Datasets:

Modalities:
Text
Languages:
code
Size:
< 1K
Libraries:
Datasets
License:
File size: 3,502 Bytes
e2208f5
2c29590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2208f5
2c29590
 
 
 
c3cfcde
2c29590
 
 
 
 
 
b1e3d2c
2c29590
 
 
0ade4d8
2c29590
 
 
 
 
 
 
 
 
 
bc20598
2c29590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a1512
2c29590
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language:
- code
license:
- apache-2.0
multilinguality:
- multilingual
pretty_name: HumanEval-X
size_categories:
- unknown
source_datasets: []
task_categories:
- sequence-modeling
task_ids:
- language-modeling
---

# HumanEval-X

## Dataset Description
[HumanEval-X](https://github.com/THUDM/CodeGeeX) is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation.

## Languages

The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go.

## Dataset Structure
To load the dataset you need to specify a subset among the 5 exiting languages  `[python, cpp, go, java, js]`. By default `python` is loaded. 

```python
from datasets import load_dataset
load_dataset("THUDM/humaneval-x", "js")

DatasetDict({
    test: Dataset({
        features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'],
        num_rows: 164
    })
})
```

```python
next(iter(data["test"]))
{'task_id': 'JavaScript/0',
 'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n  given threshold.\n  >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n  false\n  >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n  true\n  */\nconst hasCloseElements = (numbers, threshold) => {\n',
 'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n',
 'canonical_solution': '  for (let i = 0; i < numbers.length; i++) {\n    for (let j = 0; j < numbers.length; j++) {\n      if (i != j) {\n        let distance = Math.abs(numbers[i] - numbers[j]);\n        if (distance < threshold) {\n          return true;\n        }\n      }\n    }\n  }\n  return false;\n}\n\n',
 'test': 'const testHasCloseElements = () => {\n  console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n  console.assert(\n    hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n  )\n  console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n  console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n  console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n  console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n  console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n',
 'example_test': 'const testHasCloseElements = () => {\n  console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n  console.assert(\n    hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n  )\n}\ntestHasCloseElements()\n'}
 ```


## Data Fields

*   ``task_id``: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"].
*   ``prompt``: the function declaration and docstring, used for code generation.
*   ``declaration``: only the function declaration, used for code translation. 
*   ``canonical_solution``: human-crafted example solutions.
*   ``test``: hidden test samples, used for evaluation.
*   ``example_test``: public test samples (appeared in prompt), used for evaluation. 

## Data Splits

Each subset has one split: test.

## Citation Information

Refer to https://github.com/THUDM/CodeGeeX.