Datasets:

Modalities:
Text
Formats:
json
Languages:
Slovak
DOI:
Libraries:
Datasets
pandas
License:
fejso's picture
Upload 8 files
a8a2b54 verified
raw
history blame
2.24 kB
import pandas as pd
# recall@k function
def recall(actual, predicted, k):
"""
Calculate recall for set results
:param actual: actual results on question from annotated datatest
:param predicted: predicted results on question from searched engine
:param k: max results in set
:return: recall value
"""
# corrects results
act_set = actual
# search results (count edit k)
pred_set = predicted[:k]
# count and find same numbers
common_elements = 0
for item in act_set:
if item in pred_set:
common_elements += 1
result = round(common_elements / float(len(act_set)), 2)
return result
def count_recall(actual_list, predicted_list, count_results):
"""
Calculate recall for search engine
:param actual_list: actual results from annotated datatest
:param predicted_list: predicted results from searched engine
:return: average recall value
"""
# set values for parameter k
k_start = 3
k_end = count_results + 1
# Initialization empty DataFrame
df_recall = pd.DataFrame(index=range(3, count_results + 1))
# For cycle go to every predicted questions
for i, predicted_val in enumerate(predicted_list, 1):
recalls = []
# Count recall for question
for k in range(k_start, k_end):
recall_val = recall(actual_list[i - 1], predicted_val, k)
recalls.append(recall_val)
df_temp = pd.DataFrame({f"Question {i}": recalls}, index=range(3, count_results + 1))
df_recall = pd.concat([df_recall, df_temp], axis=1)
df_recall[f"Question {i}"] = recalls
# Calculate the average recall value for each number of questions
average_recall = df_recall.mean(axis=1)
# Print list the recall values for each question separately
# print("Recall values for every question:")
# print(df_recall)
# set results two dots numbers
pd.set_option('display.float_format', '{:.2f}'.format)
# Print all mean recall
# print(f"\nAll Mean Recall for {count_results} results :{round(average_recall.mean(), 2)}")
print(f"Recall Metric for {count_results} is: {round(average_recall.iloc[-1], 2)}")
return average_recall