BiomedCoOp / README.md
TahaKoleilat's picture
Update README.md
d02334c verified
metadata
license: apache-2.0
task_categories:
  - image-classification
language:
  - en
tags:
  - medical
  - biology

Introduction

Our study includes 11 biomedical image classification datasets. Place all the datasets in one directory under data to ease management. The file structure looks like

data/
|–– BTMRI/
|–– BUSI/
|–– CHMNIST/
|–– COVID_19/
|–– CTKidney/
|–– DermaMNIST/
|–– KneeXray/
|–– Kvasir/
|–– LungColon/
|–– OCTMNIST/
|–– RETINA/

Datasets Description

Modality Organ(s) Name Classes # train/val/test
Computerized Tomography Kidney CTKidney Kidney Cyst, Kidney Stone, Kidney Tumor, Normal Kidney 6221/2487/3738
Dermatoscopy Skin DermaMNIST Actinic Keratosis, Basal Cell Carcinoma, Benign Keratosis, Dermatofibroma, Melanocytic nevus, Melanoma, Vascular Lesion 7007/1003/2005
Endoscopy Colon Kvasir Dyed Lifted Polyps, Normal Cecum, Esophagitis, Dyed Resection Margins, Normal Pylorus, Normal Z Line, Polyps, Ulcerative Colitis 2000/800/1200
Fundus Photography Retina RETINA Cataract, Diabetic Retinopathy, Glaucoma, Normal Retina 2108/841/1268
Histopathology Lung, Colon LC25000 Colon Adenocarcinoma, Colon Benign Tissue, Lung Adenocarcinoma, Lung Benign Tissue, Lung Squamous Cell Carcinoma 12500/5000/7500
Histopathology Colorectal CHMNIST Adipose Tissue, Complex Stroma, Debris, Empty Background, Immune Cells, Normal Mucosal Glands, Simple Stroma, Tumor Epithelium 2496/1000/1504
Magnetic Resonance Imaging Brain BTMRI Glioma Tumor, Meningioma Tumor, Normal Brain, Pituitary Tumor 2854/1141/1717
Optical Coherence Tomography Retina OCTMNIST Choroidal Neovascularization, Drusen, Diabetic Macular Edema, Normal 97477/10832/1000
Ultrasound Breast BUSI Benign Tumors, Malignant Tumors, Normal Scans 389/155/236
X-Ray Chest COVID-QU-Ex COVID-19, Lung Opacity, Normal Lungs, Viral Pneumonia 10582/4232/6351
X-Ray Knee KneeXray No, Doubtful, Minimal, Moderate, and Severe Osteoarthritis 5778/826/1656

Download the datasets

All the datasets can be found here on HuggingFace. Download each dataset seperately:

After downloading each dataset, unzip and place each under its respective directory like the following

BTMRI/
|–– BTMRI/
|   |–– glioma_tumor/
|   |–– meningioma_tumor/
|   |–– normal_brain/
|   |–– pituitary_tumor/
|–– split_BTMRI.json

Citation

If you use our work, please consider citing:

@article{koleilat2024biomedcoop,
        title={BiomedCoOp: Learning to Prompt for Biomedical Vision-Language Models},
        author={Koleilat, Taha and Asgariandehkordi, Hojat and Rivaz, Hassan and Xiao, Yiming},
        journal={arXiv preprint arXiv:2411.15232},
        year={2024}
}