question_text
stringlengths 2
3.82k
| input_outputs
stringlengths 23
941
| algo_tags
sequence |
---|---|---|
Given an array of strings words (without duplicates), return all the concatenated words in the given list of words.
A concatenated word is defined as a string that is comprised entirely of at least two shorter words (not necesssarily distinct) in the given array.
| Input: words = ["cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat"]
Output: ["catsdogcats","dogcatsdog","ratcatdogcat"]
| [
1,
4
] |
You are given an array time where time[i] denotes the time taken by the ith bus to complete one trip.
Each bus can make multiple trips successively; that is, the next trip can start immediately after completing the current trip. Also, each bus operates independently; that is, the trips of one bus do not influence the trips of any other bus.
You are also given an integer totalTrips, which denotes the number of trips all buses should make in total. Return the minimum time required for all buses to complete at least totalTrips trips.
| Input: time = [1,2,3], totalTrips = 5
Output: 3
| [
4
] |
You are given a positive integer n representing the number of nodes in an undirected graph. The nodes are labeled from 1 to n.
You are also given a 2D integer array edges, where edges[i] = [ai, bi] indicates that there is a bidirectional edge between nodes ai and bi. Notice that the given graph may be disconnected.
Divide the nodes of the graph into m groups (1-indexed) such that:
Each node in the graph belongs to exactly one group.
For every pair of nodes in the graph that are connected by an edge [ai, bi], if ai belongs to the group with index x, and bi belongs to the group with index y, then |y - x| = 1.
Return the maximum number of groups (i.e., maximum m) into which you can divide the nodes. Return -1 if it is impossible to group the nodes with the given conditions.
| Input: n = 6, edges = [[1,2],[1,4],[1,5],[2,6],[2,3],[4,6]]
Output: 4
| [
4
] |
You are given a string s containing one or more words. Every consecutive pair of words is separated by a single space ' '.
A string t is an anagram of string s if the ith word of t is a permutation of the ith word of s.
For example, "acb dfe" is an anagram of "abc def", but "def cab" and "adc bef" are not.
Return the number of distinct anagrams of s. Since the answer may be very large, return it modulo 109 + 7.
| Input: s = "too hot"
Output: 18
| [
3
] |
You are given a string s consisting of only lowercase English letters. In one operation, you can:
Delete the entire string s, or
Delete the first i letters of s if the first i letters of s are equal to the following i letters in s, for any i in the range 1 <= i <= s.length / 2.
For example, if s = "ababc", then in one operation, you could delete the first two letters of s to get "abc", since the first two letters of s and the following two letters of s are both equal to "ab".
Return the maximum number of operations needed to delete all of s.
| Input: s = "abcabcdabc"
Output: 2
| [
1
] |
A generic microwave supports cooking times for:
at least 1 second.
at most 99 minutes and 99 seconds.
To set the cooking time, you push at most four digits. The microwave normalizes what you push as four digits by prepending zeroes. It interprets the first two digits as the minutes and the last two digits as the seconds. It then adds them up as the cooking time. For example,
You push 9 5 4 (three digits). It is normalized as 0954 and interpreted as 9 minutes and 54 seconds.
You push 0 0 0 8 (four digits). It is interpreted as 0 minutes and 8 seconds.
You push 8 0 9 0. It is interpreted as 80 minutes and 90 seconds.
You push 8 1 3 0. It is interpreted as 81 minutes and 30 seconds.
You are given integers startAt, moveCost, pushCost, and targetSeconds. Initially, your finger is on the digit startAt. Moving the finger above any specific digit costs moveCost units of fatigue. Pushing the digit below the finger once costs pushCost units of fatigue.
There can be multiple ways to set the microwave to cook for targetSeconds seconds but you are interested in the way with the minimum cost.
Return the minimum cost to set targetSeconds seconds of cooking time.
Remember that one minute consists of 60 seconds.
| Input: startAt = 1, moveCost = 2, pushCost = 1, targetSeconds = 600
Output: 6
| [
3
] |
You are given an integer array of unique positive integers nums. Consider the following graph:
There are nums.length nodes, labeled nums[0] to nums[nums.length - 1],
There is an undirected edge between nums[i] and nums[j] if nums[i] and nums[j] share a common factor greater than 1.
Return the size of the largest connected component in the graph.
| Input: nums = [4,6,15,35]
Output: 4
Example 2:
Input: nums = [20,50,9,63]
Output: 2
Example 3:
Input: nums = [2,3,6,7,4,12,21,39]
Output: 8
Constraints:
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 105
All the values of nums are unique | [
3
] |
You are given a directed graph of n nodes numbered from 0 to n - 1, where each node has at most one outgoing edge.
The graph is represented with a given 0-indexed array edges of size n, indicating that there is a directed edge from node i to node edges[i]. If there is no outgoing edge from i, then edges[i] == -1.
You are also given two integers node1 and node2.
Return the index of the node that can be reached from both node1 and node2, such that the maximum between the distance from node1 to that node, and from node2 to that node is minimized. If there are multiple answers, return the node with the smallest index, and if no possible answer exists, return -1.
Note that edges may contain cycles.
| Input: edges = [2,2,3,-1], node1 = 0, node2 = 1
Output: 2
| [
4
] |
Given an array of integers citations where citations[i] is the number of citations a researcher received for their ith paper and citations is sorted in ascending order, return the researcher's h-index.
According to the definition of h-index on Wikipedia: The h-index is defined as the maximum value of h such that the given researcher has published at least h papers that have each been cited at least h times.
You must write an algorithm that runs in logarithmic time.
| Input: citations = [0,1,3,5,6]
Output: 3
| [
4
] |
A digit string is good if the digits (0-indexed) at even indices are even and the digits at odd indices are prime (2, 3, 5, or 7).
For example, "2582" is good because the digits (2 and 8) at even positions are even and the digits (5 and 2) at odd positions are prime. However, "3245" is not good because 3 is at an even index but is not even.
Given an integer n, return the total number of good digit strings of length n. Since the answer may be large, return it modulo 109 + 7.
A digit string is a string consisting of digits 0 through 9 that may contain leading zeros.
| Input: n = 1
Output: 5
| [
3
] |
You are given an array nums consisting of positive integers.
You have to take each integer in the array, reverse its digits, and add it to the end of the array. You should apply this operation to the original integers in nums.
Return the number of distinct integers in the final array.
| Input: nums = [1,13,10,12,31]
Output: 6
| [
3
] |
Given an m x n integer matrix heightMap representing the height of each unit cell in a 2D elevation map, return the volume of water it can trap after raining.
| Input: heightMap = [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]]
Output: 4
| [
4
] |
Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
| Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]
Example 2:
Input: root = [1,null,3]
Output: [1,3]
Example 3:
Input: root = []
Output: []
Constraints:
The number of nodes in the tree is in the range [0, 100].
-100 <= Node.val <= 10 | [
4,
4
] |
You are given two positive integers n and target.
An integer is considered beautiful if the sum of its digits is less than or equal to target.
Return the minimum non-negative integer x such that n + x is beautiful. The input will be generated such that it is always possible to make n beautiful.
| Input: n = 16, target = 6
Output: 4
| [
2,
3
] |
You are given an m x n integer matrix grid where each cell is either 0 (empty) or 1 (obstacle). You can move up, down, left, or right from and to an empty cell in one step.
Return the minimum number of steps to walk from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1) given that you can eliminate at most k obstacles. If it is not possible to find such walk return -1.
| Input: grid = [[0,0,0],[1,1,0],[0,0,0],[0,1,1],[0,0,0]], k = 1
Output: 6
| [
4
] |
Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 < numbers.length.
Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.
The tests are generated such that there is exactly one solution. You may not use the same element twice.
Your solution must use only constant extra space.
| Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
| [
4
] |
There exists an infinitely large grid. You are currently at point (1, 1), and you need to reach the point (targetX, targetY) using a finite number of steps.
In one step, you can move from point (x, y) to any one of the following points:
(x, y - x)
(x - y, y)
(2 * x, y)
(x, 2 * y)
Given two integers targetX and targetY representing the X-coordinate and Y-coordinate of your final position, return true if you can reach the point from (1, 1) using some number of steps, and false otherwise.
| Input: targetX = 6, targetY = 9
Output: false
| [
3
] |
Given an integer array arr, return the number of distinct bitwise ORs of all the non-empty subarrays of arr.
The bitwise OR of a subarray is the bitwise OR of each integer in the subarray. The bitwise OR of a subarray of one integer is that integer.
A subarray is a contiguous non-empty sequence of elements within an array.
| Input: arr = [0]
Output: 1
| [
1
] |
Given the root of a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus the sum of all keys greater than the original key in BST.
As a reminder, a binary search tree is a tree that satisfies these constraints:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
| Input: root = [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
Output: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
Example 2:
Input: root = [0,null,1]
Output: [1,null,1]
Constraints:
The number of nodes in the tree is in the range [1, 100].
0 <= Node.val <= 100
All the values in the tree are unique.
Note: This question is the same as 538: https://leetcode.com/problems/convert-bst-to-greater-tree | [
4,
4
] |
There are n persons on a social media website. You are given an integer array ages where ages[i] is the age of the ith person.
A Person x will not send a friend request to a person y (x != y) if any of the following conditions is true:
age[y] <= 0.5 * age[x] + 7
age[y] > age[x]
age[y] > 100 && age[x] < 100
Otherwise, x will send a friend request to y.
Note that if x sends a request to y, y will not necessarily send a request to x. Also, a person will not send a friend request to themself.
Return the total number of friend requests made.
| Input: ages = [16,16]
Output: 2
| [
4
] |
You have n tasks and m workers. Each task has a strength requirement stored in a 0-indexed integer array tasks, with the ith task requiring tasks[i] strength to complete. The strength of each worker is stored in a 0-indexed integer array workers, with the jth worker having workers[j] strength. Each worker can only be assigned to a single task and must have a strength greater than or equal to the task's strength requirement (i.e., workers[j] >= tasks[i]).
Additionally, you have pills magical pills that will increase a worker's strength by strength. You can decide which workers receive the magical pills, however, you may only give each worker at most one magical pill.
Given the 0-indexed integer arrays tasks and workers and the integers pills and strength, return the maximum number of tasks that can be completed.
| Input: tasks = [3,2,1], workers = [0,3,3], pills = 1, strength = 1
Output: 3
| [
2,
4
] |
You are given a 0-indexed integer array nums, and you are allowed to traverse between its indices. You can traverse between index i and index j, i != j, if and only if gcd(nums[i], nums[j]) > 1, where gcd is the greatest common divisor.
Your task is to determine if for every pair of indices i and j in nums, where i < j, there exists a sequence of traversals that can take us from i to j.
Return true if it is possible to traverse between all such pairs of indices, or false otherwise.
| Input: nums = [2,3,6]
Output: true
| [
3
] |
Given two integers n and k, return an array of all the integers of length n where the difference between every two consecutive digits is k. You may return the answer in any order.
Note that the integers should not have leading zeros. Integers as 02 and 043 are not allowed.
| Input: n = 3, k = 7
Output: [181,292,707,818,929]
| [
4
] |
Given an array points where points[i] = [xi, yi] represents a point on the X-Y plane, return true if these points are a boomerang.
A boomerang is a set of three points that are all distinct and not in a straight line.
| Input: points = [[1,1],[2,3],[3,2]]
Output: true
Example 2:
Input: points = [[1,1],[2,2],[3,3]]
Output: false
Constraints:
points.length == 3
points[i].length == 2
0 <= xi, yi <= 10 | [
3
] |
You are given a tree (i.e. a connected, undirected graph that has no cycles) rooted at node 0 consisting of n nodes numbered from 0 to n - 1. The tree is represented by a 0-indexed array parent of size n, where parent[i] is the parent of node i. Since node 0 is the root, parent[0] == -1.
You are also given a string s of length n, where s[i] is the character assigned to node i.
Return the length of the longest path in the tree such that no pair of adjacent nodes on the path have the same character assigned to them.
| Input: parent = [-1,0,0,1,1,2], s = "abacbe"
Output: 3
| [
4
] |
Given a non-negative integer x, return the square root of x rounded down to the nearest integer. The returned integer should be non-negative as well.
You must not use any built-in exponent function or operator.
For example, do not use pow(x, 0.5) in c++ or x ** 0.5 in python.
| Input: x = 4
Output: 2
| [
3,
4
] |
Given string num representing a non-negative integer num, and an integer k, return the smallest possible integer after removing k digits from num.
| Input: num = "1432219", k = 3
Output: "1219"
| [
2
] |
Given a m x n matrix mat and an integer threshold, return the maximum side-length of a square with a sum less than or equal to threshold or return 0 if there is no such square.
| Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
| [
4
] |
Given an integer array nums and an integer k, return the number of subarrays of nums where the least common multiple of the subarray's elements is k.
A subarray is a contiguous non-empty sequence of elements within an array.
The least common multiple of an array is the smallest positive integer that is divisible by all the array elements.
| Input: nums = [3,6,2,7,1], k = 6
Output: 4
| [
3
] |
You are given an integer finalSum. Split it into a sum of a maximum number of unique positive even integers.
For example, given finalSum = 12, the following splits are valid (unique positive even integers summing up to finalSum): (12), (2 + 10), (2 + 4 + 6), and (4 + 8). Among them, (2 + 4 + 6) contains the maximum number of integers. Note that finalSum cannot be split into (2 + 2 + 4 + 4) as all the numbers should be unique.
Return a list of integers that represent a valid split containing a maximum number of integers. If no valid split exists for finalSum, return an empty list. You may return the integers in any order.
| Input: finalSum = 12
Output: [2,4,6]
| [
2,
3
] |
You are given an integer money denoting the amount of money (in dollars) that you have and another integer children denoting the number of children that you must distribute the money to.
You have to distribute the money according to the following rules:
All money must be distributed.
Everyone must receive at least 1 dollar.
Nobody receives 4 dollars.
Return the maximum number of children who may receive exactly 8 dollars if you distribute the money according to the aforementioned rules. If there is no way to distribute the money, return -1.
| Input: money = 20, children = 3
Output: 1
| [
2,
3
] |
Given an m x n grid. Each cell of the grid has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j] can be:
1 which means go to the cell to the right. (i.e go from grid[i][j] to grid[i][j + 1])
2 which means go to the cell to the left. (i.e go from grid[i][j] to grid[i][j - 1])
3 which means go to the lower cell. (i.e go from grid[i][j] to grid[i + 1][j])
4 which means go to the upper cell. (i.e go from grid[i][j] to grid[i - 1][j])
Notice that there could be some signs on the cells of the grid that point outside the grid.
You will initially start at the upper left cell (0, 0). A valid path in the grid is a path that starts from the upper left cell (0, 0) and ends at the bottom-right cell (m - 1, n - 1) following the signs on the grid. The valid path does not have to be the shortest.
You can modify the sign on a cell with cost = 1. You can modify the sign on a cell one time only.
Return the minimum cost to make the grid have at least one valid path.
| Input: grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
Output: 3
| [
4
] |
You are given an m x n matrix M initialized with all 0's and an array of operations ops, where ops[i] = [ai, bi] means M[x][y] should be incremented by one for all 0 <= x < ai and 0 <= y < bi.
Count and return the number of maximum integers in the matrix after performing all the operations.
| Input: m = 3, n = 3, ops = [[2,2],[3,3]]
Output: 4
| [
3
] |
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
| Input: nums = [2,3,2]
Output: 3
| [
1
] |
You are given a 0-indexed integer array nums. You can rearrange the elements of nums to any order (including the given order).
Let prefix be the array containing the prefix sums of nums after rearranging it. In other words, prefix[i] is the sum of the elements from 0 to i in nums after rearranging it. The score of nums is the number of positive integers in the array prefix.
Return the maximum score you can achieve.
| Input: nums = [2,-1,0,1,-3,3,-3]
Output: 6
| [
2
] |
There is an m x n matrix that is initialized to all 0's. There is also a 2D array indices where each indices[i] = [ri, ci] represents a 0-indexed location to perform some increment operations on the matrix.
For each location indices[i], do both of the following:
Increment all the cells on row ri.
Increment all the cells on column ci.
Given m, n, and indices, return the number of odd-valued cells in the matrix after applying the increment to all locations in indices.
| Input: m = 2, n = 3, indices = [[0,1],[1,1]]
Output: 6
| [
3
] |
We want to split a group of n people (labeled from 1 to n) into two groups of any size. Each person may dislike some other people, and they should not go into the same group.
Given the integer n and the array dislikes where dislikes[i] = [ai, bi] indicates that the person labeled ai does not like the person labeled bi, return true if it is possible to split everyone into two groups in this way.
| Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
| [
4,
4
] |
Given n orders, each order consist in pickup and delivery services.
Count all valid pickup/delivery possible sequences such that delivery(i) is always after of pickup(i).
Since the answer may be too large, return it modulo 10^9 + 7.
| Input: n = 1
Output: 1
| [
1,
3
] |
Given an integer array nums, return true if you can partition the array into two subsets such that the sum of the elements in both subsets is equal or false otherwise.
| Input: nums = [1,5,11,5]
Output: true
| [
1
] |
There is a computer that can run an unlimited number of tasks at the same time. You are given a 2D integer array tasks where tasks[i] = [starti, endi, durationi] indicates that the ith task should run for a total of durationi seconds (not necessarily continuous) within the inclusive time range [starti, endi].
You may turn on the computer only when it needs to run a task. You can also turn it off if it is idle.
Return the minimum time during which the computer should be turned on to complete all tasks.
| Input: tasks = [[2,3,1],[4,5,1],[1,5,2]]
Output: 2
| [
2,
4
] |
Given the root of a binary tree, invert the tree, and return its root.
| Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]
Example 2:
Input: root = [2,1,3]
Output: [2,3,1]
Example 3:
Input: root = []
Output: []
Constraints:
The number of nodes in the tree is in the range [0, 100].
-100 <= Node.val <= 10 | [
4,
4
] |
You are given a positive integer num consisting of exactly four digits. Split num into two new integers new1 and new2 by using the digits found in num. Leading zeros are allowed in new1 and new2, and all the digits found in num must be used.
For example, given num = 2932, you have the following digits: two 2's, one 9 and one 3. Some of the possible pairs [new1, new2] are [22, 93], [23, 92], [223, 9] and [2, 329].
Return the minimum possible sum of new1 and new2.
| Input: num = 2932
Output: 52
| [
2,
3
] |
You are given a binary string s. You are allowed to perform two types of operations on the string in any sequence:
Type-1: Remove the character at the start of the string s and append it to the end of the string.
Type-2: Pick any character in s and flip its value, i.e., if its value is '0' it becomes '1' and vice-versa.
Return the minimum number of type-2 operations you need to perform such that s becomes alternating.
The string is called alternating if no two adjacent characters are equal.
For example, the strings "010" and "1010" are alternating, while the string "0100" is not.
| Input: s = "111000"
Output: 2
| [
1,
2
] |
You are given an m x n integer matrix grid and an array queries of size k.
Find an array answer of size k such that for each integer queries[i] you start in the top left cell of the matrix and repeat the following process:
If queries[i] is strictly greater than the value of the current cell that you are in, then you get one point if it is your first time visiting this cell, and you can move to any adjacent cell in all 4 directions: up, down, left, and right.
Otherwise, you do not get any points, and you end this process.
After the process, answer[i] is the maximum number of points you can get. Note that for each query you are allowed to visit the same cell multiple times.
Return the resulting array answer.
| Input: grid = [[1,2,3],[2,5,7],[3,5,1]], queries = [5,6,2]
Output: [5,8,1]
| [
4
] |
You are given a 2D integer array descriptions where descriptions[i] = [parenti, childi, isLefti] indicates that parenti is the parent of childi in a binary tree of unique values. Furthermore,
If isLefti == 1, then childi is the left child of parenti.
If isLefti == 0, then childi is the right child of parenti.
Construct the binary tree described by descriptions and return its root.
The test cases will be generated such that the binary tree is valid.
| Input: descriptions = [[20,15,1],[20,17,0],[50,20,1],[50,80,0],[80,19,1]]
Output: [50,20,80,15,17,19]
| [
4,
4
] |
You have n jobs and m workers. You are given three arrays: difficulty, profit, and worker where:
difficulty[i] and profit[i] are the difficulty and the profit of the ith job, and
worker[j] is the ability of jth worker (i.e., the jth worker can only complete a job with difficulty at most worker[j]).
Every worker can be assigned at most one job, but one job can be completed multiple times.
For example, if three workers attempt the same job that pays $1, then the total profit will be $3. If a worker cannot complete any job, their profit is $0.
Return the maximum profit we can achieve after assigning the workers to the jobs.
| Input: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7]
Output: 100
| [
2,
4
] |
You are given a non-negative integer array nums. In one operation, you must:
Choose a positive integer x such that x is less than or equal to the smallest non-zero element in nums.
Subtract x from every positive element in nums.
Return the minimum number of operations to make every element in nums equal to 0.
| Input: nums = [1,5,0,3,5]
Output: 3
| [
2
] |
You are given an array of unique strings words where words[i] is six letters long. One word of words was chosen as a secret word.
You are also given the helper object Master. You may call Master.guess(word) where word is a six-letter-long string, and it must be from words. Master.guess(word) returns:
-1 if word is not from words, or
an integer representing the number of exact matches (value and position) of your guess to the secret word.
There is a parameter allowedGuesses for each test case where allowedGuesses is the maximum number of times you can call Master.guess(word).
For each test case, you should call Master.guess with the secret word without exceeding the maximum number of allowed guesses. You will get:
"Either you took too many guesses, or you did not find the secret word." if you called Master.guess more than allowedGuesses times or if you did not call Master.guess with the secret word, or
"You guessed the secret word correctly." if you called Master.guess with the secret word with the number of calls to Master.guess less than or equal to allowedGuesses.
The test cases are generated such that you can guess the secret word with a reasonable strategy (other than using the bruteforce method).
| Input: secret = "acckzz", words = ["acckzz","ccbazz","eiowzz","abcczz"], allowedGuesses = 10
Output: You guessed the secret word correctly.
| [
3
] |
There is a directed graph of n colored nodes and m edges. The nodes are numbered from 0 to n - 1.
You are given a string colors where colors[i] is a lowercase English letter representing the color of the ith node in this graph (0-indexed). You are also given a 2D array edges where edges[j] = [aj, bj] indicates that there is a directed edge from node aj to node bj.
A valid path in the graph is a sequence of nodes x1 -> x2 -> x3 -> ... -> xk such that there is a directed edge from xi to xi+1 for every 1 <= i < k. The color value of the path is the number of nodes that are colored the most frequently occurring color along that path.
Return the largest color value of any valid path in the given graph, or -1 if the graph contains a cycle.
| Input: colors = "abaca", edges = [[0,1],[0,2],[2,3],[3,4]]
Output: 3
| [
1
] |
Given a string s, partition s such that every
substring
of the partition is a
palindrome
.
Return the minimum cuts needed for a palindrome partitioning of s.
| Input: s = "aab"
Output: 1
| [
1
] |
You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.
Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and colSum requirements.
Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.
| Input: rowSum = [3,8], colSum = [4,7]
Output: [[3,0],
[1,7]]
| [
2
] |
Given two integers tomatoSlices and cheeseSlices. The ingredients of different burgers are as follows:
Jumbo Burger: 4 tomato slices and 1 cheese slice.
Small Burger: 2 Tomato slices and 1 cheese slice.
Return [total_jumbo, total_small] so that the number of remaining tomatoSlices equal to 0 and the number of remaining cheeseSlices equal to 0. If it is not possible to make the remaining tomatoSlices and cheeseSlices equal to 0 return [].
| Input: tomatoSlices = 16, cheeseSlices = 7
Output: [1,6]
Explantion: To make one jumbo burger and 6 small burgers we need 4*1 + 2*6 = 16 tomato and 1 + 6 = 7 cheese.
There will be no remaining ingredients.
Example 2:
Input: tomatoSlices = 17, cheeseSlices = 4
Output: []
Explantion: There will be no way to use all ingredients to make small and jumbo burgers.
Example 3:
Input: tomatoSlices = 4, cheeseSlices = 17
Output: []
Explantion: Making 1 jumbo burger there will be 16 cheese remaining and making 2 small burgers there will be 15 cheese remaining.
Constraints:
0 <= tomatoSlices, cheeseSlices <= 10 | [
3
] |
Given an integer n, return the number of trailing zeroes in n!.
Note that n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.
| Input: n = 3
Output: 0
| [
3
] |
Given a binary array nums, you should delete one element from it.
Return the size of the longest non-empty subarray containing only 1's in the resulting array. Return 0 if there is no such subarray.
| Input: nums = [1,1,0,1]
Output: 3
| [
1
] |
You are given a positive integer n.
Continuously replace n with the sum of its prime factors.
Note that if a prime factor divides n multiple times, it should be included in the sum as many times as it divides n.
Return the smallest value n will take on.
| Input: n = 15
Output: 5
| [
3
] |
You are given an array of positive integers arr. Perform some operations (possibly none) on arr so that it satisfies these conditions:
The value of the first element in arr must be 1.
The absolute difference between any 2 adjacent elements must be less than or equal to 1. In other words, abs(arr[i] - arr[i - 1]) <= 1 for each i where 1 <= i < arr.length (0-indexed). abs(x) is the absolute value of x.
There are 2 types of operations that you can perform any number of times:
Decrease the value of any element of arr to a smaller positive integer.
Rearrange the elements of arr to be in any order.
Return the maximum possible value of an element in arr after performing the operations to satisfy the conditions.
| Input: arr = [2,2,1,2,1]
Output: 2
| [
2
] |
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root of a binary tree, return the maximum path sum of any non-empty path.
| Input: root = [1,2,3]
Output: 6
| [
1,
4
] |
You are given a nested list of integers nestedList. Each element is either an integer or a list whose elements may also be integers or other lists. Implement an iterator to flatten it.
Implement the NestedIterator class:
NestedIterator(List<NestedInteger> nestedList) Initializes the iterator with the nested list nestedList.
int next() Returns the next integer in the nested list.
boolean hasNext() Returns true if there are still some integers in the nested list and false otherwise.
Your code will be tested with the following pseudocode:
initialize iterator with nestedList
res = []
while iterator.hasNext()
append iterator.next() to the end of res
return res
If res matches the expected flattened list, then your code will be judged as correct.
| Input: nestedList = [[1,1],2,[1,1]]
Output: [1,1,2,1,1]
| [
4
] |
You are given a string s containing lowercase letters and an integer k. You need to :
First, change some characters of s to other lowercase English letters.
Then divide s into k non-empty disjoint substrings such that each substring is a palindrome.
Return the minimal number of characters that you need to change to divide the string.
| Input: s = "abc", k = 2
Output: 1
| [
1
] |
You are given a string s and a positive integer k.
Select a set of non-overlapping substrings from the string s that satisfy the following conditions:
The length of each substring is at least k.
Each substring is a palindrome.
Return the maximum number of substrings in an optimal selection.
A substring is a contiguous sequence of characters within a string.
| Input: s = "abaccdbbd", k = 3
Output: 2
| [
1
] |
You are given an array of intervals, where intervals[i] = [starti, endi] and each starti is unique.
The right interval for an interval i is an interval j such that startj >= endi and startj is minimized. Note that i may equal j.
Return an array of right interval indices for each interval i. If no right interval exists for interval i, then put -1 at index i.
| Input: intervals = [[1,2]]
Output: [-1]
| [
4
] |
You are given an array nums consisting of positive integers and an integer k.
Partition the array into two ordered groups such that each element is in exactly one group. A partition is called great if the sum of elements of each group is greater than or equal to k.
Return the number of distinct great partitions. Since the answer may be too large, return it modulo 109 + 7.
Two partitions are considered distinct if some element nums[i] is in different groups in the two partitions.
| Input: nums = [1,2,3,4], k = 4
Output: 6
| [
1
] |
The score of an array is defined as the product of its sum and its length.
For example, the score of [1, 2, 3, 4, 5] is (1 + 2 + 3 + 4 + 5) * 5 = 75.
Given a positive integer array nums and an integer k, return the number of non-empty subarrays of nums whose score is strictly less than k.
A subarray is a contiguous sequence of elements within an array.
| Input: nums = [2,1,4,3,5], k = 10
Output: 6
| [
4
] |
A certain bug's home is on the x-axis at position x. Help them get there from position 0.
The bug jumps according to the following rules:
It can jump exactly a positions forward (to the right).
It can jump exactly b positions backward (to the left).
It cannot jump backward twice in a row.
It cannot jump to any forbidden positions.
The bug may jump forward beyond its home, but it cannot jump to positions numbered with negative integers.
Given an array of integers forbidden, where forbidden[i] means that the bug cannot jump to the position forbidden[i], and integers a, b, and x, return the minimum number of jumps needed for the bug to reach its home. If there is no possible sequence of jumps that lands the bug on position x, return -1.
| Input: forbidden = [14,4,18,1,15], a = 3, b = 15, x = 9
Output: 3
| [
1,
4
] |
Given the head of a singly linked list where elements are sorted in ascending order, convert it to a
height-balanced
binary search tree.
| Input: head = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
| [
4
] |
You are given an array of strings tokens that represents an arithmetic expression in a Reverse Polish Notation.
Evaluate the expression. Return an integer that represents the value of the expression.
Note that:
The valid operators are '+', '-', '*', and '/'.
Each operand may be an integer or another expression.
The division between two integers always truncates toward zero.
There will not be any division by zero.
The input represents a valid arithmetic expression in a reverse polish notation.
The answer and all the intermediate calculations can be represented in a 32-bit integer.
| Input: tokens = ["2","1","+","3","*"]
Output: 9
| [
3
] |
There is only one character 'A' on the screen of a notepad. You can perform one of two operations on this notepad for each step:
Copy All: You can copy all the characters present on the screen (a partial copy is not allowed).
Paste: You can paste the characters which are copied last time.
Given an integer n, return the minimum number of operations to get the character 'A' exactly n times on the screen.
| Input: n = 3
Output: 3
| [
1,
3
] |
You are given a tree with n nodes numbered from 0 to n - 1 in the form of a parent array parent where parent[i] is the parent of ith node. The root of the tree is node 0. Find the kth ancestor of a given node.
The kth ancestor of a tree node is the kth node in the path from that node to the root node.
Implement the TreeAncestor class:
TreeAncestor(int n, int[] parent) Initializes the object with the number of nodes in the tree and the parent array.
int getKthAncestor(int node, int k) return the kth ancestor of the given node node. If there is no such ancestor, return -1.
| Input
["TreeAncestor", "getKthAncestor", "getKthAncestor", "getKthAncestor"]
[[7, [-1, 0, 0, 1, 1, 2, 2]], [3, 1], [5, 2], [6, 3]]
Output
[null, 1, 0, -1]
| [
1,
4,
4,
4
] |
Given an integer array nums, return the greatest common divisor of the smallest number and largest number in nums.
The greatest common divisor of two numbers is the largest positive integer that evenly divides both numbers.
| Input: nums = [2,5,6,9,10]
Output: 2
| [
3
] |
You are implementing a program to use as your calendar. We can add a new event if adding the event will not cause a triple booking.
A triple booking happens when three events have some non-empty intersection (i.e., some moment is common to all the three events.).
The event can be represented as a pair of integers start and end that represents a booking on the half-open interval [start, end), the range of real numbers x such that start <= x < end.
Implement the MyCalendarTwo class:
MyCalendarTwo() Initializes the calendar object.
boolean book(int start, int end) Returns true if the event can be added to the calendar successfully without causing a triple booking. Otherwise, return false and do not add the event to the calendar.
| Input
["MyCalendarTwo", "book", "book", "book", "book", "book", "book"]
[[], [10, 20], [50, 60], [10, 40], [5, 15], [5, 10], [25, 55]]
Output
[null, true, true, true, false, true, true]
| [
4
] |
You are given four integers row, cols, rCenter, and cCenter. There is a rows x cols matrix and you are on the cell with the coordinates (rCenter, cCenter).
Return the coordinates of all cells in the matrix, sorted by their distance from (rCenter, cCenter) from the smallest distance to the largest distance. You may return the answer in any order that satisfies this condition.
The distance between two cells (r1, c1) and (r2, c2) is |r1 - r2| + |c1 - c2|.
| Input: rows = 1, cols = 2, rCenter = 0, cCenter = 0
Output: [[0,0],[0,1]]
| [
3
] |
There is a regular convex polygon with n vertices. The vertices are labeled from 0 to n - 1 in a clockwise direction, and each vertex has exactly one monkey. The following figure shows a convex polygon of 6 vertices.
Each monkey moves simultaneously to a neighboring vertex. A neighboring vertex for a vertex i can be:
the vertex (i + 1) % n in the clockwise direction, or
the vertex (i - 1 + n) % n in the counter-clockwise direction.
A collision happens if at least two monkeys reside on the same vertex after the movement or intersect on an edge.
Return the number of ways the monkeys can move so that at least one collision happens. Since the answer may be very large, return it modulo 109 + 7.
Note that each monkey can only move once.
| Input: n = 3
Output: 6
| [
3
] |
Given an integer n, return a binary string representing its representation in base -2.
Note that the returned string should not have leading zeros unless the string is "0".
| Input: n = 2
Output: "110"
Explantion: (-2)2 + (-2)1 = 2
Example 2:
Input: n = 3
Output: "111"
Explantion: (-2)2 + (-2)1 + (-2)0 = 3
Example 3:
Input: n = 4
Output: "100"
Explantion: (-2)2 = 4
Constraints:
0 <= n <= 10 | [
3
] |
Given the root of a binary tree, return the sum of values of nodes with an even-valued grandparent. If there are no nodes with an even-valued grandparent, return 0.
A grandparent of a node is the parent of its parent if it exists.
| Input: root = [6,7,8,2,7,1,3,9,null,1,4,null,null,null,5]
Output: 18
| [
4,
4
] |
Given an integer array nums, return the maximum possible sum of elements of the array such that it is divisible by three.
| Input: nums = [3,6,5,1,8]
Output: 18
| [
1,
2
] |
On an 2 x 3 board, there are five tiles labeled from 1 to 5, and an empty square represented by 0. A move consists of choosing 0 and a 4-directionally adjacent number and swapping it.
The state of the board is solved if and only if the board is [[1,2,3],[4,5,0]].
Given the puzzle board board, return the least number of moves required so that the state of the board is solved. If it is impossible for the state of the board to be solved, return -1.
| Input: board = [[1,2,3],[4,0,5]]
Output: 1
| [
4
] |
There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1. The edges in the graph are represented by a given 2D integer array edges, where edges[i] = [ui, vi] denotes an edge between vertex ui and vertex vi. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself.
Return the length of the shortest cycle in the graph. If no cycle exists, return -1.
A cycle is a path that starts and ends at the same node, and each edge in the path is used only once.
| Input: n = 7, edges = [[0,1],[1,2],[2,0],[3,4],[4,5],[5,6],[6,3]]
Output: 3
| [
4
] |
Given an integer n, return the least number of perfect square numbers that sum to n.
A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.
| Input: n = 12
Output: 3
| [
1,
3,
4
] |
You are given a positive integer n representing n cities numbered from 1 to n. You are also given a 2D array roads where roads[i] = [ai, bi, distancei] indicates that there is a bidirectional road between cities ai and bi with a distance equal to distancei. The cities graph is not necessarily connected.
The score of a path between two cities is defined as the minimum distance of a road in this path.
Return the minimum possible score of a path between cities 1 and n.
Note:
A path is a sequence of roads between two cities.
It is allowed for a path to contain the same road multiple times, and you can visit cities 1 and n multiple times along the path.
The test cases are generated such that there is at least one path between 1 and n.
| Input: n = 4, roads = [[1,2,9],[2,3,6],[2,4,5],[1,4,7]]
Output: 5
| [
4,
4
] |
Given an n-ary tree, return the level order traversal of its nodes' values.
Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).
| Input: root = [1,null,3,2,4,null,5,6]
Output: [[1],[3,2,4],[5,6]]
Example 2:
Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: [[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]
Constraints:
The height of the n-ary tree is less than or equal to 1000
The total number of nodes is between [0, 104 | [
4
] |
You are given a 0-indexed integer array nums. You have to partition the array into one or more contiguous subarrays.
We call a partition of the array valid if each of the obtained subarrays satisfies one of the following conditions:
The subarray consists of exactly 2 equal elements. For example, the subarray [2,2] is good.
The subarray consists of exactly 3 equal elements. For example, the subarray [4,4,4] is good.
The subarray consists of exactly 3 consecutive increasing elements, that is, the difference between adjacent elements is 1. For example, the subarray [3,4,5] is good, but the subarray [1,3,5] is not.
Return true if the array has at least one valid partition. Otherwise, return false.
| Input: nums = [4,4,4,5,6]
Output: true
| [
1
] |
You are given two integer arrays nums1 and nums2 of lengths m and n respectively. nums1 and nums2 represent the digits of two numbers. You are also given an integer k.
Create the maximum number of length k <= m + n from digits of the two numbers. The relative order of the digits from the same array must be preserved.
Return an array of the k digits representing the answer.
| Input: nums1 = [3,4,6,5], nums2 = [9,1,2,5,8,3], k = 5
Output: [9,8,6,5,3]
Example 2:
Input: nums1 = [6,7], nums2 = [6,0,4], k = 5
Output: [6,7,6,0,4]
Example 3:
Input: nums1 = [3,9], nums2 = [8,9], k = 3
Output: [9,8,9]
Constraints:
m == nums1.length
n == nums2.length
1 <= m, n <= 500
0 <= nums1[i], nums2[i] <= 9
1 <= k <= m + | [
2
] |
You are given an array routes representing bus routes where routes[i] is a bus route that the ith bus repeats forever.
For example, if routes[0] = [1, 5, 7], this means that the 0th bus travels in the sequence 1 -> 5 -> 7 -> 1 -> 5 -> 7 -> 1 -> ... forever.
You will start at the bus stop source (You are not on any bus initially), and you want to go to the bus stop target. You can travel between bus stops by buses only.
Return the least number of buses you must take to travel from source to target. Return -1 if it is not possible.
| Input: routes = [[1,2,7],[3,6,7]], source = 1, target = 6
Output: 2
| [
4
] |
You are given a binary string binary consisting of only 0's or 1's. You can apply each of the following operations any number of times:
Operation 1: If the number contains the substring "00", you can replace it with "10".
For example, "00010" -> "10010"
Operation 2: If the number contains the substring "10", you can replace it with "01".
For example, "00010" -> "00001"
Return the maximum binary string you can obtain after any number of operations. Binary string x is greater than binary string y if x's decimal representation is greater than y's decimal representation.
| Input: binary = "000110"
Output: "111011"
| [
2
] |
Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):
BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
int next() Moves the pointer to the right, then returns the number at the pointer.
Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.
You may assume that next() calls will always be valid. That is, there will be at least a next number in the in-order traversal when next() is called.
| Input
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
Output
[null, 3, 7, true, 9, true, 15, true, 20, false]
| [
4
] |
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
Search for a node to remove.
If the node is found, delete the node.
| Input: root = [5,3,6,2,4,null,7], key = 3
Output: [5,4,6,2,null,null,7]
| [
4
] |
There are n items each belonging to zero or one of m groups where group[i] is the group that the i-th item belongs to and it's equal to -1 if the i-th item belongs to no group. The items and the groups are zero indexed. A group can have no item belonging to it.
Return a sorted list of the items such that:
The items that belong to the same group are next to each other in the sorted list.
There are some relations between these items where beforeItems[i] is a list containing all the items that should come before the i-th item in the sorted array (to the left of the i-th item).
Return any solution if there is more than one solution and return an empty list if there is no solution.
| Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
Output: [6,3,4,1,5,2,0,7]
Example 2:
Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
Output: []
| [
4,
4
] |
Alice is a caretaker of n gardens and she wants to plant flowers to maximize the total beauty of all her gardens.
You are given a 0-indexed integer array flowers of size n, where flowers[i] is the number of flowers already planted in the ith garden. Flowers that are already planted cannot be removed. You are then given another integer newFlowers, which is the maximum number of flowers that Alice can additionally plant. You are also given the integers target, full, and partial.
A garden is considered complete if it has at least target flowers. The total beauty of the gardens is then determined as the sum of the following:
The number of complete gardens multiplied by full.
The minimum number of flowers in any of the incomplete gardens multiplied by partial. If there are no incomplete gardens, then this value will be 0.
Return the maximum total beauty that Alice can obtain after planting at most newFlowers flowers.
| Input: flowers = [1,3,1,1], newFlowers = 7, target = 6, full = 12, partial = 1
Output: 14
| [
2,
4
] |
There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.
For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.
Return the ordering of courses you should take to finish all courses. If there are many valid answers, return any of them. If it is impossible to finish all courses, return an empty array.
| Input: numCourses = 2, prerequisites = [[1,0]]
Output: [0,1]
| [
4,
4
] |
You are given an array trees where trees[i] = [xi, yi] represents the location of a tree in the garden.
Fence the entire garden using the minimum length of rope, as it is expensive. The garden is well-fenced only if all the trees are enclosed.
Return the coordinates of trees that are exactly located on the fence perimeter. You may return the answer in any order.
| Input: trees = [[1,1],[2,2],[2,0],[2,4],[3,3],[4,2]]
Output: [[1,1],[2,0],[4,2],[3,3],[2,4]]
| [
3
] |
There is a school that has classes of students and each class will be having a final exam. You are given a 2D integer array classes, where classes[i] = [passi, totali]. You know beforehand that in the ith class, there are totali total students, but only passi number of students will pass the exam.
You are also given an integer extraStudents. There are another extraStudents brilliant students that are guaranteed to pass the exam of any class they are assigned to. You want to assign each of the extraStudents students to a class in a way that maximizes the average pass ratio across all the classes.
The pass ratio of a class is equal to the number of students of the class that will pass the exam divided by the total number of students of the class. The average pass ratio is the sum of pass ratios of all the classes divided by the number of the classes.
Return the maximum possible average pass ratio after assigning the extraStudents students. Answers within 10-5 of the actual answer will be accepted.
| Input: classes = [[1,2],[3,5],[2,2]], extraStudents = 2
Output: 0.78333
| [
2
] |
You are given a 0-indexed binary string s of length n on which you can apply two types of operations:
Choose an index i and invert all characters from index 0 to index i (both inclusive), with a cost of i + 1
Choose an index i and invert all characters from index i to index n - 1 (both inclusive), with a cost of n - i
Return the minimum cost to make all characters of the string equal.
Invert a character means if its value is '0' it becomes '1' and vice-versa.
| Input: s = "0011"
Output: 2
| [
1,
2
] |
There is a network of n servers, labeled from 0 to n - 1. You are given a 2D integer array edges, where edges[i] = [ui, vi] indicates there is a message channel between servers ui and vi, and they can pass any number of messages to each other directly in one second. You are also given a 0-indexed integer array patience of length n.
All servers are connected, i.e., a message can be passed from one server to any other server(s) directly or indirectly through the message channels.
The server labeled 0 is the master server. The rest are data servers. Each data server needs to send its message to the master server for processing and wait for a reply. Messages move between servers optimally, so every message takes the least amount of time to arrive at the master server. The master server will process all newly arrived messages instantly and send a reply to the originating server via the reversed path the message had gone through.
At the beginning of second 0, each data server sends its message to be processed. Starting from second 1, at the beginning of every second, each data server will check if it has received a reply to the message it sent (including any newly arrived replies) from the master server:
If it has not, it will resend the message periodically. The data server i will resend the message every patience[i] second(s), i.e., the data server i will resend the message if patience[i] second(s) have elapsed since the last time the message was sent from this server.
Otherwise, no more resending will occur from this server.
The network becomes idle when there are no messages passing between servers or arriving at servers.
Return the earliest second starting from which the network becomes idle.
| Input: edges = [[0,1],[1,2]], patience = [0,2,1]
Output: 8
| [
4
] |
A storekeeper is a game in which the player pushes boxes around in a warehouse trying to get them to target locations.
The game is represented by an m x n grid of characters grid where each element is a wall, floor, or box.
Your task is to move the box 'B' to the target position 'T' under the following rules:
The character 'S' represents the player. The player can move up, down, left, right in grid if it is a floor (empty cell).
The character '.' represents the floor which means a free cell to walk.
The character '#' represents the wall which means an obstacle (impossible to walk there).
There is only one box 'B' and one target cell 'T' in the grid.
The box can be moved to an adjacent free cell by standing next to the box and then moving in the direction of the box. This is a push.
The player cannot walk through the box.
Return the minimum number of pushes to move the box to the target. If there is no way to reach the target, return -1.
| Input: grid = [["#","#","#","#","#","#"],
["#","T","#","#","#","#"],
["#",".",".","B",".","#"],
["#",".","#","#",".","#"],
["#",".",".",".","S","#"],
["#","#","#","#","#","#"]]
Output: 3
| [
4
] |
You are an ant tasked with adding n new rooms numbered 0 to n-1 to your colony. You are given the expansion plan as a 0-indexed integer array of length n, prevRoom, where prevRoom[i] indicates that you must build room prevRoom[i] before building room i, and these two rooms must be connected directly. Room 0 is already built, so prevRoom[0] = -1. The expansion plan is given such that once all the rooms are built, every room will be reachable from room 0.
You can only build one room at a time, and you can travel freely between rooms you have already built only if they are connected. You can choose to build any room as long as its previous room is already built.
Return the number of different orders you can build all the rooms in. Since the answer may be large, return it modulo 109 + 7.
| Input: prevRoom = [-1,0,1]
Output: 1
| [
1,
3
] |
You are given an array of positive integers price where price[i] denotes the price of the ith candy and a positive integer k.
The store sells baskets of k distinct candies. The tastiness of a candy basket is the smallest absolute difference of the prices of any two candies in the basket.
Return the maximum tastiness of a candy basket.
| Input: price = [13,5,1,8,21,2], k = 3
Output: 8
| [
4
] |
You have a keyboard layout as shown above in the X-Y plane, where each English uppercase letter is located at some coordinate.
For example, the letter 'A' is located at coordinate (0, 0), the letter 'B' is located at coordinate (0, 1), the letter 'P' is located at coordinate (2, 3) and the letter 'Z' is located at coordinate (4, 1).
Given the string word, return the minimum total distance to type such string using only two fingers.
The distance between coordinates (x1, y1) and (x2, y2) is |x1 - x2| + |y1 - y2|.
Note that the initial positions of your two fingers are considered free so do not count towards your total distance, also your two fingers do not have to start at the first letter or the first two letters.
| Input: word = "CAKE"
Output: 3
| [
1
] |
You are given two integer arrays nums1 and nums2. We write the integers of nums1 and nums2 (in the order they are given) on two separate horizontal lines.
We may draw connecting lines: a straight line connecting two numbers nums1[i] and nums2[j] such that:
nums1[i] == nums2[j], and
the line we draw does not intersect any other connecting (non-horizontal) line.
Note that a connecting line cannot intersect even at the endpoints (i.e., each number can only belong to one connecting line).
Return the maximum number of connecting lines we can draw in this way.
| Input: nums1 = [1,4,2], nums2 = [1,2,4]
Output: 2
| [
1
] |
In an n*n grid, there is a snake that spans 2 cells and starts moving from the top left corner at (0, 0) and (0, 1). The grid has empty cells represented by zeros and blocked cells represented by ones. The snake wants to reach the lower right corner at (n-1, n-2) and (n-1, n-1).
In one move the snake can:
Move one cell to the right if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
Move down one cell if there are no blocked cells there. This move keeps the horizontal/vertical position of the snake as it is.
Rotate clockwise if it's in a horizontal position and the two cells under it are both empty. In that case the snake moves from (r, c) and (r, c+1) to (r, c) and (r+1, c).
Rotate counterclockwise if it's in a vertical position and the two cells to its right are both empty. In that case the snake moves from (r, c) and (r+1, c) to (r, c) and (r, c+1).
Return the minimum number of moves to reach the target.
If there is no way to reach the target, return -1.
| Input: grid = [[0,0,0,0,0,1],
[1,1,0,0,1,0],
[0,0,0,0,1,1],
[0,0,1,0,1,0],
[0,1,1,0,0,0],
[0,1,1,0,0,0]]
Output: 11
| [
4
] |
Given the root of a binary search tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only one right child.
| Input: root = [5,3,6,2,4,null,8,1,null,null,null,7,9]
Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]
Example 2:
Input: root = [5,1,7]
Output: [1,null,5,null,7]
Constraints:
The number of nodes in the given tree will be in the range [1, 100].
0 <= Node.val <= 100 | [
4,
4
] |