ids
stringlengths 6
10
| seqs
stringlengths 11
1.02k
| texts
stringlengths 108
11.1k
|
---|---|---|
P46960 | MAVLLRDKHISYLHDIGNRTDELDFWLKEHLHVSAIYWSCMSFWLLKKKDQIDKERIVSFLLSCLTESGGFACYPGHDDHITNTVYAVQVLAMLDSLHVVDKDKVASYIIGLQNEDGSMKGDRWGEIDARFLYSGINCLAILGKLDYLNKNTAVDWLMKCYNFDGGFGLCPGAESHGAMVFTCVAALKILNKLDLIDEELLGWWISERQVKGGGLNGRPEKLPDSCYGWWDLSPLAIIGKLDWIDRNQLIDFLLGTQDADSGGFADRKEDATDVYHTCFSLAGLSLLQFPNIEPVDPRFCLPLEVTQKMKL | Cofactor: Binds 1 zinc ion per subunit.
Function: Catalyzes the transfer of a geranyl-geranyl moiety from geranyl-geranyl pyrophosphate to proteins having the C-terminal -XCC or -XCXC, where both cysteines may become modified.
Catalytic Activity: geranylgeranyl diphosphate + L-cysteinyl-[protein] = diphosphate + S-geranylgeranyl-L-cysteinyl-[protein]
Sequence Mass (Da): 35092
Sequence Length: 311
EC: 2.5.1.60
|
P20133 | MSGSLTLLKEKHIRYIESLDTKKHNFEYWLTEHLRLNGIYWGLTALCVLDSPETFVKEEVISFVLSCWDDKYGAFAPFPRHDAHLLTTLSAVQILATYDALDVLGKDRKVRLISFIRGNQLEDGSFQGDRFGEVDTRFVYTALSALSILGELTSEVVDPAVDFVLKCYNFDGGFGLCPNAESHAAQAFTCLGALAIANKLDMLSDDQLEEIGWWLCERQLPEGGLNGRPSKLPDVCYSWWVLSSLAIIGRLDWINYEKLTEFILKCQDEKKGGISDRPENEVDVFHTVFGVAGLSLMGYDNLVPIDPIYCMPKSVTSKFKKYPYK | Cofactor: Binds 1 zinc ion per subunit.
Function: Catalyzes the transfer of a geranyl-geranyl moiety from geranyl-geranyl pyrophosphate to proteins having the C-terminal -XCC or -XCXC, where both cysteines may become modified. Acts on YPT1 and SEC4.
Catalytic Activity: geranylgeranyl diphosphate + L-cysteinyl-[protein] = diphosphate + S-geranylgeranyl-L-cysteinyl-[protein]
Sequence Mass (Da): 36666
Sequence Length: 325
EC: 2.5.1.60
|
P85868 | MKTPITEAIASADTQGRFLSNTELQAVDGRRAAASMEAARAQKLIDGATSAVYSKFPYTTSTPGNQYASDARGKRDVGHYLRKANHGLSGQAANEANTYIDYAINALS | Function: Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex.
PTM: Two isomers exist.
Location Topology: Peripheral membrane protein
Sequence Mass (Da): 11500
Sequence Length: 108
Subcellular Location: Cellular thylakoid membrane
|
P84340 | MKTPLTEAVSIADSQGRFLSSTQIQVLFGRFRQAKAGLXAAKAL | Function: Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex (phycobilisome, PBS). Phycocyanin is the major phycobiliprotein in the PBS rod.
PTM: Contains one covalently linked bilin chromophore.
Location Topology: Peripheral membrane protein
Sequence Mass (Da): 4720
Sequence Length: 44
Subcellular Location: Cellular thylakoid membrane
|
P31020 | MTTQRNDNLEQPGRSVIFDDGLSATDTPNETNVVETEVLIVGSGPAGSSAAMFLSTQGISNIMITKYRWTANTPRAHITNQRTMEILRDAGIEDQVLAEAVPHELMGDTVYCESMAGEEIGRRPTWGTRPDRRADYELASPAMPCDIPQTLLEPIMLKNATMRGTQTQFSTEYLSHTQDDKGVSVQVLNRLTGQEYTIRAKYLIGADGARSKVAADIGGSMNITFKADLSHWRPSALDPVLGLPPRIEYRWPRRWFDRMVRPWNEWLVVWGFDINQEPPKLNDDEAIQIVRNLVGIEDLDVEILGYSLWGNNDQYATHLQKGRVCCAGDAIHKHPPSHGLGSNTSIQDSYNLCWKLACVLKGQAGPELLETYSTERAPIAKQIVTRANGSSSEYKPIFDALGVTDATTNDEFVEKLALRKENSPEGARRRAALRAALDNKDYEFNAQGTEIGQFYDSSAVITDGQKRPAMTEDPMLHHQKSTFPGLRLPHAWLGDAKEKYSTHDIAEGTRFTIFTGITGQAWADAAVRVAERLGIDLKAVVIGEGQPVQDLYGDWLRQREVDEDGVILVRPDKHIGWRAQSMVADPETALFDVLSGCCIPSKPALRI | Catalytic Activity: H(+) + NADPH + O2 + phenol = catechol + H2O + NADP(+)
Sequence Mass (Da): 67419
Sequence Length: 607
Pathway: Aromatic compound metabolism; phenol degradation.
EC: 1.14.13.7
|
Q7SIF9 | MLDAFSRVISNADAKAAYVGGSDLQALRTFISDGNKRLDAVNYIVSNSSCIVSDAISGMICENPGLITPGGNCYTNRRMAACLRDGEIILRYISYALLAGDSSVLEDRCLNGLKETYIALGVPTNSTVRAVSIMKAAVGAFISNTASQRKGEVIEGDCSALAAEIASYCDRISAAVS | Function: Light-harvesting photosynthetic tetrapyrrole chromophore-protein from the phycobiliprotein complex.
PTM: Contains two covalently linked phycoerythrobilin chromophores and one covalently linked phycourobilin chromophore.
Location Topology: Peripheral membrane protein
Sequence Mass (Da): 18604
Sequence Length: 177
Subcellular Location: Plastid
|
P00438 | MKTQVAIIGAGPSGLLLGQLLHKAGIDNVILERQTPDYVLGRIRAGVLEQGMVDLLREAGVDRRMARDGLVHEGVEIAFAGQRRRIDLKRLSGGKTVTVYGQTEVTRDLMEAREACGATTVYQAAEVRLHDLQGERPYVTFERDGERLRLDCDYIAGCDGFHGISRQSIPAERLKVFERVYPFGWLGLLADTPPVSHELIYANHPRGFALCSQRSATRSRYYVQVPLTEKVEDWSDERFWTELKARLPAEVAEKLVTGPSLEKSIAPLRSFVVEPMQHGRLFLAGDAAHIVPPTGAKGLNLAASDVSTLYRLLLKAYREGRGELLERYSAICLRRIWKAERFSWWMTSVLHRFPDTDAFSQRIQQTELEYYLGSEAGLATIAENYVGLPYEEIE | Cofactor: Binds 1 FAD per subunit.
Function: Catalyzes the incorporation of an atom of dioxygen into p-hydroxybenzoate (p-OHB) to form 3,4-dihydroxybenzoate (3,4DOHB). The reaction occurs in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate.
Catalytic Activity: 4-hydroxybenzoate + H(+) + NADPH + O2 = 3,4-dihydroxybenzoate + H2O + NADP(+)
Sequence Mass (Da): 44322
Sequence Length: 394
Pathway: Aromatic compound metabolism; benzoate degradation via hydroxylation; 3,4-dihydroxybenzoate from benzoate: step 2/2.
EC: 1.14.13.2
|
Q9M3B8 | MVLSNKKLKQRIRQDLAESLSVSVSETNPQSQSLKLLLDSSSHKPRLSKREKRRNCETFAREDDEIRENEVGNGGSSEKTDTKIKKKRKRDDAVEVDELEGDEGTKEEQKPQKKKNKKKKKKRKVNKTPKKAEEGNVEEKVKVEEIEVNTDNKEEDGVVPNKLYVGGIPYQSTEDEIRSYFRSCGVIIKVDCKMRPEDGAFSGIAFITFDTEDGAKRALAFDRAAMGDRYLTIQQYVKTTTPSIPRRKTSSGFAPEMVDGYNRVYIGNLAWDTTERDIRKLFSDCVINSVRLGKNKETGEFKGYAHVDFKDSVSVAIALKLDQQVICGRPVKICCALKDRPATDHTPGETNNAGSYNMEDTYAAADPVPALAGRSEVDDGNYFATTVSSSKVKRRVCYECGEKGHLSTACPIKLQKADDQANSKLGQETVDGRPAMQSYGLPKNSGDSYYMNETYASTNETYNGGYSASAVGTGKVKRRNCYECGEKGHLSTACPIKLQNTSHTNSTLDHQTVEAGPTQVTSYSLQKKTRDTENNGGSFMDESYATVPISIDVTNGANDASLTSAVSTGKIKKRNCYECGEKGHLSSACPNKLQKQG | Function: RNA-binding protein which mediates polarized mRNA (e.g. Ran2 transcripts mRNA) transport from the nucleus to the vicinity of the cell plate during cytokinesis and phragmoplast formation.
Location Topology: Peripheral membrane protein
Sequence Mass (Da): 65997
Sequence Length: 597
Subcellular Location: Nucleus
|
Q4K423 | MEARNMTPFTYFSLPMQKLFLRNQAAVRNKPYAKYFRSEMRVPLSAVRKIQQGPMALEDTLTPSIEDINRLLEPDFVSEESGYALLPGPMAYVQSRKFFPGCTAQMFKWWFIWHPAESERYTLWFPYAHVSNPCVHHQRLRDESLSFEERLYGNTFCASEYVGDRLMHLHIDFQQPASLGLNTDLYREAKIDGSVSALMSLADHPEVPVSLMVHLFKEVPDGMYLTSRYWVGAHPSMARFPGAEKAASLLKENGFGEAELETLAYEFAVHDMCEFNHLASFLPDLYREFGTPAA | Function: Hydrolase that specifically degrades the potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate.
Catalytic Activity: 2,4-diacetylphloroglucinol + H2O = 2-acetylphloroglucinol + acetate
Sequence Mass (Da): 33773
Sequence Length: 294
Domain: Contains a small N-terminal domain involved in dimerization and a large C-terminal Bet v1-like fold catalytic domain.
EC: 3.7.1.24
|
Q9RGS8 | MTNQNRRDFLRLAAGTAGAAALQLFPPVIREALAIPANRRTGTIRDVEHIVILMQENRSFDHYFGKLRGVRGFGDPRPLALQNGKSVFHQPVLLGPAELLPFHPDASNLGMQFLQDLPHGWQDMHGAWNKGRYDRWIANKGTTTMAYLERDDIPFHYQLADAFTICDAYHCSIPSSTDPNRYYMWTGYVGNDGAGGGPVLGNEEAGYGWSTYPETLEQAGVSWKIYQDIGTGLDAAGSWGWTQNPYIGNYGDNSLLYFNQYRNAQPGSPLYDKARTGTNVSAGGTLFDVLQQDVKNGTLPQVSWICAPEAYSEHPNWPANYGAWYVEQVLKALTSNPDVWSKTALFITYDENDGFFDHVAPPFAPQSRENGLSTVSTAGEIFAGDATHMAGPYGLGPRVPMLVVSPWTKGGWVCSQTFDHTSLLQFIEARFNDRYSVRAPNVTPWRRAVCGDLTSAFNFSSPDGSWPQLPDTSGYAPPDRNRHPSYVPVPPAAQSMPKQEAGLRAARALPYELFVLGRIDQSTGKFKLTFANTGRAGAAFQVTAGNRLDGPWAYTVEARKRLSDEWSTALTLSIYDLTVYGPNGFLCQFRGSTAAALGLSANPEVIYGYDVANGNITLRLSNRGRAAVRLTVTNAYGNAAPRVYELKPGQRINDYWDLRDSHSWYDLSVSDGAPNGFLRRFAGHVETGRPSTSDPLIATA | Function: Hydrolyzes phosphatidylserine as well as phosphatidylcholine.
PTM: Predicted to be exported by the Tat system. The position of the signal peptide cleavage has not been experimentally proven.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phosphocholine + H2O = a 1,2-diacyl-sn-glycerol + H(+) + phosphocholine
Sequence Mass (Da): 77077
Sequence Length: 700
EC: 3.1.4.3
|
P15713 | MISKSRRSFIRLAAGTVGATVATSMLPSSIQAALAIPAHRRHGNLKDVEHVVILMQENRSFDHYFGTLKGVRGFGDRMAIPLPDGQRVWHQKGSKGEILPYHFDTSTTSAQRVDGTPHTWPDAQQAWNEGRMDKWLPAKTERSLGYYKEQDIAFQFAMANAFTICDAYHCSFQGGTNPNRLFLWTGTNDPLGQHGGPVTTNDHDSNGPVEQGYTWTTYPERLQAAGITWRVYQDMADNFSDNPLIGFRQYRAAAPDSPLIVNGLSTWKLDALKRDVLANSLPQVSWIVAPAKYSEHPGPSSPIWGAEYTSWVLDALTANPEVWSKTALLVMFDENDGFFDHVAPPAAPSLNKDGTLRGKTTADATLEWHTKGDIRYRNQPYGLGPRVPMYVISPWSKGGWVNSQVFDHTSVIRFLEQRFGVMEPNISPWRRAVCGDLTSAFNFANPNNEPFPELPDTSQADAIVASQIKLPKPKPPAVAAMPKQEMGIRPARALPYELGVHARYRSGGDALSLTFANTGKAGAVFQVFDLLDSENPPKRYTVGARKRLHDSFQGDASGDYHLEVHGPNGFLRVFRGNLRRDLAERKAPLPEVRIDYEPLFGNLRVQLINRGRHPVKLTVKDNVYRQGERRTVNVPPGQRREVRYSLRSSGNWYDFSVSAQGADSFLRRFSGRMEDGRSGFSDPGMGLGTLTF | Function: Hydrolyzes phosphatidylserine as well as phosphatidylcholine.
PTM: Predicted to be exported by the Tat system. The position of the signal peptide cleavage has not been experimentally proven.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phosphocholine + H2O = a 1,2-diacyl-sn-glycerol + H(+) + phosphocholine
Sequence Mass (Da): 77145
Sequence Length: 692
EC: 3.1.4.3
|
Q9VJ07 | MLKATRKQADPYKSKLKVSASHSGPHPLPVEVTAAEEEQAATFGQTSPQKLSLKGSQLGGSILIGNYNYLTQLEVCENEMEVLDLSSLAQLETLKCSRNKLMELIINGTNLQTLVADHNYLHNISTTNTHPVPLKLQRIDISHNNFSELPNWVGACASLTAINASHNRLNNVAVLLRNYRITELVSLDLAYNDLKQLDQFPEGFSSIRSLQLQSNELPSLPDNFFAVTHARLETLNVSCNKLSTLPRYEQNNHAALVNLSLAGNHLNDSIFEPLHNAAKLRVLHLAYNRIGVLPAACVRNWPELEILVLSGNMLQQLPEEVATLGQLRVLRCCNNLLLCTPQLAKLAMLKVLDLSHNHLDRVNLLALVPSRNLKYLDLSGNLQLQVDEQQFKVCQSQSQRHWSLVDVSGNNRAALPTTKIRQVSAQRNQNKTSGPWTMGFAETPGSGDCRKLSVYQLRAANYGGSDEALYGMFEALEGRGRAAQEMSHLVPDLMKQEQMVKDSAVRDYMKFTLLAAQQQCGSVRSAALFHLTRTRAPSKVRPLKSKRYVLRMASTGGLDAYLIRRTSQLRLTKPDVIQKDQIHSMPDPHVLELILSNDDEYLVVGNAQLWSVMDIDRAAREIRKEENSLLAAKRLVDIAQSFAAAESLSVIVVRFRHLGTDVDHLIRELKQSVRKKPQPVSLPLSSGSVCKRTCCDRSNACRHRAIEQEPLAGRSSPSGQSDRDLLAKDKDDEFVLAHARVLQEEQQLEMLDETESVSESVLSEEQFKCWEYMLEQNTQLLFDKELNTISKSFTKQRTVPNAIMAATVLPERNDFTSNLMRTVTNKFISTSTPQLPQPITTSVPLGSYHQVKQAPPGHFGSALSFQQAHSYGYNLFDAKPRPKFHGGTVKRSAGPNSAYFGSLQRLMPYNFEYDFAVTQERERNILDEEEHDDDDFNEHESRMRKYWGVATTEL | Function: Protein phosphatase that specifically mediates dephosphorylation of 'Ser-586' of Akt1, a protein that regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-586' of Akt1 triggers apoptosis and suppression of tumor growth.
Catalytic Activity: H2O + O-phospho-L-seryl-[protein] = L-seryl-[protein] + phosphate
Sequence Mass (Da): 107092
Sequence Length: 954
EC: 3.1.3.16
|
A0QQ68 | MTTEITRPPAPPSRPSESRKPSLPGLLHLVAIAAVLATIVSAWAIDFVPTALIDGSDNIVALLQRMIPPRLDDPARIGMLAVETLLMAVLGTTLAAIASVPLAFLAARNTTPHPAVQAVARAVITFCRAMPDLLFAVLFVRALGIGVLPGVLALALHSIGMLGKVFADAIEQTDAGPREAVRSTGVGYFRELLNAVVPQVVPSWIAMFVYRIDINLRMSVVLGFVGAGGIGFALQDALRGLIYPRALGIVCVILVIIAGMELLAIAIRRILLDPSRSNPLRDRIARFGLSGVLVGSCVAAFVLLKINPLALFTWVFPSVGIFTRMVPPNFDALGVDLFTAAAQTVAIGVVATAIGIALSIPAGILAARNVSPHPALYWPARAWILVVRAVPELILAVVFVAALGLGPIAGTCALAIGSIGFLAKLVADAVEEIDPGPMEAVRSVGGGWWKTLFAAVLPQSMPALVGSSLYLFDVNVRTSTILGIVGAGGVGYLLFESIRTLNFDVAGAIVIVIFVIVYAIERLSGWIRSRLV | Function: Part of the ABC transporter complex PhnCDE involved in phosphate import. Responsible for the translocation of the substrate across the membrane.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 55928
Sequence Length: 532
Subcellular Location: Cell membrane
|
A0A142C7A4 | MSAPTQTTPVFKALTEASFSDSSLSEEAKQNALYWWNTSANDLARMLHQADYSEEVQRGFLSYYRDNICPRLGGKPDKDSADSGVGWDGNPLEYSFELKGSTKKKSVRFVVDLTELRPADHSNPLSMKHTQEMVDLLAEKTPNFDDTWYKVLKNWFVYAHLTPEEQTALIAKAGQQTSVIIGFDIYPKLTSPDQLPVMGKVYFPPCYVASDKGISRWQAVRQGIQSLPGVESFPNILSSTEIINDYLSEKPDSWQMGTRYLATDLVSPNKARFKVYMRCFDTSFEGIWDYYTLGGRIPNLDEDREKFRQLMDLVSGTTYAETRSKDDMQMGRFTSATGKLTAIYFNISPDNPYPAPKLCIYPSNFAKDDEVIAKGLDEWLEKYGWSDDTKSMEDQVKSVFDHRKLEETTGIFTFIGIGRKEDPTKKELSIQVYMTPELYRTPRY | Function: Prenyltransferase; part of the gene cluster that mediates the biosynthesis of phenalenones such as herqueinone, compounds that have been reported to treat tumors, bacterial infections and/or mycoses, and rheumatic diseases . The non-reducing polyketide synthase phnA synthesizes the heptaketide backbone and cyclizes it into the angular, hemiketal-containing naphtho-gamma-pyrone prephenalenone. The product template (PT) domain of phnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains . The transformation of prephenalenone to phenalenones requires an FAD-dependent monooxygenase phnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the gamma-pyrone ring simultaneously . Subsequent intramolecular deprotonation of C3 phenolic oxygen accelerates phenalenone ring closure to yield the tricyclic phenalenone core with a C2 hydroxylation . The prenyltransferase phnF further catalyzes reverse C-prenylation of phenalenone by direct electrophilic substitution at C6, or possibly via first a forward O-prenylation of a neighboring phenol in phenalenone, followed by a Claisen rearrangement . The hydroalkoxylation enzyme phnH catalyzes the 5-exo-trigcyclization via acid catalysis after the spontaneous deprotonation of 7-OH, which leads to the formation of the dihydrobenzofuran atrovenetin . Atrovenetin is further converted to deoxyherqueinone by the O-methyltransferase phnC which can methylate C2-OH to stabilize the northern portion of the phenalenone core . Finally, the oxidoreductase phnG converts deoxyherqueinone to herqueinone via C6 hydroxylation .
Catalytic Activity: 2,3,4,7,9-pentahydroxy-6-methyl-1H-phenalen-1-one + dimethylallyl diphosphate = 2,4,7,9-tetrahydroxy-6-methyl-8-(2-methylbut-3-en-2-yl)-1-oxo-1H-phenalen-3-ol + diphosphate
Sequence Mass (Da): 50695
Sequence Length: 444
Pathway: Secondary metabolite biosynthesis.
EC: 2.5.1.-
|
P16685 | MHADTATRQHWMSVLAHSQPAELAARLNALNITADYEVIRAAETGLVQIQARMGGTGERFFAGDATLTRAAVRLTDGTLGYSWVQGRDKQHAERCALIDALMQQSRHFQNLSETLIAPLDADRMARIAARQAEVNASRVDFFTMVRGDNA | Function: Together with PhnH, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate
Sequence Mass (Da): 16540
Sequence Length: 150
EC: 2.7.8.37
|
A0A142C7A5 | MAAETATSKQNLVILGGSYAGLSTAHYLLRHVVPQLPGKESYQVILISASSEAMCRPACPRALISDDMFQQDKLFVSIPAQFEQYLKDTFKFIHGTVTSLDHQDRCVTVSVKDGDPEKIKCHAIVIATGASTASPLLGLNRDSETLRTNWNEFRAALPTAKHIVIAGGGPAGVETAGELGEYLNGRAGWFHSKLENPKVEITLVTADSKILPILRPALATKAEKLLNKVGVTVIKKSRVTNVTPPGAGAEDALTANATVTLEDGKELQADLYIPATGMTYNSSFVDASLLTDYGRVETDPGTLRVVNGGALLYAIGDVGSHARPAVHNILNTVPILCANMKRDLLLAVQPDASVGEDRQFKEDTRETQLVPVGRSKGVGAFMGFRQPGFMVWLIKGRDYWLWTTEGLWSGKHWAKGS | Cofactor: Binds 6-hydroxy-FAD non-covalently.
Function: Oxidoreductase; part of the gene cluster that mediates the biosynthesis of phenalenones such as herqueinone, compounds that have been reported to treat tumors, bacterial infections and/or mycoses, and rheumatic diseases . The non-reducing polyketide synthase phnA synthesizes the heptaketide backbone and cyclizes it into the angular, hemiketal-containing naphtho-gamma-pyrone prephenalenone. The product template (PT) domain of phnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains . The transformation of prephenalenone to phenalenones requires an FAD-dependent monooxygenase phnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the gamma-pyrone ring simultaneously . Subsequent intramolecular deprotonation of C3 phenolic oxygen accelerates phenalenone ring closure to yield the tricyclic phenalenone core with a C2 hydroxylation . The prenyltransferase phnF further catalyzes reverse C-prenylation of phenalenone by direct electrophilic substitution at C6, or possibly via first a forward O-prenylation of a neighboring phenol in phenalenone, followed by a Claisen rearrangement . The hydroalkoxylation enzyme phnH catalyzes the 5-exo-trigcyclization via acid catalysis after the spontaneous deprotonation of 7-OH, which leads to the formation of the dihydrobenzofuran atrovenetin . Atrovenetin is further converted to deoxyherqueinone by the O-methyltransferase phnC which can methylate C2-OH to stabilize the northern portion of the phenalenone core . Finally, the oxidoreductase phnG converts deoxyherqueinone to herqueinone via C6 hydroxylation .
Catalytic Activity: deoxyherqueinone + H(+) + NADPH + O2 = H2O + herqueinone + NADP(+)
Sequence Mass (Da): 45024
Sequence Length: 417
Pathway: Secondary metabolite biosynthesis.
EC: 1.-.-.-
|
Q52984 | MMDAAKTSDDAGVAQRREGMRLLARATLGELSLAWDAIDDKPEVAPVRGPETGLVMVRGKIGGGGDPFNLGEATVSRATVRLSTGEVGHGQLLGTDKARARLAAIFDALFQSAAHRASVEALHEQVAARLDAEDRRKAEETAATRVDFFTMVRGED | Function: Together with PhnH, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate
Sequence Mass (Da): 16616
Sequence Length: 156
EC: 2.7.8.37
|
P86807 | GSTLLEQMSLHGVRHAPGSLEANDFFLANDQRHGALGSFVRADEHDLSTLGDHPLRSHGGLSEQQLPLLLSR | Cofactor: Unlike bacterial phosphonoacetate hydrolase, does not require zinc as a cofactor.
Catalytic Activity: H2O + phosphonoacetate = acetate + H(+) + phosphate
Sequence Mass (Da): 7812
Sequence Length: 72
EC: 3.11.1.2
|
Q51782 | MTQLISVNSRSYRLSSAPTIVICVDGCEQEYINQAIQAGQAPFLAELTGFGTVLTGDCVVPSFTNPNNLSIVTGAPPSVHGICGNFFFDQETQEEVLMNDAKYLRAPTILAEMAKAGQLVAVVTAKDKLRNLLGHQLKGICFSAEKADQVNLEEHGVENILARVGMPVPSVYSADLSEFVFAAGLSLLTNERPDFMYLSTTDYVQHKHAPGTPEANAFYAMMDSYFKRYHEQGAIVAITADHGMNAKTDAIGRPNILFLQDLLDAQYGAQRTRVLLPITDPYVVHHGALGSYATVYLRDAVPQRDAIDFLAGIAGVEAVLTRSQACQRFELPEDRIGDLVVLGERLTVLGSAADKHDLSGLTVPLRSHGGVSEQKVPLIFNRKLVGLDSPGRLRNFDIIDLALNHLA | Cofactor: Binds 2 Zn(2+) ions per subunit.
Function: Specifically hydrolyzes phosphonoacetate. Does not have activity on other organophosphonates or acetates.
Catalytic Activity: H2O + phosphonoacetate = acetate + H(+) + phosphate
Sequence Mass (Da): 44239
Sequence Length: 407
EC: 3.11.1.2
|
P16686 | MTLETAFMLPVQDAQHSFRRLLKAMSEPGVIVALHQLKRGWQPLNIATTSVLLTLADNDTPVWLSTPLNNDIVNQSLRFHTNAPLVSQPEQATFAVTDEAISSEQLNALSTGTAVAPEAGATLILQVASLSGGRMLRLTGAGIAEERMIAPQLPECILHELTERPHPFPLGIDLILTCGERLLAIPRTTHVEVC | Function: Together with PhnG, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate
Sequence Mass (Da): 21027
Sequence Length: 194
EC: 2.7.8.37
|
A0A1S6PUA4 | MKFTYLVSLAAFAVTALGSRPTPPNLEFLFSANLTKGPAYIYDQSDAQIKALQTLTGGIIAGPNFDGTVIGGTALSTRGADGTIRADAHYLIQTSDGANILVTESAAIPYVAVLFDTSSEKYNWLNNVTAWGTPPNLNEINFLEYWQIE | Function: Hydroalkoxylation enzyme; part of the gene cluster that mediates the biosynthesis of phenalenones such as herqueinone, compounds that have been reported to treat tumors, bacterial infections and/or mycoses, and rheumatic diseases . The non-reducing polyketide synthase phnA synthesizes the heptaketide backbone and cyclizes it into the angular, hemiketal-containing naphtho-gamma-pyrone prephenalenone. The product template (PT) domain of phnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains . The transformation of prephenalenone to phenalenones requires an FAD-dependent monooxygenase phnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the gamma-pyrone ring simultaneously . Subsequent intramolecular deprotonation of C3 phenolic oxygen accelerates phenalenone ring closure to yield the tricyclic phenalenone core with a C2 hydroxylation . The prenyltransferase phnF further catalyzes reverse C-prenylation of phenalenone by direct electrophilic substitution at C6, or possibly via first a forward O-prenylation of a neighboring phenol in phenalenone, followed by a Claisen rearrangement . The hydroalkoxylation enzyme phnH catalyzes the 5-exo-trigcyclization via acid catalysis after the spontaneous deprotonation of 7-OH, which leads to the formation of the dihydrobenzofuran atrovenetin . Atrovenetin is further converted to deoxyherqueinone by the O-methyltransferase phnC which can methylate C2-OH to stabilize the northern portion of the phenalenone core . Finally, the oxidoreductase phnG converts deoxyherqueinone to herqueinone via C6 hydroxylation .
Catalytic Activity: 2,4,7,9-tetrahydroxy-6-methyl-8-(2-methylbut-3-en-2-yl)-1-oxo-1H-phenalen-3-ol = (2'R)-atrovenetin
Sequence Mass (Da): 16038
Sequence Length: 149
Pathway: Secondary metabolite biosynthesis.
EC: 4.-.-.-
|
Q52985 | MTAQSQIYSGAFADPVFEAQSVFRSLMDCFARPGIIGRLSTAAAPPAPLGEASGAVALTLCDHDTPVWLSPALSKSSAPKWIAFHTGAGVTDTKDEPRFAFFEKGAAVPGFDQFALGTQEYPDRSTTLVVEVEALEGGQPLIGRGPGIKNGIVIAPKGLPDVFLDLWAANRAIFPRGIDLVLTAREAVLCLPRTTKLERE | Function: Together with PhnG, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate.
Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate
Sequence Mass (Da): 21253
Sequence Length: 200
EC: 2.7.8.37
|
P16687 | MYVAVKGGEKAIDAAHALQESRRRGDTDLPELSVAQIEQQLNLAVDRVMTEGGIADRELAALALKQASGDNVEAIFLLRAYRTTLAKLAVSEPLDTTGMRLERRISAVYKDIPGGQLLGPTYDYTHRLLDFTLLANGEAPTLTTADSEQQPSPHVFSLLARQGLAKFEEDSGAQPDDITRTPPVYPCSRSSRLQQLMRGDEGYLLALAYSTQRGYGRNHPFAGEIRSGYIDVSIVPEELGFAVNVGELLMTECEMVNGFIDPPGEPPHFTRGYGLVFGMSERKAMAMALVDRALQAPEYGEHATGPAQDEEFVLAHADNVEAAGFVSHLKLPHYVDFQAELELLKRLQQEQNHG | Function: Together with PhnG, PhnH and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. PhnI alone has nucleosidase activity, catalyzing the hydrolysis of ATP or GTP forming alpha-D-ribose 5-triphosphate and adenine or guanine, respectively.
Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate
Sequence Mass (Da): 38853
Sequence Length: 354
EC: 2.7.8.37
|
P16688 | MANLSGYNFAYLDEQTKRMIRRAILKAVAIPGYQVPFGGREMPMPYGWGTGGIQLTASVIGESDVLKVIDQGADDTTNAVSIRNFFKRVTGVNTTERTDDATVIQTRHRIPETPLTEDQIIIFQVPIPEPLRFIEPRETETRTMHALEEYGVMQVKLYEDIARFGHIATTYAYPVKVNGRYVMDPSPIPKFDNPKMDMMPALQLFGAGREKRIYAVPPFTRVESLDFDDHPFTVQQWDEPCAICGSTHSYLDEVVLDDAGNRMFVCSDTDYCRQQSEAKNQ | Cofactor: Binds 1 [4Fe-4S] cluster per subunit.
Function: Catalyzes the breakage of the C-P bond in alpha-D-ribose 1-methylphosphonate 5-phosphate (PRPn) forming alpha-D-ribose 1,2-cyclic phosphate 5-phosphate (PRcP).
Catalytic Activity: AH2 + alpha-D-ribose 1-methylphosphonate 5-phosphate + S-adenosyl-L-methionine = 5'-deoxyadenosine + A + alpha-D-ribose 1,2-cyclic phosphate 5-phosphate + H(+) + L-methionine + methane
Sequence Mass (Da): 31845
Sequence Length: 281
EC: 4.7.1.1
|
Q52987 | MNDLATYNFAYLDEQTKRMIRRAILKAIAIPGYQVPFASREMPMPYGWGTGGVQVTASILGPDDVLKVIDQGADDTTNAVSIRAFFQKVADVAVTTRTTEATIIQTRHRIPEEQLREGQTLVYQVPIPEPLRFLEPRETETRKMHALEEYGLMHVKLYEDIARNGHIATTYAYPVKVEGRYVMDPSPTPKFDNPKMHMSEALQLFGAGREKRIYAVPPYTEVVSLDFEDHPFEVQKFDKPCALCGAENVYLDEVVLDDKGGRMFVCSDTDHCEDRRAHGHAGAMLAPAAKESQEAAE | Cofactor: Binds 1 [4Fe-4S] cluster per subunit.
Function: Catalyzes the breakage of the C-P bond in alpha-D-ribose 1-methylphosphonate 5-phosphate (PRPn) forming alpha-D-ribose 1,2-cyclic phosphate 5-phosphate (PRcP).
Catalytic Activity: AH2 + alpha-D-ribose 1-methylphosphonate 5-phosphate + S-adenosyl-L-methionine = 5'-deoxyadenosine + A + alpha-D-ribose 1,2-cyclic phosphate 5-phosphate + H(+) + L-methionine + methane
Sequence Mass (Da): 33383
Sequence Length: 297
EC: 4.7.1.1
|
O31156 | MKIEAVIFDWAGTTVDYGCFAPLEVFMEIFHKRGVAITAEEARKPMGLLKIDHVRALTEMPRIASEWNRVFRQLPTEADIQEMYEEFEEILFAILPRYASPINGVKEVIASLRERGIKIGSTTGYTREMMDIVAKEAALQGYKPDFLVTPDDVPAGRPYPWMCYKNAMELGVYPMNHMIKVGDTVSDMKEGRNAGMWTVGVILGSSELGLTEEEVENMDSVELREKIEVVRNRFVENGAHFTIETMQELESVMEHIEKQELIIS | Cofactor: Binds 1 Mg(2+) ion per subunit.
Function: Involved in phosphonate degradation.
Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate
Sequence Mass (Da): 30060
Sequence Length: 264
EC: 3.11.1.1
|
Q5L9P9 | MKKIECIIMDWAGTAVDYGCFAPVAAFIKAFAGKGLTIDVEQTRKPMGLPKIQHIRELLTMPEVNEQFINRYRRAWTEEDVVELNHLFEKYLFASLKEYTDPIPGVIPTLEKLRAEGLKIGSTTGYTREMMDVVLPEAQAKGYRVDYCATPNLLPAGRPAPYMIFENLTKLAVPDPDTVVKVGDTIADIQEGVHAKVWSVGVVLGSNEMALTEEETHALPAAELENRIAEVKQRMLAAGASYVIRSIEELPALIQLINSKLNH | Cofactor: Binds 1 Mg(2+) ion per subunit.
Function: Involved in phosphonate degradation.
Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate
Sequence Mass (Da): 29268
Sequence Length: 263
EC: 3.11.1.1
|
B8DKP2 | MKPFLRTRVYDGPVRAVVLDWAGTAVDHGCLGPAAVFVQAFALHGVEVAVSEAREPMGSEKREHVRRMLAMDSVAARWRAVHGHVPHEADVDAVYRDVEPLMLQTIAAHAVPVPGLAEFVDRVRGRGMGLGSCTGYTGPMMEVLVPEAARRGYSPDVVVHASEVPAGRPYPWMCYLNAMRLGVHPMESMVKIGDTVADMHEARNAGMWTVGVVRTGNDVGLSEVDAARMPPDQLAARMTVAAARLREAGAHYVVDSIADCFSVIKAIEARLARGDTPYPA | Cofactor: Binds 1 Mg(2+) ion per subunit.
Function: Involved in phosphonate degradation.
Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate
Sequence Mass (Da): 30244
Sequence Length: 280
EC: 3.11.1.1
|
Q2SHM4 | MSYAYQRFYRGPIEAVIFDWAGTTYDFGSMAPIRAFQNLFAEQEIPITLAEAREPMGTEKREHITRILNMPRVREAWREKYGALASEADIERLYHAFVPMQIEAIRECARPVPGLMETVAWLERRNIKIGANTGYNRDMLDVLTDIAAAQGYRPASNVCATDVPKGRPYPHMSLKNALELGVGDVRACIKVDDTLPGIEEGLAAGMWTVGVTTSGNEVGLSQEDWTALDSASKTVLREQAQERFRRGGAHVIIGSVADLPAAVEYIERWLAQGHGPDTTGLAGVTLTAAGVSLR | Cofactor: Binds 1 Mg(2+) ion per subunit.
Function: Involved in phosphonate degradation.
Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate
Sequence Mass (Da): 32353
Sequence Length: 294
EC: 3.11.1.1
|
Q88YN8 | MTIKAVIFDWAGTTIDYGSRAPIVAFQKAFANVGIQISEAEIRQDMGLDKYTHIHKIMDLPAIQNDWQARFQVLPTEDDCNQIFSNFKAILLSSLTEFGQLKPGMSAVIDYLTAHNISYGTTTGYDAEMLALVLPIAAKQGYRPAVNITSEQTGGVGRPAPAMLALAAEQLTVTDPTTVMKIGDSVNDILEGNNADAVSVGIIDGSNIMGLSELAFNALSPAEQAERRAHVTAAYQRAGADYILQSMAELPALLDQINQPVATDH | Cofactor: Binds 1 Mg(2+) ion per subunit.
Function: Involved in phosphonate degradation.
Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate
Sequence Mass (Da): 28527
Sequence Length: 265
EC: 3.11.1.1
|
P23836 | MRVLVVEDNALLRHHLKVQIQDAGHQVDDAEDAKEADYYLNEHIPDIAIVDLGLPDEDGLSLIRRWRSNDVSLPILVLTARESWQDKVEVLSAGADDYVTKPFHIEEVMARMQALMRRNSGLASQVISLPPFQVDLSRRELSINDEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDVLMGRLRKKIQAQYPQEVITTVRGQGYLFELR | Function: Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ phosphorylates PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), PhoQ dephosphorylates phospho-PhoP, resulting in the repression of PAG and may lead to expression of some PRG (By similarity). Mediates magnesium influx to the cytosol by activation of MgtA. Promotes expression of the two-component regulatory system rstA/rstB and transcription of the hemL, mgrB, nagA, slyB, vboR and yrbL genes.
PTM: Phosphorylated by PhoQ.
Sequence Mass (Da): 25535
Sequence Length: 223
Subcellular Location: Cytoplasm
|
P23837 | MKKLLRLFFPLSLRVRFLLATAAVVLVLSLAYGMVALIGYSVSFDKTTFRLLRGESNLFYTLAKWENNKLHVELPENIDKQSPTMTLIYDENGQLLWAQRDVPWLMKMIQPDWLKSNGFHEIEADVNDTSLLLSGDHSIQQQLQEVREDDDDAEMTHSVAVNVYPATSRMPKLTIVVVDTIPVELKSSYMVWSWFIYVLSANLLLVIPLLWVAAWWSLRPIEALAKEVRELEEHNRELLNPATTRELTSLVRNLNRLLKSERERYDKYRTTLTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRISQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALNKVYQRKGVNISLDISPEISFVGEQNDFVEVMGNVLDNACKYCLEFVEISARQTDEHLYIVVEDDGPGIPLSKREVIFDRGQRVDTLRPGQGVGLAVAREITEQYEGKIVAGESMLGGARMEVIFGRQHSAPKDE | Function: Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), acts as a protein phosphatase that dephosphorylates phospho-PhoP, resulting in the repression of PAG and may lead to expression of some PRG (By similarity). PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, or treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway; the 2 periplasmic Cys residues of MgrB are required for its action on PhoQ, which then acts on PhoP. Mediates magnesium influx to the cytosol by activation of mgtA. Promotes expression of the two-component regulatory system rstA/rstB and transcription of the hemL, mgrB, nagA, slyB, vboR and yrbL genes.
Catalytic Activity: ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 55300
Sequence Length: 486
Subcellular Location: Cell inner membrane
EC: 2.7.13.3
|
Q9I4F8 | MIRSLRIRLMLGAAALAVLFMLALLPALQRAFGIALENTIEQRLAADVATLVSAARVEKGRLVMPEHLPVEEFNLPEAKVLGYIYDQNGDLLWRSTSAADESINYTPRYDGRGNEFHTTRDAKGEEFFVFDVEIDLLRGKQAAYSIVTMQSVSEFESLLKGFREQLYLWLGGALLVLLGLLWLGLTWGFRAMRGLSSELDQIESGERESLSEEHPRELLRLTHSLNRLLRSEHKQRERYRHSLGDLAHSLKTPLAVLQGVGDQLAEEPGNREQVRVLQGQIERMSQQIGYQLQRASLRKSGLVRHREQLAPLVETLCDALDKVYRDKRVSLQRDFSPSFSVPVERGALLELLGNLLENAYRLCLGRVRVGARLGPGYSELWVEDDGPGVPAEQRARIIRRGERADTQHPGQGIGLAVALDIIESYDGELSLDDSELGGACFRIRFATV | Function: Member of the two-component regulatory system PhoP/PhoQ that plays a role in the regulation of resistance towards polymyxin B and cationic antimicrobial peptides in response to limiting concentrations of Mg(2+) . May function as a membrane-associated protein kinase that phosphorylates PhoP in response to environmental signals leading to activation of specific gene promoters (Probable).
Catalytic Activity: ATP + protein L-histidine = ADP + protein N-phospho-L-histidine.
Location Topology: Single-pass membrane protein
Sequence Mass (Da): 50280
Sequence Length: 448
Subcellular Location: Membrane
EC: 2.7.13.3
|
L0E2Z4 | MTPAPTPRTDQLHGSRVLVIGGTSGIGFAVCAAALGHGAIVTIVGSNAQKLKDSVARLKSSFPSTDPDDIVAVRCDLSNSDTVEQDIEKALQLAAGNSKINHIVITAADMTAPPPLEDLTVDSVQRPGIIRLVAPLMVAKHLPKYMNKCPQSSLTLTSGAHCLRPDPGWTVISGYCGAVEAMSRGLAIDLKPLRVNVVAPGAVLTEAVKDILGDAYDAAVEMAEAKSTVGQTGSPESVAQAYIYLMKDHYASGSVVSTNGGMLLV | Function: Short-chain dehydrogenase/reductase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Location Topology: Single-pass membrane protein
Sequence Mass (Da): 27528
Sequence Length: 265
Pathway: Alkaloid biosynthesis.
Subcellular Location: Membrane
EC: 1.1.-.-
|
L0E4G6 | MHNTQSDTKCENASDTPESPTGEEESVGLARWKLGLLMFGNTLAVFCVALDNTIMSNAIPRVTQTFDSLEDIGWGSPARRHFDRQRERTTSPKTAVYGCFGGIGGAFAENSTWRWCFYINLPLGAVTTVLILCFFFDSRTGTSDVSMSSWNRFRGLDIPGLLLFLPTVFCLLLALQWGGAKYPWNNVRVIVLFVIFILAGGCWIFIQHSMKDQASVPPRLIRNRNVWSSAVYMGCIVGSFIIILYYFPIWFQAVKGGSPIQSGTMILPIIIGLIVWLGFGFQLPFIAVQTALPRSDIPVATAIVTFAQNLSEAVLVALAQTIFQNRLFAHVKQLSTLVDPNALVHAGAANLDQHFSADVLPEIVRAYSAAVTETFYAATGIAALSFIGLIRLQWLSVKKTKTNGNAAQTHL | Function: Efflux pump; part of the gene cluster that mediates the biosynthesis of paraherquamide, a dichlorinated fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 45211
Sequence Length: 411
Subcellular Location: Cell membrane
|
L0E2U6 | MTIQVKRVVTVFGGTGNQGSSVARSLLAHKAKIFHVRVITRDPQSDKAKAIASLGAELVQADGFNLGEMTNAFAGSWGVFINTNSDDEALKSLDGPSDYDLGVSVIDSAKKAGVQHVVYSSGPSITNATKGRMHLEGFETKYHVEQYGRRKGFTSFTPILCASFMECFFYDPFVDAFGGFPWIPEPETGEVVFRTPDYGGKGDMPWVSCEEDLGDIVHGIFLNPCKYDQVLVQATSQQITMFDVAASYTQATGIPARYEELPSWSSIKLNGTRCRAETRQMFWYMKHCGGRWFAEHESDMSTAVALKESAMLSQDRVGGLVTFQAWFKKAKVLKDQNV | Function: NmrA-like family domain-containing oxidoreductase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 37315
Sequence Length: 338
Pathway: Alkaloid biosynthesis.
EC: 1.-.-.-
|
L0E2Q5 | MAFQLAGFFLILALGLGHYFSNDQESRCRQLELYATKSIIPTTPAMSSFNTIATPHGALTIPVNWLYPEVPKVTSAHTNCLFIAAALQVDTWEHSRPLKQSCHAQDLPEHGQCHQGRVAHYSAYVNSVSAVQQVIQFAASHRLRLAIRNTGHDLAGRSSAPNSLQLHTAGLKGIDYVESFTPQAPAGQSVPSDGPAVTVGAGVLTGELYSAAAEAGYTVVGGSCSTVGIAGGWMQGGGYGILTPSRGLGVDNVLEIGVVTAQGVYVTANQYQNQDLFWAIRGGGGGTFGAVVHVTFRTYPDSPATVSKLNVVSPHGLNSAFWEAITDLLRAIPVLVDRGDAVQAFVMPVMPGNTTFLTIESYLINETHVSGLDVIRELKKSMEARGLSVESSEESFDWLSAYLAIPKGLDQAGMGMMTASRLVSRELMTSAQGPSLISQTLAQLSYDPGNVLSLEGMVGGPAVRGRETADRATHPSWQSAVMSLTLGHSLPSAPDWTAYSRAQRELAMTQLPALQALEQGTMGGYLGIPFPYESHPSRVFWGSHYDRLLTLKGRWDPDDLFLTRLGVGSERWDEEGMCRVGRAQAFLWWYSSIVDRVKSWTA | Function: FAD-linked oxidoreductase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 64862
Sequence Length: 602
Pathway: Alkaloid biosynthesis.
EC: 1.-.-.-
|
L0E168 | MTIEATEGHVSKGMLAKGDSTSPIPTIFDVLSRDHVFVDSHQKVWWERTGQLLDKILASAGYNPARRLEALTFYIQVLIPFLGPHPHQFRSAITRSGLPLEFSVNYQQRGDIDPVVRIGFEPVAAASGTEIDPYNQIPVVDLLNQLEVLNIPAFDPSLFRYFLDAHTVNGHEKGLLKEKKIEGSELTSQSAFGFDLKEKAISVKGYTFPAIKCTLNEKGFGNFISESIQPLAAQMGPIPSFDMVHSYLEGTNGYSQFAFWSFDCVDPAQSRLKLYSSHNSVVWSKVEEIWTLGGRAKSPVVQEGLVYLKELWELTKLSEGHREFNGGFDDGKDATATPMVWNYEMKIGEAFPLTKFYFPIHGESDQNVIGGLAQFLSRIGLSKYGDNYEATVRHYLYDFSTSPVPCKNDSIANFDSPERDLSKTARLTSWISFAYTEKTGVYLSVYYHSSDEYPWLELEEIN | Function: Prenyltransferase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 51974
Sequence Length: 462
Pathway: Alkaloid biosynthesis.
EC: 2.5.1.-
|
L0E301 | MTVSTESNFPHGASTQKPQSAEPEIYSSLTKSLDFSNDAEEKWWTRTAPLLSRILDSAGYTLPQQCQFLTLFNTLMIPNFGPHPHIWHSSITHSGLPVEFSVNYQPGKQPTVRIGFEPASSISGTARDPYNMVTVLNVLNKMSRLNFKGFDPSLFHTLISSLALSKNESDLLQGAKLEGSKFKTQAAFGLDLKGDAVTVKTYLYPALKCKVSGLAFSELLEAALAKHQNAHDFSRVLPLVQSYMEEGQCYNQYSFVGFDCVDSSKSRLKIYGALLDISWKKVEEVWTLGARLVNSETNKEGLRYMRALWEYLTPGKERRPVGIWNYELLPGSEEPMPKFYVDMNGENDFQNALGITKFLHHIGLTTTAEGLISKIQEYLYGVPHYPLSQTHVLFANQGPMQPRCEP | Function: Prenyltransferase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 45549
Sequence Length: 406
Pathway: Alkaloid biosynthesis.
EC: 2.5.1.-
|
L0E4H0 | MGSLGEEVQVIIVGLGIVGLAAAIECREKGHSVHAFEKSNILKSIGDCIGLQSNATRIIKRWGDGAVHEALRPWIVSSKEIRIHNSSGRLIIRQDLSEVCEQPNYLLPRSELIRVMYEHALKIGVEISLGVEVCEPSEDEEGASVVALTRDGERQIVRGDFIICSDGVHSKMRKAIMPQPVEPRPSGYAAFRALVDTETLKGDPEASWVFEGVEENDRFDVFFLSGAQIALQSCNKGKVFSWFCIHQDTRNLLDVWTSPADPNEMLDLIKVWPIGQRLWSVIRHTQPQKFINYPLLNHKPLDHWVSSHGRLILIGDAAHPLSPAAGQGASQGIEDANVLATSLSLAGRQRVSLALHVAERIRYARASAVQLISHRVNEGWRNQDWDAYEPNEQNIASLPLETWIYGHDSQAYTEQEFEMVVRAVQEGEEYHATNLPDKLRVQLGIRNVDVKEPLQNKSP | Function: FAD-dependent monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . Within the pathway, phqK catalyzes spirocycle formation through two parallel pathways in the biosynthesis of paraherquamides A and G, using as substrates paraherquamides K and L, with paraherquamide L, bearing the dioxepin, being likely the favored substrate . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine. They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified. Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor. The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate. The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product. This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ. The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway. During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide. Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase. The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring. The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F. However, the order of these biosynthetic steps has still to be determined. In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A. The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC. Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 51282
Sequence Length: 459
Pathway: Alkaloid biosynthesis.
EC: 1.-.-.-
|
L0E2V1 | MEPHHDGHILKVLPMLASNENFSRLTTAFVAGIAAHIIIFRRGEWDIAAARIPVGLFILQSCLFSYYLFVPGPPTSIYTALWLVGQITLGFIAGTTVSILSYRAFFHRLNSFPGPFPARLSMWYVTSLYAQNPDAFNTVRGLHQQYGDFVRTGPTELSVNHPDALQAVHSGRSECTKGPWYSMLHPFISLFAIRDKAEHSRRRKPWELAFRPNAVLEYLPALEKGTNELLEQVERRKGKSMDMTYWINLFTFDLTGRVAFSQEYECVKHNKRHPIMEINDSSNLVTGVVSHVVWLISFIKATPGLNANMKALIGFSEEQVQNRQKMQTSGQRDVFSWLWEDFKEQGMETPQSKLDLVADASLVIFAGSGTVAVTIIGCLYFLTSTSPDYLTQIRQELDTLDEINSHTLSKVQTLNAVINETLRLHYPALSGFQRQTPPGGLHIAGRYIPGNTNIKIPFYTLFLDERNFAEPEKFIPERWTTRKELVKNPEAFAPFLLGPYNCLGKSLALMQVRHVLVELIRRYEIVLAPGADPEKYWRERTDGFVMGLAPLDLAFTEREMAGF | Function: Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 63886
Sequence Length: 563
Pathway: Alkaloid biosynthesis.
Subcellular Location: Membrane
EC: 1.-.-.-
|
L0E2R0 | MKQGTTGMYCEVGPCTNAKDAHSPCLRPPGYAKPPTVRVCRTRGHNLPLSKVPGPKLAALTKWYGFYHNVIRDGQYSLSFSSLHKKYDSPVIRIGPNAVHVDDPSFYQEMFSMTTKYYKEPEFYKALGAEGAMASILDPKHHRMYRNHLRPLFASRAVDGVVPRLKLELEKATRIFDMHRKDYHPLNIQALYRSFTSDMVCELLFGESPDFIGDGNGYHPFVAALDRFTAFSWLVVYFPWVKSIQFHLPFGLGDKLAPEFNDFKRQCETWEAKAQLKRESGVQVGQKNLFDYYAELGAGPETAVSGVAQPVEDAFNFLTAGTESTAYTLSSTAFHILNNPQVFKKLHEELDASVDFIRNDFNAKQIQALPYLGAVLKETMRLSTAVPGNLPRLVPPGGVTVGSVYLPEGTYPQQTIVSSSHLSIITNDTIFHDPYKFKPERWLGEEGKDLERWHVGFSRGPRRCIGSSLAYLELFCVTAYVFSRFEMSLFETDESSMQWVDRISARNRKDVQVRILSDRWEKEAHSIAGGTLLKEE | Function: Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 60673
Sequence Length: 536
Pathway: Alkaloid biosynthesis.
EC: 1.-.-.-
|
L0E172 | MTMSQMNQDAEGYFRVWKPEEASPGHQESPEELDSGRMCGHLCRLSPNEPMAQSLVRHEHYLAHRVNIQEGQRIIDLGCGIGNPARSIARFTGANITGLNINAQQLRQARQLTQEAGLSYQVNFVEQNFLKIEFADDTFDGAYAIESTCYAPDLVEVYSEIFRVLKPGARFGVYEAVLTDKYDDNNPMHREVKTNIERGGGLARIHTSAEAIAAMKAVGFEVLAIDDLGARPDQIPWETQLSDPFLEKQGLLSFALLSVFFAARAMPLINRGLQAVVGKLEQMTVFPAGSQKVVDLVVTILDGMYRGGELGIFSPMFLIVARKPEA | Function: Methyltransferase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 36123
Sequence Length: 326
Pathway: Alkaloid biosynthesis.
EC: 2.1.1.-
|
L0E307 | MSKYLLMSFTEGSMSTWHYLAMLTTIWLVYQYLKPVPIVPGLPVINRAERWDFFSIKMKRRFLNNAAALMKEGFEQPKLVLSPDYADELKNDARFSLEDAGLRRHYRMKPASLFKIIGQTTPISGRAFLGPEVCGDIRWIEATMGYLEMGVRTAFLLQVFPRFLFPLQRWFPLCRKVRKHIDMAGTILRPVIDSRRADGRPAQDAISWFDEAAAGETYNPVYSQLSLSFASTHTTADTMTKVIIHLAENPAVVTDLRKEVVEAIAKHGELTKTALSQMNLLDSTLKESQRLEPLASATMNRVTREEVTLSNGLWIPRNMYVLVSGHRMRDPTLYPDPEKFDAYRFVKMREIEKKKSDCAYTAATVDHMGFGYGKHSCPGRFFAAHEVKIILCHLILKYEFKLPEDQARTYLLAGFFTSAGPENELLVRRRVEEIAL | Function: Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable).
Sequence Mass (Da): 49906
Sequence Length: 436
Pathway: Alkaloid biosynthesis.
EC: 1.-.-.-
|
Q94CL7 | MEARPVHRSGSRDLTRTSSIPSTQKPSPVEDSFMRSDNNSQLMSRPLGQTYHLLSSSNGGAVGHICSSSSSGFATNLHYSTMVSHEKQQHYTGSSSNNAVQTPSNNDSAWCHDSLPGGFLDFHETNPAIQNNCQIEDGGIAAAFDDIQKRSDWHEWADHLITDDDPLMSTNWNDLLLETNSNSDSKDQKTLQIPQPQIVQQQPSPSVELRPVSTTSSNSNNGTGKARMRWTPELHEAFVEAVNSLGGSERATPKGVLKIMKVEGLTIYHVKSHLQKYRTARYRPEPSETGSPERKLTPLEHITSLDLKGGIGITEALRLQMEVQKQLHEQLEIQRNLQLRIEEQGKYLQMMFEKQNSGLTKGTASTSDSAAKSEQEDKKTADSKEVPEEETRKCEELESPQPKRPKIDN | Function: Transcription factor involved in phosphate starvation signaling . Binds as a dimer to P1BS, an imperfect palindromic sequence 5'-GNATATNC-3', to promote the expression of inorganic phosphate (Pi) starvation-responsive genes . SPX1 is a competitive inhibitor of this DNA-binding . PHR1 binding to its targets is low Pi-dependent . Regulates the expression of miR399 . Regulates the expression of IPS1 (At3g09922), a non-coding RNA that mimics the target of miR399 to block the cleavage of PHO2 under Pi-deficient conditions . Regulates lipid remodeling and triacylglycerol accumulation during phosphorus starvation . Required for the shoot-specific hypoxic response . Regulates FER1 expression upon phosphate starvation, linking iron and phosphate homeostasis . Contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency . Required for adaptation to high light and retaining functional photosynthesis during phosphate starvation . Involved in the coregulation of Zn and Pi homeostasis .
PTM: Sumoylated by SIZ1. Sumoylation controls phosphate deficiency responses.
Sequence Mass (Da): 45546
Sequence Length: 409
Subcellular Location: Nucleus
|
P43076 | MYSLIKSLATFATLFSLTLAKFESSTPPVEVVGNKFYFSNNGSQFLIRGIAYQQDAAGSVSSGYDADPNRKYNDPLADADACKRDVKYFKESNTNTLRVYAIDPDKDHEECMKIFSDAGIYIVADLSEPTVSINRNNPEWNLDLYKRYTKVIDKMQEYSNVLGFFAGNEVTNNRSNTDASAFVKAAIRDMKKYIKESDYRQIPVGYSSNDDEEIRVAIADYFSCGSLDDRADFFGINMYEWCGKSTFETSGYKDRTEEIKNLTIPAFFSEYGCNANRPRLFQEIGTLYSDKMTDVWSGGIVYMYFEEANKYGLVSVDGNSVKTLSDYNNYKSEMNKISPSLAHTSTLSSSDASKTLQCPGTAASTWKAATNLPPTPDESYCDCISKSLECVVADDVDKEDYGDLFGQVCGYIDCSAISADGSKGEYGVASFCSDKDRLSYVLNQYYLDQDKKSSACDFKGSASINSKASASGSCKAVSGVATGKASSSGGSSKSGSSSASASGSSSSSTSSGSSSSSGVKATQQMSMVKLVSIITIVTAFVGGMSVVF | Function: Required for apical cell growth and plays an essential role in morphogenesis. May be integral to the pathogenic ability of the organism.
Location Topology: Lipid-anchor
Sequence Mass (Da): 59457
Sequence Length: 548
Subcellular Location: Cell membrane
|
Q3ZBD3 | MAGKAHRLSAEERDQLLPNLRAVGWNELEGRDAIFKQFHFKDFNRAFGFMTRVALQAEKLDHHPEWFNVYNKVHITLSTHECAGLSERDVNLASFIEQVAVSMT | Function: Involved in tetrahydrobiopterin biosynthesis. Seems to both prevent the formation of 7-pterins and accelerate the formation of quinonoid-BH2. Coactivator for HNF1A-dependent transcription. Regulates the dimerization of homeodomain protein HNF1A and enhances its transcriptional activity (By similarity). Also acts as a coactivator for HNF1B-dependent transcription (By similarity).
Catalytic Activity: (4aS,6R)-4a-hydroxy-L-erythro-5,6,7,8-tetrahydrobiopterin = (6R)-L-erythro-6,7-dihydrobiopterin + H2O
Sequence Mass (Da): 11986
Sequence Length: 104
Subcellular Location: Cytoplasm
EC: 4.2.1.96
|
Q9LZ76 | MAATLPLSPINHQLCRFGNNSLTTHRFCSPGFLISSPCFIGLTGMGSATQLRARRSLISSAVATNSLLHDVGATVAVLGGAYALVLSFESLTKRNVIQQSLSRKLVHILSGLLFVLAWPIFSGSTEARYFAAFVPLVNGLRLVINGLSISPNSMLIKSVTREGRAEELLKGPLFYVLALLFSAVFFWRESPIGMISLAMMCGGDGIADIMGRKFGSTKIPYNPRKSWAGSISMFIFGFFISIALLYYYSSLGYLHMNWETTLQRVAMVSMVATVVESLPITDQLDDNISVPLATILAAYLSFGY | Function: Kinase involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) in the presence of CTP or UTP. No activity with ATP or GTP as phosphoryl donor.
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 33090
Sequence Length: 304
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Plastid
EC: 2.7.1.182
|
Q7XR51 | MAAAARPVDVVRHFPCSSSVAASSSLLLSRSKSRLASPAAAAASSMRRRLVLGVGAAAAPAVAALAASATPAALRDCAATLLITAGAYSLVRAFDGLTARRLIEQNLSRKIVHVLSGVLFMSSWPLFSNSTEARFFAAIVPLLNCIRLLTYGLRLSTDEALVKSVTREGKPEELLRGPLYYVIVLLVSVLVFWRQSPIGIVSLSMMSGGDGFADIVGRRYGSAKLPFNENKSWIGSISMFISGFLLSALMLFYFSCLGYFTVCWDLALGKLALVALAATVVECIPVNDVVDDNISVPLATMLAAYLLFGYSSCC | Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity).
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 33391
Sequence Length: 314
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Plastid
EC: 2.7.1.182
|
Q2N2K1 | MTLLSSHLLVFSAVHHRAPPTTTTRNSPTTNHTVRFLCSPGVPPAVRLDQRLPRFVVPGAGAEDLLYNAGATVGVLGGGYALVRAFDELTRRNILQQGLSRKLVHILSGLLFLVSWPIFSNSPKARYFAAFVPLVNCLRLLVNGLSLASDEGLIKSVTREGDPLELLRGPLYYVLILILSALVFWRESPIGVISLAMMCAGDGIADIIGRRYGSMKIPYNEHKSLAGSMSMLVFGFLVSIGMLYYYSVLGHVQLDWASTLPRVAFISFVATLVESLPITKVVDDNISVPLATMAVAFFTFHH | Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity).
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 32985
Sequence Length: 302
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Plastid
EC: 2.7.1.182
|
Q5N9J9 | MVSLISAHLLSLPSSAPRSRPQSRPPLSPPAAAAAASCSFDLPRPRRLVADGSRRKGTMAAAIPPEASGLAHDLGSAAVTAGVALALLRFFEELAKRGVFEQKLNRKLVHITIGMVFLLFWPLFSSGSYAPFLAAVAPGINIIRMLLLGLGVMKNEAMVKSMSRSGDPRELLKGPLYYATTITFATSIFWRTSPIAIALICNLCAGDGIADIVGRRLGQEKLPYNPNKSYAGSIAMALAGFMASIGYMHYFQSFGFIEESWSLAFGFLVVSVTAALVESHPISTHLDDNLTVPLTSFLVGSLVF | Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity).
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 32502
Sequence Length: 304
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Plastid
EC: 2.7.1.182
|
Q2N2K0 | MMFLSFNMISGGNTLQRFDPVACVSSVPLLLAPTTRPTFHFPSPFLSKPKPTYLFTSFSSSSSSSSSFFSSTTPPRSTMLHHDPLVSDVYATAISGVVALSFLRLFQETAKRDLFDQKLNRKLVHISIGLIFMLCXPLFSTETWASFFAALIPGINIFRMLVIGLGILKDEATVKSMSRFGDYRELLKGPLYYAATITLAAIIYWRTSPISIAAICNLCAGDGMADIVGRRLGGEKIPYNKNKSFAGSIAMATAGFLTSIGYMWYFSSFGFIEGSWKLVLGFLLVSIVTAFVESLPISTELDDNLTVPLTSILVGSIIL | Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity).
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 34881
Sequence Length: 319
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Plastid
EC: 2.7.1.182
|
Q2N2K4 | MAAAAAWTGAASPNSLLLSRSPPHAAALAPSPGSSMRRRLLLGVGTPAVAALAAAAPPAVLQDGAVTVLITAGAYSLVRVFDELTERRLIEKSLSRKVVHVLSGVLFMSSWPLFSNSTEARYFAAVVPFLNSMRLLIYGLRLYTDEALVKSVTREGKPEELLRGPLYYVLVLLFSVLVFWRESPIGIVSLSMMSGGDGFADIVGRRYGSAKLPFNRKKSWAGSISMFISGFLLSAMMMLYFSSLGYIDVIWEEALGKLALVALAATVVECVPVTEVVDDNISVPLATMLVAFLLFSSNRTIVN | Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity).
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 32582
Sequence Length: 303
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Plastid
EC: 2.7.1.182
|
P74653 | MGIEQNNPMALPLWIAVGLAATYLGAVVLTAELLNRLSLSPAEVTRKIVHIGAGQVVLIAWWLSIPGWVGAIAGVFAAGIAVLSYRLPILPSLESVGRHSYGTLFYALSIGLLVGGFFSLGLPIFAAIGILVMAWGDGLAALVGQRWGRHRYQVFGFRKSWEGTLTMVLASFLVTVVFLSYTFGFTVIVLVVAGTVAIASAGLESFSRWGIDNLTVPLGSALIAWAGSYLWLG | Function: Catalyzes the CTP-dependent phosphorylation of phytol to phytylmonophosphate (PMP). Can also use UTP as an alternative phosphate donor, but not ATP or GTP. Is involved in tocopherol biosynthesis, via the utilization of phytol generated by chlorophyll degradation . Also plays a significant but not critical role in the recycling of phytol for the biosynthesis of new chlorophyll molecules .
Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 24737
Sequence Length: 233
Pathway: Cofactor biosynthesis; tocopherol biosynthesis.
Subcellular Location: Cell membrane
EC: 2.7.1.182
|
Q56S59 | MASAKIFLIFLLAALIATPAAFAILVPTLVSTHISGLVFCSVNGNLDVINGLSPQVFPNASVQLRCGATNVISSTITNGSGAFSLAVNTFPLLNCNLVVATPLSTCNATLQSVGRLASSLRLVNITLGSGTGLIRVGLAPTGFILNLNIN | Function: Inhibits spore germination and leaf infection by fungal pathogens.
PTM: Probably covalently linked to cuticular lipids and/or trichome exudate diterpens or sugar esters in order to increase the solubility in exudate and the dispersion on the leaf surface.
Sequence Mass (Da): 15310
Sequence Length: 150
Subcellular Location: Secreted
|
O60331 | MELEVPDEAESAEAGAVPSEAAWAAESGAAAGLAQKKAAPTEVLSMTAQPGPGHGKKLGHRGVDASGETTYKKTTSSTLKGAIQLGIGYTVGHLSSKPERDVLMQDFYVVESIFFPSEGSNLTPAHHFQDFRFKTYAPVAFRYFRELFGIRPDDYLYSLCNEPLIELSNPGASGSLFYVTSDDEFIIKTVMHKEAEFLQKLLPGYYMNLNQNPRTLLPKFYGLYCVQSGGKNIRVVVMNNILPRVVKMHLKFDLKGSTYKRRASKKEKEKSFPTYKDLDFMQDMPEGLLLDADTFSALVKTLQRDCLVLESFKIMDYSLLLGVHNIDQHERERQAQGAQSTSDEKRPVGQKALYSTAMESIQGGAARGEAIESDDTMGGIPAVNGRGERLLLHIGIIDILQSYRFIKKLEHTWKALVHDGDTVSVHRPSFYAERFFKFMSNTVFRKNSSLKSSPSKKGRGGALLAVKPLGPTAAFSASQIPSEREEAQYDLRGARSYPTLEDEGRPDLLPCTPPSFEEATTASIATTLSSTSLSIPERSPSETSEQPRYRRRTQSSGQDGRPQEEPPAEEDLQQITVQVEPACSVEIVVPKEEDAGVEASPAGASAAVEVETASQASDEEGAPASQASDEEDAPATDIYFPTDERSWVYSPLHYSAQAPPASDGESDT | Function: Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility . PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis . Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) . Required for clathrin-coated pits assembly at the synapse . Participates in cell junction assembly . Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking . Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions . Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins . Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor . Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity).
PTM: Phosphorylation on Ser-650 negatively regulates binding to TLN2 and is strongly stimulated in mitosis. Phosphorylation on Tyr-649 is necessary for targeting to focal adhesions. Phosphorylation on Ser-650 and Tyr-649 are mutually exclusive. Phosphorylated by SYK and CSK (By similarity). Tyrosine phosphorylation is enhanced by PTK2 signaling. Phosphorylated at Tyr-639 upon EGF stimulation. Some studies suggest that phosphorylation on Tyr-649 enhances binding to tailins (TLN1 and TLN2). According to PubMed:15738269 phosphorylation at Tyr-649 does not directly enhance binding to tailins (TLN1 and TLN2) but may act indirectly by inhibiting phosphorylation at Ser-650.
Location Topology: Peripheral membrane protein
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 73260
Sequence Length: 668
Subcellular Location: Cell membrane
EC: 2.7.1.68
|
O70161 | MELEVPDEAESAEAGAVTAEAAWSAESGAAAGMTQKKAGLAEAPLVTGQPGPGHGKKLGHRGVDASGETTYKKTTSSTLKGAIQLGIGYTVGNLSSKPERDVLMQDFYVVESIFFPSEGSNLTPAHHFQDFRFKTYAPVAFRYFRELFGIRPDDYLYSLCNEPLIELSNPGASGSVFYVTSDDEFIIKTVMHKEAEFLQKLLPGYYMNLNQNPRTLLPKFYGLYCVQSGGKNIRVVVMNNVLPRVVKMHLKFDLKGSTYKRRASKKEKEKSLPTYKDLDFMQDMPEGLLLDSDTFGALVKTLQRDCLVLESFKIMDYSLLLGVHNIDQQERERQAEGAQSKADEKRPVAQKALYSTAMESIQGGAARGEAIETDDTMGGIPAVNGRGERLLLHIGIIDILQSYRFIKKLEHTWKALVHDGDTVSVHRPSFYAERFFKFMSSTVFRKSSSLKSSPSKKGRGALLAVKPLGPTAAFSASQIPSEREDVQYDLRGARSYPTLEDEGRPDLLPCTPPSFEEATTASIATTLSSTSLSIPERSPSDTSEQPRYRRRTQSSGQDGRPQEEPHAEDLQKITVQVEPVCGVGVVPKEEGAGVEVPPCGASAAASVEIDAASQASEPASQASDEEDAPSTDIYFPTDERSWVYSPLHYSARPASDGESDT | Function: Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility . PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (By similarity). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps . Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport . Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (By similarity). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) . Required for clathrin-coated pits assembly at the synapse (By similarity). Participates in cell junction assembly (By similarity). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (By similarity). Required for focal adhesion dynamics . Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (By similarity). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (By similarity). Required for uropodium formation and retraction of the cell rear during directed migration . Has a role in growth factor-stimulated directional cell migration and adhesion . Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor . Negative regulator of T-cell activation and adhesion . Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor . Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth .
PTM: Phosphorylation on Ser-645 negatively regulates binding to TLN2 and is strongly stimulated in mitosis. Phosphorylation on Tyr-644 is necessary for targeting to focal adhesions. Phosphorylation on Ser-645 and Tyr-644 are mutually exclusive. Phosphorylated by SYK and CSK. Tyrosine phosphorylation is enhanced by PTK2 signaling. Phosphorylated at Tyr-634 upon EGF stimulation. Some studies suggest that phosphorylation on Tyr-644 enhances binding to tailins (TLN1 and TLN2); others that phosphorylation at Tyr-644 does not directly enhance binding to tailins (TLN1 and TLN2) but may act indirectly by inhibiting phosphorylation at Ser-645.
Location Topology: Peripheral membrane protein
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 72408
Sequence Length: 661
Subcellular Location: Cell membrane
EC: 2.7.1.68
|
Q56YP2 | MSDSEEDEEEEEASEVILSSVVQKKKKKNLRFGEEVERRDGLVLLAQSTPMVRSRSQGTTRRVTPTPLVDVEKPLPNGDLYIGSFSGGFPHGSGKYLWKDGCMYEGDWKRGKASGKGKFSWPSGATYEGEFKSGRMEGFGTFTGADGDTYRGTWVADRKHGHGQKRYANGDFYEGTWRRNLQDGRGRYVWRNGNQYTGEWRSGVISGKGLLVWPNGNRYEGLWENGIPKGNGVFTWSDGSSCVGAWNESNIMRSFFNGVEKNDLIVGNRKRSSVDSGAGSLGGEKVFPRICIWESDGEAGDITCDIIDNVEASMIYRDRISVDRDGFRQFKKNPCWFNGEAKKPGQTISKGHKKYDLMLNLQLGIRYSVGKHASIVRDLKQTDFDPKEKFWTRFPPEGTKTTPPHQSVDFRWKDYCPLVFRRLRELFQVDPAKYMLAICGNDALRELSSPGKSGSFFYLTQDDRFMIKTVKKSEVKVLLRMLPSYYKHVCQYENSLVTRFYGVHCVKPVGGQKTRFIVMGNLFCSEYRIQRRFDLKGSSHGRSTAKPEGEIDETTTLKDLDLNFSFRLQRNWYQELMKQIKRDCEFLEAERIMDYSLLVGVHFRDDNTGEKMGLSPFVLRSGRIDSYQNEKFMRGCRFLEAELQDMDRILAGRKPSIRLGANMPAKAERMARRSDFDQYSSGGASYPSHGEMYEVVLYFGVIDILQDYDITKKIEHAYKSLQADPASISAVDPKLYSKRFRDFISRIFIEEG | Function: Catalyzes the synthesis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate.
PTM: Phosphorylation inactivates the enzyme.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 85945
Sequence Length: 752
EC: 2.7.1.68
|
Q6EX42 | MPGLHVVSFLVVLLLQLRSSGMHLVASELFWGNTLPNGDIYVGSFDGLVPHGPGKYMWTDGALYDGEWDKSKMTGRGLIQWPSGASYEGDFRGGFIDGAGTFKGVDGSVYKGSWRMNKKHGMGTMVYSNSDTYEGFWNEGLPDEFGKYTWADGNVYIGRWKSGKMNGSGVMQWINGDTLDCNWLNGLAHGKGYCKYASGACYIGTWDRGLKDGHGTFYQPGSKIPCNLEVSDCLTSHDGTSASSSSNEKITIGLLFLLQKLCKNWRLRRFLHRPRRISNGTTPVFDDNSGSHLCQDVSSKSFSADDQCLQDSEVDKDSVYEREYVQGVLIMEQPKNEDSRMSESGIAQENNWEKQAKGPMETIYKGHRSYYLMLNLQLGIRYTVGKITPVPLREVRSNDFGPRARIKMYFPCEGSQYTPPHYSVDFFWKDYCPMVFRNLREMFHIDAADYMMSICGGDSLKELSSPGKSGSIFYLSQDERFVIKTLRKTELKIGLMKYVLQILLKMLPKYYNHVKAYDNTLITKFFGVHRITLKPGRKVRFVVMGNMFCTELRIHRKYDLKGSTQGRSTKKQNINENTTLKDLDLSYVFHVDKPWREALFRQIALDCMFLESQSIIDYSMLLGIHFRAPNHLKRITSCQNALESTGISAETECSVALHHEETISSKGFLLVAADEPGPAVRGSHIRGSMVRAAEGGYEEVDLVLPGTGRFRVQLGVNMPARARKVQEDVNVEVENRDTIEEYDVVLYLGIIDILQEYNVSKRVEHAVKSLKFDPLSISAVDPNLYSRRFISFLEKVFPEQD | Function: Involved in flowering. May suppress floral initiation by modifying the expression of genes related to floral induction.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 90680
Sequence Length: 801
EC: 2.7.1.68
|
Q8L796 | MMREPLVSEEEEEEATEVLLVEKTKLCKRRGDEEKTEERRDDLLLLALTPMVRSKSQGTTRRVTPTPPPVDVEKPLPNGDLYMGTFSGGFPNGSGKYLWKDGCMYEGEWKRGKASGKGKFSWPSGATYEGEFKSGRMEGSGTFVGVDGDTYRGSWVADRKQGHGQKRYANGDYYEGTWRRNLQDGRGRYVWMNGNQYTGEWRNGVICGKGVLAWPNGNRYEGQWENGVPKGSGVFTWADGSSWIGSWNESSNLMRNFFDGIEKNELIVATRKRSSVDSGAGSLTGEKIFPRICIWESDGEAGDITCDIVDNVEASVIYRDRISIDKDGFRQFRKNPCCFSGEAKKPGETISKGHKKYDLMLNLQHGIRYSVGKHASVVRDLKQSDFDPSEKFWTRFPPEGSKTTPPHLSVDFRWKDYCPLVFRRLRELFTVDPADYMLAICGNDALRELSSPGKSGSFFYLTQDDRFMIKTVKKSEVKVLLRMLPSYYKHVCQYENTLVTRFYGVHCIKPVGGQKTRFIVMGNLFCSEYRIQRRFDLKGSSHGRYTSKPEGEIDETTTLKDLDLNFAFRLQRNWYQELMTQIKRDCEFLEAERIMDYSLLVGVHFRDDNTGDKMGLSPFVLRSGKIESYQSEKFMRGCRFLEAELQDMDRILAGRKPLIRLGANMPARAERMARRSDYDQYSSGGTNYQSHGEVYEVVLYFGIIDILQDYDISKKIEHAYKSLQADPASISAVDPKLYSRRFRDFISRIFIEDG | Function: Possesses phosphatidylinositol (PtdIns) phosphate kinase activity (Probable). Phosphorylates PtdIns(4)P and PtdIns(3)P in vitro . Doesn't phosphorylate PtdIns(5)P nor PtdIns(3,4)P2 in vitro . Does not exhibit phosphatidylinositol kinase activity in vitro .
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 86345
Sequence Length: 754
Subcellular Location: Cell membrane
EC: 2.7.1.68
|
O48709 | MQETVFLFTEENLNKEQSLGVKYKQSSRRVVPMTSCEVSDTAAEIRIVEKVLKNGDLYNGGLSAGVPHGTGKYLWSDGCMYEGEWTRGKASGKGRFSWPSGATYEGQFKDGRMDGEGTFIGIDGDTYRGHWLWGRKHGYGEKRYANGDGYQGNWKANLQDGNGRYVWSDGNEYVGEWKNGVISGKGKMTWANGNRYDGLWENGAPVGKGVLSWGEEKTSYNGWGRKSKKKDEEIVQNHKLSSVETLSANTNFPRICISELEDTGVCDHVEASPYTSESDTSGCGEQEWARSPLLLESGGAMSVQQSPRWLDEGDVKKPGHTVTAGHKNYDLMLNLQLGIRYSVGKHASLLRELRHSDFDPKDKQWTRFPPEGSKSTPPHLSAEFKWKDYCPIVFRHLRDLFAIDQADYMLAICGNESLREFASPGKSGSAFYLTQDERYMIKTMKKSEIKVLLKMLPNYYEHVSKYKNSLVTKFFGVHCVKPVGGQKTRFIVMGNLFCSEYRIHKRFDLKGSSHGRTIDKDEGEIDETTTLKDLDLKYVFRLETSWFQAFINQIDLDCEFLEAERIMDYSLLIGLHFRESGMRDDISLGIGRRDQEDKLMRGNGPLMRLGESTPAKAEQVSRFEEETWEEDAIDNSNPKGTRKEAVEVILYFGVIDILQDYDITKKLEHAYKSLHADPASISAVDPKLYSRRFRDFINKIFIEDK | Function: With DRP1A and DRP2B, required for the precise coordination of polar ARAC3/ROP6 and ARAC4/ROP2 placement and subsequent root hair positioning during planar polarity formation in root hair-forming cells, probably by mediating the correct basal-to-planar polarity switching of D6PK into the polar, lipid-enriched domain.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 80134
Sequence Length: 705
Subcellular Location: Cell membrane
EC: 2.7.1.68
|
Q8L850 | MSGLDVRGAVSFAERTKSVDALTKKEILSALNSGEVSETSEDARFRVRELVLPDGESYSGSLLGNVPEGPGKYIWSDGCVYDGEWRRGMRHGIGNMRWASGASYDGEFSGGYMHGSGTYVDANKLTYKGRWRLNLKHGLGYQVYPNGDVFEGSWIQGLGEGPGKYTWANKNVYLGDMKGGKMSGKGTLTWVTGDSYEGSWLNGMMHGVGVYTWSDGGCYVGTWTRGLKDGKGSFYSAGTRVPVVQEFYLNALRKRGVLPDMRRQNQVASSVNMENLRVGVNRNKLSKGSLINLEQSRNGRVSLERRWSLEVSIEKVIGHGYSDLSTAVLDSGSSVQYKANIPILEREYMQGVLISELVVNNGFSRTSRRAKRKHKRLVKEAKKPGEVVIKGHRSYDLMLSLQLGIRYTVGKITPIQRRQVRTADFGPRASFWMTFPRAGSTMTPPHHSEDFKWKDYCPMVFRNLREMFKIDAADYMMSICGNDTLRELSSPGKSGSVFFLSQDDRFMIKTLRKSEVKVLLRMLPDYHHHVKTYENTLITKFFGLHRIKPSSGQKFRFVVMGNMFFTDLRIHRRFDLKGSSLGRSADKVEIDENTILKDLDLNYSFFLETSWREGLLRQLEIDSKFLEAQNIMDYSLLLGVHHRAPQHLRSQLVRSQSITTDALESVAEDDTIEDDMLSYHEGLVLVPRGSENTVTGPHIRGSRLRASAVGDEEVDLLLPGTARLQIQQGVNMPARAELIPGREDKEKQILHDCCDVVLYLGIIDILQEYNMTKKIEHAYKSLHFDSLSISAVDPTFYSQRFLEFIKKVFPQNNKS | Function: Plays a role in sugar-mediated root development. Interaction with CINV1 induces repression of CINV1 activity and negative regulation of sugar-mediated root cell elongation.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Location Topology: Peripheral membrane protein
Sequence Mass (Da): 92092
Sequence Length: 815
Subcellular Location: Membrane
EC: 2.7.1.68
|
Q5T9C9 | MAAPSPGPREVLAPSPEAGCRAVTSSRRGLLWRLRDKQSRLGLFEISPGHELHGMTCMMQAGLWAATQVSMDHPPTGPPSRDDFSEVLTQVHEGFELGTLAGPAFAWLRRSLGLAEEDYQAALGPGGPYLQFLSTSKSKASFFLSHDQRFFLKTQGRREVQALLAHLPRYVQHLQRHPHSLLARLLGVHSLRVDRGKKTYFIVMQSVFYPAGRISERYDIKGCEVSRWVDPAPEGSPLVLVLKDLNFQGKTINLGPQRSWFLRQMELDTTFLRELNVLDYSLLIAFQRLHEDERGPGSSLIFRTARSVQGAQSPEESRAQNRRLLPDAPNALHILDGPEQRYFLGVVDLATVYGLRKRLEHLWKTLRYPGRTFSTVSPARYARRLCQWVEAHTE | Function: May act as a scaffold to localize and regulate type I PI(4)P 5-kinases to specific compartments within the cell, where they generate PI(4,5)P2 for actin nucleation, signaling and scaffold protein recruitment and conversion to PI(3,4,5)P3.
Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+)
Sequence Mass (Da): 44572
Sequence Length: 394
Subcellular Location: Cytoplasm
EC: 2.7.1.68
|
Q15735 | MEGQSSRGSRRPGTRAGLGSLPMPQGVAQTGAPSKVDSSFQLPAKKNAALGPSEPRLALAPVGPRAAMSASSEGPRLALASPRPILAPLCTPEGQKTATAHRSSSLAPTSVGQLVMSASAGPKPPPATTGSVLAPTSLGLVMPASAGPRSPPVTLGPNLAPTSRDQKQEPPASVGPKPTLAASGLSLALASEEQPPELPSTPSPVPSPVLSPTQEQALAPASTASGAASVGQTSARKRDAPAPRPLPASEGHLQPPAQTSGPTGSPPCIQTSPDPRLSPSFRARPEALHSSPEDPVLPRPPQTLPLDVGQGPSEPGTHSPGLLSPTFRPGAPSGQTVPPPLPKPPRSPSRSPSHSPNRSPCVPPAPDMALPRLGTQSTGPGRCLSPNLQAQEAPAPVTTSSSTSTLSSSPWSAQPTWKSDPGFRITVVTWNVGTAMPPDDVTSLLHLGGGDDSDGADMIAIGLQEVNSMLNKRLKDALFTDQWSELFMDALGPFNFVLVSSVRMQGVILLLFAKYYHLPFLRDVQTDCTRTGLGGYWGNKGGVSVRLAAFGHMLCFLNCHLPAHMDKAEQRKDNFQTILSLQQFQGPGAQGILDHDLVFWFGDLNFRIESYDLHFVKFAIDSDQLHQLWEKDQLNMAKNTWPILKGFQEGPLNFAPTFKFDVGTNKYDTSAKKRKPAWTDRILWKVKAPGGGPSPSGRKSHRLQVTQHSYRSHMEYTVSDHKPVAAQFLLQFAFRDDMPLVRLEVADEWVRPEQAVVRYRMETVFARSSWDWIGLYRVGFRHCKDYVAYVWAKHEDVDGNTYQVTFSEESLPKGHGDFILGYYSHNHSILIGITEPFQISLPSSELASSSTDSSGTSSEGEDDSTLELLAPKSRSPSPGKSKRHRSRSPGLARFPGLALRPSSRERRGASRSPSPQSRRLSRVAPDRSSNGSSRGSSEEGPSGLPGPWAFPPAVPRSLGLLPALRLETVDPGGGGSWGPDREALAPNSLSPSPQGHRGLEEGGLGP | Function: Inositol 5-phosphatase, which converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate. Also converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate and inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate in vitro. May be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membranes ruffles.
Catalytic Activity: 1D-myo-inositol 1,4,5-trisphosphate + H2O = 1D-myo-inositol 1,4-bisphosphate + phosphate
Sequence Mass (Da): 107197
Sequence Length: 1006
Domain: The 5 Arg-Ser-Xaa-Ser-Xaa-Xaa (RSXSXX) motifs may constitute binding sites for the 14-3-3 protein.
Subcellular Location: Cytoplasm
EC: 3.1.3.36
|
Q5W269 | MNQPLVVEISGDKALEHHHLGGKGYSLNNLIHAGLPVPSAFCVTAQAYQQFIEEVVPGAELTDGDLIAVRDAILHADIPDSLKQAIGDAYQHLGHDTTIAVRSSALDEDGQRQSFAGQYETYLHVKGSEAVLHKVQACWASLWAERAAQYRHESASHSAIAVILQVMVDADAAGVMFTQDPLSGSTDKVVIDSCWGLGEGVVSGQVTTDSFTLDKATGELCDQQIRHKPNYCQRDEHGLVTLLQTPEAKRDLPSLTPAQLQQLVTLARQAQLIYSTELDIEWAVKDDKVWLLQARPVTTSAKTANVIYANPWESDPAAKEGAFFSRMDTGEIVTGLMTPLGLSFCQFYQKHIHGPAIKTMGLADISHWQIYMGYIQGYVYLNISGSAYMLRQCPPTRNEMKFTTRYATDEIDFKDYKNPYGAGVQGWDYAKSCWYWLKQQVRNMRSAARTVEQMIALRQDETTRFLGLDLTAMTLQQLDQELQRIDRFFLDSCAAYMPFFLQSFALYDALAQACERHIKDGKGLQNRIKASMNNLRTIEVTLGIIKLVATVNQQTELKALFEQHRADELVTLLPVHDISRAFWQGDFEDFLVEFGSRGRQEFDLSIPRWRDDPSYLLQVMKMYLQHPVDLHKKLRETELLRQQDSEALFSAMSWSGRFKLKTLIKLYGMMAERREATRPTFITETWFYRCIMLEVLRRLDAQGIASSADLPYVDFEQFRAYVAGTIPAEQAFSKARLDQNRHQHLFNLHAEEPPMAIVGPYTPKVKAPTQDDKTIRSLTGLAASPGNVVAKARVITDLQVQAGEFQPDEILVARFTDASWTPLFALAAGIVTDIGSTLSHSCIVAREFGIPAVVNLKTATQIINSGDMLILDGDSGTVIIQHQEERNHDG | Function: Involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the transfer of 2-methyl-3-n-amyl-pyrrole (MAP) to 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) to yield prodigiosin.
Sequence Mass (Da): 99766
Sequence Length: 890
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
EC: 6.4.-.-
|
Q5W268 | MTTMIGQTRQAGSSSYEQAWQAEQAPCPGMEPDTLTVGVVVVTRNPTFFQTGLSVLNDIRDYVFNRVHIQSELPLKLSELASDPLYSEAREKAIHFLKNQSKALNIQVIQCASLAEATGKIIYTHALEQQPEFQMGMLFYDQTSLGNVDDSIEKIDRDLDAFYSAMQRGGIPAFYTTFSTVTFIRDVRSSFRYLPQQYREIVRSEDPAIFQTELLCLWMDFFEMNYTNRRVKPIGALALHNTLAEQLIQFFERTAASRWLVSYYTGSIISNLIGYLDRHAEAHGALVLRGPNEHAIACGAMANWQLYRMPFLGVVTSGMMDEFKGTLINLKETAAQGIIVAAENRNNQWYSFQGTQTPTEDMRDVLAAKRIPYVYIDDVDGIADGLAEVFRLYHQAQGPVVILATQNVLESTLSLEPVPGDLPPVSGLPAYDCPPISDSFEQAMALINEGPEKLVWQLGPVSDDEYALVHEIADAAGLALVDSLAHPGSAPKYYQGKRNPHYLGTLAIYGYSPRVYNFLHTNDKLNPMSDQSVFMIKSRVAQITTPFSDGRLERKVHLVQLTHDERHLSPYADLKLHMDCLTFLRAVKANLHVDAALREKRKALIAAYLDSPSDVVSQLPSLPMSANYFFCQLNRVIENLIKTENFDFTGVYDVGRCGISAVRNVAKTRRGFSGWYGRALMGDALLATSYLAHTSPTHVVAFIGDGAKGIVPDILPAFIDNILTHPQLLNKSITIFYFCNGGLSVINTYQERILFNRTSRQMRLVNVDQPAFEQTVDDFHIQGKTLTHFDEDTIRHALMTPKRLNLFSVVLGHNNEGDGISLATAKGWQRDPSDREALQERKDWAARQPESTSTSFDQGQNKEAIS | Function: Involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the decarboxylation of pyruvate, followed by the modification of the resulting two-carbon fragment acetaldehyde at the C3 position of the 2-octenal (1,2-addition of acetaldehyde) giving 3-acetyloctanal.
Catalytic Activity: (2E)-octenal + H(+) + pyruvate = (S)-3-acetyloctanal + CO2
Sequence Mass (Da): 96977
Sequence Length: 866
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
EC: 2.2.1.12
|
A0A0J9X1Q5 | MKFGFIAHPTSLGLKRYVKMLDLLQRNSTEQHSGYTRELWERQNLVPFMNFARITSATGATCEGVIKYMPLVADEMLADARGIAARVVQGIEELAGDGAELVGLGGFTSIVGRRGEATAEKSPVPVTSGNSLTTYAGYKALMQIQSWLEIRPEEEPVAIVGYPGSICLALSRLLLAHGFSLHLLHRAGNHDRSELLSHLPEEYHSRVTLTSDPEDLYPRCKLFAAATSAGGVIDPARLQPGSIFIDVALPRDIASETRPARDDILIIDGGCVTATDAVKLGGESLNVTIKQQLNGCMAETIVLALENRRENFSLGRYLAPEKVLEIGEIAERHGFFAYPLASYGERIDRQSVTNLKRYYHHDIYAGESADAALPASRLAFIDAVIAQTPAREDTLDRYHQYINPMMVDFLKLQRCDNVFRSAAGTQLYDDAGEAFLDMVAGYGCLNLGHNPQPVVNALKNYLDAQGPNFIQYISIPEQTAKLAEVLCRLAPGNMGRVFFSNSGTEAVEAAMKIAKASTGKPGIAYLRNSYHGKTLGALSITGRDKHRRYFTPLLDAMVEVPFGDLAALREALNREDVGALMIEPIQGEGGVHIPPAGYLQAVQQLCRETGVLLMVDEVQTGLGRTGKLFACEWDGIEPDVLMLSKSLSGGLIPIGATLCRADLWQKAYGTADRFLVHSSTYGGGNLASVVALSALREILAQDLVGHAERMGAYFKQALSEIAARYPFVSEVRGRGLMLGIQFDQAFTGAVNASAREFATRLPGDWHTTWKFLPDPVQAHLRAAMDRMEQALGEMFCMKFVTKLCQDHKILTFITANSSTVIRIQPPLIISKAEIDRFVGAFATVCEELSTFLD | Function: Involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the transamination to the aldehyde group of 3-acetyloctanal, resulting in an aminoketone, which spontaneously cyclizes to yield the dihydro form of MAP (H2MAP).
Sequence Mass (Da): 93256
Sequence Length: 853
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
EC: 2.6.1.-
|
Q07326 | MKDNDIKRLLYTHLLCIFSIILSVFIPSLFLENFSILETHLTWLCICSGFVTAVNLVLYLVVKPNTSSKRSSLSHKVTGFLKCCIYFLMSCFSFHVIFVLYGAPLIELALETFLFAVILSTFTTVPCLCLLGPNLKAWLRVFSRNGVTSIWENSLQITTISSFVGAWLGALPIPLDWERPWQVWPISCTLGATFGYVAGLVISPLWIYWNRKQLTYKNN | Function: Involved in GPI-anchor biosynthesis . It acts through the transfer of ethanolamine phosphate to the third mannose of GPI.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 24890
Sequence Length: 219
Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis.
Subcellular Location: Endoplasmic reticulum membrane
|
Q5W266 | MTLTKQDAVNQMMGFFQSKTLITALSLKLFDHLRDQDRNAKQMAALLNCPLRSSEQLLIALQAMGYLEKQDGLYHLPQEHRAFLVSDEPQWLGWLGRHIDTFLYPLWGELKAAVENDTHQRQTVFGDDRSWFDILYQNPDDVTDFQEFLGKFAAPFIDGFIQDYDFSQHQAFLDIGSGIGSLPIAVANAYSGVNLAICELPQTSTFLRDKLVQQGYGQRIQVLEGDVISGDLPIGDYDLIHLGWMLHDYAPETQLIILKNIYDAMPVGGRFIASETPLNADKSGPEFTALLSLNMLVSTDGGIESSPQEYLSRFHQAGFSNARIMDISGPRTLIVGEKTTHNNGSSQC | Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the hydroxyl group of 4-hydroxy-2,2'-bipyrrole-5-carbaldehyde (HBC) to yield 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC).
Sequence Mass (Da): 38942
Sequence Length: 348
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
EC: 2.1.1.-
|
Q5H8A4 | MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLFSKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGFVDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNVTRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLPNLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQQTDVAATLAIALGLPIPKDSVGSLLFPVVEGRPMREQLRFLHLNTVQLSKLLQENVPSYEKDPGFEQFKMSERLHGNWIRLYLEEKHSEVLFNLGSKVLRQYLDALKTLSLSLSAQVAQYDIYSMMVGTVVVLEVLTLLLLSVPQALRRKAELEVPLSSPGFSLLFYLVILVLSAVHVIVCTSAESSCYFCGLSWLAAGGVMVLASALLCVIVSVLTNVLVGGNTPRKNPMHPSSRWSELDLLILLGTAGHVLSLGASSFVEEEHQTWYFLVNTLCLALSQETYRNYFLGDDGEPPCGLCVEQGHDGATAAWQDGPGCDVLERDKGHGSPSTSEVLRGREKWMVLASPWLILACCRLLRSLNQTGVQWAHRPDLGHWLTSSDHKAELSVLAALSLLVVFVLVQRGCSPVSKAALALGLLGVYCYRAAIGSVRFPWRPDSKDISKGIIEARFVYVFVLGILFTGTKDLLKSQVIAADFKLKTVGLWEIYSGLVLLAALLFRPHNLPVLAFSLLIQTLMTKFIWKPLRHDAAEITVMHYWFGQAFFYFQGNSNNIATVDISAGFVGLDTYVEIPAVLLTAFGTYAGPVLWASHLVHFLSSETRSGSALSHACFCYALICSIPVFTYIVLVTSLRYHLFIWSVFSPKLLYEGMHLLITAAVCVFFTAMDQTRLTQS | Function: Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI second mannose.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 108173
Sequence Length: 983
Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis.
Subcellular Location: Endoplasmic reticulum membrane
EC: 2.-.-.-
|
Q32L89 | MEDERSLSDICGGRLALHRRYYSPSCLEFCLSCPRISLRSITAVTCTVWLAAYGLFTLCENSMILSAAIFITLLGLLGYLHFVKIDHETLLIIDSLGIQMTSSYASGKESTTFIEMGKVKDVIINEAIYMQKVIYYLCILLKDPVEPHGISQVVPIFQSAKPRLDCLIEVYRSCQEILAHQKAASTSP | Function: Part of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis.
Sequence Mass (Da): 21006
Sequence Length: 188
Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis.
Subcellular Location: Cytoplasm
|
Q14442 | MEDERSFSDICGGRLALQRRYYSPSCREFCLSCPRLSLRSLTAVTCTVWLAAYGLFTLCENSMILSAAIFITLLGLLGYLHFVKIDQETLLIIDSLGIQMTSSYASGKESTTFIEMGKVKDIVINEAIYMQKVIYYLCILLKDPVEPHGISQVVPVFQSAKPRLDCLIEVYRSCQEILAHQKATSTSP | Function: Part of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis.
Sequence Mass (Da): 21081
Sequence Length: 188
Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis.
Subcellular Location: Cytoplasm
|
Q5M9N4 | MEDEKSFSDICGGRLALRCRYYSPYCREFGLSSARLSLCSLTAVTCAVWLAAYGLFTLCENSMVLSATIFITILGLLGYLHFVKIDQETLLIIDSLGIQMTSSYASGKESTTFIEMDKVKDIIINEAIYMQKVIYYLCILLKEPGKPHEISRVVPVFQSAKPRLDCLIEVYRSCQEVLAHQKATATSL | Function: Part of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis.
Sequence Mass (Da): 21078
Sequence Length: 188
Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis.
Subcellular Location: Cytoplasm
|
Q5W264 | MNDVTTETYETLKQSVLHTFAQLTGYNVSELSLTSHLENDLGVDSIALAEIAVSLSRQFQLNTPLLIQDINTIKDALDGILQREFQLSEKVEPAAIALSGDADLWLGNLVRQIFASHSGYDVNALALDAEIESDLGIDSVSVASAQGELFNTLQLNSETIIANCNTLSALKQCLAARLVQEKGQDWFEQRGRGQSDSAIDHDADTTAEVTPPTATPVAINAEIGDPRTMRDFVGIEHPDIFHKAREFHLFYQDKKKRQLYFYGMPLETPCKNRAVMFDEATGQHREFLMFGSNSYLGLSNHPEIIHAIQDAASLYGATNTGCRIIAGSNVLHLELERKLAKLKGRDDCIVYPSGYSANLGCISALTSRHDLVFTDAINHMSIQDGCKLAGAQRKIYNHSLTSLEKSLAKYADHPGGKLIVTDGVFSMHGDIVDLPRLMKLAERYGARVLVDDAHSTGVLGKTGAGTSEHFNMKGQVDLELGTMSKALSGLGGYVCGDGDVVEYLRFYSNSYVFAATIPAPVAAGVIASIDVMLREPERLAKLWDNIYYFRTRLLNAGFDLENSDSAIIPIVVGDDAKTLFFGRAVRARGMFCQTVVFPGVSVGDARLRISITSEHTREDLDEAYAILVASALEVGVPVNASAHQEENASVAEA | Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Carrier of the L-malonyl group (malonyl-S-PigH), which is decarboxylated by PigJ to yield a C2 carbanion acetyl-S-PigH. Then the pyrrolyl group of pyrrolyl-S-cysteinyl PigJ intermediate is captured by the C2 carbanion acetyl-S-PigH to yield the pyrrolyl-beta-ketoacyl-S-PigH. In the last step, PigH catalyzes the decarboxylative condensation between the pyrrolyl-beta-ketoacyl (pyrrolyl-beta-ketoacyl-S-PigH) and L-serine to yield 4-hydroxy-2,2'-bipyrrole-5-methanol (HBM).
Location Topology: Single-pass membrane protein
Sequence Mass (Da): 71158
Sequence Length: 653
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
Subcellular Location: Membrane
EC: 2.3.2.-
|
Q5W263 | MTISTPVIIDSLIRHAQRTPEQTALLCGDQHWNYRQLVTRAHVMASALRQAGLSGQAILLNLPKSLDAVAAIYATWLSGNHYIPIDYSQPSSRIERIIAAAAPALIIDTAWLATLDSQPSFDAEQPVGRMVYHNPIAAILYTSGSTGTPKGVQISHEMLGFFIQWAVRDTQLTARDVLSNHASFAFDLSTFDLFASAYVGAATWIIRESEQKDCAALAQGLQRHAVSVWYSVPSILAMLEKSTLLNPTLGQSLRQVIFAGEPYPVTALKRLLPCLPQPCRVSNWYGPTETNVCVAYAIDRARLAMLKQVPIGLPLEGLTAQLEDENGDRHPLTAQLRLSGELLISGPCVTPGYSNVVVPRQAALHPHQCHATGDWVEMTPEGLVFRGRIDDMVKINGYRVELGEIESVLHQHPAIDRAALCVELGDLRQTLIMVISLQTGAVPPGLLELKQFLQQKLPSYMIPNKLVITESLPVNANGKVDRKQLAGVVAV | Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig) . Catalyzes the conversion of L-proline to L-prolyl-AMP and the transfer of the L-prolyl group to acyl carrier protein PigG .
Catalytic Activity: ATP + holo-[peptidyl-carrier protein] + L-proline = AMP + diphosphate + L-prolyl-[peptidyl-carrier protein]
Sequence Mass (Da): 53701
Sequence Length: 491
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
EC: 6.2.1.53
|
Q5W262 | MSNDKHIAPLAVVSMGCVLPGVDHFRALDTIADWETVFQSASPLAWSETSRPIQGRQMDDSGFDFKKFSIPPLFRKAVSRETRLALRAAEDALAGLVLPESLRDCCDQFCAIHLGSDAAYRNATKVGALRALAEKLQAQGCPAAEVRRRLDDYKQPLAESLGCSSHDRVGEMASSIPARIAHFAHTRGKCQTLDGADKGGLRLLQLAQDCFRYHDSQMAVLTSVQCFHHRPQAYMLLEQGVSQDACWLEGAISLVVCPLAVAHEQGWPVLTQLGDIVTTHDGSPQPEADHPAALYFAGANQVFCQIVEMVLRQHQRCEGRSFTGGRWQVNVAQTQSLTPAVDDRVAIVDYQPITGHPLDKTQFWQTLEQGEDALREHSAAHVNAEAFVRTTQQKLSTYIHRTMSFPAHSPSDVALKKPMMPAKKQRLDVTQLYALNSCHSWSEKIRQFERVAIIIASNLSLSADRLQAMRALWSGLPGSEGAIPLPELPSINHWSWYGACGIGTAQLLAQYFGISADCYAVEAACASSLAAVHDAVRALQAGRYDAVIVGGIETATLERDLVLCSAQMMLSVSRIRPFSQGADGFTPGDGGGFVMLTHHPVPRAIATIEAISGSCDSYSMTAPDPLGQALAIKKTLSLTAIDAQTVQYLEAHGTGTELGDRSEVMSLKYSYHRDKHSPLYIGSAKYNFGHCFAGAGALSLCKVLSAFEHERIPPTPVSELNVDLPLGDIPAEVPQQAIPWRLSEDGQRKAAINAFGTGGINYHLVIRQSS | Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the decarboxylation on the malonyl group attached to PigH to yield a C2 carbanion of acetyl-S-PigH. Then, the heterocyclic pyrrole group of PigG moves to the PigJ active site Cys-525 to generate a transient pyrrolyl-S-cysteinyl PigJ intermediate (acyl donor) whose pyrrolyl group is captured by the C2 carbanion of acetyl-S-PigH to yield the pyrrolyl-beta-ketoacyl-S-PigH.
Sequence Mass (Da): 83742
Sequence Length: 770
Domain: It seems that PigJ is composed by an active ketosynthase (KS) domain and by a chain length factor (CLF) partner domain that potentially decarboxylates the malonyl group of PigH.
Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis.
EC: 2.3.1.-
|
Q54C64 | MKNHLNNNEDNSTLIKKKVLFVIAHPDDECMFFTPTIQHYNFIGSEIFVACLSNGNAVGLGKIREKELIDSCIDMGINQENVFFDQTNNFQDGMNIIWDTDLVEKTILSFIKQTSADIVISFDECGISSHPNHISISNGLKQLMKNKSSSTTTTSTTSSSSSSSSLSNRTTNNLNKEIKAYKLETVNIIRKYIGIADIPLTKLLSYDENSTQTFISTQLFPPSSYSPMTKHKSQFVWFRYLFVFLSRYSFINTLIEIK | Function: Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol (By similarity).
Catalytic Activity: a 6-(N-acetyl-alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O = acetate + an alpha-D-GlcN-(1->6)-(1,2-diacyl-sn-glycero-3-phospho)-1D-myo-inositol
Sequence Mass (Da): 29237
Sequence Length: 258
Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis.
Subcellular Location: Endoplasmic reticulum membrane
EC: 3.5.1.89
|
Q9UKJ1 | MGRPLLLPLLPLLLPPAFLQPSGSTGSGPSYLYGVTQPKHLSASMGGSVEIPFSFYYPWELATAPDVRISWRRGHFHRQSFYSTRPPSIHKDYVNRLFLNWTEGQKSGFLRISNLQKQDQSVYFCRVELDTRSSGRQQWQSIEGTKLSITQAVTTTTQRPSSMTTTWRLSSTTTTTGLRVTQGKRRSDSWHISLETAVGVAVAVTVLGIMILGLICLLRWRRRKGQQRTKATTPAREPFQNTEEPYENIRNEGQNTDPKLNPKDDGIVYASLALSSSTSPRAPPSHRPLKSPQNETLYSVLKA | Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. PILRA is thought to act as a cellular signaling inhibitory receptor by recruiting cytoplasmic phosphatases like PTPN6/SHP-1 and PTPN11/SHP-2 via their SH2 domains that block signal transduction through dephosphorylation of signaling molecules. Receptor for PIANP.
PTM: According to PubMed:10660620, N- and O-glycosylated. According to PubMed:10903717, only N-glycosylated.
Location Topology: Single-pass type I membrane protein
Sequence Mass (Da): 34005
Sequence Length: 303
Domain: Contains 2 copies of a cytoplasmic motif that is referred to as the immunoreceptor tyrosine-based inhibitor motif (ITIM). This motif is involved in modulation of cellular responses. The phosphorylated ITIM motif can bind the SH2 domain of several SH2-containing phosphatases. PTPN6 seems to bind predominantly to the first ITIM motif.
Subcellular Location: Cell membrane
|
Q2YFS3 | MALLISLPGGTPAMAQILLLLSSACLHAGNSERSNRKNGFGVNQPESCSGVQGGSIDIPFSFYFPWKLAKDPQMSIAWRWKDFHGEFIYNSSLPFIHEHFKGRLILNWTQGQTSGVLRILNLKESDQTRYFGRVFLQTTEGIQFWQSIPGTQLNVTNATCTPTTLPSTTAATSAHTQNDITEVKSANIGGLDLQTTVGLATAAAVFLVGVLGLIVFLWWKRRRQGQKTKAEIPAREPLETSEKHESVGHEGQCMDPKENPKDNNIVYASISLSSPTSPGTAPNLPVHGNPQEETVYSIVKAK | Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. Receptor for CD99 and PIANP.
PTM: Phosphorylated on tyrosine residues.
Location Topology: Single-pass type I membrane protein
Sequence Mass (Da): 33064
Sequence Length: 302
Domain: Contains 2 copies of a cytoplasmic motif that is referred to as the immunoreceptor tyrosine-based inhibitor motif (ITIM). This motif is involved in modulation of cellular responses. The phosphorylated ITIM motif can bind the SH2 domain of several SH2-containing phosphatases. PTPN6 seems to bind predominantly to the first ITIM motif (By similarity).
Subcellular Location: Membrane
|
Q9UKJ0 | MGRPLLLPLLLLLQPPAFLQPGGSTGSGPSYLYGVTQPKHLSASMGGSVEIPFSFYYPWELAIVPNVRISWRRGHFHGQSFYSTRPPSIHKDYVNRLFLNWTEGQESGFLRISNLRKEDQSVYFCRVELDTRRSGRQQLQSIKGTKLTITQAVTTTTTWRPSSTTTIAGLRVTESKGHSESWHLSLDTAIRVALAVAVLKTVILGLLCLLLLWWRRRKGSRAPSSDF | Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. PILRB is thought to act as a cellular signaling activating receptor that associates with ITAM-bearing adapter molecules on the cell surface.
Location Topology: Single-pass type I membrane protein
Sequence Mass (Da): 25542
Sequence Length: 227
Subcellular Location: Membrane
|
Q2YFS2 | MALLISLPGGTPAMAQVLLLLSSGCLHAGNSERYNRKNGFGVNQPERCSGVQGGSIDIPFSFYFPWKLAKDPQMSIAWKWKDFHGEVIYNSSLPFIHEHFKGRLILNWTQGQTSGVLRILNLKESDQAQYFSRVNLQSTEGMKLWQSIPGTQLNVTQALNTTMRSPFIVTSEFTTAGLEHTSDQRNPSLMNLGAMVTMLLAKVLVIVLVYGWMIFLRWKQRPAH | Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. PILRB is thought to act as a cellular signaling activating receptor that associates with ITAM-bearing adapter molecules on the cell surface. Seems to associate with DAP12 and is a receptor for CD99. May be involved in target cell recognition by natural killer cells and in activation of dendritic cells.
Location Topology: Single-pass type I membrane protein
Sequence Mass (Da): 25200
Sequence Length: 224
Subcellular Location: Membrane
|
Q00934 | MSRQKALIVDDEPDIRELLEITLGRMKLDTRSARNVKEARELLAREPFDLCLTDMRLPDGSGLDLVQYIQQRHPQTPVAMITAYGSLDTAIQALKAGAFDFLTKPVDLGRLRELVATALRLRNPEAEEAPVDNRLLGESPPMRALRNQIGKLARSQAPVYISGESGSGKELVARLIHEQGPRIERPFVPVNCGAIPSELMESEFFGHKKGSFTGAIEDKQGLFQAASGGTLFLDEVADLPMAMQVKLLRAIQEKAVRAVGGQQEVAVDVRILCATHKDLAAEVGAGRFRQDLYYRLNVIELRVPPLRERREDIPLLAERILKRLAGDTGLPAARLTGDAQEKLKNYRFPGNVRELENMLERAYTLCEDDQIQPHDLRLADAPGASQEGAASLSEIDNLEDYLEDIERKLIMQALEETRWNRTAAAQRLGLTFRSMRYRLKKLGID | Function: Member of the two-component regulatory system PilS/PilR that regulates the expression of multiple genes including the type IV pilus (T4P) major subunit PilA . Thereby, plays a major role in the regulation of multiple motility pathways . Upon appropriate environmental signals, the histidine kinase PilS transfers the phosphoryl group onto PilR . In turn, PilR functions as a transcriptional activator by direct binding to a cis-acting sequence upstream of the pilin gene promoter leading to its activation .
PTM: Phosphorylated by PilS.
Sequence Mass (Da): 49737
Sequence Length: 445
Subcellular Location: Cytoplasm
|
Q39VS0 | MNFDIARKRMVETQIISRGVKDRRLIEAMLKVPRHVFVEEAMAAQAYSDTPLPIGEKQTISQPYMVALMTELLELSGREKVLEIGTGSGYQAAILATLADRVYTVERIRPLALKARRALDRLGLLNVNIKISDGTIGWEEEAPFDAIIVTAGAPDVPDKLAEQLAVGGRLVIPVGNQFDQVLVRITKQEDGSLIRENVTGCRFVKLVGKYGWGTEE | Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins.
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 23890
Sequence Length: 216
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
Q74CZ5 | MVESQIIARGVSDRRVIEAMLKVPRHVFVEEAMAAQAYSDTPLPIGEKQTISQPYMVALMTELLELKGKEKVLEIGTGSGYQAAILAVMADRVYTVERIRPLALRARKALDSLGLLNVNIKMSDGTVGWEDEAPFDAIIVTAGAPDIPQQYIDQLKPGGRLVIPVGTQFEQVLVRVVKQEDGSVERENITGCRFVKLVGKFGWSSDD | Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins.
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 22755
Sequence Length: 207
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
Q7NJY2 | MVDEQLRPRGVEAQAVLAAMAKVPRHRFVPPPYTRLAYEDRPLPIGHSQTISQPFIVAYMSEAARITPGAKVLEIGTGSGYQAAVLAEMGAEVYTVEIVPELAKRAERTLEELGYRSVRVRSGDGYQGWPQHAPFDAIVVTAAPERIPQPLIDQLAVNGRLIVPVGTQTEDQRMTVLTRTPGGIVEQKTFPVRFVPLTREKPQEH | Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins.
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 22643
Sequence Length: 205
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
A1WWY5 | MRERNAAGIGMTSQRTRDRLVDALAAQGIQDERVLSAMREVPRHLFVDEALESRAYENTPLPIGEGQTISQPWVVARMTELLLEPGVPERVLEVGTGSGYQAAVLARLVPRVYSIERIGSLLRRARERLQAVRLFNCQLRHGDGYEGWPEYAPYDGIIVTAAPDALPEALLEQLADGGRLVAPIGGAGYQELLVVDRRGDAYEQRRVAGVSFVPMLEGRV | Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins.
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 24274
Sequence Length: 220
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
P56133 | MNSIKNHLMCEEINKRFNLHPKVREAMESIEREVFVPAPFKHFAYTLNALSMQAQQYISSPLTVAKMTQYLEIDHVDSVLEIGCGSGYQAAVLSQIFRRVFSIERIESLYIEARLRLKTLGLDNVHVKFADGNKGWEQYAPYDRILFSACAKNIPQALIDQLEEGGILVAPIQENNEQVIKRFVKQNNALRVQKVLEKCLFVPVVDGVQ | Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins (By similarity).
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 23868
Sequence Length: 209
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
A9AUP1 | MSDVWQQQRQRMVDEQLRPRGIHDQRILAAMANVPRHLFVPEALQAQAYSDQALPLTLGQTISQPYIVALMAQELLLNPHEQLLEIGAGSGYAAAVFAELVRKVVTIERHQALAQQTQVRLRNLGYVNIEVVWGDGSLGYPTAAPYHAISIPAATPQLAQTLLSQLHDGGRLVAPIGDAQDQQLIRLQRQGQNWQKTTISNVRFVPLIGAGGWEHAPETTAEGE | Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins.
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 24685
Sequence Length: 224
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
P22061 | MAWKSGGASHSELIHNLRKNGIIKTDKVFEVMLATDRSHYAKCNPYMDSPQSIGFQATISAPHMHAYALELLFDQLHEGAKALDVGSGSGILTACFARMVGCTGKVIGIDHIKELVDDSVNNVRKDDPTLLSSGRVQLVVGDGRMGYAEEAPYDAIHVGAAAPVVPQALIDQLKPGGRLILPVGPAGGNQMLEQYDKLQDGSIKMKPLMGVIYVPLTDKEKQWSRWK | Function: Initiates the repair of damaged proteins by catalyzing methyl esterification of L-isoaspartyl and D-aspartyl residues produced by spontaneous isomerization and racemization of L-aspartyl and L-asparaginyl residues in aging peptides and proteins . Acts on EIF4EBP2, microtubule-associated protein 2, calreticulin, clathrin light chains a and b, Ubiquitin C-terminal hydrolase isozyme L1, phosphatidylethanolamine-binding protein 1, stathmin, beta-synuclein and alpha-synuclein (By similarity).
Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine
Sequence Mass (Da): 24636
Sequence Length: 227
Subcellular Location: Cytoplasm
EC: 2.1.1.77
|
Q6L5F6 | MISWHELYMVLSAVVPLYVAMMVAYGSVRWWGVLTPEQCSGINRFVAVIAVPLLSFHFISSSDPYAMNLRFVAADTLQKVLVLAALAAWSRFPARFVPPAWPPLDCSITLFSVSTLPNTLVMGIPLLVSMYGPYSGDLMVQIVVLQSIVWYTLLLFLFEFRAARVLIAAQFPDTAASIAAVHVDPDVVSLEGSQAEAHAEVAPDGRLRMVVCRSSVSRRSAAAAATPRASNLTGVEIYSISSSRNATPRGSTFTLADIPGHQPPNSALRASSFGAADLFSLHSSSRQHTPRPSSFDEHAAARARASATVAPTNDLKDTHMIEWSSGASAASEVTGLPVFRSGRETRRLVPSDAPSIASSRVIRPPPGATGGERAASFNKAVGGQDELAKLEAGAKTEQQTTAVTTTTKGGGAAGAERARGQQNAPAGVMLRLILTTVWRRLIRNPNTYASLIGLTWSLIAFRFHITMPIIVAKSISILSDAGLGMAMFSLGLFMATQPKIIACGYSVAAASMGVRFFFGPAIMAAASAAVGIRGTLLRIAIVQAALPQGIVPFVFAKEYNLHATILCTLVIFGMLIALPITLVYYIILGLL | Function: May act as a component of the auxin efflux carrier.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 62931
Sequence Length: 591
Subcellular Location: Membrane
|
Q06449 | MSASLINRSLTNIRTELDFLKGSNVISNDVYDQINKSLPAKWDPANAPRNASPASLEYVEALYQFDPQQDGDLGLKPGDKVQLLEKLSPEWYKGSCNGRTGIFPANYVKPAFSGSNGPSNLPPPPQYKAQELQQIPTQNSAASSYQQQPFPPPSTNYYQQPQQQPQQAPPPQQQQQQQQHQSSHSHLKSFGSKLGNAAIFGAGASIGSDIVNNIF | Function: Overproduction promotes the de novo induction of the [PSI+] prion form of SUP35. The prion-inducing effect depends on the association with the actin cytoskeleton. Also implicated in prion maintenance during heat stress.
PTM: Ubiquitinated by RSP5. Ubiquitination reduces the protein abundance and its prion-inducing ability.
Sequence Mass (Da): 23539
Sequence Length: 215
Domain: The PY motif is recognized directly by the WW domains of RSP5.
Subcellular Location: Cytoplasm
|
Q8RWZ6 | MITWHDLYTVLTAVVPLYVAMILAYGSVQWWKIFSPDQCSGINRFVAIFAVPLLSFHFISTNDPYAMNFRFVAADTLQKIIMLVLLALWANLTKNGSLEWMITIFSLSTLPNTLVMGIPLLIAMYGTYAGSLMVQVVVLQCIIWYTLLLFLFEYRGAKLLIMEQFPETGASIVSFKVESDVVSLDGHDFLETDAEIGNDGKLHVTVRKSNASRRSLMMTPRPSNLTGAEIYSLSSTPRGSNFNHSDFYSVMGFPGGRLSNFGPADLYSVQSSRGPTPRPSNFEENNAVKYGFYNNTNSSVPAAGSYPAPNPEFSTGTGVSTKPNKIPKENQQQLQEKDSKASHDAKELHMFVWSSSASPVSDVFGGGAGDNVATEQSEQGAKEIRMVVSDQPRKSNARGGGDDIGGLDSGEGEREIEKATAGLNKMGSNSTAELEAAGGDGGGNNGTHMPPTSVMTRLILIMVWRKLIRNPNTYSSLIGLIWALVAYRWHVAMPKILQQSISILSDAGLGMAMFSLGLFMALQPKIIACGNSVATFAMAVRFITGPAIMAVAGIAIGLHGDLLRIAIVQAALPQGIVPFVFAKEYNVHPTILSTGVIFGMLIALPITLVYYILLGL | Function: Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells . Maintains the endogenous auxin gradient, which is essential for correct root patterning . Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA) .
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 66742
Sequence Length: 616
Subcellular Location: Cell membrane
|
Q4WJM6 | MAPKNNAKGGDKKGKGKDASEGDKGKGGGKGLKPATSINVRHILCEKFSKKEEALEKLRNGAKFDDVAREYSEDKARQGGSLGWKVRGSLNADFEKAAYELEPSTTANPKYVEVKTGFGYHIIMVEGRK | Function: PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity).
Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
Sequence Mass (Da): 14004
Sequence Length: 129
EC: 5.2.1.8
|
A6QPY8 | MPPKGKSGSGKGGKGKAASGSESSEKKAQGPKGGGNAVKVRHILCEKHGKILEAMEKLKSGMKFNEVAAQYSEDKARQGGDLGWMTRGSMVGPFQEAAFALPISVLDKPVFTDPPVKTKFGYHIIMVEGRK | Function: Involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to tightly bent AT-rich stretches of double-stranded DNA (By similarity).
PTM: Phosphorylated. Phosphorylation occurs both in the nucleus and the cytoplasm. Phosphorylation at Ser-19 does not affect its PPIase activity but is required for nuclear localization, and the dephosphorylation is a prerequisite for the binding to DNA. The unphosphorylated form associates with the pre-rRNP complexes in the nucleus (By similarity).
Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
Sequence Mass (Da): 13903
Sequence Length: 131
Subcellular Location: Nucleus
EC: 5.2.1.8
|
Q503Y7 | MPPKGKGGKGAKGAAASGSGDSDKKEKAQKGGTAVKVRHILCEKHGKCMEAMEKIKSGMRFSEVAAQYSEDKARQGGDLGWMTRGSMVGPFQDAAFALPISTMDKPVYTDPPVKTKFGYHIIMVEGKK | Function: May be involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to DNA (By similarity).
Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
Sequence Mass (Da): 13664
Sequence Length: 128
Subcellular Location: Nucleus
EC: 5.2.1.8
|
Q4I665 | MGKNDKKGADKGGKAKGGDKGKDAKDTKDSGSGGKAKGAQSINVRHILCEKHAKKEEALAKLNDGVKFDEVAREYSEDKARQGGSLGWKTKGSLDPKFEEVAFALETSTTNSPKFVEVKTGFGYHIIMVEGRK | Function: PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity).
Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
Sequence Mass (Da): 14288
Sequence Length: 133
EC: 5.2.1.8
|
Q9Y237 | MPPKGKSGSGKAGKGGAASGSDSADKKAQGPKGGGNAVKVRHILCEKHGKIMEAMEKLKSGMRFNEVAAQYSEDKARQGGDLGWMTRGSMVGPFQEAAFALPVSGMDKPVFTDPPVKTKFGYHIIMVEGRK | Function: Isoform 1 is involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to tightly bent AT-rich stretches of double-stranded DNA.
PTM: Phosphorylated. Isoform 1 phosphorylation occurs both in the nucleus and the cytoplasm. Isoform 1 phosphorylation at Ser-19 does not affect its PPIase activity but is required for nuclear localization, and the dephosphorylation is a prerequisite for the binding to DNA. The unphosphorylated isoform 1 associates with the pre-rRNP complexes in the nucleus.
Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
Sequence Mass (Da): 13810
Sequence Length: 131
Domain: The PPIase domain enhances mitochondrial targeting.
Subcellular Location: Nucleus
EC: 5.2.1.8
|
Q7RYY4 | MGKDKKASGSGSGSKGGKDAGNKDAGKDAGKASKGAQSINVRHILCEKHGKKEEALAKIRDGADFGAVAREYSEDKARTGGSLGWKQKGTLDPEFEKVAFALETSSTSSPKIGEVKTQFGYHIIMVEGKK | Function: PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity).
Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0)
Sequence Mass (Da): 13658
Sequence Length: 130
EC: 5.2.1.8
|
P34217 | METSSFENAPPAAINDAQDNNINTETNDQETNQQSIETRDAIDKENGVQTETGENSAKNAEQNVSSTNLNNAPTNGALDDDVIPNAIVIKNIPFAIKKEQLLDIIEEMDLPLPYAFNYHFDNGIFRGLAFANFTTPEETTQVITSLNGKEISGRKLKVEYKKMLPQAERERIEREKREKRGQLEEQHRSSSNLSLDSLSKMSGSGNNNTSNNQLFSTLMNGINANSMMNSPMNNTINNNSSNNNNSGNIILNQPSLSAQHTSSSLYQTNVNNQAQMSTERFYAPLPSTSTLPLPPQQLDFNDPDTLEIYSQLLLFKDREKYYYELAYPMGISASHKRIINVLCSYLGLVEVYDPRFIIIRRKILDHANLQSHLQQQGQMTSAHPLQPNSTGGSMNRSQSYTSLLQAHAAAAANSISNQAVNNSSNSNTINSNNGNGNNVIINNNSASSTPKISSQGQFSMQPTLTSPKMNIHHSSQYNSADQPQQPQPQTQQNVQSAAQQQQSFLRQQATLTPSSRIPSGYSANHYQINSVNPLLRNSQISPPNSQIPINSQTLSQAQPPAQSQTQQRVPVAYQNASLSSQQLYNLNGPSSANSQSQLLPQHTNGSVHSNFSYQSYHDESMLSAHNLNSADLIYKSLSHSGLDDGLEQGLNRSLSGLDLQNQNKKNLW | Function: Involved in normal G2/M phase transition of the mitotic cell cycle. In association with RAD53, also involved in checkpoint control in response to DNA damage.
PTM: Hyperphosphorylated in response to DNA damage by MEC1.
Sequence Mass (Da): 73776
Sequence Length: 668
Subcellular Location: Cytoplasm
|
Q5JLM1 | MIGWGDVYKVVAATVPLYFALFLGYGSVRWWRIFTREQCDAVNRLVAFFALPFFTFEFTLHTDPFQVNYRAVAADVISKAVIVAVIGAWARFMSKGGCAVSWSITSFSLSTLTNSLVVGVPMARAMYGEWAQQLVVQLSVFQAIVWLTLLLFVLEVRKAAIGMYVDGAEAAAAAGKDVEAAGAAAAAGTVVVAAAAGKPSLWALVKVVAHKLARNPNTYASFVGITWACLANRLHIALPSAFEGSVLIMSKSGTGMAMFSMGLFMAQQEKIIACGTSFAALGLVLKFALGPAAMAIGSIAVGLRGDVLRVAIIQAALPQSITSFIFAKEYGLHADVLSTAVIFGMLVSLPLLVGFYIVLELIR | Function: May act as a component of the auxin efflux carrier.
Location Topology: Multi-pass membrane protein
Sequence Mass (Da): 38625
Sequence Length: 363
Subcellular Location: Membrane
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.