BanglaBook / README.md
Starscream-11813's picture
Update README.md
8bc793a verified
|
raw
history blame
6.02 kB
metadata
license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
  - zero-shot-classification
language:
  - bn
tags:
  - Sentiment Analysis
  - Book Reviews
  - Product Reviews
  - Bangla
  - Bengali
  - Dataset
pretty_name: BanglaBook
size_categories:
  - 100K<n<1M

BᴀɴɢʟᴀBᴏᴏᴋ: A Large-scale Bangla Dataset for Sentiment Analysis from Book Reviews

This repository contains the code, data, and models of the paper titled "BᴀɴɢʟᴀBᴏᴏᴋ: A Large-scale Bangla Dataset for Sentiment Analysis from Book Reviews" published in the Findings of the Association for Computational Linguistics: ACL 2023.

arXiv anthology GoogleScholar ResearchGate

PDF Slides Video

License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

license

Data Format

Each row consists of a book review sample. The table below describes what each column signifies.

Column Title Description
id The unique identification number of the sample
Book_Name The title of the book that has been evaluated by the review
Writer_Name The name of the book's author
Category The genre to which the book belongs
Rating A numerical value rr such that 1r51\leq r \leq 5
A score reflecting the reviewer's subjective assessment of the book's quality
Review The review text written by the reviewer
Site The name of the online bookshop
sentiment The conveyed sentiment and class label of the review
For a review sample ii with rating rir_i, the sentiment label SiS_i is,
Si={Negative,if ri2Neutral,if ri=3Positive,if ri4 S_i =\begin{cases} \text{Negative}, & \text{if } r_i \leq 2\\ \text{Neutral}, & \text{if } r_i = 3\\ \text{Positive}, & \text{if }r_i \geq 4 \end{cases}
label The numerical representation of the sentiment label
For a review sample ii with sentiment label SiS_i, the numerical label is,
labeli={0,if Si=Negative1,if Si=Neutral2,if Si=Positivelabel_i = \begin{cases} 0, &\text{if } S_i = \text{Negative} \\ 1, &\text{if } S_i = \text{Neutral} \\ 2, &\text{if } S_i = \text{Positive} \\ \end{cases}

Citation

If you find this work useful, please cite our paper:

@inproceedings{kabir-etal-2023-banglabook,
    title = "{B}angla{B}ook: A Large-scale {B}angla Dataset for Sentiment Analysis from Book Reviews",
    author = "Kabir, Mohsinul  and
      Bin Mahfuz, Obayed  and
      Raiyan, Syed Rifat  and
      Mahmud, Hasan  and
      Hasan, Md Kamrul",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-acl.80",
    pages = "1237--1247",
    abstract = "The analysis of consumer sentiment, as expressed through reviews, can provide a wealth of insight regarding the quality of a product. While the study of sentiment analysis has been widely explored in many popular languages, relatively less attention has been given to the Bangla language, mostly due to a lack of relevant data and cross-domain adaptability. To address this limitation, we present BanglaBook, a large-scale dataset of Bangla book reviews consisting of 158,065 samples classified into three broad categories: positive, negative, and neutral. We provide a detailed statistical analysis of the dataset and employ a range of machine learning models to establish baselines including SVM, LSTM, and Bangla-BERT. Our findings demonstrate a substantial performance advantage of pre-trained models over models that rely on manually crafted features, emphasizing the necessity for additional training resources in this domain. Additionally, we conduct an in-depth error analysis by examining sentiment unigrams, which may provide insight into common classification errors in under-resourced languages like Bangla. Our codes and data are publicly available at https://github.com/mohsinulkabir14/BanglaBook.",
}