id
stringlengths 4
8
| struct_in
stringlengths 301
4.09k
| table_file
stringlengths 19
21
| position
int64 0
7
| answer_coordinates
dict | question_and_history
sequence | annotator
int64 0
2
| seq_out
stringlengths 1
1.73k
| table_header
sequence | question
stringlengths 10
291
| table_data
sequence | answer_text
sequence | text_in
stringlengths 19
565
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
ns-2354 | col : rank | title | studio | actor/actress | director | gross row 1 : 1.0 | three men and a baby | touchstone | tom selleck, ted danson, and steve guttenberg | leonard nimoy | $167,780,960 row 2 : 2.0 | fatal attraction | paramount | michael douglas, glenn close, and anne archer | adrian lyne | $156,645,693 row 3 : 3.0 | beverly hills cop ii | paramount | eddie murphy, judge reinhold, brigitte nielsen, john ash | tony scott | $153,665,036 row 4 : 4.0 | good morning, vietnam | touchstone | robin williams and forest whitaker | barry levinson | $123,922,370 row 5 : 5.0 | moonstruck | mgm | cher, nicolas cage, olympia dukakis, vincent gardeni | norman jewison | $80,640,528 row 6 : 6.0 | the untouchables | paramount | kevin costner, sean connery, robert de niro, | brian de palma | $76,270,454 row 7 : 7.0 | the secret of my success | universal | michael j. fox, helen slater, margaret whitton, | herbert ross | $66,995,000 row 8 : 8.0 | stakeout | touchstone | richard dreyfuss, emilio estevez, made | john badham | $65,673,233 row 9 : 9.0 | lethal weapon | warner bros. | mel gibson, danny glover, and gary busey | richard donner | $65,207,127 row 10 : 10.0 | dirty dancing | vestron | patrick swayze, jennifer grey, jerry orbach, and cynthia rhode | emile ardolino | $63,892,689 row 11 : 11.0 | the witches of eastwick | warner bros. | jack nicholson, cher, susan sarandon, michelle pf | george miller | $63,766,510 row 12 : 12.0 | predator | fox | arnold schwarzenegger, carl weathers, jesse ventura, | john mctiernan | $59,735,548 row 13 : 13.0 | throw momma from the train | orion | danny devito, billy crystal, kate mulgrew, and anne | danny devito | $57,915,972 row 14 : 14.0 | dragnet | universal | dan aykroyd, tom hanks, alexandra paul | tom mankiewicz | $57,387,516 row 15 : 15.0 | robocop | orion | peter weller, nancy allen, ronny cox, kurtwood | paul verhoeven | $53,424,681 row 16 : 16.0 | outrageous fortune | touchstone | bette midler and shelley long | arthur hiller | $52,864,741 row 17 : 17.0 | la bamba | columbia | lou diamond phillips, esai morales, rosana | luis valdez | $52,678,820 row 18 : 18.0 | broadcast news | fox | william hurt, holly hunter, and albert brooks | james l. brooks | $51,300,000 row 19 : 19.0 | the living daylights | united artists | timothy dalton and maryam d'abo | john glen | $51,185,000 row 20 : 20.0 | eddie murphy raw | paramount | eddie murphy | robert townsend | $50,505,655 | table_csv/202_122.csv | 0 | {
"column_index": [
2
],
"row_index": [
0
]
} | [
"what studio learned the most in 1987"
] | 2 | touchstone | [
"Rank",
"Title",
"Studio",
"Actor/Actress",
"Director",
"Gross"
] | what studio learned the most in 1987 | [
[
"1.0",
"Three Men and a Baby",
"Touchstone",
"Tom Selleck, Ted Danson, and Steve Guttenberg",
"Leonard Nimoy",
"$167,780,960"
],
[
"2.0",
"Fatal Attraction",
"Paramount",
"Michael Douglas, Glenn Close, and Anne Archer",
"Adrian Lyne",
"$156,645,693"
],
[
"3.0",
"Beverly Hills Cop II",
"Paramount",
"Eddie Murphy, Judge Reinhold, Brigitte Nielsen, John Ash",
"Tony Scott",
"$153,665,036"
],
[
"4.0",
"Good Morning, Vietnam",
"Touchstone",
"Robin Williams and Forest Whitaker",
"Barry Levinson",
"$123,922,370"
],
[
"5.0",
"Moonstruck",
"MGM",
"Cher, Nicolas Cage, Olympia Dukakis, Vincent Gardeni",
"Norman Jewison",
"$80,640,528"
],
[
"6.0",
"The Untouchables",
"Paramount",
"Kevin Costner, Sean Connery, Robert De Niro,",
"Brian De Palma",
"$76,270,454"
],
[
"7.0",
"The Secret of My Success",
"Universal",
"Michael J. Fox, Helen Slater, Margaret Whitton,",
"Herbert Ross",
"$66,995,000"
],
[
"8.0",
"Stakeout",
"Touchstone",
"Richard Dreyfuss, Emilio Estevez, Made",
"John Badham",
"$65,673,233"
],
[
"9.0",
"Lethal Weapon",
"Warner Bros.",
"Mel Gibson, Danny Glover, and Gary Busey",
"Richard Donner",
"$65,207,127"
],
[
"10.0",
"Dirty Dancing",
"Vestron",
"Patrick Swayze, Jennifer Grey, Jerry Orbach, and Cynthia Rhode",
"Emile Ardolino",
"$63,892,689"
],
[
"11.0",
"The Witches of Eastwick",
"Warner Bros.",
"Jack Nicholson, Cher, Susan Sarandon, Michelle Pf",
"George Miller",
"$63,766,510"
],
[
"12.0",
"Predator",
"Fox",
"Arnold Schwarzenegger, Carl Weathers, Jesse Ventura,",
"John McTiernan",
"$59,735,548"
],
[
"13.0",
"Throw Momma from the Train",
"Orion",
"Danny DeVito, Billy Crystal, Kate Mulgrew, and Anne",
"Danny DeVito",
"$57,915,972"
],
[
"14.0",
"Dragnet",
"Universal",
"Dan Aykroyd, Tom Hanks, Alexandra Paul",
"Tom Mankiewicz",
"$57,387,516"
],
[
"15.0",
"RoboCop",
"Orion",
"Peter Weller, Nancy Allen, Ronny Cox, Kurtwood",
"Paul Verhoeven",
"$53,424,681"
],
[
"16.0",
"Outrageous Fortune",
"Touchstone",
"Bette Midler and Shelley Long",
"Arthur Hiller",
"$52,864,741"
],
[
"17.0",
"La Bamba",
"Columbia",
"Lou Diamond Phillips, Esai Morales, Rosana",
"Luis Valdez",
"$52,678,820"
],
[
"18.0",
"Broadcast News",
"Fox",
"William Hurt, Holly Hunter, and Albert Brooks",
"James L. Brooks",
"$51,300,000"
],
[
"19.0",
"The Living Daylights",
"United Artists",
"Timothy Dalton and Maryam d'Abo",
"John Glen",
"$51,185,000"
],
[
"20.0",
"Eddie Murphy Raw",
"Paramount",
"Eddie Murphy",
"Robert Townsend",
"$50,505,655"
]
] | [
"Touchstone"
] | what studio learned the most in 1987 || |
ns-2354 | col : rank | title | studio | actor/actress | director | gross row 1 : 1.0 | three men and a baby | touchstone | tom selleck, ted danson, and steve guttenberg | leonard nimoy | $167,780,960 row 2 : 2.0 | fatal attraction | paramount | michael douglas, glenn close, and anne archer | adrian lyne | $156,645,693 row 3 : 3.0 | beverly hills cop ii | paramount | eddie murphy, judge reinhold, brigitte nielsen, john ash | tony scott | $153,665,036 row 4 : 4.0 | good morning, vietnam | touchstone | robin williams and forest whitaker | barry levinson | $123,922,370 row 5 : 5.0 | moonstruck | mgm | cher, nicolas cage, olympia dukakis, vincent gardeni | norman jewison | $80,640,528 row 6 : 6.0 | the untouchables | paramount | kevin costner, sean connery, robert de niro, | brian de palma | $76,270,454 row 7 : 7.0 | the secret of my success | universal | michael j. fox, helen slater, margaret whitton, | herbert ross | $66,995,000 row 8 : 8.0 | stakeout | touchstone | richard dreyfuss, emilio estevez, made | john badham | $65,673,233 row 9 : 9.0 | lethal weapon | warner bros. | mel gibson, danny glover, and gary busey | richard donner | $65,207,127 row 10 : 10.0 | dirty dancing | vestron | patrick swayze, jennifer grey, jerry orbach, and cynthia rhode | emile ardolino | $63,892,689 row 11 : 11.0 | the witches of eastwick | warner bros. | jack nicholson, cher, susan sarandon, michelle pf | george miller | $63,766,510 row 12 : 12.0 | predator | fox | arnold schwarzenegger, carl weathers, jesse ventura, | john mctiernan | $59,735,548 row 13 : 13.0 | throw momma from the train | orion | danny devito, billy crystal, kate mulgrew, and anne | danny devito | $57,915,972 row 14 : 14.0 | dragnet | universal | dan aykroyd, tom hanks, alexandra paul | tom mankiewicz | $57,387,516 row 15 : 15.0 | robocop | orion | peter weller, nancy allen, ronny cox, kurtwood | paul verhoeven | $53,424,681 row 16 : 16.0 | outrageous fortune | touchstone | bette midler and shelley long | arthur hiller | $52,864,741 row 17 : 17.0 | la bamba | columbia | lou diamond phillips, esai morales, rosana | luis valdez | $52,678,820 row 18 : 18.0 | broadcast news | fox | william hurt, holly hunter, and albert brooks | james l. brooks | $51,300,000 row 19 : 19.0 | the living daylights | united artists | timothy dalton and maryam d'abo | john glen | $51,185,000 row 20 : 20.0 | eddie murphy raw | paramount | eddie murphy | robert townsend | $50,505,655 | table_csv/202_122.csv | 1 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"what studio learned the most in 1987",
"what movie did they produce?"
] | 2 | three men and a baby | [
"Rank",
"Title",
"Studio",
"Actor/Actress",
"Director",
"Gross"
] | what movie did they produce? | [
[
"1.0",
"Three Men and a Baby",
"Touchstone",
"Tom Selleck, Ted Danson, and Steve Guttenberg",
"Leonard Nimoy",
"$167,780,960"
],
[
"2.0",
"Fatal Attraction",
"Paramount",
"Michael Douglas, Glenn Close, and Anne Archer",
"Adrian Lyne",
"$156,645,693"
],
[
"3.0",
"Beverly Hills Cop II",
"Paramount",
"Eddie Murphy, Judge Reinhold, Brigitte Nielsen, John Ash",
"Tony Scott",
"$153,665,036"
],
[
"4.0",
"Good Morning, Vietnam",
"Touchstone",
"Robin Williams and Forest Whitaker",
"Barry Levinson",
"$123,922,370"
],
[
"5.0",
"Moonstruck",
"MGM",
"Cher, Nicolas Cage, Olympia Dukakis, Vincent Gardeni",
"Norman Jewison",
"$80,640,528"
],
[
"6.0",
"The Untouchables",
"Paramount",
"Kevin Costner, Sean Connery, Robert De Niro,",
"Brian De Palma",
"$76,270,454"
],
[
"7.0",
"The Secret of My Success",
"Universal",
"Michael J. Fox, Helen Slater, Margaret Whitton,",
"Herbert Ross",
"$66,995,000"
],
[
"8.0",
"Stakeout",
"Touchstone",
"Richard Dreyfuss, Emilio Estevez, Made",
"John Badham",
"$65,673,233"
],
[
"9.0",
"Lethal Weapon",
"Warner Bros.",
"Mel Gibson, Danny Glover, and Gary Busey",
"Richard Donner",
"$65,207,127"
],
[
"10.0",
"Dirty Dancing",
"Vestron",
"Patrick Swayze, Jennifer Grey, Jerry Orbach, and Cynthia Rhode",
"Emile Ardolino",
"$63,892,689"
],
[
"11.0",
"The Witches of Eastwick",
"Warner Bros.",
"Jack Nicholson, Cher, Susan Sarandon, Michelle Pf",
"George Miller",
"$63,766,510"
],
[
"12.0",
"Predator",
"Fox",
"Arnold Schwarzenegger, Carl Weathers, Jesse Ventura,",
"John McTiernan",
"$59,735,548"
],
[
"13.0",
"Throw Momma from the Train",
"Orion",
"Danny DeVito, Billy Crystal, Kate Mulgrew, and Anne",
"Danny DeVito",
"$57,915,972"
],
[
"14.0",
"Dragnet",
"Universal",
"Dan Aykroyd, Tom Hanks, Alexandra Paul",
"Tom Mankiewicz",
"$57,387,516"
],
[
"15.0",
"RoboCop",
"Orion",
"Peter Weller, Nancy Allen, Ronny Cox, Kurtwood",
"Paul Verhoeven",
"$53,424,681"
],
[
"16.0",
"Outrageous Fortune",
"Touchstone",
"Bette Midler and Shelley Long",
"Arthur Hiller",
"$52,864,741"
],
[
"17.0",
"La Bamba",
"Columbia",
"Lou Diamond Phillips, Esai Morales, Rosana",
"Luis Valdez",
"$52,678,820"
],
[
"18.0",
"Broadcast News",
"Fox",
"William Hurt, Holly Hunter, and Albert Brooks",
"James L. Brooks",
"$51,300,000"
],
[
"19.0",
"The Living Daylights",
"United Artists",
"Timothy Dalton and Maryam d'Abo",
"John Glen",
"$51,185,000"
],
[
"20.0",
"Eddie Murphy Raw",
"Paramount",
"Eddie Murphy",
"Robert Townsend",
"$50,505,655"
]
] | [
"Three Men and a Baby"
] | what movie did they produce? || what studio learned the most in 1987 |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"which countries competed at the 2013 bolivarian games?"
] | 0 | venezuela, guatemala, peru, chile, el salvador, ecuador, bolivia, dominican republic, colombia | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | which countries competed at the 2013 bolivarian games? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"Venezuela",
"Guatemala",
"Peru",
"Chile",
"El Salvador",
"Ecuador",
"Bolivia",
"Dominican Republic",
"Colombia"
] | which countries competed at the 2013 bolivarian games? || |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 1 | {
"column_index": [
1
],
"row_index": [
8
]
} | [
"which countries competed at the 2013 bolivarian games?",
"of those, which didn't win any gold medals?"
] | 0 | colombia | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | of those, which didn't win any gold medals? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"Colombia"
] | of those, which didn't win any gold medals? || which countries competed at the 2013 bolivarian games? |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"which nations participated in the shooting at the 2013 bolivarian games?"
] | 1 | venezuela, guatemala, peru, chile, el salvador, ecuador, bolivia, dominican republic, colombia | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | which nations participated in the shooting at the 2013 bolivarian games? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"Venezuela",
"Guatemala",
"Peru",
"Chile",
"El Salvador",
"Ecuador",
"Bolivia",
"Dominican Republic",
"Colombia"
] | which nations participated in the shooting at the 2013 bolivarian games? || |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 1 | {
"column_index": [
2,
2,
2,
2,
2,
2,
2,
2,
2
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"which nations participated in the shooting at the 2013 bolivarian games?",
"how many gold medals did these nations win?"
] | 1 | 9, 6, 5, 4, 4, 2, 2, 1, 0 | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | how many gold medals did these nations win? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"9",
"6",
"5",
"4",
"4",
"2",
"2",
"1",
"0"
] | how many gold medals did these nations win? || which nations participated in the shooting at the 2013 bolivarian games? |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 2 | {
"column_index": [
1
],
"row_index": [
8
]
} | [
"which nations participated in the shooting at the 2013 bolivarian games?",
"how many gold medals did these nations win?",
"which nation did not win any gold medals?"
] | 1 | colombia | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | which nation did not win any gold medals? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"Colombia"
] | which nation did not win any gold medals? || how many gold medals did these nations win? | which nations participated in the shooting at the 2013 bolivarian games? |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"which countries competed?"
] | 2 | venezuela, guatemala, peru, chile, el salvador, ecuador, bolivia, dominican republic, colombia | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | which countries competed? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"Venezuela",
"Guatemala",
"Peru",
"Chile",
"El Salvador",
"Ecuador",
"Bolivia",
"Dominican Republic",
"Colombia"
] | which countries competed? || |
nt-6339 | col : rank | nation | gold | silver | bronze | total row 1 : 1 | venezuela | 9 | 8 | 6 | 23 row 2 : 2 | guatemala | 6 | 6 | 6 | 18 row 3 : 3 | peru | 5 | 8 | 9 | 22 row 4 : 4 | chile | 4 | 4 | 1 | 9 row 5 : 5 | el salvador | 4 | 0 | 2 | 6 row 6 : 6 | ecuador | 2 | 5 | 1 | 8 row 7 : 7 | bolivia | 2 | 1 | 2 | 5 row 8 : 8 | dominican republic | 1 | 0 | 2 | 3 row 9 : 9 | colombia | 0 | 1 | 3 | 4 row 10 : total | total | 33 | 33 | 32 | 98 | table_csv/204_785.csv | 1 | {
"column_index": [
1
],
"row_index": [
8
]
} | [
"which countries competed?",
"of these, which did not win a gold medal?"
] | 2 | colombia | [
"Rank",
"Nation",
"Gold",
"Silver",
"Bronze",
"Total"
] | of these, which did not win a gold medal? | [
[
"1",
"Venezuela",
"9",
"8",
"6",
"23"
],
[
"2",
"Guatemala",
"6",
"6",
"6",
"18"
],
[
"3",
"Peru",
"5",
"8",
"9",
"22"
],
[
"4",
"Chile",
"4",
"4",
"1",
"9"
],
[
"5",
"El Salvador",
"4",
"0",
"2",
"6"
],
[
"6",
"Ecuador",
"2",
"5",
"1",
"8"
],
[
"7",
"Bolivia",
"2",
"1",
"2",
"5"
],
[
"8",
"Dominican Republic",
"1",
"0",
"2",
"3"
],
[
"9",
"Colombia",
"0",
"1",
"3",
"4"
],
[
"Total",
"Total",
"33",
"33",
"32",
"98"
]
] | [
"Colombia"
] | of these, which did not win a gold medal? || which countries competed? |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 0 | {
"column_index": [
1
],
"row_index": [
2
]
} | [
"what year did they play al ain, uae?"
] | 0 | 1996-12-09 | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | what year did they play al ain, uae? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"1996-12-09"
] | what year did they play al ain, uae? || |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 1 | {
"column_index": [
6
],
"row_index": [
2
]
} | [
"what year did they play al ain, uae?",
"what was the competition?"
] | 0 | 1996 afc asian cup group stage | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | what was the competition? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"1996 AFC Asian Cup Group Stage"
] | what was the competition? || what year did they play al ain, uae? |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 0 | {
"column_index": [
6,
6,
6,
6,
6,
6,
6,
6,
6
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"what competitions were held?"
] | 1 | friendly, friendly, 1996 afc asian cup group stage, 1998 fifa world cup qualification, 1998 fifa world cup qualification, 1998 fifa world cup qualification, 2000 afc asian cup group stage, 2000 afc asian cup quarterfinals, 2000 afc asian cup quarterfinals | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | what competitions were held? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"Friendly",
"Friendly",
"1996 AFC Asian Cup Group Stage",
"1998 FIFA World Cup qualification",
"1998 FIFA World Cup qualification",
"1998 FIFA World Cup qualification",
"2000 AFC Asian Cup Group Stage",
"2000 AFC Asian Cup Quarterfinals",
"2000 AFC Asian Cup Quarterfinals"
] | what competitions were held? || |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 1 | {
"column_index": [
2,
2,
2,
2,
2,
2,
2,
2,
2
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"what competitions were held?",
"where did they compete?"
] | 1 | kyoto, japan, tokyo, japan, al ain, united arab emirates, muscat, oman, tokyo, japan, seoul, korea republic, sidon, lebanon, beirut, lebanon, beirut, lebanon | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | where did they compete? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"Kyoto, Japan",
"Tokyo, Japan",
"Al Ain, United Arab Emirates",
"Muscat, Oman",
"Tokyo, Japan",
"Seoul, Korea Republic",
"Sidon, Lebanon",
"Beirut, Lebanon",
"Beirut, Lebanon"
] | where did they compete? || what competitions were held? |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 2 | {
"column_index": [
6
],
"row_index": [
2
]
} | [
"what competitions were held?",
"where did they compete?",
"what competition was at al ain, united arab emirates?"
] | 1 | 1996 afc asian cup group stage | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | what competition was at al ain, united arab emirates? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"1996 AFC Asian Cup Group Stage"
] | what competition was at al ain, united arab emirates? || where did they compete? | what competitions were held? |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 0 | {
"column_index": [
6,
6,
6,
6,
6,
6,
6,
6,
6
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"what are all of the competitions?"
] | 2 | friendly, friendly, 1996 afc asian cup group stage, 1998 fifa world cup qualification, 1998 fifa world cup qualification, 1998 fifa world cup qualification, 2000 afc asian cup group stage, 2000 afc asian cup quarterfinals, 2000 afc asian cup quarterfinals | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | what are all of the competitions? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"Friendly",
"Friendly",
"1996 AFC Asian Cup Group Stage",
"1998 FIFA World Cup qualification",
"1998 FIFA World Cup qualification",
"1998 FIFA World Cup qualification",
"2000 AFC Asian Cup Group Stage",
"2000 AFC Asian Cup Quarterfinals",
"2000 AFC Asian Cup Quarterfinals"
] | what are all of the competitions? || |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 1 | {
"column_index": [
2,
2,
2,
2,
2,
2,
2,
2,
2
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8
]
} | [
"what are all of the competitions?",
"and the venues?"
] | 2 | kyoto, japan, tokyo, japan, al ain, united arab emirates, muscat, oman, tokyo, japan, seoul, korea republic, sidon, lebanon, beirut, lebanon, beirut, lebanon | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | and the venues? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"Kyoto, Japan",
"Tokyo, Japan",
"Al Ain, United Arab Emirates",
"Muscat, Oman",
"Tokyo, Japan",
"Seoul, Korea Republic",
"Sidon, Lebanon",
"Beirut, Lebanon",
"Beirut, Lebanon"
] | and the venues? || what are all of the competitions? |
ns-2596 | col : # | date | venue | opponent | score | result | competition row 1 : 1.0 | 1995-08-06 | kyoto, japan | costa rica | 3-0 | won | friendly row 2 : 2.0 | 1995-10-24 | tokyo, japan | saudi arabia | 2-1 | won | friendly row 3 : 3.0 | 1996-12-09 | al ain, united arab emirates | uzbekistan | 4-0 | won | 1996 afc asian cup group stage row 4 : 4.0 | 1997-03-25 | muscat, oman | macau | 10-0 | won | 1998 fifa world cup qualification row 5 : 5.0 | 1997-06-22 | tokyo, japan | macau | 10-0 | won | 1998 fifa world cup qualification row 6 : 6.0 | 1997-11-01 | seoul, korea republic | south korea | 2-0 | won | 1998 fifa world cup qualification row 7 : 7.0 | 2000-10-14 | sidon, lebanon | saudi arabia | 4-1 | won | 2000 afc asian cup group stage row 8 : 8.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals row 9 : 9.0 | 2000-10-24 | beirut, lebanon | iraq | 4-1 | won | 2000 afc asian cup quarterfinals | table_csv/203_164.csv | 2 | {
"column_index": [
6
],
"row_index": [
2
]
} | [
"what are all of the competitions?",
"and the venues?",
"which competition was won at al ain, united arab emirates?"
] | 2 | 1996 afc asian cup group stage | [
"#",
"Date",
"Venue",
"Opponent",
"Score",
"Result",
"Competition"
] | which competition was won at al ain, united arab emirates? | [
[
"1.0",
"1995-08-06",
"Kyoto, Japan",
"Costa Rica",
"3-0",
"Won",
"Friendly"
],
[
"2.0",
"1995-10-24",
"Tokyo, Japan",
"Saudi Arabia",
"2-1",
"Won",
"Friendly"
],
[
"3.0",
"1996-12-09",
"Al Ain, United Arab Emirates",
"Uzbekistan",
"4-0",
"Won",
"1996 AFC Asian Cup Group Stage"
],
[
"4.0",
"1997-03-25",
"Muscat, Oman",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"5.0",
"1997-06-22",
"Tokyo, Japan",
"Macau",
"10-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"6.0",
"1997-11-01",
"Seoul, Korea Republic",
"South Korea",
"2-0",
"Won",
"1998 FIFA World Cup qualification"
],
[
"7.0",
"2000-10-14",
"Sidon, Lebanon",
"Saudi Arabia",
"4-1",
"Won",
"2000 AFC Asian Cup Group Stage"
],
[
"8.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
],
[
"9.0",
"2000-10-24",
"Beirut, Lebanon",
"Iraq",
"4-1",
"Won",
"2000 AFC Asian Cup Quarterfinals"
]
] | [
"1996 AFC Asian Cup Group Stage"
] | which competition was won at al ain, united arab emirates? || and the venues? | what are all of the competitions? |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 0 | {
"column_index": [
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
6
]
} | [
"which buildings are located in toronto?"
] | 0 | first canadian place, commerce court west, toronto-dominion centre, commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | which buildings are located in toronto? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"First Canadian Place",
"Commerce Court West",
"Toronto-Dominion Centre",
"Commerce Court North"
] | which buildings are located in toronto? || |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 1 | {
"column_index": [
1,
1
],
"row_index": [
2,
6
]
} | [
"which buildings are located in toronto?",
"of these building, which ones were around during the 60's?"
] | 0 | toronto-dominion centre, commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | of these building, which ones were around during the 60's? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"Toronto-Dominion Centre",
"Commerce Court North"
] | of these building, which ones were around during the 60's? || which buildings are located in toronto? |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 2 | {
"column_index": [
1
],
"row_index": [
6
]
} | [
"which buildings are located in toronto?",
"of these building, which ones were around during the 60's?",
"of these two, which one is the smallest with the highest number of floors."
] | 0 | commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | of these two, which one is the smallest with the highest number of floors. | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"Commerce Court North"
] | of these two, which one is the smallest with the highest number of floors. || of these building, which ones were around during the 60's? | which buildings are located in toronto? |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6
]
} | [
"what are all of the building names?"
] | 1 | first canadian place, commerce court west, toronto-dominion centre, tour de la bourse, place ville-marie, tour cibc, commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | what are all of the building names? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"First Canadian Place",
"Commerce Court West",
"Toronto-Dominion Centre",
"Tour de la Bourse",
"Place Ville-Marie",
"Tour CIBC",
"Commerce Court North"
] | what are all of the building names? || |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 1 | {
"column_index": [
4,
4,
4,
4,
4,
4,
4
],
"row_index": [
0,
1,
2,
3,
4,
5,
6
]
} | [
"what are all of the building names?",
"how many floors does each have?"
] | 1 | 72, 57, 56, 47, 44, 45, 34 | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | how many floors does each have? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"72",
"57",
"56",
"47",
"44",
"45",
"34"
] | how many floors does each have? || what are all of the building names? |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 2 | {
"column_index": [
1
],
"row_index": [
6
]
} | [
"what are all of the building names?",
"how many floors does each have?",
"which building has the fewest number of floors?"
] | 1 | commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | which building has the fewest number of floors? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"Commerce Court North"
] | which building has the fewest number of floors? || how many floors does each have? | what are all of the building names? |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6
]
} | [
"which building are on the list of the tallest in canada?"
] | 2 | first canadian place, commerce court west, toronto-dominion centre, tour de la bourse, place ville-marie, tour cibc, commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | which building are on the list of the tallest in canada? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"First Canadian Place",
"Commerce Court West",
"Toronto-Dominion Centre",
"Tour de la Bourse",
"Place Ville-Marie",
"Tour CIBC",
"Commerce Court North"
] | which building are on the list of the tallest in canada? || |
ns-2591 | col : years | building | city | height (ctbuh) | floors row 1 : 1975-present | first canadian place | toronto | 298.1 m (978 ft) (355 m (1 | 72 row 2 : 1972-1975 | commerce court west | toronto | 239.0 m (784 ft) (287.0 | 57 row 3 : 1967-1972 | toronto-dominion centre | toronto | 222.8 m (731 ft) | 56 row 4 : 1964-1967 | tour de la bourse | montreal | 190.0 m (623 ft) | 47 row 5 : 1962-1964 | place ville-marie | montreal | 188.0 m (617 ft) | 44 row 6 : 1962 | tour cibc | montreal | 184.0 m (604 ft) (225.6 m | 45 row 7 : 1931-1962 | commerce court north | toronto | 145.0 m (476 ft) | 34 | table_csv/203_777.csv | 1 | {
"column_index": [
1
],
"row_index": [
6
]
} | [
"which building are on the list of the tallest in canada?",
"which of those have the least number of floors?"
] | 2 | commerce court north | [
"Years",
"Building",
"City",
"Height (CTBUH)",
"Floors"
] | which of those have the least number of floors? | [
[
"1975-present",
"First Canadian Place",
"Toronto",
"298.1 m (978 ft) (355 m (1",
"72"
],
[
"1972-1975",
"Commerce Court West",
"Toronto",
"239.0 m (784 ft) (287.0",
"57"
],
[
"1967-1972",
"Toronto-Dominion Centre",
"Toronto",
"222.8 m (731 ft)",
"56"
],
[
"1964-1967",
"Tour de la Bourse",
"Montreal",
"190.0 m (623 ft)",
"47"
],
[
"1962-1964",
"Place Ville-Marie",
"Montreal",
"188.0 m (617 ft)",
"44"
],
[
"1962",
"Tour CIBC",
"Montreal",
"184.0 m (604 ft) (225.6 m",
"45"
],
[
"1931-1962",
"Commerce Court North",
"Toronto",
"145.0 m (476 ft)",
"34"
]
] | [
"Commerce Court North"
] | which of those have the least number of floors? || which building are on the list of the tallest in canada? |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 0 | {
"column_index": [
0,
0
],
"row_index": [
5,
15
]
} | [
"what states had 3 candidates?"
] | 0 | goa, meghalaya | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | what states had 3 candidates? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"Goa",
"Meghalaya"
] | what states had 3 candidates? || |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 1 | {
"column_index": [
0
],
"row_index": [
15
]
} | [
"what states had 3 candidates?",
"which of these is not goa?"
] | 0 | meghalaya | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | which of these is not goa? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"Meghalaya"
] | which of these is not goa? || what states had 3 candidates? |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 0 | {
"column_index": [
1
],
"row_index": [
4
]
} | [
"how many states have 3 candidates for the communist party of india?"
] | 1 | 2 | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | how many states have 3 candidates for the communist party of india? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"2"
] | how many states have 3 candidates for the communist party of india? || |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 1 | {
"column_index": [
0
],
"row_index": [
15
]
} | [
"how many states have 3 candidates for the communist party of india?",
"what is the state other than goa with 3 candidates?"
] | 1 | meghalaya | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | what is the state other than goa with 3 candidates? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"Meghalaya"
] | what is the state other than goa with 3 candidates? || how many states have 3 candidates for the communist party of india? |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25
]
} | [
"what are all the states?"
] | 2 | andhra pradesh, assam, bihar, chhattisgarh, delhi, goa, gujarat, haryana, himachal pradesh, jammu and kashmir, karnataka, kerala, madhya pradesh, maharashtra, manipur, meghalaya, mizoram, odisha, puducherry, punjab, rajasthan, tamil nadu, tripura, uttar pradesh, uttarakhand, west bengal | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | what are all the states? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"Andhra Pradesh",
"Assam",
"Bihar",
"Chhattisgarh",
"Delhi",
"Goa",
"Gujarat",
"Haryana",
"Himachal Pradesh",
"Jammu and Kashmir",
"Karnataka",
"Kerala",
"Madhya Pradesh",
"Maharashtra",
"Manipur",
"Meghalaya",
"Mizoram",
"Odisha",
"Puducherry",
"Punjab",
"Rajasthan",
"Tamil Nadu",
"Tripura",
"Uttar Pradesh",
"Uttarakhand",
"West Bengal"
] | what are all the states? || |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 1 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25
]
} | [
"what are all the states?",
"how many candidates were in each state?"
] | 2 | 12, 19, 153, 18, 2, 3, 1, 10, 7, 5, 5, 22, 17, 19, 16, 3, 4, 6, 2, 11, 15, 8, 2, 5, 14, 13 | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | how many candidates were in each state? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"12",
"19",
"153",
"18",
"2",
"3",
"1",
"10",
"7",
"5",
"5",
"22",
"17",
"19",
"16",
"3",
"4",
"6",
"2",
"11",
"15",
"8",
"2",
"5",
"14",
"13"
] | how many candidates were in each state? || what are all the states? |
nt-9434 | col : state | no. of candidates | no. of elected | total no. of seats in assembly | year of election row 1 : andhra pradesh | 12 | 6 | 294 | 2004 row 2 : assam | 19 | 1 | 126 | 2001 row 3 : bihar | 153 | 5 | 324 | 2000 row 4 : chhattisgarh | 18 | 0 | 90 | 2003 row 5 : delhi | 2 | 0 | 70 | 2003 row 6 : goa | 3 | 0 | 40 | 2002 row 7 : gujarat | 1 | 0 | 181 | 2002 row 8 : haryana | 10 | 0 | 90 | 2000 row 9 : himachal pradesh | 7 | 0 | 68 | 2003 row 10 : jammu and kashmir | 5 | 0 | 87 | 2002 row 11 : karnataka | 5 | 0 | 224 | 2004 row 12 : kerala | 22 | 17 | 140 | 2006 row 13 : madhya pradesh | 17 | 0 | 230 | 2003 row 14 : maharashtra | 19 | 0 | 288 | 1999 row 15 : manipur | 16 | 4 | 60 | 2006 row 16 : meghalaya | 3 | 0 | 60 | 2003 row 17 : mizoram | 4 | 0 | 40 | 2003 row 18 : odisha | 6 | 1 | 147 | 2004 row 19 : puducherry | 2 | 0 | 30 | 2001 row 20 : punjab | 11 | 0 | 117 | 2006 row 21 : rajasthan | 15 | 0 | 200 | 2003 row 22 : tamil nadu | 8 | 6 | 234 | 2006 row 23 : tripura | 2 | 1 | 60 | 2003 row 24 : uttar pradesh | 5 | 0 | 402 | 2002 row 25 : uttarakhand | 14 | 0 | 70 | 2002 row 26 : west bengal | 13 | 8 | 294 | 2006 | table_csv/203_562.csv | 2 | {
"column_index": [
0
],
"row_index": [
15
]
} | [
"what are all the states?",
"how many candidates were in each state?",
"along with goa, which state had 3 candidates?"
] | 2 | meghalaya | [
"State",
"No. of candidates",
"No. of elected",
"Total no. of seats in Assembly",
"Year of Election"
] | along with goa, which state had 3 candidates? | [
[
"Andhra Pradesh",
"12",
"6",
"294",
"2004"
],
[
"Assam",
"19",
"1",
"126",
"2001"
],
[
"Bihar",
"153",
"5",
"324",
"2000"
],
[
"Chhattisgarh",
"18",
"0",
"90",
"2003"
],
[
"Delhi",
"2",
"0",
"70",
"2003"
],
[
"Goa",
"3",
"0",
"40",
"2002"
],
[
"Gujarat",
"1",
"0",
"181",
"2002"
],
[
"Haryana",
"10",
"0",
"90",
"2000"
],
[
"Himachal Pradesh",
"7",
"0",
"68",
"2003"
],
[
"Jammu and Kashmir",
"5",
"0",
"87",
"2002"
],
[
"Karnataka",
"5",
"0",
"224",
"2004"
],
[
"Kerala",
"22",
"17",
"140",
"2006"
],
[
"Madhya Pradesh",
"17",
"0",
"230",
"2003"
],
[
"Maharashtra",
"19",
"0",
"288",
"1999"
],
[
"Manipur",
"16",
"4",
"60",
"2006"
],
[
"Meghalaya",
"3",
"0",
"60",
"2003"
],
[
"Mizoram",
"4",
"0",
"40",
"2003"
],
[
"Odisha",
"6",
"1",
"147",
"2004"
],
[
"Puducherry",
"2",
"0",
"30",
"2001"
],
[
"Punjab",
"11",
"0",
"117",
"2006"
],
[
"Rajasthan",
"15",
"0",
"200",
"2003"
],
[
"Tamil Nadu",
"8",
"6",
"234",
"2006"
],
[
"Tripura",
"2",
"1",
"60",
"2003"
],
[
"Uttar Pradesh",
"5",
"0",
"402",
"2002"
],
[
"Uttarakhand",
"14",
"0",
"70",
"2002"
],
[
"West Bengal",
"13",
"8",
"294",
"2006"
]
] | [
"Meghalaya"
] | along with goa, which state had 3 candidates? || how many candidates were in each state? | what are all the states? |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 0 | {
"column_index": [
0
],
"row_index": [
5
]
} | [
"in what year was the highest meters recorded?"
] | 0 | 1990 | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | in what year was the highest meters recorded? | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"1990"
] | in what year was the highest meters recorded? || |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 1 | {
"column_index": [
1
],
"row_index": [
5
]
} | [
"in what year was the highest meters recorded?",
"in what competition did this happen is?"
] | 0 | goodwill games | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | in what competition did this happen is? | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"Goodwill Games"
] | in what competition did this happen is? || in what year was the highest meters recorded? |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 2 | {
"column_index": [
4
],
"row_index": [
5
]
} | [
"in what year was the highest meters recorded?",
"in what competition did this happen is?",
"how many meters were recorded?"
] | 0 | 80.84 m | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | how many meters were recorded? | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"80.84 m"
] | how many meters were recorded? || in what competition did this happen is? | in what year was the highest meters recorded? |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 0 | {
"column_index": [
1
],
"row_index": [
5
]
} | [
"which competition got the highest number of notes?"
] | 1 | goodwill games | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | which competition got the highest number of notes? | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"Goodwill Games"
] | which competition got the highest number of notes? || |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 1 | {
"column_index": [
4
],
"row_index": [
5
]
} | [
"which competition got the highest number of notes?",
"what was the highest number of notes?"
] | 1 | 80.84 m | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | what was the highest number of notes? | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"80.84 m"
] | what was the highest number of notes? || which competition got the highest number of notes? |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 0 | {
"column_index": [
4,
4,
4,
4,
4,
4,
4,
4
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7
]
} | [
"what are all of the values in meters in the notes"
] | 2 | 78.34 m, 76.88 m, 77.32 m, 75.58 m, 78.86 m, 80.84 m, 79.12 m, 77.72 m | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | what are all of the values in meters in the notes | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"78.34 m",
"76.88 m",
"77.32 m",
"75.58 m",
"78.86 m",
"80.84 m",
"79.12 m",
"77.72 m"
] | what are all of the values in meters in the notes || |
nt-1951 | col : year | competition | venue | position | notes row 1 : 1983 | pan american games | caracas, venezuela | 2nd | 78.34 m row 2 : 1985 | central american and caribbean championships | nassau, bahamas | 2nd | 76.88 m row 3 : 1986 | central american and caribbean games | santiago de los caballeros, dr | 1st | 77.32 m row 4 : 1987 | pan american games | indianapolis, united states | 2nd | 75.58 m row 5 : 1990 | central american and caribbean games | mexico city, mexico | 1st | 78.86 m row 6 : 1990 | goodwill games | seattle, united states | 2nd | 80.84 m row 7 : 1991 | pan american games | havana, cuba | 1st | 79.12 m row 8 : 1991 | world championships | tokyo, japan | 16th | 77.72 m | table_csv/203_763.csv | 1 | {
"column_index": [
4
],
"row_index": [
5
]
} | [
"what are all of the values in meters in the notes",
"what is the highest value?"
] | 2 | 80.84 m | [
"Year",
"Competition",
"Venue",
"Position",
"Notes"
] | what is the highest value? | [
[
"1983",
"Pan American Games",
"Caracas, Venezuela",
"2nd",
"78.34 m"
],
[
"1985",
"Central American and Caribbean Championships",
"Nassau, Bahamas",
"2nd",
"76.88 m"
],
[
"1986",
"Central American and Caribbean Games",
"Santiago de los Caballeros, DR",
"1st",
"77.32 m"
],
[
"1987",
"Pan American Games",
"Indianapolis, United States",
"2nd",
"75.58 m"
],
[
"1990",
"Central American and Caribbean Games",
"Mexico City, Mexico",
"1st",
"78.86 m"
],
[
"1990",
"Goodwill Games",
"Seattle, United States",
"2nd",
"80.84 m"
],
[
"1991",
"Pan American Games",
"Havana, Cuba",
"1st",
"79.12 m"
],
[
"1991",
"World Championships",
"Tokyo, Japan",
"16th",
"77.72 m"
]
] | [
"80.84 m"
] | what is the highest value? || what are all of the values in meters in the notes |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 0 | {
"column_index": [
4,
4,
4,
4,
4,
4,
4,
4,
4,
4
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"what were the finish times of all the drivers?"
] | 0 | 2h28m50.8s, +07.3s, + 3m30.8s, +3m42.5s, +4m04.1s, +5m36s, +9m11.2s, +10m53.7s, +13m08.3s, +16m50.1s | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | what were the finish times of all the drivers? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"2h28m50.8s",
"+07.3s",
"+ 3m30.8s",
"+3m42.5s",
"+4m04.1s",
"+5m36s",
"+9m11.2s",
"+10m53.7s",
"+13m08.3s",
"+16m50.1s"
] | what were the finish times of all the drivers? || |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 1 | {
"column_index": [
4
],
"row_index": [
0
]
} | [
"what were the finish times of all the drivers?",
"which of these times belongs to giandomenico basso?"
] | 0 | 2h28m50.8s | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | which of these times belongs to giandomenico basso? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"2h28m50.8s"
] | which of these times belongs to giandomenico basso? || what were the finish times of all the drivers? |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 0 | {
"column_index": [
1
],
"row_index": [
1
]
} | [
"who finish the rali vinho da madeira in the shortest amount of time?"
] | 1 | bruno magalhaes | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | who finish the rali vinho da madeira in the shortest amount of time? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"Bruno Magalhaes"
] | who finish the rali vinho da madeira in the shortest amount of time? || |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 1 | {
"column_index": [
1
],
"row_index": [
5
]
} | [
"who finish the rali vinho da madeira in the shortest amount of time?",
"who finished in +5m36s?"
] | 1 | filipe freitas | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | who finished in +5m36s? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"Filipe Freitas"
] | who finished in +5m36s? || who finish the rali vinho da madeira in the shortest amount of time? |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 2 | {
"column_index": [
4
],
"row_index": [
0
]
} | [
"who finish the rali vinho da madeira in the shortest amount of time?",
"who finished in +5m36s?",
"how long did it take for giandomenico basso to finish the race?"
] | 1 | 2h28m50.8s | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | how long did it take for giandomenico basso to finish the race? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"2h28m50.8s"
] | how long did it take for giandomenico basso to finish the race? || who finished in +5m36s? | who finish the rali vinho da madeira in the shortest amount of time? |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"who were all of the drivers?"
] | 2 | giandomenico basso, bruno magalhaes, miguel nunes, pedro meireles, luca betti, filipe freitas, filipe pires, luis serrado, jose camacho, rui conceicao | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | who were all of the drivers? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"Giandomenico Basso",
"Bruno Magalhaes",
"Miguel Nunes",
"Pedro Meireles",
"Luca Betti",
"Filipe Freitas",
"Filipe Pires",
"Luis Serrado",
"Jose Camacho",
"Rui Conceicao"
] | who were all of the drivers? || |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 1 | {
"column_index": [
4,
4,
4,
4,
4,
4,
4,
4,
4,
4
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"who were all of the drivers?",
"what were their finishing times?"
] | 2 | 2h28m50.8s, +07.3s, + 3m30.8s, +3m42.5s, +4m04.1s, +5m36s, +9m11.2s, +10m53.7s, +13m08.3s, +16m50.1s | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | what were their finishing times? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"2h28m50.8s",
"+07.3s",
"+ 3m30.8s",
"+3m42.5s",
"+4m04.1s",
"+5m36s",
"+9m11.2s",
"+10m53.7s",
"+13m08.3s",
"+16m50.1s"
] | what were their finishing times? || who were all of the drivers? |
nt-6309 | col : pos. | driver | co-driver | car | time row 1 : 1 | giandomenico basso | lorenzo granai | peugeot 207 s2000 | 2h28m50.8s row 2 : 2 | bruno magalhaes | nuno r. silva | peugeot 207 s2000 | +07.3s row 3 : 3 | miguel nunes | joao paulo | mitsubishi lancer x r4 | + 3m30.8s row 4 : 4 | pedro meireles | mario castro | skoda fabia s2000 | +3m42.5s row 5 : 5 | luca betti | francesco pezzoli | ford fiesta s2000 | +4m04.1s row 6 : 6 | filipe freitas | daniel figueiroa | mitsubishi lancer x r4 | +5m36s row 7 : 7 | filipe pires | vasco rodrigues | mitsubishi lancer x | +9m11.2s row 8 : 8 | luis serrado | joao sousa | peugeot 206 s1600 | +10m53.7s row 9 : 9 | jose camacho | fernando spinola | peugeot 206 s1600 | +13m08.3s row 10 : 10 | rui conceicao | duarte coelho | ford escort cosworth | +16m50.1s | table_csv/204_538.csv | 2 | {
"column_index": [
4
],
"row_index": [
0
]
} | [
"who were all of the drivers?",
"what were their finishing times?",
"and, specifically, what was giandomenico basso's time?"
] | 2 | 2h28m50.8s | [
"Pos.",
"Driver",
"Co-Driver",
"Car",
"Time"
] | and, specifically, what was giandomenico basso's time? | [
[
"1",
"Giandomenico Basso",
"Lorenzo Granai",
"Peugeot 207 S2000",
"2h28m50.8s"
],
[
"2",
"Bruno Magalhaes",
"Nuno R. Silva",
"Peugeot 207 S2000",
"+07.3s"
],
[
"3",
"Miguel Nunes",
"Joao Paulo",
"Mitsubishi Lancer X R4",
"+ 3m30.8s"
],
[
"4",
"Pedro Meireles",
"Mario Castro",
"Skoda Fabia S2000",
"+3m42.5s"
],
[
"5",
"Luca Betti",
"Francesco Pezzoli",
"Ford Fiesta S2000",
"+4m04.1s"
],
[
"6",
"Filipe Freitas",
"Daniel Figueiroa",
"Mitsubishi Lancer X R4",
"+5m36s"
],
[
"7",
"Filipe Pires",
"Vasco Rodrigues",
"Mitsubishi Lancer X",
"+9m11.2s"
],
[
"8",
"Luis Serrado",
"Joao Sousa",
"Peugeot 206 S1600",
"+10m53.7s"
],
[
"9",
"Jose Camacho",
"Fernando Spinola",
"Peugeot 206 S1600",
"+13m08.3s"
],
[
"10",
"Rui Conceicao",
"Duarte Coelho",
"Ford Escort Cosworth",
"+16m50.1s"
]
] | [
"2h28m50.8s"
] | and, specifically, what was giandomenico basso's time? || what were their finishing times? | who were all of the drivers? |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 0 | {
"column_index": [
4
],
"row_index": [
3
]
} | [
"how many points did the team score of win in 1987"
] | 0 | w 35-21 | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | how many points did the team score of win in 1987 | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"W 35-21"
] | how many points did the team score of win in 1987 || |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 1 | {
"column_index": [
0
],
"row_index": [
3
]
} | [
"how many points did the team score of win in 1987",
"when did this match occur?"
] | 0 | september 26 | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | when did this match occur? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"September 26"
] | when did this match occur? || how many points did the team score of win in 1987 |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 0 | {
"column_index": [
1,
1
],
"row_index": [
0,
3
]
} | [
"in which two games did syracuse course exactly 35 points?"
] | 1 | maryland, at virginia tech | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | in which two games did syracuse course exactly 35 points? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"Maryland",
"at Virginia Tech"
] | in which two games did syracuse course exactly 35 points? || |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 1 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"in which two games did syracuse course exactly 35 points?",
"of those 2 games, who was the opponent of the first game?"
] | 1 | maryland | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | of those 2 games, who was the opponent of the first game? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"Maryland"
] | of those 2 games, who was the opponent of the first game? || in which two games did syracuse course exactly 35 points? |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 2 | {
"column_index": [
1
],
"row_index": [
3
]
} | [
"in which two games did syracuse course exactly 35 points?",
"of those 2 games, who was the opponent of the first game?",
"of those 2 games, who was the opponent of the second game?"
] | 1 | at virginia tech | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | of those 2 games, who was the opponent of the second game? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"at Virginia Tech"
] | of those 2 games, who was the opponent of the second game? || of those 2 games, who was the opponent of the first game? | in which two games did syracuse course exactly 35 points? |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 3 | {
"column_index": [
0
],
"row_index": [
3
]
} | [
"in which two games did syracuse course exactly 35 points?",
"of those 2 games, who was the opponent of the first game?",
"of those 2 games, who was the opponent of the second game?",
"when was the virginia tech game played?"
] | 1 | september 26 | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | when was the virginia tech game played? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"September 26"
] | when was the virginia tech game played? || of those 2 games, who was the opponent of the second game? | of those 2 games, who was the opponent of the first game? | in which two games did syracuse course exactly 35 points? |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 0 | {
"column_index": [
0
],
"row_index": [
0
]
} | [
"what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome?"
] | 2 | september 5 | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"September 5"
] | what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome? || |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 1 | {
"column_index": [
4
],
"row_index": [
0
]
} | [
"what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome?",
"how many points did they score?"
] | 2 | w 35-11 | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | how many points did they score? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"W 35-11"
] | how many points did they score? || what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome? |
nt-1956 | col : date | opponent# | rank# | site | result row 1 : september 5 | maryland | nan | carrier dome * syracuse, ny | w 35-11 row 2 : september 12 | rutgers | nan | rutgers stadium * piscataway, nj | w 20-3 row 3 : september 19 | miami (oh) | nan | carrier dome * syracuse, ny | w 24-10 row 4 : september 26 | at virginia tech | nan | lane stadium * blacksburg, va | w 35-21 row 5 : october 3 | at missouri | nan | memorial stadium * columbia, mo | w 24-13 row 6 : october 17 | #10 penn state | #13 | carrier dome * syracuse, ny | w 48-21 row 7 : october 24 | colgate | #9 | carrier dome * syracuse, ny | w 52-6 row 8 : october 31 | at pittsburgh | #8 | pitt stadium * pittsburgh, pa | w 24-10 row 9 : november 7 | at navy | #8 | navy-marine corps memorial stadium * annapolis, md | w 34-10 row 10 : november 14 | boston college | #6 | carrier dome * syracuse, ny | w 45-17 row 11 : november 21 | west virginia | #6 | carrier dome * syracuse, ny | w 32-31 row 12 : january 1 | vs. #6 auburn | #4 | louisiana superdome * new orleans, la (sugar bowl) | t 16-16 | table_csv/203_720.csv | 2 | {
"column_index": [
0
],
"row_index": [
3
]
} | [
"what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome?",
"how many points did they score?",
"what was the date when they played a match and scored the same amount of points?"
] | 2 | september 26 | [
"Date",
"Opponent#",
"Rank#",
"Site",
"Result"
] | what was the date when they played a match and scored the same amount of points? | [
[
"September 5",
"Maryland",
"nan",
"Carrier Dome * Syracuse, NY",
"W 35-11"
],
[
"September 12",
"Rutgers",
"nan",
"Rutgers Stadium * Piscataway, NJ",
"W 20-3"
],
[
"September 19",
"Miami (OH)",
"nan",
"Carrier Dome * Syracuse, NY",
"W 24-10"
],
[
"September 26",
"at Virginia Tech",
"nan",
"Lane Stadium * Blacksburg, VA",
"W 35-21"
],
[
"October 3",
"at Missouri",
"nan",
"Memorial Stadium * Columbia, MO",
"W 24-13"
],
[
"October 17",
"#10 Penn State",
"#13",
"Carrier Dome * Syracuse, NY",
"W 48-21"
],
[
"October 24",
"Colgate",
"#9",
"Carrier Dome * Syracuse, NY",
"W 52-6"
],
[
"October 31",
"at Pittsburgh",
"#8",
"Pitt Stadium * Pittsburgh, PA",
"W 24-10"
],
[
"November 7",
"at Navy",
"#8",
"Navy-Marine Corps Memorial Stadium * Annapolis, MD",
"W 34-10"
],
[
"November 14",
"Boston College",
"#6",
"Carrier Dome * Syracuse, NY",
"W 45-17"
],
[
"November 21",
"West Virginia",
"#6",
"Carrier Dome * Syracuse, NY",
"W 32-31"
],
[
"January 1",
"vs. #6 Auburn",
"#4",
"Louisiana Superdome * New Orleans, LA (Sugar Bowl)",
"T 16-16"
]
] | [
"September 26"
] | what was the date when they played a match and scored the same amount of points? || how many points did they score? | what's the earliest time that the 1987 syracuse orangemen football team played at the carrier dome? |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7
]
} | [
"what are the game titles?"
] | 0 | buggy grand prix: kattobi! dai-sakus, gunbird special edition / gunbird 1&2, psikyo shooting collection vol. 1: strikers, psikyo shooting collection vol. 2: sengoku, psikyo shooting collection vol. 3: sol divide, taisen hot gimmick: cosplay mahjong, sengoku cannon, taisen hot gimmick: axes-jong | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | what are the game titles? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"Gunbird Special Edition / Gunbird 1&2",
"Psikyo Shooting Collection Vol. 1: Strikers",
"Psikyo Shooting Collection Vol. 2: Sengoku",
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"Taisen Hot Gimmick: Cosplay Mahjong",
"Sengoku Cannon",
"Taisen Hot Gimmick: Axes-Jong"
] | what are the game titles? || |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 1 | {
"column_index": [
0
],
"row_index": [
2
]
} | [
"what are the game titles?",
"which of the games have notes?"
] | 0 | psikyo shooting collection vol. 1: strikers | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | which of the games have notes? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"Psikyo Shooting Collection Vol. 1: Strikers"
] | which of the games have notes? || what are the game titles? |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7
]
} | [
"what are the psikyo titles?"
] | 1 | buggy grand prix: kattobi! dai-sakus, gunbird special edition / gunbird 1&2, psikyo shooting collection vol. 1: strikers, psikyo shooting collection vol. 2: sengoku, psikyo shooting collection vol. 3: sol divide, taisen hot gimmick: cosplay mahjong, sengoku cannon, taisen hot gimmick: axes-jong | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | what are the psikyo titles? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"Gunbird Special Edition / Gunbird 1&2",
"Psikyo Shooting Collection Vol. 1: Strikers",
"Psikyo Shooting Collection Vol. 2: Sengoku",
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"Taisen Hot Gimmick: Cosplay Mahjong",
"Sengoku Cannon",
"Taisen Hot Gimmick: Axes-Jong"
] | what are the psikyo titles? || |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 1 | {
"column_index": [
0
],
"row_index": [
2
]
} | [
"what are the psikyo titles?",
"which of these had a different name when released in europe?"
] | 1 | psikyo shooting collection vol. 1: strikers | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | which of these had a different name when released in europe? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"Psikyo Shooting Collection Vol. 1: Strikers"
] | which of these had a different name when released in europe? || what are the psikyo titles? |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 0 | {
"column_index": [
4,
4,
4,
4,
4,
4,
4,
4
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7
]
} | [
"what are the notes for the listed games?"
] | 2 | , , released and published in europe by play it as 1945 i & ii, , , , , | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | what are the notes for the listed games? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"",
"",
"Released and published in Europe by Play It as 1945 I & II",
"",
"",
"",
"",
""
] | what are the notes for the listed games? || |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 1 | {
"column_index": [
4
],
"row_index": [
2
]
} | [
"what are the notes for the listed games?",
"which mention that its name changed for the european release?"
] | 2 | released and published in europe by play it as 1945 i & ii | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | which mention that its name changed for the european release? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"Released and published in Europe by Play It as 1945 I & II"
] | which mention that its name changed for the european release? || what are the notes for the listed games? |
ns-1006 | col : title | release | 6th gen | handheld | note row 1 : buggy grand prix: kattobi! dai-sakus | 2003 | playstation 2 | nan | nan row 2 : gunbird special edition / gunbird 1&2 | 2004 | playstation 2 | nan | nan row 3 : psikyo shooting collection vol. 1: strikers | 2004 | playstation 2 | nan | released and published in europe by play it as 1945 i & ii row 4 : psikyo shooting collection vol. 2: sengoku | 2004 | playstation 2 | nan | nan row 5 : psikyo shooting collection vol. 3: sol divide | 2004 | playstation 2 | nan | nan row 6 : taisen hot gimmick: cosplay mahjong | 2004 | playstation 2 | nan | nan row 7 : sengoku cannon | 2005 | nan | psp | nan row 8 : taisen hot gimmick: axes-jong | 2005 | playstation 2 | nan | nan | table_csv/203_583.csv | 2 | {
"column_index": [
0
],
"row_index": [
2
]
} | [
"what are the notes for the listed games?",
"which mention that its name changed for the european release?",
"to what title does that note belong?"
] | 2 | psikyo shooting collection vol. 1: strikers | [
"Title",
"Release",
"6th Gen",
"Handheld",
"Note"
] | to what title does that note belong? | [
[
"Buggy Grand Prix: Kattobi! Dai-Sakus",
"2003",
"PlayStation 2",
"nan",
"nan"
],
[
"Gunbird Special Edition / Gunbird 1&2",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 1: Strikers",
"2004",
"PlayStation 2",
"nan",
"Released and published in Europe by Play It as 1945 I & II"
],
[
"Psikyo Shooting Collection Vol. 2: Sengoku",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Psikyo Shooting Collection Vol. 3: Sol Divide",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Taisen Hot Gimmick: Cosplay Mahjong",
"2004",
"PlayStation 2",
"nan",
"nan"
],
[
"Sengoku Cannon",
"2005",
"nan",
"PSP",
"nan"
],
[
"Taisen Hot Gimmick: Axes-Jong",
"2005",
"PlayStation 2",
"nan",
"nan"
]
] | [
"Psikyo Shooting Collection Vol. 1: Strikers"
] | to what title does that note belong? || which mention that its name changed for the european release? | what are the notes for the listed games? |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
]
} | [
"who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke?"
] | 0 | dyana calub, natalie coughlin, noriko inada, haley cope, diana macmanus, courtney shealy, aya terakawa, giaan rooney, erin gammel, hannah mclean, melissa morgan, reiko nakamura, michelle lischinsky, jennifer fratesi, kelly stefanyshyn, clementine stoney | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub",
"Natalie Coughlin",
"Noriko Inada",
"Haley Cope",
"Diana MacManus",
"Courtney Shealy",
"Aya Terakawa",
"Giaan Rooney",
"Erin Gammel",
"Hannah McLean",
"Melissa Morgan",
"Reiko Nakamura",
"Michelle Lischinsky",
"Jennifer Fratesi",
"Kelly Stefanyshyn",
"Clementine Stoney"
] | who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke? || |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 1 | {
"column_index": [
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4
]
} | [
"who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke?",
"who had the 5 lowest times?"
] | 0 | dyana calub, natalie coughlin, noriko inada, haley cope, diana macmanus | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | who had the 5 lowest times? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub",
"Natalie Coughlin",
"Noriko Inada",
"Haley Cope",
"Diana MacManus"
] | who had the 5 lowest times? || who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke? |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 2 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke?",
"who had the 5 lowest times?",
"of these who where of australian nationality?"
] | 0 | dyana calub | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | of these who where of australian nationality? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub"
] | of these who where of australian nationality? || who had the 5 lowest times? | who where the competitors for the 2002 pan pacific swimming championships - women's 100 metre backstroke? |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15
]
} | [
"who was in the semifinals?"
] | 1 | dyana calub, natalie coughlin, noriko inada, haley cope, diana macmanus, courtney shealy, aya terakawa, giaan rooney, erin gammel, hannah mclean, melissa morgan, reiko nakamura, michelle lischinsky, jennifer fratesi, kelly stefanyshyn, clementine stoney | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | who was in the semifinals? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub",
"Natalie Coughlin",
"Noriko Inada",
"Haley Cope",
"Diana MacManus",
"Courtney Shealy",
"Aya Terakawa",
"Giaan Rooney",
"Erin Gammel",
"Hannah McLean",
"Melissa Morgan",
"Reiko Nakamura",
"Michelle Lischinsky",
"Jennifer Fratesi",
"Kelly Stefanyshyn",
"Clementine Stoney"
] | who was in the semifinals? || |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 1 | {
"column_index": [
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4
]
} | [
"who was in the semifinals?",
"which ones were in the top 5?"
] | 1 | dyana calub, natalie coughlin, noriko inada, haley cope, diana macmanus | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | which ones were in the top 5? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub",
"Natalie Coughlin",
"Noriko Inada",
"Haley Cope",
"Diana MacManus"
] | which ones were in the top 5? || who was in the semifinals? |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 2 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"who was in the semifinals?",
"which ones were in the top 5?",
"of these, which were from australia?"
] | 1 | dyana calub | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | of these, which were from australia? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub"
] | of these, which were from australia? || which ones were in the top 5? | who was in the semifinals? |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 0 | {
"column_index": [
2,
2,
2,
2,
2
],
"row_index": [
0,
1,
2,
3,
4
]
} | [
"where were the top five semifinals from?"
] | 2 | australia, united states, japan, united states, united states | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | where were the top five semifinals from? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Australia",
"United States",
"Japan",
"United States",
"United States"
] | where were the top five semifinals from? || |
nt-11013 | col : rank | name | nationality | time | notes row 1 : 1 | dyana calub | australia | 1:01.77 | q row 2 : 2 | natalie coughlin | united states | 1:01.99 | q row 3 : 3 | noriko inada | japan | 1:02.00 | q row 4 : 4 | haley cope | united states | 1:02.09 | q row 5 : 5 | diana macmanus | united states | 1:02.10 | q row 6 : 6 | courtney shealy | united states | 1:02.28 | q row 7 : 7 | aya terakawa | japan | 1:02.39 | q row 8 : 8 | giaan rooney | australia | 1:02.53 | q row 9 : 9 | erin gammel | canada | 1:02.63 | nan row 10 : 10 | hannah mclean | new zealand | 1:02.82 | nan row 11 : 11 | melissa morgan | australia | 1:02.86 | nan row 12 : 12 | reiko nakamura | japan | 1:02.91 | nan row 13 : 13 | michelle lischinsky | canada | 1:03.22 | nan row 14 : 14 | jennifer fratesi | canada | 1:03.42 | nan row 15 : 15 | kelly stefanyshyn | canada | 1:03.44 | nan row 16 : 16 | clementine stoney | australia | 1:03.52 | nan | table_csv/204_544.csv | 1 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"where were the top five semifinals from?",
"who was the finalist from australia?"
] | 2 | dyana calub | [
"Rank",
"Name",
"Nationality",
"Time",
"Notes"
] | who was the finalist from australia? | [
[
"1",
"Dyana Calub",
"Australia",
"1:01.77",
"Q"
],
[
"2",
"Natalie Coughlin",
"United States",
"1:01.99",
"Q"
],
[
"3",
"Noriko Inada",
"Japan",
"1:02.00",
"Q"
],
[
"4",
"Haley Cope",
"United States",
"1:02.09",
"Q"
],
[
"5",
"Diana MacManus",
"United States",
"1:02.10",
"Q"
],
[
"6",
"Courtney Shealy",
"United States",
"1:02.28",
"Q"
],
[
"7",
"Aya Terakawa",
"Japan",
"1:02.39",
"Q"
],
[
"8",
"Giaan Rooney",
"Australia",
"1:02.53",
"Q"
],
[
"9",
"Erin Gammel",
"Canada",
"1:02.63",
"nan"
],
[
"10",
"Hannah McLean",
"New Zealand",
"1:02.82",
"nan"
],
[
"11",
"Melissa Morgan",
"Australia",
"1:02.86",
"nan"
],
[
"12",
"Reiko Nakamura",
"Japan",
"1:02.91",
"nan"
],
[
"13",
"Michelle Lischinsky",
"Canada",
"1:03.22",
"nan"
],
[
"14",
"Jennifer Fratesi",
"Canada",
"1:03.42",
"nan"
],
[
"15",
"Kelly Stefanyshyn",
"Canada",
"1:03.44",
"nan"
],
[
"16",
"Clementine Stoney",
"Australia",
"1:03.52",
"nan"
]
] | [
"Dyana Calub"
] | who was the finalist from australia? || where were the top five semifinals from? |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
]
} | [
"what are the age ranges?"
] | 0 | 0 to 4, 5 to 9, 10 to 14, 15 to 19, 20 to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 44, 45 to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, 75 to 79, 80 to 84, 85 to 89, 90 and over | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | what are the age ranges? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"0 to 4",
"5 to 9",
"10 to 14",
"15 to 19",
"20 to 24",
"25 to 29",
"30 to 34",
"35 to 39",
"40 to 44",
"45 to 49",
"50 to 54",
"55 to 59",
"60 to 64",
"65 to 69",
"70 to 74",
"75 to 79",
"80 to 84",
"85 to 89",
"90 and over"
] | what are the age ranges? || |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 1 | {
"column_index": [
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18
]
} | [
"what are the age ranges?",
"what were their percentages of christian religions?"
] | 0 | 31.7%, 36.1%, 37.9%, 37.6%, 35.2%, 33.1%, 34.3%, 37.8%, 41.1%, 42.8%, 44.9%, 46.5%, 50.0%, 54.4%, 56.4%, 58.1%, 60.0%, 61.8%, 64.0% | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | what were their percentages of christian religions? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"31.7%",
"36.1%",
"37.9%",
"37.6%",
"35.2%",
"33.1%",
"34.3%",
"37.8%",
"41.1%",
"42.8%",
"44.9%",
"46.5%",
"50.0%",
"54.4%",
"56.4%",
"58.1%",
"60.0%",
"61.8%",
"64.0%"
] | what were their percentages of christian religions? || what are the age ranges? |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 2 | {
"column_index": [
0
],
"row_index": [
18
]
} | [
"what are the age ranges?",
"what were their percentages of christian religions?",
"and which age range had the highest percentage?"
] | 0 | 90 and over | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | and which age range had the highest percentage? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"90 and over"
] | and which age range had the highest percentage? || what were their percentages of christian religions? | what are the age ranges? |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 0 | {
"column_index": [
2
],
"row_index": [
18
]
} | [
"in column 3 what is the higher percent of protestant and other christian?"
] | 1 | 64.0% | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | in column 3 what is the higher percent of protestant and other christian? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"64.0%"
] | in column 3 what is the higher percent of protestant and other christian? || |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 1 | {
"column_index": [
0
],
"row_index": [
18
]
} | [
"in column 3 what is the higher percent of protestant and other christian?",
"which age range is in that row?"
] | 1 | 90 and over | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | which age range is in that row? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"90 and over"
] | which age range is in that row? || in column 3 what is the higher percent of protestant and other christian? |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
12,
13,
14,
15,
16,
17,
18
]
} | [
"which age ranges have 50% or more protestant and other christian?"
] | 2 | 60 to 64, 65 to 69, 70 to 74, 75 to 79, 80 to 84, 85 to 89, 90 and over | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | which age ranges have 50% or more protestant and other christian? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"60 to 64",
"65 to 69",
"70 to 74",
"75 to 79",
"80 to 84",
"85 to 89",
"90 and over"
] | which age ranges have 50% or more protestant and other christian? || |
nt-11384 | col : ages attained (years) | catholic | protestant and other christian | other religion | none or not stated row 1 : 0 to 4 | 44.3% | 31.7% | 0.9% | 23.2% row 2 : 5 to 9 | 45.5% | 36.1% | 0.7% | 17.7% row 3 : 10 to 14 | 45.9% | 37.9% | 0.6% | 15.6% row 4 : 15 to 19 | 44.8% | 37.6% | 0.6% | 17.0% row 5 : 20 to 24 | 43.4% | 35.2% | 0.7% | 20.7% row 6 : 25 to 29 | 44.8% | 33.1% | 1.1% | 21.0% row 7 : 30 to 34 | 44.0% | 34.3% | 1.4% | 20.3% row 8 : 35 to 39 | 41.5% | 37.8% | 1.2% | 19.5% row 9 : 40 to 44 | 40.4% | 41.1% | 0.9% | 17.7% row 10 : 45 to 49 | 40.0% | 42.8% | 0.8% | 16.3% row 11 : 50 to 54 | 39.2% | 44.9% | 0.7% | 15.1% row 12 : 55 to 59 | 38.1% | 46.5% | 0.8% | 14.6% row 13 : 60 to 64 | 35.8% | 50.0% | 0.7% | 13.4% row 14 : 65 to 69 | 33.7% | 54.4% | 0.7% | 11.2% row 15 : 70 to 74 | 32.9% | 56.4% | 0.7% | 10.1% row 16 : 75 to 79 | 32.0% | 58.1% | 0.6% | 9.3% row 17 : 80 to 84 | 30.0% | 60.0% | 0.6% | 9.3% row 18 : 85 to 89 | 28.1% | 61.8% | 0.5% | 9.6% row 19 : 90 and over | 25.8% | 64.0% | 0.5% | 9.6% | table_csv/203_770.csv | 1 | {
"column_index": [
0
],
"row_index": [
18
]
} | [
"which age ranges have 50% or more protestant and other christian?",
"of these, which has the lowest for catholic?"
] | 2 | 90 and over | [
"Ages attained (years)",
"Catholic",
"Protestant and other Christian",
"Other Religion",
"None or not stated"
] | of these, which has the lowest for catholic? | [
[
"0 to 4",
"44.3%",
"31.7%",
"0.9%",
"23.2%"
],
[
"5 to 9",
"45.5%",
"36.1%",
"0.7%",
"17.7%"
],
[
"10 to 14",
"45.9%",
"37.9%",
"0.6%",
"15.6%"
],
[
"15 to 19",
"44.8%",
"37.6%",
"0.6%",
"17.0%"
],
[
"20 to 24",
"43.4%",
"35.2%",
"0.7%",
"20.7%"
],
[
"25 to 29",
"44.8%",
"33.1%",
"1.1%",
"21.0%"
],
[
"30 to 34",
"44.0%",
"34.3%",
"1.4%",
"20.3%"
],
[
"35 to 39",
"41.5%",
"37.8%",
"1.2%",
"19.5%"
],
[
"40 to 44",
"40.4%",
"41.1%",
"0.9%",
"17.7%"
],
[
"45 to 49",
"40.0%",
"42.8%",
"0.8%",
"16.3%"
],
[
"50 to 54",
"39.2%",
"44.9%",
"0.7%",
"15.1%"
],
[
"55 to 59",
"38.1%",
"46.5%",
"0.8%",
"14.6%"
],
[
"60 to 64",
"35.8%",
"50.0%",
"0.7%",
"13.4%"
],
[
"65 to 69",
"33.7%",
"54.4%",
"0.7%",
"11.2%"
],
[
"70 to 74",
"32.9%",
"56.4%",
"0.7%",
"10.1%"
],
[
"75 to 79",
"32.0%",
"58.1%",
"0.6%",
"9.3%"
],
[
"80 to 84",
"30.0%",
"60.0%",
"0.6%",
"9.3%"
],
[
"85 to 89",
"28.1%",
"61.8%",
"0.5%",
"9.6%"
],
[
"90 and over",
"25.8%",
"64.0%",
"0.5%",
"9.6%"
]
] | [
"90 and over"
] | of these, which has the lowest for catholic? || which age ranges have 50% or more protestant and other christian? |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
]
} | [
"in which tiers did the team play?"
] | 0 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5 | [
"Season",
"Tier",
"Division",
"Place"
] | in which tiers did the team play? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"5"
] | in which tiers did the team play? || |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 1 | {
"column_index": [
0
],
"row_index": [
12
]
} | [
"in which tiers did the team play?",
"in what year did they play in tier 4?"
] | 0 | 1998/99 | [
"Season",
"Tier",
"Division",
"Place"
] | in what year did they play in tier 4? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"1998/99"
] | in what year did they play in tier 4? || in which tiers did the team play? |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
]
} | [
"what are all the seasons?"
] | 1 | 1949-87, 1987/88, 1988/89, 1989/90, 1990/91, 1991/92, 1992/93, 1993/94, 1994/95, 1995/96, 1996/97, 1997/98, 1998/99, 1999/00 | [
"Season",
"Tier",
"Division",
"Place"
] | what are all the seasons? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"1949-87",
"1987/88",
"1988/89",
"1989/90",
"1990/91",
"1991/92",
"1992/93",
"1993/94",
"1994/95",
"1995/96",
"1996/97",
"1997/98",
"1998/99",
"1999/00"
] | what are all the seasons? || |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 1 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
]
} | [
"what are all the seasons?",
"what tiers were reached during those seasons?"
] | 1 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5 | [
"Season",
"Tier",
"Division",
"Place"
] | what tiers were reached during those seasons? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"5"
] | what tiers were reached during those seasons? || what are all the seasons? |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 2 | {
"column_index": [
0
],
"row_index": [
12
]
} | [
"what are all the seasons?",
"what tiers were reached during those seasons?",
"and during which season was tier 4 reached?"
] | 1 | 1998/99 | [
"Season",
"Tier",
"Division",
"Place"
] | and during which season was tier 4 reached? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"1998/99"
] | and during which season was tier 4 reached? || what tiers were reached during those seasons? | what are all the seasons? |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 0 | {
"column_index": [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13
]
} | [
"which seasons were played?"
] | 2 | 1949-87, 1987/88, 1988/89, 1989/90, 1990/91, 1991/92, 1992/93, 1993/94, 1994/95, 1995/96, 1996/97, 1997/98, 1998/99, 1999/00 | [
"Season",
"Tier",
"Division",
"Place"
] | which seasons were played? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"1949-87",
"1987/88",
"1988/89",
"1989/90",
"1990/91",
"1991/92",
"1992/93",
"1993/94",
"1994/95",
"1995/96",
"1996/97",
"1997/98",
"1998/99",
"1999/00"
] | which seasons were played? || |
nt-12871 | col : season | tier | division | place row 1 : 1949-87 | 5 | regional | -- row 2 : 1987/88 | 5 | pref. aut. | 10th row 3 : 1988/89 | 5 | pref. aut. | 5th row 4 : 1989/90 | 5 | pref. aut. | 13th row 5 : 1990/91 | 5 | pref. aut. | 11th row 6 : 1991/92 | 5 | pref. aut. | 7th row 7 : 1992/93 | 5 | pref. aut. | 9th row 8 : 1993/94 | 5 | pref. aut. | 4th row 9 : 1994/95 | 5 | pref. aut. | 6th row 10 : 1995/96 | 5 | pref. aut. | 3rd row 11 : 1996/97 | 5 | pref. aut. | 3rd row 12 : 1997/98 | 5 | pref. aut. | 1st row 13 : 1998/99 | 4 | 3a | 17th row 14 : 1999/00 | 5 | pref. aut. | 6th | table_csv/204_79.csv | 1 | {
"column_index": [
0
],
"row_index": [
12
]
} | [
"which seasons were played?",
"of these, in which were they placed in tier 4?"
] | 2 | 1998/99 | [
"Season",
"Tier",
"Division",
"Place"
] | of these, in which were they placed in tier 4? | [
[
"1949-87",
"5",
"Regional",
"--"
],
[
"1987/88",
"5",
"Pref. Aut.",
"10th"
],
[
"1988/89",
"5",
"Pref. Aut.",
"5th"
],
[
"1989/90",
"5",
"Pref. Aut.",
"13th"
],
[
"1990/91",
"5",
"Pref. Aut.",
"11th"
],
[
"1991/92",
"5",
"Pref. Aut.",
"7th"
],
[
"1992/93",
"5",
"Pref. Aut.",
"9th"
],
[
"1993/94",
"5",
"Pref. Aut.",
"4th"
],
[
"1994/95",
"5",
"Pref. Aut.",
"6th"
],
[
"1995/96",
"5",
"Pref. Aut.",
"3rd"
],
[
"1996/97",
"5",
"Pref. Aut.",
"3rd"
],
[
"1997/98",
"5",
"Pref. Aut.",
"1st"
],
[
"1998/99",
"4",
"3a",
"17th"
],
[
"1999/00",
"5",
"Pref. Aut.",
"6th"
]
] | [
"1998/99"
] | of these, in which were they placed in tier 4? || which seasons were played? |
nt-2038 | col : symbol | gsi | meaning | unicode | description row 1 : ^ | * | base triangulation surveying point | u+25ec | dot in upward-pointing triangle row 2 : nan | * | electronic triangulation point | nan | dot in upward-pointing triangle with flag row 3 : [?] | * | benchmark | u+22a1 | dot in square row 4 : [?] | * | factory | u+26ed | gear without hub row 5 : [?] | * | lighthouse | u+26ef | map symbol for lighthouse row 6 : [?] | * | power station | u+26ee | gear with handles row 7 : wen | * | elementary or junior high school | u+6587 | kanji bun row 8 : [?] | * | high school | nan | kanji bun in a circle row 9 : nan | * | university | nan | kanji bun with a smaller kanji da (for daiga row 10 : nan | * | technical college | nan | kanji bun with a smaller kanji zhuan ( row 11 : @ | * | post office | u+3036 | down tack (t-shape) with overbar in row 12 : @ | x | sub post office (not distribution centre) | u+3012 | down tack (t-shape) with overbar row 13 : nan | * | police station | u+2b59 | heavy circled saltire row 14 : nan | * | koban (police box) | u+2613 | diagonal cross (saltire) row 15 : [?] | * | public health centre | u+2295 | greek cross in circle row 16 : [?] | * | hospital | nan | greek cross in shield row 17 : nan | * | prefectural office | u+26fb | oval bullseye row 18 : nan | * | city hall | u+2b57 | heavy circle with circle inside row 19 : * | * | ward office | u+25c9 | fisheye row 20 : nan | * | town hall | u+2b58 | heavy circle row 21 : [?] | * | shinto shrine | u+26e9 | shinto shrine row 22 : wan | * | buddhist temple | u+534d | manji (swastika) row 23 : [?] | * | castle | u+26eb | castle row 24 : [?] | * | cemetery | u+26fc | headstone graveyard symbol row 25 : nan | * | onsen (hot springs) | u+2668 | oval with three vertical wavy lines row 26 : [?] | * | historical landmark | u+26ec | historic site row 27 : [?] | * | summit | u+26f0 | mountain | table_csv/203_540.csv | 0 | {
"column_index": [
4,
4
],
"row_index": [
10,
11
]
} | [
"which description states t-shaped?"
] | 0 | down tack (t-shape) with overbar in, down tack (t-shape) with overbar | [
"Symbol",
"GSI",
"Meaning",
"Unicode",
"Description"
] | which description states t-shaped? | [
[
"^",
"*",
"Base triangulation surveying point",
"U+25EC",
"Dot in upward-pointing triangle"
],
[
"nan",
"*",
"Electronic triangulation point",
"nan",
"Dot in upward-pointing triangle with flag"
],
[
"[?]",
"*",
"Benchmark",
"U+22A1",
"Dot in square"
],
[
"[?]",
"*",
"Factory",
"U+26ED",
"Gear without hub"
],
[
"[?]",
"*",
"Lighthouse",
"U+26EF",
"Map symbol for lighthouse"
],
[
"[?]",
"*",
"Power station",
"U+26EE",
"Gear with handles"
],
[
"Wen",
"*",
"Elementary or junior high school",
"U+6587",
"Kanji bun"
],
[
"[?]",
"*",
"High school",
"nan",
"Kanji bun in a circle"
],
[
"nan",
"*",
"University",
"nan",
"Kanji bun with a smaller kanji Da (for daiga"
],
[
"nan",
"*",
"Technical college",
"nan",
"Kanji bun with a smaller kanji Zhuan ("
],
[
"@",
"*",
"Post office",
"U+3036",
"Down tack (T-shape) with overbar in"
],
[
"@",
"x",
"Sub post office (not distribution centre)",
"U+3012",
"Down tack (T-shape) with overbar"
],
[
"nan",
"*",
"Police station",
"U+2B59",
"Heavy circled saltire"
],
[
"nan",
"*",
"Koban (police box)",
"U+2613",
"Diagonal cross (saltire)"
],
[
"[?]",
"*",
"Public health centre",
"U+2295",
"Greek cross in circle"
],
[
"[?]",
"*",
"Hospital",
"nan",
"Greek cross in shield"
],
[
"nan",
"*",
"Prefectural Office",
"U+26FB",
"Oval bullseye"
],
[
"nan",
"*",
"City hall",
"U+2B57",
"Heavy circle with circle inside"
],
[
"*",
"*",
"Ward office",
"U+25C9",
"Fisheye"
],
[
"nan",
"*",
"Town hall",
"U+2B58",
"Heavy circle"
],
[
"[?]",
"*",
"Shinto shrine",
"U+26E9",
"Shinto shrine"
],
[
"Wan",
"*",
"Buddhist temple",
"U+534D",
"Manji (Swastika)"
],
[
"[?]",
"*",
"Castle",
"U+26EB",
"Castle"
],
[
"[?]",
"*",
"Cemetery",
"U+26FC",
"Headstone graveyard symbol"
],
[
"nan",
"*",
"Onsen (hot springs)",
"U+2668",
"Oval with three vertical wavy lines"
],
[
"[?]",
"*",
"Historical landmark",
"U+26EC",
"Historic site"
],
[
"[?]",
"*",
"Summit",
"U+26F0",
"Mountain"
]
] | [
"Down tack (T-shape) with overbar in",
"Down tack (T-shape) with overbar"
] | which description states t-shaped? || |
nt-2038 | col : symbol | gsi | meaning | unicode | description row 1 : ^ | * | base triangulation surveying point | u+25ec | dot in upward-pointing triangle row 2 : nan | * | electronic triangulation point | nan | dot in upward-pointing triangle with flag row 3 : [?] | * | benchmark | u+22a1 | dot in square row 4 : [?] | * | factory | u+26ed | gear without hub row 5 : [?] | * | lighthouse | u+26ef | map symbol for lighthouse row 6 : [?] | * | power station | u+26ee | gear with handles row 7 : wen | * | elementary or junior high school | u+6587 | kanji bun row 8 : [?] | * | high school | nan | kanji bun in a circle row 9 : nan | * | university | nan | kanji bun with a smaller kanji da (for daiga row 10 : nan | * | technical college | nan | kanji bun with a smaller kanji zhuan ( row 11 : @ | * | post office | u+3036 | down tack (t-shape) with overbar in row 12 : @ | x | sub post office (not distribution centre) | u+3012 | down tack (t-shape) with overbar row 13 : nan | * | police station | u+2b59 | heavy circled saltire row 14 : nan | * | koban (police box) | u+2613 | diagonal cross (saltire) row 15 : [?] | * | public health centre | u+2295 | greek cross in circle row 16 : [?] | * | hospital | nan | greek cross in shield row 17 : nan | * | prefectural office | u+26fb | oval bullseye row 18 : nan | * | city hall | u+2b57 | heavy circle with circle inside row 19 : * | * | ward office | u+25c9 | fisheye row 20 : nan | * | town hall | u+2b58 | heavy circle row 21 : [?] | * | shinto shrine | u+26e9 | shinto shrine row 22 : wan | * | buddhist temple | u+534d | manji (swastika) row 23 : [?] | * | castle | u+26eb | castle row 24 : [?] | * | cemetery | u+26fc | headstone graveyard symbol row 25 : nan | * | onsen (hot springs) | u+2668 | oval with three vertical wavy lines row 26 : [?] | * | historical landmark | u+26ec | historic site row 27 : [?] | * | summit | u+26f0 | mountain | table_csv/203_540.csv | 1 | {
"column_index": [
2
],
"row_index": [
10
]
} | [
"which description states t-shaped?",
"of those, which meaning has the the bigger unicode?"
] | 0 | post office | [
"Symbol",
"GSI",
"Meaning",
"Unicode",
"Description"
] | of those, which meaning has the the bigger unicode? | [
[
"^",
"*",
"Base triangulation surveying point",
"U+25EC",
"Dot in upward-pointing triangle"
],
[
"nan",
"*",
"Electronic triangulation point",
"nan",
"Dot in upward-pointing triangle with flag"
],
[
"[?]",
"*",
"Benchmark",
"U+22A1",
"Dot in square"
],
[
"[?]",
"*",
"Factory",
"U+26ED",
"Gear without hub"
],
[
"[?]",
"*",
"Lighthouse",
"U+26EF",
"Map symbol for lighthouse"
],
[
"[?]",
"*",
"Power station",
"U+26EE",
"Gear with handles"
],
[
"Wen",
"*",
"Elementary or junior high school",
"U+6587",
"Kanji bun"
],
[
"[?]",
"*",
"High school",
"nan",
"Kanji bun in a circle"
],
[
"nan",
"*",
"University",
"nan",
"Kanji bun with a smaller kanji Da (for daiga"
],
[
"nan",
"*",
"Technical college",
"nan",
"Kanji bun with a smaller kanji Zhuan ("
],
[
"@",
"*",
"Post office",
"U+3036",
"Down tack (T-shape) with overbar in"
],
[
"@",
"x",
"Sub post office (not distribution centre)",
"U+3012",
"Down tack (T-shape) with overbar"
],
[
"nan",
"*",
"Police station",
"U+2B59",
"Heavy circled saltire"
],
[
"nan",
"*",
"Koban (police box)",
"U+2613",
"Diagonal cross (saltire)"
],
[
"[?]",
"*",
"Public health centre",
"U+2295",
"Greek cross in circle"
],
[
"[?]",
"*",
"Hospital",
"nan",
"Greek cross in shield"
],
[
"nan",
"*",
"Prefectural Office",
"U+26FB",
"Oval bullseye"
],
[
"nan",
"*",
"City hall",
"U+2B57",
"Heavy circle with circle inside"
],
[
"*",
"*",
"Ward office",
"U+25C9",
"Fisheye"
],
[
"nan",
"*",
"Town hall",
"U+2B58",
"Heavy circle"
],
[
"[?]",
"*",
"Shinto shrine",
"U+26E9",
"Shinto shrine"
],
[
"Wan",
"*",
"Buddhist temple",
"U+534D",
"Manji (Swastika)"
],
[
"[?]",
"*",
"Castle",
"U+26EB",
"Castle"
],
[
"[?]",
"*",
"Cemetery",
"U+26FC",
"Headstone graveyard symbol"
],
[
"nan",
"*",
"Onsen (hot springs)",
"U+2668",
"Oval with three vertical wavy lines"
],
[
"[?]",
"*",
"Historical landmark",
"U+26EC",
"Historic site"
],
[
"[?]",
"*",
"Summit",
"U+26F0",
"Mountain"
]
] | [
"Post office"
] | of those, which meaning has the the bigger unicode? || which description states t-shaped? |
nt-2038 | col : symbol | gsi | meaning | unicode | description row 1 : ^ | * | base triangulation surveying point | u+25ec | dot in upward-pointing triangle row 2 : nan | * | electronic triangulation point | nan | dot in upward-pointing triangle with flag row 3 : [?] | * | benchmark | u+22a1 | dot in square row 4 : [?] | * | factory | u+26ed | gear without hub row 5 : [?] | * | lighthouse | u+26ef | map symbol for lighthouse row 6 : [?] | * | power station | u+26ee | gear with handles row 7 : wen | * | elementary or junior high school | u+6587 | kanji bun row 8 : [?] | * | high school | nan | kanji bun in a circle row 9 : nan | * | university | nan | kanji bun with a smaller kanji da (for daiga row 10 : nan | * | technical college | nan | kanji bun with a smaller kanji zhuan ( row 11 : @ | * | post office | u+3036 | down tack (t-shape) with overbar in row 12 : @ | x | sub post office (not distribution centre) | u+3012 | down tack (t-shape) with overbar row 13 : nan | * | police station | u+2b59 | heavy circled saltire row 14 : nan | * | koban (police box) | u+2613 | diagonal cross (saltire) row 15 : [?] | * | public health centre | u+2295 | greek cross in circle row 16 : [?] | * | hospital | nan | greek cross in shield row 17 : nan | * | prefectural office | u+26fb | oval bullseye row 18 : nan | * | city hall | u+2b57 | heavy circle with circle inside row 19 : * | * | ward office | u+25c9 | fisheye row 20 : nan | * | town hall | u+2b58 | heavy circle row 21 : [?] | * | shinto shrine | u+26e9 | shinto shrine row 22 : wan | * | buddhist temple | u+534d | manji (swastika) row 23 : [?] | * | castle | u+26eb | castle row 24 : [?] | * | cemetery | u+26fc | headstone graveyard symbol row 25 : nan | * | onsen (hot springs) | u+2668 | oval with three vertical wavy lines row 26 : [?] | * | historical landmark | u+26ec | historic site row 27 : [?] | * | summit | u+26f0 | mountain | table_csv/203_540.csv | 0 | {
"column_index": [
4
],
"row_index": [
11
]
} | [
"what symbol do the post offices use"
] | 1 | down tack (t-shape) with overbar | [
"Symbol",
"GSI",
"Meaning",
"Unicode",
"Description"
] | what symbol do the post offices use | [
[
"^",
"*",
"Base triangulation surveying point",
"U+25EC",
"Dot in upward-pointing triangle"
],
[
"nan",
"*",
"Electronic triangulation point",
"nan",
"Dot in upward-pointing triangle with flag"
],
[
"[?]",
"*",
"Benchmark",
"U+22A1",
"Dot in square"
],
[
"[?]",
"*",
"Factory",
"U+26ED",
"Gear without hub"
],
[
"[?]",
"*",
"Lighthouse",
"U+26EF",
"Map symbol for lighthouse"
],
[
"[?]",
"*",
"Power station",
"U+26EE",
"Gear with handles"
],
[
"Wen",
"*",
"Elementary or junior high school",
"U+6587",
"Kanji bun"
],
[
"[?]",
"*",
"High school",
"nan",
"Kanji bun in a circle"
],
[
"nan",
"*",
"University",
"nan",
"Kanji bun with a smaller kanji Da (for daiga"
],
[
"nan",
"*",
"Technical college",
"nan",
"Kanji bun with a smaller kanji Zhuan ("
],
[
"@",
"*",
"Post office",
"U+3036",
"Down tack (T-shape) with overbar in"
],
[
"@",
"x",
"Sub post office (not distribution centre)",
"U+3012",
"Down tack (T-shape) with overbar"
],
[
"nan",
"*",
"Police station",
"U+2B59",
"Heavy circled saltire"
],
[
"nan",
"*",
"Koban (police box)",
"U+2613",
"Diagonal cross (saltire)"
],
[
"[?]",
"*",
"Public health centre",
"U+2295",
"Greek cross in circle"
],
[
"[?]",
"*",
"Hospital",
"nan",
"Greek cross in shield"
],
[
"nan",
"*",
"Prefectural Office",
"U+26FB",
"Oval bullseye"
],
[
"nan",
"*",
"City hall",
"U+2B57",
"Heavy circle with circle inside"
],
[
"*",
"*",
"Ward office",
"U+25C9",
"Fisheye"
],
[
"nan",
"*",
"Town hall",
"U+2B58",
"Heavy circle"
],
[
"[?]",
"*",
"Shinto shrine",
"U+26E9",
"Shinto shrine"
],
[
"Wan",
"*",
"Buddhist temple",
"U+534D",
"Manji (Swastika)"
],
[
"[?]",
"*",
"Castle",
"U+26EB",
"Castle"
],
[
"[?]",
"*",
"Cemetery",
"U+26FC",
"Headstone graveyard symbol"
],
[
"nan",
"*",
"Onsen (hot springs)",
"U+2668",
"Oval with three vertical wavy lines"
],
[
"[?]",
"*",
"Historical landmark",
"U+26EC",
"Historic site"
],
[
"[?]",
"*",
"Summit",
"U+26F0",
"Mountain"
]
] | [
"Down tack (T-shape) with overbar"
] | what symbol do the post offices use || |
nt-2038 | col : symbol | gsi | meaning | unicode | description row 1 : ^ | * | base triangulation surveying point | u+25ec | dot in upward-pointing triangle row 2 : nan | * | electronic triangulation point | nan | dot in upward-pointing triangle with flag row 3 : [?] | * | benchmark | u+22a1 | dot in square row 4 : [?] | * | factory | u+26ed | gear without hub row 5 : [?] | * | lighthouse | u+26ef | map symbol for lighthouse row 6 : [?] | * | power station | u+26ee | gear with handles row 7 : wen | * | elementary or junior high school | u+6587 | kanji bun row 8 : [?] | * | high school | nan | kanji bun in a circle row 9 : nan | * | university | nan | kanji bun with a smaller kanji da (for daiga row 10 : nan | * | technical college | nan | kanji bun with a smaller kanji zhuan ( row 11 : @ | * | post office | u+3036 | down tack (t-shape) with overbar in row 12 : @ | x | sub post office (not distribution centre) | u+3012 | down tack (t-shape) with overbar row 13 : nan | * | police station | u+2b59 | heavy circled saltire row 14 : nan | * | koban (police box) | u+2613 | diagonal cross (saltire) row 15 : [?] | * | public health centre | u+2295 | greek cross in circle row 16 : [?] | * | hospital | nan | greek cross in shield row 17 : nan | * | prefectural office | u+26fb | oval bullseye row 18 : nan | * | city hall | u+2b57 | heavy circle with circle inside row 19 : * | * | ward office | u+25c9 | fisheye row 20 : nan | * | town hall | u+2b58 | heavy circle row 21 : [?] | * | shinto shrine | u+26e9 | shinto shrine row 22 : wan | * | buddhist temple | u+534d | manji (swastika) row 23 : [?] | * | castle | u+26eb | castle row 24 : [?] | * | cemetery | u+26fc | headstone graveyard symbol row 25 : nan | * | onsen (hot springs) | u+2668 | oval with three vertical wavy lines row 26 : [?] | * | historical landmark | u+26ec | historic site row 27 : [?] | * | summit | u+26f0 | mountain | table_csv/203_540.csv | 1 | {
"column_index": [
2
],
"row_index": [
10
]
} | [
"what symbol do the post offices use",
"which post office uses a smaller t-shape"
] | 1 | post office | [
"Symbol",
"GSI",
"Meaning",
"Unicode",
"Description"
] | which post office uses a smaller t-shape | [
[
"^",
"*",
"Base triangulation surveying point",
"U+25EC",
"Dot in upward-pointing triangle"
],
[
"nan",
"*",
"Electronic triangulation point",
"nan",
"Dot in upward-pointing triangle with flag"
],
[
"[?]",
"*",
"Benchmark",
"U+22A1",
"Dot in square"
],
[
"[?]",
"*",
"Factory",
"U+26ED",
"Gear without hub"
],
[
"[?]",
"*",
"Lighthouse",
"U+26EF",
"Map symbol for lighthouse"
],
[
"[?]",
"*",
"Power station",
"U+26EE",
"Gear with handles"
],
[
"Wen",
"*",
"Elementary or junior high school",
"U+6587",
"Kanji bun"
],
[
"[?]",
"*",
"High school",
"nan",
"Kanji bun in a circle"
],
[
"nan",
"*",
"University",
"nan",
"Kanji bun with a smaller kanji Da (for daiga"
],
[
"nan",
"*",
"Technical college",
"nan",
"Kanji bun with a smaller kanji Zhuan ("
],
[
"@",
"*",
"Post office",
"U+3036",
"Down tack (T-shape) with overbar in"
],
[
"@",
"x",
"Sub post office (not distribution centre)",
"U+3012",
"Down tack (T-shape) with overbar"
],
[
"nan",
"*",
"Police station",
"U+2B59",
"Heavy circled saltire"
],
[
"nan",
"*",
"Koban (police box)",
"U+2613",
"Diagonal cross (saltire)"
],
[
"[?]",
"*",
"Public health centre",
"U+2295",
"Greek cross in circle"
],
[
"[?]",
"*",
"Hospital",
"nan",
"Greek cross in shield"
],
[
"nan",
"*",
"Prefectural Office",
"U+26FB",
"Oval bullseye"
],
[
"nan",
"*",
"City hall",
"U+2B57",
"Heavy circle with circle inside"
],
[
"*",
"*",
"Ward office",
"U+25C9",
"Fisheye"
],
[
"nan",
"*",
"Town hall",
"U+2B58",
"Heavy circle"
],
[
"[?]",
"*",
"Shinto shrine",
"U+26E9",
"Shinto shrine"
],
[
"Wan",
"*",
"Buddhist temple",
"U+534D",
"Manji (Swastika)"
],
[
"[?]",
"*",
"Castle",
"U+26EB",
"Castle"
],
[
"[?]",
"*",
"Cemetery",
"U+26FC",
"Headstone graveyard symbol"
],
[
"nan",
"*",
"Onsen (hot springs)",
"U+2668",
"Oval with three vertical wavy lines"
],
[
"[?]",
"*",
"Historical landmark",
"U+26EC",
"Historic site"
],
[
"[?]",
"*",
"Summit",
"U+26F0",
"Mountain"
]
] | [
"Post office"
] | which post office uses a smaller t-shape || what symbol do the post offices use |
nt-2038 | col : symbol | gsi | meaning | unicode | description row 1 : ^ | * | base triangulation surveying point | u+25ec | dot in upward-pointing triangle row 2 : nan | * | electronic triangulation point | nan | dot in upward-pointing triangle with flag row 3 : [?] | * | benchmark | u+22a1 | dot in square row 4 : [?] | * | factory | u+26ed | gear without hub row 5 : [?] | * | lighthouse | u+26ef | map symbol for lighthouse row 6 : [?] | * | power station | u+26ee | gear with handles row 7 : wen | * | elementary or junior high school | u+6587 | kanji bun row 8 : [?] | * | high school | nan | kanji bun in a circle row 9 : nan | * | university | nan | kanji bun with a smaller kanji da (for daiga row 10 : nan | * | technical college | nan | kanji bun with a smaller kanji zhuan ( row 11 : @ | * | post office | u+3036 | down tack (t-shape) with overbar in row 12 : @ | x | sub post office (not distribution centre) | u+3012 | down tack (t-shape) with overbar row 13 : nan | * | police station | u+2b59 | heavy circled saltire row 14 : nan | * | koban (police box) | u+2613 | diagonal cross (saltire) row 15 : [?] | * | public health centre | u+2295 | greek cross in circle row 16 : [?] | * | hospital | nan | greek cross in shield row 17 : nan | * | prefectural office | u+26fb | oval bullseye row 18 : nan | * | city hall | u+2b57 | heavy circle with circle inside row 19 : * | * | ward office | u+25c9 | fisheye row 20 : nan | * | town hall | u+2b58 | heavy circle row 21 : [?] | * | shinto shrine | u+26e9 | shinto shrine row 22 : wan | * | buddhist temple | u+534d | manji (swastika) row 23 : [?] | * | castle | u+26eb | castle row 24 : [?] | * | cemetery | u+26fc | headstone graveyard symbol row 25 : nan | * | onsen (hot springs) | u+2668 | oval with three vertical wavy lines row 26 : [?] | * | historical landmark | u+26ec | historic site row 27 : [?] | * | summit | u+26f0 | mountain | table_csv/203_540.csv | 0 | {
"column_index": [
2
],
"row_index": [
11
]
} | [
"what symbol uses a large t-shape with an overbar?"
] | 2 | sub post office (not distribution centre) | [
"Symbol",
"GSI",
"Meaning",
"Unicode",
"Description"
] | what symbol uses a large t-shape with an overbar? | [
[
"^",
"*",
"Base triangulation surveying point",
"U+25EC",
"Dot in upward-pointing triangle"
],
[
"nan",
"*",
"Electronic triangulation point",
"nan",
"Dot in upward-pointing triangle with flag"
],
[
"[?]",
"*",
"Benchmark",
"U+22A1",
"Dot in square"
],
[
"[?]",
"*",
"Factory",
"U+26ED",
"Gear without hub"
],
[
"[?]",
"*",
"Lighthouse",
"U+26EF",
"Map symbol for lighthouse"
],
[
"[?]",
"*",
"Power station",
"U+26EE",
"Gear with handles"
],
[
"Wen",
"*",
"Elementary or junior high school",
"U+6587",
"Kanji bun"
],
[
"[?]",
"*",
"High school",
"nan",
"Kanji bun in a circle"
],
[
"nan",
"*",
"University",
"nan",
"Kanji bun with a smaller kanji Da (for daiga"
],
[
"nan",
"*",
"Technical college",
"nan",
"Kanji bun with a smaller kanji Zhuan ("
],
[
"@",
"*",
"Post office",
"U+3036",
"Down tack (T-shape) with overbar in"
],
[
"@",
"x",
"Sub post office (not distribution centre)",
"U+3012",
"Down tack (T-shape) with overbar"
],
[
"nan",
"*",
"Police station",
"U+2B59",
"Heavy circled saltire"
],
[
"nan",
"*",
"Koban (police box)",
"U+2613",
"Diagonal cross (saltire)"
],
[
"[?]",
"*",
"Public health centre",
"U+2295",
"Greek cross in circle"
],
[
"[?]",
"*",
"Hospital",
"nan",
"Greek cross in shield"
],
[
"nan",
"*",
"Prefectural Office",
"U+26FB",
"Oval bullseye"
],
[
"nan",
"*",
"City hall",
"U+2B57",
"Heavy circle with circle inside"
],
[
"*",
"*",
"Ward office",
"U+25C9",
"Fisheye"
],
[
"nan",
"*",
"Town hall",
"U+2B58",
"Heavy circle"
],
[
"[?]",
"*",
"Shinto shrine",
"U+26E9",
"Shinto shrine"
],
[
"Wan",
"*",
"Buddhist temple",
"U+534D",
"Manji (Swastika)"
],
[
"[?]",
"*",
"Castle",
"U+26EB",
"Castle"
],
[
"[?]",
"*",
"Cemetery",
"U+26FC",
"Headstone graveyard symbol"
],
[
"nan",
"*",
"Onsen (hot springs)",
"U+2668",
"Oval with three vertical wavy lines"
],
[
"[?]",
"*",
"Historical landmark",
"U+26EC",
"Historic site"
],
[
"[?]",
"*",
"Summit",
"U+26F0",
"Mountain"
]
] | [
"Sub post office (not distribution centre)"
] | what symbol uses a large t-shape with an overbar? || |
nt-2038 | col : symbol | gsi | meaning | unicode | description row 1 : ^ | * | base triangulation surveying point | u+25ec | dot in upward-pointing triangle row 2 : nan | * | electronic triangulation point | nan | dot in upward-pointing triangle with flag row 3 : [?] | * | benchmark | u+22a1 | dot in square row 4 : [?] | * | factory | u+26ed | gear without hub row 5 : [?] | * | lighthouse | u+26ef | map symbol for lighthouse row 6 : [?] | * | power station | u+26ee | gear with handles row 7 : wen | * | elementary or junior high school | u+6587 | kanji bun row 8 : [?] | * | high school | nan | kanji bun in a circle row 9 : nan | * | university | nan | kanji bun with a smaller kanji da (for daiga row 10 : nan | * | technical college | nan | kanji bun with a smaller kanji zhuan ( row 11 : @ | * | post office | u+3036 | down tack (t-shape) with overbar in row 12 : @ | x | sub post office (not distribution centre) | u+3012 | down tack (t-shape) with overbar row 13 : nan | * | police station | u+2b59 | heavy circled saltire row 14 : nan | * | koban (police box) | u+2613 | diagonal cross (saltire) row 15 : [?] | * | public health centre | u+2295 | greek cross in circle row 16 : [?] | * | hospital | nan | greek cross in shield row 17 : nan | * | prefectural office | u+26fb | oval bullseye row 18 : nan | * | city hall | u+2b57 | heavy circle with circle inside row 19 : * | * | ward office | u+25c9 | fisheye row 20 : nan | * | town hall | u+2b58 | heavy circle row 21 : [?] | * | shinto shrine | u+26e9 | shinto shrine row 22 : wan | * | buddhist temple | u+534d | manji (swastika) row 23 : [?] | * | castle | u+26eb | castle row 24 : [?] | * | cemetery | u+26fc | headstone graveyard symbol row 25 : nan | * | onsen (hot springs) | u+2668 | oval with three vertical wavy lines row 26 : [?] | * | historical landmark | u+26ec | historic site row 27 : [?] | * | summit | u+26f0 | mountain | table_csv/203_540.csv | 1 | {
"column_index": [
2
],
"row_index": [
10
]
} | [
"what symbol uses a large t-shape with an overbar?",
"which symbol is smaller than that?"
] | 2 | post office | [
"Symbol",
"GSI",
"Meaning",
"Unicode",
"Description"
] | which symbol is smaller than that? | [
[
"^",
"*",
"Base triangulation surveying point",
"U+25EC",
"Dot in upward-pointing triangle"
],
[
"nan",
"*",
"Electronic triangulation point",
"nan",
"Dot in upward-pointing triangle with flag"
],
[
"[?]",
"*",
"Benchmark",
"U+22A1",
"Dot in square"
],
[
"[?]",
"*",
"Factory",
"U+26ED",
"Gear without hub"
],
[
"[?]",
"*",
"Lighthouse",
"U+26EF",
"Map symbol for lighthouse"
],
[
"[?]",
"*",
"Power station",
"U+26EE",
"Gear with handles"
],
[
"Wen",
"*",
"Elementary or junior high school",
"U+6587",
"Kanji bun"
],
[
"[?]",
"*",
"High school",
"nan",
"Kanji bun in a circle"
],
[
"nan",
"*",
"University",
"nan",
"Kanji bun with a smaller kanji Da (for daiga"
],
[
"nan",
"*",
"Technical college",
"nan",
"Kanji bun with a smaller kanji Zhuan ("
],
[
"@",
"*",
"Post office",
"U+3036",
"Down tack (T-shape) with overbar in"
],
[
"@",
"x",
"Sub post office (not distribution centre)",
"U+3012",
"Down tack (T-shape) with overbar"
],
[
"nan",
"*",
"Police station",
"U+2B59",
"Heavy circled saltire"
],
[
"nan",
"*",
"Koban (police box)",
"U+2613",
"Diagonal cross (saltire)"
],
[
"[?]",
"*",
"Public health centre",
"U+2295",
"Greek cross in circle"
],
[
"[?]",
"*",
"Hospital",
"nan",
"Greek cross in shield"
],
[
"nan",
"*",
"Prefectural Office",
"U+26FB",
"Oval bullseye"
],
[
"nan",
"*",
"City hall",
"U+2B57",
"Heavy circle with circle inside"
],
[
"*",
"*",
"Ward office",
"U+25C9",
"Fisheye"
],
[
"nan",
"*",
"Town hall",
"U+2B58",
"Heavy circle"
],
[
"[?]",
"*",
"Shinto shrine",
"U+26E9",
"Shinto shrine"
],
[
"Wan",
"*",
"Buddhist temple",
"U+534D",
"Manji (Swastika)"
],
[
"[?]",
"*",
"Castle",
"U+26EB",
"Castle"
],
[
"[?]",
"*",
"Cemetery",
"U+26FC",
"Headstone graveyard symbol"
],
[
"nan",
"*",
"Onsen (hot springs)",
"U+2668",
"Oval with three vertical wavy lines"
],
[
"[?]",
"*",
"Historical landmark",
"U+26EC",
"Historic site"
],
[
"[?]",
"*",
"Summit",
"U+26F0",
"Mountain"
]
] | [
"Post office"
] | which symbol is smaller than that? || what symbol uses a large t-shape with an overbar? |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 0 | {
"column_index": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"what are the the total medals scored by all teams in the 2012 summer paralympics?"
] | 0 | 231, 102, 120, 84, 85, 98, 43, 66, 36, 39 | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | what are the the total medals scored by all teams in the 2012 summer paralympics? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"231",
"102",
"120",
"84",
"85",
"98",
"43",
"66",
"36",
"39"
] | what are the the total medals scored by all teams in the 2012 summer paralympics? || |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 1 | {
"column_index": [
5
],
"row_index": [
0
]
} | [
"what are the the total medals scored by all teams in the 2012 summer paralympics?",
"what was the highest amount?"
] | 0 | 231 | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | what was the highest amount? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"231"
] | what was the highest amount? || what are the the total medals scored by all teams in the 2012 summer paralympics? |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 2 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"what are the the total medals scored by all teams in the 2012 summer paralympics?",
"what was the highest amount?",
"which country earned these medals?"
] | 0 | china (chn) | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | which country earned these medals? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"China (CHN)"
] | which country earned these medals? || what was the highest amount? | what are the the total medals scored by all teams in the 2012 summer paralympics? |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 0 | {
"column_index": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"what are the total numbers of medals won?"
] | 1 | 231, 102, 120, 84, 85, 98, 43, 66, 36, 39 | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | what are the total numbers of medals won? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"231",
"102",
"120",
"84",
"85",
"98",
"43",
"66",
"36",
"39"
] | what are the total numbers of medals won? || |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 1 | {
"column_index": [
5
],
"row_index": [
0
]
} | [
"what are the total numbers of medals won?",
"which of these is the highest number of medals?"
] | 1 | 231 | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | which of these is the highest number of medals? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"231"
] | which of these is the highest number of medals? || what are the total numbers of medals won? |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 2 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"what are the total numbers of medals won?",
"which of these is the highest number of medals?",
"which country won this number of medals?"
] | 1 | china (chn) | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | which country won this number of medals? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"China (CHN)"
] | which country won this number of medals? || which of these is the highest number of medals? | what are the total numbers of medals won? |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 0 | {
"column_index": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"which countries participated?"
] | 2 | china (chn), russia (rus), great britain (gbr)*, ukraine (ukr), australia (aus), united states (usa), brazil (bra), germany (ger), poland (pol), netherlands (ned) | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | which countries participated? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"China (CHN)",
"Russia (RUS)",
"Great Britain (GBR)*",
"Ukraine (UKR)",
"Australia (AUS)",
"United States (USA)",
"Brazil (BRA)",
"Germany (GER)",
"Poland (POL)",
"Netherlands (NED)"
] | which countries participated? || |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 1 | {
"column_index": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
],
"row_index": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9
]
} | [
"which countries participated?",
"how many medals did each win?"
] | 2 | 231, 102, 120, 84, 85, 98, 43, 66, 36, 39 | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | how many medals did each win? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"231",
"102",
"120",
"84",
"85",
"98",
"43",
"66",
"36",
"39"
] | how many medals did each win? || which countries participated? |
nt-13853 | col : rank | npc | gold | silver | bronze | total row 1 : 1 | china (chn) | 95 | 71 | 65 | 231 row 2 : 2 | russia (rus) | 36 | 38 | 28 | 102 row 3 : 3 | great britain (gbr)* | 34 | 43 | 43 | 120 row 4 : 4 | ukraine (ukr) | 32 | 24 | 28 | 84 row 5 : 5 | australia (aus) | 32 | 23 | 30 | 85 row 6 : 6 | united states (usa) | 31 | 29 | 38 | 98 row 7 : 7 | brazil (bra) | 21 | 14 | 8 | 43 row 8 : 8 | germany (ger) | 18 | 26 | 22 | 66 row 9 : 9 | poland (pol) | 14 | 13 | 9 | 36 row 10 : 10 | netherlands (ned) | 10 | 10 | 19 | 39 row 11 : total (75 npcs) | total (75 npcs) | 503 | 503 | 516 | 1522 | table_csv/203_707.csv | 2 | {
"column_index": [
1
],
"row_index": [
0
]
} | [
"which countries participated?",
"how many medals did each win?",
"and which country won the most?"
] | 2 | china (chn) | [
"Rank",
"NPC",
"Gold",
"Silver",
"Bronze",
"Total"
] | and which country won the most? | [
[
"1",
"China (CHN)",
"95",
"71",
"65",
"231"
],
[
"2",
"Russia (RUS)",
"36",
"38",
"28",
"102"
],
[
"3",
"Great Britain (GBR)*",
"34",
"43",
"43",
"120"
],
[
"4",
"Ukraine (UKR)",
"32",
"24",
"28",
"84"
],
[
"5",
"Australia (AUS)",
"32",
"23",
"30",
"85"
],
[
"6",
"United States (USA)",
"31",
"29",
"38",
"98"
],
[
"7",
"Brazil (BRA)",
"21",
"14",
"8",
"43"
],
[
"8",
"Germany (GER)",
"18",
"26",
"22",
"66"
],
[
"9",
"Poland (POL)",
"14",
"13",
"9",
"36"
],
[
"10",
"Netherlands (NED)",
"10",
"10",
"19",
"39"
],
[
"Total (75 NPCs)",
"Total (75 NPCs)",
"503",
"503",
"516",
"1522"
]
] | [
"China (CHN)"
] | and which country won the most? || how many medals did each win? | which countries participated? |
Subsets and Splits