_like The model parameters at which the gradient is evaluated. Returns ------- grad : array_like The gradient vector of the QIF objective function. gn_deriv : array_like The gradients of each estimating equation with respect to the parameter.
objective
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def estimate_scale(self, params): """ Estimate the dispersion/scale. The scale parameter for binomial and Poisson families is fixed at 1, otherwise it is estimated from the data. """ if isinstance(self.family, (families.Binomial, families.Poisson)): return 1. if hasattr(self, "ddof_scale"): ddof_scale = self.ddof_scale else: ddof_scale = self.exog[1] lpr = np.dot(self.exog, params) mean = self.family.link.inverse(lpr) resid = self.endog - mean scale = np.sum(resid**2) / (self.nobs - ddof_scale) return scale
Estimate the dispersion/scale. The scale parameter for binomial and Poisson families is fixed at 1, otherwise it is estimated from the data.
estimate_scale
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def from_formula(cls, formula, groups, data, subset=None, *args, **kwargs): """ Create a QIF model instance from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model groups : array_like or string Array of grouping labels. If a string, this is the name of a variable in `data` that contains the grouping labels. data : array_like The data for the model. subset : array_like An array_like object of booleans, integers, or index values that indicate the subset of the data to used when fitting the model. Returns ------- model : QIF model instance """ if isinstance(groups, str): groups = data[groups] advance_eval_env(kwargs) model = super().from_formula( formula, data=data, subset=subset, groups=groups, *args, **kwargs) return model
Create a QIF model instance from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model groups : array_like or string Array of grouping labels. If a string, this is the name of a variable in `data` that contains the grouping labels. data : array_like The data for the model. subset : array_like An array_like object of booleans, integers, or index values that indicate the subset of the data to used when fitting the model. Returns ------- model : QIF model instance
from_formula
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def fit(self, maxiter=100, start_params=None, tol=1e-6, gtol=1e-4, ddof_scale=None): """ Fit a GLM to correlated data using QIF. Parameters ---------- maxiter : int Maximum number of iterations. start_params : array_like, optional Starting values tol : float Convergence threshold for difference of successive estimates. gtol : float Convergence threshold for gradient. ddof_scale : int, optional Degrees of freedom for the scale parameter Returns ------- QIFResults object """ if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: self.ddof_scale = ddof_scale if start_params is None: model = GLM(self.endog, self.exog, family=self.family) result = model.fit() params = result.params else: params = start_params for _ in range(maxiter): qif, grad, cmat, _, gn_deriv = self.objective(params) gnorm = np.sqrt(np.sum(grad * grad)) self._fit_history["qif"].append(qif) self._fit_history["gradnorm"].append(gnorm) if gnorm < gtol: break cjac = 2 * np.dot(gn_deriv.T, np.linalg.solve(cmat, gn_deriv)) step = np.linalg.solve(cjac, grad) snorm = np.sqrt(np.sum(step * step)) self._fit_history["stepnorm"].append(snorm) if snorm < tol: break params -= step vcov = np.dot(gn_deriv.T, np.linalg.solve(cmat, gn_deriv)) vcov = np.linalg.inv(vcov) scale = self.estimate_scale(params) rslt = QIFResults(self, params, vcov / scale, scale) rslt.fit_history = self._fit_history self._fit_history = defaultdict(list) return QIFResultsWrapper(rslt)
Fit a GLM to correlated data using QIF. Parameters ---------- maxiter : int Maximum number of iterations. start_params : array_like, optional Starting values tol : float Convergence threshold for difference of successive estimates. gtol : float Convergence threshold for gradient. ddof_scale : int, optional Degrees of freedom for the scale parameter Returns ------- QIFResults object
fit
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def aic(self): """ An AIC-like statistic for models fit using QIF. """ if isinstance(self.model.cov_struct, QIFIndependence): msg = "AIC not available with QIFIndependence covariance" raise ValueError(msg) df = self.model.exog.shape[1] return self.qif + 2*df
An AIC-like statistic for models fit using QIF.
aic
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def bic(self): """ A BIC-like statistic for models fit using QIF. """ if isinstance(self.model.cov_struct, QIFIndependence): msg = "BIC not available with QIFIndependence covariance" raise ValueError(msg) df = self.model.exog.shape[1] return self.qif + np.log(self.model.nobs)*df
A BIC-like statistic for models fit using QIF.
bic
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def fittedvalues(self): """ Returns the fitted values from the model. """ return self.model.family.link.inverse( np.dot(self.model.exog, self.params))
Returns the fitted values from the model.
fittedvalues
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def summary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the QIF regression results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Method:', ['QIF']), ('Family:', [self.model.family.__class__.__name__]), ('Covariance structure:', [self.model.cov_struct.__class__.__name__]), ('Date:', None), ('Time:', None), ] NY = [len(y) for y in self.model.groups_ix] top_right = [('No. Observations:', [sum(NY)]), ('No. clusters:', [len(NY)]), ('Min. cluster size:', [min(NY)]), ('Max. cluster size:', [max(NY)]), ('Mean cluster size:', ["%.1f" % np.mean(NY)]), ('Scale:', ["%.3f" % self.scale]), ] if title is None: title = self.model.__class__.__name__ + ' ' +\ "Regression Results" # Override the exog variable names if xname is provided as an # argument. if xname is None: xname = self.model.exog_names if yname is None: yname = self.model.endog_names # Create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=False) return smry
Summarize the QIF regression results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results
summary
python
statsmodels/statsmodels
statsmodels/genmod/qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/qif.py
BSD-3-Clause
def check_constraint(da, va, ga): """ Check the score testing of the parameter constraints. """
Check the score testing of the parameter constraints.
check_constraint
python
statsmodels/statsmodels
statsmodels/genmod/tests/gee_simulation_check.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/gee_simulation_check.py
BSD-3-Clause
def setup_class(cls): """ Test Gaussian family with canonical identity link """ # Test Precisions cls.decimal_resids = DECIMAL_3 cls.decimal_params = DECIMAL_2 cls.decimal_bic = DECIMAL_0 cls.decimal_bse = DECIMAL_3 from statsmodels.datasets.longley import load cls.data = load() cls.data.endog = np.require(cls.data.endog, requirements="W") cls.data.exog = np.require(cls.data.exog, requirements="W") cls.data.exog = add_constant(cls.data.exog, prepend=False) cls.res1 = GLM( cls.data.endog, cls.data.exog, family=sm.families.Gaussian() ).fit() from .results.results_glm import Longley cls.res2 = Longley()
Test Gaussian family with canonical identity link
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Test Binomial family with canonical logit link using star98 dataset. """ cls.decimal_resids = DECIMAL_1 cls.decimal_bic = DECIMAL_2 from statsmodels.datasets.star98 import load from .results.results_glm import Star98 data = load() data.endog = np.require(data.endog, requirements="W") data.exog = np.require(data.exog, requirements="W") data.exog = add_constant(data.exog, prepend=False) cls.res1 = GLM(data.endog, data.exog, family=sm.families.Binomial()).fit() # NOTE: if you want to replicate with RModel # res2 = RModel(data.endog[:,0]/trials, data.exog, r.glm, # family=r.binomial, weights=trials) cls.res2 = Star98()
Test Binomial family with canonical logit link using star98 dataset.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Gamma family with canonical inverse link (power -1) """ # Test Precisions cls.decimal_aic_R = -1 # TODO: off by about 1, we are right with Stata cls.decimal_resids = DECIMAL_2 from statsmodels.datasets.scotland import load from .results.results_glm import Scotvote data = load() data.exog = add_constant(data.exog, prepend=False) with warnings.catch_warnings(): warnings.simplefilter("ignore") res1 = GLM(data.endog, data.exog, family=sm.families.Gamma()).fit() cls.res1 = res1 # res2 = RModel(data.endog, data.exog, r.glm, family=r.Gamma) res2 = Scotvote() res2.aic_R += 2 # R does not count degree of freedom for scale with gamma cls.res2 = res2
Tests Gamma family with canonical inverse link (power -1)
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Poisson family with canonical log link. Test results were obtained by R. """ from .results.results_glm import Cpunish cls.data = cpunish.load() cls.data.endog = np.require(cls.data.endog, requirements="W") cls.data.exog = np.require(cls.data.exog, requirements="W") cls.data.exog[:, 3] = np.log(cls.data.exog[:, 3]) cls.data.exog = add_constant(cls.data.exog, prepend=False) cls.res1 = GLM( cls.data.endog, cls.data.exog, family=sm.families.Poisson() ).fit() cls.res2 = Cpunish() # compare with discrete, start close to save time modd = discrete.Poisson(cls.data.endog, cls.data.exog) cls.resd = modd.fit(start_params=cls.res1.params * 0.9, disp=False)
Tests Poisson family with canonical log link. Test results were obtained by R.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests the Inverse Gaussian family in GLM. Notes ----- Used the rndivgx.ado file provided by Hardin and Hilbe to generate the data. Results are read from model_results, which were obtained by running R_ig.s """ # Test Precisions cls.decimal_aic_R = DECIMAL_0 cls.decimal_loglike = DECIMAL_0 from .results.results_glm import InvGauss res2 = InvGauss() res1 = GLM(res2.endog, res2.exog, family=sm.families.InverseGaussian()).fit() cls.res1 = res1 cls.res2 = res2
Tests the Inverse Gaussian family in GLM. Notes ----- Used the rndivgx.ado file provided by Hardin and Hilbe to generate the data. Results are read from model_results, which were obtained by running R_ig.s
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Test Negative Binomial family with log link """ # Test Precision cls.decimal_resid = DECIMAL_1 cls.decimal_params = DECIMAL_3 cls.decimal_resids = -1 # 1 % mismatch at 0 cls.decimal_fittedvalues = DECIMAL_1 from statsmodels.datasets.committee import load cls.data = load() cls.data.endog = np.require(cls.data.endog, requirements="W") cls.data.exog = np.require(cls.data.exog, requirements="W") cls.data.exog[:, 2] = np.log(cls.data.exog[:, 2]) interaction = cls.data.exog[:, 2] * cls.data.exog[:, 1] cls.data.exog = np.column_stack((cls.data.exog, interaction)) cls.data.exog = add_constant(cls.data.exog, prepend=False) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=DomainWarning) with pytest.warns(UserWarning): fam = sm.families.NegativeBinomial() cls.res1 = GLM(cls.data.endog, cls.data.exog, family=fam).fit(scale="x2") from .results.results_glm import Committee res2 = Committee() res2.aic_R += 2 # They do not count a degree of freedom for the scale cls.res2 = res2 cls.has_edispersion = True
Test Negative Binomial family with log link
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Poisson family with canonical log link. """ super().setup_class() cls.endog = np.asarray(cls.endog) cls.exog = np.asarray(cls.exog) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=sm.families.Poisson(), ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=sm.families.Poisson()).fit()
Tests Poisson family with canonical log link.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Binomial family with canonical logit link. """ super().setup_class() cls.endog = cls.endog / 100 cls.endog_big = cls.endog_big / 100 cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=sm.families.Binomial(), ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=sm.families.Binomial()).fit()
Tests Binomial family with canonical logit link.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Negative Binomial family with canonical link g(p) = log(p/(p + 1/alpha)) """ super().setup_class() alpha = 1.0 with warnings.catch_warnings(): warnings.simplefilter("ignore", category=DomainWarning) family_link = sm.families.NegativeBinomial( link=sm.families.links.NegativeBinomial(alpha=alpha), alpha=alpha, ) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link, ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests Negative Binomial family with canonical link g(p) = log(p/(p + 1/alpha))
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Gamma family with log link. """ super().setup_class() family_link = sm.families.Gamma(sm.families.links.Log()) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests Gamma family with log link.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Gaussian family with log link. """ super().setup_class() family_link = sm.families.Gaussian(sm.families.links.Log()) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests Gaussian family with log link.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests InverseGaussian family with log link. """ super().setup_class() family_link = sm.families.InverseGaussian(sm.families.links.Log()) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests InverseGaussian family with log link.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Tweedie family with log link and var_power=1. """ super().setup_class() family_link = sm.families.Tweedie(link=sm.families.links.Log(), var_power=1) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests Tweedie family with log link and var_power=1.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Tweedie family with Power(1) link and var_power=2. """ cls.data = cpunish.load_pandas() cls.endog = cls.data.endog cls.exog = cls.data.exog[["INCOME", "SOUTH"]] np.random.seed(1234) cls.weight = np.random.randint(5, 100, len(cls.endog)) cls.endog_big = np.repeat(cls.endog.values, cls.weight) cls.exog_big = np.repeat(cls.exog.values, cls.weight, axis=0) link = sm.families.links.Power() family_link = sm.families.Tweedie(link=link, var_power=2) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests Tweedie family with Power(1) link and var_power=2.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def setup_class(cls): """ Tests Tweedie family with Power(0.5) link and var_power=1.5. """ super().setup_class() family_link = sm.families.Tweedie( link=sm.families.links.Power(0.5), var_power=1.5 ) cls.res1 = GLM( cls.endog, cls.exog, freq_weights=cls.weight, family=family_link ).fit() cls.res2 = GLM(cls.endog_big, cls.exog_big, family=family_link).fit()
Tests Tweedie family with Power(0.5) link and var_power=1.5.
setup_class
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def test_names(): """Test the name properties if using a pandas series. They should not be the defaults if the series has a name. Don't care about the data here, only testing the name properties. """ y = pd.Series([0, 1], name="endog_not_default") x = pd.DataFrame({"a": [1, 1], "b": [1, 0]}) exposure = pd.Series([0, 0], name="exposure_not_default") freq_weights = pd.Series([0, 0], name="freq_weights_not_default") offset = pd.Series([0, 0], name="offset_not_default") var_weights = pd.Series([0, 0], name="var_weights_not_default") model = GLM( endog=y, exog=x, exposure=exposure, freq_weights=freq_weights, offset=offset, var_weights=var_weights, family=sm.families.Tweedie(), ) assert model.offset_name == "offset_not_default" assert model.exposure_name == "exposure_not_default" assert model.freq_weights_name == "freq_weights_not_default" assert model.var_weights_name == "var_weights_not_default" assert model.endog_names == "endog_not_default" assert model.exog_names == ["a", "b"]
Test the name properties if using a pandas series. They should not be the defaults if the series has a name. Don't care about the data here, only testing the name properties.
test_names
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def test_names_default(): """Test the name properties if using a numpy arrays. Don't care about the data here, only testing the name properties. """ y = np.array([0, 1]) x = np.array( [ [ 1, 1, ], [1, 0], ] ) exposure = np.array([0, 0]) freq_weights = np.array([0, 0]) offset = np.array([0, 0]) var_weights = np.array([0, 0]) model = GLM( endog=y, exog=x, exposure=exposure, freq_weights=freq_weights, offset=offset, var_weights=var_weights, family=sm.families.Tweedie(), ) assert model.offset_name == "offset" assert model.exposure_name == "exposure" assert model.freq_weights_name == "freq_weights" assert model.var_weights_name == "var_weights" assert model.endog_names == "y" assert model.exog_names == ["const", "x1"]
Test the name properties if using a numpy arrays. Don't care about the data here, only testing the name properties.
test_names_default
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_glm.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_glm.py
BSD-3-Clause
def load_data(fname, icept=True): """ Load a data set from the results directory. The data set should be a CSV file with the following format: Column 0: Group indicator Column 1: endog variable Columns 2-end: exog variables If `icept` is True, an intercept is prepended to the exog variables. """ cur_dir = os.path.dirname(os.path.abspath(__file__)) Z = np.genfromtxt(os.path.join(cur_dir, 'results', fname), delimiter=",") group = Z[:, 0] endog = Z[:, 1] exog = Z[:, 2:] if icept: exog = np.concatenate((np.ones((exog.shape[0], 1)), exog), axis=1) return endog, exog, group
Load a data set from the results directory. The data set should be a CSV file with the following format: Column 0: Group indicator Column 1: endog variable Columns 2-end: exog variables If `icept` is True, an intercept is prepended to the exog variables.
load_data
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_gee.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_gee.py
BSD-3-Clause
def test_multinomial(self): """ Check the 2-class multinomial (nominal) GEE fit against logistic regression. """ np.random.seed(34234) endog = np.r_[0, 0, 0, 0, 1, 1, 1, 1] exog = np.ones((8, 2)) exog[:, 1] = np.r_[1, 2, 1, 1, 2, 1, 2, 2] groups = np.arange(8) model = gee.NominalGEE(endog, exog, groups) results = model.fit(cov_type='naive', start_params=[ 3.295837, -2.197225]) logit_model = gee.GEE(endog, exog, groups, family=families.Binomial()) logit_results = logit_model.fit(cov_type='naive') assert_allclose(results.params, -logit_results.params, rtol=1e-5) assert_allclose(results.bse, logit_results.bse, rtol=1e-5)
Check the 2-class multinomial (nominal) GEE fit against logistic regression.
test_multinomial
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_gee.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_gee.py
BSD-3-Clause
def test_formula_environment(self): """Test that GEE uses the right environment for formulas.""" n = 100 rng = np.random.default_rng(34234) X1 = rng.normal(size=n) Y = X1 + rng.normal(size=n) Time = rng.uniform(size=n) groups = np.kron(lrange(20), np.ones(5)) data = pd.DataFrame({"Y": Y, "X1": X1, "Time": Time, "groups": groups}) va = cov_struct.Autoregressive(grid=False) family = families.Gaussian() def times_two(x): return 2 * x mat = np.concatenate((np.ones((n, 1)), times_two(X1[:, None])), axis=1) result_direct = gee.GEE( Y, mat, groups, time=Time, family=family, cov_struct=va ).fit() assert result_direct is not None result_formula = gee.GEE.from_formula( "Y ~ times_two(X1)", groups, data, time=Time, family=family, cov_struct=va, ).fit() assert result_formula is not None assert_almost_equal( result_direct.params, result_formula.params, decimal=8, )
Test that GEE uses the right environment for formulas.
test_formula_environment
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_gee.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_gee.py
BSD-3-Clause
def test_equivalence(self): """ The Equivalence covariance structure can represent an exchangeable covariance structure. Here we check that the results are identical using the two approaches. """ np.random.seed(3424) endog = np.random.normal(size=20) exog = np.random.normal(size=(20, 2)) exog[:, 0] = 1 groups = np.kron(np.arange(5), np.ones(4)) groups[12:] = 3 # Create unequal size groups # Set up an Equivalence covariance structure to mimic an # Exchangeable covariance structure. pairs = {} start = [0, 4, 8, 12] for k in range(4): pairs[k] = {} # Diagonal values (variance parameters) if k < 3: pairs[k][0] = (start[k] + np.r_[0, 1, 2, 3], start[k] + np.r_[0, 1, 2, 3]) else: pairs[k][0] = (start[k] + np.r_[0, 1, 2, 3, 4, 5, 6, 7], start[k] + np.r_[0, 1, 2, 3, 4, 5, 6, 7]) # Off-diagonal pairs (covariance parameters) if k < 3: a, b = np.tril_indices(4, -1) pairs[k][1] = (start[k] + a, start[k] + b) else: a, b = np.tril_indices(8, -1) pairs[k][1] = (start[k] + a, start[k] + b) ex = cov_struct.Exchangeable() model1 = gee.GEE(endog, exog, groups, cov_struct=ex) result1 = model1.fit() for return_cov in False, True: ec = cov_struct.Equivalence(pairs, return_cov=return_cov) model2 = gee.GEE(endog, exog, groups, cov_struct=ec) result2 = model2.fit() # Use large atol/rtol for the correlation case since there # are some small differences in the results due to degree # of freedom differences. if return_cov is True: atol, rtol = 1e-6, 1e-6 else: atol, rtol = 1e-3, 1e-3 assert_allclose(result1.params, result2.params, atol=atol, rtol=rtol) assert_allclose(result1.bse, result2.bse, atol=atol, rtol=rtol) assert_allclose(result1.scale, result2.scale, atol=atol, rtol=rtol)
The Equivalence covariance structure can represent an exchangeable covariance structure. Here we check that the results are identical using the two approaches.
test_equivalence
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_gee.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_gee.py
BSD-3-Clause
def test_formula_environment(): """Test that QIF uses the right environment for formulas.""" rng = np.random.default_rng(3423) x1 = rng.normal(size=100) y = x1 + rng.normal(size=100) groups = np.kron(np.arange(25), np.ones(4)) def times_two(x): return 2 * x cov_struct = QIFIndependence() result_direct = QIF( y, times_two(x1).reshape(-1, 1), groups=groups, cov_struct=cov_struct ).fit() df = pd.DataFrame({"y": y, "x1": x1, "groups": groups}) result_formula = QIF.from_formula( "y ~ 0 + times_two(x1)", groups="groups", cov_struct=cov_struct, data=df ).fit() assert_allclose(result_direct.params, result_formula.params) assert_allclose(result_direct.bse, result_formula.bse)
Test that QIF uses the right environment for formulas.
test_formula_environment
python
statsmodels/statsmodels
statsmodels/genmod/tests/test_qif.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/tests/test_qif.py
BSD-3-Clause
def _setlink(self, link): """ Helper method to set the link for a family. Raises a ``ValueError`` exception if the link is not available. Note that the error message might not be that informative because it tells you that the link should be in the base class for the link function. See statsmodels.genmod.generalized_linear_model.GLM for a list of appropriate links for each family but note that not all of these are currently available. """ # TODO: change the links class attribute in the families to hold # meaningful information instead of a list of links instances such as # [<statsmodels.family.links.Log object at 0x9a4240c>, # <statsmodels.family.links.Power object at 0x9a423ec>, # <statsmodels.family.links.Power object at 0x9a4236c>] # for Poisson... self._link = link if self._check_link: if not isinstance(link, L.Link): raise TypeError("The input should be a valid Link object.") if hasattr(self, "links"): validlink = max([isinstance(link, _) for _ in self.links]) if not validlink: msg = "Invalid link for family, should be in %s. (got %s)" raise ValueError(msg % (repr(self.links), link))
Helper method to set the link for a family. Raises a ``ValueError`` exception if the link is not available. Note that the error message might not be that informative because it tells you that the link should be in the base class for the link function. See statsmodels.genmod.generalized_linear_model.GLM for a list of appropriate links for each family but note that not all of these are currently available.
_setlink
python
statsmodels/statsmodels
statsmodels/genmod/families/family.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/family.py
BSD-3-Clause
def _getlink(self): """ Helper method to get the link for a family. """ return self._link
Helper method to get the link for a family.
_getlink
python
statsmodels/statsmodels
statsmodels/genmod/families/family.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/family.py
BSD-3-Clause
def predict(self, mu): """ Linear predictors based on given mu values. Parameters ---------- mu : ndarray The mean response variables Returns ------- lin_pred : ndarray Linear predictors based on the mean response variables. The value of the link function at the given mu. """ return self.link(mu)
Linear predictors based on given mu values. Parameters ---------- mu : ndarray The mean response variables Returns ------- lin_pred : ndarray Linear predictors based on the mean response variables. The value of the link function at the given mu.
predict
python
statsmodels/statsmodels
statsmodels/genmod/families/family.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/family.py
BSD-3-Clause
def _clean(self, x): """ Helper function to trim the data so that it is in (0,inf) Notes ----- The need for this function was discovered through usage and its possible that other families might need a check for validity of the domain. """ return np.clip(x, FLOAT_EPS, np.inf)
Helper function to trim the data so that it is in (0,inf) Notes ----- The need for this function was discovered through usage and its possible that other families might need a check for validity of the domain.
_clean
python
statsmodels/statsmodels
statsmodels/genmod/families/family.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/family.py
BSD-3-Clause
def initialize(self, endog, freq_weights): ''' Initialize the response variable. Parameters ---------- endog : ndarray Endogenous response variable freq_weights : ndarray 1d array of frequency weights Returns ------- If `endog` is binary, returns `endog` If `endog` is a 2d array, then the input is assumed to be in the format (successes, failures) and successes/(success + failures) is returned. And n is set to successes + failures. ''' # if not np.all(np.asarray(freq_weights) == 1): # self.variance = V.Binomial(n=freq_weights) if endog.ndim > 1 and endog.shape[1] > 2: raise ValueError('endog has more than 2 columns. The Binomial ' 'link supports either a single response variable ' 'or a paired response variable.') elif endog.ndim > 1 and endog.shape[1] > 1: y = endog[:, 0] # overwrite self.freq_weights for deviance below self.n = endog.sum(1) return y*1./self.n, self.n else: return endog, np.ones(endog.shape[0])
Initialize the response variable. Parameters ---------- endog : ndarray Endogenous response variable freq_weights : ndarray 1d array of frequency weights Returns ------- If `endog` is binary, returns `endog` If `endog` is a 2d array, then the input is assumed to be in the format (successes, failures) and successes/(success + failures) is returned. And n is set to successes + failures.
initialize
python
statsmodels/statsmodels
statsmodels/genmod/families/family.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/family.py
BSD-3-Clause
def __call__(self, p): """ Return the value of the link function. This is just a placeholder. Parameters ---------- p : array_like Probabilities Returns ------- g(p) : array_like The value of the link function g(p) = z """ return NotImplementedError
Return the value of the link function. This is just a placeholder. Parameters ---------- p : array_like Probabilities Returns ------- g(p) : array_like The value of the link function g(p) = z
__call__
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse(self, z): """ Inverse of the link function. Just a placeholder. Parameters ---------- z : array_like `z` is usually the linear predictor of the transformed variable in the IRLS algorithm for GLM. Returns ------- g^(-1)(z) : ndarray The value of the inverse of the link function g^(-1)(z) = p """ return NotImplementedError
Inverse of the link function. Just a placeholder. Parameters ---------- z : array_like `z` is usually the linear predictor of the transformed variable in the IRLS algorithm for GLM. Returns ------- g^(-1)(z) : ndarray The value of the inverse of the link function g^(-1)(z) = p
inverse
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def deriv(self, p): """ Derivative of the link function g'(p). Just a placeholder. Parameters ---------- p : array_like Returns ------- g'(p) : ndarray The value of the derivative of the link function g'(p) """ return NotImplementedError
Derivative of the link function g'(p). Just a placeholder. Parameters ---------- p : array_like Returns ------- g'(p) : ndarray The value of the derivative of the link function g'(p)
deriv
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def deriv2(self, p): """Second derivative of the link function g''(p) implemented through numerical differentiation """ from statsmodels.tools.numdiff import _approx_fprime_cs_scalar return _approx_fprime_cs_scalar(p, self.deriv)
Second derivative of the link function g''(p) implemented through numerical differentiation
deriv2
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse_deriv(self, z): """ Derivative of the inverse link function g^(-1)(z). Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g'^(-1)(z) : ndarray The value of the derivative of the inverse of the link function Notes ----- This reference implementation gives the correct result but is inefficient, so it can be overridden in subclasses. """ return 1 / self.deriv(self.inverse(z))
Derivative of the inverse link function g^(-1)(z). Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g'^(-1)(z) : ndarray The value of the derivative of the inverse of the link function Notes ----- This reference implementation gives the correct result but is inefficient, so it can be overridden in subclasses.
inverse_deriv
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse_deriv2(self, z): """ Second derivative of the inverse link function g^(-1)(z). Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g'^(-1)(z) : ndarray The value of the second derivative of the inverse of the link function Notes ----- This reference implementation gives the correct result but is inefficient, so it can be overridden in subclasses. """ iz = self.inverse(z) return -self.deriv2(iz) / self.deriv(iz) ** 3
Second derivative of the inverse link function g^(-1)(z). Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g'^(-1)(z) : ndarray The value of the second derivative of the inverse of the link function Notes ----- This reference implementation gives the correct result but is inefficient, so it can be overridden in subclasses.
inverse_deriv2
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def _clean(self, p): """ Clip logistic values to range (eps, 1-eps) Parameters ---------- p : array_like Probabilities Returns ------- pclip : ndarray Clipped probabilities """ return np.clip(p, FLOAT_EPS, 1. - FLOAT_EPS)
Clip logistic values to range (eps, 1-eps) Parameters ---------- p : array_like Probabilities Returns ------- pclip : ndarray Clipped probabilities
_clean
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def __call__(self, p): """ The logit transform Parameters ---------- p : array_like Probabilities Returns ------- z : ndarray Logit transform of `p` Notes ----- g(p) = log(p / (1 - p)) """ p = self._clean(p) return np.log(p / (1. - p))
The logit transform Parameters ---------- p : array_like Probabilities Returns ------- z : ndarray Logit transform of `p` Notes ----- g(p) = log(p / (1 - p))
__call__
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse(self, z): """ Inverse of the logit transform Parameters ---------- z : array_like The value of the logit transform at `p` Returns ------- p : ndarray Probabilities Notes ----- g^(-1)(z) = exp(z)/(1+exp(z)) """ z = np.asarray(z) t = np.exp(-z) return 1. / (1. + t)
Inverse of the logit transform Parameters ---------- z : array_like The value of the logit transform at `p` Returns ------- p : ndarray Probabilities Notes ----- g^(-1)(z) = exp(z)/(1+exp(z))
inverse
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def deriv(self, p): """ Derivative of the logit transform Parameters ---------- p : array_like Probabilities Returns ------- g'(p) : ndarray Value of the derivative of logit transform at `p` Notes ----- g'(p) = 1 / (p * (1 - p)) Alias for `Logit`: logit = Logit() """ p = self._clean(p) return 1. / (p * (1 - p))
Derivative of the logit transform Parameters ---------- p : array_like Probabilities Returns ------- g'(p) : ndarray Value of the derivative of logit transform at `p` Notes ----- g'(p) = 1 / (p * (1 - p)) Alias for `Logit`: logit = Logit()
deriv
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse_deriv(self, z): """ Derivative of the inverse of the logit transform Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g'^(-1)(z) : ndarray The value of the derivative of the inverse of the logit function """ t = np.exp(z) return t / (1 + t) ** 2
Derivative of the inverse of the logit transform Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g'^(-1)(z) : ndarray The value of the derivative of the inverse of the logit function
inverse_deriv
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def deriv2(self, p): """ Second derivative of the logit function. Parameters ---------- p : array_like probabilities Returns ------- g''(z) : ndarray The value of the second derivative of the logit function """ v = p * (1 - p) return (2 * p - 1) / v ** 2
Second derivative of the logit function. Parameters ---------- p : array_like probabilities Returns ------- g''(z) : ndarray The value of the second derivative of the logit function
deriv2
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def __call__(self, p): """ Power transform link function Parameters ---------- p : array_like Mean parameters Returns ------- z : array_like Power transform of x Notes ----- g(p) = x**self.power """ if self.power == 1: return p else: return np.power(p, self.power)
Power transform link function Parameters ---------- p : array_like Mean parameters Returns ------- z : array_like Power transform of x Notes ----- g(p) = x**self.power
__call__
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse(self, z): """ Inverse of the power transform link function Parameters ---------- `z` : array_like Value of the transformed mean parameters at `p` Returns ------- `p` : ndarray Mean parameters Notes ----- g^(-1)(z`) = `z`**(1/`power`) """ if self.power == 1: return z else: return np.power(z, 1. / self.power)
Inverse of the power transform link function Parameters ---------- `z` : array_like Value of the transformed mean parameters at `p` Returns ------- `p` : ndarray Mean parameters Notes ----- g^(-1)(z`) = `z`**(1/`power`)
inverse
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def deriv(self, p): """ Derivative of the power transform Parameters ---------- p : array_like Mean parameters Returns ------- g'(p) : ndarray Derivative of power transform of `p` Notes ----- g'(`p`) = `power` * `p`**(`power` - 1) """ if self.power == 1: return np.ones_like(p) else: return self.power * np.power(p, self.power - 1)
Derivative of the power transform Parameters ---------- p : array_like Mean parameters Returns ------- g'(p) : ndarray Derivative of power transform of `p` Notes ----- g'(`p`) = `power` * `p`**(`power` - 1)
deriv
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def deriv2(self, p): """ Second derivative of the power transform Parameters ---------- p : array_like Mean parameters Returns ------- g''(p) : ndarray Second derivative of the power transform of `p` Notes ----- g''(`p`) = `power` * (`power` - 1) * `p`**(`power` - 2) """ if self.power == 1: return np.zeros_like(p) else: return self.power * (self.power - 1) * np.power(p, self.power - 2)
Second derivative of the power transform Parameters ---------- p : array_like Mean parameters Returns ------- g''(p) : ndarray Second derivative of the power transform of `p` Notes ----- g''(`p`) = `power` * (`power` - 1) * `p`**(`power` - 2)
deriv2
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse_deriv(self, z): """ Derivative of the inverse of the power transform Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g^(-1)'(z) : ndarray The value of the derivative of the inverse of the power transform function """ if self.power == 1: return np.ones_like(z) else: return np.power(z, (1 - self.power) / self.power) / self.power
Derivative of the inverse of the power transform Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g^(-1)'(z) : ndarray The value of the derivative of the inverse of the power transform function
inverse_deriv
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse_deriv2(self, z): """ Second derivative of the inverse of the power transform Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g^(-1)'(z) : ndarray The value of the derivative of the inverse of the power transform function """ if self.power == 1: return np.zeros_like(z) else: return ((1 - self.power) * np.power(z, (1 - 2*self.power)/self.power) / self.power**2)
Second derivative of the inverse of the power transform Parameters ---------- z : array_like `z` is usually the linear predictor for a GLM or GEE model. Returns ------- g^(-1)'(z) : ndarray The value of the derivative of the inverse of the power transform function
inverse_deriv2
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def __call__(self, p, **extra): """ Log transform link function Parameters ---------- x : array_like Mean parameters Returns ------- z : ndarray log(x) Notes ----- g(p) = log(p) """ x = self._clean(p) return np.log(x)
Log transform link function Parameters ---------- x : array_like Mean parameters Returns ------- z : ndarray log(x) Notes ----- g(p) = log(p)
__call__
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause
def inverse(self, z): """ Inverse of log transform link function Parameters ---------- z : ndarray The inverse of the link function at `p` Returns ------- p : ndarray The mean probabilities given the value of the inverse `z` Notes ----- g^{-1}(z) = exp(z) """ return np.exp(z)
Inverse of log transform link function Parameters ---------- z : ndarray The inverse of the link function at `p` Returns ------- p : ndarray The mean probabilities given the value of the inverse `z` Notes ----- g^{-1}(z) = exp(z)
inverse
python
statsmodels/statsmodels
statsmodels/genmod/families/links.py
https://github.com/statsmodels/statsmodels/blob/master/statsmodels/genmod/families/links.py
BSD-3-Clause