Datasets:
Update README.md
#1
by
Taylor658
- opened
README.md
CHANGED
@@ -1,3 +1,219 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
size_categories:
|
5 |
+
- 50K<n<100K
|
6 |
+
license: mit
|
7 |
+
task_categories:
|
8 |
+
- tabular-prediction
|
9 |
+
tags:
|
10 |
+
- photonics
|
11 |
+
- silicon-nitride
|
12 |
+
- waveguide
|
13 |
+
- optical
|
14 |
+
- dataset
|
15 |
+
- synthetic
|
16 |
+
dataset_info:
|
17 |
+
features:
|
18 |
+
- name: waveguide_width
|
19 |
+
dtype: float
|
20 |
+
- name: waveguide_height
|
21 |
+
dtype: float
|
22 |
+
- name: cladding_material
|
23 |
+
dtype: string
|
24 |
+
- name: cladding_thickness
|
25 |
+
dtype: float
|
26 |
+
- name: deposition_method
|
27 |
+
dtype: string
|
28 |
+
- name: etch_method
|
29 |
+
dtype: string
|
30 |
+
- name: sidewall_roughness
|
31 |
+
dtype: float
|
32 |
+
- name: annealing_params
|
33 |
+
dtype: string
|
34 |
+
- name: wavelength
|
35 |
+
dtype: float
|
36 |
+
- name: polarization
|
37 |
+
dtype: string
|
38 |
+
- name: input_power
|
39 |
+
dtype: float
|
40 |
+
- name: temperature
|
41 |
+
dtype: float
|
42 |
+
- name: bend_radius
|
43 |
+
dtype: float
|
44 |
+
- name: device_length
|
45 |
+
dtype: float
|
46 |
+
- name: insertion_loss
|
47 |
+
dtype: float
|
48 |
+
- name: propagation_loss
|
49 |
+
dtype: float
|
50 |
+
- name: coupling_efficiency_input
|
51 |
+
dtype: float
|
52 |
+
- name: coupling_efficiency_output
|
53 |
+
dtype: float
|
54 |
+
- name: scattering_loss
|
55 |
+
dtype: float
|
56 |
+
- name: effective_index
|
57 |
+
dtype: float
|
58 |
+
- name: mode_confinement_factor
|
59 |
+
dtype: float
|
60 |
+
- name: batch_id
|
61 |
+
dtype: string
|
62 |
+
- name: data_source
|
63 |
+
dtype: string
|
64 |
+
- name: measurement_method
|
65 |
+
dtype: string
|
66 |
+
- name: uncertainty
|
67 |
+
dtype: float
|
68 |
+
dataset_size: 90000
|
69 |
+
dataset_version: "1.0.0"
|
70 |
+
---
|
71 |
+
```
|
72 |
+
|
73 |
+
# SiN Photonic Waveguide Loss & Efficiency Dataset
|
74 |
+
|
75 |
+
> **Description**
|
76 |
+
> This dataset provides **90,000 synthetic rows** of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on **waveguide loss** and **efficiency** metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance.
|
77 |
+
|
78 |
+
## Key Highlights ✨
|
79 |
+
- **Material Focus**: Silicon Nitride (Si₃N₄)
|
80 |
+
- **Columns**: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics
|
81 |
+
- **Size**: 90,000 rows (ideal for both training and validation splits)
|
82 |
+
- **Use Cases**:
|
83 |
+
- Waveguide loss prediction
|
84 |
+
- Process control and optimization
|
85 |
+
- Photonic design parameter studies
|
86 |
+
- Synthetic data augmentation for AI/ML tasks
|
87 |
+
|
88 |
+
## Dataset Structure 🏗️
|
89 |
+
Each row corresponds to a **single waveguide configuration** or measurement instance, including:
|
90 |
+
|
91 |
+
1. **Waveguide Geometry**
|
92 |
+
- `waveguide_width` (µm)
|
93 |
+
- `waveguide_height` (nm or µm)
|
94 |
+
- `bend_radius` (µm)
|
95 |
+
- `device_length` (mm)
|
96 |
+
|
97 |
+
2. **Material & Fabrication**
|
98 |
+
- `cladding_material`
|
99 |
+
- `cladding_thickness` (µm)
|
100 |
+
- `deposition_method`
|
101 |
+
- `etch_method`
|
102 |
+
- `sidewall_roughness` (nm)
|
103 |
+
- `annealing_params`
|
104 |
+
|
105 |
+
3. **Operational Parameters**
|
106 |
+
- `wavelength` (nm)
|
107 |
+
- `polarization` (TE/TM)
|
108 |
+
- `input_power` (dBm)
|
109 |
+
- `temperature` (°C)
|
110 |
+
|
111 |
+
4. **Performance Metrics**
|
112 |
+
- `insertion_loss` (dB)
|
113 |
+
- `propagation_loss` (dB/cm)
|
114 |
+
- `coupling_efficiency_input` (%)
|
115 |
+
- `coupling_efficiency_output` (%)
|
116 |
+
- `scattering_loss` (dB/cm)
|
117 |
+
- `effective_index`
|
118 |
+
- `mode_confinement_factor` (0–1)
|
119 |
+
|
120 |
+
5. **Metadata**
|
121 |
+
- `batch_id` (fabrication batch/wafer ID)
|
122 |
+
- `data_source` (Synthetic or Measurement)
|
123 |
+
- `measurement_method` (e.g., cut-back, ring_resonance)
|
124 |
+
- `uncertainty` (± dB or %)
|
125 |
+
|
126 |
+
## Example Row
|
127 |
+
waveguide_width = 1.212
|
128 |
+
waveguide_height = 400.00
|
129 |
+
cladding_material = SiO2
|
130 |
+
cladding_thickness = 2.50
|
131 |
+
deposition_method = LPCVD
|
132 |
+
etch_method = RIE
|
133 |
+
sidewall_roughness = 2.05
|
134 |
+
annealing_params = 900C_3hr
|
135 |
+
wavelength = 1552.23
|
136 |
+
polarization = TE
|
137 |
+
input_power = 0.00
|
138 |
+
temperature = 25.00
|
139 |
+
bend_radius = 50.00
|
140 |
+
device_length = 10.00
|
141 |
+
insertion_loss = 3.50
|
142 |
+
propagation_loss = 0.300
|
143 |
+
coupling_efficiency_input = 72.00
|
144 |
+
coupling_efficiency_output = 68.00
|
145 |
+
scattering_loss = 0.15
|
146 |
+
effective_index = 1.800
|
147 |
+
mode_confinement_factor = 0.80
|
148 |
+
batch_id = BATCH_12
|
149 |
+
data_source = Synthetic
|
150 |
+
measurement_method = ring_resonance
|
151 |
+
uncertainty = 0.05
|
152 |
+
|
153 |
+
## How to Use 💡
|
154 |
+
1. **Download/Clone**
|
155 |
+
- You can download the CSV file manually or use Hugging Face’s `datasets` library:
|
156 |
+
```python
|
157 |
+
from datasets import load_dataset
|
158 |
+
|
159 |
+
dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency")
|
160 |
+
```
|
161 |
+
|
162 |
+
2. **Loading & Exploration**
|
163 |
+
- Load into your favorite Python environment (`pandas`, `polars`, etc.) to quickly explore the data distribution:
|
164 |
+
```python
|
165 |
+
import pandas as pd
|
166 |
+
|
167 |
+
df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv")
|
168 |
+
print(df.head())
|
169 |
+
```
|
170 |
+
|
171 |
+
3. **Model Training**
|
172 |
+
- For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the `insertion_loss` or `propagation_loss` columns as the labels or targets.
|
173 |
+
- Example ML scenario:
|
174 |
+
```python
|
175 |
+
features = df[[
|
176 |
+
"waveguide_width", "waveguide_height", "sidewall_roughness",
|
177 |
+
"wavelength", "polarization", "temperature"
|
178 |
+
]]
|
179 |
+
target = df["propagation_loss"]
|
180 |
+
|
181 |
+
# Then train a regression model, e.g., scikit-learn, XGBoost, etc.
|
182 |
+
```
|
183 |
+
|
184 |
+
4. **Synthetic Data Augmentation**
|
185 |
+
- Use this synthetic dataset to **supplement** smaller real datasets, enabling data-hungry deep learning models to generalize better.
|
186 |
+
|
187 |
+
## Dataset Creation Process 🛠️
|
188 |
+
A Python script was used to randomly generate each column’s values within plausible ranges based on typical Si₃N₄ waveguide fabrication and performance data. The insertion loss is partially derived from the propagation loss and device length, and additional random offsets account for coupling losses and measurement variability.
|
189 |
+
|
190 |
+
## Caveats & Limitations ⚠️
|
191 |
+
- **Synthetic Nature**: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes.
|
192 |
+
- **Statistical Simplifications**: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured.
|
193 |
+
- **Measurement Noise**: The `uncertainty` column does not fully replicate complex measurement artifacts.
|
194 |
+
|
195 |
+
## License 📄
|
196 |
+
This dataset is available under the **MIT License**. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution.
|
197 |
+
|
198 |
+
## Citation & Acknowledgments 🙌
|
199 |
+
If you use this dataset in your research or applications, please cite it as follows (example citation):
|
200 |
+
|
201 |
+
> **Author**: _https://huggingface.co/Taylor658_
|
202 |
+
> **Title**: _SiN Photonic Waveguide Loss & Efficiency (Synthetic)_
|
203 |
+
> **Year**: 2025
|
204 |
+
|
205 |
+
```bibtex
|
206 |
+
@misc{sin_waveguide_loss_efficiency_2025,
|
207 |
+
title = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)},
|
208 |
+
author = {atayloraeropsace},
|
209 |
+
year = {2025},
|
210 |
+
howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}}
|
211 |
+
}
|
212 |
+
```
|
213 |
+
|
214 |
+
## Contributing 🧑💻
|
215 |
+
We welcome community contributions, ideas, and corrections:
|
216 |
+
- **Add additional columns** (e.g., doping profiles, stress levels, advanced measurement data).
|
217 |
+
|
218 |
+
|
219 |
+
---
|