code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def augmentation(self, images, transform, state=None): """ Apply the given transformation to the input images. Args: images (List[PIL.Image] or PIL.Image): The input images to be transformed. transform (torchvision.transforms.Compose): The transformation to be applied to the images. state (torch.ByteTensor, optional): The state of the random number generator. If provided, it will set the RNG state to this value before applying the transformation. Defaults to None. Returns: torch.Tensor: The transformed images as a tensor. If the input was a list of images, the tensor will have shape (f, c, h, w), where f is the number of images, c is the number of channels, h is the height, and w is the width. If the input was a single image, the tensor will have shape (c, h, w), where c is the number of channels, h is the height, and w is the width. """ if state is not None: torch.set_rng_state(state) if isinstance(images, List): transformed_images = [transform(img) for img in images] ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w) else: ret_tensor = transform(images) # (c, h, w) return ret_tensor
Apply the given transformation to the input images. Args: images (List[PIL.Image] or PIL.Image): The input images to be transformed. transform (torchvision.transforms.Compose): The transformation to be applied to the images. state (torch.ByteTensor, optional): The state of the random number generator. If provided, it will set the RNG state to this value before applying the transformation. Defaults to None. Returns: torch.Tensor: The transformed images as a tensor. If the input was a list of images, the tensor will have shape (f, c, h, w), where f is the number of images, c is the number of channels, h is the height, and w is the width. If the input was a single image, the tensor will have shape (c, h, w), where c is the number of channels, h is the height, and w is the width.
augmentation
python
jdh-algo/JoyHallo
joyhallo/datasets/talk_video.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/datasets/talk_video.py
MIT
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: """ Apply the Gated Self-Attention mechanism to the input tensor `x` and object tensor `objs`. Args: x (torch.Tensor): The input tensor. objs (torch.Tensor): The object tensor. Returns: torch.Tensor: The output tensor after applying Gated Self-Attention. """ if not self.enabled: return x n_visual = x.shape[1] objs = self.linear(objs) x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) return x
Apply the Gated Self-Attention mechanism to the input tensor `x` and object tensor `objs`. Args: x (torch.Tensor): The input tensor. objs (torch.Tensor): The object tensor. Returns: torch.Tensor: The output tensor after applying Gated Self-Attention.
forward
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): """ Sets the chunk size for feed-forward processing in the transformer block. Args: chunk_size (Optional[int]): The size of the chunks to process in feed-forward layers. If None, the chunk size is set to the maximum possible value. dim (int, optional): The dimension along which to split the input tensor into chunks. Defaults to 0. Returns: None. """ self._chunk_size = chunk_size self._chunk_dim = dim
Sets the chunk size for feed-forward processing in the transformer block. Args: chunk_size (Optional[int]): The size of the chunks to process in feed-forward layers. If None, the chunk size is set to the maximum possible value. dim (int, optional): The dimension along which to split the input tensor into chunks. Defaults to 0. Returns: None.
set_chunk_feed_forward
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ This function defines the forward pass of the BasicTransformerBlock. Args: self (BasicTransformerBlock): An instance of the BasicTransformerBlock class. hidden_states (torch.FloatTensor): A tensor containing the hidden states. attention_mask (Optional[torch.FloatTensor], optional): A tensor containing the attention mask. Defaults to None. encoder_hidden_states (Optional[torch.FloatTensor], optional): A tensor containing the encoder hidden states. Defaults to None. encoder_attention_mask (Optional[torch.FloatTensor], optional): A tensor containing the encoder attention mask. Defaults to None. timestep (Optional[torch.LongTensor], optional): A tensor containing the timesteps. Defaults to None. cross_attention_kwargs (Dict[str, Any], optional): Additional cross-attention arguments. Defaults to None. class_labels (Optional[torch.LongTensor], optional): A tensor containing the class labels. Defaults to None. Returns: torch.FloatTensor: A tensor containing the transformed hidden states. """ # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] gate_msa = None scale_mlp = None shift_mlp = None gate_mlp = None if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.use_layer_norm: norm_hidden_states = self.norm1(hidden_states) elif self.use_ada_layer_norm_single: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * \ (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.squeeze(1) else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Retrieve lora scale. lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) # 2. Prepare GLIGEN inputs cross_attention_kwargs = ( cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} ) gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=( encoder_hidden_states if self.only_cross_attention else None ), attention_mask=attention_mask, **cross_attention_kwargs, ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output elif self.use_ada_layer_norm_single: attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 2.5 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.use_ada_layer_norm: norm_hidden_states = self.norm2(hidden_states, timestep) elif self.use_ada_layer_norm_zero or self.use_layer_norm: norm_hidden_states = self.norm2(hidden_states) elif self.use_ada_layer_norm_single: # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.use_ada_layer_norm_single is False: norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward if not self.use_ada_layer_norm_single: norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) if self.use_ada_layer_norm_single: norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * \ (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states, scale=lora_scale) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.use_ada_layer_norm_single: ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states
This function defines the forward pass of the BasicTransformerBlock. Args: self (BasicTransformerBlock): An instance of the BasicTransformerBlock class. hidden_states (torch.FloatTensor): A tensor containing the hidden states. attention_mask (Optional[torch.FloatTensor], optional): A tensor containing the attention mask. Defaults to None. encoder_hidden_states (Optional[torch.FloatTensor], optional): A tensor containing the encoder hidden states. Defaults to None. encoder_attention_mask (Optional[torch.FloatTensor], optional): A tensor containing the encoder attention mask. Defaults to None. timestep (Optional[torch.LongTensor], optional): A tensor containing the timesteps. Defaults to None. cross_attention_kwargs (Dict[str, Any], optional): Additional cross-attention arguments. Defaults to None. class_labels (Optional[torch.LongTensor], optional): A tensor containing the class labels. Defaults to None. Returns: torch.FloatTensor: A tensor containing the transformed hidden states.
forward
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): """ The TemporalBasicTransformerBlock class is a PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms. This is particularly useful for video-related tasks, where the model needs to capture the temporal information within the sequence of frames. The block consists of self-attention, cross-attention, feed-forward, and temporal attention mechanisms. dim (int): The dimension of the input and output embeddings. num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. attention_head_dim (int): The dimension of each attention head. dropout (float, optional): The dropout probability for the attention scores. Defaults to 0.0. cross_attention_dim (int, optional): The dimension of the cross-attention mechanism. Defaults to None. activation_fn (str, optional): The activation function used in the feed-forward layer. Defaults to "geglu". num_embeds_ada_norm (int, optional): The number of embeddings for adaptive normalization. Defaults to None. attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. upcast_attention (bool, optional): If True, upcasts the attention mechanism for better performance. Defaults to False. unet_use_cross_frame_attention (bool, optional): If True, uses cross-frame attention in the UNet model. Defaults to None. unet_use_temporal_attention (bool, optional): If True, uses temporal attention in the UNet model. Defaults to None. Forward method: hidden_states (torch.FloatTensor): The input hidden states. encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. timestep (torch.LongTensor, optional): The current timestep for the transformer model. Defaults to None. attention_mask (torch.FloatTensor, optional): The attention mask for the self-attention mechanism. Defaults to None. video_length (int, optional): The length of the video sequence. Defaults to None. Returns: torch.FloatTensor: The output hidden states after passing through the TemporalBasicTransformerBlock. """ super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None self.unet_use_cross_frame_attention = unet_use_cross_frame_attention self.unet_use_temporal_attention = unet_use_temporal_attention # SC-Attn self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.norm1 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) ) # Cross-Attn if cross_attention_dim is not None: self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) else: self.attn2 = None if cross_attention_dim is not None: self.norm2 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) ) else: self.norm2 = None # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) self.use_ada_layer_norm_zero = False # Temp-Attn # assert unet_use_temporal_attention is not None if unet_use_temporal_attention is None: unet_use_temporal_attention = False if unet_use_temporal_attention: self.attn_temp = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) nn.init.zeros_(self.attn_temp.to_out[0].weight.data) self.norm_temp = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) )
The TemporalBasicTransformerBlock class is a PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms. This is particularly useful for video-related tasks, where the model needs to capture the temporal information within the sequence of frames. The block consists of self-attention, cross-attention, feed-forward, and temporal attention mechanisms. dim (int): The dimension of the input and output embeddings. num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. attention_head_dim (int): The dimension of each attention head. dropout (float, optional): The dropout probability for the attention scores. Defaults to 0.0. cross_attention_dim (int, optional): The dimension of the cross-attention mechanism. Defaults to None. activation_fn (str, optional): The activation function used in the feed-forward layer. Defaults to "geglu". num_embeds_ada_norm (int, optional): The number of embeddings for adaptive normalization. Defaults to None. attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. upcast_attention (bool, optional): If True, upcasts the attention mechanism for better performance. Defaults to False. unet_use_cross_frame_attention (bool, optional): If True, uses cross-frame attention in the UNet model. Defaults to None. unet_use_temporal_attention (bool, optional): If True, uses temporal attention in the UNet model. Defaults to None. Forward method: hidden_states (torch.FloatTensor): The input hidden states. encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. timestep (torch.LongTensor, optional): The current timestep for the transformer model. Defaults to None. attention_mask (torch.FloatTensor, optional): The attention mask for the self-attention mechanism. Defaults to None. video_length (int, optional): The length of the video sequence. Defaults to None. Returns: torch.FloatTensor: The output hidden states after passing through the TemporalBasicTransformerBlock.
__init__
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, ): """ Forward pass for the TemporalBasicTransformerBlock. Args: hidden_states (torch.FloatTensor): The input hidden states with shape (batch_size, seq_len, dim). encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states with shape (batch_size, src_seq_len, dim). timestep (torch.LongTensor, optional): The timestep for the transformer block. attention_mask (torch.FloatTensor, optional): The attention mask with shape (batch_size, seq_len, seq_len). video_length (int, optional): The length of the video sequence. Returns: torch.FloatTensor: The output tensor after passing through the transformer block with shape (batch_size, seq_len, dim). """ norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) if self.unet_use_cross_frame_attention: hidden_states = ( self.attn1( norm_hidden_states, attention_mask=attention_mask, video_length=video_length, ) + hidden_states ) else: hidden_states = ( self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states ) if self.attn2 is not None: # Cross-Attention norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) hidden_states = ( self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, ) + hidden_states ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange( hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states
Forward pass for the TemporalBasicTransformerBlock. Args: hidden_states (torch.FloatTensor): The input hidden states with shape (batch_size, seq_len, dim). encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states with shape (batch_size, src_seq_len, dim). timestep (torch.LongTensor, optional): The timestep for the transformer block. attention_mask (torch.FloatTensor, optional): The attention mask with shape (batch_size, seq_len, seq_len). video_length (int, optional): The length of the video sequence. Returns: torch.FloatTensor: The output tensor after passing through the transformer block with shape (batch_size, seq_len, dim).
forward
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, depth=0, unet_block_name=None, stack_enable_blocks_name: Optional[List[str]] = None, stack_enable_blocks_depth: Optional[List[int]] = None, ): """ Initializes the AudioTemporalBasicTransformerBlock module. Args: dim (int): The dimension of the input and output embeddings. num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. attention_head_dim (int): The dimension of each attention head. dropout (float, optional): The dropout probability for the attention mechanism. Defaults to 0.0. cross_attention_dim (Optional[int], optional): The dimension of the cross-attention mechanism. Defaults to None. activation_fn (str, optional): The activation function to be used in the feed-forward network. Defaults to "geglu". num_embeds_ada_norm (Optional[int], optional): The number of embeddings for adaptive normalization. Defaults to None. attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. upcast_attention (bool, optional): If True, upcasts the attention mechanism to float32. Defaults to False. unet_use_cross_frame_attention (Optional[bool], optional): If True, uses cross-frame attention in UNet. Defaults to None. unet_use_temporal_attention (Optional[bool], optional): If True, uses temporal attention in UNet. Defaults to None. depth (int, optional): The depth of the transformer block. Defaults to 0. unet_block_name (Optional[str], optional): The name of the UNet block. Defaults to None. stack_enable_blocks_name (Optional[List[str]], optional): The list of enabled blocks in the stack. Defaults to None. stack_enable_blocks_depth (Optional[List[int]], optional): The list of depths for the enabled blocks in the stack. Defaults to None. """ super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None self.unet_use_cross_frame_attention = unet_use_cross_frame_attention self.unet_use_temporal_attention = unet_use_temporal_attention self.unet_block_name = unet_block_name self.depth = depth zero_conv_full = nn.Conv2d( dim, dim, kernel_size=1) self.zero_conv_full = zero_module(zero_conv_full) zero_conv_face = nn.Conv2d( dim, dim, kernel_size=1) self.zero_conv_face = zero_module(zero_conv_face) zero_conv_lip = nn.Conv2d( dim, dim, kernel_size=1) self.zero_conv_lip = zero_module(zero_conv_lip) # SC-Attn self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.norm1 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) ) # Cross-Attn if cross_attention_dim is not None: if (stack_enable_blocks_name is not None and stack_enable_blocks_depth is not None and self.unet_block_name in stack_enable_blocks_name and self.depth in stack_enable_blocks_depth): self.attn2_0 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.attn2 = None else: self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) self.attn2_0=None else: self.attn2 = None self.attn2_0 = None if cross_attention_dim is not None: self.norm2 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) ) else: self.norm2 = None # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) self.use_ada_layer_norm_zero = False
Initializes the AudioTemporalBasicTransformerBlock module. Args: dim (int): The dimension of the input and output embeddings. num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. attention_head_dim (int): The dimension of each attention head. dropout (float, optional): The dropout probability for the attention mechanism. Defaults to 0.0. cross_attention_dim (Optional[int], optional): The dimension of the cross-attention mechanism. Defaults to None. activation_fn (str, optional): The activation function to be used in the feed-forward network. Defaults to "geglu". num_embeds_ada_norm (Optional[int], optional): The number of embeddings for adaptive normalization. Defaults to None. attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. upcast_attention (bool, optional): If True, upcasts the attention mechanism to float32. Defaults to False. unet_use_cross_frame_attention (Optional[bool], optional): If True, uses cross-frame attention in UNet. Defaults to None. unet_use_temporal_attention (Optional[bool], optional): If True, uses temporal attention in UNet. Defaults to None. depth (int, optional): The depth of the transformer block. Defaults to 0. unet_block_name (Optional[str], optional): The name of the UNet block. Defaults to None. stack_enable_blocks_name (Optional[List[str]], optional): The list of enabled blocks in the stack. Defaults to None. stack_enable_blocks_depth (Optional[List[int]], optional): The list of depths for the enabled blocks in the stack. Defaults to None.
__init__
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def forward( self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, full_mask=None, face_mask=None, lip_mask=None, motion_scale=None, video_length=None, ): """ Forward pass for the AudioTemporalBasicTransformerBlock. Args: hidden_states (torch.FloatTensor): The input hidden states. encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. timestep (torch.LongTensor, optional): The timestep for the transformer block. Defaults to None. attention_mask (torch.FloatTensor, optional): The attention mask. Defaults to None. full_mask (torch.FloatTensor, optional): The full mask. Defaults to None. face_mask (torch.FloatTensor, optional): The face mask. Defaults to None. lip_mask (torch.FloatTensor, optional): The lip mask. Defaults to None. video_length (int, optional): The length of the video. Defaults to None. Returns: torch.FloatTensor: The output tensor after passing through the AudioTemporalBasicTransformerBlock. """ norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) if self.unet_use_cross_frame_attention: hidden_states = ( self.attn1( norm_hidden_states, attention_mask=attention_mask, video_length=video_length, ) + hidden_states ) else: hidden_states = ( self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states ) if self.attn2 is not None: # Cross-Attention norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) hidden_states = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, ) + hidden_states elif self.attn2_0 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) level = self.depth all_hidden_states = self.attn2_0( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, ) full_hidden_states = ( all_hidden_states * full_mask[level][:, :, None] ) bz, sz, c = full_hidden_states.shape sz_sqrt = int(sz ** 0.5) full_hidden_states = full_hidden_states.reshape( bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) full_hidden_states = self.zero_conv_full(full_hidden_states).permute(0, 2, 3, 1).reshape(bz, -1, c) face_hidden_state = ( all_hidden_states * face_mask[level][:, :, None] ) face_hidden_state = face_hidden_state.reshape( bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) face_hidden_state = self.zero_conv_face( face_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c) lip_hidden_state = ( all_hidden_states * lip_mask[level][:, :, None] ) # [32, 4096, 320] lip_hidden_state = lip_hidden_state.reshape( bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) lip_hidden_state = self.zero_conv_lip( lip_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c) if motion_scale is not None: hidden_states = ( motion_scale[0] * full_hidden_states + motion_scale[1] * face_hidden_state + motion_scale[2] * lip_hidden_state + hidden_states ) else: hidden_states = ( full_hidden_states + face_hidden_state + lip_hidden_state + hidden_states ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states
Forward pass for the AudioTemporalBasicTransformerBlock. Args: hidden_states (torch.FloatTensor): The input hidden states. encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. timestep (torch.LongTensor, optional): The timestep for the transformer block. Defaults to None. attention_mask (torch.FloatTensor, optional): The attention mask. Defaults to None. full_mask (torch.FloatTensor, optional): The full mask. Defaults to None. face_mask (torch.FloatTensor, optional): The face mask. Defaults to None. lip_mask (torch.FloatTensor, optional): The lip mask. Defaults to None. video_length (int, optional): The length of the video. Defaults to None. Returns: torch.FloatTensor: The output tensor after passing through the AudioTemporalBasicTransformerBlock.
forward
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def zero_module(module): """ Zeroes out the parameters of a given module. Args: module (nn.Module): The module whose parameters need to be zeroed out. Returns: None. """ for p in module.parameters(): nn.init.zeros_(p) return module
Zeroes out the parameters of a given module. Args: module (nn.Module): The module whose parameters need to be zeroed out. Returns: None.
zero_module
python
jdh-algo/JoyHallo
joyhallo/models/attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/attention.py
MIT
def forward(self, audio_embeds): """ Defines the forward pass for the AudioProjModel. Parameters: audio_embeds (torch.Tensor): The input audio embeddings with shape (batch_size, video_length, blocks, channels). Returns: context_tokens (torch.Tensor): The output context tokens with shape (batch_size, video_length, context_tokens, output_dim). """ # merge video_length = audio_embeds.shape[1] audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c") batch_size, window_size, blocks, channels = audio_embeds.shape audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels) audio_embeds = torch.relu(self.proj1(audio_embeds)) audio_embeds = torch.relu(self.proj2(audio_embeds)) context_tokens = self.proj3(audio_embeds).reshape( batch_size, self.context_tokens, self.output_dim ) context_tokens = self.norm(context_tokens) context_tokens = rearrange( context_tokens, "(bz f) m c -> bz f m c", f=video_length ) return context_tokens
Defines the forward pass for the AudioProjModel. Parameters: audio_embeds (torch.Tensor): The input audio embeddings with shape (batch_size, video_length, blocks, channels). Returns: context_tokens (torch.Tensor): The output context tokens with shape (batch_size, video_length, context_tokens, output_dim).
forward
python
jdh-algo/JoyHallo
joyhallo/models/audio_proj.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/audio_proj.py
MIT
def forward(self, conditioning): """ Forward pass of the FaceLocator model. Args: conditioning (Tensor): The input conditioning tensor. Returns: Tensor: The output embedding tensor. """ embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding
Forward pass of the FaceLocator model. Args: conditioning (Tensor): The input conditioning tensor. Returns: Tensor: The output embedding tensor.
forward
python
jdh-algo/JoyHallo
joyhallo/models/face_locator.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/face_locator.py
MIT
def forward(self, image_embeds): """ Forward pass of the ImageProjModel, which takes in image embeddings and returns the projected tokens after reshaping and normalization. Args: image_embeds (torch.Tensor): The input image embeddings, with shape batch_size x num_image_tokens x clip_embeddings_dim. Returns: clip_extra_context_tokens (torch.Tensor): The projected tokens after reshaping and normalization, with shape batch_size x (clip_extra_context_tokens * cross_attention_dim). """ embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape( -1, self.clip_extra_context_tokens, self.cross_attention_dim ) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens
Forward pass of the ImageProjModel, which takes in image embeddings and returns the projected tokens after reshaping and normalization. Args: image_embeds (torch.Tensor): The input image embeddings, with shape batch_size x num_image_tokens x clip_embeddings_dim. Returns: clip_extra_context_tokens (torch.Tensor): The projected tokens after reshaping and normalization, with shape batch_size x (clip_extra_context_tokens * cross_attention_dim).
forward
python
jdh-algo/JoyHallo
joyhallo/models/image_proj.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/image_proj.py
MIT
def zero_module(module): """ Zero out the parameters of a module and return it. Args: - module: A PyTorch module to zero out its parameters. Returns: A zeroed out PyTorch module. """ for p in module.parameters(): p.detach().zero_() return module
Zero out the parameters of a module and return it. Args: - module: A PyTorch module to zero out its parameters. Returns: A zeroed out PyTorch module.
zero_module
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict): """ This function returns a motion module based on the given type and parameters. Args: - in_channels (int): The number of input channels for the motion module. - motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported. - motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor. Returns: VanillaTemporalModule: The created motion module. Raises: ValueError: If an unsupported motion_module_type is provided. """ if motion_module_type == "Vanilla": return VanillaTemporalModule( in_channels=in_channels, **motion_module_kwargs, ) raise ValueError
This function returns a motion module based on the given type and parameters. Args: - in_channels (int): The number of input channels for the motion module. - motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported. - motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor. Returns: VanillaTemporalModule: The created motion module. Raises: ValueError: If an unsupported motion_module_type is provided.
get_motion_module
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def forward( self, input_tensor, encoder_hidden_states, attention_mask=None, ): """ Forward pass of the TemporalTransformer3DModel. Args: hidden_states (torch.Tensor): The hidden states of the model. encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder. attention_mask (torch.Tensor, optional): The attention mask. Returns: torch.Tensor: The output tensor after the forward pass. """ hidden_states = input_tensor hidden_states = self.temporal_transformer( hidden_states, encoder_hidden_states ) output = hidden_states return output
Forward pass of the TemporalTransformer3DModel. Args: hidden_states (torch.Tensor): The hidden states of the model. encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder. attention_mask (torch.Tensor, optional): The attention mask. Returns: torch.Tensor: The output tensor after the forward pass.
forward
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def forward(self, hidden_states, encoder_hidden_states=None): """ Forward pass for the TemporalTransformer3DModel. Args: hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels). encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels). Returns: torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels). """ assert ( hidden_states.dim() == 5 ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, _, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) hidden_states = self.proj_in(hidden_states) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, ) # output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) return output
Forward pass for the TemporalTransformer3DModel. Args: hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels). encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels). Returns: torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels).
forward
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def forward( self, hidden_states, encoder_hidden_states=None, video_length=None, ): """ Forward pass for the TemporalTransformerBlock. Args: hidden_states (torch.Tensor): The input hidden states with shape (batch_size, video_length, in_channels). encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_length, in_channels). video_length (int, optional): The length of the video. Returns: torch.Tensor: The output hidden states with shape (batch_size, video_length, in_channels). """ for attention_block, norm in zip(self.attention_blocks, self.norms): norm_hidden_states = norm(hidden_states) hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None, video_length=video_length, ) + hidden_states ) hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output
Forward pass for the TemporalTransformerBlock. Args: hidden_states (torch.Tensor): The input hidden states with shape (batch_size, video_length, in_channels). encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_length, in_channels). video_length (int, optional): The length of the video. Returns: torch.Tensor: The output hidden states with shape (batch_size, video_length, in_channels).
forward
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def set_use_memory_efficient_attention_xformers( self, use_memory_efficient_attention_xformers: bool, attention_op = None, ): """ Sets the use of memory-efficient attention xformers for the VersatileAttention class. Args: use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not. Returns: None """ if use_memory_efficient_attention_xformers: if not is_xformers_available(): raise ModuleNotFoundError( ( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers" ), name="xformers", ) if not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" " only available for GPU " ) try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e processor = AttnProcessor() else: processor = AttnProcessor() self.set_processor(processor)
Sets the use of memory-efficient attention xformers for the VersatileAttention class. Args: use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not. Returns: None
set_use_memory_efficient_attention_xformers
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def forward( self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, **cross_attention_kwargs, ): """ Args: hidden_states (`torch.Tensor`): The hidden states to be passed through the model. encoder_hidden_states (`torch.Tensor`, optional): The encoder hidden states to be passed through the model. attention_mask (`torch.Tensor`, optional): The attention mask to be used in the model. video_length (`int`, optional): The length of the video. cross_attention_kwargs (`dict`, optional): Additional keyword arguments to be used for cross-attention. Returns: `torch.Tensor`: The output tensor after passing through the model. """ if self.attention_mode == "Temporal": d = hidden_states.shape[1] # d means HxW hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) if self.pos_encoder is not None: hidden_states = self.pos_encoder(hidden_states) encoder_hidden_states = ( repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states ) else: raise NotImplementedError hidden_states = self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.attention_mode == "Temporal": hidden_states = rearrange( hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states
Args: hidden_states (`torch.Tensor`): The hidden states to be passed through the model. encoder_hidden_states (`torch.Tensor`, optional): The encoder hidden states to be passed through the model. attention_mask (`torch.Tensor`, optional): The attention mask to be used in the model. video_length (`int`, optional): The length of the video. cross_attention_kwargs (`dict`, optional): Additional keyword arguments to be used for cross-attention. Returns: `torch.Tensor`: The output tensor after passing through the model.
forward
python
jdh-algo/JoyHallo
joyhallo/models/motion_module.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/motion_module.py
MIT
def torch_dfs(model: torch.nn.Module): """ Perform a depth-first search (DFS) traversal on a PyTorch model's neural network architecture. This function recursively traverses all the children modules of a given PyTorch model and returns a list containing all the modules in the model's architecture. The DFS approach starts with the input model and explores its children modules depth-wise before backtracking and exploring other branches. Args: model (torch.nn.Module): The root module of the neural network to traverse. Returns: list: A list of all the modules in the model's architecture. """ result = [model] for child in model.children(): result += torch_dfs(child) return result
Perform a depth-first search (DFS) traversal on a PyTorch model's neural network architecture. This function recursively traverses all the children modules of a given PyTorch model and returns a list containing all the modules in the model's architecture. The DFS approach starts with the input model and explores its children modules depth-wise before backtracking and exploring other branches. Args: model (torch.nn.Module): The root module of the neural network to traverse. Returns: list: A list of all the modules in the model's architecture.
torch_dfs
python
jdh-algo/JoyHallo
joyhallo/models/mutual_self_attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/mutual_self_attention.py
MIT
def __init__( self, unet, mode="write", do_classifier_free_guidance=False, attention_auto_machine_weight=float("inf"), gn_auto_machine_weight=1.0, style_fidelity=1.0, reference_attn=True, reference_adain=False, fusion_blocks="midup", batch_size=1, ) -> None: """ Initializes the ReferenceAttentionControl class. Args: unet (torch.nn.Module): The UNet model. mode (str, optional): The mode of operation. Defaults to "write". do_classifier_free_guidance (bool, optional): Whether to do classifier-free guidance. Defaults to False. attention_auto_machine_weight (float, optional): The weight for attention auto-machine. Defaults to infinity. gn_auto_machine_weight (float, optional): The weight for group-norm auto-machine. Defaults to 1.0. style_fidelity (float, optional): The style fidelity. Defaults to 1.0. reference_attn (bool, optional): Whether to use reference attention. Defaults to True. reference_adain (bool, optional): Whether to use reference AdaIN. Defaults to False. fusion_blocks (str, optional): The fusion blocks to use. Defaults to "midup". batch_size (int, optional): The batch size. Defaults to 1. Raises: ValueError: If the mode is not recognized. ValueError: If the fusion blocks are not recognized. """ # 10. Modify self attention and group norm self.unet = unet assert mode in ["read", "write"] assert fusion_blocks in ["midup", "full"] self.reference_attn = reference_attn self.reference_adain = reference_adain self.fusion_blocks = fusion_blocks self.register_reference_hooks( mode, do_classifier_free_guidance, attention_auto_machine_weight, gn_auto_machine_weight, style_fidelity, reference_attn, reference_adain, fusion_blocks, batch_size=batch_size, )
Initializes the ReferenceAttentionControl class. Args: unet (torch.nn.Module): The UNet model. mode (str, optional): The mode of operation. Defaults to "write". do_classifier_free_guidance (bool, optional): Whether to do classifier-free guidance. Defaults to False. attention_auto_machine_weight (float, optional): The weight for attention auto-machine. Defaults to infinity. gn_auto_machine_weight (float, optional): The weight for group-norm auto-machine. Defaults to 1.0. style_fidelity (float, optional): The style fidelity. Defaults to 1.0. reference_attn (bool, optional): Whether to use reference attention. Defaults to True. reference_adain (bool, optional): Whether to use reference AdaIN. Defaults to False. fusion_blocks (str, optional): The fusion blocks to use. Defaults to "midup". batch_size (int, optional): The batch size. Defaults to 1. Raises: ValueError: If the mode is not recognized. ValueError: If the fusion blocks are not recognized.
__init__
python
jdh-algo/JoyHallo
joyhallo/models/mutual_self_attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/mutual_self_attention.py
MIT
def update(self, writer, dtype=torch.float16): """ Update the model's parameters. Args: writer (torch.nn.Module): The model's writer object. dtype (torch.dtype, optional): The data type to be used for the update. Defaults to torch.float16. Returns: None. """ if self.reference_attn: if self.fusion_blocks == "midup": reader_attn_modules = [ module for module in ( torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) ) if isinstance(module, TemporalBasicTransformerBlock) ] writer_attn_modules = [ module for module in ( torch_dfs(writer.unet.mid_block) + torch_dfs(writer.unet.up_blocks) ) if isinstance(module, BasicTransformerBlock) ] elif self.fusion_blocks == "full": reader_attn_modules = [ module for module in torch_dfs(self.unet) if isinstance(module, TemporalBasicTransformerBlock) ] writer_attn_modules = [ module for module in torch_dfs(writer.unet) if isinstance(module, BasicTransformerBlock) ] assert len(reader_attn_modules) == len(writer_attn_modules) reader_attn_modules = sorted( reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) writer_attn_modules = sorted( writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) for r, w in zip(reader_attn_modules, writer_attn_modules): r.bank = [v.clone().to(dtype) for v in w.bank]
Update the model's parameters. Args: writer (torch.nn.Module): The model's writer object. dtype (torch.dtype, optional): The data type to be used for the update. Defaults to torch.float16. Returns: None.
update
python
jdh-algo/JoyHallo
joyhallo/models/mutual_self_attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/mutual_self_attention.py
MIT
def clear(self): """ Clears the attention bank of all reader attention modules. This method is used when the `reference_attn` attribute is set to `True`. It clears the attention bank of all reader attention modules inside the UNet model based on the selected `fusion_blocks` mode. If `fusion_blocks` is set to "midup", it searches for reader attention modules in both the mid block and up blocks of the UNet model. If `fusion_blocks` is set to "full", it searches for reader attention modules in the entire UNet model. It sorts the reader attention modules by the number of neurons in their `norm1.normalized_shape[0]` attribute in descending order. This sorting ensures that the modules with more neurons are cleared first. Finally, it iterates through the sorted list of reader attention modules and calls the `clear()` method on each module's `bank` attribute to clear the attention bank. """ if self.reference_attn: if self.fusion_blocks == "midup": reader_attn_modules = [ module for module in ( torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) ) if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock)) ] elif self.fusion_blocks == "full": reader_attn_modules = [ module for module in torch_dfs(self.unet) if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock)) ] reader_attn_modules = sorted( reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) for r in reader_attn_modules: r.bank.clear()
Clears the attention bank of all reader attention modules. This method is used when the `reference_attn` attribute is set to `True`. It clears the attention bank of all reader attention modules inside the UNet model based on the selected `fusion_blocks` mode. If `fusion_blocks` is set to "midup", it searches for reader attention modules in both the mid block and up blocks of the UNet model. If `fusion_blocks` is set to "full", it searches for reader attention modules in the entire UNet model. It sorts the reader attention modules by the number of neurons in their `norm1.normalized_shape[0]` attribute in descending order. This sorting ensures that the modules with more neurons are cleared first. Finally, it iterates through the sorted list of reader attention modules and calls the `clear()` method on each module's `bank` attribute to clear the attention bank.
clear
python
jdh-algo/JoyHallo
joyhallo/models/mutual_self_attention.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/mutual_self_attention.py
MIT
def forward(self, x): """ Forward pass of the InflatedConv3d layer. Args: x (torch.Tensor): Input tensor to the layer. Returns: torch.Tensor: Output tensor after applying the InflatedConv3d layer. """ video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x
Forward pass of the InflatedConv3d layer. Args: x (torch.Tensor): Input tensor to the layer. Returns: torch.Tensor: Output tensor after applying the InflatedConv3d layer.
forward
python
jdh-algo/JoyHallo
joyhallo/models/resnet.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/resnet.py
MIT
def forward(self, x): """ Performs a forward pass through the CustomClassName. :param x: Input tensor of shape (batch_size, channels, video_length, height, width). :return: Output tensor of shape (batch_size, channels, video_length, height, width). """ video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x
Performs a forward pass through the CustomClassName. :param x: Input tensor of shape (batch_size, channels, video_length, height, width). :return: Output tensor of shape (batch_size, channels, video_length, height, width).
forward
python
jdh-algo/JoyHallo
joyhallo/models/resnet.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/resnet.py
MIT
def forward(self, hidden_states, output_size=None): """ Forward pass of the Upsample3D class. Args: hidden_states (torch.Tensor): Input tensor to be upsampled. output_size (tuple, optional): Desired output size of the upsampled tensor. Returns: torch.Tensor: Upsampled tensor. Raises: AssertionError: If the number of channels in the input tensor does not match the expected channels. """ assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: raise NotImplementedError # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate( hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest" ) else: hidden_states = F.interpolate( hidden_states, size=output_size, mode="nearest" ) # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # if self.use_conv: # if self.name == "conv": # hidden_states = self.conv(hidden_states) # else: # hidden_states = self.Conv2d_0(hidden_states) hidden_states = self.conv(hidden_states) return hidden_states
Forward pass of the Upsample3D class. Args: hidden_states (torch.Tensor): Input tensor to be upsampled. output_size (tuple, optional): Desired output size of the upsampled tensor. Returns: torch.Tensor: Upsampled tensor. Raises: AssertionError: If the number of channels in the input tensor does not match the expected channels.
forward
python
jdh-algo/JoyHallo
joyhallo/models/resnet.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/resnet.py
MIT
def __init__( self, channels, use_conv=False, out_channels=None, padding=1, name="conv" ): """ Downsamples the given input in the 3D space. Args: channels: The number of input channels. use_conv: Whether to use a convolutional layer for downsampling. out_channels: The number of output channels. If None, the input channels are used. padding: The amount of padding to be added to the input. name: The name of the convolutional layer. """ super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: self.conv = InflatedConv3d( self.channels, self.out_channels, 3, stride=stride, padding=padding ) else: raise NotImplementedError
Downsamples the given input in the 3D space. Args: channels: The number of input channels. use_conv: Whether to use a convolutional layer for downsampling. out_channels: The number of output channels. If None, the input channels are used. padding: The amount of padding to be added to the input. name: The name of the convolutional layer.
__init__
python
jdh-algo/JoyHallo
joyhallo/models/resnet.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/resnet.py
MIT
def forward(self, hidden_states): """ Forward pass for the Downsample3D class. Args: hidden_states (torch.Tensor): Input tensor to be downsampled. Returns: torch.Tensor: Downsampled tensor. Raises: AssertionError: If the number of channels in the input tensor does not match the expected channels. """ assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: raise NotImplementedError assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states
Forward pass for the Downsample3D class. Args: hidden_states (torch.Tensor): Input tensor to be downsampled. Returns: torch.Tensor: Downsampled tensor. Raises: AssertionError: If the number of channels in the input tensor does not match the expected channels.
forward
python
jdh-algo/JoyHallo
joyhallo/models/resnet.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/resnet.py
MIT
def forward(self, input_tensor, temb): """ Forward pass for the ResnetBlock3D class. Args: input_tensor (torch.Tensor): Input tensor to the ResnetBlock3D layer. temb (torch.Tensor): Token embedding tensor. Returns: torch.Tensor: Output tensor after passing through the ResnetBlock3D layer. """ hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor
Forward pass for the ResnetBlock3D class. Args: input_tensor (torch.Tensor): Input tensor to the ResnetBlock3D layer. temb (torch.Tensor): Token embedding tensor. Returns: torch.Tensor: Output tensor after passing through the ResnetBlock3D layer.
forward
python
jdh-algo/JoyHallo
joyhallo/models/resnet.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/resnet.py
MIT
def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, _added_cond_kwargs: Dict[str, torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor] (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = ( 1 - encoder_attention_mask.to(hidden_states.dtype) ) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # Retrieve lora scale. lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) # 1. Input batch, _, height, width = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = ( self.proj_in(hidden_states, scale=lora_scale) if not USE_PEFT_BACKEND else self.proj_in(hidden_states) ) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * width, inner_dim ) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * width, inner_dim ) hidden_states = ( self.proj_in(hidden_states, scale=lora_scale) if not USE_PEFT_BACKEND else self.proj_in(hidden_states) ) # 2. Blocks if self.caption_projection is not None: batch_size = hidden_states.shape[0] encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view( batch_size, -1, hidden_states.shape[-1] ) ref_feature = hidden_states.reshape(batch, height, width, inner_dim) for block in self.transformer_blocks: if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, # shape [5, 4096, 320] attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, # shape [1,4,768] encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output output = None if self.is_input_continuous: if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, width, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) hidden_states = ( self.proj_out(hidden_states, scale=lora_scale) if not USE_PEFT_BACKEND else self.proj_out(hidden_states) ) else: hidden_states = ( self.proj_out(hidden_states, scale=lora_scale) if not USE_PEFT_BACKEND else self.proj_out(hidden_states) ) hidden_states = ( hidden_states.reshape(batch, height, width, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual if not return_dict: return (output, ref_feature) return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor] (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor.
forward
python
jdh-algo/JoyHallo
joyhallo/models/transformer_2d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/transformer_2d.py
MIT
def forward( self, hidden_states, encoder_hidden_states=None, attention_mask=None, full_mask=None, face_mask=None, lip_mask=None, motion_scale=None, timestep=None, return_dict: bool = True, ): """ Forward pass for the Transformer3DModel. Args: hidden_states (torch.Tensor): The input hidden states. encoder_hidden_states (torch.Tensor, optional): The input encoder hidden states. attention_mask (torch.Tensor, optional): The attention mask. full_mask (torch.Tensor, optional): The full mask. face_mask (torch.Tensor, optional): The face mask. lip_mask (torch.Tensor, optional): The lip mask. timestep (int, optional): The current timestep. return_dict (bool, optional): Whether to return a dictionary or a tuple. Returns: output (Union[Tuple, BaseOutput]): The output of the Transformer3DModel. """ # Input assert ( hidden_states.dim() == 5 ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") # TODO if self.use_audio_module: encoder_hidden_states = rearrange( encoder_hidden_states, "bs f margin dim -> (bs f) margin dim", ) else: if encoder_hidden_states.shape[0] != hidden_states.shape[0]: encoder_hidden_states = repeat( encoder_hidden_states, "b n c -> (b f) n c", f=video_length ) batch, _, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) hidden_states = self.proj_in(hidden_states) # Blocks motion_frames = [] for _, block in enumerate(self.transformer_blocks): if isinstance(block, TemporalBasicTransformerBlock): hidden_states, motion_frame_fea = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, ) motion_frames.append(motion_frame_fea) else: hidden_states = block( hidden_states, # shape [2, 4096, 320] encoder_hidden_states=encoder_hidden_states, # shape [2, 20, 640] attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, timestep=timestep, video_length=video_length, motion_scale=motion_scale, ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output, motion_frames) return Transformer3DModelOutput(sample=output)
Forward pass for the Transformer3DModel. Args: hidden_states (torch.Tensor): The input hidden states. encoder_hidden_states (torch.Tensor, optional): The input encoder hidden states. attention_mask (torch.Tensor, optional): The attention mask. full_mask (torch.Tensor, optional): The full mask. face_mask (torch.Tensor, optional): The face mask. lip_mask (torch.Tensor, optional): The lip mask. timestep (int, optional): The current timestep. return_dict (bool, optional): Whether to return a dictionary or a tuple. Returns: output (Union[Tuple, BaseOutput]): The output of the Transformer3DModel.
forward
python
jdh-algo/JoyHallo
joyhallo/models/transformer_3d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/transformer_3d.py
MIT
def get_down_block( down_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_downsample: bool, resnet_eps: float, resnet_act_fn: str, transformer_layers_per_block: int = 1, num_attention_heads: Optional[int] = None, resnet_groups: Optional[int] = None, cross_attention_dim: Optional[int] = None, downsample_padding: Optional[int] = None, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", attention_type: str = "default", attention_head_dim: Optional[int] = None, dropout: float = 0.0, ): """ This function creates and returns a UpBlock2D or CrossAttnUpBlock2D object based on the given up_block_type. Args: up_block_type (str): The type of up block to create. Must be either "UpBlock2D" or "CrossAttnUpBlock2D". num_layers (int): The number of layers in the ResNet block. in_channels (int): The number of input channels. out_channels (int): The number of output channels. prev_output_channel (int): The number of channels in the previous output. temb_channels (int): The number of channels in the token embedding. add_upsample (bool): Whether to add an upsample layer after the ResNet block. Defaults to True. resnet_eps (float): The epsilon value for the ResNet block. Defaults to 1e-6. resnet_act_fn (str): The activation function to use in the ResNet block. Defaults to "swish". resnet_groups (int): The number of groups in the ResNet block. Defaults to 32. resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet block. Defaults to True. output_scale_factor (float): The scale factor to apply to the output. Defaults to 1.0. Returns: nn.Module: The created UpBlock2D or CrossAttnUpBlock2D object. """ # If attn head dim is not defined, we default it to the number of heads if attention_head_dim is None: logger.warning("It is recommended to provide `attention_head_dim` when calling `get_down_block`.") logger.warning(f"Defaulting `attention_head_dim` to {num_attention_heads}.") attention_head_dim = num_attention_heads down_block_type = ( down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type ) if down_block_type == "DownBlock2D": return DownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, ) if down_block_type == "CrossAttnDownBlock2D": if cross_attention_dim is None: raise ValueError( "cross_attention_dim must be specified for CrossAttnDownBlock2D" ) return CrossAttnDownBlock2D( num_layers=num_layers, transformer_layers_per_block=transformer_layers_per_block, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, dropout=dropout, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, attention_type=attention_type, ) raise ValueError(f"{down_block_type} does not exist.")
This function creates and returns a UpBlock2D or CrossAttnUpBlock2D object based on the given up_block_type. Args: up_block_type (str): The type of up block to create. Must be either "UpBlock2D" or "CrossAttnUpBlock2D". num_layers (int): The number of layers in the ResNet block. in_channels (int): The number of input channels. out_channels (int): The number of output channels. prev_output_channel (int): The number of channels in the previous output. temb_channels (int): The number of channels in the token embedding. add_upsample (bool): Whether to add an upsample layer after the ResNet block. Defaults to True. resnet_eps (float): The epsilon value for the ResNet block. Defaults to 1e-6. resnet_act_fn (str): The activation function to use in the ResNet block. Defaults to "swish". resnet_groups (int): The number of groups in the ResNet block. Defaults to 32. resnet_pre_norm (bool): Whether to use pre-normalization in the ResNet block. Defaults to True. output_scale_factor (float): The scale factor to apply to the output. Defaults to 1.0. Returns: nn.Module: The created UpBlock2D or CrossAttnUpBlock2D object.
get_down_block
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: """ Forward pass of the UNetMidBlock2D class. Args: hidden_states (torch.FloatTensor): The input tensor to the UNetMidBlock2D. temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None. Returns: torch.FloatTensor: The output tensor after passing through the UNetMidBlock2D. """ # Your implementation here hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: hidden_states = attn(hidden_states, temb=temb) hidden_states = resnet(hidden_states, temb) return hidden_states
Forward pass of the UNetMidBlock2D class. Args: hidden_states (torch.FloatTensor): The input tensor to the UNetMidBlock2D. temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None. Returns: torch.FloatTensor: The output tensor after passing through the UNetMidBlock2D.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Forward pass for the UNetMidBlock2DCrossAttn class. Args: hidden_states (torch.FloatTensor): The input hidden states tensor. temb (Optional[torch.FloatTensor], optional): The optional tensor for time embeddings. encoder_hidden_states (Optional[torch.FloatTensor], optional): The optional encoder hidden states tensor. attention_mask (Optional[torch.FloatTensor], optional): The optional attention mask tensor. cross_attention_kwargs (Optional[Dict[str, Any]], optional): The optional cross-attention kwargs tensor. encoder_attention_mask (Optional[torch.FloatTensor], optional): The optional encoder attention mask tensor. Returns: torch.FloatTensor: The output tensor after passing through the UNetMidBlock2DCrossAttn layers. """ lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale) for attn, resnet in zip(self.attentions, self.resnets[1:]): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states, _ref_feature = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states, _ref_feature = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, ) hidden_states = resnet(hidden_states, temb, scale=lora_scale) return hidden_states
Forward pass for the UNetMidBlock2DCrossAttn class. Args: hidden_states (torch.FloatTensor): The input hidden states tensor. temb (Optional[torch.FloatTensor], optional): The optional tensor for time embeddings. encoder_hidden_states (Optional[torch.FloatTensor], optional): The optional encoder hidden states tensor. attention_mask (Optional[torch.FloatTensor], optional): The optional attention mask tensor. cross_attention_kwargs (Optional[Dict[str, Any]], optional): The optional cross-attention kwargs tensor. encoder_attention_mask (Optional[torch.FloatTensor], optional): The optional encoder attention mask tensor. Returns: torch.FloatTensor: The output tensor after passing through the UNetMidBlock2DCrossAttn layers.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, additional_residuals: Optional[torch.FloatTensor] = None, ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: """ Forward pass for the CrossAttnDownBlock2D class. Args: hidden_states (torch.FloatTensor): The input hidden states. temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None. encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states. Defaults to None. attention_mask (Optional[torch.FloatTensor], optional): The attention mask. Defaults to None. cross_attention_kwargs (Optional[Dict[str, Any]], optional): The cross-attention kwargs. Defaults to None. encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask. Defaults to None. additional_residuals (Optional[torch.FloatTensor], optional): The additional residuals. Defaults to None. Returns: Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output hidden states and residuals. """ output_states = () lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) blocks = list(zip(self.resnets, self.attentions)) for i, (resnet, attn) in enumerate(blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) hidden_states, _ref_feature = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, ) else: hidden_states = resnet(hidden_states, temb, scale=lora_scale) hidden_states, _ref_feature = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, ) # apply additional residuals to the output of the last pair of resnet and attention blocks if i == len(blocks) - 1 and additional_residuals is not None: hidden_states = hidden_states + additional_residuals output_states = output_states + (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states, scale=lora_scale) output_states = output_states + (hidden_states,) return hidden_states, output_states
Forward pass for the CrossAttnDownBlock2D class. Args: hidden_states (torch.FloatTensor): The input hidden states. temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None. encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states. Defaults to None. attention_mask (Optional[torch.FloatTensor], optional): The attention mask. Defaults to None. cross_attention_kwargs (Optional[Dict[str, Any]], optional): The cross-attention kwargs. Defaults to None. encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask. Defaults to None. additional_residuals (Optional[torch.FloatTensor], optional): The additional residuals. Defaults to None. Returns: Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output hidden states and residuals.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, ) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: """ Forward pass of the DownBlock2D class. Args: hidden_states (torch.FloatTensor): The input tensor to the DownBlock2D layer. temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None. scale (float, optional): The scale factor for the input tensor. Defaults to 1.0. Returns: Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output tensor and any additional hidden states. """ output_states = () for resnet in self.resnets: if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False, ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb, scale=scale) output_states = output_states + (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states, scale=scale) output_states = output_states + (hidden_states,) return hidden_states, output_states
Forward pass of the DownBlock2D class. Args: hidden_states (torch.FloatTensor): The input tensor to the DownBlock2D layer. temb (Optional[torch.FloatTensor], optional): The token embedding tensor. Defaults to None. scale (float, optional): The scale factor for the input tensor. Defaults to 1.0. Returns: Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]: The output tensor and any additional hidden states.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Forward pass for the CrossAttnUpBlock2D class. Args: self (CrossAttnUpBlock2D): An instance of the CrossAttnUpBlock2D class. hidden_states (torch.FloatTensor): The input hidden states tensor. res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states tensors. temb (Optional[torch.FloatTensor], optional): The token embeddings tensor. Defaults to None. encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states tensor. Defaults to None. cross_attention_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for cross attention. Defaults to None. upsample_size (Optional[int], optional): The upsample size. Defaults to None. attention_mask (Optional[torch.FloatTensor], optional): The attention mask tensor. Defaults to None. encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask tensor. Defaults to None. Returns: torch.FloatTensor: The output tensor after passing through the block. """ lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) hidden_states, _ref_feature = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, ) else: hidden_states = resnet(hidden_states, temb, scale=lora_scale) hidden_states, _ref_feature = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler( hidden_states, upsample_size, scale=lora_scale ) return hidden_states
Forward pass for the CrossAttnUpBlock2D class. Args: self (CrossAttnUpBlock2D): An instance of the CrossAttnUpBlock2D class. hidden_states (torch.FloatTensor): The input hidden states tensor. res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states tensors. temb (Optional[torch.FloatTensor], optional): The token embeddings tensor. Defaults to None. encoder_hidden_states (Optional[torch.FloatTensor], optional): The encoder hidden states tensor. Defaults to None. cross_attention_kwargs (Optional[Dict[str, Any]], optional): Additional keyword arguments for cross attention. Defaults to None. upsample_size (Optional[int], optional): The upsample size. Defaults to None. attention_mask (Optional[torch.FloatTensor], optional): The attention mask tensor. Defaults to None. encoder_attention_mask (Optional[torch.FloatTensor], optional): The encoder attention mask tensor. Defaults to None. Returns: torch.FloatTensor: The output tensor after passing through the block.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, upsample_size: Optional[int] = None, scale: float = 1.0, ) -> torch.FloatTensor: """ Forward pass for the UpBlock2D class. Args: self (UpBlock2D): An instance of the UpBlock2D class. hidden_states (torch.FloatTensor): The input tensor to the block. res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states. temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None. upsample_size (Optional[int], optional): The size to upsample the input tensor to. Defaults to None. scale (float, optional): The scale factor to apply to the input tensor. Defaults to 1.0. Returns: torch.FloatTensor: The output tensor after passing through the block. """ is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False, ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb, scale=scale) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size, scale=scale) return hidden_states
Forward pass for the UpBlock2D class. Args: self (UpBlock2D): An instance of the UpBlock2D class. hidden_states (torch.FloatTensor): The input tensor to the block. res_hidden_states_tuple (Tuple[torch.FloatTensor, ...]): A tuple of residual hidden states. temb (Optional[torch.FloatTensor], optional): The token embeddings. Defaults to None. upsample_size (Optional[int], optional): The size to upsample the input tensor to. Defaults to None. scale (float, optional): The scale factor to apply to the input tensor. Defaults to 1.0. Returns: torch.FloatTensor: The output tensor after passing through the block.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_blocks.py
MIT
def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor( return_deprecated_lora=True ) for sub_name, child in module.named_children(): fn_recursive_add_processors( f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors
Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name.
attn_processors
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_condition.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_condition.py
MIT
def set_attn_processor( self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False, ): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor, _remove_lora=_remove_lora) else: module.set_processor( processor.pop(f"{name}.processor"), _remove_lora=_remove_lora ) for sub_name, child in module.named_children(): fn_recursive_attn_processor( f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.
set_attn_processor
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_condition.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_condition.py
MIT
def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all( proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values() ): processor = AttnAddedKVProcessor() elif all( proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values() ): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor, _remove_lora=True)
Disables custom attention processors and sets the default attention implementation.
set_default_attn_processor
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_condition.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_condition.py
MIT
def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a small decrease in speed. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ sliceable_head_dims = [] def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): sliceable_head_dims.append(module.sliceable_head_dim) for child in module.children(): fn_recursive_retrieve_sliceable_dims(child) # retrieve number of attention layers for module in self.children(): fn_recursive_retrieve_sliceable_dims(module) num_sliceable_layers = len(sliceable_head_dims) if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = [dim // 2 for dim in sliceable_head_dims] elif slice_size == "max": # make smallest slice possible slice_size = num_sliceable_layers * [1] slice_size = ( num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size ) if len(slice_size) != len(sliceable_head_dims): raise ValueError( f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." ) for i, size in enumerate(slice_size): dim = sliceable_head_dims[i] if size is not None and size > dim: raise ValueError( f"size {size} has to be smaller or equal to {dim}.") # Recursively walk through all the children. # Any children which exposes the set_attention_slice method # gets the message def fn_recursive_set_attention_slice( module: torch.nn.Module, slice_size: List[int] ): if hasattr(module, "set_attention_slice"): module.set_attention_slice(slice_size.pop()) for child in module.children(): fn_recursive_set_attention_slice(child, slice_size) reversed_slice_size = list(reversed(slice_size)) for module in self.children(): fn_recursive_set_attention_slice(module, reversed_slice_size)
Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a small decrease in speed. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`.
set_attention_slice
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_condition.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_condition.py
MIT
def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, cond_tensor: torch.FloatTensor=None, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, post_process: bool = False, ) -> Union[UNet2DConditionOutput, Tuple]: r""" The [`UNet2DConditionModel`] forward method. Args: sample (`torch.FloatTensor`): The noisy input tensor with the following shape `(batch, channel, height, width)`. timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.FloatTensor`): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed through the `self.time_embedding` layer to obtain the timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor] (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): A tuple of tensors that if specified are added to the residuals of down unet blocks. mid_block_additional_residual: (`torch.Tensor`, *optional*): A tensor that if specified is added to the residual of the middle unet block. encoder_attention_mask (`torch.Tensor`): A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added to UNet long skip connections from down blocks to up blocks for example from ControlNet side model(s) mid_block_additional_residual (`torch.Tensor`, *optional*): additional residual to be added to UNet mid block output, for example from ControlNet side model down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None for dim in sample.shape[-2:]: if dim % default_overall_up_factor != 0: # Forward upsample size to force interpolation output size. forward_upsample_size = True break # ensure attention_mask is a bias, and give it a singleton query_tokens dimension # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None: encoder_attention_mask = ( 1 - encoder_attention_mask.to(sample.dtype) ) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor( [timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) emb = self.time_embedding(t_emb, timestep_cond) aug_emb = None if self.class_embedding is not None: if class_labels is None: raise ValueError( "class_labels should be provided when num_class_embeds > 0" ) if self.config.class_embed_type == "timestep": class_labels = self.time_proj(class_labels) # `Timesteps` does not contain any weights and will always return f32 tensors # there might be better ways to encapsulate this. class_labels = class_labels.to(dtype=sample.dtype) class_emb = self.class_embedding( class_labels).to(dtype=sample.dtype) if self.config.class_embeddings_concat: emb = torch.cat([emb, class_emb], dim=-1) else: emb = emb + class_emb if self.config.addition_embed_type == "text": aug_emb = self.add_embedding(encoder_hidden_states) elif self.config.addition_embed_type == "text_image": # Kandinsky 2.1 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_image'" "which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" ) image_embs = added_cond_kwargs.get("image_embeds") text_embs = added_cond_kwargs.get( "text_embeds", encoder_hidden_states) aug_emb = self.add_embedding(text_embs, image_embs) elif self.config.addition_embed_type == "text_time": # SDXL - style if "text_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time'" "which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" ) text_embeds = added_cond_kwargs.get("text_embeds") if "time_ids" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time'" "which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" ) time_ids = added_cond_kwargs.get("time_ids") time_embeds = self.add_time_proj(time_ids.flatten()) time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) add_embeds = add_embeds.to(emb.dtype) aug_emb = self.add_embedding(add_embeds) elif self.config.addition_embed_type == "image": # Kandinsky 2.2 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'image'" "which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" ) image_embs = added_cond_kwargs.get("image_embeds") aug_emb = self.add_embedding(image_embs) elif self.config.addition_embed_type == "image_hint": # Kandinsky 2.2 - style if ( "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs ): raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint'" "which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" ) image_embs = added_cond_kwargs.get("image_embeds") hint = added_cond_kwargs.get("hint") aug_emb, hint = self.add_embedding(image_embs, hint) sample = torch.cat([sample, hint], dim=1) emb = emb + aug_emb if aug_emb is not None else emb if self.time_embed_act is not None: emb = self.time_embed_act(emb) if ( self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj" ): encoder_hidden_states = self.encoder_hid_proj( encoder_hidden_states) elif ( self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj" ): # Kadinsky 2.1 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj'" "which requires the keyword argument `image_embeds` to be passed in `added_conditions`" ) image_embeds = added_cond_kwargs.get("image_embeds") encoder_hidden_states = self.encoder_hid_proj( encoder_hidden_states, image_embeds ) elif ( self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj" ): # Kandinsky 2.2 - style if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj'" "which requires the keyword argument `image_embeds` to be passed in `added_conditions`" ) image_embeds = added_cond_kwargs.get("image_embeds") encoder_hidden_states = self.encoder_hid_proj(image_embeds) elif ( self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj" ): if "image_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj'" "which requires the keyword argument `image_embeds` to be passed in `added_conditions`" ) image_embeds = added_cond_kwargs.get("image_embeds") image_embeds = self.encoder_hid_proj(image_embeds).to( encoder_hidden_states.dtype ) encoder_hidden_states = torch.cat( [encoder_hidden_states, image_embeds], dim=1 ) # 2. pre-process sample = self.conv_in(sample) if cond_tensor is not None: sample = sample + cond_tensor # 2.5 GLIGEN position net if ( cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None ): cross_attention_kwargs = cross_attention_kwargs.copy() gligen_args = cross_attention_kwargs.pop("gligen") cross_attention_kwargs["gligen"] = { "objs": self.position_net(**gligen_args) } # 3. down lora_scale = ( cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 ) if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) is_controlnet = ( mid_block_additional_residual is not None and down_block_additional_residuals is not None ) # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets is_adapter = down_intrablock_additional_residuals is not None # maintain backward compatibility for legacy usage, where # T2I-Adapter and ControlNet both use down_block_additional_residuals arg # but can only use one or the other if ( not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None ): deprecate( "T2I should not use down_block_additional_residuals", "1.3.0", "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", standard_warn=False, ) down_intrablock_additional_residuals = down_block_additional_residuals is_adapter = True down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if ( hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention ): # For t2i-adapter CrossAttnDownBlock2D additional_residuals = {} if is_adapter and len(down_intrablock_additional_residuals) > 0: additional_residuals["additional_residuals"] = ( down_intrablock_additional_residuals.pop(0) ) sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, **additional_residuals, ) else: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, scale=lora_scale ) if is_adapter and len(down_intrablock_additional_residuals) > 0: sample += down_intrablock_additional_residuals.pop(0) down_block_res_samples += res_samples if is_controlnet: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): down_block_res_sample = ( down_block_res_sample + down_block_additional_residual ) new_down_block_res_samples = new_down_block_res_samples + ( down_block_res_sample, ) down_block_res_samples = new_down_block_res_samples # 4. mid if self.mid_block is not None: if ( hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention ): sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, ) else: sample = self.mid_block(sample, emb) # To support T2I-Adapter-XL if ( is_adapter and len(down_intrablock_additional_residuals) > 0 and sample.shape == down_intrablock_additional_residuals[0].shape ): sample += down_intrablock_additional_residuals.pop(0) if is_controlnet: sample = sample + mid_block_additional_residual # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets):] down_block_res_samples = down_block_res_samples[ : -len(upsample_block.resnets) ] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if ( hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention ): sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, scale=lora_scale, ) # 6. post-process if post_process: if self.conv_norm_out: sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (sample,) return UNet2DConditionOutput(sample=sample)
The [`UNet2DConditionModel`] forward method. Args: sample (`torch.FloatTensor`): The noisy input tensor with the following shape `(batch, channel, height, width)`. timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.FloatTensor`): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed through the `self.time_embedding` layer to obtain the timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor] (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): A tuple of tensors that if specified are added to the residuals of down unet blocks. mid_block_additional_residual: (`torch.Tensor`, *optional*): A tensor that if specified is added to the residual of the middle unet block. encoder_attention_mask (`torch.Tensor`): A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added to UNet long skip connections from down blocks to up blocks for example from ControlNet side model(s) mid_block_additional_residual (`torch.Tensor`, *optional*): additional residual to be added to UNet mid block output, for example from ControlNet side model down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_condition.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_condition.py
MIT
def load_change_cross_attention_dim( cls, pretrained_model_path: PathLike, subfolder=None, # unet_additional_kwargs=None, ): """ Load or change the cross-attention dimension of a pre-trained model. Parameters: pretrained_model_name_or_path (:class:`~typing.Union[str, :class:`~pathlib.Path`]`): The identifier of the pre-trained model or the path to the local folder containing the model. force_download (:class:`~bool`): If True, re-download the model even if it is already cached. resume_download (:class:`~bool`): If True, resume the download of the model if partially downloaded. proxies (:class:`~dict`): A dictionary of proxy servers to use for downloading the model. cache_dir (:class:`~Optional[str]`): The path to the cache directory for storing downloaded models. use_auth_token (:class:`~bool`): If True, use the authentication token for private models. revision (:class:`~str`): The specific model version to use. use_safetensors (:class:`~bool`): If True, use the SafeTensors format for loading the model weights. **kwargs (:class:`~dict`): Additional keyword arguments passed to the model. """ pretrained_model_path = Path(pretrained_model_path) if subfolder is not None: pretrained_model_path = pretrained_model_path.joinpath(subfolder) config_file = pretrained_model_path / "config.json" if not (config_file.exists() and config_file.is_file()): raise RuntimeError( f"{config_file} does not exist or is not a file") unet_config = cls.load_config(config_file) unet_config["cross_attention_dim"] = 1024 model = cls.from_config(unet_config) # load the vanilla weights if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists(): logger.debug( f"loading safeTensors weights from {pretrained_model_path} ..." ) state_dict = load_file( pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu" ) elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists(): logger.debug(f"loading weights from {pretrained_model_path} ...") state_dict = torch.load( pretrained_model_path.joinpath(WEIGHTS_NAME), map_location="cpu", weights_only=True, ) else: raise FileNotFoundError( f"no weights file found in {pretrained_model_path}") model_state_dict = model.state_dict() for k in state_dict: if k in model_state_dict: if state_dict[k].shape != model_state_dict[k].shape: state_dict[k] = model_state_dict[k] # load the weights into the model m, u = model.load_state_dict(state_dict, strict=False) print(m, u) return model
Load or change the cross-attention dimension of a pre-trained model. Parameters: pretrained_model_name_or_path (:class:`~typing.Union[str, :class:`~pathlib.Path`]`): The identifier of the pre-trained model or the path to the local folder containing the model. force_download (:class:`~bool`): If True, re-download the model even if it is already cached. resume_download (:class:`~bool`): If True, resume the download of the model if partially downloaded. proxies (:class:`~dict`): A dictionary of proxy servers to use for downloading the model. cache_dir (:class:`~Optional[str]`): The path to the cache directory for storing downloaded models. use_auth_token (:class:`~bool`): If True, use the authentication token for private models. revision (:class:`~str`): The specific model version to use. use_safetensors (:class:`~bool`): If True, use the SafeTensors format for loading the model weights. **kwargs (:class:`~dict`): Additional keyword arguments passed to the model.
load_change_cross_attention_dim
python
jdh-algo/JoyHallo
joyhallo/models/unet_2d_condition.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_2d_condition.py
MIT
def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "set_processor"): processors[f"{name}.processor"] = module.processor for sub_name, child in module.named_children(): if "temporal_transformer" not in sub_name: fn_recursive_add_processors( f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): if "temporal_transformer" not in name: fn_recursive_add_processors(name, module, processors) return processors
Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name.
attn_processors
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d.py
MIT
def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ sliceable_head_dims = [] def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): sliceable_head_dims.append(module.sliceable_head_dim) for child in module.children(): fn_recursive_retrieve_slicable_dims(child) # retrieve number of attention layers for module in self.children(): fn_recursive_retrieve_slicable_dims(module) num_slicable_layers = len(sliceable_head_dims) if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = [dim // 2 for dim in sliceable_head_dims] elif slice_size == "max": # make smallest slice possible slice_size = num_slicable_layers * [1] slice_size = ( num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size ) if len(slice_size) != len(sliceable_head_dims): raise ValueError( f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." ) for i, size in enumerate(slice_size): dim = sliceable_head_dims[i] if size is not None and size > dim: raise ValueError( f"size {size} has to be smaller or equal to {dim}.") # Recursively walk through all the children. # Any children which exposes the set_attention_slice method # gets the message def fn_recursive_set_attention_slice( module: torch.nn.Module, slice_size: List[int] ): if hasattr(module, "set_attention_slice"): module.set_attention_slice(slice_size.pop()) for child in module.children(): fn_recursive_set_attention_slice(child, slice_size) reversed_slice_size = list(reversed(slice_size)) for module in self.children(): fn_recursive_set_attention_slice(module, reversed_slice_size)
Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`.
set_attention_slice
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d.py
MIT
def set_attn_processor( self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): if "temporal_transformer" not in sub_name: fn_recursive_attn_processor( f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): if "temporal_transformer" not in name: fn_recursive_attn_processor(name, module, processor)
Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.
set_attn_processor
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d.py
MIT
def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, audio_embedding: Optional[torch.Tensor] = None, class_labels: Optional[torch.Tensor] = None, mask_cond_fea: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, full_mask: Optional[torch.Tensor] = None, face_mask: Optional[torch.Tensor] = None, lip_mask: Optional[torch.Tensor] = None, motion_scale: Optional[torch.Tensor] = None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, return_dict: bool = True, # start: bool = False, ) -> Union[UNet3DConditionOutput, Tuple]: r""" Args: sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states, face_emb return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. mask_cond_fea (`torch.FloatTensor`, *optional*): mask_feature tensor audio_embedding (`torch.FloatTensor`, *optional*): audio embedding tensor, audio_emb full_mask (`torch.FloatTensor`, *optional*): full mask tensor, full_mask face_mask (`torch.FloatTensor`, *optional*): face mask tensor, face_mask lip_mask (`torch.FloatTensor`, *optional*): lip mask tensor, lip_mask Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info( "Forward upsample size to force interpolation output size.") forward_upsample_size = True # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # time timesteps = timestep if not torch.is_tensor(timesteps): # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor( [timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb) if self.class_embedding is not None: if class_labels is None: raise ValueError( "class_labels should be provided when num_class_embeds > 0" ) if self.config.class_embed_type == "timestep": class_labels = self.time_proj(class_labels) class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) emb = emb + class_emb # pre-process sample = self.conv_in(sample) if mask_cond_fea is not None: sample = sample + mask_cond_fea # down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if ( hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention ): sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, audio_embedding=audio_embedding, motion_scale=motion_scale, ) # print("") else: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, # audio_embedding=audio_embedding, ) # print("") down_block_res_samples += res_samples if down_block_additional_residuals is not None: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): down_block_res_sample = ( down_block_res_sample + down_block_additional_residual ) new_down_block_res_samples += (down_block_res_sample,) down_block_res_samples = new_down_block_res_samples # mid sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, audio_embedding=audio_embedding, motion_scale=motion_scale, ) if mid_block_additional_residual is not None: sample = sample + mid_block_additional_residual # up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets):] down_block_res_samples = down_block_res_samples[ : -len(upsample_block.resnets) ] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if ( hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention ): sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, audio_embedding=audio_embedding, motion_scale=motion_scale, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states, # audio_embedding=audio_embedding, ) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return UNet3DConditionOutput(sample=sample)
Args: sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states, face_emb return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. mask_cond_fea (`torch.FloatTensor`, *optional*): mask_feature tensor audio_embedding (`torch.FloatTensor`, *optional*): audio embedding tensor, audio_emb full_mask (`torch.FloatTensor`, *optional*): full mask tensor, full_mask face_mask (`torch.FloatTensor`, *optional*): face mask tensor, face_mask lip_mask (`torch.FloatTensor`, *optional*): lip mask tensor, lip_mask Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d.py
MIT
def from_pretrained_2d( cls, pretrained_model_path: PathLike, motion_module_path: PathLike, subfolder=None, unet_additional_kwargs=None, mm_zero_proj_out=False, use_landmark=True, ): """ Load a pre-trained 2D UNet model from a given directory. Parameters: pretrained_model_path (`str` or `PathLike`): Path to the directory containing a pre-trained 2D UNet model. dtype (`torch.dtype`, *optional*): The data type of the loaded model. If not provided, the default data type is used. device (`torch.device`, *optional*): The device on which the loaded model will be placed. If not provided, the default device is used. **kwargs (`Any`): Additional keyword arguments passed to the model. Returns: `UNet3DConditionModel`: The loaded 2D UNet model. """ pretrained_model_path = Path(pretrained_model_path) motion_module_path = Path(motion_module_path) if subfolder is not None: pretrained_model_path = pretrained_model_path.joinpath(subfolder) logger.info( f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..." ) config_file = pretrained_model_path / "config.json" if not (config_file.exists() and config_file.is_file()): raise RuntimeError( f"{config_file} does not exist or is not a file") unet_config = cls.load_config(config_file) unet_config["_class_name"] = cls.__name__ unet_config["down_block_types"] = [ "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D", ] unet_config["up_block_types"] = [ "UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", ] unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn" if use_landmark: unet_config["in_channels"] = 8 unet_config["out_channels"] = 8 model = cls.from_config(unet_config, **unet_additional_kwargs) # load the vanilla weights if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists(): logger.debug( f"loading safeTensors weights from {pretrained_model_path} ..." ) state_dict = load_file( pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu" ) elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists(): logger.debug(f"loading weights from {pretrained_model_path} ...") state_dict = torch.load( pretrained_model_path.joinpath(WEIGHTS_NAME), map_location="cpu", weights_only=True, ) else: raise FileNotFoundError( f"no weights file found in {pretrained_model_path}") # load the motion module weights if motion_module_path.exists() and motion_module_path.is_file(): if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]: print( f"Load motion module params from {motion_module_path}") motion_state_dict = torch.load( motion_module_path, map_location="cpu", weights_only=True ) elif motion_module_path.suffix.lower() == ".safetensors": motion_state_dict = load_file(motion_module_path, device="cpu") else: raise RuntimeError( f"unknown file format for motion module weights: {motion_module_path.suffix}" ) if mm_zero_proj_out: logger.info( "Zero initialize proj_out layers in motion module...") new_motion_state_dict = OrderedDict() for k in motion_state_dict: if "proj_out" in k: continue new_motion_state_dict[k] = motion_state_dict[k] motion_state_dict = new_motion_state_dict # merge the state dicts state_dict.update(motion_state_dict) model_state_dict = model.state_dict() for k in state_dict: if k in model_state_dict: if state_dict[k].shape != model_state_dict[k].shape: state_dict[k] = model_state_dict[k] # load the weights into the model m, u = model.load_state_dict(state_dict, strict=False) logger.debug( f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") params = [ p.numel() if "temporal" in n else 0 for n, p in model.named_parameters() ] logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module") return model
Load a pre-trained 2D UNet model from a given directory. Parameters: pretrained_model_path (`str` or `PathLike`): Path to the directory containing a pre-trained 2D UNet model. dtype (`torch.dtype`, *optional*): The data type of the loaded model. If not provided, the default data type is used. device (`torch.device`, *optional*): The device on which the loaded model will be placed. If not provided, the default device is used. **kwargs (`Any`): Additional keyword arguments passed to the model. Returns: `UNet3DConditionModel`: The loaded 2D UNet model.
from_pretrained_2d
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d.py
MIT
def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, audio_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_inflated_groupnorm=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, use_audio_module=None, depth=0, stack_enable_blocks_name=None, stack_enable_blocks_depth=None, ): """ Factory function to instantiate a down-block module for the 3D UNet architecture. Down blocks are used in the downsampling part of the U-Net to reduce the spatial dimensions of the feature maps while increasing the depth. This function can create blocks with or without cross attention based on the specified parameters. Parameters: - down_block_type (str): The type of down block to instantiate. - num_layers (int): The number of layers in the block. - in_channels (int): The number of input channels. - out_channels (int): The number of output channels. - temb_channels (int): The number of token embedding channels. - add_downsample (bool): Flag to add a downsampling layer. - resnet_eps (float): Epsilon for residual block stability. - resnet_act_fn (callable): Activation function for the residual block. - ... (remaining parameters): Additional parameters for configuring the block. Returns: - nn.Module: An instance of a down-sampling block module. """ down_block_type = ( down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type ) if down_block_type == "DownBlock3D": return DownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if down_block_type == "CrossAttnDownBlock3D": if cross_attention_dim is None: raise ValueError( "cross_attention_dim must be specified for CrossAttnDownBlock3D" ) return CrossAttnDownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, audio_attention_dim=audio_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, use_audio_module=use_audio_module, depth=depth, stack_enable_blocks_name=stack_enable_blocks_name, stack_enable_blocks_depth=stack_enable_blocks_depth, ) raise ValueError(f"{down_block_type} does not exist.")
Factory function to instantiate a down-block module for the 3D UNet architecture. Down blocks are used in the downsampling part of the U-Net to reduce the spatial dimensions of the feature maps while increasing the depth. This function can create blocks with or without cross attention based on the specified parameters. Parameters: - down_block_type (str): The type of down block to instantiate. - num_layers (int): The number of layers in the block. - in_channels (int): The number of input channels. - out_channels (int): The number of output channels. - temb_channels (int): The number of token embedding channels. - add_downsample (bool): Flag to add a downsampling layer. - resnet_eps (float): Epsilon for residual block stability. - resnet_act_fn (callable): Activation function for the residual block. - ... (remaining parameters): Additional parameters for configuring the block. Returns: - nn.Module: An instance of a down-sampling block module.
get_down_block
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, audio_attention_dim=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_inflated_groupnorm=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, use_audio_module=None, depth=0, stack_enable_blocks_name=None, stack_enable_blocks_depth=None, ): """ Factory function to instantiate an up-block module for the 3D UNet architecture. Up blocks are used in the upsampling part of the U-Net to increase the spatial dimensions of the feature maps while decreasing the depth. This function can create blocks with or without cross attention based on the specified parameters. Parameters: - up_block_type (str): The type of up block to instantiate. - num_layers (int): The number of layers in the block. - in_channels (int): The number of input channels. - out_channels (int): The number of output channels. - prev_output_channel (int): The number of channels from the previous layer's output. - temb_channels (int): The number of token embedding channels. - add_upsample (bool): Flag to add an upsampling layer. - resnet_eps (float): Epsilon for residual block stability. - resnet_act_fn (callable): Activation function for the residual block. - ... (remaining parameters): Additional parameters for configuring the block. Returns: - nn.Module: An instance of an up-sampling block module. """ up_block_type = ( up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type ) if up_block_type == "UpBlock3D": return UpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if up_block_type == "CrossAttnUpBlock3D": if cross_attention_dim is None: raise ValueError( "cross_attention_dim must be specified for CrossAttnUpBlock3D" ) return CrossAttnUpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, audio_attention_dim=audio_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_inflated_groupnorm=use_inflated_groupnorm, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, use_audio_module=use_audio_module, depth=depth, stack_enable_blocks_name=stack_enable_blocks_name, stack_enable_blocks_depth=stack_enable_blocks_depth, ) raise ValueError(f"{up_block_type} does not exist.")
Factory function to instantiate an up-block module for the 3D UNet architecture. Up blocks are used in the upsampling part of the U-Net to increase the spatial dimensions of the feature maps while decreasing the depth. This function can create blocks with or without cross attention based on the specified parameters. Parameters: - up_block_type (str): The type of up block to instantiate. - num_layers (int): The number of layers in the block. - in_channels (int): The number of input channels. - out_channels (int): The number of output channels. - prev_output_channel (int): The number of channels from the previous layer's output. - temb_channels (int): The number of token embedding channels. - add_upsample (bool): Flag to add an upsampling layer. - resnet_eps (float): Epsilon for residual block stability. - resnet_act_fn (callable): Activation function for the residual block. - ... (remaining parameters): Additional parameters for configuring the block. Returns: - nn.Module: An instance of an up-sampling block module.
get_up_block
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def forward( self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, full_mask=None, face_mask=None, lip_mask=None, audio_embedding=None, motion_scale=None, ): """ Forward pass for the UNetMidBlock3DCrossAttn class. Args: self (UNetMidBlock3DCrossAttn): An instance of the UNetMidBlock3DCrossAttn class. hidden_states (Tensor): The input hidden states tensor. temb (Tensor, optional): The input temporal embedding tensor. Defaults to None. encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None. attention_mask (Tensor, optional): The attention mask tensor. Defaults to None. full_mask (Tensor, optional): The full mask tensor. Defaults to None. face_mask (Tensor, optional): The face mask tensor. Defaults to None. lip_mask (Tensor, optional): The lip mask tensor. Defaults to None. audio_embedding (Tensor, optional): The audio embedding tensor. Defaults to None. Returns: Tensor: The output tensor after passing through the UNetMidBlock3DCrossAttn layers. """ hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, audio_module, motion_module in zip( self.attentions, self.resnets[1:], self.audio_modules, self.motion_modules ): hidden_states, motion_frame = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, return_dict=False, ) # .sample if len(motion_frame[0]) > 0: # if motion_frame[0][0].numel() > 0: motion_frames = motion_frame[0][0] motion_frames = rearrange( motion_frames, "b f (d1 d2) c -> b c f d1 d2", d1=hidden_states.size(-1), ) else: motion_frames = torch.zeros( hidden_states.shape[0], hidden_states.shape[1], 4, hidden_states.shape[3], hidden_states.shape[4], ) n_motion_frames = motion_frames.size(2) if audio_module is not None: hidden_states = ( audio_module( hidden_states, encoder_hidden_states=audio_embedding, attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, motion_scale=motion_scale, return_dict=False, ) )[0] # .sample if motion_module is not None: motion_frames = motion_frames.to( device=hidden_states.device, dtype=hidden_states.dtype ) _hidden_states = ( torch.cat([motion_frames, hidden_states], dim=2) if n_motion_frames > 0 else hidden_states ) hidden_states = motion_module( _hidden_states, encoder_hidden_states=encoder_hidden_states ) hidden_states = hidden_states[:, :, n_motion_frames:] hidden_states = resnet(hidden_states, temb) return hidden_states
Forward pass for the UNetMidBlock3DCrossAttn class. Args: self (UNetMidBlock3DCrossAttn): An instance of the UNetMidBlock3DCrossAttn class. hidden_states (Tensor): The input hidden states tensor. temb (Tensor, optional): The input temporal embedding tensor. Defaults to None. encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None. attention_mask (Tensor, optional): The attention mask tensor. Defaults to None. full_mask (Tensor, optional): The full mask tensor. Defaults to None. face_mask (Tensor, optional): The face mask tensor. Defaults to None. lip_mask (Tensor, optional): The lip mask tensor. Defaults to None. audio_embedding (Tensor, optional): The audio embedding tensor. Defaults to None. Returns: Tensor: The output tensor after passing through the UNetMidBlock3DCrossAttn layers.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def forward( self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, full_mask=None, face_mask=None, lip_mask=None, audio_embedding=None, motion_scale=None, ): """ Defines the forward pass for the CrossAttnDownBlock3D class. Parameters: - hidden_states : torch.Tensor The input tensor to the block. temb : torch.Tensor, optional The token embeddings from the previous block. encoder_hidden_states : torch.Tensor, optional The hidden states from the encoder. attention_mask : torch.Tensor, optional The attention mask for the cross-attention mechanism. full_mask : torch.Tensor, optional The full mask for the cross-attention mechanism. face_mask : torch.Tensor, optional The face mask for the cross-attention mechanism. lip_mask : torch.Tensor, optional The lip mask for the cross-attention mechanism. audio_embedding : torch.Tensor, optional The audio embedding for the cross-attention mechanism. Returns: -- torch.Tensor The output tensor from the block. """ output_states = () for _, (resnet, attn, audio_module, motion_module) in enumerate( zip(self.resnets, self.attentions, self.audio_modules, self.motion_modules) ): # self.gradient_checkpointing = False if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) motion_frames = [] hidden_states, motion_frame = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, ) if len(motion_frame[0]) > 0: motion_frames = motion_frame[0][0] # motion_frames = torch.cat(motion_frames, dim=0) motion_frames = rearrange( motion_frames, "b f (d1 d2) c -> b c f d1 d2", d1=hidden_states.size(-1), ) else: motion_frames = torch.zeros( hidden_states.shape[0], hidden_states.shape[1], 4, hidden_states.shape[3], hidden_states.shape[4], ) n_motion_frames = motion_frames.size(2) if audio_module is not None: # audio_embedding = audio_embedding hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(audio_module, return_dict=False), hidden_states, audio_embedding, attention_mask, full_mask, face_mask, lip_mask, motion_scale, )[0] # add motion module if motion_module is not None: motion_frames = motion_frames.to( device=hidden_states.device, dtype=hidden_states.dtype ) _hidden_states = torch.cat( [motion_frames, hidden_states], dim=2 ) # if n_motion_frames > 0 else hidden_states hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), _hidden_states, encoder_hidden_states, ) hidden_states = hidden_states[:, :, n_motion_frames:] else: hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, ).sample if audio_module is not None: hidden_states = audio_module( hidden_states, audio_embedding, attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, return_dict=False, )[0] # add motion module if motion_module is not None: hidden_states = motion_module( hidden_states, encoder_hidden_states=encoder_hidden_states ) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states
Defines the forward pass for the CrossAttnDownBlock3D class. Parameters: - hidden_states : torch.Tensor The input tensor to the block. temb : torch.Tensor, optional The token embeddings from the previous block. encoder_hidden_states : torch.Tensor, optional The hidden states from the encoder. attention_mask : torch.Tensor, optional The attention mask for the cross-attention mechanism. full_mask : torch.Tensor, optional The full mask for the cross-attention mechanism. face_mask : torch.Tensor, optional The face mask for the cross-attention mechanism. lip_mask : torch.Tensor, optional The lip mask for the cross-attention mechanism. audio_embedding : torch.Tensor, optional The audio embedding for the cross-attention mechanism. Returns: -- torch.Tensor The output tensor from the block.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def forward( self, hidden_states, temb=None, encoder_hidden_states=None, ): """ forward method for the DownBlock3D class. Args: hidden_states (Tensor): The input tensor to the DownBlock3D layer. temb (Tensor, optional): The token embeddings, if using transformer. encoder_hidden_states (Tensor, optional): The hidden states from the encoder. Returns: Tensor: The output tensor after passing through the DownBlock3D layer. """ output_states = () for resnet, motion_module in zip(self.resnets, self.motion_modules): # print(f"DownBlock3D {self.gradient_checkpointing = }") if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb) # add motion module hidden_states = ( motion_module( hidden_states, encoder_hidden_states=encoder_hidden_states ) if motion_module is not None else hidden_states ) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states
forward method for the DownBlock3D class. Args: hidden_states (Tensor): The input tensor to the DownBlock3D layer. temb (Tensor, optional): The token embeddings, if using transformer. encoder_hidden_states (Tensor, optional): The hidden states from the encoder. Returns: Tensor: The output tensor after passing through the DownBlock3D layer.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def forward( self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None, upsample_size=None, attention_mask=None, full_mask=None, face_mask=None, lip_mask=None, audio_embedding=None, motion_scale=None, ): """ Forward pass for the CrossAttnUpBlock3D class. Args: self (CrossAttnUpBlock3D): An instance of the CrossAttnUpBlock3D class. hidden_states (Tensor): The input hidden states tensor. res_hidden_states_tuple (Tuple[Tensor]): A tuple of residual hidden states tensors. temb (Tensor, optional): The token embeddings tensor. Defaults to None. encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None. upsample_size (int, optional): The upsample size. Defaults to None. attention_mask (Tensor, optional): The attention mask tensor. Defaults to None. full_mask (Tensor, optional): The full mask tensor. Defaults to None. face_mask (Tensor, optional): The face mask tensor. Defaults to None. lip_mask (Tensor, optional): The lip mask tensor. Defaults to None. audio_embedding (Tensor, optional): The audio embedding tensor. Defaults to None. Returns: Tensor: The output tensor after passing through the CrossAttnUpBlock3D. """ for _, (resnet, attn, audio_module, motion_module) in enumerate( zip(self.resnets, self.attentions, self.audio_modules, self.motion_modules) ): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) motion_frames = [] hidden_states, motion_frame = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, ) if len(motion_frame[0]) > 0: motion_frames = motion_frame[0][0] # motion_frames = torch.cat(motion_frames, dim=0) motion_frames = rearrange( motion_frames, "b f (d1 d2) c -> b c f d1 d2", d1=hidden_states.size(-1), ) else: motion_frames = torch.zeros( hidden_states.shape[0], hidden_states.shape[1], 4, hidden_states.shape[3], hidden_states.shape[4], ) n_motion_frames = motion_frames.size(2) if audio_module is not None: # audio_embedding = audio_embedding hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(audio_module, return_dict=False), hidden_states, audio_embedding, attention_mask, full_mask, face_mask, lip_mask, motion_scale, )[0] # add motion module if motion_module is not None: motion_frames = motion_frames.to( device=hidden_states.device, dtype=hidden_states.dtype ) _hidden_states = ( torch.cat([motion_frames, hidden_states], dim=2) if n_motion_frames > 0 else hidden_states ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), _hidden_states, encoder_hidden_states, ) hidden_states = hidden_states[:, :, n_motion_frames:] else: hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, ).sample if audio_module is not None: hidden_states = ( audio_module( hidden_states, encoder_hidden_states=audio_embedding, attention_mask=attention_mask, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask, ) ).sample # add motion module hidden_states = ( motion_module( hidden_states, encoder_hidden_states=encoder_hidden_states ) if motion_module is not None else hidden_states ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states
Forward pass for the CrossAttnUpBlock3D class. Args: self (CrossAttnUpBlock3D): An instance of the CrossAttnUpBlock3D class. hidden_states (Tensor): The input hidden states tensor. res_hidden_states_tuple (Tuple[Tensor]): A tuple of residual hidden states tensors. temb (Tensor, optional): The token embeddings tensor. Defaults to None. encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None. upsample_size (int, optional): The upsample size. Defaults to None. attention_mask (Tensor, optional): The attention mask tensor. Defaults to None. full_mask (Tensor, optional): The full mask tensor. Defaults to None. face_mask (Tensor, optional): The face mask tensor. Defaults to None. lip_mask (Tensor, optional): The lip mask tensor. Defaults to None. audio_embedding (Tensor, optional): The audio embedding tensor. Defaults to None. Returns: Tensor: The output tensor after passing through the CrossAttnUpBlock3D.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def forward( self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None, ): """ Forward pass for the UpBlock3D class. Args: self (UpBlock3D): An instance of the UpBlock3D class. hidden_states (Tensor): The input hidden states tensor. res_hidden_states_tuple (Tuple[Tensor]): A tuple of residual hidden states tensors. temb (Tensor, optional): The token embeddings tensor. Defaults to None. upsample_size (int, optional): The upsample size. Defaults to None. encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None. Returns: Tensor: The output tensor after passing through the UpBlock3D layers. """ for resnet, motion_module in zip(self.resnets, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) # print(f"UpBlock3D {self.gradient_checkpointing = }") if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb) hidden_states = ( motion_module( hidden_states, encoder_hidden_states=encoder_hidden_states ) if motion_module is not None else hidden_states ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states
Forward pass for the UpBlock3D class. Args: self (UpBlock3D): An instance of the UpBlock3D class. hidden_states (Tensor): The input hidden states tensor. res_hidden_states_tuple (Tuple[Tensor]): A tuple of residual hidden states tensors. temb (Tensor, optional): The token embeddings tensor. Defaults to None. upsample_size (int, optional): The upsample size. Defaults to None. encoder_hidden_states (Tensor, optional): The encoder hidden states tensor. Defaults to None. Returns: Tensor: The output tensor after passing through the UpBlock3D layers.
forward
python
jdh-algo/JoyHallo
joyhallo/models/unet_3d_blocks.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/unet_3d_blocks.py
MIT
def forward( self, input_values, seq_len, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ Forward pass of the Wav2Vec model. Args: self: The instance of the model. input_values: The input values (waveform) to the model. seq_len: The sequence length of the input values. attention_mask: Attention mask to be used for the model. mask_time_indices: Mask indices to be used for the model. output_attentions: If set to True, returns attentions. output_hidden_states: If set to True, returns hidden states. return_dict: If set to True, returns a BaseModelOutput instead of a tuple. Returns: The output of the Wav2Vec model. """ self.config.output_attentions = True output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = linear_interpolation(extract_features, seq_len=seq_len) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, ) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
Forward pass of the Wav2Vec model. Args: self: The instance of the model. input_values: The input values (waveform) to the model. seq_len: The sequence length of the input values. attention_mask: Attention mask to be used for the model. mask_time_indices: Mask indices to be used for the model. output_attentions: If set to True, returns attentions. output_hidden_states: If set to True, returns hidden states. return_dict: If set to True, returns a BaseModelOutput instead of a tuple. Returns: The output of the Wav2Vec model.
forward
python
jdh-algo/JoyHallo
joyhallo/models/wav2vec.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/wav2vec.py
MIT
def feature_extract( self, input_values, seq_len, ): """ Extracts features from the input values and returns the extracted features. Parameters: input_values (torch.Tensor): The input values to be processed. seq_len (torch.Tensor): The sequence lengths of the input values. Returns: extracted_features (torch.Tensor): The extracted features from the input values. """ extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = linear_interpolation(extract_features, seq_len=seq_len) return extract_features
Extracts features from the input values and returns the extracted features. Parameters: input_values (torch.Tensor): The input values to be processed. seq_len (torch.Tensor): The sequence lengths of the input values. Returns: extracted_features (torch.Tensor): The extracted features from the input values.
feature_extract
python
jdh-algo/JoyHallo
joyhallo/models/wav2vec.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/wav2vec.py
MIT
def encode( self, extract_features, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): """ Encodes the input features into the output space. Args: extract_features (torch.Tensor): The extracted features from the audio signal. attention_mask (torch.Tensor, optional): Attention mask to be used for padding. mask_time_indices (torch.Tensor, optional): Masked indices for the time dimension. output_attentions (bool, optional): If set to True, returns the attention weights. output_hidden_states (bool, optional): If set to True, returns all hidden states. return_dict (bool, optional): If set to True, returns a BaseModelOutput instead of the tuple. Returns: The encoded output features. """ self.config.output_attentions = True output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, ) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
Encodes the input features into the output space. Args: extract_features (torch.Tensor): The extracted features from the audio signal. attention_mask (torch.Tensor, optional): Attention mask to be used for padding. mask_time_indices (torch.Tensor, optional): Masked indices for the time dimension. output_attentions (bool, optional): If set to True, returns the attention weights. output_hidden_states (bool, optional): If set to True, returns all hidden states. return_dict (bool, optional): If set to True, returns a BaseModelOutput instead of the tuple. Returns: The encoded output features.
encode
python
jdh-algo/JoyHallo
joyhallo/models/wav2vec.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/wav2vec.py
MIT
def linear_interpolation(features, seq_len): """ Transpose the features to interpolate linearly. Args: features (torch.Tensor): The extracted features to be interpolated. seq_len (torch.Tensor): The sequence lengths of the features. Returns: torch.Tensor: The interpolated features. """ features = features.transpose(1, 2) output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear') return output_features.transpose(1, 2)
Transpose the features to interpolate linearly. Args: features (torch.Tensor): The extracted features to be interpolated. seq_len (torch.Tensor): The sequence lengths of the features. Returns: torch.Tensor: The interpolated features.
linear_interpolation
python
jdh-algo/JoyHallo
joyhallo/models/wav2vec.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/models/wav2vec.py
MIT
def filter_non_none(dict_obj: Dict): """ Filters out key-value pairs from the given dictionary where the value is None. Args: dict_obj (Dict): The dictionary to be filtered. Returns: Dict: The dictionary with key-value pairs removed where the value was None. This function creates a new dictionary containing only the key-value pairs from the original dictionary where the value is not None. It then clears the original dictionary and updates it with the filtered key-value pairs. """ non_none_filter = { k: v for k, v in dict_obj.items() if v is not None } dict_obj.clear() dict_obj.update(non_none_filter) return dict_obj
Filters out key-value pairs from the given dictionary where the value is None. Args: dict_obj (Dict): The dictionary to be filtered. Returns: Dict: The dictionary with key-value pairs removed where the value was None. This function creates a new dictionary containing only the key-value pairs from the original dictionary where the value is not None. It then clears the original dictionary and updates it with the filtered key-value pairs.
filter_non_none
python
jdh-algo/JoyHallo
joyhallo/utils/config.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/config.py
MIT
def seed_everything(seed): """ Seeds all random number generators to ensure reproducibility. Args: seed (int): The seed value to set for all random number generators. """ torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed % (2**32)) random.seed(seed)
Seeds all random number generators to ensure reproducibility. Args: seed (int): The seed value to set for all random number generators.
seed_everything
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def import_filename(filename): """ Import a module from a given file location. Args: filename (str): The path to the file containing the module to be imported. Returns: module: The imported module. Raises: ImportError: If the module cannot be imported. Example: >>> imported_module = import_filename('path/to/your/module.py') """ spec = importlib.util.spec_from_file_location("mymodule", filename) module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = module spec.loader.exec_module(module) return module
Import a module from a given file location. Args: filename (str): The path to the file containing the module to be imported. Returns: module: The imported module. Raises: ImportError: If the module cannot be imported. Example: >>> imported_module = import_filename('path/to/your/module.py')
import_filename
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def delete_additional_ckpt(base_path, num_keep): """ Deletes additional checkpoint files in the given directory. Args: base_path (str): The path to the directory containing the checkpoint files. num_keep (int): The number of most recent checkpoint files to keep. Returns: None Raises: FileNotFoundError: If the base_path does not exist. Example: >>> delete_additional_ckpt('path/to/checkpoints', 1) # This will delete all but the most recent checkpoint file in 'path/to/checkpoints'. """ dirs = [] for d in os.listdir(base_path): if d.startswith("checkpoint-"): dirs.append(d) num_tot = len(dirs) if num_tot <= num_keep: return # ensure ckpt is sorted and delete the ealier! del_dirs = sorted(dirs, key=lambda x: int( x.split("-")[-1]))[: num_tot - num_keep] for d in del_dirs: path_to_dir = osp.join(base_path, d) if osp.exists(path_to_dir): shutil.rmtree(path_to_dir)
Deletes additional checkpoint files in the given directory. Args: base_path (str): The path to the directory containing the checkpoint files. num_keep (int): The number of most recent checkpoint files to keep. Returns: None Raises: FileNotFoundError: If the base_path does not exist. Example: >>> delete_additional_ckpt('path/to/checkpoints', 1) # This will delete all but the most recent checkpoint file in 'path/to/checkpoints'.
delete_additional_ckpt
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def save_videos_from_pil(pil_images, path, fps=8): """ Save a sequence of images as a video using the Pillow library. Args: pil_images (List[PIL.Image]): A list of PIL.Image objects representing the frames of the video. path (str): The output file path for the video. fps (int, optional): The frames per second rate of the video. Defaults to 8. Returns: None Raises: ValueError: If the save format is not supported. This function takes a list of PIL.Image objects and saves them as a video file with a specified frame rate. The output file format is determined by the file extension of the provided path. Supported formats include .mp4, .avi, and .mkv. The function uses the Pillow library to handle the image processing and video creation. """ save_fmt = Path(path).suffix os.makedirs(os.path.dirname(path), exist_ok=True) width, height = pil_images[0].size if save_fmt == ".mp4": codec = "libx264" container = av.open(path, "w") stream = container.add_stream(codec, rate=fps) stream.width = width stream.height = height for pil_image in pil_images: # pil_image = Image.fromarray(image_arr).convert("RGB") av_frame = av.VideoFrame.from_image(pil_image) container.mux(stream.encode(av_frame)) container.mux(stream.encode()) container.close() elif save_fmt == ".gif": pil_images[0].save( fp=path, format="GIF", append_images=pil_images[1:], save_all=True, duration=(1 / fps * 1000), loop=0, ) else: raise ValueError("Unsupported file type. Use .mp4 or .gif.")
Save a sequence of images as a video using the Pillow library. Args: pil_images (List[PIL.Image]): A list of PIL.Image objects representing the frames of the video. path (str): The output file path for the video. fps (int, optional): The frames per second rate of the video. Defaults to 8. Returns: None Raises: ValueError: If the save format is not supported. This function takes a list of PIL.Image objects and saves them as a video file with a specified frame rate. The output file format is determined by the file extension of the provided path. Supported formats include .mp4, .avi, and .mkv. The function uses the Pillow library to handle the image processing and video creation.
save_videos_from_pil
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): """ Save a grid of videos as an animation or video. Args: videos (torch.Tensor): A tensor of shape (batch_size, channels, time, height, width) containing the videos to save. path (str): The path to save the video grid. Supported formats are .mp4, .avi, and .gif. rescale (bool, optional): If True, rescale the video to the original resolution. Defaults to False. n_rows (int, optional): The number of rows in the video grid. Defaults to 6. fps (int, optional): The frame rate of the saved video. Defaults to 8. Raises: ValueError: If the video format is not supported. Returns: None """ videos = rearrange(videos, "b c t h w -> t b c h w") # height, width = videos.shape[-2:] outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) x = Image.fromarray(x) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) save_videos_from_pil(outputs, path, fps)
Save a grid of videos as an animation or video. Args: videos (torch.Tensor): A tensor of shape (batch_size, channels, time, height, width) containing the videos to save. path (str): The path to save the video grid. Supported formats are .mp4, .avi, and .gif. rescale (bool, optional): If True, rescale the video to the original resolution. Defaults to False. n_rows (int, optional): The number of rows in the video grid. Defaults to 6. fps (int, optional): The frame rate of the saved video. Defaults to 8. Raises: ValueError: If the video format is not supported. Returns: None
save_videos_grid
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def read_frames(video_path): """ Reads video frames from a given video file. Args: video_path (str): The path to the video file. Returns: container (av.container.InputContainer): The input container object containing the video stream. Raises: FileNotFoundError: If the video file is not found. RuntimeError: If there is an error in reading the video stream. The function reads the video frames from the specified video file using the Python AV library (av). It returns an input container object that contains the video stream. If the video file is not found, it raises a FileNotFoundError, and if there is an error in reading the video stream, it raises a RuntimeError. """ container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") frames = [] for packet in container.demux(video_stream): for frame in packet.decode(): image = Image.frombytes( "RGB", (frame.width, frame.height), frame.to_rgb().to_ndarray(), ) frames.append(image) return frames
Reads video frames from a given video file. Args: video_path (str): The path to the video file. Returns: container (av.container.InputContainer): The input container object containing the video stream. Raises: FileNotFoundError: If the video file is not found. RuntimeError: If there is an error in reading the video stream. The function reads the video frames from the specified video file using the Python AV library (av). It returns an input container object that contains the video stream. If the video file is not found, it raises a FileNotFoundError, and if there is an error in reading the video stream, it raises a RuntimeError.
read_frames
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_fps(video_path): """ Get the frame rate (FPS) of a video file. Args: video_path (str): The path to the video file. Returns: int: The frame rate (FPS) of the video file. """ container = av.open(video_path) video_stream = next(s for s in container.streams if s.type == "video") fps = video_stream.average_rate container.close() return fps
Get the frame rate (FPS) of a video file. Args: video_path (str): The path to the video file. Returns: int: The frame rate (FPS) of the video file.
get_fps
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def tensor_to_video(tensor, output_video_file, audio_source, fps=25): """ Converts a Tensor with shape [c, f, h, w] into a video and adds an audio track from the specified audio file. Args: tensor (Tensor): The Tensor to be converted, shaped [c, f, h, w]. output_video_file (str): The file path where the output video will be saved. audio_source (str): The path to the audio file (WAV file) that contains the audio track to be added. fps (int): The frame rate of the output video. Default is 25 fps. """ tensor = tensor.permute(1, 2, 3, 0).cpu( ).numpy() # convert to [f, h, w, c] tensor = np.clip(tensor * 255, 0, 255).astype( np.uint8 ) # to [0, 255] def make_frame(t): # get index frame_index = min(int(t * fps), tensor.shape[0] - 1) return tensor[frame_index] new_video_clip = VideoClip(make_frame, duration=tensor.shape[0] / fps) audio_clip = AudioFileClip(audio_source).subclip(0, tensor.shape[0] / fps) new_video_clip = new_video_clip.set_audio(audio_clip) new_video_clip.write_videofile(output_video_file, fps=fps, audio_codec='aac')
Converts a Tensor with shape [c, f, h, w] into a video and adds an audio track from the specified audio file. Args: tensor (Tensor): The Tensor to be converted, shaped [c, f, h, w]. output_video_file (str): The file path where the output video will be saved. audio_source (str): The path to the audio file (WAV file) that contains the audio track to be added. fps (int): The frame rate of the output video. Default is 25 fps.
tensor_to_video
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def compute_face_landmarks(detection_result, h, w): """ Compute face landmarks from a detection result. Args: detection_result (mediapipe.solutions.face_mesh.FaceMesh): The detection result containing face landmarks. h (int): The height of the video frame. w (int): The width of the video frame. Returns: face_landmarks_list (list): A list of face landmarks. """ face_landmarks_list = detection_result.face_landmarks if len(face_landmarks_list) != 1: print("#face is invalid:", len(face_landmarks_list)) return [] return [[p.x * w, p.y * h] for p in face_landmarks_list[0]]
Compute face landmarks from a detection result. Args: detection_result (mediapipe.solutions.face_mesh.FaceMesh): The detection result containing face landmarks. h (int): The height of the video frame. w (int): The width of the video frame. Returns: face_landmarks_list (list): A list of face landmarks.
compute_face_landmarks
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_landmark(file): """ This function takes a file as input and returns the facial landmarks detected in the file. Args: file (str): The path to the file containing the video or image to be processed. Returns: Tuple[List[float], List[float]]: A tuple containing two lists of floats representing the x and y coordinates of the facial landmarks. """ model_path = "pretrained_models/face_analysis/models/face_landmarker_v2_with_blendshapes.task" BaseOptions = mp.tasks.BaseOptions FaceLandmarker = mp.tasks.vision.FaceLandmarker FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions VisionRunningMode = mp.tasks.vision.RunningMode # Create a face landmarker instance with the video mode: options = FaceLandmarkerOptions( base_options=BaseOptions(model_asset_path=model_path), running_mode=VisionRunningMode.IMAGE, ) with FaceLandmarker.create_from_options(options) as landmarker: image = mp.Image.create_from_file(str(file)) height, width = image.height, image.width face_landmarker_result = landmarker.detect(image) face_landmark = compute_face_landmarks( face_landmarker_result, height, width) return np.array(face_landmark), height, width
This function takes a file as input and returns the facial landmarks detected in the file. Args: file (str): The path to the file containing the video or image to be processed. Returns: Tuple[List[float], List[float]]: A tuple containing two lists of floats representing the x and y coordinates of the facial landmarks.
get_landmark
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_landmark_overframes(landmark_model, frames_path): """ This function iterate frames and returns the facial landmarks detected in each frame. Args: landmark_model: mediapipe landmark model instance frames_path (str): The path to the video frames. Returns: List[List[float], float, float]: A List containing two lists of floats representing the x and y coordinates of the facial landmarks. """ face_landmarks = [] for file in sorted(os.listdir(frames_path)): image = mp.Image.create_from_file(os.path.join(frames_path, file)) height, width = image.height, image.width landmarker_result = landmark_model.detect(image) frame_landmark = compute_face_landmarks( landmarker_result, height, width) face_landmarks.append(frame_landmark) return face_landmarks, height, width
This function iterate frames and returns the facial landmarks detected in each frame. Args: landmark_model: mediapipe landmark model instance frames_path (str): The path to the video frames. Returns: List[List[float], float, float]: A List containing two lists of floats representing the x and y coordinates of the facial landmarks.
get_landmark_overframes
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_lip_mask(landmarks, height, width, out_path=None, expand_ratio=2.0): """ Extracts the lip region from the given landmarks and saves it as an image. Parameters: landmarks (numpy.ndarray): Array of facial landmarks. height (int): Height of the output lip mask image. width (int): Width of the output lip mask image. out_path (pathlib.Path): Path to save the lip mask image. expand_ratio (float): Expand ratio of mask. """ lip_landmarks = np.take(landmarks, lip_ids, 0) min_xy_lip = np.round(np.min(lip_landmarks, 0)) max_xy_lip = np.round(np.max(lip_landmarks, 0)) min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1] = expand_region( [min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1]], width, height, expand_ratio) lip_mask = np.zeros((height, width), dtype=np.uint8) lip_mask[round(min_xy_lip[1]):round(max_xy_lip[1]), round(min_xy_lip[0]):round(max_xy_lip[0])] = 255 if out_path: cv2.imwrite(str(out_path), lip_mask) return None return lip_mask
Extracts the lip region from the given landmarks and saves it as an image. Parameters: landmarks (numpy.ndarray): Array of facial landmarks. height (int): Height of the output lip mask image. width (int): Width of the output lip mask image. out_path (pathlib.Path): Path to save the lip mask image. expand_ratio (float): Expand ratio of mask.
get_lip_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_union_lip_mask(landmarks, height, width, expand_ratio=1): """ Extracts the lip region from the given landmarks and saves it as an image. Parameters: landmarks (numpy.ndarray): Array of facial landmarks. height (int): Height of the output lip mask image. width (int): Width of the output lip mask image. expand_ratio (float): Expand ratio of mask. """ lip_masks = [] for landmark in landmarks: lip_masks.append(get_lip_mask(landmarks=landmark, height=height, width=width, expand_ratio=expand_ratio)) union_mask = get_union_mask(lip_masks) return union_mask
Extracts the lip region from the given landmarks and saves it as an image. Parameters: landmarks (numpy.ndarray): Array of facial landmarks. height (int): Height of the output lip mask image. width (int): Width of the output lip mask image. expand_ratio (float): Expand ratio of mask.
get_union_lip_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_face_mask(landmarks, height, width, out_path=None, expand_ratio=1.2): """ Generate a face mask based on the given landmarks. Args: landmarks (numpy.ndarray): The landmarks of the face. height (int): The height of the output face mask image. width (int): The width of the output face mask image. out_path (pathlib.Path): The path to save the face mask image. expand_ratio (float): Expand ratio of mask. Returns: None. The face mask image is saved at the specified path. """ face_landmarks = np.take(landmarks, silhouette_ids, 0) min_xy_face = np.round(np.min(face_landmarks, 0)) max_xy_face = np.round(np.max(face_landmarks, 0)) min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1] = expand_region( [min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1]], width, height, expand_ratio) face_mask = np.zeros((height, width), dtype=np.uint8) face_mask[round(min_xy_face[1]):round(max_xy_face[1]), round(min_xy_face[0]):round(max_xy_face[0])] = 255 if out_path: cv2.imwrite(str(out_path), face_mask) return None return face_mask
Generate a face mask based on the given landmarks. Args: landmarks (numpy.ndarray): The landmarks of the face. height (int): The height of the output face mask image. width (int): The width of the output face mask image. out_path (pathlib.Path): The path to save the face mask image. expand_ratio (float): Expand ratio of mask. Returns: None. The face mask image is saved at the specified path.
get_face_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_union_face_mask(landmarks, height, width, expand_ratio=1): """ Generate a face mask based on the given landmarks. Args: landmarks (numpy.ndarray): The landmarks of the face. height (int): The height of the output face mask image. width (int): The width of the output face mask image. expand_ratio (float): Expand ratio of mask. Returns: None. The face mask image is saved at the specified path. """ face_masks = [] for landmark in landmarks: face_masks.append(get_face_mask(landmarks=landmark,height=height,width=width,expand_ratio=expand_ratio)) union_mask = get_union_mask(face_masks) return union_mask
Generate a face mask based on the given landmarks. Args: landmarks (numpy.ndarray): The landmarks of the face. height (int): The height of the output face mask image. width (int): The width of the output face mask image. expand_ratio (float): Expand ratio of mask. Returns: None. The face mask image is saved at the specified path.
get_union_face_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_mask(file, cache_dir, face_expand_raio): """ Generate a face mask based on the given landmarks and save it to the specified cache directory. Args: file (str): The path to the file containing the landmarks. cache_dir (str): The directory to save the generated face mask. Returns: None """ landmarks, height, width = get_landmark(file) file_name = os.path.basename(file).split(".")[0] get_lip_mask(landmarks, height, width, os.path.join( cache_dir, f"{file_name}_lip_mask.png")) get_face_mask(landmarks, height, width, os.path.join( cache_dir, f"{file_name}_face_mask.png"), face_expand_raio) get_blur_mask(os.path.join( cache_dir, f"{file_name}_face_mask.png"), os.path.join( cache_dir, f"{file_name}_face_mask_blur.png"), kernel_size=(51, 51)) get_blur_mask(os.path.join( cache_dir, f"{file_name}_lip_mask.png"), os.path.join( cache_dir, f"{file_name}_sep_lip.png"), kernel_size=(31, 31)) get_background_mask(os.path.join( cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join( cache_dir, f"{file_name}_sep_background.png")) get_sep_face_mask(os.path.join( cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join( cache_dir, f"{file_name}_sep_lip.png"), os.path.join( cache_dir, f"{file_name}_sep_face.png"))
Generate a face mask based on the given landmarks and save it to the specified cache directory. Args: file (str): The path to the file containing the landmarks. cache_dir (str): The directory to save the generated face mask. Returns: None
get_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def expand_region(region, image_w, image_h, expand_ratio=1.0): """ Expand the given region by a specified ratio. Args: region (tuple): A tuple containing the coordinates (min_x, max_x, min_y, max_y) of the region. image_w (int): The width of the image. image_h (int): The height of the image. expand_ratio (float, optional): The ratio by which the region should be expanded. Defaults to 1.0. Returns: tuple: A tuple containing the expanded coordinates (min_x, max_x, min_y, max_y) of the region. """ min_x, max_x, min_y, max_y = region mid_x = (max_x + min_x) // 2 side_len_x = (max_x - min_x) * expand_ratio mid_y = (max_y + min_y) // 2 side_len_y = (max_y - min_y) * expand_ratio min_x = mid_x - side_len_x // 2 max_x = mid_x + side_len_x // 2 min_y = mid_y - side_len_y // 2 max_y = mid_y + side_len_y // 2 if min_x < 0: max_x -= min_x min_x = 0 if max_x > image_w: min_x -= max_x - image_w max_x = image_w if min_y < 0: max_y -= min_y min_y = 0 if max_y > image_h: min_y -= max_y - image_h max_y = image_h return round(min_x), round(max_x), round(min_y), round(max_y)
Expand the given region by a specified ratio. Args: region (tuple): A tuple containing the coordinates (min_x, max_x, min_y, max_y) of the region. image_w (int): The width of the image. image_h (int): The height of the image. expand_ratio (float, optional): The ratio by which the region should be expanded. Defaults to 1.0. Returns: tuple: A tuple containing the expanded coordinates (min_x, max_x, min_y, max_y) of the region.
expand_region
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_blur_mask(file_path, output_file_path, resize_dim=(64, 64), kernel_size=(101, 101)): """ Read, resize, blur, normalize, and save an image. Parameters: file_path (str): Path to the input image file. output_dir (str): Path to the output directory to save blurred images. resize_dim (tuple): Dimensions to resize the images to. kernel_size (tuple): Size of the kernel to use for Gaussian blur. """ # Read the mask image mask = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE) # Check if the image is loaded successfully if mask is not None: normalized_mask = blur_mask(mask,resize_dim=resize_dim,kernel_size=kernel_size) # Save the normalized mask image cv2.imwrite(output_file_path, normalized_mask) return f"Processed, normalized, and saved: {output_file_path}" return f"Failed to load image: {file_path}"
Read, resize, blur, normalize, and save an image. Parameters: file_path (str): Path to the input image file. output_dir (str): Path to the output directory to save blurred images. resize_dim (tuple): Dimensions to resize the images to. kernel_size (tuple): Size of the kernel to use for Gaussian blur.
get_blur_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def blur_mask(mask, resize_dim=(64, 64), kernel_size=(51, 51)): """ Read, resize, blur, normalize, and save an image. Parameters: file_path (str): Path to the input image file. resize_dim (tuple): Dimensions to resize the images to. kernel_size (tuple): Size of the kernel to use for Gaussian blur. """ # Check if the image is loaded successfully normalized_mask = None if mask is not None: # Resize the mask image resized_mask = cv2.resize(mask, resize_dim) # Apply Gaussian blur to the resized mask image blurred_mask = cv2.GaussianBlur(resized_mask, kernel_size, 0) # Normalize the blurred image normalized_mask = cv2.normalize( blurred_mask, None, 0, 255, cv2.NORM_MINMAX) # Save the normalized mask image return normalized_mask
Read, resize, blur, normalize, and save an image. Parameters: file_path (str): Path to the input image file. resize_dim (tuple): Dimensions to resize the images to. kernel_size (tuple): Size of the kernel to use for Gaussian blur.
blur_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_background_mask(file_path, output_file_path): """ Read an image, invert its values, and save the result. Parameters: file_path (str): Path to the input image file. output_dir (str): Path to the output directory to save the inverted image. """ # Read the image image = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE) if image is None: print(f"Failed to load image: {file_path}") return # Invert the image inverted_image = 1.0 - ( image / 255.0 ) # Assuming the image values are in [0, 255] range # Convert back to uint8 inverted_image = (inverted_image * 255).astype(np.uint8) # Save the inverted image cv2.imwrite(output_file_path, inverted_image) print(f"Processed and saved: {output_file_path}")
Read an image, invert its values, and save the result. Parameters: file_path (str): Path to the input image file. output_dir (str): Path to the output directory to save the inverted image.
get_background_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_sep_face_mask(file_path1, file_path2, output_file_path): """ Read two images, subtract the second one from the first, and save the result. Parameters: output_dir (str): Path to the output directory to save the subtracted image. """ # Read the images mask1 = cv2.imread(file_path1, cv2.IMREAD_GRAYSCALE) mask2 = cv2.imread(file_path2, cv2.IMREAD_GRAYSCALE) if mask1 is None or mask2 is None: print(f"Failed to load images: {file_path1}") return # Ensure the images are the same size if mask1.shape != mask2.shape: print( f"Image shapes do not match for {file_path1}: {mask1.shape} vs {mask2.shape}" ) return # Subtract the second mask from the first result_mask = cv2.subtract(mask1, mask2) # Save the result mask image cv2.imwrite(output_file_path, result_mask) print(f"Processed and saved: {output_file_path}")
Read two images, subtract the second one from the first, and save the result. Parameters: output_dir (str): Path to the output directory to save the subtracted image.
get_sep_face_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def load_checkpoint(cfg, save_dir, accelerator): """ Load the most recent checkpoint from the specified directory. This function loads the latest checkpoint from the `save_dir` if the `resume_from_checkpoint` parameter is set to "latest". If a specific checkpoint is provided in `resume_from_checkpoint`, it loads that checkpoint. If no checkpoint is found, it starts training from scratch. Args: cfg: The configuration object containing training parameters. save_dir (str): The directory where checkpoints are saved. accelerator: The accelerator object for distributed training. Returns: int: The global step at which to resume training. """ if cfg.resume_from_checkpoint != "latest": resume_dir = cfg.resume_from_checkpoint else: resume_dir = save_dir # Get the most recent checkpoint dirs = os.listdir(resume_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] if len(dirs) > 0: dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] accelerator.load_state(os.path.join(resume_dir, path)) accelerator.print(f"Resuming from checkpoint {path}") global_step = int(path.split("-")[1]) else: accelerator.print( f"Could not find checkpoint under {resume_dir}, start training from scratch") global_step = 0 return global_step
Load the most recent checkpoint from the specified directory. This function loads the latest checkpoint from the `save_dir` if the `resume_from_checkpoint` parameter is set to "latest". If a specific checkpoint is provided in `resume_from_checkpoint`, it loads that checkpoint. If no checkpoint is found, it starts training from scratch. Args: cfg: The configuration object containing training parameters. save_dir (str): The directory where checkpoints are saved. accelerator: The accelerator object for distributed training. Returns: int: The global step at which to resume training.
load_checkpoint
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def compute_snr(noise_scheduler, timesteps): """ Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/ 521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 """ alphas_cumprod = noise_scheduler.alphas_cumprod sqrt_alphas_cumprod = alphas_cumprod**0.5 sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 # Expand the tensors. # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/ # 521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026 sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[ timesteps ].float() while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] alpha = sqrt_alphas_cumprod.expand(timesteps.shape) sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to( device=timesteps.device )[timesteps].float() while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) # Compute SNR. snr = (alpha / sigma) ** 2 return snr
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/ 521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
compute_snr
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def extract_audio_from_videos(video_path: Path, audio_output_path: Path) -> Path: """ Extract audio from a video file and save it as a WAV file. This function uses ffmpeg to extract the audio stream from a given video file and saves it as a WAV file in the specified output directory. Args: video_path (Path): The path to the input video file. output_dir (Path): The directory where the extracted audio file will be saved. Returns: Path: The path to the extracted audio file. Raises: subprocess.CalledProcessError: If the ffmpeg command fails to execute. """ ffmpeg_command = [ 'ffmpeg', '-y', '-i', str(video_path), '-vn', '-acodec', "pcm_s16le", '-ar', '16000', '-ac', '2', str(audio_output_path) ] try: print(f"Running command: {' '.join(ffmpeg_command)}") subprocess.run(ffmpeg_command, check=True) except subprocess.CalledProcessError as e: print(f"Error extracting audio from video: {e}") raise return audio_output_path
Extract audio from a video file and save it as a WAV file. This function uses ffmpeg to extract the audio stream from a given video file and saves it as a WAV file in the specified output directory. Args: video_path (Path): The path to the input video file. output_dir (Path): The directory where the extracted audio file will be saved. Returns: Path: The path to the extracted audio file. Raises: subprocess.CalledProcessError: If the ffmpeg command fails to execute.
extract_audio_from_videos
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def convert_video_to_images(video_path: Path, output_dir: Path) -> Path: """ Convert a video file into a sequence of images. This function uses ffmpeg to convert each frame of the given video file into an image. The images are saved in a directory named after the video file stem under the specified output directory. Args: video_path (Path): The path to the input video file. output_dir (Path): The directory where the extracted images will be saved. Returns: Path: The path to the directory containing the extracted images. Raises: subprocess.CalledProcessError: If the ffmpeg command fails to execute. """ ffmpeg_command = [ 'ffmpeg', '-i', str(video_path), '-vf', 'fps=25', str(output_dir / '%04d.png') ] try: print(f"Running command: {' '.join(ffmpeg_command)}") subprocess.run(ffmpeg_command, check=True) except subprocess.CalledProcessError as e: print(f"Error converting video to images: {e}") raise return output_dir
Convert a video file into a sequence of images. This function uses ffmpeg to convert each frame of the given video file into an image. The images are saved in a directory named after the video file stem under the specified output directory. Args: video_path (Path): The path to the input video file. output_dir (Path): The directory where the extracted images will be saved. Returns: Path: The path to the directory containing the extracted images. Raises: subprocess.CalledProcessError: If the ffmpeg command fails to execute.
convert_video_to_images
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def get_union_mask(masks): """ Compute the union of a list of masks. This function takes a list of masks and computes their union by taking the maximum value at each pixel location. Additionally, it finds the bounding box of the non-zero regions in the mask and sets the bounding box area to white. Args: masks (list of np.ndarray): List of masks to be combined. Returns: np.ndarray: The union of the input masks. """ union_mask = None for mask in masks: if union_mask is None: union_mask = mask else: union_mask = np.maximum(union_mask, mask) if union_mask is not None: # Find the bounding box of the non-zero regions in the mask rows = np.any(union_mask, axis=1) cols = np.any(union_mask, axis=0) try: ymin, ymax = np.where(rows)[0][[0, -1]] xmin, xmax = np.where(cols)[0][[0, -1]] except Exception as e: print(str(e)) return 0.0 # Set bounding box area to white union_mask[ymin: ymax + 1, xmin: xmax + 1] = np.max(union_mask) return union_mask
Compute the union of a list of masks. This function takes a list of masks and computes their union by taking the maximum value at each pixel location. Additionally, it finds the bounding box of the non-zero regions in the mask and sets the bounding box area to white. Args: masks (list of np.ndarray): List of masks to be combined. Returns: np.ndarray: The union of the input masks.
get_union_mask
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def move_final_checkpoint(save_dir, module_dir, prefix): """ Move the final checkpoint file to the save directory. This function identifies the latest checkpoint file based on the given prefix and moves it to the specified save directory. Args: save_dir (str): The directory where the final checkpoint file should be saved. module_dir (str): The directory containing the checkpoint files. prefix (str): The prefix used to identify checkpoint files. Raises: ValueError: If no checkpoint files are found with the specified prefix. """ checkpoints = os.listdir(module_dir) checkpoints = [d for d in checkpoints if d.startswith(prefix)] checkpoints = sorted( checkpoints, key=lambda x: int(x.split("-")[1].split(".")[0]) ) shutil.copy2(os.path.join( module_dir, checkpoints[-1]), os.path.join(save_dir, prefix + '.pth'))
Move the final checkpoint file to the save directory. This function identifies the latest checkpoint file based on the given prefix and moves it to the specified save directory. Args: save_dir (str): The directory where the final checkpoint file should be saved. module_dir (str): The directory containing the checkpoint files. prefix (str): The prefix used to identify checkpoint files. Raises: ValueError: If no checkpoint files are found with the specified prefix.
move_final_checkpoint
python
jdh-algo/JoyHallo
joyhallo/utils/util.py
https://github.com/jdh-algo/JoyHallo/blob/master/joyhallo/utils/util.py
MIT
def forward( self, noisy_latents: torch.Tensor, timesteps: torch.Tensor, ref_image_latents: torch.Tensor, face_emb: torch.Tensor, audio_emb: torch.Tensor, mask: torch.Tensor, full_mask: torch.Tensor, face_mask: torch.Tensor, lip_mask: torch.Tensor, uncond_img_fwd: bool = False, uncond_audio_fwd: bool = False, ): """ simple docstring to prevent pylint error """ face_emb = self.imageproj(face_emb) mask = mask.to(device="cuda") mask_feature = self.face_locator(mask) audio_emb = audio_emb.to( device=self.audioproj.device, dtype=self.audioproj.dtype) audio_emb = self.audioproj(audio_emb) # condition forward if not uncond_img_fwd: ref_timesteps = torch.zeros_like(timesteps) ref_timesteps = repeat( ref_timesteps, "b -> (repeat b)", repeat=ref_image_latents.size(0) // ref_timesteps.size(0), ) self.reference_unet( ref_image_latents, ref_timesteps, encoder_hidden_states=face_emb, return_dict=False, ) self.reference_control_reader.update(self.reference_control_writer) if uncond_audio_fwd: audio_emb = torch.zeros_like(audio_emb).to( device=audio_emb.device, dtype=audio_emb.dtype ) model_pred = self.denoising_unet( noisy_latents, timesteps, mask_cond_fea=mask_feature, encoder_hidden_states=face_emb, audio_embedding=audio_emb, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask ).sample return model_pred
simple docstring to prevent pylint error
forward
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def get_attention_mask(mask: torch.Tensor, weight_dtype: torch.dtype) -> torch.Tensor: """ Rearrange the mask tensors to the required format. Args: mask (torch.Tensor): The input mask tensor. weight_dtype (torch.dtype): The data type for the mask tensor. Returns: torch.Tensor: The rearranged mask tensor. """ if isinstance(mask, List): _mask = [] for m in mask: _mask.append( rearrange(m, "b f 1 h w -> (b f) (h w)").to(weight_dtype)) return _mask mask = rearrange(mask, "b f 1 h w -> (b f) (h w)").to(weight_dtype) return mask
Rearrange the mask tensors to the required format. Args: mask (torch.Tensor): The input mask tensor. weight_dtype (torch.dtype): The data type for the mask tensor. Returns: torch.Tensor: The rearranged mask tensor.
get_attention_mask
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def get_noise_scheduler(cfg: argparse.Namespace) -> Tuple[DDIMScheduler, DDIMScheduler]: """ Create noise scheduler for training. Args: cfg (argparse.Namespace): Configuration object. Returns: Tuple[DDIMScheduler, DDIMScheduler]: Train noise scheduler and validation noise scheduler. """ sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs) if cfg.enable_zero_snr: sched_kwargs.update( rescale_betas_zero_snr=True, timestep_spacing="trailing", prediction_type="v_prediction", ) val_noise_scheduler = DDIMScheduler(**sched_kwargs) sched_kwargs.update({"beta_schedule": "scaled_linear"}) train_noise_scheduler = DDIMScheduler(**sched_kwargs) return train_noise_scheduler, val_noise_scheduler
Create noise scheduler for training. Args: cfg (argparse.Namespace): Configuration object. Returns: Tuple[DDIMScheduler, DDIMScheduler]: Train noise scheduler and validation noise scheduler.
get_noise_scheduler
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def process_audio_emb(audio_emb: torch.Tensor) -> torch.Tensor: """ Process the audio embedding to concatenate with other tensors. Parameters: audio_emb (torch.Tensor): The audio embedding tensor to process. Returns: concatenated_tensors (List[torch.Tensor]): The concatenated tensor list. """ concatenated_tensors = [] for i in range(audio_emb.shape[0]): vectors_to_concat = [ audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)]for j in range(-2, 3)] concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0)) audio_emb = torch.stack(concatenated_tensors, dim=0) return audio_emb
Process the audio embedding to concatenate with other tensors. Parameters: audio_emb (torch.Tensor): The audio embedding tensor to process. Returns: concatenated_tensors (List[torch.Tensor]): The concatenated tensor list.
process_audio_emb
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def log_validation( accelerator: Accelerator, vae: AutoencoderKL, net: Net, scheduler: DDIMScheduler, width: int, height: int, clip_length: int = 24, generator: torch.Generator = None, cfg: dict = None, save_dir: str = None, global_step: int = 0, times: int = None, face_analysis_model_path: str = "", ) -> None: """ Log validation video during the training process. Args: accelerator (Accelerator): The accelerator for distributed training. vae (AutoencoderKL): The autoencoder model. net (Net): The main neural network model. scheduler (DDIMScheduler): The scheduler for noise. width (int): The width of the input images. height (int): The height of the input images. clip_length (int): The length of the video clips. Defaults to 24. generator (torch.Generator): The random number generator. Defaults to None. cfg (dict): The configuration dictionary. Defaults to None. save_dir (str): The directory to save validation results. Defaults to None. global_step (int): The current global step in training. Defaults to 0. times (int): The number of inference times. Defaults to None. face_analysis_model_path (str): The path to the face analysis model. Defaults to "". Returns: torch.Tensor: The tensor result of the validation. """ ori_net = accelerator.unwrap_model(net) reference_unet = ori_net.reference_unet denoising_unet = ori_net.denoising_unet face_locator = ori_net.face_locator imageproj = ori_net.imageproj audioproj = ori_net.audioproj tmp_denoising_unet = copy.deepcopy(denoising_unet) pipeline = FaceAnimatePipeline( vae=vae, reference_unet=reference_unet, denoising_unet=tmp_denoising_unet, face_locator=face_locator, image_proj=imageproj, scheduler=scheduler, ) pipeline = pipeline.to("cuda") image_processor = ImageProcessor((width, height), face_analysis_model_path) audio_processor = AudioProcessor( cfg.data.sample_rate, cfg.data.fps, cfg.wav2vec_config.model_path, cfg.wav2vec_config.features == "last", os.path.dirname(cfg.audio_separator.model_path), os.path.basename(cfg.audio_separator.model_path), os.path.join(save_dir, '.cache', "audio_preprocess") ) return cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length
Log validation video during the training process. Args: accelerator (Accelerator): The accelerator for distributed training. vae (AutoencoderKL): The autoencoder model. net (Net): The main neural network model. scheduler (DDIMScheduler): The scheduler for noise. width (int): The width of the input images. height (int): The height of the input images. clip_length (int): The length of the video clips. Defaults to 24. generator (torch.Generator): The random number generator. Defaults to None. cfg (dict): The configuration dictionary. Defaults to None. save_dir (str): The directory to save validation results. Defaults to None. global_step (int): The current global step in training. Defaults to 0. times (int): The number of inference times. Defaults to None. face_analysis_model_path (str): The path to the face analysis model. Defaults to "". Returns: torch.Tensor: The tensor result of the validation.
log_validation
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def get_model(cfg: argparse.Namespace) -> None: """ Trains the model using the given configuration (cfg). Args: cfg (dict): The configuration dictionary containing the parameters for training. Notes: - This function trains the model using the given configuration. - It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler. - The training progress is logged and tracked using the accelerator. - The trained model is saved after the training is completed. """ kwargs = DistributedDataParallelKwargs(find_unused_parameters=False) accelerator = Accelerator( gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps, mixed_precision=cfg.solver.mixed_precision, log_with="mlflow", project_dir="./mlruns", kwargs_handlers=[kwargs], ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if cfg.seed is not None: seed_everything(cfg.seed) # create output dir for training exp_name = cfg.exp_name save_dir = f"{cfg.output_dir}/{exp_name}" validation_dir = save_dir if accelerator.is_main_process: init_output_dir([save_dir]) accelerator.wait_for_everyone() if cfg.weight_dtype == "fp16": weight_dtype = torch.float16 elif cfg.weight_dtype == "bf16": weight_dtype = torch.bfloat16 elif cfg.weight_dtype == "fp32": weight_dtype = torch.float32 else: raise ValueError( f"Do not support weight dtype: {cfg.weight_dtype} during training" ) # Create Models vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to( "cuda", dtype=weight_dtype ) reference_unet = UNet2DConditionModel.from_pretrained( cfg.base_model_path, subfolder="unet", ).to(device="cuda", dtype=weight_dtype) denoising_unet = UNet3DConditionModel.from_pretrained_2d( cfg.base_model_path, cfg.mm_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container( cfg.unet_additional_kwargs), use_landmark=False ).to(device="cuda", dtype=weight_dtype) imageproj = ImageProjModel( cross_attention_dim=denoising_unet.config.cross_attention_dim, clip_embeddings_dim=512, clip_extra_context_tokens=4, ).to(device="cuda", dtype=weight_dtype) face_locator = FaceLocator( conditioning_embedding_channels=320, ).to(device="cuda", dtype=weight_dtype) audioproj = AudioProjModel( seq_len=5, blocks=12, channels=768, intermediate_dim=512, output_dim=768, context_tokens=32, ).to(device="cuda", dtype=weight_dtype) # Freeze vae.requires_grad_(False) imageproj.requires_grad_(False) reference_unet.requires_grad_(False) denoising_unet.requires_grad_(False) face_locator.requires_grad_(False) audioproj.requires_grad_(True) # Set motion module learnable trainable_modules = cfg.trainable_para for name, module in denoising_unet.named_modules(): if any(trainable_mod in name for trainable_mod in trainable_modules): for params in module.parameters(): params.requires_grad_(True) reference_control_writer = ReferenceAttentionControl( reference_unet, do_classifier_free_guidance=False, mode="write", fusion_blocks="full", ) reference_control_reader = ReferenceAttentionControl( denoising_unet, do_classifier_free_guidance=False, mode="read", fusion_blocks="full", ) net = Net( reference_unet, denoising_unet, face_locator, reference_control_writer, reference_control_reader, imageproj, audioproj, ).to(dtype=weight_dtype) m,u = net.load_state_dict( torch.load( cfg.audio_ckpt_dir, map_location="cpu", ), ) assert len(m) == 0 and len(u) == 0, "Fail to load correct checkpoint." print("loaded weight from ", os.path.join(cfg.audio_ckpt_dir)) # get noise scheduler _, val_noise_scheduler = get_noise_scheduler(cfg) if cfg.solver.enable_xformers_memory_efficient_attention: if is_xformers_available(): reference_unet.enable_xformers_memory_efficient_attention() denoising_unet.enable_xformers_memory_efficient_attention() else: raise ValueError( "xformers is not available. Make sure it is installed correctly" ) if cfg.solver.gradient_checkpointing: reference_unet.enable_gradient_checkpointing() denoising_unet.enable_gradient_checkpointing() if cfg.solver.scale_lr: learning_rate = ( cfg.solver.learning_rate * cfg.solver.gradient_accumulation_steps * cfg.data.train_bs * accelerator.num_processes ) else: learning_rate = cfg.solver.learning_rate # Initialize the optimizer if cfg.solver.use_8bit_adam: try: import bitsandbytes as bnb except ImportError as exc: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) from exc optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW trainable_params = list( filter(lambda p: p.requires_grad, net.parameters())) optimizer = optimizer_cls( trainable_params, lr=learning_rate, betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2), weight_decay=cfg.solver.adam_weight_decay, eps=cfg.solver.adam_epsilon, ) # Scheduler lr_scheduler = get_scheduler( cfg.solver.lr_scheduler, optimizer=optimizer, num_warmup_steps=cfg.solver.lr_warmup_steps * cfg.solver.gradient_accumulation_steps, num_training_steps=cfg.solver.max_train_steps * cfg.solver.gradient_accumulation_steps, ) # get data loader train_dataset = TalkingVideoDataset( img_size=(cfg.data.train_width, cfg.data.train_height), sample_rate=cfg.data.sample_rate, n_sample_frames=cfg.data.n_sample_frames, n_motion_frames=cfg.data.n_motion_frames, audio_margin=cfg.data.audio_margin, data_meta_paths=cfg.data.train_meta_paths, wav2vec_cfg=cfg.wav2vec_config, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=16 ) # Prepare everything with our `accelerator`. ( net, optimizer, train_dataloader, lr_scheduler, ) = accelerator.prepare( net, optimizer, train_dataloader, lr_scheduler, ) return accelerator, vae, net, val_noise_scheduler, cfg, validation_dir
Trains the model using the given configuration (cfg). Args: cfg (dict): The configuration dictionary containing the parameters for training. Notes: - This function trains the model using the given configuration. - It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler. - The training progress is logged and tracked using the accelerator. - The trained model is saved after the training is completed.
get_model
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def load_config(config_path: str) -> dict: """ Loads the configuration file. Args: config_path (str): Path to the configuration file. Returns: dict: The configuration dictionary. """ if config_path.endswith(".yaml"): return OmegaConf.load(config_path) if config_path.endswith(".py"): return import_filename(config_path).cfg raise ValueError("Unsupported format for config file")
Loads the configuration file. Args: config_path (str): Path to the configuration file. Returns: dict: The configuration dictionary.
load_config
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def predict(image, audio, pose_weight, face_weight, lip_weight, face_expand_ratio, progress=gr.Progress(track_tqdm=True)): """ Create a gradio interface with the configs. """ _ = progress config = { 'ref_img_path': image, 'audio_path': audio, 'pose_weight': pose_weight, 'face_weight': face_weight, 'lip_weight': lip_weight, 'face_expand_ratio': face_expand_ratio, 'config': 'configs/inference/inference.yaml', 'checkpoint': None, 'output': "output.mp4" } global cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length for key, value in config.items(): setattr(cfg, key, value) return inference(cfg, image_processor, audio_processor, pipeline, audioproj, save_dir, global_step, clip_length)
Create a gradio interface with the configs.
predict
python
jdh-algo/JoyHallo
scripts/app.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/app.py
MIT
def setup_directories(video_path: Path) -> dict: """ Setup directories for storing processed files. Args: video_path (Path): Path to the video file. Returns: dict: A dictionary containing paths for various directories. """ base_dir = video_path.parent.parent dirs = { "face_mask": base_dir / "face_mask", "sep_pose_mask": base_dir / "sep_pose_mask", "sep_face_mask": base_dir / "sep_face_mask", "sep_lip_mask": base_dir / "sep_lip_mask", "face_emb": base_dir / "face_emb", "audio_emb": base_dir / "audio_emb" } for path in dirs.values(): path.mkdir(parents=True, exist_ok=True) return dirs
Setup directories for storing processed files. Args: video_path (Path): Path to the video file. Returns: dict: A dictionary containing paths for various directories.
setup_directories
python
jdh-algo/JoyHallo
scripts/data_preprocess.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/data_preprocess.py
MIT
def process_single_video(video_path: Path, output_dir: Path, image_processor: ImageProcessorForDataProcessing, audio_processor: AudioProcessor, step: int) -> None: """ Process a single video file. Args: video_path (Path): Path to the video file. output_dir (Path): Directory to save the output. image_processor (ImageProcessorForDataProcessing): Image processor object. audio_processor (AudioProcessor): Audio processor object. gpu_status (bool): Whether to use GPU for processing. """ assert video_path.exists(), f"Video path {video_path} does not exist" dirs = setup_directories(video_path) logging.info(f"Processing video: {video_path}") try: if step == 1: images_output_dir = output_dir / 'images' / video_path.stem images_output_dir.mkdir(parents=True, exist_ok=True) images_output_dir = convert_video_to_images( video_path, images_output_dir) logging.info(f"Images saved to: {images_output_dir}") audio_output_dir = output_dir / 'audios' audio_output_dir.mkdir(parents=True, exist_ok=True) audio_output_path = audio_output_dir / f'{video_path.stem}.wav' audio_output_path = extract_audio_from_videos( video_path, audio_output_path) logging.info(f"Audio extracted to: {audio_output_path}") face_mask, _, sep_pose_mask, sep_face_mask, sep_lip_mask = image_processor.preprocess( images_output_dir) cv2.imwrite( str(dirs["face_mask"] / f"{video_path.stem}.png"), face_mask) cv2.imwrite(str(dirs["sep_pose_mask"] / f"{video_path.stem}.png"), sep_pose_mask) cv2.imwrite(str(dirs["sep_face_mask"] / f"{video_path.stem}.png"), sep_face_mask) cv2.imwrite(str(dirs["sep_lip_mask"] / f"{video_path.stem}.png"), sep_lip_mask) else: images_dir = output_dir / "images" / video_path.stem audio_path = output_dir / "audios" / f"{video_path.stem}.wav" _, face_emb, _, _, _ = image_processor.preprocess(images_dir) torch.save(face_emb, str( dirs["face_emb"] / f"{video_path.stem}.pt")) audio_emb, _ = audio_processor.preprocess(audio_path) torch.save(audio_emb, str( dirs["audio_emb"] / f"{video_path.stem}.pt")) except Exception as e: logging.error(f"Failed to process video {video_path}: {e}")
Process a single video file. Args: video_path (Path): Path to the video file. output_dir (Path): Directory to save the output. image_processor (ImageProcessorForDataProcessing): Image processor object. audio_processor (AudioProcessor): Audio processor object. gpu_status (bool): Whether to use GPU for processing.
process_single_video
python
jdh-algo/JoyHallo
scripts/data_preprocess.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/data_preprocess.py
MIT
def process_all_videos(input_video_list: List[Path], output_dir: Path, step: int) -> None: """ Process all videos in the input list. Args: input_video_list (List[Path]): List of video paths to process. output_dir (Path): Directory to save the output. gpu_status (bool): Whether to use GPU for processing. """ face_analysis_model_path = "pretrained_models/face_analysis" landmark_model_path = "pretrained_models/face_analysis/models/face_landmarker_v2_with_blendshapes.task" audio_separator_model_file = "pretrained_models/audio_separator/Kim_Vocal_2.onnx" wav2vec_model_path = "pretrained_models/chinese-wav2vec2-base" # 'pretrained_models/wav2vec/wav2vec2-base-960h' audio_processor = AudioProcessor( 16000, 25, wav2vec_model_path, False, os.path.dirname(audio_separator_model_file), os.path.basename(audio_separator_model_file), os.path.join(output_dir, "vocals"), ) if step==2 else None image_processor = ImageProcessorForDataProcessing( face_analysis_model_path, landmark_model_path, step) for video_path in tqdm(input_video_list, desc="Processing videos"): process_single_video(video_path, output_dir, image_processor, audio_processor, step)
Process all videos in the input list. Args: input_video_list (List[Path]): List of video paths to process. output_dir (Path): Directory to save the output. gpu_status (bool): Whether to use GPU for processing.
process_all_videos
python
jdh-algo/JoyHallo
scripts/data_preprocess.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/data_preprocess.py
MIT
def get_video_paths(source_dir: Path, parallelism: int, rank: int) -> List[Path]: """ Get paths of videos to process, partitioned for parallel processing. Args: source_dir (Path): Source directory containing videos. parallelism (int): Level of parallelism. rank (int): Rank for distributed processing. Returns: List[Path]: List of video paths to process. """ video_paths = [item for item in sorted( source_dir.iterdir()) if item.is_file() and item.suffix == '.mp4'] return [video_paths[i] for i in range(len(video_paths)) if i % parallelism == rank]
Get paths of videos to process, partitioned for parallel processing. Args: source_dir (Path): Source directory containing videos. parallelism (int): Level of parallelism. rank (int): Rank for distributed processing. Returns: List[Path]: List of video paths to process.
get_video_paths
python
jdh-algo/JoyHallo
scripts/data_preprocess.py
https://github.com/jdh-algo/JoyHallo/blob/master/scripts/data_preprocess.py
MIT