|
--- |
|
license: mit |
|
language: |
|
- nb |
|
task_categories: |
|
- image-to-text |
|
pretty_name: NorHand v1 |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_examples: 19653 |
|
- name: validation |
|
num_examples: 2286 |
|
- name: test |
|
num_examples: 1793 |
|
dataset_size: 23732 |
|
--- |
|
|
|
# NorHand v1 Dataset |
|
|
|
The NorHand v1 dataset comprises Norwegian letter and diary line images and text from 19th and early 20th century. |
|
|
|
## Table of Contents |
|
- [NorHand v1 Dataset](#norhand-v1-dataset) |
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Description](#dataset-description) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [Hugin-Munin project](https://hugin-munin-project.github.io/) |
|
- **Source:** [Zenodo](https://zenodo.org/records/6542056) |
|
- **Paper:** [A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian](https://link.springer.com/chapter/10.1007/978-3-031-06555-2_27) |
|
- **Point of Contact:** [TEKLIA](https://teklia.com) |
|
|
|
### Languages |
|
|
|
All the documents in the dataset are written in Norwegian Bokmål. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
``` |
|
{ |
|
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4300x128 at 0x1A800E8E190, |
|
'text': 'fredag 1923' |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
|
|
- `image`: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0]. |
|
- `text`: the label transcription of the image. |