Files changed (1) hide show
  1. README.md +219 -3
README.md CHANGED
@@ -1,3 +1,219 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ size_categories:
5
+ - 50K<n<100K
6
+ license: mit
7
+ task_categories:
8
+ - tabular-prediction
9
+ tags:
10
+ - photonics
11
+ - silicon-nitride
12
+ - waveguide
13
+ - optical
14
+ - dataset
15
+ - synthetic
16
+ dataset_info:
17
+ features:
18
+ - name: waveguide_width
19
+ dtype: float
20
+ - name: waveguide_height
21
+ dtype: float
22
+ - name: cladding_material
23
+ dtype: string
24
+ - name: cladding_thickness
25
+ dtype: float
26
+ - name: deposition_method
27
+ dtype: string
28
+ - name: etch_method
29
+ dtype: string
30
+ - name: sidewall_roughness
31
+ dtype: float
32
+ - name: annealing_params
33
+ dtype: string
34
+ - name: wavelength
35
+ dtype: float
36
+ - name: polarization
37
+ dtype: string
38
+ - name: input_power
39
+ dtype: float
40
+ - name: temperature
41
+ dtype: float
42
+ - name: bend_radius
43
+ dtype: float
44
+ - name: device_length
45
+ dtype: float
46
+ - name: insertion_loss
47
+ dtype: float
48
+ - name: propagation_loss
49
+ dtype: float
50
+ - name: coupling_efficiency_input
51
+ dtype: float
52
+ - name: coupling_efficiency_output
53
+ dtype: float
54
+ - name: scattering_loss
55
+ dtype: float
56
+ - name: effective_index
57
+ dtype: float
58
+ - name: mode_confinement_factor
59
+ dtype: float
60
+ - name: batch_id
61
+ dtype: string
62
+ - name: data_source
63
+ dtype: string
64
+ - name: measurement_method
65
+ dtype: string
66
+ - name: uncertainty
67
+ dtype: float
68
+ dataset_size: 90000
69
+ dataset_version: "1.0.0"
70
+ ---
71
+ ```
72
+
73
+ # SiN Photonic Waveguide Loss & Efficiency Dataset
74
+
75
+ > **Description**
76
+ > This dataset provides **90,000 synthetic rows** of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on **waveguide loss** and **efficiency** metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance.
77
+
78
+ ## Key Highlights ✨
79
+ - **Material Focus**: Silicon Nitride (Si₃N₄)
80
+ - **Columns**: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics
81
+ - **Size**: 90,000 rows (ideal for both training and validation splits)
82
+ - **Use Cases**:
83
+ - Waveguide loss prediction
84
+ - Process control and optimization
85
+ - Photonic design parameter studies
86
+ - Synthetic data augmentation for AI/ML tasks
87
+
88
+ ## Dataset Structure 🏗️
89
+ Each row corresponds to a **single waveguide configuration** or measurement instance, including:
90
+
91
+ 1. **Waveguide Geometry**
92
+ - `waveguide_width` (µm)
93
+ - `waveguide_height` (nm or µm)
94
+ - `bend_radius` (µm)
95
+ - `device_length` (mm)
96
+
97
+ 2. **Material & Fabrication**
98
+ - `cladding_material`
99
+ - `cladding_thickness` (µm)
100
+ - `deposition_method`
101
+ - `etch_method`
102
+ - `sidewall_roughness` (nm)
103
+ - `annealing_params`
104
+
105
+ 3. **Operational Parameters**
106
+ - `wavelength` (nm)
107
+ - `polarization` (TE/TM)
108
+ - `input_power` (dBm)
109
+ - `temperature` (°C)
110
+
111
+ 4. **Performance Metrics**
112
+ - `insertion_loss` (dB)
113
+ - `propagation_loss` (dB/cm)
114
+ - `coupling_efficiency_input` (%)
115
+ - `coupling_efficiency_output` (%)
116
+ - `scattering_loss` (dB/cm)
117
+ - `effective_index`
118
+ - `mode_confinement_factor` (0–1)
119
+
120
+ 5. **Metadata**
121
+ - `batch_id` (fabrication batch/wafer ID)
122
+ - `data_source` (Synthetic or Measurement)
123
+ - `measurement_method` (e.g., cut-back, ring_resonance)
124
+ - `uncertainty` (± dB or %)
125
+
126
+ ## Example Row
127
+ waveguide_width = 1.212
128
+ waveguide_height = 400.00
129
+ cladding_material = SiO2
130
+ cladding_thickness = 2.50
131
+ deposition_method = LPCVD
132
+ etch_method = RIE
133
+ sidewall_roughness = 2.05
134
+ annealing_params = 900C_3hr
135
+ wavelength = 1552.23
136
+ polarization = TE
137
+ input_power = 0.00
138
+ temperature = 25.00
139
+ bend_radius = 50.00
140
+ device_length = 10.00
141
+ insertion_loss = 3.50
142
+ propagation_loss = 0.300
143
+ coupling_efficiency_input = 72.00
144
+ coupling_efficiency_output = 68.00
145
+ scattering_loss = 0.15
146
+ effective_index = 1.800
147
+ mode_confinement_factor = 0.80
148
+ batch_id = BATCH_12
149
+ data_source = Synthetic
150
+ measurement_method = ring_resonance
151
+ uncertainty = 0.05
152
+
153
+ ## How to Use 💡
154
+ 1. **Download/Clone**
155
+ - You can download the CSV file manually or use Hugging Face’s `datasets` library:
156
+ ```python
157
+ from datasets import load_dataset
158
+
159
+ dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency")
160
+ ```
161
+
162
+ 2. **Loading & Exploration**
163
+ - Load into your favorite Python environment (`pandas`, `polars`, etc.) to quickly explore the data distribution:
164
+ ```python
165
+ import pandas as pd
166
+
167
+ df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv")
168
+ print(df.head())
169
+ ```
170
+
171
+ 3. **Model Training**
172
+ - For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the `insertion_loss` or `propagation_loss` columns as the labels or targets.
173
+ - Example ML scenario:
174
+ ```python
175
+ features = df[[
176
+ "waveguide_width", "waveguide_height", "sidewall_roughness",
177
+ "wavelength", "polarization", "temperature"
178
+ ]]
179
+ target = df["propagation_loss"]
180
+
181
+ # Then train a regression model, e.g., scikit-learn, XGBoost, etc.
182
+ ```
183
+
184
+ 4. **Synthetic Data Augmentation**
185
+ - Use this synthetic dataset to **supplement** smaller real datasets, enabling data-hungry deep learning models to generalize better.
186
+
187
+ ## Dataset Creation Process 🛠️
188
+ A Python script was used to randomly generate each column’s values within plausible ranges based on typical Si₃N₄ waveguide fabrication and performance data. The insertion loss is partially derived from the propagation loss and device length, and additional random offsets account for coupling losses and measurement variability.
189
+
190
+ ## Caveats & Limitations ⚠️
191
+ - **Synthetic Nature**: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes.
192
+ - **Statistical Simplifications**: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured.
193
+ - **Measurement Noise**: The `uncertainty` column does not fully replicate complex measurement artifacts.
194
+
195
+ ## License 📄
196
+ This dataset is available under the **MIT License**. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution.
197
+
198
+ ## Citation & Acknowledgments 🙌
199
+ If you use this dataset in your research or applications, please cite it as follows (example citation):
200
+
201
+ > **Author**: _https://huggingface.co/Taylor658_
202
+ > **Title**: _SiN Photonic Waveguide Loss & Efficiency (Synthetic)_
203
+ > **Year**: 2025
204
+
205
+ ```bibtex
206
+ @misc{sin_waveguide_loss_efficiency_2025,
207
+ title = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)},
208
+ author = {atayloraeropsace},
209
+ year = {2025},
210
+ howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}}
211
+ }
212
+ ```
213
+
214
+ ## Contributing 🧑‍💻
215
+ We welcome community contributions, ideas, and corrections:
216
+ - **Add additional columns** (e.g., doping profiles, stress levels, advanced measurement data).
217
+
218
+
219
+ ---