ids
stringlengths
6
10
seqs
stringlengths
11
1.02k
texts
stringlengths
108
11.1k
P46960
MAVLLRDKHISYLHDIGNRTDELDFWLKEHLHVSAIYWSCMSFWLLKKKDQIDKERIVSFLLSCLTESGGFACYPGHDDHITNTVYAVQVLAMLDSLHVVDKDKVASYIIGLQNEDGSMKGDRWGEIDARFLYSGINCLAILGKLDYLNKNTAVDWLMKCYNFDGGFGLCPGAESHGAMVFTCVAALKILNKLDLIDEELLGWWISERQVKGGGLNGRPEKLPDSCYGWWDLSPLAIIGKLDWIDRNQLIDFLLGTQDADSGGFADRKEDATDVYHTCFSLAGLSLLQFPNIEPVDPRFCLPLEVTQKMKL
Cofactor: Binds 1 zinc ion per subunit. Function: Catalyzes the transfer of a geranyl-geranyl moiety from geranyl-geranyl pyrophosphate to proteins having the C-terminal -XCC or -XCXC, where both cysteines may become modified. Catalytic Activity: geranylgeranyl diphosphate + L-cysteinyl-[protein] = diphosphate + S-geranylgeranyl-L-cysteinyl-[protein] Sequence Mass (Da): 35092 Sequence Length: 311 EC: 2.5.1.60
P20133
MSGSLTLLKEKHIRYIESLDTKKHNFEYWLTEHLRLNGIYWGLTALCVLDSPETFVKEEVISFVLSCWDDKYGAFAPFPRHDAHLLTTLSAVQILATYDALDVLGKDRKVRLISFIRGNQLEDGSFQGDRFGEVDTRFVYTALSALSILGELTSEVVDPAVDFVLKCYNFDGGFGLCPNAESHAAQAFTCLGALAIANKLDMLSDDQLEEIGWWLCERQLPEGGLNGRPSKLPDVCYSWWVLSSLAIIGRLDWINYEKLTEFILKCQDEKKGGISDRPENEVDVFHTVFGVAGLSLMGYDNLVPIDPIYCMPKSVTSKFKKYPYK
Cofactor: Binds 1 zinc ion per subunit. Function: Catalyzes the transfer of a geranyl-geranyl moiety from geranyl-geranyl pyrophosphate to proteins having the C-terminal -XCC or -XCXC, where both cysteines may become modified. Acts on YPT1 and SEC4. Catalytic Activity: geranylgeranyl diphosphate + L-cysteinyl-[protein] = diphosphate + S-geranylgeranyl-L-cysteinyl-[protein] Sequence Mass (Da): 36666 Sequence Length: 325 EC: 2.5.1.60
P85868
MKTPITEAIASADTQGRFLSNTELQAVDGRRAAASMEAARAQKLIDGATSAVYSKFPYTTSTPGNQYASDARGKRDVGHYLRKANHGLSGQAANEANTYIDYAINALS
Function: Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex. PTM: Two isomers exist. Location Topology: Peripheral membrane protein Sequence Mass (Da): 11500 Sequence Length: 108 Subcellular Location: Cellular thylakoid membrane
P84340
MKTPLTEAVSIADSQGRFLSSTQIQVLFGRFRQAKAGLXAAKAL
Function: Light-harvesting photosynthetic bile pigment-protein from the phycobiliprotein complex (phycobilisome, PBS). Phycocyanin is the major phycobiliprotein in the PBS rod. PTM: Contains one covalently linked bilin chromophore. Location Topology: Peripheral membrane protein Sequence Mass (Da): 4720 Sequence Length: 44 Subcellular Location: Cellular thylakoid membrane
P31020
MTTQRNDNLEQPGRSVIFDDGLSATDTPNETNVVETEVLIVGSGPAGSSAAMFLSTQGISNIMITKYRWTANTPRAHITNQRTMEILRDAGIEDQVLAEAVPHELMGDTVYCESMAGEEIGRRPTWGTRPDRRADYELASPAMPCDIPQTLLEPIMLKNATMRGTQTQFSTEYLSHTQDDKGVSVQVLNRLTGQEYTIRAKYLIGADGARSKVAADIGGSMNITFKADLSHWRPSALDPVLGLPPRIEYRWPRRWFDRMVRPWNEWLVVWGFDINQEPPKLNDDEAIQIVRNLVGIEDLDVEILGYSLWGNNDQYATHLQKGRVCCAGDAIHKHPPSHGLGSNTSIQDSYNLCWKLACVLKGQAGPELLETYSTERAPIAKQIVTRANGSSSEYKPIFDALGVTDATTNDEFVEKLALRKENSPEGARRRAALRAALDNKDYEFNAQGTEIGQFYDSSAVITDGQKRPAMTEDPMLHHQKSTFPGLRLPHAWLGDAKEKYSTHDIAEGTRFTIFTGITGQAWADAAVRVAERLGIDLKAVVIGEGQPVQDLYGDWLRQREVDEDGVILVRPDKHIGWRAQSMVADPETALFDVLSGCCIPSKPALRI
Catalytic Activity: H(+) + NADPH + O2 + phenol = catechol + H2O + NADP(+) Sequence Mass (Da): 67419 Sequence Length: 607 Pathway: Aromatic compound metabolism; phenol degradation. EC: 1.14.13.7
Q7SIF9
MLDAFSRVISNADAKAAYVGGSDLQALRTFISDGNKRLDAVNYIVSNSSCIVSDAISGMICENPGLITPGGNCYTNRRMAACLRDGEIILRYISYALLAGDSSVLEDRCLNGLKETYIALGVPTNSTVRAVSIMKAAVGAFISNTASQRKGEVIEGDCSALAAEIASYCDRISAAVS
Function: Light-harvesting photosynthetic tetrapyrrole chromophore-protein from the phycobiliprotein complex. PTM: Contains two covalently linked phycoerythrobilin chromophores and one covalently linked phycourobilin chromophore. Location Topology: Peripheral membrane protein Sequence Mass (Da): 18604 Sequence Length: 177 Subcellular Location: Plastid
P00438
MKTQVAIIGAGPSGLLLGQLLHKAGIDNVILERQTPDYVLGRIRAGVLEQGMVDLLREAGVDRRMARDGLVHEGVEIAFAGQRRRIDLKRLSGGKTVTVYGQTEVTRDLMEAREACGATTVYQAAEVRLHDLQGERPYVTFERDGERLRLDCDYIAGCDGFHGISRQSIPAERLKVFERVYPFGWLGLLADTPPVSHELIYANHPRGFALCSQRSATRSRYYVQVPLTEKVEDWSDERFWTELKARLPAEVAEKLVTGPSLEKSIAPLRSFVVEPMQHGRLFLAGDAAHIVPPTGAKGLNLAASDVSTLYRLLLKAYREGRGELLERYSAICLRRIWKAERFSWWMTSVLHRFPDTDAFSQRIQQTELEYYLGSEAGLATIAENYVGLPYEEIE
Cofactor: Binds 1 FAD per subunit. Function: Catalyzes the incorporation of an atom of dioxygen into p-hydroxybenzoate (p-OHB) to form 3,4-dihydroxybenzoate (3,4DOHB). The reaction occurs in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. Catalytic Activity: 4-hydroxybenzoate + H(+) + NADPH + O2 = 3,4-dihydroxybenzoate + H2O + NADP(+) Sequence Mass (Da): 44322 Sequence Length: 394 Pathway: Aromatic compound metabolism; benzoate degradation via hydroxylation; 3,4-dihydroxybenzoate from benzoate: step 2/2. EC: 1.14.13.2
Q9M3B8
MVLSNKKLKQRIRQDLAESLSVSVSETNPQSQSLKLLLDSSSHKPRLSKREKRRNCETFAREDDEIRENEVGNGGSSEKTDTKIKKKRKRDDAVEVDELEGDEGTKEEQKPQKKKNKKKKKKRKVNKTPKKAEEGNVEEKVKVEEIEVNTDNKEEDGVVPNKLYVGGIPYQSTEDEIRSYFRSCGVIIKVDCKMRPEDGAFSGIAFITFDTEDGAKRALAFDRAAMGDRYLTIQQYVKTTTPSIPRRKTSSGFAPEMVDGYNRVYIGNLAWDTTERDIRKLFSDCVINSVRLGKNKETGEFKGYAHVDFKDSVSVAIALKLDQQVICGRPVKICCALKDRPATDHTPGETNNAGSYNMEDTYAAADPVPALAGRSEVDDGNYFATTVSSSKVKRRVCYECGEKGHLSTACPIKLQKADDQANSKLGQETVDGRPAMQSYGLPKNSGDSYYMNETYASTNETYNGGYSASAVGTGKVKRRNCYECGEKGHLSTACPIKLQNTSHTNSTLDHQTVEAGPTQVTSYSLQKKTRDTENNGGSFMDESYATVPISIDVTNGANDASLTSAVSTGKIKKRNCYECGEKGHLSSACPNKLQKQG
Function: RNA-binding protein which mediates polarized mRNA (e.g. Ran2 transcripts mRNA) transport from the nucleus to the vicinity of the cell plate during cytokinesis and phragmoplast formation. Location Topology: Peripheral membrane protein Sequence Mass (Da): 65997 Sequence Length: 597 Subcellular Location: Nucleus
Q4K423
MEARNMTPFTYFSLPMQKLFLRNQAAVRNKPYAKYFRSEMRVPLSAVRKIQQGPMALEDTLTPSIEDINRLLEPDFVSEESGYALLPGPMAYVQSRKFFPGCTAQMFKWWFIWHPAESERYTLWFPYAHVSNPCVHHQRLRDESLSFEERLYGNTFCASEYVGDRLMHLHIDFQQPASLGLNTDLYREAKIDGSVSALMSLADHPEVPVSLMVHLFKEVPDGMYLTSRYWVGAHPSMARFPGAEKAASLLKENGFGEAELETLAYEFAVHDMCEFNHLASFLPDLYREFGTPAA
Function: Hydrolase that specifically degrades the potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. Catalytic Activity: 2,4-diacetylphloroglucinol + H2O = 2-acetylphloroglucinol + acetate Sequence Mass (Da): 33773 Sequence Length: 294 Domain: Contains a small N-terminal domain involved in dimerization and a large C-terminal Bet v1-like fold catalytic domain. EC: 3.7.1.24
Q9RGS8
MTNQNRRDFLRLAAGTAGAAALQLFPPVIREALAIPANRRTGTIRDVEHIVILMQENRSFDHYFGKLRGVRGFGDPRPLALQNGKSVFHQPVLLGPAELLPFHPDASNLGMQFLQDLPHGWQDMHGAWNKGRYDRWIANKGTTTMAYLERDDIPFHYQLADAFTICDAYHCSIPSSTDPNRYYMWTGYVGNDGAGGGPVLGNEEAGYGWSTYPETLEQAGVSWKIYQDIGTGLDAAGSWGWTQNPYIGNYGDNSLLYFNQYRNAQPGSPLYDKARTGTNVSAGGTLFDVLQQDVKNGTLPQVSWICAPEAYSEHPNWPANYGAWYVEQVLKALTSNPDVWSKTALFITYDENDGFFDHVAPPFAPQSRENGLSTVSTAGEIFAGDATHMAGPYGLGPRVPMLVVSPWTKGGWVCSQTFDHTSLLQFIEARFNDRYSVRAPNVTPWRRAVCGDLTSAFNFSSPDGSWPQLPDTSGYAPPDRNRHPSYVPVPPAAQSMPKQEAGLRAARALPYELFVLGRIDQSTGKFKLTFANTGRAGAAFQVTAGNRLDGPWAYTVEARKRLSDEWSTALTLSIYDLTVYGPNGFLCQFRGSTAAALGLSANPEVIYGYDVANGNITLRLSNRGRAAVRLTVTNAYGNAAPRVYELKPGQRINDYWDLRDSHSWYDLSVSDGAPNGFLRRFAGHVETGRPSTSDPLIATA
Function: Hydrolyzes phosphatidylserine as well as phosphatidylcholine. PTM: Predicted to be exported by the Tat system. The position of the signal peptide cleavage has not been experimentally proven. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phosphocholine + H2O = a 1,2-diacyl-sn-glycerol + H(+) + phosphocholine Sequence Mass (Da): 77077 Sequence Length: 700 EC: 3.1.4.3
P15713
MISKSRRSFIRLAAGTVGATVATSMLPSSIQAALAIPAHRRHGNLKDVEHVVILMQENRSFDHYFGTLKGVRGFGDRMAIPLPDGQRVWHQKGSKGEILPYHFDTSTTSAQRVDGTPHTWPDAQQAWNEGRMDKWLPAKTERSLGYYKEQDIAFQFAMANAFTICDAYHCSFQGGTNPNRLFLWTGTNDPLGQHGGPVTTNDHDSNGPVEQGYTWTTYPERLQAAGITWRVYQDMADNFSDNPLIGFRQYRAAAPDSPLIVNGLSTWKLDALKRDVLANSLPQVSWIVAPAKYSEHPGPSSPIWGAEYTSWVLDALTANPEVWSKTALLVMFDENDGFFDHVAPPAAPSLNKDGTLRGKTTADATLEWHTKGDIRYRNQPYGLGPRVPMYVISPWSKGGWVNSQVFDHTSVIRFLEQRFGVMEPNISPWRRAVCGDLTSAFNFANPNNEPFPELPDTSQADAIVASQIKLPKPKPPAVAAMPKQEMGIRPARALPYELGVHARYRSGGDALSLTFANTGKAGAVFQVFDLLDSENPPKRYTVGARKRLHDSFQGDASGDYHLEVHGPNGFLRVFRGNLRRDLAERKAPLPEVRIDYEPLFGNLRVQLINRGRHPVKLTVKDNVYRQGERRTVNVPPGQRREVRYSLRSSGNWYDFSVSAQGADSFLRRFSGRMEDGRSGFSDPGMGLGTLTF
Function: Hydrolyzes phosphatidylserine as well as phosphatidylcholine. PTM: Predicted to be exported by the Tat system. The position of the signal peptide cleavage has not been experimentally proven. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phosphocholine + H2O = a 1,2-diacyl-sn-glycerol + H(+) + phosphocholine Sequence Mass (Da): 77145 Sequence Length: 692 EC: 3.1.4.3
Q9VJ07
MLKATRKQADPYKSKLKVSASHSGPHPLPVEVTAAEEEQAATFGQTSPQKLSLKGSQLGGSILIGNYNYLTQLEVCENEMEVLDLSSLAQLETLKCSRNKLMELIINGTNLQTLVADHNYLHNISTTNTHPVPLKLQRIDISHNNFSELPNWVGACASLTAINASHNRLNNVAVLLRNYRITELVSLDLAYNDLKQLDQFPEGFSSIRSLQLQSNELPSLPDNFFAVTHARLETLNVSCNKLSTLPRYEQNNHAALVNLSLAGNHLNDSIFEPLHNAAKLRVLHLAYNRIGVLPAACVRNWPELEILVLSGNMLQQLPEEVATLGQLRVLRCCNNLLLCTPQLAKLAMLKVLDLSHNHLDRVNLLALVPSRNLKYLDLSGNLQLQVDEQQFKVCQSQSQRHWSLVDVSGNNRAALPTTKIRQVSAQRNQNKTSGPWTMGFAETPGSGDCRKLSVYQLRAANYGGSDEALYGMFEALEGRGRAAQEMSHLVPDLMKQEQMVKDSAVRDYMKFTLLAAQQQCGSVRSAALFHLTRTRAPSKVRPLKSKRYVLRMASTGGLDAYLIRRTSQLRLTKPDVIQKDQIHSMPDPHVLELILSNDDEYLVVGNAQLWSVMDIDRAAREIRKEENSLLAAKRLVDIAQSFAAAESLSVIVVRFRHLGTDVDHLIRELKQSVRKKPQPVSLPLSSGSVCKRTCCDRSNACRHRAIEQEPLAGRSSPSGQSDRDLLAKDKDDEFVLAHARVLQEEQQLEMLDETESVSESVLSEEQFKCWEYMLEQNTQLLFDKELNTISKSFTKQRTVPNAIMAATVLPERNDFTSNLMRTVTNKFISTSTPQLPQPITTSVPLGSYHQVKQAPPGHFGSALSFQQAHSYGYNLFDAKPRPKFHGGTVKRSAGPNSAYFGSLQRLMPYNFEYDFAVTQERERNILDEEEHDDDDFNEHESRMRKYWGVATTEL
Function: Protein phosphatase that specifically mediates dephosphorylation of 'Ser-586' of Akt1, a protein that regulates the balance between cell survival and apoptosis through a cascade that primarily alters the function of transcription factors that regulate pro- and antiapoptotic genes. Dephosphorylation of 'Ser-586' of Akt1 triggers apoptosis and suppression of tumor growth. Catalytic Activity: H2O + O-phospho-L-seryl-[protein] = L-seryl-[protein] + phosphate Sequence Mass (Da): 107092 Sequence Length: 954 EC: 3.1.3.16
A0QQ68
MTTEITRPPAPPSRPSESRKPSLPGLLHLVAIAAVLATIVSAWAIDFVPTALIDGSDNIVALLQRMIPPRLDDPARIGMLAVETLLMAVLGTTLAAIASVPLAFLAARNTTPHPAVQAVARAVITFCRAMPDLLFAVLFVRALGIGVLPGVLALALHSIGMLGKVFADAIEQTDAGPREAVRSTGVGYFRELLNAVVPQVVPSWIAMFVYRIDINLRMSVVLGFVGAGGIGFALQDALRGLIYPRALGIVCVILVIIAGMELLAIAIRRILLDPSRSNPLRDRIARFGLSGVLVGSCVAAFVLLKINPLALFTWVFPSVGIFTRMVPPNFDALGVDLFTAAAQTVAIGVVATAIGIALSIPAGILAARNVSPHPALYWPARAWILVVRAVPELILAVVFVAALGLGPIAGTCALAIGSIGFLAKLVADAVEEIDPGPMEAVRSVGGGWWKTLFAAVLPQSMPALVGSSLYLFDVNVRTSTILGIVGAGGVGYLLFESIRTLNFDVAGAIVIVIFVIVYAIERLSGWIRSRLV
Function: Part of the ABC transporter complex PhnCDE involved in phosphate import. Responsible for the translocation of the substrate across the membrane. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 55928 Sequence Length: 532 Subcellular Location: Cell membrane
A0A142C7A4
MSAPTQTTPVFKALTEASFSDSSLSEEAKQNALYWWNTSANDLARMLHQADYSEEVQRGFLSYYRDNICPRLGGKPDKDSADSGVGWDGNPLEYSFELKGSTKKKSVRFVVDLTELRPADHSNPLSMKHTQEMVDLLAEKTPNFDDTWYKVLKNWFVYAHLTPEEQTALIAKAGQQTSVIIGFDIYPKLTSPDQLPVMGKVYFPPCYVASDKGISRWQAVRQGIQSLPGVESFPNILSSTEIINDYLSEKPDSWQMGTRYLATDLVSPNKARFKVYMRCFDTSFEGIWDYYTLGGRIPNLDEDREKFRQLMDLVSGTTYAETRSKDDMQMGRFTSATGKLTAIYFNISPDNPYPAPKLCIYPSNFAKDDEVIAKGLDEWLEKYGWSDDTKSMEDQVKSVFDHRKLEETTGIFTFIGIGRKEDPTKKELSIQVYMTPELYRTPRY
Function: Prenyltransferase; part of the gene cluster that mediates the biosynthesis of phenalenones such as herqueinone, compounds that have been reported to treat tumors, bacterial infections and/or mycoses, and rheumatic diseases . The non-reducing polyketide synthase phnA synthesizes the heptaketide backbone and cyclizes it into the angular, hemiketal-containing naphtho-gamma-pyrone prephenalenone. The product template (PT) domain of phnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains . The transformation of prephenalenone to phenalenones requires an FAD-dependent monooxygenase phnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the gamma-pyrone ring simultaneously . Subsequent intramolecular deprotonation of C3 phenolic oxygen accelerates phenalenone ring closure to yield the tricyclic phenalenone core with a C2 hydroxylation . The prenyltransferase phnF further catalyzes reverse C-prenylation of phenalenone by direct electrophilic substitution at C6, or possibly via first a forward O-prenylation of a neighboring phenol in phenalenone, followed by a Claisen rearrangement . The hydroalkoxylation enzyme phnH catalyzes the 5-exo-trigcyclization via acid catalysis after the spontaneous deprotonation of 7-OH, which leads to the formation of the dihydrobenzofuran atrovenetin . Atrovenetin is further converted to deoxyherqueinone by the O-methyltransferase phnC which can methylate C2-OH to stabilize the northern portion of the phenalenone core . Finally, the oxidoreductase phnG converts deoxyherqueinone to herqueinone via C6 hydroxylation . Catalytic Activity: 2,3,4,7,9-pentahydroxy-6-methyl-1H-phenalen-1-one + dimethylallyl diphosphate = 2,4,7,9-tetrahydroxy-6-methyl-8-(2-methylbut-3-en-2-yl)-1-oxo-1H-phenalen-3-ol + diphosphate Sequence Mass (Da): 50695 Sequence Length: 444 Pathway: Secondary metabolite biosynthesis. EC: 2.5.1.-
P16685
MHADTATRQHWMSVLAHSQPAELAARLNALNITADYEVIRAAETGLVQIQARMGGTGERFFAGDATLTRAAVRLTDGTLGYSWVQGRDKQHAERCALIDALMQQSRHFQNLSETLIAPLDADRMARIAARQAEVNASRVDFFTMVRGDNA
Function: Together with PhnH, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate Sequence Mass (Da): 16540 Sequence Length: 150 EC: 2.7.8.37
A0A142C7A5
MAAETATSKQNLVILGGSYAGLSTAHYLLRHVVPQLPGKESYQVILISASSEAMCRPACPRALISDDMFQQDKLFVSIPAQFEQYLKDTFKFIHGTVTSLDHQDRCVTVSVKDGDPEKIKCHAIVIATGASTASPLLGLNRDSETLRTNWNEFRAALPTAKHIVIAGGGPAGVETAGELGEYLNGRAGWFHSKLENPKVEITLVTADSKILPILRPALATKAEKLLNKVGVTVIKKSRVTNVTPPGAGAEDALTANATVTLEDGKELQADLYIPATGMTYNSSFVDASLLTDYGRVETDPGTLRVVNGGALLYAIGDVGSHARPAVHNILNTVPILCANMKRDLLLAVQPDASVGEDRQFKEDTRETQLVPVGRSKGVGAFMGFRQPGFMVWLIKGRDYWLWTTEGLWSGKHWAKGS
Cofactor: Binds 6-hydroxy-FAD non-covalently. Function: Oxidoreductase; part of the gene cluster that mediates the biosynthesis of phenalenones such as herqueinone, compounds that have been reported to treat tumors, bacterial infections and/or mycoses, and rheumatic diseases . The non-reducing polyketide synthase phnA synthesizes the heptaketide backbone and cyclizes it into the angular, hemiketal-containing naphtho-gamma-pyrone prephenalenone. The product template (PT) domain of phnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains . The transformation of prephenalenone to phenalenones requires an FAD-dependent monooxygenase phnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the gamma-pyrone ring simultaneously . Subsequent intramolecular deprotonation of C3 phenolic oxygen accelerates phenalenone ring closure to yield the tricyclic phenalenone core with a C2 hydroxylation . The prenyltransferase phnF further catalyzes reverse C-prenylation of phenalenone by direct electrophilic substitution at C6, or possibly via first a forward O-prenylation of a neighboring phenol in phenalenone, followed by a Claisen rearrangement . The hydroalkoxylation enzyme phnH catalyzes the 5-exo-trigcyclization via acid catalysis after the spontaneous deprotonation of 7-OH, which leads to the formation of the dihydrobenzofuran atrovenetin . Atrovenetin is further converted to deoxyherqueinone by the O-methyltransferase phnC which can methylate C2-OH to stabilize the northern portion of the phenalenone core . Finally, the oxidoreductase phnG converts deoxyherqueinone to herqueinone via C6 hydroxylation . Catalytic Activity: deoxyherqueinone + H(+) + NADPH + O2 = H2O + herqueinone + NADP(+) Sequence Mass (Da): 45024 Sequence Length: 417 Pathway: Secondary metabolite biosynthesis. EC: 1.-.-.-
Q52984
MMDAAKTSDDAGVAQRREGMRLLARATLGELSLAWDAIDDKPEVAPVRGPETGLVMVRGKIGGGGDPFNLGEATVSRATVRLSTGEVGHGQLLGTDKARARLAAIFDALFQSAAHRASVEALHEQVAARLDAEDRRKAEETAATRVDFFTMVRGED
Function: Together with PhnH, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate Sequence Mass (Da): 16616 Sequence Length: 156 EC: 2.7.8.37
P86807
GSTLLEQMSLHGVRHAPGSLEANDFFLANDQRHGALGSFVRADEHDLSTLGDHPLRSHGGLSEQQLPLLLSR
Cofactor: Unlike bacterial phosphonoacetate hydrolase, does not require zinc as a cofactor. Catalytic Activity: H2O + phosphonoacetate = acetate + H(+) + phosphate Sequence Mass (Da): 7812 Sequence Length: 72 EC: 3.11.1.2
Q51782
MTQLISVNSRSYRLSSAPTIVICVDGCEQEYINQAIQAGQAPFLAELTGFGTVLTGDCVVPSFTNPNNLSIVTGAPPSVHGICGNFFFDQETQEEVLMNDAKYLRAPTILAEMAKAGQLVAVVTAKDKLRNLLGHQLKGICFSAEKADQVNLEEHGVENILARVGMPVPSVYSADLSEFVFAAGLSLLTNERPDFMYLSTTDYVQHKHAPGTPEANAFYAMMDSYFKRYHEQGAIVAITADHGMNAKTDAIGRPNILFLQDLLDAQYGAQRTRVLLPITDPYVVHHGALGSYATVYLRDAVPQRDAIDFLAGIAGVEAVLTRSQACQRFELPEDRIGDLVVLGERLTVLGSAADKHDLSGLTVPLRSHGGVSEQKVPLIFNRKLVGLDSPGRLRNFDIIDLALNHLA
Cofactor: Binds 2 Zn(2+) ions per subunit. Function: Specifically hydrolyzes phosphonoacetate. Does not have activity on other organophosphonates or acetates. Catalytic Activity: H2O + phosphonoacetate = acetate + H(+) + phosphate Sequence Mass (Da): 44239 Sequence Length: 407 EC: 3.11.1.2
P16686
MTLETAFMLPVQDAQHSFRRLLKAMSEPGVIVALHQLKRGWQPLNIATTSVLLTLADNDTPVWLSTPLNNDIVNQSLRFHTNAPLVSQPEQATFAVTDEAISSEQLNALSTGTAVAPEAGATLILQVASLSGGRMLRLTGAGIAEERMIAPQLPECILHELTERPHPFPLGIDLILTCGERLLAIPRTTHVEVC
Function: Together with PhnG, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate Sequence Mass (Da): 21027 Sequence Length: 194 EC: 2.7.8.37
A0A1S6PUA4
MKFTYLVSLAAFAVTALGSRPTPPNLEFLFSANLTKGPAYIYDQSDAQIKALQTLTGGIIAGPNFDGTVIGGTALSTRGADGTIRADAHYLIQTSDGANILVTESAAIPYVAVLFDTSSEKYNWLNNVTAWGTPPNLNEINFLEYWQIE
Function: Hydroalkoxylation enzyme; part of the gene cluster that mediates the biosynthesis of phenalenones such as herqueinone, compounds that have been reported to treat tumors, bacterial infections and/or mycoses, and rheumatic diseases . The non-reducing polyketide synthase phnA synthesizes the heptaketide backbone and cyclizes it into the angular, hemiketal-containing naphtho-gamma-pyrone prephenalenone. The product template (PT) domain of phnA catalyzes only the C4-C9 aldol condensation, which is unprecedented among known PT domains . The transformation of prephenalenone to phenalenones requires an FAD-dependent monooxygenase phnB, which catalyzes the C2 aromatic hydroxylation of prephenalenone and ring opening of the gamma-pyrone ring simultaneously . Subsequent intramolecular deprotonation of C3 phenolic oxygen accelerates phenalenone ring closure to yield the tricyclic phenalenone core with a C2 hydroxylation . The prenyltransferase phnF further catalyzes reverse C-prenylation of phenalenone by direct electrophilic substitution at C6, or possibly via first a forward O-prenylation of a neighboring phenol in phenalenone, followed by a Claisen rearrangement . The hydroalkoxylation enzyme phnH catalyzes the 5-exo-trigcyclization via acid catalysis after the spontaneous deprotonation of 7-OH, which leads to the formation of the dihydrobenzofuran atrovenetin . Atrovenetin is further converted to deoxyherqueinone by the O-methyltransferase phnC which can methylate C2-OH to stabilize the northern portion of the phenalenone core . Finally, the oxidoreductase phnG converts deoxyherqueinone to herqueinone via C6 hydroxylation . Catalytic Activity: 2,4,7,9-tetrahydroxy-6-methyl-8-(2-methylbut-3-en-2-yl)-1-oxo-1H-phenalen-3-ol = (2'R)-atrovenetin Sequence Mass (Da): 16038 Sequence Length: 149 Pathway: Secondary metabolite biosynthesis. EC: 4.-.-.-
Q52985
MTAQSQIYSGAFADPVFEAQSVFRSLMDCFARPGIIGRLSTAAAPPAPLGEASGAVALTLCDHDTPVWLSPALSKSSAPKWIAFHTGAGVTDTKDEPRFAFFEKGAAVPGFDQFALGTQEYPDRSTTLVVEVEALEGGQPLIGRGPGIKNGIVIAPKGLPDVFLDLWAANRAIFPRGIDLVLTAREAVLCLPRTTKLERE
Function: Together with PhnG, PhnI and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate Sequence Mass (Da): 21253 Sequence Length: 200 EC: 2.7.8.37
P16687
MYVAVKGGEKAIDAAHALQESRRRGDTDLPELSVAQIEQQLNLAVDRVMTEGGIADRELAALALKQASGDNVEAIFLLRAYRTTLAKLAVSEPLDTTGMRLERRISAVYKDIPGGQLLGPTYDYTHRLLDFTLLANGEAPTLTTADSEQQPSPHVFSLLARQGLAKFEEDSGAQPDDITRTPPVYPCSRSSRLQQLMRGDEGYLLALAYSTQRGYGRNHPFAGEIRSGYIDVSIVPEELGFAVNVGELLMTECEMVNGFIDPPGEPPHFTRGYGLVFGMSERKAMAMALVDRALQAPEYGEHATGPAQDEEFVLAHADNVEAAGFVSHLKLPHYVDFQAELELLKRLQQEQNHG
Function: Together with PhnG, PhnH and PhnL is required for the transfer of the ribose triphosphate moiety from ATP to methyl phosphonate. PhnI alone has nucleosidase activity, catalyzing the hydrolysis of ATP or GTP forming alpha-D-ribose 5-triphosphate and adenine or guanine, respectively. Catalytic Activity: ATP + methylphosphonate = adenine + alpha-D-ribose 1-methylphosphonate 5-triphosphate Sequence Mass (Da): 38853 Sequence Length: 354 EC: 2.7.8.37
P16688
MANLSGYNFAYLDEQTKRMIRRAILKAVAIPGYQVPFGGREMPMPYGWGTGGIQLTASVIGESDVLKVIDQGADDTTNAVSIRNFFKRVTGVNTTERTDDATVIQTRHRIPETPLTEDQIIIFQVPIPEPLRFIEPRETETRTMHALEEYGVMQVKLYEDIARFGHIATTYAYPVKVNGRYVMDPSPIPKFDNPKMDMMPALQLFGAGREKRIYAVPPFTRVESLDFDDHPFTVQQWDEPCAICGSTHSYLDEVVLDDAGNRMFVCSDTDYCRQQSEAKNQ
Cofactor: Binds 1 [4Fe-4S] cluster per subunit. Function: Catalyzes the breakage of the C-P bond in alpha-D-ribose 1-methylphosphonate 5-phosphate (PRPn) forming alpha-D-ribose 1,2-cyclic phosphate 5-phosphate (PRcP). Catalytic Activity: AH2 + alpha-D-ribose 1-methylphosphonate 5-phosphate + S-adenosyl-L-methionine = 5'-deoxyadenosine + A + alpha-D-ribose 1,2-cyclic phosphate 5-phosphate + H(+) + L-methionine + methane Sequence Mass (Da): 31845 Sequence Length: 281 EC: 4.7.1.1
Q52987
MNDLATYNFAYLDEQTKRMIRRAILKAIAIPGYQVPFASREMPMPYGWGTGGVQVTASILGPDDVLKVIDQGADDTTNAVSIRAFFQKVADVAVTTRTTEATIIQTRHRIPEEQLREGQTLVYQVPIPEPLRFLEPRETETRKMHALEEYGLMHVKLYEDIARNGHIATTYAYPVKVEGRYVMDPSPTPKFDNPKMHMSEALQLFGAGREKRIYAVPPYTEVVSLDFEDHPFEVQKFDKPCALCGAENVYLDEVVLDDKGGRMFVCSDTDHCEDRRAHGHAGAMLAPAAKESQEAAE
Cofactor: Binds 1 [4Fe-4S] cluster per subunit. Function: Catalyzes the breakage of the C-P bond in alpha-D-ribose 1-methylphosphonate 5-phosphate (PRPn) forming alpha-D-ribose 1,2-cyclic phosphate 5-phosphate (PRcP). Catalytic Activity: AH2 + alpha-D-ribose 1-methylphosphonate 5-phosphate + S-adenosyl-L-methionine = 5'-deoxyadenosine + A + alpha-D-ribose 1,2-cyclic phosphate 5-phosphate + H(+) + L-methionine + methane Sequence Mass (Da): 33383 Sequence Length: 297 EC: 4.7.1.1
O31156
MKIEAVIFDWAGTTVDYGCFAPLEVFMEIFHKRGVAITAEEARKPMGLLKIDHVRALTEMPRIASEWNRVFRQLPTEADIQEMYEEFEEILFAILPRYASPINGVKEVIASLRERGIKIGSTTGYTREMMDIVAKEAALQGYKPDFLVTPDDVPAGRPYPWMCYKNAMELGVYPMNHMIKVGDTVSDMKEGRNAGMWTVGVILGSSELGLTEEEVENMDSVELREKIEVVRNRFVENGAHFTIETMQELESVMEHIEKQELIIS
Cofactor: Binds 1 Mg(2+) ion per subunit. Function: Involved in phosphonate degradation. Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate Sequence Mass (Da): 30060 Sequence Length: 264 EC: 3.11.1.1
Q5L9P9
MKKIECIIMDWAGTAVDYGCFAPVAAFIKAFAGKGLTIDVEQTRKPMGLPKIQHIRELLTMPEVNEQFINRYRRAWTEEDVVELNHLFEKYLFASLKEYTDPIPGVIPTLEKLRAEGLKIGSTTGYTREMMDVVLPEAQAKGYRVDYCATPNLLPAGRPAPYMIFENLTKLAVPDPDTVVKVGDTIADIQEGVHAKVWSVGVVLGSNEMALTEEETHALPAAELENRIAEVKQRMLAAGASYVIRSIEELPALIQLINSKLNH
Cofactor: Binds 1 Mg(2+) ion per subunit. Function: Involved in phosphonate degradation. Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate Sequence Mass (Da): 29268 Sequence Length: 263 EC: 3.11.1.1
B8DKP2
MKPFLRTRVYDGPVRAVVLDWAGTAVDHGCLGPAAVFVQAFALHGVEVAVSEAREPMGSEKREHVRRMLAMDSVAARWRAVHGHVPHEADVDAVYRDVEPLMLQTIAAHAVPVPGLAEFVDRVRGRGMGLGSCTGYTGPMMEVLVPEAARRGYSPDVVVHASEVPAGRPYPWMCYLNAMRLGVHPMESMVKIGDTVADMHEARNAGMWTVGVVRTGNDVGLSEVDAARMPPDQLAARMTVAAARLREAGAHYVVDSIADCFSVIKAIEARLARGDTPYPA
Cofactor: Binds 1 Mg(2+) ion per subunit. Function: Involved in phosphonate degradation. Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate Sequence Mass (Da): 30244 Sequence Length: 280 EC: 3.11.1.1
Q2SHM4
MSYAYQRFYRGPIEAVIFDWAGTTYDFGSMAPIRAFQNLFAEQEIPITLAEAREPMGTEKREHITRILNMPRVREAWREKYGALASEADIERLYHAFVPMQIEAIRECARPVPGLMETVAWLERRNIKIGANTGYNRDMLDVLTDIAAAQGYRPASNVCATDVPKGRPYPHMSLKNALELGVGDVRACIKVDDTLPGIEEGLAAGMWTVGVTTSGNEVGLSQEDWTALDSASKTVLREQAQERFRRGGAHVIIGSVADLPAAVEYIERWLAQGHGPDTTGLAGVTLTAAGVSLR
Cofactor: Binds 1 Mg(2+) ion per subunit. Function: Involved in phosphonate degradation. Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate Sequence Mass (Da): 32353 Sequence Length: 294 EC: 3.11.1.1
Q88YN8
MTIKAVIFDWAGTTIDYGSRAPIVAFQKAFANVGIQISEAEIRQDMGLDKYTHIHKIMDLPAIQNDWQARFQVLPTEDDCNQIFSNFKAILLSSLTEFGQLKPGMSAVIDYLTAHNISYGTTTGYDAEMLALVLPIAAKQGYRPAVNITSEQTGGVGRPAPAMLALAAEQLTVTDPTTVMKIGDSVNDILEGNNADAVSVGIIDGSNIMGLSELAFNALSPAEQAERRAHVTAAYQRAGADYILQSMAELPALLDQINQPVATDH
Cofactor: Binds 1 Mg(2+) ion per subunit. Function: Involved in phosphonate degradation. Catalytic Activity: H2O + phosphonoacetaldehyde = acetaldehyde + H(+) + phosphate Sequence Mass (Da): 28527 Sequence Length: 265 EC: 3.11.1.1
P23836
MRVLVVEDNALLRHHLKVQIQDAGHQVDDAEDAKEADYYLNEHIPDIAIVDLGLPDEDGLSLIRRWRSNDVSLPILVLTARESWQDKVEVLSAGADDYVTKPFHIEEVMARMQALMRRNSGLASQVISLPPFQVDLSRRELSINDEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDVLMGRLRKKIQAQYPQEVITTVRGQGYLFELR
Function: Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ phosphorylates PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), PhoQ dephosphorylates phospho-PhoP, resulting in the repression of PAG and may lead to expression of some PRG (By similarity). Mediates magnesium influx to the cytosol by activation of MgtA. Promotes expression of the two-component regulatory system rstA/rstB and transcription of the hemL, mgrB, nagA, slyB, vboR and yrbL genes. PTM: Phosphorylated by PhoQ. Sequence Mass (Da): 25535 Sequence Length: 223 Subcellular Location: Cytoplasm
P23837
MKKLLRLFFPLSLRVRFLLATAAVVLVLSLAYGMVALIGYSVSFDKTTFRLLRGESNLFYTLAKWENNKLHVELPENIDKQSPTMTLIYDENGQLLWAQRDVPWLMKMIQPDWLKSNGFHEIEADVNDTSLLLSGDHSIQQQLQEVREDDDDAEMTHSVAVNVYPATSRMPKLTIVVVDTIPVELKSSYMVWSWFIYVLSANLLLVIPLLWVAAWWSLRPIEALAKEVRELEEHNRELLNPATTRELTSLVRNLNRLLKSERERYDKYRTTLTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRISQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALNKVYQRKGVNISLDISPEISFVGEQNDFVEVMGNVLDNACKYCLEFVEISARQTDEHLYIVVEDDGPGIPLSKREVIFDRGQRVDTLRPGQGVGLAVAREITEQYEGKIVAGESMLGGARMEVIFGRQHSAPKDE
Function: Member of the two-component regulatory system PhoP/PhoQ involved in adaptation to low Mg(2+) environments and the control of acid resistance genes. In low periplasmic Mg(2+), PhoQ functions as a membrane-associated protein kinase that undergoes autophosphorylation and subsequently transfers the phosphate to PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), acts as a protein phosphatase that dephosphorylates phospho-PhoP, resulting in the repression of PAG and may lead to expression of some PRG (By similarity). PhoP-regulated transcription is redox-sensitive, being activated when the periplasm becomes more reducing (deletion of dsbA/dsbB, or treatment with dithiothreitol). MgrB acts between DsbA/DsbB and PhoP/PhoQ in this pathway; the 2 periplasmic Cys residues of MgrB are required for its action on PhoQ, which then acts on PhoP. Mediates magnesium influx to the cytosol by activation of mgtA. Promotes expression of the two-component regulatory system rstA/rstB and transcription of the hemL, mgrB, nagA, slyB, vboR and yrbL genes. Catalytic Activity: ATP + protein L-histidine = ADP + protein N-phospho-L-histidine. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 55300 Sequence Length: 486 Subcellular Location: Cell inner membrane EC: 2.7.13.3
Q9I4F8
MIRSLRIRLMLGAAALAVLFMLALLPALQRAFGIALENTIEQRLAADVATLVSAARVEKGRLVMPEHLPVEEFNLPEAKVLGYIYDQNGDLLWRSTSAADESINYTPRYDGRGNEFHTTRDAKGEEFFVFDVEIDLLRGKQAAYSIVTMQSVSEFESLLKGFREQLYLWLGGALLVLLGLLWLGLTWGFRAMRGLSSELDQIESGERESLSEEHPRELLRLTHSLNRLLRSEHKQRERYRHSLGDLAHSLKTPLAVLQGVGDQLAEEPGNREQVRVLQGQIERMSQQIGYQLQRASLRKSGLVRHREQLAPLVETLCDALDKVYRDKRVSLQRDFSPSFSVPVERGALLELLGNLLENAYRLCLGRVRVGARLGPGYSELWVEDDGPGVPAEQRARIIRRGERADTQHPGQGIGLAVALDIIESYDGELSLDDSELGGACFRIRFATV
Function: Member of the two-component regulatory system PhoP/PhoQ that plays a role in the regulation of resistance towards polymyxin B and cationic antimicrobial peptides in response to limiting concentrations of Mg(2+) . May function as a membrane-associated protein kinase that phosphorylates PhoP in response to environmental signals leading to activation of specific gene promoters (Probable). Catalytic Activity: ATP + protein L-histidine = ADP + protein N-phospho-L-histidine. Location Topology: Single-pass membrane protein Sequence Mass (Da): 50280 Sequence Length: 448 Subcellular Location: Membrane EC: 2.7.13.3
L0E2Z4
MTPAPTPRTDQLHGSRVLVIGGTSGIGFAVCAAALGHGAIVTIVGSNAQKLKDSVARLKSSFPSTDPDDIVAVRCDLSNSDTVEQDIEKALQLAAGNSKINHIVITAADMTAPPPLEDLTVDSVQRPGIIRLVAPLMVAKHLPKYMNKCPQSSLTLTSGAHCLRPDPGWTVISGYCGAVEAMSRGLAIDLKPLRVNVVAPGAVLTEAVKDILGDAYDAAVEMAEAKSTVGQTGSPESVAQAYIYLMKDHYASGSVVSTNGGMLLV
Function: Short-chain dehydrogenase/reductase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Location Topology: Single-pass membrane protein Sequence Mass (Da): 27528 Sequence Length: 265 Pathway: Alkaloid biosynthesis. Subcellular Location: Membrane EC: 1.1.-.-
L0E4G6
MHNTQSDTKCENASDTPESPTGEEESVGLARWKLGLLMFGNTLAVFCVALDNTIMSNAIPRVTQTFDSLEDIGWGSPARRHFDRQRERTTSPKTAVYGCFGGIGGAFAENSTWRWCFYINLPLGAVTTVLILCFFFDSRTGTSDVSMSSWNRFRGLDIPGLLLFLPTVFCLLLALQWGGAKYPWNNVRVIVLFVIFILAGGCWIFIQHSMKDQASVPPRLIRNRNVWSSAVYMGCIVGSFIIILYYFPIWFQAVKGGSPIQSGTMILPIIIGLIVWLGFGFQLPFIAVQTALPRSDIPVATAIVTFAQNLSEAVLVALAQTIFQNRLFAHVKQLSTLVDPNALVHAGAANLDQHFSADVLPEIVRAYSAAVTETFYAATGIAALSFIGLIRLQWLSVKKTKTNGNAAQTHL
Function: Efflux pump; part of the gene cluster that mediates the biosynthesis of paraherquamide, a dichlorinated fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 45211 Sequence Length: 411 Subcellular Location: Cell membrane
L0E2U6
MTIQVKRVVTVFGGTGNQGSSVARSLLAHKAKIFHVRVITRDPQSDKAKAIASLGAELVQADGFNLGEMTNAFAGSWGVFINTNSDDEALKSLDGPSDYDLGVSVIDSAKKAGVQHVVYSSGPSITNATKGRMHLEGFETKYHVEQYGRRKGFTSFTPILCASFMECFFYDPFVDAFGGFPWIPEPETGEVVFRTPDYGGKGDMPWVSCEEDLGDIVHGIFLNPCKYDQVLVQATSQQITMFDVAASYTQATGIPARYEELPSWSSIKLNGTRCRAETRQMFWYMKHCGGRWFAEHESDMSTAVALKESAMLSQDRVGGLVTFQAWFKKAKVLKDQNV
Function: NmrA-like family domain-containing oxidoreductase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 37315 Sequence Length: 338 Pathway: Alkaloid biosynthesis. EC: 1.-.-.-
L0E2Q5
MAFQLAGFFLILALGLGHYFSNDQESRCRQLELYATKSIIPTTPAMSSFNTIATPHGALTIPVNWLYPEVPKVTSAHTNCLFIAAALQVDTWEHSRPLKQSCHAQDLPEHGQCHQGRVAHYSAYVNSVSAVQQVIQFAASHRLRLAIRNTGHDLAGRSSAPNSLQLHTAGLKGIDYVESFTPQAPAGQSVPSDGPAVTVGAGVLTGELYSAAAEAGYTVVGGSCSTVGIAGGWMQGGGYGILTPSRGLGVDNVLEIGVVTAQGVYVTANQYQNQDLFWAIRGGGGGTFGAVVHVTFRTYPDSPATVSKLNVVSPHGLNSAFWEAITDLLRAIPVLVDRGDAVQAFVMPVMPGNTTFLTIESYLINETHVSGLDVIRELKKSMEARGLSVESSEESFDWLSAYLAIPKGLDQAGMGMMTASRLVSRELMTSAQGPSLISQTLAQLSYDPGNVLSLEGMVGGPAVRGRETADRATHPSWQSAVMSLTLGHSLPSAPDWTAYSRAQRELAMTQLPALQALEQGTMGGYLGIPFPYESHPSRVFWGSHYDRLLTLKGRWDPDDLFLTRLGVGSERWDEEGMCRVGRAQAFLWWYSSIVDRVKSWTA
Function: FAD-linked oxidoreductase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 64862 Sequence Length: 602 Pathway: Alkaloid biosynthesis. EC: 1.-.-.-
L0E168
MTIEATEGHVSKGMLAKGDSTSPIPTIFDVLSRDHVFVDSHQKVWWERTGQLLDKILASAGYNPARRLEALTFYIQVLIPFLGPHPHQFRSAITRSGLPLEFSVNYQQRGDIDPVVRIGFEPVAAASGTEIDPYNQIPVVDLLNQLEVLNIPAFDPSLFRYFLDAHTVNGHEKGLLKEKKIEGSELTSQSAFGFDLKEKAISVKGYTFPAIKCTLNEKGFGNFISESIQPLAAQMGPIPSFDMVHSYLEGTNGYSQFAFWSFDCVDPAQSRLKLYSSHNSVVWSKVEEIWTLGGRAKSPVVQEGLVYLKELWELTKLSEGHREFNGGFDDGKDATATPMVWNYEMKIGEAFPLTKFYFPIHGESDQNVIGGLAQFLSRIGLSKYGDNYEATVRHYLYDFSTSPVPCKNDSIANFDSPERDLSKTARLTSWISFAYTEKTGVYLSVYYHSSDEYPWLELEEIN
Function: Prenyltransferase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 51974 Sequence Length: 462 Pathway: Alkaloid biosynthesis. EC: 2.5.1.-
L0E301
MTVSTESNFPHGASTQKPQSAEPEIYSSLTKSLDFSNDAEEKWWTRTAPLLSRILDSAGYTLPQQCQFLTLFNTLMIPNFGPHPHIWHSSITHSGLPVEFSVNYQPGKQPTVRIGFEPASSISGTARDPYNMVTVLNVLNKMSRLNFKGFDPSLFHTLISSLALSKNESDLLQGAKLEGSKFKTQAAFGLDLKGDAVTVKTYLYPALKCKVSGLAFSELLEAALAKHQNAHDFSRVLPLVQSYMEEGQCYNQYSFVGFDCVDSSKSRLKIYGALLDISWKKVEEVWTLGARLVNSETNKEGLRYMRALWEYLTPGKERRPVGIWNYELLPGSEEPMPKFYVDMNGENDFQNALGITKFLHHIGLTTTAEGLISKIQEYLYGVPHYPLSQTHVLFANQGPMQPRCEP
Function: Prenyltransferase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 45549 Sequence Length: 406 Pathway: Alkaloid biosynthesis. EC: 2.5.1.-
L0E4H0
MGSLGEEVQVIIVGLGIVGLAAAIECREKGHSVHAFEKSNILKSIGDCIGLQSNATRIIKRWGDGAVHEALRPWIVSSKEIRIHNSSGRLIIRQDLSEVCEQPNYLLPRSELIRVMYEHALKIGVEISLGVEVCEPSEDEEGASVVALTRDGERQIVRGDFIICSDGVHSKMRKAIMPQPVEPRPSGYAAFRALVDTETLKGDPEASWVFEGVEENDRFDVFFLSGAQIALQSCNKGKVFSWFCIHQDTRNLLDVWTSPADPNEMLDLIKVWPIGQRLWSVIRHTQPQKFINYPLLNHKPLDHWVSSHGRLILIGDAAHPLSPAAGQGASQGIEDANVLATSLSLAGRQRVSLALHVAERIRYARASAVQLISHRVNEGWRNQDWDAYEPNEQNIASLPLETWIYGHDSQAYTEQEFEMVVRAVQEGEEYHATNLPDKLRVQLGIRNVDVKEPLQNKSP
Function: FAD-dependent monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . Within the pathway, phqK catalyzes spirocycle formation through two parallel pathways in the biosynthesis of paraherquamides A and G, using as substrates paraherquamides K and L, with paraherquamide L, bearing the dioxepin, being likely the favored substrate . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine. They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified. Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor. The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate. The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product. This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ. The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway. During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide. Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase. The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring. The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F. However, the order of these biosynthetic steps has still to be determined. In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A. The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC. Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 51282 Sequence Length: 459 Pathway: Alkaloid biosynthesis. EC: 1.-.-.-
L0E2V1
MEPHHDGHILKVLPMLASNENFSRLTTAFVAGIAAHIIIFRRGEWDIAAARIPVGLFILQSCLFSYYLFVPGPPTSIYTALWLVGQITLGFIAGTTVSILSYRAFFHRLNSFPGPFPARLSMWYVTSLYAQNPDAFNTVRGLHQQYGDFVRTGPTELSVNHPDALQAVHSGRSECTKGPWYSMLHPFISLFAIRDKAEHSRRRKPWELAFRPNAVLEYLPALEKGTNELLEQVERRKGKSMDMTYWINLFTFDLTGRVAFSQEYECVKHNKRHPIMEINDSSNLVTGVVSHVVWLISFIKATPGLNANMKALIGFSEEQVQNRQKMQTSGQRDVFSWLWEDFKEQGMETPQSKLDLVADASLVIFAGSGTVAVTIIGCLYFLTSTSPDYLTQIRQELDTLDEINSHTLSKVQTLNAVINETLRLHYPALSGFQRQTPPGGLHIAGRYIPGNTNIKIPFYTLFLDERNFAEPEKFIPERWTTRKELVKNPEAFAPFLLGPYNCLGKSLALMQVRHVLVELIRRYEIVLAPGADPEKYWRERTDGFVMGLAPLDLAFTEREMAGF
Function: Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Location Topology: Multi-pass membrane protein Sequence Mass (Da): 63886 Sequence Length: 563 Pathway: Alkaloid biosynthesis. Subcellular Location: Membrane EC: 1.-.-.-
L0E2R0
MKQGTTGMYCEVGPCTNAKDAHSPCLRPPGYAKPPTVRVCRTRGHNLPLSKVPGPKLAALTKWYGFYHNVIRDGQYSLSFSSLHKKYDSPVIRIGPNAVHVDDPSFYQEMFSMTTKYYKEPEFYKALGAEGAMASILDPKHHRMYRNHLRPLFASRAVDGVVPRLKLELEKATRIFDMHRKDYHPLNIQALYRSFTSDMVCELLFGESPDFIGDGNGYHPFVAALDRFTAFSWLVVYFPWVKSIQFHLPFGLGDKLAPEFNDFKRQCETWEAKAQLKRESGVQVGQKNLFDYYAELGAGPETAVSGVAQPVEDAFNFLTAGTESTAYTLSSTAFHILNNPQVFKKLHEELDASVDFIRNDFNAKQIQALPYLGAVLKETMRLSTAVPGNLPRLVPPGGVTVGSVYLPEGTYPQQTIVSSSHLSIITNDTIFHDPYKFKPERWLGEEGKDLERWHVGFSRGPRRCIGSSLAYLELFCVTAYVFSRFEMSLFETDESSMQWVDRISARNRKDVQVRILSDRWEKEAHSIAGGTLLKEE
Function: Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 60673 Sequence Length: 536 Pathway: Alkaloid biosynthesis. EC: 1.-.-.-
L0E172
MTMSQMNQDAEGYFRVWKPEEASPGHQESPEELDSGRMCGHLCRLSPNEPMAQSLVRHEHYLAHRVNIQEGQRIIDLGCGIGNPARSIARFTGANITGLNINAQQLRQARQLTQEAGLSYQVNFVEQNFLKIEFADDTFDGAYAIESTCYAPDLVEVYSEIFRVLKPGARFGVYEAVLTDKYDDNNPMHREVKTNIERGGGLARIHTSAEAIAAMKAVGFEVLAIDDLGARPDQIPWETQLSDPFLEKQGLLSFALLSVFFAARAMPLINRGLQAVVGKLEQMTVFPAGSQKVVDLVVTILDGMYRGGELGIFSPMFLIVARKPEA
Function: Methyltransferase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 36123 Sequence Length: 326 Pathway: Alkaloid biosynthesis. EC: 2.1.1.-
L0E307
MSKYLLMSFTEGSMSTWHYLAMLTTIWLVYQYLKPVPIVPGLPVINRAERWDFFSIKMKRRFLNNAAALMKEGFEQPKLVLSPDYADELKNDARFSLEDAGLRRHYRMKPASLFKIIGQTTPISGRAFLGPEVCGDIRWIEATMGYLEMGVRTAFLLQVFPRFLFPLQRWFPLCRKVRKHIDMAGTILRPVIDSRRADGRPAQDAISWFDEAAAGETYNPVYSQLSLSFASTHTTADTMTKVIIHLAENPAVVTDLRKEVVEAIAKHGELTKTALSQMNLLDSTLKESQRLEPLASATMNRVTREEVTLSNGLWIPRNMYVLVSGHRMRDPTLYPDPEKFDAYRFVKMREIEKKKSDCAYTAATVDHMGFGYGKHSCPGRFFAAHEVKIILCHLILKYEFKLPEDQARTYLLAGFFTSAGPENELLVRRRVEEIAL
Function: Cytochrome P450 monooxygenase; part of the gene cluster that mediates the biosynthesis of paraherquamide, a fungal indole alkaloid that belongs to a family of natural products containing a characteristic bicyclo[2.2.2]diazaoctane core . The first steps in the biosynthesis of paraherquamide is the production of the beta-methyl-proline precursor from L-isoleucine (Probable). They require oxidation of a terminally hydroxylated L-isoleucine to the corresponding aldehyde by enzymes which have still to be identified (Probable). Spontaneous cyclization and dehydration would yield the 4-methyl pyrolline-5-carboxylic acid, which is then reduced by the pyrroline-5-carboxylate reductase phqD leading to the beta-methyl-proline precursor (Probable). The next step of paraherquamide biosynthesis involves coupling of beta-methyl-proline and L-tryptophan by the bimodular NRPS phqB, to produce a monooxopiperazine intermediate (Probable). The reductase (R) domain of phqB utilizes NADPH for hydride transfer to reduce the thioester bond of the T domain-tethered linear dipeptide to a hemithioaminal intermediate, which spontaneously cleaves the C-S bond to release the aldehyde product . This compound undergoes spontaneous cyclization and dehydration to give a dienamine which is reverse prenylated at C-2 by the reverse prenyltransferase phqJ (Probable). The other prenyltransferase present in the cluster, phqI may be a redundant gene in the pathway (Probable). During biosynthetic assembly, the key step to produce the polycyclic core is catalyzed by the bifunctional reductase and intramolecular [4+2] Diels-Alderase, phqE, resulting in formation of the [2.2.2] diazaoctane intermediate preparaherquamide . Following formation of preparaherquamide, an indole 2,3-epoxidation-initiated pinacol-like rearrangement is catalyzed by the phqK FAD-dependent monooxygenase (Probable). The prenyltransferase phqA, the cytochrome P450 monooxygenase phqL, and the FAD-linked oxidoreductase phqH (or the cytochrome P450 monooxygenase phqM), are proposed to be involved in the formation of the pyran ring (Probable). The FAD-dependent monooxygenase phqK is likely responsible for generation of the spiro-oxindole, and the N-methylation is likely mediated by the phqN methyltransferase leading to the isolable natural product paraherquamide F (Probable). However, the order of these biosynthetic steps has still to be determined (Probable). In late-stage paraherquamide biosynthesis, the third P450 monooxygenase, phqO, is probably responsible for the C-14 hydroxylation, transforming paraherquamide F to paraherquamide G, and paraherquamide E to the final product paraherquamide A (Probable). The expansion from the 6-membered ring pyran (in paraherquamides F and G) to the 7-membered dioxepin ring (in paraherquamides A and E) represents a poorly understood but intriguing process that probably involves the 2-oxoglutarate-dependent dioxygenase phqC (Probable). Finally, the remaining members of the paraherquamide cluster, including phqI as well as phqM (or phqH), do not have a clearly prescribed role and appear to be redundant (Probable). Sequence Mass (Da): 49906 Sequence Length: 436 Pathway: Alkaloid biosynthesis. EC: 1.-.-.-
Q94CL7
MEARPVHRSGSRDLTRTSSIPSTQKPSPVEDSFMRSDNNSQLMSRPLGQTYHLLSSSNGGAVGHICSSSSSGFATNLHYSTMVSHEKQQHYTGSSSNNAVQTPSNNDSAWCHDSLPGGFLDFHETNPAIQNNCQIEDGGIAAAFDDIQKRSDWHEWADHLITDDDPLMSTNWNDLLLETNSNSDSKDQKTLQIPQPQIVQQQPSPSVELRPVSTTSSNSNNGTGKARMRWTPELHEAFVEAVNSLGGSERATPKGVLKIMKVEGLTIYHVKSHLQKYRTARYRPEPSETGSPERKLTPLEHITSLDLKGGIGITEALRLQMEVQKQLHEQLEIQRNLQLRIEEQGKYLQMMFEKQNSGLTKGTASTSDSAAKSEQEDKKTADSKEVPEEETRKCEELESPQPKRPKIDN
Function: Transcription factor involved in phosphate starvation signaling . Binds as a dimer to P1BS, an imperfect palindromic sequence 5'-GNATATNC-3', to promote the expression of inorganic phosphate (Pi) starvation-responsive genes . SPX1 is a competitive inhibitor of this DNA-binding . PHR1 binding to its targets is low Pi-dependent . Regulates the expression of miR399 . Regulates the expression of IPS1 (At3g09922), a non-coding RNA that mimics the target of miR399 to block the cleavage of PHO2 under Pi-deficient conditions . Regulates lipid remodeling and triacylglycerol accumulation during phosphorus starvation . Required for the shoot-specific hypoxic response . Regulates FER1 expression upon phosphate starvation, linking iron and phosphate homeostasis . Contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency . Required for adaptation to high light and retaining functional photosynthesis during phosphate starvation . Involved in the coregulation of Zn and Pi homeostasis . PTM: Sumoylated by SIZ1. Sumoylation controls phosphate deficiency responses. Sequence Mass (Da): 45546 Sequence Length: 409 Subcellular Location: Nucleus
P43076
MYSLIKSLATFATLFSLTLAKFESSTPPVEVVGNKFYFSNNGSQFLIRGIAYQQDAAGSVSSGYDADPNRKYNDPLADADACKRDVKYFKESNTNTLRVYAIDPDKDHEECMKIFSDAGIYIVADLSEPTVSINRNNPEWNLDLYKRYTKVIDKMQEYSNVLGFFAGNEVTNNRSNTDASAFVKAAIRDMKKYIKESDYRQIPVGYSSNDDEEIRVAIADYFSCGSLDDRADFFGINMYEWCGKSTFETSGYKDRTEEIKNLTIPAFFSEYGCNANRPRLFQEIGTLYSDKMTDVWSGGIVYMYFEEANKYGLVSVDGNSVKTLSDYNNYKSEMNKISPSLAHTSTLSSSDASKTLQCPGTAASTWKAATNLPPTPDESYCDCISKSLECVVADDVDKEDYGDLFGQVCGYIDCSAISADGSKGEYGVASFCSDKDRLSYVLNQYYLDQDKKSSACDFKGSASINSKASASGSCKAVSGVATGKASSSGGSSKSGSSSASASGSSSSSTSSGSSSSSGVKATQQMSMVKLVSIITIVTAFVGGMSVVF
Function: Required for apical cell growth and plays an essential role in morphogenesis. May be integral to the pathogenic ability of the organism. Location Topology: Lipid-anchor Sequence Mass (Da): 59457 Sequence Length: 548 Subcellular Location: Cell membrane
Q3ZBD3
MAGKAHRLSAEERDQLLPNLRAVGWNELEGRDAIFKQFHFKDFNRAFGFMTRVALQAEKLDHHPEWFNVYNKVHITLSTHECAGLSERDVNLASFIEQVAVSMT
Function: Involved in tetrahydrobiopterin biosynthesis. Seems to both prevent the formation of 7-pterins and accelerate the formation of quinonoid-BH2. Coactivator for HNF1A-dependent transcription. Regulates the dimerization of homeodomain protein HNF1A and enhances its transcriptional activity (By similarity). Also acts as a coactivator for HNF1B-dependent transcription (By similarity). Catalytic Activity: (4aS,6R)-4a-hydroxy-L-erythro-5,6,7,8-tetrahydrobiopterin = (6R)-L-erythro-6,7-dihydrobiopterin + H2O Sequence Mass (Da): 11986 Sequence Length: 104 Subcellular Location: Cytoplasm EC: 4.2.1.96
Q9LZ76
MAATLPLSPINHQLCRFGNNSLTTHRFCSPGFLISSPCFIGLTGMGSATQLRARRSLISSAVATNSLLHDVGATVAVLGGAYALVLSFESLTKRNVIQQSLSRKLVHILSGLLFVLAWPIFSGSTEARYFAAFVPLVNGLRLVINGLSISPNSMLIKSVTREGRAEELLKGPLFYVLALLFSAVFFWRESPIGMISLAMMCGGDGIADIMGRKFGSTKIPYNPRKSWAGSISMFIFGFFISIALLYYYSSLGYLHMNWETTLQRVAMVSMVATVVESLPITDQLDDNISVPLATILAAYLSFGY
Function: Kinase involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) in the presence of CTP or UTP. No activity with ATP or GTP as phosphoryl donor. Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 33090 Sequence Length: 304 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Plastid EC: 2.7.1.182
Q7XR51
MAAAARPVDVVRHFPCSSSVAASSSLLLSRSKSRLASPAAAAASSMRRRLVLGVGAAAAPAVAALAASATPAALRDCAATLLITAGAYSLVRAFDGLTARRLIEQNLSRKIVHVLSGVLFMSSWPLFSNSTEARFFAAIVPLLNCIRLLTYGLRLSTDEALVKSVTREGKPEELLRGPLYYVIVLLVSVLVFWRQSPIGIVSLSMMSGGDGFADIVGRRYGSAKLPFNENKSWIGSISMFISGFLLSALMLFYFSCLGYFTVCWDLALGKLALVALAATVVECIPVNDVVDDNISVPLATMLAAYLLFGYSSCC
Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity). Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 33391 Sequence Length: 314 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Plastid EC: 2.7.1.182
Q2N2K1
MTLLSSHLLVFSAVHHRAPPTTTTRNSPTTNHTVRFLCSPGVPPAVRLDQRLPRFVVPGAGAEDLLYNAGATVGVLGGGYALVRAFDELTRRNILQQGLSRKLVHILSGLLFLVSWPIFSNSPKARYFAAFVPLVNCLRLLVNGLSLASDEGLIKSVTREGDPLELLRGPLYYVLILILSALVFWRESPIGVISLAMMCAGDGIADIIGRRYGSMKIPYNEHKSLAGSMSMLVFGFLVSIGMLYYYSVLGHVQLDWASTLPRVAFISFVATLVESLPITKVVDDNISVPLATMAVAFFTFHH
Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity). Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 32985 Sequence Length: 302 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Plastid EC: 2.7.1.182
Q5N9J9
MVSLISAHLLSLPSSAPRSRPQSRPPLSPPAAAAAASCSFDLPRPRRLVADGSRRKGTMAAAIPPEASGLAHDLGSAAVTAGVALALLRFFEELAKRGVFEQKLNRKLVHITIGMVFLLFWPLFSSGSYAPFLAAVAPGINIIRMLLLGLGVMKNEAMVKSMSRSGDPRELLKGPLYYATTITFATSIFWRTSPIAIALICNLCAGDGIADIVGRRLGQEKLPYNPNKSYAGSIAMALAGFMASIGYMHYFQSFGFIEESWSLAFGFLVVSVTAALVESHPISTHLDDNLTVPLTSFLVGSLVF
Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity). Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 32502 Sequence Length: 304 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Plastid EC: 2.7.1.182
Q2N2K0
MMFLSFNMISGGNTLQRFDPVACVSSVPLLLAPTTRPTFHFPSPFLSKPKPTYLFTSFSSSSSSSSSFFSSTTPPRSTMLHHDPLVSDVYATAISGVVALSFLRLFQETAKRDLFDQKLNRKLVHISIGLIFMLCXPLFSTETWASFFAALIPGINIFRMLVIGLGILKDEATVKSMSRFGDYRELLKGPLYYAATITLAAIIYWRTSPISIAAICNLCAGDGMADIVGRRLGGEKIPYNKNKSFAGSIAMATAGFLTSIGYMWYFSSFGFIEGSWKLVLGFLLVSIVTAFVESLPISTELDDNLTVPLTSILVGSIIL
Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity). Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 34881 Sequence Length: 319 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Plastid EC: 2.7.1.182
Q2N2K4
MAAAAAWTGAASPNSLLLSRSPPHAAALAPSPGSSMRRRLLLGVGTPAVAALAAAAPPAVLQDGAVTVLITAGAYSLVRVFDELTERRLIEKSLSRKVVHVLSGVLFMSSWPLFSNSTEARYFAAVVPFLNSMRLLIYGLRLYTDEALVKSVTREGKPEELLRGPLYYVLVLLFSVLVFWRESPIGIVSLSMMSGGDGFADIVGRRYGSAKLPFNRKKSWAGSISMFISGFLLSAMMMLYFSSLGYIDVIWEEALGKLALVALAATVVECVPVTEVVDDNISVPLATMLVAFLLFSSNRTIVN
Function: Involved in the activation and reutilization of phytol from chlorophyll degradation in plant metabolism, including tocopherol biosynthesis. Catalyzes the conversion of phytol to phytol monophosphate (PMP) (By similarity). Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 32582 Sequence Length: 303 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Plastid EC: 2.7.1.182
P74653
MGIEQNNPMALPLWIAVGLAATYLGAVVLTAELLNRLSLSPAEVTRKIVHIGAGQVVLIAWWLSIPGWVGAIAGVFAAGIAVLSYRLPILPSLESVGRHSYGTLFYALSIGLLVGGFFSLGLPIFAAIGILVMAWGDGLAALVGQRWGRHRYQVFGFRKSWEGTLTMVLASFLVTVVFLSYTFGFTVIVLVVAGTVAIASAGLESFSRWGIDNLTVPLGSALIAWAGSYLWLG
Function: Catalyzes the CTP-dependent phosphorylation of phytol to phytylmonophosphate (PMP). Can also use UTP as an alternative phosphate donor, but not ATP or GTP. Is involved in tocopherol biosynthesis, via the utilization of phytol generated by chlorophyll degradation . Also plays a significant but not critical role in the recycling of phytol for the biosynthesis of new chlorophyll molecules . Catalytic Activity: CTP + phytol = CDP + H(+) + phytyl phosphate Location Topology: Multi-pass membrane protein Sequence Mass (Da): 24737 Sequence Length: 233 Pathway: Cofactor biosynthesis; tocopherol biosynthesis. Subcellular Location: Cell membrane EC: 2.7.1.182
Q56S59
MASAKIFLIFLLAALIATPAAFAILVPTLVSTHISGLVFCSVNGNLDVINGLSPQVFPNASVQLRCGATNVISSTITNGSGAFSLAVNTFPLLNCNLVVATPLSTCNATLQSVGRLASSLRLVNITLGSGTGLIRVGLAPTGFILNLNIN
Function: Inhibits spore germination and leaf infection by fungal pathogens. PTM: Probably covalently linked to cuticular lipids and/or trichome exudate diterpens or sugar esters in order to increase the solubility in exudate and the dispersion on the leaf surface. Sequence Mass (Da): 15310 Sequence Length: 150 Subcellular Location: Secreted
O60331
MELEVPDEAESAEAGAVPSEAAWAAESGAAAGLAQKKAAPTEVLSMTAQPGPGHGKKLGHRGVDASGETTYKKTTSSTLKGAIQLGIGYTVGHLSSKPERDVLMQDFYVVESIFFPSEGSNLTPAHHFQDFRFKTYAPVAFRYFRELFGIRPDDYLYSLCNEPLIELSNPGASGSLFYVTSDDEFIIKTVMHKEAEFLQKLLPGYYMNLNQNPRTLLPKFYGLYCVQSGGKNIRVVVMNNILPRVVKMHLKFDLKGSTYKRRASKKEKEKSFPTYKDLDFMQDMPEGLLLDADTFSALVKTLQRDCLVLESFKIMDYSLLLGVHNIDQHERERQAQGAQSTSDEKRPVGQKALYSTAMESIQGGAARGEAIESDDTMGGIPAVNGRGERLLLHIGIIDILQSYRFIKKLEHTWKALVHDGDTVSVHRPSFYAERFFKFMSNTVFRKNSSLKSSPSKKGRGGALLAVKPLGPTAAFSASQIPSEREEAQYDLRGARSYPTLEDEGRPDLLPCTPPSFEEATTASIATTLSSTSLSIPERSPSETSEQPRYRRRTQSSGQDGRPQEEPPAEEDLQQITVQVEPACSVEIVVPKEEDAGVEASPAGASAAVEVETASQASDEEGAPASQASDEEDAPATDIYFPTDERSWVYSPLHYSAQAPPASDGESDT
Function: Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility . PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis . Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) . Required for clathrin-coated pits assembly at the synapse . Participates in cell junction assembly . Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking . Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions . Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins . Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor . Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). PTM: Phosphorylation on Ser-650 negatively regulates binding to TLN2 and is strongly stimulated in mitosis. Phosphorylation on Tyr-649 is necessary for targeting to focal adhesions. Phosphorylation on Ser-650 and Tyr-649 are mutually exclusive. Phosphorylated by SYK and CSK (By similarity). Tyrosine phosphorylation is enhanced by PTK2 signaling. Phosphorylated at Tyr-639 upon EGF stimulation. Some studies suggest that phosphorylation on Tyr-649 enhances binding to tailins (TLN1 and TLN2). According to PubMed:15738269 phosphorylation at Tyr-649 does not directly enhance binding to tailins (TLN1 and TLN2) but may act indirectly by inhibiting phosphorylation at Ser-650. Location Topology: Peripheral membrane protein Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 73260 Sequence Length: 668 Subcellular Location: Cell membrane EC: 2.7.1.68
O70161
MELEVPDEAESAEAGAVTAEAAWSAESGAAAGMTQKKAGLAEAPLVTGQPGPGHGKKLGHRGVDASGETTYKKTTSSTLKGAIQLGIGYTVGNLSSKPERDVLMQDFYVVESIFFPSEGSNLTPAHHFQDFRFKTYAPVAFRYFRELFGIRPDDYLYSLCNEPLIELSNPGASGSVFYVTSDDEFIIKTVMHKEAEFLQKLLPGYYMNLNQNPRTLLPKFYGLYCVQSGGKNIRVVVMNNVLPRVVKMHLKFDLKGSTYKRRASKKEKEKSLPTYKDLDFMQDMPEGLLLDSDTFGALVKTLQRDCLVLESFKIMDYSLLLGVHNIDQQERERQAEGAQSKADEKRPVAQKALYSTAMESIQGGAARGEAIETDDTMGGIPAVNGRGERLLLHIGIIDILQSYRFIKKLEHTWKALVHDGDTVSVHRPSFYAERFFKFMSSTVFRKSSSLKSSPSKKGRGALLAVKPLGPTAAFSASQIPSEREDVQYDLRGARSYPTLEDEGRPDLLPCTPPSFEEATTASIATTLSSTSLSIPERSPSDTSEQPRYRRRTQSSGQDGRPQEEPHAEDLQKITVQVEPVCGVGVVPKEEGAGVEVPPCGASAAASVEIDAASQASEPASQASDEEDAPSTDIYFPTDERSWVYSPLHYSARPASDGESDT
Function: Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility . PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (By similarity). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps . Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport . Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (By similarity). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) . Required for clathrin-coated pits assembly at the synapse (By similarity). Participates in cell junction assembly (By similarity). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (By similarity). Required for focal adhesion dynamics . Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (By similarity). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (By similarity). Required for uropodium formation and retraction of the cell rear during directed migration . Has a role in growth factor-stimulated directional cell migration and adhesion . Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor . Negative regulator of T-cell activation and adhesion . Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor . Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth . PTM: Phosphorylation on Ser-645 negatively regulates binding to TLN2 and is strongly stimulated in mitosis. Phosphorylation on Tyr-644 is necessary for targeting to focal adhesions. Phosphorylation on Ser-645 and Tyr-644 are mutually exclusive. Phosphorylated by SYK and CSK. Tyrosine phosphorylation is enhanced by PTK2 signaling. Phosphorylated at Tyr-634 upon EGF stimulation. Some studies suggest that phosphorylation on Tyr-644 enhances binding to tailins (TLN1 and TLN2); others that phosphorylation at Tyr-644 does not directly enhance binding to tailins (TLN1 and TLN2) but may act indirectly by inhibiting phosphorylation at Ser-645. Location Topology: Peripheral membrane protein Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 72408 Sequence Length: 661 Subcellular Location: Cell membrane EC: 2.7.1.68
Q56YP2
MSDSEEDEEEEEASEVILSSVVQKKKKKNLRFGEEVERRDGLVLLAQSTPMVRSRSQGTTRRVTPTPLVDVEKPLPNGDLYIGSFSGGFPHGSGKYLWKDGCMYEGDWKRGKASGKGKFSWPSGATYEGEFKSGRMEGFGTFTGADGDTYRGTWVADRKHGHGQKRYANGDFYEGTWRRNLQDGRGRYVWRNGNQYTGEWRSGVISGKGLLVWPNGNRYEGLWENGIPKGNGVFTWSDGSSCVGAWNESNIMRSFFNGVEKNDLIVGNRKRSSVDSGAGSLGGEKVFPRICIWESDGEAGDITCDIIDNVEASMIYRDRISVDRDGFRQFKKNPCWFNGEAKKPGQTISKGHKKYDLMLNLQLGIRYSVGKHASIVRDLKQTDFDPKEKFWTRFPPEGTKTTPPHQSVDFRWKDYCPLVFRRLRELFQVDPAKYMLAICGNDALRELSSPGKSGSFFYLTQDDRFMIKTVKKSEVKVLLRMLPSYYKHVCQYENSLVTRFYGVHCVKPVGGQKTRFIVMGNLFCSEYRIQRRFDLKGSSHGRSTAKPEGEIDETTTLKDLDLNFSFRLQRNWYQELMKQIKRDCEFLEAERIMDYSLLVGVHFRDDNTGEKMGLSPFVLRSGRIDSYQNEKFMRGCRFLEAELQDMDRILAGRKPSIRLGANMPAKAERMARRSDFDQYSSGGASYPSHGEMYEVVLYFGVIDILQDYDITKKIEHAYKSLQADPASISAVDPKLYSKRFRDFISRIFIEEG
Function: Catalyzes the synthesis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate. PTM: Phosphorylation inactivates the enzyme. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 85945 Sequence Length: 752 EC: 2.7.1.68
Q6EX42
MPGLHVVSFLVVLLLQLRSSGMHLVASELFWGNTLPNGDIYVGSFDGLVPHGPGKYMWTDGALYDGEWDKSKMTGRGLIQWPSGASYEGDFRGGFIDGAGTFKGVDGSVYKGSWRMNKKHGMGTMVYSNSDTYEGFWNEGLPDEFGKYTWADGNVYIGRWKSGKMNGSGVMQWINGDTLDCNWLNGLAHGKGYCKYASGACYIGTWDRGLKDGHGTFYQPGSKIPCNLEVSDCLTSHDGTSASSSSNEKITIGLLFLLQKLCKNWRLRRFLHRPRRISNGTTPVFDDNSGSHLCQDVSSKSFSADDQCLQDSEVDKDSVYEREYVQGVLIMEQPKNEDSRMSESGIAQENNWEKQAKGPMETIYKGHRSYYLMLNLQLGIRYTVGKITPVPLREVRSNDFGPRARIKMYFPCEGSQYTPPHYSVDFFWKDYCPMVFRNLREMFHIDAADYMMSICGGDSLKELSSPGKSGSIFYLSQDERFVIKTLRKTELKIGLMKYVLQILLKMLPKYYNHVKAYDNTLITKFFGVHRITLKPGRKVRFVVMGNMFCTELRIHRKYDLKGSTQGRSTKKQNINENTTLKDLDLSYVFHVDKPWREALFRQIALDCMFLESQSIIDYSMLLGIHFRAPNHLKRITSCQNALESTGISAETECSVALHHEETISSKGFLLVAADEPGPAVRGSHIRGSMVRAAEGGYEEVDLVLPGTGRFRVQLGVNMPARARKVQEDVNVEVENRDTIEEYDVVLYLGIIDILQEYNVSKRVEHAVKSLKFDPLSISAVDPNLYSRRFISFLEKVFPEQD
Function: Involved in flowering. May suppress floral initiation by modifying the expression of genes related to floral induction. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 90680 Sequence Length: 801 EC: 2.7.1.68
Q8L796
MMREPLVSEEEEEEATEVLLVEKTKLCKRRGDEEKTEERRDDLLLLALTPMVRSKSQGTTRRVTPTPPPVDVEKPLPNGDLYMGTFSGGFPNGSGKYLWKDGCMYEGEWKRGKASGKGKFSWPSGATYEGEFKSGRMEGSGTFVGVDGDTYRGSWVADRKQGHGQKRYANGDYYEGTWRRNLQDGRGRYVWMNGNQYTGEWRNGVICGKGVLAWPNGNRYEGQWENGVPKGSGVFTWADGSSWIGSWNESSNLMRNFFDGIEKNELIVATRKRSSVDSGAGSLTGEKIFPRICIWESDGEAGDITCDIVDNVEASVIYRDRISIDKDGFRQFRKNPCCFSGEAKKPGETISKGHKKYDLMLNLQHGIRYSVGKHASVVRDLKQSDFDPSEKFWTRFPPEGSKTTPPHLSVDFRWKDYCPLVFRRLRELFTVDPADYMLAICGNDALRELSSPGKSGSFFYLTQDDRFMIKTVKKSEVKVLLRMLPSYYKHVCQYENTLVTRFYGVHCIKPVGGQKTRFIVMGNLFCSEYRIQRRFDLKGSSHGRYTSKPEGEIDETTTLKDLDLNFAFRLQRNWYQELMTQIKRDCEFLEAERIMDYSLLVGVHFRDDNTGDKMGLSPFVLRSGKIESYQSEKFMRGCRFLEAELQDMDRILAGRKPLIRLGANMPARAERMARRSDYDQYSSGGTNYQSHGEVYEVVLYFGIIDILQDYDISKKIEHAYKSLQADPASISAVDPKLYSRRFRDFISRIFIEDG
Function: Possesses phosphatidylinositol (PtdIns) phosphate kinase activity (Probable). Phosphorylates PtdIns(4)P and PtdIns(3)P in vitro . Doesn't phosphorylate PtdIns(5)P nor PtdIns(3,4)P2 in vitro . Does not exhibit phosphatidylinositol kinase activity in vitro . Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 86345 Sequence Length: 754 Subcellular Location: Cell membrane EC: 2.7.1.68
O48709
MQETVFLFTEENLNKEQSLGVKYKQSSRRVVPMTSCEVSDTAAEIRIVEKVLKNGDLYNGGLSAGVPHGTGKYLWSDGCMYEGEWTRGKASGKGRFSWPSGATYEGQFKDGRMDGEGTFIGIDGDTYRGHWLWGRKHGYGEKRYANGDGYQGNWKANLQDGNGRYVWSDGNEYVGEWKNGVISGKGKMTWANGNRYDGLWENGAPVGKGVLSWGEEKTSYNGWGRKSKKKDEEIVQNHKLSSVETLSANTNFPRICISELEDTGVCDHVEASPYTSESDTSGCGEQEWARSPLLLESGGAMSVQQSPRWLDEGDVKKPGHTVTAGHKNYDLMLNLQLGIRYSVGKHASLLRELRHSDFDPKDKQWTRFPPEGSKSTPPHLSAEFKWKDYCPIVFRHLRDLFAIDQADYMLAICGNESLREFASPGKSGSAFYLTQDERYMIKTMKKSEIKVLLKMLPNYYEHVSKYKNSLVTKFFGVHCVKPVGGQKTRFIVMGNLFCSEYRIHKRFDLKGSSHGRTIDKDEGEIDETTTLKDLDLKYVFRLETSWFQAFINQIDLDCEFLEAERIMDYSLLIGLHFRESGMRDDISLGIGRRDQEDKLMRGNGPLMRLGESTPAKAEQVSRFEEETWEEDAIDNSNPKGTRKEAVEVILYFGVIDILQDYDITKKLEHAYKSLHADPASISAVDPKLYSRRFRDFINKIFIEDK
Function: With DRP1A and DRP2B, required for the precise coordination of polar ARAC3/ROP6 and ARAC4/ROP2 placement and subsequent root hair positioning during planar polarity formation in root hair-forming cells, probably by mediating the correct basal-to-planar polarity switching of D6PK into the polar, lipid-enriched domain. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 80134 Sequence Length: 705 Subcellular Location: Cell membrane EC: 2.7.1.68
Q8L850
MSGLDVRGAVSFAERTKSVDALTKKEILSALNSGEVSETSEDARFRVRELVLPDGESYSGSLLGNVPEGPGKYIWSDGCVYDGEWRRGMRHGIGNMRWASGASYDGEFSGGYMHGSGTYVDANKLTYKGRWRLNLKHGLGYQVYPNGDVFEGSWIQGLGEGPGKYTWANKNVYLGDMKGGKMSGKGTLTWVTGDSYEGSWLNGMMHGVGVYTWSDGGCYVGTWTRGLKDGKGSFYSAGTRVPVVQEFYLNALRKRGVLPDMRRQNQVASSVNMENLRVGVNRNKLSKGSLINLEQSRNGRVSLERRWSLEVSIEKVIGHGYSDLSTAVLDSGSSVQYKANIPILEREYMQGVLISELVVNNGFSRTSRRAKRKHKRLVKEAKKPGEVVIKGHRSYDLMLSLQLGIRYTVGKITPIQRRQVRTADFGPRASFWMTFPRAGSTMTPPHHSEDFKWKDYCPMVFRNLREMFKIDAADYMMSICGNDTLRELSSPGKSGSVFFLSQDDRFMIKTLRKSEVKVLLRMLPDYHHHVKTYENTLITKFFGLHRIKPSSGQKFRFVVMGNMFFTDLRIHRRFDLKGSSLGRSADKVEIDENTILKDLDLNYSFFLETSWREGLLRQLEIDSKFLEAQNIMDYSLLLGVHHRAPQHLRSQLVRSQSITTDALESVAEDDTIEDDMLSYHEGLVLVPRGSENTVTGPHIRGSRLRASAVGDEEVDLLLPGTARLQIQQGVNMPARAELIPGREDKEKQILHDCCDVVLYLGIIDILQEYNMTKKIEHAYKSLHFDSLSISAVDPTFYSQRFLEFIKKVFPQNNKS
Function: Plays a role in sugar-mediated root development. Interaction with CINV1 induces repression of CINV1 activity and negative regulation of sugar-mediated root cell elongation. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Location Topology: Peripheral membrane protein Sequence Mass (Da): 92092 Sequence Length: 815 Subcellular Location: Membrane EC: 2.7.1.68
Q5T9C9
MAAPSPGPREVLAPSPEAGCRAVTSSRRGLLWRLRDKQSRLGLFEISPGHELHGMTCMMQAGLWAATQVSMDHPPTGPPSRDDFSEVLTQVHEGFELGTLAGPAFAWLRRSLGLAEEDYQAALGPGGPYLQFLSTSKSKASFFLSHDQRFFLKTQGRREVQALLAHLPRYVQHLQRHPHSLLARLLGVHSLRVDRGKKTYFIVMQSVFYPAGRISERYDIKGCEVSRWVDPAPEGSPLVLVLKDLNFQGKTINLGPQRSWFLRQMELDTTFLRELNVLDYSLLIAFQRLHEDERGPGSSLIFRTARSVQGAQSPEESRAQNRRLLPDAPNALHILDGPEQRYFLGVVDLATVYGLRKRLEHLWKTLRYPGRTFSTVSPARYARRLCQWVEAHTE
Function: May act as a scaffold to localize and regulate type I PI(4)P 5-kinases to specific compartments within the cell, where they generate PI(4,5)P2 for actin nucleation, signaling and scaffold protein recruitment and conversion to PI(3,4,5)P3. Catalytic Activity: a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) + ATP = a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + ADP + H(+) Sequence Mass (Da): 44572 Sequence Length: 394 Subcellular Location: Cytoplasm EC: 2.7.1.68
Q15735
MEGQSSRGSRRPGTRAGLGSLPMPQGVAQTGAPSKVDSSFQLPAKKNAALGPSEPRLALAPVGPRAAMSASSEGPRLALASPRPILAPLCTPEGQKTATAHRSSSLAPTSVGQLVMSASAGPKPPPATTGSVLAPTSLGLVMPASAGPRSPPVTLGPNLAPTSRDQKQEPPASVGPKPTLAASGLSLALASEEQPPELPSTPSPVPSPVLSPTQEQALAPASTASGAASVGQTSARKRDAPAPRPLPASEGHLQPPAQTSGPTGSPPCIQTSPDPRLSPSFRARPEALHSSPEDPVLPRPPQTLPLDVGQGPSEPGTHSPGLLSPTFRPGAPSGQTVPPPLPKPPRSPSRSPSHSPNRSPCVPPAPDMALPRLGTQSTGPGRCLSPNLQAQEAPAPVTTSSSTSTLSSSPWSAQPTWKSDPGFRITVVTWNVGTAMPPDDVTSLLHLGGGDDSDGADMIAIGLQEVNSMLNKRLKDALFTDQWSELFMDALGPFNFVLVSSVRMQGVILLLFAKYYHLPFLRDVQTDCTRTGLGGYWGNKGGVSVRLAAFGHMLCFLNCHLPAHMDKAEQRKDNFQTILSLQQFQGPGAQGILDHDLVFWFGDLNFRIESYDLHFVKFAIDSDQLHQLWEKDQLNMAKNTWPILKGFQEGPLNFAPTFKFDVGTNKYDTSAKKRKPAWTDRILWKVKAPGGGPSPSGRKSHRLQVTQHSYRSHMEYTVSDHKPVAAQFLLQFAFRDDMPLVRLEVADEWVRPEQAVVRYRMETVFARSSWDWIGLYRVGFRHCKDYVAYVWAKHEDVDGNTYQVTFSEESLPKGHGDFILGYYSHNHSILIGITEPFQISLPSSELASSSTDSSGTSSEGEDDSTLELLAPKSRSPSPGKSKRHRSRSPGLARFPGLALRPSSRERRGASRSPSPQSRRLSRVAPDRSSNGSSRGSSEEGPSGLPGPWAFPPAVPRSLGLLPALRLETVDPGGGGSWGPDREALAPNSLSPSPQGHRGLEEGGLGP
Function: Inositol 5-phosphatase, which converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate. Also converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate and inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate in vitro. May be involved in modulation of the function of inositol and phosphatidylinositol polyphosphate-binding proteins that are present at membranes ruffles. Catalytic Activity: 1D-myo-inositol 1,4,5-trisphosphate + H2O = 1D-myo-inositol 1,4-bisphosphate + phosphate Sequence Mass (Da): 107197 Sequence Length: 1006 Domain: The 5 Arg-Ser-Xaa-Ser-Xaa-Xaa (RSXSXX) motifs may constitute binding sites for the 14-3-3 protein. Subcellular Location: Cytoplasm EC: 3.1.3.36
Q5W269
MNQPLVVEISGDKALEHHHLGGKGYSLNNLIHAGLPVPSAFCVTAQAYQQFIEEVVPGAELTDGDLIAVRDAILHADIPDSLKQAIGDAYQHLGHDTTIAVRSSALDEDGQRQSFAGQYETYLHVKGSEAVLHKVQACWASLWAERAAQYRHESASHSAIAVILQVMVDADAAGVMFTQDPLSGSTDKVVIDSCWGLGEGVVSGQVTTDSFTLDKATGELCDQQIRHKPNYCQRDEHGLVTLLQTPEAKRDLPSLTPAQLQQLVTLARQAQLIYSTELDIEWAVKDDKVWLLQARPVTTSAKTANVIYANPWESDPAAKEGAFFSRMDTGEIVTGLMTPLGLSFCQFYQKHIHGPAIKTMGLADISHWQIYMGYIQGYVYLNISGSAYMLRQCPPTRNEMKFTTRYATDEIDFKDYKNPYGAGVQGWDYAKSCWYWLKQQVRNMRSAARTVEQMIALRQDETTRFLGLDLTAMTLQQLDQELQRIDRFFLDSCAAYMPFFLQSFALYDALAQACERHIKDGKGLQNRIKASMNNLRTIEVTLGIIKLVATVNQQTELKALFEQHRADELVTLLPVHDISRAFWQGDFEDFLVEFGSRGRQEFDLSIPRWRDDPSYLLQVMKMYLQHPVDLHKKLRETELLRQQDSEALFSAMSWSGRFKLKTLIKLYGMMAERREATRPTFITETWFYRCIMLEVLRRLDAQGIASSADLPYVDFEQFRAYVAGTIPAEQAFSKARLDQNRHQHLFNLHAEEPPMAIVGPYTPKVKAPTQDDKTIRSLTGLAASPGNVVAKARVITDLQVQAGEFQPDEILVARFTDASWTPLFALAAGIVTDIGSTLSHSCIVAREFGIPAVVNLKTATQIINSGDMLILDGDSGTVIIQHQEERNHDG
Function: Involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the transfer of 2-methyl-3-n-amyl-pyrrole (MAP) to 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) to yield prodigiosin. Sequence Mass (Da): 99766 Sequence Length: 890 Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. EC: 6.4.-.-
Q5W268
MTTMIGQTRQAGSSSYEQAWQAEQAPCPGMEPDTLTVGVVVVTRNPTFFQTGLSVLNDIRDYVFNRVHIQSELPLKLSELASDPLYSEAREKAIHFLKNQSKALNIQVIQCASLAEATGKIIYTHALEQQPEFQMGMLFYDQTSLGNVDDSIEKIDRDLDAFYSAMQRGGIPAFYTTFSTVTFIRDVRSSFRYLPQQYREIVRSEDPAIFQTELLCLWMDFFEMNYTNRRVKPIGALALHNTLAEQLIQFFERTAASRWLVSYYTGSIISNLIGYLDRHAEAHGALVLRGPNEHAIACGAMANWQLYRMPFLGVVTSGMMDEFKGTLINLKETAAQGIIVAAENRNNQWYSFQGTQTPTEDMRDVLAAKRIPYVYIDDVDGIADGLAEVFRLYHQAQGPVVILATQNVLESTLSLEPVPGDLPPVSGLPAYDCPPISDSFEQAMALINEGPEKLVWQLGPVSDDEYALVHEIADAAGLALVDSLAHPGSAPKYYQGKRNPHYLGTLAIYGYSPRVYNFLHTNDKLNPMSDQSVFMIKSRVAQITTPFSDGRLERKVHLVQLTHDERHLSPYADLKLHMDCLTFLRAVKANLHVDAALREKRKALIAAYLDSPSDVVSQLPSLPMSANYFFCQLNRVIENLIKTENFDFTGVYDVGRCGISAVRNVAKTRRGFSGWYGRALMGDALLATSYLAHTSPTHVVAFIGDGAKGIVPDILPAFIDNILTHPQLLNKSITIFYFCNGGLSVINTYQERILFNRTSRQMRLVNVDQPAFEQTVDDFHIQGKTLTHFDEDTIRHALMTPKRLNLFSVVLGHNNEGDGISLATAKGWQRDPSDREALQERKDWAARQPESTSTSFDQGQNKEAIS
Function: Involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the decarboxylation of pyruvate, followed by the modification of the resulting two-carbon fragment acetaldehyde at the C3 position of the 2-octenal (1,2-addition of acetaldehyde) giving 3-acetyloctanal. Catalytic Activity: (2E)-octenal + H(+) + pyruvate = (S)-3-acetyloctanal + CO2 Sequence Mass (Da): 96977 Sequence Length: 866 Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. EC: 2.2.1.12
A0A0J9X1Q5
MKFGFIAHPTSLGLKRYVKMLDLLQRNSTEQHSGYTRELWERQNLVPFMNFARITSATGATCEGVIKYMPLVADEMLADARGIAARVVQGIEELAGDGAELVGLGGFTSIVGRRGEATAEKSPVPVTSGNSLTTYAGYKALMQIQSWLEIRPEEEPVAIVGYPGSICLALSRLLLAHGFSLHLLHRAGNHDRSELLSHLPEEYHSRVTLTSDPEDLYPRCKLFAAATSAGGVIDPARLQPGSIFIDVALPRDIASETRPARDDILIIDGGCVTATDAVKLGGESLNVTIKQQLNGCMAETIVLALENRRENFSLGRYLAPEKVLEIGEIAERHGFFAYPLASYGERIDRQSVTNLKRYYHHDIYAGESADAALPASRLAFIDAVIAQTPAREDTLDRYHQYINPMMVDFLKLQRCDNVFRSAAGTQLYDDAGEAFLDMVAGYGCLNLGHNPQPVVNALKNYLDAQGPNFIQYISIPEQTAKLAEVLCRLAPGNMGRVFFSNSGTEAVEAAMKIAKASTGKPGIAYLRNSYHGKTLGALSITGRDKHRRYFTPLLDAMVEVPFGDLAALREALNREDVGALMIEPIQGEGGVHIPPAGYLQAVQQLCRETGVLLMVDEVQTGLGRTGKLFACEWDGIEPDVLMLSKSLSGGLIPIGATLCRADLWQKAYGTADRFLVHSSTYGGGNLASVVALSALREILAQDLVGHAERMGAYFKQALSEIAARYPFVSEVRGRGLMLGIQFDQAFTGAVNASAREFATRLPGDWHTTWKFLPDPVQAHLRAAMDRMEQALGEMFCMKFVTKLCQDHKILTFITANSSTVIRIQPPLIISKAEIDRFVGAFATVCEELSTFLD
Function: Involved in the biosynthesis of 2-methyl-3-n-amyl-pyrrole (MAP), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the transamination to the aldehyde group of 3-acetyloctanal, resulting in an aminoketone, which spontaneously cyclizes to yield the dihydro form of MAP (H2MAP). Sequence Mass (Da): 93256 Sequence Length: 853 Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. EC: 2.6.1.-
Q07326
MKDNDIKRLLYTHLLCIFSIILSVFIPSLFLENFSILETHLTWLCICSGFVTAVNLVLYLVVKPNTSSKRSSLSHKVTGFLKCCIYFLMSCFSFHVIFVLYGAPLIELALETFLFAVILSTFTTVPCLCLLGPNLKAWLRVFSRNGVTSIWENSLQITTISSFVGAWLGALPIPLDWERPWQVWPISCTLGATFGYVAGLVISPLWIYWNRKQLTYKNN
Function: Involved in GPI-anchor biosynthesis . It acts through the transfer of ethanolamine phosphate to the third mannose of GPI. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 24890 Sequence Length: 219 Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis. Subcellular Location: Endoplasmic reticulum membrane
Q5W266
MTLTKQDAVNQMMGFFQSKTLITALSLKLFDHLRDQDRNAKQMAALLNCPLRSSEQLLIALQAMGYLEKQDGLYHLPQEHRAFLVSDEPQWLGWLGRHIDTFLYPLWGELKAAVENDTHQRQTVFGDDRSWFDILYQNPDDVTDFQEFLGKFAAPFIDGFIQDYDFSQHQAFLDIGSGIGSLPIAVANAYSGVNLAICELPQTSTFLRDKLVQQGYGQRIQVLEGDVISGDLPIGDYDLIHLGWMLHDYAPETQLIILKNIYDAMPVGGRFIASETPLNADKSGPEFTALLSLNMLVSTDGGIESSPQEYLSRFHQAGFSNARIMDISGPRTLIVGEKTTHNNGSSQC
Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to the hydroxyl group of 4-hydroxy-2,2'-bipyrrole-5-carbaldehyde (HBC) to yield 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC). Sequence Mass (Da): 38942 Sequence Length: 348 Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. EC: 2.1.1.-
Q5H8A4
MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLFSKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGFVDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNVTRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLPNLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQQTDVAATLAIALGLPIPKDSVGSLLFPVVEGRPMREQLRFLHLNTVQLSKLLQENVPSYEKDPGFEQFKMSERLHGNWIRLYLEEKHSEVLFNLGSKVLRQYLDALKTLSLSLSAQVAQYDIYSMMVGTVVVLEVLTLLLLSVPQALRRKAELEVPLSSPGFSLLFYLVILVLSAVHVIVCTSAESSCYFCGLSWLAAGGVMVLASALLCVIVSVLTNVLVGGNTPRKNPMHPSSRWSELDLLILLGTAGHVLSLGASSFVEEEHQTWYFLVNTLCLALSQETYRNYFLGDDGEPPCGLCVEQGHDGATAAWQDGPGCDVLERDKGHGSPSTSEVLRGREKWMVLASPWLILACCRLLRSLNQTGVQWAHRPDLGHWLTSSDHKAELSVLAALSLLVVFVLVQRGCSPVSKAALALGLLGVYCYRAAIGSVRFPWRPDSKDISKGIIEARFVYVFVLGILFTGTKDLLKSQVIAADFKLKTVGLWEIYSGLVLLAALLFRPHNLPVLAFSLLIQTLMTKFIWKPLRHDAAEITVMHYWFGQAFFYFQGNSNNIATVDISAGFVGLDTYVEIPAVLLTAFGTYAGPVLWASHLVHFLSSETRSGSALSHACFCYALICSIPVFTYIVLVTSLRYHLFIWSVFSPKLLYEGMHLLITAAVCVFFTAMDQTRLTQS
Function: Ethanolamine phosphate transferase involved in glycosylphosphatidylinositol-anchor biosynthesis. Transfers ethanolamine phosphate to the GPI second mannose. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 108173 Sequence Length: 983 Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis. Subcellular Location: Endoplasmic reticulum membrane EC: 2.-.-.-
Q32L89
MEDERSLSDICGGRLALHRRYYSPSCLEFCLSCPRISLRSITAVTCTVWLAAYGLFTLCENSMILSAAIFITLLGLLGYLHFVKIDHETLLIIDSLGIQMTSSYASGKESTTFIEMGKVKDVIINEAIYMQKVIYYLCILLKDPVEPHGISQVVPIFQSAKPRLDCLIEVYRSCQEILAHQKAASTSP
Function: Part of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis. Sequence Mass (Da): 21006 Sequence Length: 188 Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis. Subcellular Location: Cytoplasm
Q14442
MEDERSFSDICGGRLALQRRYYSPSCREFCLSCPRLSLRSLTAVTCTVWLAAYGLFTLCENSMILSAAIFITLLGLLGYLHFVKIDQETLLIIDSLGIQMTSSYASGKESTTFIEMGKVKDIVINEAIYMQKVIYYLCILLKDPVEPHGISQVVPVFQSAKPRLDCLIEVYRSCQEILAHQKATSTSP
Function: Part of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis. Sequence Mass (Da): 21081 Sequence Length: 188 Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis. Subcellular Location: Cytoplasm
Q5M9N4
MEDEKSFSDICGGRLALRCRYYSPYCREFGLSSARLSLCSLTAVTCAVWLAAYGLFTLCENSMVLSATIFITILGLLGYLHFVKIDQETLLIIDSLGIQMTSSYASGKESTTFIEMDKVKDIIINEAIYMQKVIYYLCILLKEPGKPHEISRVVPVFQSAKPRLDCLIEVYRSCQEVLAHQKATATSL
Function: Part of the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex that catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol and participates in the first step of GPI biosynthesis. Sequence Mass (Da): 21078 Sequence Length: 188 Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis. Subcellular Location: Cytoplasm
Q5W264
MNDVTTETYETLKQSVLHTFAQLTGYNVSELSLTSHLENDLGVDSIALAEIAVSLSRQFQLNTPLLIQDINTIKDALDGILQREFQLSEKVEPAAIALSGDADLWLGNLVRQIFASHSGYDVNALALDAEIESDLGIDSVSVASAQGELFNTLQLNSETIIANCNTLSALKQCLAARLVQEKGQDWFEQRGRGQSDSAIDHDADTTAEVTPPTATPVAINAEIGDPRTMRDFVGIEHPDIFHKAREFHLFYQDKKKRQLYFYGMPLETPCKNRAVMFDEATGQHREFLMFGSNSYLGLSNHPEIIHAIQDAASLYGATNTGCRIIAGSNVLHLELERKLAKLKGRDDCIVYPSGYSANLGCISALTSRHDLVFTDAINHMSIQDGCKLAGAQRKIYNHSLTSLEKSLAKYADHPGGKLIVTDGVFSMHGDIVDLPRLMKLAERYGARVLVDDAHSTGVLGKTGAGTSEHFNMKGQVDLELGTMSKALSGLGGYVCGDGDVVEYLRFYSNSYVFAATIPAPVAAGVIASIDVMLREPERLAKLWDNIYYFRTRLLNAGFDLENSDSAIIPIVVGDDAKTLFFGRAVRARGMFCQTVVFPGVSVGDARLRISITSEHTREDLDEAYAILVASALEVGVPVNASAHQEENASVAEA
Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Carrier of the L-malonyl group (malonyl-S-PigH), which is decarboxylated by PigJ to yield a C2 carbanion acetyl-S-PigH. Then the pyrrolyl group of pyrrolyl-S-cysteinyl PigJ intermediate is captured by the C2 carbanion acetyl-S-PigH to yield the pyrrolyl-beta-ketoacyl-S-PigH. In the last step, PigH catalyzes the decarboxylative condensation between the pyrrolyl-beta-ketoacyl (pyrrolyl-beta-ketoacyl-S-PigH) and L-serine to yield 4-hydroxy-2,2'-bipyrrole-5-methanol (HBM). Location Topology: Single-pass membrane protein Sequence Mass (Da): 71158 Sequence Length: 653 Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. Subcellular Location: Membrane EC: 2.3.2.-
Q5W263
MTISTPVIIDSLIRHAQRTPEQTALLCGDQHWNYRQLVTRAHVMASALRQAGLSGQAILLNLPKSLDAVAAIYATWLSGNHYIPIDYSQPSSRIERIIAAAAPALIIDTAWLATLDSQPSFDAEQPVGRMVYHNPIAAILYTSGSTGTPKGVQISHEMLGFFIQWAVRDTQLTARDVLSNHASFAFDLSTFDLFASAYVGAATWIIRESEQKDCAALAQGLQRHAVSVWYSVPSILAMLEKSTLLNPTLGQSLRQVIFAGEPYPVTALKRLLPCLPQPCRVSNWYGPTETNVCVAYAIDRARLAMLKQVPIGLPLEGLTAQLEDENGDRHPLTAQLRLSGELLISGPCVTPGYSNVVVPRQAALHPHQCHATGDWVEMTPEGLVFRGRIDDMVKINGYRVELGEIESVLHQHPAIDRAALCVELGDLRQTLIMVISLQTGAVPPGLLELKQFLQQKLPSYMIPNKLVITESLPVNANGKVDRKQLAGVVAV
Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig) . Catalyzes the conversion of L-proline to L-prolyl-AMP and the transfer of the L-prolyl group to acyl carrier protein PigG . Catalytic Activity: ATP + holo-[peptidyl-carrier protein] + L-proline = AMP + diphosphate + L-prolyl-[peptidyl-carrier protein] Sequence Mass (Da): 53701 Sequence Length: 491 Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. EC: 6.2.1.53
Q5W262
MSNDKHIAPLAVVSMGCVLPGVDHFRALDTIADWETVFQSASPLAWSETSRPIQGRQMDDSGFDFKKFSIPPLFRKAVSRETRLALRAAEDALAGLVLPESLRDCCDQFCAIHLGSDAAYRNATKVGALRALAEKLQAQGCPAAEVRRRLDDYKQPLAESLGCSSHDRVGEMASSIPARIAHFAHTRGKCQTLDGADKGGLRLLQLAQDCFRYHDSQMAVLTSVQCFHHRPQAYMLLEQGVSQDACWLEGAISLVVCPLAVAHEQGWPVLTQLGDIVTTHDGSPQPEADHPAALYFAGANQVFCQIVEMVLRQHQRCEGRSFTGGRWQVNVAQTQSLTPAVDDRVAIVDYQPITGHPLDKTQFWQTLEQGEDALREHSAAHVNAEAFVRTTQQKLSTYIHRTMSFPAHSPSDVALKKPMMPAKKQRLDVTQLYALNSCHSWSEKIRQFERVAIIIASNLSLSADRLQAMRALWSGLPGSEGAIPLPELPSINHWSWYGACGIGTAQLLAQYFGISADCYAVEAACASSLAAVHDAVRALQAGRYDAVIVGGIETATLERDLVLCSAQMMLSVSRIRPFSQGADGFTPGDGGGFVMLTHHPVPRAIATIEAISGSCDSYSMTAPDPLGQALAIKKTLSLTAIDAQTVQYLEAHGTGTELGDRSEVMSLKYSYHRDKHSPLYIGSAKYNFGHCFAGAGALSLCKVLSAFEHERIPPTPVSELNVDLPLGDIPAEVPQQAIPWRLSEDGQRKAAINAFGTGGINYHLVIRQSS
Function: Involved in the biosynthesis of 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), one of the terminal products involved in the biosynthesis of the red antibiotic prodigiosin (Pig). Catalyzes the decarboxylation on the malonyl group attached to PigH to yield a C2 carbanion of acetyl-S-PigH. Then, the heterocyclic pyrrole group of PigG moves to the PigJ active site Cys-525 to generate a transient pyrrolyl-S-cysteinyl PigJ intermediate (acyl donor) whose pyrrolyl group is captured by the C2 carbanion of acetyl-S-PigH to yield the pyrrolyl-beta-ketoacyl-S-PigH. Sequence Mass (Da): 83742 Sequence Length: 770 Domain: It seems that PigJ is composed by an active ketosynthase (KS) domain and by a chain length factor (CLF) partner domain that potentially decarboxylates the malonyl group of PigH. Pathway: Antibiotic biosynthesis; prodigiosin biosynthesis. EC: 2.3.1.-
Q54C64
MKNHLNNNEDNSTLIKKKVLFVIAHPDDECMFFTPTIQHYNFIGSEIFVACLSNGNAVGLGKIREKELIDSCIDMGINQENVFFDQTNNFQDGMNIIWDTDLVEKTILSFIKQTSADIVISFDECGISSHPNHISISNGLKQLMKNKSSSTTTTSTTSSSSSSSSLSNRTTNNLNKEIKAYKLETVNIIRKYIGIADIPLTKLLSYDENSTQTFISTQLFPPSSYSPMTKHKSQFVWFRYLFVFLSRYSFINTLIEIK
Function: Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol (By similarity). Catalytic Activity: a 6-(N-acetyl-alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O = acetate + an alpha-D-GlcN-(1->6)-(1,2-diacyl-sn-glycero-3-phospho)-1D-myo-inositol Sequence Mass (Da): 29237 Sequence Length: 258 Pathway: Glycolipid biosynthesis; glycosylphosphatidylinositol-anchor biosynthesis. Subcellular Location: Endoplasmic reticulum membrane EC: 3.5.1.89
Q9UKJ1
MGRPLLLPLLPLLLPPAFLQPSGSTGSGPSYLYGVTQPKHLSASMGGSVEIPFSFYYPWELATAPDVRISWRRGHFHRQSFYSTRPPSIHKDYVNRLFLNWTEGQKSGFLRISNLQKQDQSVYFCRVELDTRSSGRQQWQSIEGTKLSITQAVTTTTQRPSSMTTTWRLSSTTTTTGLRVTQGKRRSDSWHISLETAVGVAVAVTVLGIMILGLICLLRWRRRKGQQRTKATTPAREPFQNTEEPYENIRNEGQNTDPKLNPKDDGIVYASLALSSSTSPRAPPSHRPLKSPQNETLYSVLKA
Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. PILRA is thought to act as a cellular signaling inhibitory receptor by recruiting cytoplasmic phosphatases like PTPN6/SHP-1 and PTPN11/SHP-2 via their SH2 domains that block signal transduction through dephosphorylation of signaling molecules. Receptor for PIANP. PTM: According to PubMed:10660620, N- and O-glycosylated. According to PubMed:10903717, only N-glycosylated. Location Topology: Single-pass type I membrane protein Sequence Mass (Da): 34005 Sequence Length: 303 Domain: Contains 2 copies of a cytoplasmic motif that is referred to as the immunoreceptor tyrosine-based inhibitor motif (ITIM). This motif is involved in modulation of cellular responses. The phosphorylated ITIM motif can bind the SH2 domain of several SH2-containing phosphatases. PTPN6 seems to bind predominantly to the first ITIM motif. Subcellular Location: Cell membrane
Q2YFS3
MALLISLPGGTPAMAQILLLLSSACLHAGNSERSNRKNGFGVNQPESCSGVQGGSIDIPFSFYFPWKLAKDPQMSIAWRWKDFHGEFIYNSSLPFIHEHFKGRLILNWTQGQTSGVLRILNLKESDQTRYFGRVFLQTTEGIQFWQSIPGTQLNVTNATCTPTTLPSTTAATSAHTQNDITEVKSANIGGLDLQTTVGLATAAAVFLVGVLGLIVFLWWKRRRQGQKTKAEIPAREPLETSEKHESVGHEGQCMDPKENPKDNNIVYASISLSSPTSPGTAPNLPVHGNPQEETVYSIVKAK
Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. Receptor for CD99 and PIANP. PTM: Phosphorylated on tyrosine residues. Location Topology: Single-pass type I membrane protein Sequence Mass (Da): 33064 Sequence Length: 302 Domain: Contains 2 copies of a cytoplasmic motif that is referred to as the immunoreceptor tyrosine-based inhibitor motif (ITIM). This motif is involved in modulation of cellular responses. The phosphorylated ITIM motif can bind the SH2 domain of several SH2-containing phosphatases. PTPN6 seems to bind predominantly to the first ITIM motif (By similarity). Subcellular Location: Membrane
Q9UKJ0
MGRPLLLPLLLLLQPPAFLQPGGSTGSGPSYLYGVTQPKHLSASMGGSVEIPFSFYYPWELAIVPNVRISWRRGHFHGQSFYSTRPPSIHKDYVNRLFLNWTEGQESGFLRISNLRKEDQSVYFCRVELDTRRSGRQQLQSIKGTKLTITQAVTTTTTWRPSSTTTIAGLRVTESKGHSESWHLSLDTAIRVALAVAVLKTVILGLLCLLLLWWRRRKGSRAPSSDF
Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. PILRB is thought to act as a cellular signaling activating receptor that associates with ITAM-bearing adapter molecules on the cell surface. Location Topology: Single-pass type I membrane protein Sequence Mass (Da): 25542 Sequence Length: 227 Subcellular Location: Membrane
Q2YFS2
MALLISLPGGTPAMAQVLLLLSSGCLHAGNSERYNRKNGFGVNQPERCSGVQGGSIDIPFSFYFPWKLAKDPQMSIAWKWKDFHGEVIYNSSLPFIHEHFKGRLILNWTQGQTSGVLRILNLKESDQAQYFSRVNLQSTEGMKLWQSIPGTQLNVTQALNTTMRSPFIVTSEFTTAGLEHTSDQRNPSLMNLGAMVTMLLAKVLVIVLVYGWMIFLRWKQRPAH
Function: Paired receptors consist of highly related activating and inhibitory receptors and are widely involved in the regulation of the immune system. PILRB is thought to act as a cellular signaling activating receptor that associates with ITAM-bearing adapter molecules on the cell surface. Seems to associate with DAP12 and is a receptor for CD99. May be involved in target cell recognition by natural killer cells and in activation of dendritic cells. Location Topology: Single-pass type I membrane protein Sequence Mass (Da): 25200 Sequence Length: 224 Subcellular Location: Membrane
Q00934
MSRQKALIVDDEPDIRELLEITLGRMKLDTRSARNVKEARELLAREPFDLCLTDMRLPDGSGLDLVQYIQQRHPQTPVAMITAYGSLDTAIQALKAGAFDFLTKPVDLGRLRELVATALRLRNPEAEEAPVDNRLLGESPPMRALRNQIGKLARSQAPVYISGESGSGKELVARLIHEQGPRIERPFVPVNCGAIPSELMESEFFGHKKGSFTGAIEDKQGLFQAASGGTLFLDEVADLPMAMQVKLLRAIQEKAVRAVGGQQEVAVDVRILCATHKDLAAEVGAGRFRQDLYYRLNVIELRVPPLRERREDIPLLAERILKRLAGDTGLPAARLTGDAQEKLKNYRFPGNVRELENMLERAYTLCEDDQIQPHDLRLADAPGASQEGAASLSEIDNLEDYLEDIERKLIMQALEETRWNRTAAAQRLGLTFRSMRYRLKKLGID
Function: Member of the two-component regulatory system PilS/PilR that regulates the expression of multiple genes including the type IV pilus (T4P) major subunit PilA . Thereby, plays a major role in the regulation of multiple motility pathways . Upon appropriate environmental signals, the histidine kinase PilS transfers the phosphoryl group onto PilR . In turn, PilR functions as a transcriptional activator by direct binding to a cis-acting sequence upstream of the pilin gene promoter leading to its activation . PTM: Phosphorylated by PilS. Sequence Mass (Da): 49737 Sequence Length: 445 Subcellular Location: Cytoplasm
Q39VS0
MNFDIARKRMVETQIISRGVKDRRLIEAMLKVPRHVFVEEAMAAQAYSDTPLPIGEKQTISQPYMVALMTELLELSGREKVLEIGTGSGYQAAILATLADRVYTVERIRPLALKARRALDRLGLLNVNIKISDGTIGWEEEAPFDAIIVTAGAPDVPDKLAEQLAVGGRLVIPVGNQFDQVLVRITKQEDGSLIRENVTGCRFVKLVGKYGWGTEE
Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins. Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 23890 Sequence Length: 216 Subcellular Location: Cytoplasm EC: 2.1.1.77
Q74CZ5
MVESQIIARGVSDRRVIEAMLKVPRHVFVEEAMAAQAYSDTPLPIGEKQTISQPYMVALMTELLELKGKEKVLEIGTGSGYQAAILAVMADRVYTVERIRPLALRARKALDSLGLLNVNIKMSDGTVGWEDEAPFDAIIVTAGAPDIPQQYIDQLKPGGRLVIPVGTQFEQVLVRVVKQEDGSVERENITGCRFVKLVGKFGWSSDD
Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins. Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 22755 Sequence Length: 207 Subcellular Location: Cytoplasm EC: 2.1.1.77
Q7NJY2
MVDEQLRPRGVEAQAVLAAMAKVPRHRFVPPPYTRLAYEDRPLPIGHSQTISQPFIVAYMSEAARITPGAKVLEIGTGSGYQAAVLAEMGAEVYTVEIVPELAKRAERTLEELGYRSVRVRSGDGYQGWPQHAPFDAIVVTAAPERIPQPLIDQLAVNGRLIVPVGTQTEDQRMTVLTRTPGGIVEQKTFPVRFVPLTREKPQEH
Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins. Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 22643 Sequence Length: 205 Subcellular Location: Cytoplasm EC: 2.1.1.77
A1WWY5
MRERNAAGIGMTSQRTRDRLVDALAAQGIQDERVLSAMREVPRHLFVDEALESRAYENTPLPIGEGQTISQPWVVARMTELLLEPGVPERVLEVGTGSGYQAAVLARLVPRVYSIERIGSLLRRARERLQAVRLFNCQLRHGDGYEGWPEYAPYDGIIVTAAPDALPEALLEQLADGGRLVAPIGGAGYQELLVVDRRGDAYEQRRVAGVSFVPMLEGRV
Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins. Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 24274 Sequence Length: 220 Subcellular Location: Cytoplasm EC: 2.1.1.77
P56133
MNSIKNHLMCEEINKRFNLHPKVREAMESIEREVFVPAPFKHFAYTLNALSMQAQQYISSPLTVAKMTQYLEIDHVDSVLEIGCGSGYQAAVLSQIFRRVFSIERIESLYIEARLRLKTLGLDNVHVKFADGNKGWEQYAPYDRILFSACAKNIPQALIDQLEEGGILVAPIQENNEQVIKRFVKQNNALRVQKVLEKCLFVPVVDGVQ
Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins (By similarity). Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 23868 Sequence Length: 209 Subcellular Location: Cytoplasm EC: 2.1.1.77
A9AUP1
MSDVWQQQRQRMVDEQLRPRGIHDQRILAAMANVPRHLFVPEALQAQAYSDQALPLTLGQTISQPYIVALMAQELLLNPHEQLLEIGAGSGYAAAVFAELVRKVVTIERHQALAQQTQVRLRNLGYVNIEVVWGDGSLGYPTAAPYHAISIPAATPQLAQTLLSQLHDGGRLVAPIGDAQDQQLIRLQRQGQNWQKTTISNVRFVPLIGAGGWEHAPETTAEGE
Function: Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins. Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 24685 Sequence Length: 224 Subcellular Location: Cytoplasm EC: 2.1.1.77
P22061
MAWKSGGASHSELIHNLRKNGIIKTDKVFEVMLATDRSHYAKCNPYMDSPQSIGFQATISAPHMHAYALELLFDQLHEGAKALDVGSGSGILTACFARMVGCTGKVIGIDHIKELVDDSVNNVRKDDPTLLSSGRVQLVVGDGRMGYAEEAPYDAIHVGAAAPVVPQALIDQLKPGGRLILPVGPAGGNQMLEQYDKLQDGSIKMKPLMGVIYVPLTDKEKQWSRWK
Function: Initiates the repair of damaged proteins by catalyzing methyl esterification of L-isoaspartyl and D-aspartyl residues produced by spontaneous isomerization and racemization of L-aspartyl and L-asparaginyl residues in aging peptides and proteins . Acts on EIF4EBP2, microtubule-associated protein 2, calreticulin, clathrin light chains a and b, Ubiquitin C-terminal hydrolase isozyme L1, phosphatidylethanolamine-binding protein 1, stathmin, beta-synuclein and alpha-synuclein (By similarity). Catalytic Activity: [protein]-L-isoaspartate + S-adenosyl-L-methionine = [protein]-L-isoaspartate alpha-methyl ester + S-adenosyl-L-homocysteine Sequence Mass (Da): 24636 Sequence Length: 227 Subcellular Location: Cytoplasm EC: 2.1.1.77
Q6L5F6
MISWHELYMVLSAVVPLYVAMMVAYGSVRWWGVLTPEQCSGINRFVAVIAVPLLSFHFISSSDPYAMNLRFVAADTLQKVLVLAALAAWSRFPARFVPPAWPPLDCSITLFSVSTLPNTLVMGIPLLVSMYGPYSGDLMVQIVVLQSIVWYTLLLFLFEFRAARVLIAAQFPDTAASIAAVHVDPDVVSLEGSQAEAHAEVAPDGRLRMVVCRSSVSRRSAAAAATPRASNLTGVEIYSISSSRNATPRGSTFTLADIPGHQPPNSALRASSFGAADLFSLHSSSRQHTPRPSSFDEHAAARARASATVAPTNDLKDTHMIEWSSGASAASEVTGLPVFRSGRETRRLVPSDAPSIASSRVIRPPPGATGGERAASFNKAVGGQDELAKLEAGAKTEQQTTAVTTTTKGGGAAGAERARGQQNAPAGVMLRLILTTVWRRLIRNPNTYASLIGLTWSLIAFRFHITMPIIVAKSISILSDAGLGMAMFSLGLFMATQPKIIACGYSVAAASMGVRFFFGPAIMAAASAAVGIRGTLLRIAIVQAALPQGIVPFVFAKEYNLHATILCTLVIFGMLIALPITLVYYIILGLL
Function: May act as a component of the auxin efflux carrier. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 62931 Sequence Length: 591 Subcellular Location: Membrane
Q06449
MSASLINRSLTNIRTELDFLKGSNVISNDVYDQINKSLPAKWDPANAPRNASPASLEYVEALYQFDPQQDGDLGLKPGDKVQLLEKLSPEWYKGSCNGRTGIFPANYVKPAFSGSNGPSNLPPPPQYKAQELQQIPTQNSAASSYQQQPFPPPSTNYYQQPQQQPQQAPPPQQQQQQQQHQSSHSHLKSFGSKLGNAAIFGAGASIGSDIVNNIF
Function: Overproduction promotes the de novo induction of the [PSI+] prion form of SUP35. The prion-inducing effect depends on the association with the actin cytoskeleton. Also implicated in prion maintenance during heat stress. PTM: Ubiquitinated by RSP5. Ubiquitination reduces the protein abundance and its prion-inducing ability. Sequence Mass (Da): 23539 Sequence Length: 215 Domain: The PY motif is recognized directly by the WW domains of RSP5. Subcellular Location: Cytoplasm
Q8RWZ6
MITWHDLYTVLTAVVPLYVAMILAYGSVQWWKIFSPDQCSGINRFVAIFAVPLLSFHFISTNDPYAMNFRFVAADTLQKIIMLVLLALWANLTKNGSLEWMITIFSLSTLPNTLVMGIPLLIAMYGTYAGSLMVQVVVLQCIIWYTLLLFLFEYRGAKLLIMEQFPETGASIVSFKVESDVVSLDGHDFLETDAEIGNDGKLHVTVRKSNASRRSLMMTPRPSNLTGAEIYSLSSTPRGSNFNHSDFYSVMGFPGGRLSNFGPADLYSVQSSRGPTPRPSNFEENNAVKYGFYNNTNSSVPAAGSYPAPNPEFSTGTGVSTKPNKIPKENQQQLQEKDSKASHDAKELHMFVWSSSASPVSDVFGGGAGDNVATEQSEQGAKEIRMVVSDQPRKSNARGGGDDIGGLDSGEGEREIEKATAGLNKMGSNSTAELEAAGGDGGGNNGTHMPPTSVMTRLILIMVWRKLIRNPNTYSSLIGLIWALVAYRWHVAMPKILQQSISILSDAGLGMAMFSLGLFMALQPKIIACGNSVATFAMAVRFITGPAIMAVAGIAIGLHGDLLRIAIVQAALPQGIVPFVFAKEYNVHPTILSTGVIFGMLIALPITLVYYILLGL
Function: Acts as a component of the auxin efflux carrier. Plays a role in generating a sink for auxin into columella cells . Maintains the endogenous auxin gradient, which is essential for correct root patterning . Involved in EXO70A3-regulated gravitropic responses in columella cells and in root system architecture (RSA) . Location Topology: Multi-pass membrane protein Sequence Mass (Da): 66742 Sequence Length: 616 Subcellular Location: Cell membrane
Q4WJM6
MAPKNNAKGGDKKGKGKDASEGDKGKGGGKGLKPATSINVRHILCEKFSKKEEALEKLRNGAKFDDVAREYSEDKARQGGSLGWKVRGSLNADFEKAAYELEPSTTANPKYVEVKTGFGYHIIMVEGRK
Function: PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0) Sequence Mass (Da): 14004 Sequence Length: 129 EC: 5.2.1.8
A6QPY8
MPPKGKSGSGKGGKGKAASGSESSEKKAQGPKGGGNAVKVRHILCEKHGKILEAMEKLKSGMKFNEVAAQYSEDKARQGGDLGWMTRGSMVGPFQEAAFALPISVLDKPVFTDPPVKTKFGYHIIMVEGRK
Function: Involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to tightly bent AT-rich stretches of double-stranded DNA (By similarity). PTM: Phosphorylated. Phosphorylation occurs both in the nucleus and the cytoplasm. Phosphorylation at Ser-19 does not affect its PPIase activity but is required for nuclear localization, and the dephosphorylation is a prerequisite for the binding to DNA. The unphosphorylated form associates with the pre-rRNP complexes in the nucleus (By similarity). Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0) Sequence Mass (Da): 13903 Sequence Length: 131 Subcellular Location: Nucleus EC: 5.2.1.8
Q503Y7
MPPKGKGGKGAKGAAASGSGDSDKKEKAQKGGTAVKVRHILCEKHGKCMEAMEKIKSGMRFSEVAAQYSEDKARQGGDLGWMTRGSMVGPFQDAAFALPISTMDKPVYTDPPVKTKFGYHIIMVEGKK
Function: May be involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to DNA (By similarity). Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0) Sequence Mass (Da): 13664 Sequence Length: 128 Subcellular Location: Nucleus EC: 5.2.1.8
Q4I665
MGKNDKKGADKGGKAKGGDKGKDAKDTKDSGSGGKAKGAQSINVRHILCEKHAKKEEALAKLNDGVKFDEVAREYSEDKARQGGSLGWKTKGSLDPKFEEVAFALETSTTNSPKFVEVKTGFGYHIIMVEGRK
Function: PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0) Sequence Mass (Da): 14288 Sequence Length: 133 EC: 5.2.1.8
Q9Y237
MPPKGKSGSGKAGKGGAASGSDSADKKAQGPKGGGNAVKVRHILCEKHGKIMEAMEKLKSGMRFNEVAAQYSEDKARQGGDLGWMTRGSMVGPFQEAAFALPVSGMDKPVFTDPPVKTKFGYHIIMVEGRK
Function: Isoform 1 is involved as a ribosomal RNA processing factor in ribosome biogenesis. Binds to tightly bent AT-rich stretches of double-stranded DNA. PTM: Phosphorylated. Isoform 1 phosphorylation occurs both in the nucleus and the cytoplasm. Isoform 1 phosphorylation at Ser-19 does not affect its PPIase activity but is required for nuclear localization, and the dephosphorylation is a prerequisite for the binding to DNA. The unphosphorylated isoform 1 associates with the pre-rRNP complexes in the nucleus. Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0) Sequence Mass (Da): 13810 Sequence Length: 131 Domain: The PPIase domain enhances mitochondrial targeting. Subcellular Location: Nucleus EC: 5.2.1.8
Q7RYY4
MGKDKKASGSGSGSKGGKDAGNKDAGKDAGKASKGAQSINVRHILCEKHGKKEEALAKIRDGADFGAVAREYSEDKARTGGSLGWKQKGTLDPEFEKVAFALETSSTSSPKIGEVKTQFGYHIIMVEGKK
Function: PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). Catalytic Activity: [protein]-peptidylproline (omega=180) = [protein]-peptidylproline (omega=0) Sequence Mass (Da): 13658 Sequence Length: 130 EC: 5.2.1.8
P34217
METSSFENAPPAAINDAQDNNINTETNDQETNQQSIETRDAIDKENGVQTETGENSAKNAEQNVSSTNLNNAPTNGALDDDVIPNAIVIKNIPFAIKKEQLLDIIEEMDLPLPYAFNYHFDNGIFRGLAFANFTTPEETTQVITSLNGKEISGRKLKVEYKKMLPQAERERIEREKREKRGQLEEQHRSSSNLSLDSLSKMSGSGNNNTSNNQLFSTLMNGINANSMMNSPMNNTINNNSSNNNNSGNIILNQPSLSAQHTSSSLYQTNVNNQAQMSTERFYAPLPSTSTLPLPPQQLDFNDPDTLEIYSQLLLFKDREKYYYELAYPMGISASHKRIINVLCSYLGLVEVYDPRFIIIRRKILDHANLQSHLQQQGQMTSAHPLQPNSTGGSMNRSQSYTSLLQAHAAAAANSISNQAVNNSSNSNTINSNNGNGNNVIINNNSASSTPKISSQGQFSMQPTLTSPKMNIHHSSQYNSADQPQQPQPQTQQNVQSAAQQQQSFLRQQATLTPSSRIPSGYSANHYQINSVNPLLRNSQISPPNSQIPINSQTLSQAQPPAQSQTQQRVPVAYQNASLSSQQLYNLNGPSSANSQSQLLPQHTNGSVHSNFSYQSYHDESMLSAHNLNSADLIYKSLSHSGLDDGLEQGLNRSLSGLDLQNQNKKNLW
Function: Involved in normal G2/M phase transition of the mitotic cell cycle. In association with RAD53, also involved in checkpoint control in response to DNA damage. PTM: Hyperphosphorylated in response to DNA damage by MEC1. Sequence Mass (Da): 73776 Sequence Length: 668 Subcellular Location: Cytoplasm
Q5JLM1
MIGWGDVYKVVAATVPLYFALFLGYGSVRWWRIFTREQCDAVNRLVAFFALPFFTFEFTLHTDPFQVNYRAVAADVISKAVIVAVIGAWARFMSKGGCAVSWSITSFSLSTLTNSLVVGVPMARAMYGEWAQQLVVQLSVFQAIVWLTLLLFVLEVRKAAIGMYVDGAEAAAAAGKDVEAAGAAAAAGTVVVAAAAGKPSLWALVKVVAHKLARNPNTYASFVGITWACLANRLHIALPSAFEGSVLIMSKSGTGMAMFSMGLFMAQQEKIIACGTSFAALGLVLKFALGPAAMAIGSIAVGLRGDVLRVAIIQAALPQSITSFIFAKEYGLHADVLSTAVIFGMLVSLPLLVGFYIVLELIR
Function: May act as a component of the auxin efflux carrier. Location Topology: Multi-pass membrane protein Sequence Mass (Da): 38625 Sequence Length: 363 Subcellular Location: Membrane