code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def _get_grid_lines(grid: list[list[int]]) -> tuple[list[ColRowGridLines], list[ColRowGridLines]]: """Gets list of ColRowGridLines for components and spaces on screen for validation and placement.""" component_grid_lines = [] unique_grid_idx = _get_unique_grid_component_ids(grid) for component_idx in unique_grid_idx: matrix = ma.masked_equal(grid, component_idx) component_grid_lines.append(_convert_to_combined_grid_coord(matrix)) matrix = ma.masked_equal(grid, EMPTY_SPACE_CONST) space_grid_lines = _convert_to_single_grid_coord(matrix=matrix) return component_grid_lines, space_grid_lines
Gets list of ColRowGridLines for components and spaces on screen for validation and placement.
_get_grid_lines
python
mckinsey/vizro
vizro-core/src/vizro/models/_grid.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_grid.py
Apache-2.0
def build(self): """Creates empty container with inline style to later position components in.""" components_content = [ html.Div( id=f"{self.id}_{component_idx}", style={ "gridColumn": f"{grid_coord.col_start}/{grid_coord.col_end}", "gridRow": f"{grid_coord.row_start}/{grid_coord.row_end}", "height": "100%", "width": "100%", }, className="grid-item", ) for component_idx, grid_coord in enumerate(self.component_grid_lines) ] component_container = html.Div( components_content, style={ "gridRowGap": self.row_gap, "gridColumnGap": self.col_gap, "gridTemplateColumns": f"repeat({len(self.grid[0])},minmax({self.col_min_width}, 1fr))", "gridTemplateRows": f"repeat({len(self.grid)},minmax({self.row_min_height}, 1fr))", }, className="grid-layout", id=self.id, ) return component_container
Creates empty container with inline style to later position components in.
build
python
mckinsey/vizro
vizro-core/src/vizro/models/_grid.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_grid.py
Apache-2.0
def _build_inner_layout(layout, components): """Builds inner layout and adds components to grid or flex. Used inside `Page`, `Container` and `Form`.""" from vizro.models import Grid components_container = layout.build() if isinstance(layout, Grid): for idx, component in enumerate(components): components_container[f"{layout.id}_{idx}"].children = component.build() else: components_container.children = [html.Div(component.build(), className="flex-item") for component in components] return components_container
Builds inner layout and adds components to grid or flex. Used inside `Page`, `Container` and `Form`.
_build_inner_layout
python
mckinsey/vizro
vizro-core/src/vizro/models/_models_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_models_utils.py
Apache-2.0
def model_post_init(self, context: Any) -> None: """Adds the model instance to the model manager.""" try: super().model_post_init(context) except DuplicateIDError as exc: raise ValueError( f"Page with id={self.id} already exists. Page id is automatically set to the same " f"as the page title. If you have multiple pages with the same title then you must assign a unique id." ) from exc
Adds the model instance to the model manager.
model_post_init
python
mckinsey/vizro
vizro-core/src/vizro/models/_page.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_page.py
Apache-2.0
def _get_control_states(self, control_type: ControlType) -> list[State]: """Gets list of `States` for selected `control_type` that appear on page where this Action is defined.""" # Possibly the code that specifies the state associated with a control will move to an inputs property # of the filter and parameter models in future. This property could match outputs and return just a dotted # string that is then transformed to State inside _transformed_inputs. This would prevent us from using # pattern-matching callback here though. # See also notes in filter_interaction._get_triggered_model. page = model_manager._get_model_page(self) return [ State(*control.selector._action_inputs["__default__"].split(".")) for control in cast(Iterable[ControlType], model_manager._get_models(control_type, page)) ]
Gets list of `States` for selected `control_type` that appear on page where this Action is defined.
_get_control_states
python
mckinsey/vizro
vizro-core/src/vizro/models/_action/_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_action/_action.py
Apache-2.0
def _get_filter_interaction_states(self) -> list[dict[str, State]]: """Gets list of `States` for selected chart interaction `filter_interaction`.""" from vizro.actions import filter_interaction page = model_manager._get_model_page(self) return [ action._get_triggered_model()._filter_interaction_input for action in model_manager._get_models(filter_interaction, root_model=page) ]
Gets list of `States` for selected chart interaction `filter_interaction`.
_get_filter_interaction_states
python
mckinsey/vizro
vizro-core/src/vizro/models/_action/_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_action/_action.py
Apache-2.0
def _transform_dependency(dependency: _IdOrIdProperty, type: Literal["output", "input"]) -> _IdProperty: """Transform a component dependency into its mapped property value. This method handles two formats of component dependencies: 1. Explicit format: "component-id.component-property" (e.g. "graph-1.figure") - Returns the mapped value if it exists in the component's _action_outputs/_action_inputs - Returns the original dependency otherwise 2. Implicit format: "component-id" (e.g. "card-id") - Returns the value of "__default__" key from the component's _action_outputs/_action_inputs - Raises an error if the component doesn't exist or doesn't have the required property Args: dependency: A string in either "component-id.component-property" or "component-id" format type: Either "input" or "output" to determine which property (_action_inputs or _action_outputs) to check Returns: The mapped property value for implicit format, or the original dependency for explicit format Raises: KeyError: If component does not exist in model_manager KeyError: If component exists but has no "__default__" key in its _action_outputs/_action_inputs AttributeError: If component exists but has no _action_outputs/_action_inputs property defined ValueError: If dependency format is invalid (e.g. "id.prop.prop" or "id..prop") """ attribute_type = "_action_outputs" if type == "output" else "_action_inputs" # Validate that the dependency is in one of two valid formats: id.property ("graph-1.figure") or id ("card-id"). # By this point we have already validation dependency is a str. if not re.match(r"^[^.]+$|^[^.]+[.][^.]+$", dependency): raise ValueError( f"Invalid {type} format '{dependency}'. Expected format is '<model_id>' or " f"'<model_id>.<argument_name>'." ) if "." in dependency: component_id, component_property = dependency.split(".") try: return getattr(model_manager[component_id], attribute_type)[component_property] except (KeyError, AttributeError): # Captures these cases and returns dependency unchanged, as we want to allow the user to target # Dash components, that are not registered in the model_manager (e.g. theme-selector). # 1. component_id is not in model_manager # 2. component doesn't have _action_outputs/_action_inputs defined # 3. component_property is not in the _action_outputs/inputs dictionary return dependency component_id, component_property = dependency, "__default__" try: return getattr(model_manager[component_id], attribute_type)[component_property] except (KeyError, AttributeError) as exc: if isinstance(exc, KeyError): if component_property in str(exc): raise KeyError( f"Model with ID `{component_id}` has no `{component_property}` key inside its " f"`{attribute_type}` property. Please specify the {type} explicitly as " f"`{component_id}.<property>`." ) from exc raise KeyError( f"Model with ID `{component_id}` not found. Please provide a valid component ID." ) from exc raise AttributeError( f"Model with ID '{component_id}' does not have implicit {type} properties defined. " f"Please specify the {type} explicitly as '{component_id}.<property>'." ) from exc
Transform a component dependency into its mapped property value. This method handles two formats of component dependencies: 1. Explicit format: "component-id.component-property" (e.g. "graph-1.figure") - Returns the mapped value if it exists in the component's _action_outputs/_action_inputs - Returns the original dependency otherwise 2. Implicit format: "component-id" (e.g. "card-id") - Returns the value of "__default__" key from the component's _action_outputs/_action_inputs - Raises an error if the component doesn't exist or doesn't have the required property Args: dependency: A string in either "component-id.component-property" or "component-id" format type: Either "input" or "output" to determine which property (_action_inputs or _action_outputs) to check Returns: The mapped property value for implicit format, or the original dependency for explicit format Raises: KeyError: If component does not exist in model_manager KeyError: If component exists but has no "__default__" key in its _action_outputs/_action_inputs AttributeError: If component exists but has no _action_outputs/_action_inputs property defined ValueError: If dependency format is invalid (e.g. "id.prop.prop" or "id..prop")
_transform_dependency
python
mckinsey/vizro
vizro-core/src/vizro/models/_action/_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_action/_action.py
Apache-2.0
def _transformed_inputs(self) -> Union[list[State], dict[str, Union[State, ControlsStates]]]: """Creates Dash States given the user-specified runtime arguments and built in ones. Return type is list only for legacy actions. Otherwise, it will always be a dictionary (unlike for _transformed_outputs, where new behavior can still give a list). Keys are the parameter names. For user-specified inputs, values are Dash States. For built-in inputs, values can be more complicated nested structure of states. """ if self._legacy: # Must be an Action rather than _AbstractAction, so has already been validated by pydantic field annotation. return [ State(*self._transform_dependency(input, type="input").split(".")) for input in cast(Action, self).inputs ] from vizro.models import Filter, Parameter builtin_args = { "_controls": { "filters": self._get_control_states(control_type=Filter), "parameters": self._get_control_states(control_type=Parameter), "filter_interaction": self._get_filter_interaction_states(), } } # Work out which built in arguments are actually required for this function. builtin_args = { arg_name: arg_value for arg_name, arg_value in builtin_args.items() if arg_name in self._parameters } # Validate that the runtime arguments are in the same form as the legacy Action.inputs field (str). # Currently, this code only runs for subclasses of _AbstractAction but not vm.Action instances because a # vm.Action that does not pass this check will have already been classified as legacy in Action._legacy. # In future when vm.Action.inputs is deprecated then this will be used for vm.Action instances also. TypeAdapter(dict[str, str]).validate_python(self._runtime_args) # User specified arguments runtime_args take precedence over built in reserved arguments. No static arguments # ar relevant here, just Dash States. Static arguments values are stored in the state of the relevant # _AbstractAction instance. runtime_args = { arg_name: State(*self._transform_dependency(arg_value, type="input").split(".")) for arg_name, arg_value in self._runtime_args.items() } return builtin_args | runtime_args
Creates Dash States given the user-specified runtime arguments and built in ones. Return type is list only for legacy actions. Otherwise, it will always be a dictionary (unlike for _transformed_outputs, where new behavior can still give a list). Keys are the parameter names. For user-specified inputs, values are Dash States. For built-in inputs, values can be more complicated nested structure of states.
_transformed_inputs
python
mckinsey/vizro
vizro-core/src/vizro/models/_action/_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_action/_action.py
Apache-2.0
def _transformed_outputs(self) -> Union[list[Output], dict[str, Output]]: """Creates Dash Output objects from string specifications in self.outputs. Converts self.outputs (list of strings or dictionary of strings where each string is in the format '<component_id>.<property>' or '<component_id>') and converts into Dash Output objects. For example, ['my_graph.figure'] becomes [Output('my_graph', 'figure', allow_duplicate=True)]. Returns: Union[list[Output], dict[str, Output]]: A list of Output objects if self.outputs is a list of strings, or a dictionary mapping keys to Output objects if self.outputs is a dictionary of strings. """ def _transform_output(output): # Action.outputs is already validated by pydantic as list[str] or dict[str, str] # _AbstractAction._transformed_outputs does the same validation manually with TypeAdapter. return Output(*self._transform_dependency(output, type="output").split("."), allow_duplicate=True) if isinstance(self.outputs, list): callback_outputs = [_transform_output(output) for output in self.outputs] # Need to use a single Output in the @callback decorator rather than a single element list for the case # of a single output. This means the action function can return a single value (e.g. "text") rather than a # single element list (e.g. ["text"]). if len(callback_outputs) == 1: callback_outputs = callback_outputs[0] return callback_outputs return {output_name: _transform_output(output) for output_name, output in self.outputs.items()}
Creates Dash Output objects from string specifications in self.outputs. Converts self.outputs (list of strings or dictionary of strings where each string is in the format '<component_id>.<property>' or '<component_id>') and converts into Dash Output objects. For example, ['my_graph.figure'] becomes [Output('my_graph', 'figure', allow_duplicate=True)]. Returns: Union[list[Output], dict[str, Output]]: A list of Output objects if self.outputs is a list of strings, or a dictionary mapping keys to Output objects if self.outputs is a dictionary of strings.
_transformed_outputs
python
mckinsey/vizro
vizro-core/src/vizro/models/_action/_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_action/_action.py
Apache-2.0
def build(self) -> html.Div: """Builds a callback for the Action model and returns required components for the callback. Returns: Div containing a list of required components (e.g. dcc.Download) for the Action model """ # TODO: after sorting out model manager and pre-build order, lots of this should probably move to happen # some time before the build phase. external_callback_inputs = self._transformed_inputs external_callback_outputs = self._transformed_outputs callback_inputs = { "external": external_callback_inputs, "internal": {"trigger": Input({"type": "action_trigger", "action_name": self.id}, "data")}, } callback_outputs: dict[str, Union[list[Output], dict[str, Output]]] = { "internal": {"action_finished": Output("action_finished", "data", allow_duplicate=True)}, } # If there are no outputs then we don't want the external part of callback_outputs to exist at all. # This allows the action function to return None and match correctly on to the callback_outputs dictionary # The (probably better) alternative to this would be just to define a dummy output for all such functions # so that the external key always exists. # Note that it's still possible to explicitly return None as a value when an output is specified. if external_callback_outputs: callback_outputs["external"] = external_callback_outputs logger.debug( "===== Building callback for Action with id %s, function %s =====", self.id, self._action_name, ) if logger.isEnabledFor(logging.DEBUG): logger.debug("Callback inputs:\n%s", pformat(callback_inputs["external"], width=200)) logger.debug("Callback outputs:\n%s", pformat(callback_outputs.get("external"), width=200)) @callback(output=callback_outputs, inputs=callback_inputs, prevent_initial_call=True) def callback_wrapper(external: Union[list[Any], dict[str, Any]], internal: dict[str, Any]) -> dict[str, Any]: return_value = self._action_callback_function(inputs=external, outputs=callback_outputs.get("external")) if "external" in callback_outputs: return {"internal": {"action_finished": None}, "external": return_value} return {"internal": {"action_finished": None}} return html.Div(id=f"{self.id}_action_model_components_div", children=self._dash_components, hidden=True)
Builds a callback for the Action model and returns required components for the callback. Returns: Div containing a list of required components (e.g. dcc.Download) for the Action model
build
python
mckinsey/vizro
vizro-core/src/vizro/models/_action/_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_action/_action.py
Apache-2.0
def _filter_interaction( self, data_frame: pd.DataFrame, target: str, ctd_filter_interaction: dict[str, CallbackTriggerDict] ) -> pd.DataFrame: """Function to be carried out for `filter_interaction`.""" # data_frame is the DF of the target, ie the data to be filtered, hence we cannot get the DF from this model ctd_cellClicked = ctd_filter_interaction["cellClicked"] if not ctd_cellClicked["value"]: return data_frame # ctd_active_cell["id"] represents the underlying table id, so we need to fetch its parent Vizro Table actions. source_table_actions = _get_component_actions(_get_parent_model(ctd_cellClicked["id"])) for action in source_table_actions: # TODO-AV2 A 1: simplify this as in # https://github.com/mckinsey/vizro/pull/1054/commits/f4c8c5b153f3a71b93c018e9f8c6f1b918ca52f6 # Potentially this function would move to the filter_interaction action. That will be deprecated so # no need to worry too much if it doesn't work well, but we'll need to do something similar for the # new interaction functionality anyway. if not isinstance(action, filter_interaction) or target not in action.targets: continue column = ctd_cellClicked["value"]["colId"] clicked_data = ctd_cellClicked["value"]["value"] data_frame = data_frame[data_frame[column].isin([clicked_data])] return data_frame
Function to be carried out for `filter_interaction`.
_filter_interaction
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/ag_grid.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/ag_grid.py
Apache-2.0
def _build_container(self): """Returns a collapsible container based on the `collapsed` state. If `collapsed` is `None`, returns a non-collapsible container. Otherwise, returns a collapsible container with visibility controlled by the `collapsed` flag. """ if self.collapsed is None: return _build_inner_layout(self.layout, self.components) return dbc.Collapse( id=f"{self.id}_collapse", children=_build_inner_layout(self.layout, self.components), is_open=not self.collapsed, className="collapsible-container", key=self.id, )
Returns a collapsible container based on the `collapsed` state. If `collapsed` is `None`, returns a non-collapsible container. Otherwise, returns a collapsible container with visibility controlled by the `collapsed` flag.
_build_container
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/container.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/container.py
Apache-2.0
def _build_container_title(self): """Builds and returns the container title, including an optional icon and tooltip if collapsed.""" description = self.description.build().children if self.description is not None else [None] title_content = [ html.Div( [html.Span(id=f"{self.id}_title", children=self.title), *description], className="inner-container-title" ) ] if self.collapsed is not None: # collapse_container is not run when page is initially loaded, so we set the content correctly conditional # on self.collapsed upfront. This prevents the up/down arrow rotating on in initial load. title_content.extend( [ html.Span( "keyboard_arrow_down" if self.collapsed else "keyboard_arrow_up", className="material-symbols-outlined", id=f"{self.id}_icon", ), dbc.Tooltip( id=f"{self.id}_tooltip", children="Show Content" if self.collapsed else "Hide Content", target=f"{self.id}_icon", ), ] ) return html.H3( children=title_content, className="container-title-collapse" if self.collapsed is not None else "container-title", id=f"{self.id}_title_content", )
Builds and returns the container title, including an optional icon and tooltip if collapsed.
_build_container_title
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/container.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/container.py
Apache-2.0
def _filter_interaction( self, data_frame: pd.DataFrame, target: str, ctd_filter_interaction: dict[str, CallbackTriggerDict] ) -> pd.DataFrame: """Function to be carried out for `filter_interaction`.""" # data_frame is the DF of the target, ie the data to be filtered, hence we cannot get the DF from this model ctd_click_data = ctd_filter_interaction["clickData"] if not ctd_click_data["value"]: return data_frame source_graph_id: ModelID = ctd_click_data["id"] source_graph_actions = _get_component_actions(model_manager[source_graph_id]) try: custom_data_columns = cast(Graph, model_manager[source_graph_id])["custom_data"] except KeyError as exc: raise KeyError( f"Missing 'custom_data' for the source graph with id {source_graph_id}. " "Ensure that `custom_data` is an argument of the custom chart function, and that the relevant entry is " "then passed to the underlying plotly function. When configuring the custom chart in `vm.Graph`, " "ensure that `custom_data` is passed. Example usage: " "vm.Graph(figure=my_custom_chart(df, custom_data=['column_1'], actions=[...]))" ) from exc customdata = ctd_click_data["value"]["points"][0]["customdata"] for action in source_graph_actions: # TODO-AV2 A 1: simplify this as in # https://github.com/mckinsey/vizro/pull/1054/commits/f4c8c5b153f3a71b93c018e9f8c6f1b918ca52f6 # Potentially this function would move to the filter_interaction action. That will be deprecated so # no need to worry too much if it doesn't work well, but we'll need to do something similar for the # new interaction functionality anyway. if not isinstance(action, filter_interaction) or target not in action.targets: continue for custom_data_idx, column in enumerate(custom_data_columns): data_frame = data_frame[data_frame[column].isin([customdata[custom_data_idx]])] return data_frame
Function to be carried out for `filter_interaction`.
_filter_interaction
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/graph.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/graph.py
Apache-2.0
def _optimise_fig_layout_for_dashboard(fig): """Post layout updates to visually enhance charts used inside dashboard.""" # Determine if a title is present has_title = bool(fig.layout.title.text) # TODO: Check whether we should increase margins for all chart types in template_dashboard_overrides.py instead if any(isinstance(plotly_obj, go.Parcoords) for plotly_obj in fig.data): # Avoid hidden labels in Parcoords figures by increasing margins compared to dashboard defaults fig.update_layout( margin={ "t": fig.layout.margin.t or (92 if has_title else 40), "l": fig.layout.margin.l or 36, "b": fig.layout.margin.b or 24, }, ) if has_title and fig.layout.margin.t is None: # Reduce `margin_t` if not explicitly set. fig.update_layout(margin_t=64) return fig
Post layout updates to visually enhance charts used inside dashboard.
_optimise_fig_layout_for_dashboard
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/graph.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/graph.py
Apache-2.0
def _filter_interaction( self, data_frame: pd.DataFrame, target: str, ctd_filter_interaction: dict[str, CallbackTriggerDict] ) -> pd.DataFrame: """Function to be carried out for `filter_interaction`.""" # data_frame is the DF of the target, ie the data to be filtered, hence we cannot get the DF from this model ctd_active_cell = ctd_filter_interaction["active_cell"] ctd_derived_viewport_data = ctd_filter_interaction["derived_viewport_data"] if not ctd_active_cell["value"] or not ctd_derived_viewport_data["value"]: return data_frame # ctd_active_cell["id"] represents the underlying table id, so we need to fetch its parent Vizro Table actions. source_table_actions = _get_component_actions(_get_parent_model(ctd_active_cell["id"])) for action in source_table_actions: # TODO-AV2 A 1: simplify this as in # https://github.com/mckinsey/vizro/pull/1054/commits/f4c8c5b153f3a71b93c018e9f8c6f1b918ca52f6 # Potentially this function would move to the filter_interaction action. That will be deprecated so # no need to worry too much if it doesn't work well, but we'll need to do something similar for the # new interaction functionality anyway. if not isinstance(action, filter_interaction) or target not in action.targets: continue column = ctd_active_cell["value"]["column_id"] derived_viewport_data_row = ctd_active_cell["value"]["row"] clicked_data = ctd_derived_viewport_data["value"][derived_viewport_data_row][column] data_frame = data_frame[data_frame[column].isin([clicked_data])] return data_frame
Function to be carried out for `filter_interaction`.
_filter_interaction
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/table.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/table.py
Apache-2.0
def _get_list_of_labels(full_options: OptionsType) -> Union[list[StrictBool], list[float], list[str], list[date]]: """Returns a list of labels from the selector options provided.""" if all(isinstance(option, dict) for option in full_options): return [option["label"] for option in full_options] # type: ignore[index] else: return cast(Union[list[StrictBool], list[float], list[str], list[date]], full_options)
Returns a list of labels from the selector options provided.
_get_list_of_labels
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/dropdown.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/dropdown.py
Apache-2.0
def _calculate_option_height(full_options: OptionsType) -> int: """Calculates the height of the dropdown options based on the longest option.""" # 30 characters is roughly the number of "A" characters you can fit comfortably on a line in the dropdown. # "A" is representative of a slightly wider than average character: # https://stackoverflow.com/questions/3949422/which-letter-of-the-english-alphabet-takes-up-most-pixels # We look at the longest option to find number_of_lines it requires. Option height is the same for all options # and needs 24px for each line + 8px padding. list_of_labels = _get_list_of_labels(full_options) max_length = max(len(str(option)) for option in list_of_labels) number_of_lines = math.ceil(max_length / 30) return 8 + 24 * number_of_lines
Calculates the height of the dropdown options based on the longest option.
_calculate_option_height
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/dropdown.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/dropdown.py
Apache-2.0
def _add_select_all_option(full_options: OptionsType) -> OptionsType: """Adds a 'Select All' option to the list of options.""" # TODO: Move option to dictionary conversion within `get_options_and_default` function as here: https://github.com/mckinsey/vizro/pull/961#discussion_r1923356781 options_dict = [ cast(OptionsDictType, {"label": option, "value": option}) if not isinstance(option, dict) else option for option in full_options ] options_dict[0] = {"label": html.Div(["ALL"]), "value": "ALL"} return options_dict
Adds a 'Select All' option to the list of options.
_add_select_all_option
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/dropdown.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/dropdown.py
Apache-2.0
def get_options_and_default(options: OptionsType, multi: bool = False) -> tuple[OptionsType, SingleValueType]: """Gets list of full options and default value based on user input type of `options`.""" if multi: if all(isinstance(option, dict) for option in options): options = [{"label": ALL_OPTION, "value": ALL_OPTION}, *options] else: options = [ALL_OPTION, *options] if all(isinstance(option, dict) for option in options): # Each option is a OptionsDictType default_value = options[0]["value"] # type: ignore[index] else: default_value = options[0] return options, default_value
Gets list of full options and default value based on user input type of `options`.
get_options_and_default
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def is_value_contained(value: Union[SingleValueType, MultiValueType], options: OptionsType): """Checks if value is contained in a list.""" if isinstance(value, list): return all(item in options for item in value) else: return value in options
Checks if value is contained in a list.
is_value_contained
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def validate_options_dict(cls, data: Any) -> Any: """Reusable validator for the "options" argument of categorical selectors.""" if "options" not in data or not isinstance(data["options"], list): return data for entry in data["options"]: if isinstance(entry, dict) and not set(entry.keys()) == {"label", "value"}: raise ValueError("Invalid argument `options` passed. Expected a dict with keys `label` and `value`.") return data
Reusable validator for the "options" argument of categorical selectors.
validate_options_dict
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def validate_value(value, info: ValidationInfo): """Reusable validator for the "value" argument of categorical selectors.""" if "options" not in info.data or not info.data["options"]: return value possible_values = ( [entry["value"] for entry in info.data["options"]] if isinstance(info.data["options"][0], dict) else info.data["options"] ) if hasattr(value, "__iter__") and ALL_OPTION in value: return value if value and not is_value_contained(value, possible_values): raise ValueError("Please provide a valid value from `options`.") return value
Reusable validator for the "value" argument of categorical selectors.
validate_value
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def validate_max(max, info: ValidationInfo): """Validates that the `max` is not below the `min` for a range-based input.""" if max is None: return max if info.data["min"] is not None and max < info.data["min"]: raise ValueError("Maximum value of selector is required to be larger than minimum value.") return max
Validates that the `max` is not below the `min` for a range-based input.
validate_max
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def validate_range_value(value, info: ValidationInfo): """Validates a value or range of values to ensure they lie within specified bounds (min/max).""" EXPECTED_VALUE_LENGTH = 2 if value is None: return value lvalue, hvalue = ( (value[0], value[1]) if isinstance(value, list) and len(value) == EXPECTED_VALUE_LENGTH # TODO: I am not sure the below makes sense. # The field constraint on value means that it should always be a list of length 2. # The unit tests even check for the case where value is a list of length 1 (and it should raise an error). else (value[0], value[0]) if isinstance(value, list) and len(value) == 1 else (value, value) ) if (info.data["min"] is not None and not lvalue >= info.data["min"]) or ( info.data["max"] is not None and not hvalue <= info.data["max"] ): raise ValueError("Please provide a valid value between the min and max value.") return value
Validates a value or range of values to ensure they lie within specified bounds (min/max).
validate_range_value
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def validate_step(step, info: ValidationInfo): """Reusable validator for the "step" argument for sliders.""" if step is None: return step if info.data["max"] is not None and step > (info.data["max"] - info.data["min"]): raise ValueError( "The step value of the slider must be less than or equal to the difference between max and min." ) return step
Reusable validator for the "step" argument for sliders.
validate_step
python
mckinsey/vizro
vizro-core/src/vizro/models/_components/form/_form_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_components/form/_form_utils.py
Apache-2.0
def _get_proposed_targets(self): """Get all valid figure model targets for this control based on its location in the page hierarchy.""" page = model_manager._get_model_page(self) page_containers = model_manager._get_models(model_type=Container, root_model=page) # Find the control's parent model. Set it as the control's parent container it exists. # Otherwise set it as the control's page. root_model = next( (container for container in page_containers if self in container.controls), page, ) return [model.id for model in cast(Iterable[FigureType], model_manager._get_models(FIGURE_MODELS, root_model))]
Get all valid figure model targets for this control based on its location in the page hierarchy.
_get_proposed_targets
python
mckinsey/vizro
vizro-core/src/vizro/models/_controls/filter.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_controls/filter.py
Apache-2.0
def _get_control_parent(control: ControlType) -> Optional[VizroBaseModel]: """Get the parent model of a control.""" # Return None if the control is not part of any page. if (page := model_manager._get_model_page(model=control)) is None: return None # Return the Page if the control is its direct child. if control in page.controls: return page # Otherwise, return the Container that contains the control. page_containers = model_manager._get_models(model_type=Container, root_model=page) return next(container for container in page_containers if control in container.controls)
Get the parent model of a control.
_get_control_parent
python
mckinsey/vizro
vizro-core/src/vizro/models/_controls/_controls_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_controls/_controls_utils.py
Apache-2.0
def _create_nav_links(self, pages: list[ModelID]): """Creates a `NavLink` for each provided page.""" from vizro.models import Page nav_links = [] for page_id in pages: page = cast(Page, model_manager[page_id]) nav_links.append( dbc.NavLink( children=page.title, className="accordion-item-link", active="exact", href=get_relative_path(page.path), ) ) return nav_links
Creates a `NavLink` for each provided page.
_create_nav_links
python
mckinsey/vizro
vizro-core/src/vizro/models/_navigation/accordion.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_navigation/accordion.py
Apache-2.0
def _validate_pages(pages: NavPagesType) -> NavPagesType: """Reusable validator to check if provided Page IDs exist as registered pages.""" from vizro.models import Page pages_as_list = list(itertools.chain(*pages.values())) if isinstance(pages, dict) else pages # Ideally we would use dashboard.pages in the model manager here, but we only register pages in # dashboard.pre_build and model manager cannot find a Dashboard at validation time. registered_pages = [page.id for page in cast(Iterable[Page], model_manager._get_models(Page))] if not pages_as_list: raise ValueError("Ensure this value has at least 1 item.") if unknown_pages := [page for page in pages_as_list if page not in registered_pages]: raise ValueError(f"Unknown page ID {unknown_pages} provided to argument 'pages'.") return pages
Reusable validator to check if provided Page IDs exist as registered pages.
_validate_pages
python
mckinsey/vizro
vizro-core/src/vizro/models/_navigation/_navigation_utils.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/models/_navigation/_navigation_utils.py
Apache-2.0
def dash_ag_grid(data_frame: pd.DataFrame, **kwargs: Any) -> dag.AgGrid: """Implementation of `dash_ag_grid.AgGrid` with sensible defaults to be used in [`AgGrid`][vizro.models.AgGrid]. Args: data_frame: DataFrame containing the data to be displayed. kwargs: Additional keyword arguments to be passed to the `dash_ag_grid.AgGrid` component. Returns: A `dash_ag_grid.AgGrid` component with sensible defaults. Examples: Wrap inside `vm.AgGrid` to use as a component inside `vm.Page` or `vm.Container`. >>> import vizro.models as vm >>> from vizro.tables import dash_ag_grid >>> vm.Page(title="Page", components=[vm.AgGrid(figure=dash_ag_grid(...))]) """ defaults = { "className": "ag-theme-quartz-dark ag-theme-vizro", "columnDefs": [{"field": col} for col in data_frame.columns], "rowData": data_frame.apply( lambda x: ( x.dt.strftime("%Y-%m-%d") # set date columns to `dateString` for AG Grid filtering to function if pd.api.types.is_datetime64_any_dtype(x) else x ) ).to_dict("records"), "defaultColDef": { "resizable": True, "sortable": True, "filter": True, "flex": 1, "filterParams": { "buttons": ["apply", "reset"], "closeOnApply": True, }, }, "dashGridOptions": { "dataTypeDefinitions": _DATA_TYPE_DEFINITIONS, "animateRows": False, }, } kwargs = _set_defaults_nested(kwargs, defaults) return dag.AgGrid(**kwargs)
Implementation of `dash_ag_grid.AgGrid` with sensible defaults to be used in [`AgGrid`][vizro.models.AgGrid]. Args: data_frame: DataFrame containing the data to be displayed. kwargs: Additional keyword arguments to be passed to the `dash_ag_grid.AgGrid` component. Returns: A `dash_ag_grid.AgGrid` component with sensible defaults. Examples: Wrap inside `vm.AgGrid` to use as a component inside `vm.Page` or `vm.Container`. >>> import vizro.models as vm >>> from vizro.tables import dash_ag_grid >>> vm.Page(title="Page", components=[vm.AgGrid(figure=dash_ag_grid(...))])
dash_ag_grid
python
mckinsey/vizro
vizro-core/src/vizro/tables/_dash_ag_grid.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/tables/_dash_ag_grid.py
Apache-2.0
def dash_data_table(data_frame: pd.DataFrame, **kwargs: Any) -> dash_table.DataTable: """Standard `dash.dash_table.DataTable` with sensible defaults to be used in [`Table`][vizro.models.Table]. Args: data_frame: DataFrame containing the data to be displayed. kwargs: Additional keyword arguments to be passed to the `dash_table.DataTable` component. Returns: A `dash.dash_table.DataTable` component with sensible defaults. Examples: Wrap inside `vm.Table` to use as a component inside `vm.Page` or `vm.Container`. >>> import vizro.models as vm >>> from vizro.table import dash_data_table >>> vm.Page(title="Page", components=[vm.Table(figure=dash_data_table(...))]) """ defaults = { "columns": [{"name": col, "id": col} for col in data_frame.columns], "style_as_list_view": True, "style_cell": {"position": "static"}, "style_data": {"border_bottom": "1px solid var(--border-subtleAlpha01)", "height": "40px"}, "style_header": { "border_bottom": "1px solid var(--stateOverlays-selectedHover)", "border_top": "None", "height": "32px", }, "style_data_conditional": [ { "if": {"state": "active"}, "backgroundColor": "var(--stateOverlays-selected)", "border": "1px solid var(--stateOverlays-selected)", } ], } kwargs = _set_defaults_nested(kwargs, defaults) return dash_table.DataTable(data=data_frame.to_dict("records"), **kwargs)
Standard `dash.dash_table.DataTable` with sensible defaults to be used in [`Table`][vizro.models.Table]. Args: data_frame: DataFrame containing the data to be displayed. kwargs: Additional keyword arguments to be passed to the `dash_table.DataTable` component. Returns: A `dash.dash_table.DataTable` component with sensible defaults. Examples: Wrap inside `vm.Table` to use as a component inside `vm.Page` or `vm.Container`. >>> import vizro.models as vm >>> from vizro.table import dash_data_table >>> vm.Page(title="Page", components=[vm.Table(figure=dash_data_table(...))])
dash_data_table
python
mckinsey/vizro
vizro-core/src/vizro/tables/_dash_table.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/tables/_dash_table.py
Apache-2.0
def _extract_last_two_occurrences(variable: str, css_content: str) -> tuple[Optional[str], Optional[str]]: """Extracts the last two occurrences of a variable from the CSS content. Within the `vizro-bootstrap.min.css` file, variables appear multiple times: initially from the default Bootstrap values, followed by the dark theme, and lastly the light theme. We are interested in the final two occurrences, as these represent the values for our dark and light themes. """ matches = re.findall(rf"{variable}:\s*([^;]+);", css_content) if len(matches) >= 2: # noqa: PLR2004 return matches[-2], matches[-1] return None, None
Extracts the last two occurrences of a variable from the CSS content. Within the `vizro-bootstrap.min.css` file, variables appear multiple times: initially from the default Bootstrap values, followed by the dark theme, and lastly the light theme. We are interested in the final two occurrences, as these represent the values for our dark and light themes.
_extract_last_two_occurrences
python
mckinsey/vizro
vizro-core/src/vizro/_themes/generate_plotly_templates.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/_themes/generate_plotly_templates.py
Apache-2.0
def extract_bs_variables_from_css(variables: list[str], css_content: str) -> tuple[dict[str, str], dict[str, str]]: """Extract the last two occurrences for each variable in the CSS file.""" extracted_dark = {} extracted_light = {} for variable in variables: dark_value, light_value = _extract_last_two_occurrences(variable, css_content) cleaned_variable = variable.replace("--", "").upper() if dark_value and light_value: extracted_dark[cleaned_variable] = dark_value extracted_light[cleaned_variable] = light_value return extracted_dark, extracted_light
Extract the last two occurrences for each variable in the CSS file.
extract_bs_variables_from_css
python
mckinsey/vizro
vizro-core/src/vizro/_themes/generate_plotly_templates.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/_themes/generate_plotly_templates.py
Apache-2.0
def generate_json_template(extracted_values: dict[str, str]) -> go.layout.Template: """Generates the Plotly JSON chart template.""" FONT_COLOR_PRIMARY = extracted_values["BS-PRIMARY"] BG_COLOR = extracted_values["BS-BODY-BG"] FONT_COLOR_SECONDARY = extracted_values["BS-SECONDARY"] GRID_COLOR = extracted_values["BS-BORDER-COLOR"] AXIS_COLOR = extracted_values["BS-TERTIARY-COLOR"] # Apply common values COLORS = get_colors() template = create_template_common() layout = template.layout layout.update( annotationdefaults_font_color=FONT_COLOR_PRIMARY, coloraxis_colorbar_tickcolor=AXIS_COLOR, coloraxis_colorbar_tickfont_color=FONT_COLOR_SECONDARY, coloraxis_colorbar_title_font_color=FONT_COLOR_SECONDARY, font_color=FONT_COLOR_PRIMARY, geo_bgcolor=BG_COLOR, geo_lakecolor=BG_COLOR, geo_landcolor=BG_COLOR, legend_font_color=FONT_COLOR_PRIMARY, legend_title_font_color=FONT_COLOR_PRIMARY, paper_bgcolor=BG_COLOR, plot_bgcolor=BG_COLOR, polar_angularaxis_gridcolor=GRID_COLOR, polar_angularaxis_linecolor=AXIS_COLOR, polar_bgcolor=BG_COLOR, polar_radialaxis_gridcolor=GRID_COLOR, polar_radialaxis_linecolor=AXIS_COLOR, ternary_aaxis_gridcolor=GRID_COLOR, ternary_aaxis_linecolor=AXIS_COLOR, ternary_baxis_gridcolor=GRID_COLOR, ternary_baxis_linecolor=AXIS_COLOR, ternary_bgcolor=BG_COLOR, ternary_caxis_gridcolor=GRID_COLOR, ternary_caxis_linecolor=AXIS_COLOR, title_font_color=FONT_COLOR_PRIMARY, xaxis_gridcolor=GRID_COLOR, xaxis_linecolor=AXIS_COLOR, xaxis_tickcolor=AXIS_COLOR, xaxis_tickfont_color=FONT_COLOR_SECONDARY, xaxis_title_font_color=FONT_COLOR_PRIMARY, yaxis_gridcolor=GRID_COLOR, yaxis_linecolor=AXIS_COLOR, yaxis_tickcolor=AXIS_COLOR, yaxis_tickfont_color=FONT_COLOR_SECONDARY, yaxis_title_font_color=FONT_COLOR_PRIMARY, ) template.data.bar = [go.Bar(marker_line_color=BG_COLOR)] template.data.waterfall = [ go.Waterfall( decreasing={"marker": {"color": COLORS["DISCRETE_10"][1]}}, increasing={"marker": {"color": COLORS["DISCRETE_10"][0]}}, totals={"marker": {"color": "grey"}}, textfont_color=FONT_COLOR_PRIMARY, textposition="outside", connector={"line": {"color": AXIS_COLOR, "width": 1}}, ) ] return template
Generates the Plotly JSON chart template.
generate_json_template
python
mckinsey/vizro
vizro-core/src/vizro/_themes/generate_plotly_templates.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/_themes/generate_plotly_templates.py
Apache-2.0
def create_template_common() -> go.layout.Template: """Creates template with common values for dark and light theme. Returns: A plotly template object, see https://plotly.com/python/reference/layout/. """ COLORS = get_colors() template_common = go.layout.Template() template_common.layout = go.Layout( annotationdefaults_font_size=14, annotationdefaults_showarrow=False, bargroupgap=0.1, coloraxis_autocolorscale=False, # Set to False as otherwise users cannot customize via `color_continous_scale` coloraxis_colorbar_outlinewidth=0, coloraxis_colorbar_showticklabels=True, coloraxis_colorbar_thickness=20, coloraxis_colorbar_tickfont_size=14, coloraxis_colorbar_ticklabelposition="outside", coloraxis_colorbar_ticklen=8, coloraxis_colorbar_ticks="outside", coloraxis_colorbar_tickwidth=1, coloraxis_colorbar_title_font_size=14, # Diverging, sequential and sequentialminus colorscale will only be applied automatically if # `coloraxis_autocolorscale=True`. Otherwise, they have no effect, and the default for continuous color scales # will be the color sequence applied to ["colorscale"]["sequential"]. colorscale_diverging=COLORS["DIVERGING_RED_CYAN"], colorscale_sequential=COLORS["SEQUENTIAL_CYAN"], colorscale_sequentialminus=COLORS["SEQUENTIAL_RED"][::-1], colorway=COLORS["DISCRETE_10"], font_family="Inter, sans-serif, Arial", font_size=14, legend_bgcolor=COLORS["TRANSPARENT"], legend_font_size=14, legend_orientation="h", legend_title_font_size=14, legend_y=-0.20, map_style="carto-darkmatter", margin_autoexpand=True, margin_b=64, margin_l=80, margin_pad=0, margin_r=24, margin_t=64, # Normally, we should use the primary and secondary color for activecolor and color. # However, our rgba values are not displayed correctly with a transparent bg color. # Hence, we use darkgrey and dimgrey for now, which seems to work fine. modebar_activecolor="darkgrey", modebar_bgcolor=COLORS["TRANSPARENT"], modebar_color="dimgrey", showlegend=True, title_font_size=20, title_pad_b=0, title_pad_l=24, title_pad_r=24, title_pad_t=24, title_x=0, title_xanchor="left", title_xref="container", title_y=1, title_yanchor="top", title_yref="container", uniformtext_minsize=12, uniformtext_mode="hide", xaxis_automargin=True, xaxis_layer="below traces", xaxis_linewidth=1, xaxis_showline=True, xaxis_showticklabels=True, xaxis_tickfont_size=14, xaxis_ticklabelposition="outside", xaxis_ticklen=8, xaxis_ticks="outside", xaxis_tickwidth=1, xaxis_title_font_size=16, xaxis_title_standoff=8, xaxis_visible=True, xaxis_zeroline=False, yaxis_automargin=True, yaxis_layer="below traces", yaxis_linewidth=1, yaxis_showline=False, yaxis_showticklabels=True, yaxis_tickfont_size=14, yaxis_ticklabelposition="outside", yaxis_ticklen=8, yaxis_ticks="outside", yaxis_tickwidth=1, yaxis_title_font_size=16, yaxis_title_standoff=8, yaxis_visible=True, yaxis_zeroline=False, ) return template_common
Creates template with common values for dark and light theme. Returns: A plotly template object, see https://plotly.com/python/reference/layout/.
create_template_common
python
mckinsey/vizro
vizro-core/src/vizro/_themes/_common_template.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/src/vizro/_themes/_common_template.py
Apache-2.0
def dash_br_driver(dash_br, request): """Built-in driver from the dash library.""" port = request.param.get("port", cnst.DEFAULT_PORT) if hasattr(request, "param") else cnst.DEFAULT_PORT path = request.param.get("path", "") if hasattr(request, "param") else "" dash_br.driver.set_window_size(1920, 1080) dash_br.server_url = f"http://127.0.0.1:{port}/{path}" return dash_br
Built-in driver from the dash library.
dash_br_driver
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/conftest.py
Apache-2.0
def teardown_method(dash_br): """Fixture checks log errors and quits the driver after each test.""" yield # checking for browser console errors if os.getenv("BROWSER") in ["chrome", "chrome_mobile"]: try: error_logs = [log for log in dash_br.get_logs() if log["level"] == "SEVERE" or "WARNING"] for log in error_logs: browser_console_warnings_checker(log, error_logs) except WebDriverException: pass
Fixture checks log errors and quits the driver after each test.
teardown_method
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/conftest.py
Apache-2.0
def bar_with_highlight(data_frame, x, highlight_bar=None): """Custom chart to test using DatePicker with Parameter.""" fig = px.bar(data_frame=data_frame, x=x) fig["data"][0]["marker"]["color"] = ["orange" if c == highlight_bar else "blue" for c in fig["data"][0]["x"]] return fig
Custom chart to test using DatePicker with Parameter.
bar_with_highlight
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/custom_components/custom_charts/bar_custom.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/custom_components/custom_charts/bar_custom.py
Apache-2.0
def test_export_filtered_data(dash_br): """Test exporting filtered data. It is prefiltered in dashboard config.""" page_select( dash_br, page_path=cnst.FILTERS_PAGE_PATH, page_name=cnst.FILTERS_PAGE, ) # download files and compare it with base ones dash_br.multiple_click(button_path(), 1) check_exported_file_exists(f"{dash_br.download_path}/{cnst.FILTERED_CSV}") check_exported_file_exists(f"{dash_br.download_path}/{cnst.FILTERED_XLSX}") assert_files_equal(cnst.FILTERED_BASE_CSV, f"{dash_br.download_path}/{cnst.FILTERED_CSV}")
Test exporting filtered data. It is prefiltered in dashboard config.
test_export_filtered_data
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_actions.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_actions.py
Apache-2.0
def test_scatter_click_data_custom_action(dash_br): """Test custom action for changing data in card by interacting with graph.""" page_select( dash_br, page_name=cnst.FILTER_INTERACTIONS_PAGE, ) # click on the dot in the scatter graph and check card text values dash_br.click_at_coord_fractions(f"#{cnst.SCATTER_INTERACTIONS_ID} path:nth-of-type(20)", 0, 1) dash_br.wait_for_text_to_equal(f"#{cnst.CARD_INTERACTIONS_ID} p", "Scatter chart clicked data:") dash_br.wait_for_text_to_equal(f"#{cnst.CARD_INTERACTIONS_ID} h3", 'Species: "setosa"')
Test custom action for changing data in card by interacting with graph.
test_scatter_click_data_custom_action
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_actions.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_actions.py
Apache-2.0
def test_modebar(dash_br): """Check that modebar element exist for the chart.""" dash_br.multiple_click(f"a[href='{cnst.FILTERS_PAGE_PATH}']", 1) dash_br.wait_for_element(f"#{cnst.SCATTER_GRAPH_ID} .modebar-container div[id^='modebar']")
Check that modebar element exist for the chart.
test_modebar
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_charts.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_charts.py
Apache-2.0
def test_modebar_false(dash_br): """Check that modebar element disabled for the chart.""" dash_br.multiple_click(f"a[href='{cnst.FILTERS_PAGE_PATH}']", 1) graph_load_waiter(dash_br, cnst.BOX_GRAPH_ID) dash_br.wait_for_no_elements(f'div[id="{cnst.BOX_GRAPH_ID}"] .modebar-container div[id^="modebar"]')
Check that modebar element disabled for the chart.
test_modebar_false
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_charts.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_charts.py
Apache-2.0
def test_custom_dropdown(dash_br): """Testing setting up and filter of the custom dropdown.""" page_select( dash_br, page_name=cnst.CUSTOM_COMPONENTS_PAGE, ) # choose 'versicolor' value select_dropdown_value(dash_br, value=2, dropdown_id=cnst.CUSTOM_DROPDOWN_ID) check_graph_is_loading(dash_br, cnst.SCATTER_CUSTOM_COMPONENTS_ID) check_selected_dropdown( dash_br, dropdown_id=cnst.CUSTOM_DROPDOWN_ID, expected_selected_options=["versicolor"], )
Testing setting up and filter of the custom dropdown.
test_custom_dropdown
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_custom_components.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_custom_components.py
Apache-2.0
def test_custom_range_slider(dash_br): """Testing setting up and filter of the custom range slider.""" page_select( dash_br, page_name=cnst.CUSTOM_COMPONENTS_PAGE, ) dash_br.multiple_click(slider_value_path(elem_id=cnst.CUSTOM_RANGE_SLIDER_ID, value=4), 1) check_graph_is_loading(dash_br, graph_id=cnst.SCATTER_CUSTOM_COMPONENTS_ID) check_slider_value(dash_br, elem_id=cnst.CUSTOM_RANGE_SLIDER_ID, expected_start_value="4", expected_end_value="7")
Testing setting up and filter of the custom range slider.
test_custom_range_slider
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_custom_components.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_custom_components.py
Apache-2.0
def test_single_date(dash_br): """Tests that single datepicker as filter works correctly.""" accordion_select(dash_br, accordion_name=cnst.DATEPICKER_ACCORDION) page_select( dash_br, page_name=cnst.DATEPICKER_PAGE, ) # open datepicker calendar and choose date 17 May 2016 dash_br.multiple_click(f'button[id="{cnst.DATEPICKER_SINGLE_ID}"]', 1) dash_br.wait_for_element('div[data-calendar="true"]') dash_br.multiple_click('button[aria-label="17 May 2016"]', 1) dash_br.wait_for_text_to_equal(f'button[id="{cnst.DATEPICKER_SINGLE_ID}"]', "May 17, 2016") # check bar graph has bar with light blue color dash_br.wait_for_element(f"div[id='{cnst.BAR_POP_DATE_ID}'] path[style*='rgb(13, 142, 209)']:nth-of-type(1)") # check that date in the row is correct # we're using 'row_number=2' because the first row is a header dash_br.wait_for_text_to_equal( table_cell_value_path(table_id=cnst.TABLE_POP_DATE_ID, row_number=2, column_number=1), "2016-05-17T00:00:00" ) # check that we have only 1 row in the table # we're using 'expected_rows_num=2' because the first row is a header check_table_rows_number(dash_br, table_id=cnst.TABLE_POP_DATE_ID, expected_rows_num=2)
Tests that single datepicker as filter works correctly.
test_single_date
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_datepicker.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_datepicker.py
Apache-2.0
def test_single_date_param(dash_br): """Tests that single datepicker as parameter works correctly.""" accordion_select(dash_br, accordion_name=cnst.DATEPICKER_ACCORDION) page_select( dash_br, page_name=cnst.DATEPICKER_PARAMS_PAGE, ) # check that specific bar has blue color dash_br.wait_for_element(f"div[id='{cnst.BAR_CUSTOM_ID}'] g:nth-of-type(14) path[style*='(0, 0, 255)'") # open datepicker calendar and choose date 2 May 2018 dash_br.multiple_click(f'button[id="{cnst.DATEPICKER_PARAMS_ID}"]', 1) dash_br.wait_for_element('div[data-calendar="true"]') dash_br.multiple_click('button[aria-label="2 April 2018"]', 1) # check that specific bar change color from blue to orange dash_br.wait_for_element(f"div[id='{cnst.BAR_CUSTOM_ID}'] g:nth-of-type(14) path[style*='(255, 165, 0)'")
Tests that single datepicker as parameter works correctly.
test_single_date_param
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_datepicker.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_datepicker.py
Apache-2.0
def test_data_dynamic_parametrization(dash_br, cache, slider_id): """This test checks parametrized data loading and how it is working with and without cache.""" first_screen = f"{cache}_screen_first_test_data_dynamic_parametrization.png" second_screen = f"{cache}_screen_second_test_data_dynamic_parametrization.png" third_screen = f"{cache}_screen_third_test_data_dynamic_parametrization.png" accordion_select(dash_br, accordion_name=cnst.DYNAMIC_DATA_ACCORDION) page_select( dash_br, page_name=cnst.DYNAMIC_DATA_PAGE, ) # move slider to value '20' select_slider_handler(dash_br, elem_id=slider_id, value=2) callbacks_finish_waiter(dash_br) dash_br.driver.save_screenshot(first_screen) # move slider to value '60' select_slider_handler(dash_br, elem_id=slider_id, value=6) callbacks_finish_waiter(dash_br) dash_br.driver.save_screenshot(second_screen) # move slider to value '20' select_slider_handler(dash_br, elem_id=slider_id, value=2) callbacks_finish_waiter(dash_br) dash_br.driver.save_screenshot(third_screen) # first and second screens should be different assert_image_not_equal(first_screen, second_screen) if cache == "cached": # first and third screens should be the same assert_pixelmatch(first_screen, third_screen) if cache == "not_cached": # first and third screens should be different assert_image_not_equal(first_screen, third_screen) for file in Path(".").glob("*test_data_dynamic_parametrization*"): file.unlink()
This test checks parametrized data loading and how it is working with and without cache.
test_data_dynamic_parametrization
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_dynamic_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_dynamic_data.py
Apache-2.0
def test_numerical_filters(dash_br): """Initial selected value for slider is 6. Initial selected values for range_slider are 6 and 7.""" accordion_select(dash_br, accordion_name=cnst.DYNAMIC_DATA_ACCORDION) page_select( dash_br, page_name=cnst.DYNAMIC_FILTERS_NUMERICAL_PAGE, ) # Set "min" option to "5" for the dynamic data and simulate refreshing the page page_select( dash_br, page_name=cnst.DYNAMIC_FILTERS_CATEGORICAL_PAGE, ) dynamic_filters_data_config_manipulation(key="min", set_value=5) page_select( dash_br, page_name=cnst.DYNAMIC_FILTERS_NUMERICAL_PAGE, ) # Check slider value check_slider_value(dash_br, expected_end_value="6", elem_id=cnst.SLIDER_DYNAMIC_FILTER_ID) # Check range slider values check_slider_value( dash_br, elem_id=cnst.RANGE_SLIDER_DYNAMIC_FILTER_ID, expected_start_value="6", expected_end_value="7" ) # Change "min" slider and range slider values to "5" dash_br.multiple_click(slider_value_path(elem_id=cnst.SLIDER_DYNAMIC_FILTER_ID, value=1), 1) check_graph_is_loading(dash_br, graph_id=cnst.BAR_DYNAMIC_FILTER_ID) dash_br.multiple_click(slider_value_path(elem_id=cnst.RANGE_SLIDER_DYNAMIC_FILTER_ID, value=1), 1) check_graph_is_loading(dash_br, graph_id=cnst.BAR_DYNAMIC_FILTER_ID) # Check slider value check_slider_value(dash_br, expected_end_value="5", elem_id=cnst.SLIDER_DYNAMIC_FILTER_ID) # Check range slider values check_slider_value( dash_br, elem_id=cnst.RANGE_SLIDER_DYNAMIC_FILTER_ID, expected_start_value="5", expected_end_value="7" ) # Set "min" option to "6" for the dynamic data and simulate refreshing the page page_select( dash_br, page_name=cnst.DYNAMIC_FILTERS_CATEGORICAL_PAGE, ) dynamic_filters_data_config_manipulation(key="min", set_value=6) page_select( dash_br, page_name=cnst.DYNAMIC_FILTERS_NUMERICAL_PAGE, ) # Check slider value check_slider_value(dash_br, expected_end_value="5", elem_id=cnst.SLIDER_DYNAMIC_FILTER_ID) # Check range slider values check_slider_value( dash_br, elem_id=cnst.RANGE_SLIDER_DYNAMIC_FILTER_ID, expected_start_value="5", expected_end_value="7" )
Initial selected value for slider is 6. Initial selected values for range_slider are 6 and 7.
test_numerical_filters
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_dynamic_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_dynamic_data.py
Apache-2.0
def test_dynamic_data_parameter_refresh_dynamic_filters(dash_br): """Test automatic refreshing of the dynamic filters and their targets when the data_frame parameter is changed. Page configuration includes dynamic data scatter chart which controls by slider parameter and static data scatter which has 'virginica' data only. """ accordion_select(dash_br, accordion_name=cnst.DYNAMIC_DATA_ACCORDION.upper()) page_select( dash_br, page_name=cnst.DYNAMIC_DATA_DF_PARAMETER_PAGE, ) # select 'virginica' value and check scatter graph point color dash_br.multiple_click(categorical_components_value_path(elem_id=cnst.RADIOITEMS_FILTER_DF_PARAMETER, value=3), 1) dash_br.wait_for_element(f"div[id='{cnst.SCATTER_DF_PARAMETER}'] path[style*='rgb(57, 73, 171)']:nth-of-type(1)") dash_br.wait_for_element(f"div[id='{cnst.SCATTER_DF_STATIC}'] path[style*='rgb(57, 73, 171)']:nth-of-type(1)") # select '10' points for slider which is showing only 'setosa' data and check that scatter graph # with dynamic data is empty and that scatter graph with static data is the same select_slider_handler(dash_br, elem_id=cnst.SLIDER_DF_PARAMETER, value=2) check_graph_is_loading(dash_br, graph_id=cnst.SCATTER_DF_STATIC) check_graph_is_empty(dash_br, graph_id=cnst.SCATTER_DF_PARAMETER) dash_br.wait_for_element(f"div[id='{cnst.SCATTER_DF_STATIC}'] path[style*='rgb(57, 73, 171)']:nth-of-type(1)") # Check that "setosa" and "virginica" is the only listed options check_selected_categorical_component( dash_br, component_id=cnst.RADIOITEMS_FILTER_DF_PARAMETER, options_value_status=[ {"value": 1, "selected": False, "value_name": "setosa"}, {"value": 2, "selected": True, "value_name": "virginica"}, ], ) # simulate refreshing the page to check if filters and graphs stays the same page_select(dash_br, page_name=cnst.DYNAMIC_FILTERS_CATEGORICAL_PAGE) page_select(dash_br, page_name=cnst.DYNAMIC_DATA_DF_PARAMETER_PAGE) # check that dynamic data graph is empty and static data graph stays the same check_graph_is_empty(dash_br, graph_id=cnst.SCATTER_DF_PARAMETER) dash_br.wait_for_element(f"div[id='{cnst.SCATTER_DF_STATIC}'] path[style*='rgb(57, 73, 171)']:nth-of-type(1)") # Check that "setosa" and "virginica" is the only listed options check_selected_categorical_component( dash_br, component_id=cnst.RADIOITEMS_FILTER_DF_PARAMETER, options_value_status=[ {"value": 1, "selected": False, "value_name": "setosa"}, {"value": 2, "selected": True, "value_name": "virginica"}, ], ) # select 'setosa' value and check dynamic scatter graph point color and that static scatter graph is empty dash_br.multiple_click(categorical_components_value_path(elem_id=cnst.RADIOITEMS_FILTER_DF_PARAMETER, value=1), 1) dash_br.wait_for_element(f"div[id='{cnst.SCATTER_DF_PARAMETER}'] path[style*='rgb(0, 180, 255)']:nth-of-type(1)") check_graph_is_empty(dash_br, graph_id=cnst.SCATTER_DF_STATIC) # Check that "setosa" and "virginica" is the only listed options check_selected_categorical_component( dash_br, component_id=cnst.RADIOITEMS_FILTER_DF_PARAMETER, options_value_status=[ {"value": 1, "selected": True, "value_name": "setosa"}, {"value": 2, "selected": False, "value_name": "virginica"}, ], )
Test automatic refreshing of the dynamic filters and their targets when the data_frame parameter is changed. Page configuration includes dynamic data scatter chart which controls by slider parameter and static data scatter which has 'virginica' data only.
test_dynamic_data_parameter_refresh_dynamic_filters
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_dynamic_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_dynamic_data.py
Apache-2.0
def test_dropdown_homepage(dash_br): """Test dropdown filter for the homepage.""" graph_load_waiter(dash_br, graph_id=cnst.AREA_GRAPH_ID) # select 'setosa' select_dropdown_value(dash_br, value=2, dropdown_id=cnst.DROPDOWN_FILTER_HOMEPAGEPAGE) check_graph_is_loading(dash_br, cnst.AREA_GRAPH_ID)
Test dropdown filter for the homepage.
test_dropdown_homepage
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_filters.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_filters.py
Apache-2.0
def test_filter_and_parameter(dash_br): """Testing filter and parameter on the same page.""" page_select( dash_br, page_name=cnst.FILTER_AND_PARAM_PAGE, ) # check that title of the graph is 'blue' dash_br.wait_for_text_to_equal(".gtitle", "blue") # select 'red' value in the radio item parameter selector and the title of the graph dash_br.multiple_click(categorical_components_value_path(elem_id=cnst.RADIO_ITEMS_FILTER_AND_PARAM, value=1), 1) check_graph_is_loading(dash_br, graph_id=cnst.BOX_FILTER_AND_PARAM_ID) dash_br.wait_for_text_to_equal(".gtitle", "red") # select 'setosa' in dropdown filter selector select_dropdown_value(dash_br, value=1, dropdown_id=cnst.DROPDOWN_FILTER_AND_PARAM) check_graph_is_loading(dash_br, graph_id=cnst.BOX_FILTER_AND_PARAM_ID)
Testing filter and parameter on the same page.
test_filter_and_parameter
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_filter_and_param_config.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_filter_and_param_config.py
Apache-2.0
def test_interactions(dash_br): """Test filter interactions between two graphs.""" page_select( dash_br, page_name=cnst.FILTER_INTERACTIONS_PAGE, ) # click on the 'setosa' data in scatter graph and check result for box graph dash_br.click_at_coord_fractions(f"#{cnst.SCATTER_INTERACTIONS_ID} path:nth-of-type(20)", 0, 1) check_graph_is_loading(dash_br, cnst.BOX_INTERACTIONS_ID) dash_br.wait_for_element(f"div[id='{cnst.BOX_INTERACTIONS_ID}'] path[style*='rgb(0, 180, 255)']:nth-of-type(14)") # select 'setosa' in dropdown filter and check result for box graph select_dropdown_value(dash_br, value=2, dropdown_id=cnst.DROPDOWN_INTER_FILTER) check_graph_is_loading(dash_br, cnst.BOX_INTERACTIONS_ID) dash_br.wait_for_element(f"div[id='{cnst.BOX_INTERACTIONS_ID}'] path[style*='rgb(0, 180, 255)']:nth-of-type(14)") # select 'red' title for the box graph dash_br.multiple_click(categorical_components_value_path(elem_id=cnst.RADIOITEM_INTER_PARAM, value=1), 1) check_graph_is_loading(dash_br, cnst.BOX_INTERACTIONS_ID) dash_br.wait_for_text_to_equal(".gtitle", "red")
Test filter interactions between two graphs.
test_interactions
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_interactions.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_interactions.py
Apache-2.0
def test_pages(dash_br): """Test of going from homepage to filters page and back using card link.""" # open homepage and check title text graph_load_waiter(dash_br, graph_id=cnst.AREA_GRAPH_ID) dash_br.wait_for_text_to_equal(page_title_path(), cnst.HOME_PAGE) # open filters page using card link and check title text dash_br.multiple_click(nav_card_link_path(href=cnst.FILTERS_PAGE_PATH), 1) graph_load_waiter(dash_br, graph_id=cnst.SCATTER_GRAPH_ID) dash_br.wait_for_text_to_equal(page_title_path(), text=cnst.FILTERS_PAGE) # open homepage using card link and check title text dash_br.multiple_click(nav_card_link_path(href=cnst.HOME_PAGE_PATH), 1) graph_load_waiter(dash_br, graph_id=cnst.AREA_GRAPH_ID) dash_br.wait_for_text_to_equal(page_title_path(), cnst.HOME_PAGE)
Test of going from homepage to filters page and back using card link.
test_pages
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_pages.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_pages.py
Apache-2.0
def test_active_accordion(dash_br): """Test opening page from card link and checking appropriate accordion is opened.""" graph_load_waiter(dash_br, graph_id=cnst.AREA_GRAPH_ID) dash_br.multiple_click(nav_card_link_path(href=f"/{cnst.DATEPICKER_PAGE}"), 1) graph_load_waiter(dash_br, graph_id=cnst.BAR_POP_DATE_ID) dash_br.wait_for_text_to_equal(page_title_path(), cnst.DATEPICKER_PAGE) check_accordion_active(dash_br, accordion_name=cnst.DATEPICKER_ACCORDION.upper())
Test opening page from card link and checking appropriate accordion is opened.
test_active_accordion
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_pages.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_pages.py
Apache-2.0
def test_404_page(dash_br): """Test opening page that doesn't exist.""" graph_load_waiter(dash_br, graph_id=cnst.AREA_GRAPH_ID) dash_br.multiple_click(nav_card_link_path(href=cnst.PAGE_404_PATH), 1) dash_br.wait_for_text_to_equal("a[class='mt-4 btn btn-primary']", "Take me home") dash_br.multiple_click("a[class='mt-4 btn btn-primary']", 1) graph_load_waiter(dash_br, graph_id=cnst.AREA_GRAPH_ID) dash_br.wait_for_text_to_equal(page_title_path(), cnst.HOME_PAGE)
Test opening page that doesn't exist.
test_404_page
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_pages.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_pages.py
Apache-2.0
def test_sliders_state(dash_br): """Verify that sliders values stays the same after page reload.""" page_select( dash_br, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # change slider value to '0.4' dash_br.multiple_click(slider_value_path(elem_id=cnst.SLIDER_PARAMETERS, value=3), 1) check_graph_is_loading(dash_br, graph_id=cnst.BAR_GRAPH_ID) # change range slider max value to '7' dash_br.multiple_click(slider_value_path(elem_id=cnst.RANGE_SLIDER_PARAMETERS, value=4), 1) check_graph_is_loading(dash_br, graph_id=cnst.HISTOGRAM_GRAPH_ID) # refresh the page page_select(dash_br, page_path=cnst.FILTERS_PAGE_PATH, page_name=cnst.FILTERS_PAGE) page_select( dash_br, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # check that slider value still '0.4' check_slider_value(dash_br, expected_end_value="0.4", elem_id=cnst.SLIDER_PARAMETERS) # check that range slider max value still '7' check_slider_value(dash_br, elem_id=cnst.RANGE_SLIDER_PARAMETERS, expected_start_value="4", expected_end_value="7")
Verify that sliders values stays the same after page reload.
test_sliders_state
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_parameters.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_parameters.py
Apache-2.0
def test_none_parameter(dash_br): """Test if one of the parameter values is NONE.""" page_select( dash_br, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # check that specific bar has blue color dash_br.wait_for_element( f"div[id='{cnst.BAR_GRAPH_ID}'] g:nth-of-type(3) g:nth-of-type(45) path[style*='(0, 0, 255)'" ) # choose NONE parameter select_dropdown_value(dash_br, value=1, dropdown_id=cnst.DROPDOWN_PARAMETERS_TWO) check_graph_is_loading(dash_br, graph_id=cnst.BAR_GRAPH_ID) # check that specific bar has cerulean blue color dash_br.wait_for_element( f"div[id='{cnst.BAR_GRAPH_ID}'] g:nth-of-type(3) g:nth-of-type(45) path[style*='(57, 73, 171)'" )
Test if one of the parameter values is NONE.
test_none_parameter
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_parameters.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_parameters.py
Apache-2.0
def test_parameters_title(chrome_driver, dash_br): """Tests that graph title is changing by parameter independently for every user.""" # select parameters page for the first user page_select_selenium( chrome_driver, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # select parameters page for the second user page_select( dash_br, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # set bar graph title for the first user as 'red' WebDriverWait(chrome_driver, cnst.SELENIUM_WAITERS_TIMEOUT).until( expected_conditions.element_to_be_clickable( (By.CSS_SELECTOR, categorical_components_value_path(elem_id=cnst.RADIO_ITEMS_PARAMETERS_ONE, value=1)) ) ).click() check_graph_is_loading_selenium(chrome_driver, graph_id=cnst.BAR_GRAPH_ID) WebDriverWait(chrome_driver, cnst.SELENIUM_WAITERS_TIMEOUT).until( expected_conditions.text_to_be_present_in_element((By.CSS_SELECTOR, ".gtitle"), "red") ) # change slider value from the second user and check that bar graph title is default ('blue') dash_br.multiple_click(slider_value_path(elem_id=cnst.SLIDER_PARAMETERS, value=3), 1) check_graph_is_loading(dash_br, graph_id=cnst.BAR_GRAPH_ID) dash_br.wait_for_text_to_equal(".gtitle", "blue")
Tests that graph title is changing by parameter independently for every user.
test_parameters_title
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_statelessness.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_statelessness.py
Apache-2.0
def test_theme_color(chrome_driver, dash_br): """Tests that theme color is changing independently for every user.""" # select parameters page for the first user page_select_selenium( chrome_driver, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # select parameters page for the second user page_select( dash_br, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # change theme to dark for the first user WebDriverWait(chrome_driver, cnst.SELENIUM_WAITERS_TIMEOUT).until( expected_conditions.element_to_be_clickable((By.CSS_SELECTOR, theme_toggle_path())) ).click() check_graph_color_selenium(chrome_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) WebDriverWait(chrome_driver, cnst.SELENIUM_WAITERS_TIMEOUT).until( expected_conditions.presence_of_element_located((By.CSS_SELECTOR, f"html[data-bs-theme='{cnst.THEME_DARK}']")) ) # change slider value for the second user and check that theme is default ('light') dash_br.multiple_click(slider_value_path(elem_id=cnst.SLIDER_PARAMETERS, value=3), 1) check_graph_is_loading(dash_br, graph_id=cnst.BAR_GRAPH_ID) check_graph_color(dash_br, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br, color=cnst.THEME_LIGHT)
Tests that theme color is changing independently for every user.
test_theme_color
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_statelessness.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_statelessness.py
Apache-2.0
def test_export_action(chrome_driver, dash_br): """Tests that export action is giving different results according to what every user filters.""" # select filters page for the first user page_select_selenium( chrome_driver, page_path=cnst.FILTERS_PAGE_PATH, page_name=cnst.FILTERS_PAGE, ) # select filters page for the second user page_select( dash_br, page_path=cnst.FILTERS_PAGE_PATH, page_name=cnst.FILTERS_PAGE, ) # change slider values for scatter graph for the first user WebDriverWait(chrome_driver, cnst.SELENIUM_WAITERS_TIMEOUT).until( expected_conditions.element_to_be_clickable( (By.CSS_SELECTOR, slider_value_path(elem_id=cnst.SLIDER_FILTER_FILTERS_PAGE, value=3)) ) ).click() check_graph_is_loading_selenium(chrome_driver, graph_id=cnst.SCATTER_GRAPH_ID) # export scatter data for the second user without changing anything and check if data is correct dash_br.multiple_click(button_path(), 1) check_exported_file_exists(f"{dash_br.download_path}/{cnst.FILTERED_CSV}") check_exported_file_exists(f"{dash_br.download_path}/{cnst.FILTERED_XLSX}") assert_files_equal(cnst.FILTERED_BASE_CSV, f"{dash_br.download_path}/{cnst.FILTERED_CSV}")
Tests that export action is giving different results according to what every user filters.
test_export_action
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_statelessness.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_statelessness.py
Apache-2.0
def test_interactions(dash_br): """Test filter interaction between table and line graph.""" accordion_select(dash_br, accordion_name=cnst.AG_GRID_ACCORDION) page_select( dash_br, page_name=cnst.TABLE_INTERACTIONS_PAGE, ) # click on Bosnia and Herzegovina country dash_br.multiple_click( f"div[id='{cnst.TABLE_INTERACTIONS_ID}'] tr:nth-of-type(5) div[class='unfocused selectable dash-cell-value']", 1 ) check_graph_is_loading(dash_br, cnst.LINE_INTERACTIONS_ID) check_table_rows_number(dash_br, table_id=cnst.TABLE_INTERACTIONS_ID, expected_rows_num=31)
Test filter interaction between table and line graph.
test_interactions
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_table.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_table.py
Apache-2.0
def test_interactions(dash_br): """Test filter interaction between ag_grid and line graph.""" accordion_select(dash_br, accordion_name=cnst.AG_GRID_ACCORDION) page_select( dash_br, page_name=cnst.TABLE_AG_GRID_INTERACTIONS_PAGE, ) # check if column 'country' is available dash_br.wait_for_element(f"div[id='{cnst.TABLE_AG_GRID_INTERACTIONS_ID}'] div:nth-of-type(1) div[col-id='country']") # click on Bosnia and Herzegovina country dash_br.multiple_click( f"div[id='{cnst.TABLE_AG_GRID_INTERACTIONS_ID}'] div[class='ag-center-cols-container'] " f"div:nth-of-type(4) div[col-id='country']", 1, ) check_graph_is_loading(dash_br, cnst.LINE_AG_GRID_INTERACTIONS_ID)
Test filter interaction between ag_grid and line graph.
test_interactions
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_table_ag_grid.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_table_ag_grid.py
Apache-2.0
def test_themes(dash_br_driver, dashboard_id): """Test switching the themes and checking the graph and theme color.""" page_select(dash_br_driver, page_path=cnst.FILTERS_PAGE_PATH, page_name=cnst.FILTERS_PAGE) if dashboard_id == cnst.DASHBOARD_DEFAULT: # dashboard loaded with light theme check_graph_color(dash_br_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br_driver, color=cnst.THEME_LIGHT) # switch theme to dark dash_br_driver.multiple_click(theme_toggle_path(), 1) check_graph_color(dash_br_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br_driver, color=cnst.THEME_DARK) # switch theme back to light dash_br_driver.multiple_click(theme_toggle_path(), 1) check_graph_color(dash_br_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br_driver, color=cnst.THEME_LIGHT) else: # dashboard loaded with dark theme check_graph_color(dash_br_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br_driver, color=cnst.THEME_DARK) # switch theme to light dash_br_driver.multiple_click(theme_toggle_path(), 1) check_graph_color(dash_br_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br_driver, color=cnst.THEME_LIGHT) # switch theme back to dark dash_br_driver.multiple_click(theme_toggle_path(), 1) check_graph_color(dash_br_driver, style_background=cnst.STYLE_TRANSPARENT, color=cnst.RGBA_TRANSPARENT) check_theme_color(dash_br_driver, color=cnst.THEME_DARK)
Test switching the themes and checking the graph and theme color.
test_themes
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_themes.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_themes.py
Apache-2.0
def test_themes_page_change(dash_br_driver, dashboard_id): """Test switching themes after reloading the page with two tabs.""" page_select( dash_br_driver, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) def _logic(style_background, graph_color, theme_color): check_graph_color(dash_br_driver, style_background=style_background, color=graph_color) check_theme_color(dash_br_driver, color=theme_color) # switch to the second tab dash_br_driver.multiple_click(tab_path(tab_id=cnst.PARAMETERS_SUB_TAB_ID, classname="nav-link"), 1) check_graph_color(dash_br_driver, style_background=style_background, color=graph_color) # simulate reloading the page page_select( dash_br_driver, page_path=cnst.FILTERS_PAGE_PATH, page_name=cnst.FILTERS_PAGE, ) page_select( dash_br_driver, page_path=cnst.PARAMETERS_PAGE_PATH, page_name=cnst.PARAMETERS_PAGE, ) # check that second tab still active dash_br_driver.wait_for_text_to_equal( tab_path(tab_id=cnst.PARAMETERS_SUB_TAB_ID, classname="active nav-link"), cnst.PARAMETERS_SUB_TAB_CONTAINER_TWO, ) # check that graph and theme color is the same as before page reload check_graph_color(dash_br_driver, style_background=style_background, color=graph_color) check_theme_color(dash_br_driver, color=theme_color) if dashboard_id == cnst.DASHBOARD_DEFAULT: # dashboard switched to dark theme dash_br_driver.multiple_click(theme_toggle_path(), 1) _logic(style_background=cnst.STYLE_TRANSPARENT, graph_color=cnst.RGBA_TRANSPARENT, theme_color=cnst.THEME_DARK) else: # dashboard switched to light theme dash_br_driver.multiple_click(theme_toggle_path(), 1) _logic(style_background=cnst.STYLE_TRANSPARENT, graph_color=cnst.RGBA_TRANSPARENT, theme_color=cnst.THEME_LIGHT)
Test switching themes after reloading the page with two tabs.
test_themes_page_change
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_dom_elements/test_themes.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_dom_elements/test_themes.py
Apache-2.0
def image_assertion(func): """Wait until all callbacks are finished and compare screenshots.""" def wrapper(dash_br, request): result = func(dash_br) callbacks_finish_waiter(dash_br) time.sleep(1) # to finish page loading result_image_path, expected_image_path = make_screenshot_and_paths(dash_br.driver, request.node.name) assert_image_equal(result_image_path, expected_image_path) return result return wrapper
Wait until all callbacks are finished and compare screenshots.
image_assertion
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_screenshots/test_screenshots.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_screenshots/test_screenshots.py
Apache-2.0
def test_collapsible_subcontainers_flex(dash_br): """Test that after closing subcontainer the parent container is still open.""" accordion_select(dash_br, accordion_name=cnst.LAYOUT_ACCORDION) page_select(dash_br, page_name=cnst.COLLAPSIBLE_CONTAINERS_FLEX) # close subcontainer dash_br.multiple_click("#flex_subcontainer_icon", 1) # move mouse to different location of the screen to prevent flakiness because of tooltip. dash_br.click_at_coord_fractions(theme_toggle_path(), 0, 1) dash_br.wait_for_no_elements('span[aria-describedby*="tooltip"]')
Test that after closing subcontainer the parent container is still open.
test_collapsible_subcontainers_flex
python
mckinsey/vizro
vizro-core/tests/e2e/vizro/test_screenshots/test_screenshots.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/e2e/vizro/test_screenshots/test_screenshots.py
Apache-2.0
def _strip_keys(object, keys): """Strips from a JSON `object` all entries where the key is in keys, regardless of how deeply it's nested.""" if isinstance(object, dict): object = {key: _strip_keys(value, keys) for key, value in object.items() if key not in keys} elif isinstance(object, list): object = [_strip_keys(item, keys) for item in object] return object
Strips from a JSON `object` all entries where the key is in keys, regardless of how deeply it's nested.
_strip_keys
python
mckinsey/vizro
vizro-core/tests/tests_utils/asserts.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/asserts.py
Apache-2.0
def assert_component_equal(left, right, *, keys_to_strip=None): """Checks that the `left` and `right` Dash components are equal, ignoring `keys_to_strip`. Args: left: Dash component to compare. right: Dash component to compare. keys_to_strip: Keys to strip from the component dictionary before comparison. If keys_to_strip is set to STRIP_ALL then only the type and namespace of component will be compared, similar to doing isinstance. Examples: >>> from dash import html >>> assert_component_equal(html.Div(), html.Div()) >>> assert_component_equal(html.Div(id="a"), html.Div(), keys_to_strip={"id"}) >>> assert_component_equal(html.Div([html.P(), html.P()], id="a"), html.Div(id="a"), keys_to_strip={"children"}) >>> assert_component_equal(html.Div(html.P(), className="blah", id="a"), html.Div(), keys_to_strip=STRIP_ALL) """ keys_to_strip = keys_to_strip or {} if keys_to_strip is STRIP_ALL: # Remove all properties from the component dictionary, leaving just "type" and "namespace" behind. keys_to_strip = {"props"} left = _strip_keys(_component_to_dict(left), keys_to_strip) right = _strip_keys(_component_to_dict(right), keys_to_strip) assert left == right
Checks that the `left` and `right` Dash components are equal, ignoring `keys_to_strip`. Args: left: Dash component to compare. right: Dash component to compare. keys_to_strip: Keys to strip from the component dictionary before comparison. If keys_to_strip is set to STRIP_ALL then only the type and namespace of component will be compared, similar to doing isinstance. Examples: >>> from dash import html >>> assert_component_equal(html.Div(), html.Div()) >>> assert_component_equal(html.Div(id="a"), html.Div(), keys_to_strip={"id"}) >>> assert_component_equal(html.Div([html.P(), html.P()], id="a"), html.Div(id="a"), keys_to_strip={"children"}) >>> assert_component_equal(html.Div(html.P(), className="blah", id="a"), html.Div(), keys_to_strip=STRIP_ALL)
assert_component_equal
python
mckinsey/vizro
vizro-core/tests/tests_utils/asserts.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/asserts.py
Apache-2.0
def make_screenshot_and_paths(driver, request_node_name): """Creates image paths and makes screenshot during the test run.""" result_image_path = f"{request_node_name}_branch.png" expected_image_path = ( f"tests/e2e/screenshots/{os.getenv('BROWSER', 'chrome')}/{request_node_name.replace('test', 'main')}.png" ) driver.save_screenshot(result_image_path) return result_image_path, expected_image_path
Creates image paths and makes screenshot during the test run.
make_screenshot_and_paths
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/asserts.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/asserts.py
Apache-2.0
def assert_image_equal(result_image_path, expected_image_path): """Comparison logic and diff files creation.""" expected_image_name = Path(expected_image_path).name try: assert_pixelmatch(result_image_path, expected_image_path) Path(result_image_path).unlink() except subprocess.CalledProcessError as err: shutil.copy(result_image_path, expected_image_name) shutil.copy(expected_image_path, f"{expected_image_name.replace('.', '_old.')}") Path(result_image_path).unlink() raise Exception(err.stdout)
Comparison logic and diff files creation.
assert_image_equal
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/asserts.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/asserts.py
Apache-2.0
def browser_console_warnings_checker(log_level, log_levels): """Whitelist for browser console errors and its assert.""" assert_that( log_level["message"], any_of( contains_string(cnst.INVALID_PROP_ERROR), contains_string(cnst.REACT_NOT_RECOGNIZE_ERROR), contains_string(cnst.SCROLL_ZOOM_ERROR), contains_string(cnst.REACT_RENDERING_ERROR), contains_string(cnst.UNMOUNT_COMPONENTS_ERROR), contains_string(cnst.WILLMOUNT_RENAMED_WARNING), contains_string(cnst.WILLRECEIVEPROPS_RENAMED_WARNING), contains_string(cnst.READPIXELS_WARNING), contains_string(cnst.WEBGL_WARNING), ), reason=f"Error outoput: {log_levels}", )
Whitelist for browser console errors and its assert.
browser_console_warnings_checker
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/checkers.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/checkers.py
Apache-2.0
def check_graph_is_loading_selenium(driver, graph_id, timeout=cnst.SELENIUM_WAITERS_TIMEOUT): """Waiting for graph to start reloading for pure selenium.""" WebDriverWait(driver, timeout).until( expected_conditions.presence_of_element_located( (By.CSS_SELECTOR, f"div[id='{graph_id}'][data-dash-is-loading='true']") ) ) graph_load_waiter_selenium(driver, graph_id, timeout)
Waiting for graph to start reloading for pure selenium.
check_graph_is_loading_selenium
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/checkers.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/checkers.py
Apache-2.0
def check_selected_categorical_component(driver, component_id, options_value_status): """Checks what selected and what is not for checklist and radio items. Args: driver: dash_br fixture component_id: id of checklist or radio items options_value_status: list of dicts with the next syntax [{ "value": int, number of the value inside dom structure, "selected": bool, checks if value selected or not, "value_name": str, component value name, }] """ values = driver.find_elements(f"div[id='{component_id}'] div") assert_that(len(values), equal_to(len(options_value_status))) for option in options_value_status: driver.wait_for_text_to_equal( categorical_components_value_name_path(elem_id=component_id, value=option["value"]), option["value_name"] ) status = driver.find_element(categorical_components_value_path(elem_id=component_id, value=option["value"])) assert_that(status.is_selected(), equal_to(option["selected"]))
Checks what selected and what is not for checklist and radio items. Args: driver: dash_br fixture component_id: id of checklist or radio items options_value_status: list of dicts with the next syntax [{ "value": int, number of the value inside dom structure, "selected": bool, checks if value selected or not, "value_name": str, component value name, }]
check_selected_categorical_component
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/checkers.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/checkers.py
Apache-2.0
def accordion_select(driver, accordion_name): """Selecting accordion and checking if it is active.""" accordion_name = accordion_name.upper() click_element_by_xpath_selenium(driver, f"//button[text()='{accordion_name}']") check_accordion_active(driver, accordion_name) # to let accordion open time.sleep(1)
Selecting accordion and checking if it is active.
accordion_select
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/navigation.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/navigation.py
Apache-2.0
def page_select(driver, page_name, graph_check=True, page_path=None): """Selecting page and checking if it has proper title.""" page_path = page_path if page_path else f"/{page_name}" driver.multiple_click(f"a[href='{page_path}']", 1) driver.wait_for_contains_text(page_title_path(), page_name) if graph_check: driver.wait_for_element("div[class='dash-graph'] path[class='xtick ticks crisp']")
Selecting page and checking if it has proper title.
page_select
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/navigation.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/navigation.py
Apache-2.0
def page_select_selenium(driver, page_path, page_name, timeout=cnst.SELENIUM_WAITERS_TIMEOUT, graph_check=True): """Selecting page and checking if it has proper title for pure selenium.""" WebDriverWait(driver, timeout).until( expected_conditions.element_to_be_clickable((By.CSS_SELECTOR, f"a[href='{page_path}']")) ).click() WebDriverWait(driver, timeout).until( expected_conditions.text_to_be_present_in_element((By.CSS_SELECTOR, page_title_path()), page_name) ) if graph_check: WebDriverWait(driver, timeout).until( expected_conditions.presence_of_element_located( (By.CSS_SELECTOR, "div[class='dash-graph'] path[class='xtick ticks crisp']") ) )
Selecting page and checking if it has proper title for pure selenium.
page_select_selenium
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/navigation.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/navigation.py
Apache-2.0
def select_dropdown_value(driver, value, dropdown_id, multi=True): """Steps to select value in dropdown.""" dropdown_path = f"div[id='{dropdown_id}']" if multi: driver.multiple_click(f"{dropdown_path} .Select-clear", 1) driver.multiple_click(f"{dropdown_path} .Select-arrow", 1) driver.multiple_click(f"{dropdown_path} .ReactVirtualized__Grid__innerScrollContainer div:nth-of-type({value})", 1)
Steps to select value in dropdown.
select_dropdown_value
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/navigation.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/navigation.py
Apache-2.0
def graph_load_waiter_selenium(driver, graph_id, timeout=cnst.SELENIUM_WAITERS_TIMEOUT): """Waiting for graph's x-axis to appear for pure selenium.""" WebDriverWait(driver, timeout).until( expected_conditions.presence_of_element_located( (By.CSS_SELECTOR, f"div[id='{graph_id}'] path[class='xtick ticks crisp']") ) )
Waiting for graph's x-axis to appear for pure selenium.
graph_load_waiter_selenium
python
mckinsey/vizro
vizro-core/tests/tests_utils/e2e/vizro/waiters.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/tests_utils/e2e/vizro/waiters.py
Apache-2.0
def managers_one_page_two_graphs_with_dynamic_data(box_chart_dynamic_data_frame, scatter_chart_dynamic_data_frame): """Instantiates a simple model_manager and data_manager with a page, two graph models and the button component.""" vm.Page( id="test_page", title="My first dashboard", components=[ vm.Graph(id="box_chart", figure=box_chart_dynamic_data_frame), vm.Graph(id="scatter_chart", figure=scatter_chart_dynamic_data_frame), vm.Button(id="button"), ], ) Vizro._pre_build()
Instantiates a simple model_manager and data_manager with a page, two graph models and the button component.
managers_one_page_two_graphs_with_dynamic_data
python
mckinsey/vizro
vizro-core/tests/unit/vizro/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/conftest.py
Apache-2.0
def page_actions_builtin_controls(standard_px_chart): """Instantiates managers with one page that contains filter, parameter, and filter_interaction actions.""" vm.Page( title="title", components=[ vm.Graph( id="graph_1", figure=standard_px_chart, actions=[filter_interaction(id="graph_filter_interaction", targets=["graph_2"])], ), vm.Graph(id="graph_2", figure=standard_px_chart), ], controls=[ vm.Filter(id="filter", column="continent", selector=vm.Dropdown(id="filter_selector")), vm.Parameter( id="parameter", targets=["graph_1.x"], selector=vm.Checklist( id="parameter_selector", options=["lifeExp", "gdpPercap", "pop"], ), ), ], ) Vizro._pre_build() return { "_controls": { "filters": [ State("filter_selector", "value"), ], "parameters": [ State("parameter_selector", "value"), ], "filter_interaction": [ {"clickData": State("graph_1", "clickData"), "modelID": State("graph_1", "id")}, ], } }
Instantiates managers with one page that contains filter, parameter, and filter_interaction actions.
page_actions_builtin_controls
python
mckinsey/vizro
vizro-core/tests/unit/vizro/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/conftest.py
Apache-2.0
def manager_for_testing_actions_output_input_prop(ag_grid_with_id): """Instantiates the model_manager using a Dropdown (has default input and output properties).""" # We have to use one of the selectors as the known-model as currently only the selectors have both # input and output properties defined. Therefore, the configuration currently requires components and controls. vm.Page( id="test_page", title="My first dashboard", components=[ vm.Button(id="known_model_with_no_default_props"), vm.AgGrid(id="known_ag_grid_id", figure=ag_grid_with_id), ], controls=[vm.Filter(column="continent", selector=vm.Dropdown(id="known_dropdown_filter_id"))], ) Vizro._pre_build()
Instantiates the model_manager using a Dropdown (has default input and output properties).
manager_for_testing_actions_output_input_prop
python
mckinsey/vizro
vizro-core/tests/unit/vizro/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/conftest.py
Apache-2.0
def managers_one_page_two_graphs_one_button(box_chart, scatter_chart): """Instantiates a simple model_manager and data_manager with a page, two graph models and the button component.""" vm.Page( id="test_page", title="My first dashboard", components=[ vm.Graph(id="box_chart", figure=box_chart), vm.Graph(id="scatter_chart", figure=scatter_chart), vm.Button(id="button"), ], ) Vizro._pre_build()
Instantiates a simple model_manager and data_manager with a page, two graph models and the button component.
managers_one_page_two_graphs_one_button
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/conftest.py
Apache-2.0
def managers_one_page_two_graphs_one_table_one_aggrid_one_button( box_chart, scatter_chart, dash_data_table_with_id, ag_grid_with_id ): """Instantiates a simple model_manager and data_manager with: page, graphs, table, aggrid and button component.""" vm.Page( id="test_page", title="My first dashboard", components=[ vm.Graph(id="box_chart", figure=box_chart), vm.Graph(id="scatter_chart", figure=scatter_chart), vm.Table(id="vizro_table", figure=dash_data_table_with_id), vm.AgGrid(id="ag_grid", figure=ag_grid_with_id), vm.Button(id="button"), ], ) Vizro._pre_build()
Instantiates a simple model_manager and data_manager with: page, graphs, table, aggrid and button component.
managers_one_page_two_graphs_one_table_one_aggrid_one_button
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/conftest.py
Apache-2.0
def managers_one_page_one_graph_with_dict_param_input(scatter_matrix_chart): """Instantiates a model_manager and data_manager with a page and a graph that requires a list input.""" vm.Page( id="test_page", title="My first dashboard", components=[ vm.Graph(id="scatter_matrix_chart", figure=scatter_matrix_chart), ], ) Vizro._pre_build()
Instantiates a model_manager and data_manager with a page and a graph that requires a list input.
managers_one_page_one_graph_with_dict_param_input
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/conftest.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/conftest.py
Apache-2.0
def ctx_export_data(request): """Mock dash.ctx that represents filters and filter interactions applied.""" targets, pop_filter, continent_filter_interaction, country_table_filter_interaction = request.param args_grouping_filter_interaction = [] if continent_filter_interaction: args_grouping_filter_interaction.append( { "clickData": CallbackTriggerDict( id="box_chart", property="clickData", value={"points": [{"customdata": [continent_filter_interaction]}]}, str_id="box_chart", triggered=False, ), "modelID": CallbackTriggerDict( id="box_chart", property="id", value="box_chart", str_id="box_chart", triggered=False ), }, ) if country_table_filter_interaction: args_grouping_filter_interaction.append( { "active_cell": CallbackTriggerDict( id="underlying_table_id", property="active_cell", value={"row": 0, "column": 0, "column_id": "country"}, str_id="underlying_table_id", triggered=False, ), "derived_viewport_data": CallbackTriggerDict( id="underlying_table_id", property="derived_viewport_data", value=[ {"country": "Algeria", "continent": "Africa", "year": 2007}, {"country": "Egypt", "continent": "Africa", "year": 2007}, ], str_id="underlying_table_id", triggered=False, ), "modelID": CallbackTriggerDict( id="vizro_table", property="id", value="vizro_table", str_id="vizro_table", triggered=False ), } ) mock_ctx = { "args_grouping": { "external": { "_controls": { "filters": ( [ CallbackTriggerDict( id="pop_filter", property="value", value=pop_filter, str_id="pop_filter", triggered=False, ) ] if pop_filter else [] ), "parameters": [], "filter_interaction": args_grouping_filter_interaction, } } }, "outputs_list": [ {"id": {"action_id": "test_action", "target_id": target, "type": "download_dataframe"}, "property": "data"} for target in targets ], } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents filters and filter interactions applied.
ctx_export_data
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_export_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_export_data.py
Apache-2.0
def ctx_export_data_filter_and_parameter(request): """Mock dash.ctx that represents filters and parameter applied.""" targets, pop_filter, first_n_parameter = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filters": ( [ CallbackTriggerDict( id="pop_filter", property="value", value=pop_filter, str_id="pop_filter", triggered=False, ) ] if pop_filter else [] ), "parameters": ( [ CallbackTriggerDict( id="first_n_parameter", property="value", value=first_n_parameter, str_id="first_n_parameter", triggered=False, ) ] if first_n_parameter else [] ), "filter_interaction": [], } } }, "outputs_list": [ {"id": {"action_id": "test_action", "target_id": target, "type": "download_dataframe"}, "property": "data"} for target in targets ], } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents filters and parameter applied.
ctx_export_data_filter_and_parameter
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_export_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_export_data.py
Apache-2.0
def config_for_testing_all_components_with_actions(request, standard_px_chart, ag_grid_with_id): """Instantiates managers with one page that contains four controls, two graphs and filter interaction.""" # If the fixture is parametrised set the targets. Otherwise, set export_data without targets. export_data_action_function = ( export_data(id="export_data_action", targets=request.param) if hasattr(request, "param") and request.param is not None else export_data(id="export_data_action") ) vm.Page( title="title", components=[ vm.Graph( id="scatter_chart", figure=standard_px_chart, actions=[filter_interaction(id="graph_filter_interaction", targets=["ag_grid"])], ), vm.AgGrid(id="ag_grid", figure=ag_grid_with_id), vm.Button( id="export_data_button", actions=[ vm.Action(function=export_data_action_function), ], ), ], ) Vizro._pre_build()
Instantiates managers with one page that contains four controls, two graphs and filter interaction.
config_for_testing_all_components_with_actions
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_export_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_export_data.py
Apache-2.0
def ctx_filter_continent(request): """Mock dash.ctx that represents continent Filter value selection.""" continent = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [ CallbackTriggerDict( id="continent_filter", property="value", value=continent, str_id="continent_filter", triggered=False, ) ], "parameters": [], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents continent Filter value selection.
ctx_filter_continent
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_filter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_filter_action.py
Apache-2.0
def ctx_filter_continent_and_pop(request): """Mock dash.ctx that represents continent and pop Filter value selection.""" continent, pop = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [ CallbackTriggerDict( id="continent_filter", property="value", value=continent, str_id="continent_filter", triggered=False, ), CallbackTriggerDict( id="pop_filter", property="value", value=pop, str_id="pop_filter", triggered=False, ), ], "parameters": [], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents continent and pop Filter value selection.
ctx_filter_continent_and_pop
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_filter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_filter_action.py
Apache-2.0
def ctx_filter_interaction(request): """Mock dash.ctx that represents a click on a continent data-point and table selected cell.""" continent_filter_interaction, country_table_filter_interaction, country_aggrid_filter_interaction = request.param args_grouping_filter_interaction = [] if continent_filter_interaction: args_grouping_filter_interaction.append( { "clickData": CallbackTriggerDict( id="box_chart", property="clickData", value={"points": [{"customdata": [continent_filter_interaction]}]}, str_id="box_chart", triggered=False, ), "modelID": CallbackTriggerDict( id="box_chart", property="id", value="box_chart", str_id="box_chart", triggered=False ), } ) if country_table_filter_interaction: args_grouping_filter_interaction.append( { "active_cell": CallbackTriggerDict( id="underlying_table_id", property="active_cell", value={"row": 0, "column": 0, "column_id": "country"}, str_id="underlying_table_id", triggered=False, ), "derived_viewport_data": CallbackTriggerDict( id="underlying_table_id", property="derived_viewport_data", value=[ {"country": country_table_filter_interaction, "continent": "Africa", "year": 2007}, {"country": "Egypt", "continent": "Africa", "year": 2007}, ], str_id="underlying_table_id", triggered=False, ), "modelID": CallbackTriggerDict( id="vizro_table", property="id", value="vizro_table", str_id="vizro_table", triggered=False ), } ) if country_aggrid_filter_interaction: args_grouping_filter_interaction.append( { "cellClicked": CallbackTriggerDict( id="underlying_ag_grid_id", property="cellClicked", value={ "value": country_aggrid_filter_interaction, "colId": "country", "rowIndex": 0, "rowId": "0", "timestamp": 1708697920849, }, str_id="underlying_ag_grid_id", triggered=False, ), "modelID": CallbackTriggerDict( id="ag_grid", property="id", value="ag_grid", str_id="ag_grid", triggered=False ), } ) mock_ctx = { "args_grouping": { "external": { "_controls": { "filters": [], "filter_interaction": args_grouping_filter_interaction, "parameters": [], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents a click on a continent data-point and table selected cell.
ctx_filter_interaction
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_filter_interaction.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_filter_interaction.py
Apache-2.0
def ctx_export_data(request): """Mock dash.ctx that represents filters and filter interactions applied.""" targets, pop_filter, continent_filter_interaction, country_table_filter_interaction = request.param args_grouping_filter_interaction = [] if continent_filter_interaction: args_grouping_filter_interaction.append( { "clickData": CallbackTriggerDict( id="box_chart", property="clickData", value={"points": [{"customdata": [continent_filter_interaction]}]}, str_id="box_chart", triggered=False, ), "modelID": CallbackTriggerDict( id="box_chart", property="id", value="box_chart", str_id="box_chart", triggered=False ), }, ) if country_table_filter_interaction: args_grouping_filter_interaction.append( { "active_cell": CallbackTriggerDict( id="underlying_table_id", property="active_cell", value={"row": 0, "column": 0, "column_id": "country"}, str_id="underlying_table_id", triggered=False, ), "derived_viewport_data": CallbackTriggerDict( id="underlying_table_id", property="derived_viewport_data", value=[ {"country": "Algeria", "continent": "Africa", "year": 2007}, {"country": "Egypt", "continent": "Africa", "year": 2007}, ], str_id="underlying_table_id", triggered=False, ), "modelID": CallbackTriggerDict( id="vizro_table", property="id", value="vizro_table", str_id="vizro_table", triggered=False ), } ) mock_ctx = { "args_grouping": { "external": { "_controls": { "filters": ( [ CallbackTriggerDict( id="pop_filter", property="value", value=pop_filter, str_id="pop_filter", triggered=False, ) ] if pop_filter else [] ), "parameters": [], "filter_interaction": args_grouping_filter_interaction, } } }, "outputs_list": [ {"id": {"action_id": "test_action", "target_id": target, "type": "download_dataframe"}, "property": "data"} for target in targets ], } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents filters and filter interactions applied.
ctx_export_data
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_legacy_export_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_legacy_export_data.py
Apache-2.0
def ctx_export_data_filter_and_parameter(request): """Mock dash.ctx that represents filters and parameter applied.""" targets, pop_filter, first_n_parameter = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filters": ( [ CallbackTriggerDict( id="pop_filter", property="value", value=pop_filter, str_id="pop_filter", triggered=False, ) ] if pop_filter else [] ), "parameters": ( [ CallbackTriggerDict( id="first_n_parameter", property="value", value=first_n_parameter, str_id="first_n_parameter", triggered=False, ) ] if first_n_parameter else [] ), "filter_interaction": [], } } }, "outputs_list": [ {"id": {"action_id": "test_action", "target_id": target, "type": "download_dataframe"}, "property": "data"} for target in targets ], } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents filters and parameter applied.
ctx_export_data_filter_and_parameter
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_legacy_export_data.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_legacy_export_data.py
Apache-2.0
def ctx_filter_interaction(request): """Mock dash.ctx that represents a click on a continent data-point and table selected cell.""" continent_filter_interaction, country_table_filter_interaction, country_aggrid_filter_interaction = request.param args_grouping_filter_interaction = [] if continent_filter_interaction: args_grouping_filter_interaction.append( { "clickData": CallbackTriggerDict( id="box_chart", property="clickData", value={"points": [{"customdata": [continent_filter_interaction]}]}, str_id="box_chart", triggered=False, ), "modelID": CallbackTriggerDict( id="box_chart", property="id", value="box_chart", str_id="box_chart", triggered=False ), } ) if country_table_filter_interaction: args_grouping_filter_interaction.append( { "active_cell": CallbackTriggerDict( id="underlying_table_id", property="active_cell", value={"row": 0, "column": 0, "column_id": "country"}, str_id="underlying_table_id", triggered=False, ), "derived_viewport_data": CallbackTriggerDict( id="underlying_table_id", property="derived_viewport_data", value=[ {"country": country_table_filter_interaction, "continent": "Africa", "year": 2007}, {"country": "Egypt", "continent": "Africa", "year": 2007}, ], str_id="underlying_table_id", triggered=False, ), "modelID": CallbackTriggerDict( id="vizro_table", property="id", value="vizro_table", str_id="vizro_table", triggered=False ), } ) if country_aggrid_filter_interaction: args_grouping_filter_interaction.append( { "cellClicked": CallbackTriggerDict( id="underlying_ag_grid_id", property="cellClicked", value={ "value": country_aggrid_filter_interaction, "colId": "country", "rowIndex": 0, "rowId": "0", "timestamp": 1708697920849, }, str_id="underlying_ag_grid_id", triggered=False, ), "modelID": CallbackTriggerDict( id="ag_grid", property="id", value="ag_grid", str_id="ag_grid", triggered=False ), } ) mock_ctx = { "args_grouping": { "external": { "_controls": { "filters": [], "filter_interaction": args_grouping_filter_interaction, "parameters": [], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents a click on a continent data-point and table selected cell.
ctx_filter_interaction
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_legacy_filter_interaction.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_legacy_filter_interaction.py
Apache-2.0
def ctx_on_page_load(request): """Mock dash.ctx that represents on page load.""" continent_filter, pop, y, x = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [ CallbackTriggerDict( id="continent_filter", property="value", value=continent_filter, str_id="continent_filter", triggered=False, ), CallbackTriggerDict( id="pop_filter", property="value", value=pop, str_id="pop_filter", triggered=False, ), ], "parameters": [ CallbackTriggerDict( id="y_parameter", property="value", value=y, str_id="y_parameter", triggered=False, ), CallbackTriggerDict( id="x_parameter", property="value", value=x, str_id="x_parameter", triggered=False, ), ], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents on page load.
ctx_on_page_load
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_on_page_load.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_on_page_load.py
Apache-2.0
def ctx_parameter_y(request): """Mock dash.ctx that represents y-axis Parameter value selection.""" y = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [], "parameters": [ CallbackTriggerDict( id="y_parameter", property="value", value=y, str_id="y_parameter", triggered=False, ) ], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents y-axis Parameter value selection.
ctx_parameter_y
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_parameter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_parameter_action.py
Apache-2.0
def ctx_parameter_dimensions(request): """Mock dash.ctx that represents `dimensions` Parameter value selection.""" y = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [], "parameters": [ CallbackTriggerDict( id="dimensions_parameter", property="value", value=y, str_id="dimensions_parameter", triggered=False, ) ], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents `dimensions` Parameter value selection.
ctx_parameter_dimensions
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_parameter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_parameter_action.py
Apache-2.0
def ctx_parameter_hover_data(request): """Mock dash.ctx that represents hover_data Parameter value selection.""" hover_data = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [], "parameters": [ CallbackTriggerDict( id="hover_data_parameter", property="value", value=hover_data, str_id="hover_data_parameter", triggered=False, ) ], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents hover_data Parameter value selection.
ctx_parameter_hover_data
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_parameter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_parameter_action.py
Apache-2.0
def ctx_parameter_y_and_x(request): """Mock dash.ctx that represents y-axis Parameter value selection.""" y, x = request.param mock_ctx = { "args_grouping": { "external": { "_controls": { "filter_interaction": [], "filters": [], "parameters": [ CallbackTriggerDict( id="y_parameter", property="value", value=y, str_id="y_parameter", triggered=False, ), CallbackTriggerDict( id="x_parameter", property="value", value=x, str_id="x_parameter", triggered=False, ), ], } } } } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents y-axis Parameter value selection.
ctx_parameter_y_and_x
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_parameter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_parameter_action.py
Apache-2.0
def ctx_parameter_data_frame_argument(request): """Mock dash.ctx that represents parameter applied.""" targets, first_n_last_n_args = request.param dynamic_filters = [] parameters = [ CallbackTriggerDict( id="first_n_parameter", property="value", value=first_n_last_n_args["first_n"], str_id="first_n_parameter", triggered=False, ) ] if last_n := first_n_last_n_args.get("last_n"): parameters.append( CallbackTriggerDict( id="last_n_parameter", property="value", value=last_n, str_id="last_n_parameter", triggered=False, ) ) if dynamic_filter_value := first_n_last_n_args.get("dynamic_filter_value"): dynamic_filters.append( CallbackTriggerDict( id="dynamic_filter_id_selector", property="value", value=dynamic_filter_value, str_id="dynamic_filter_id_selector", triggered=False, ) ) mock_ctx = { "args_grouping": { "external": {"_controls": {"filters": dynamic_filters, "filter_interaction": [], "parameters": parameters}} }, "outputs_list": [ {"id": {"action_id": "test_action", "target_id": target, "type": "download_dataframe"}, "property": "data"} for target in targets ], } context_value.set(AttributeDict(**mock_ctx)) return context_value
Mock dash.ctx that represents parameter applied.
ctx_parameter_data_frame_argument
python
mckinsey/vizro
vizro-core/tests/unit/vizro/actions/test_parameter_action.py
https://github.com/mckinsey/vizro/blob/master/vizro-core/tests/unit/vizro/actions/test_parameter_action.py
Apache-2.0