File size: 18,836 Bytes
a4a7178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41abf31
a4a7178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cb6d5
 
 
a4a7178
 
 
06477d1
a4a7178
 
 
06477d1
a4a7178
 
06477d1
 
 
a4a7178
 
06477d1
a4a7178
06477d1
a4a7178
06477d1
 
 
a4a7178
06477d1
 
 
 
 
 
 
 
 
 
1421c3e
a4a7178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
import re
import tempfile
import urllib
import requests
from pathlib import Path
from zipfile import ZipFile

import datasets

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains 402 argumentative essays from non-native
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "tu_darmstadt": "https://tudatalib.ulb.tu-darmstadt.de/bitstream/handle/tudatalib/2422/ArgumentAnnotatedEssays-2.0.zip?sequence=1&isAllowed=y",
}


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    temp_dir = tempfile.TemporaryDirectory()

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="full_labels",
            version=VERSION,
            description="get all the data conveyed by the labels, O, B-Claim, I-Claim, etc.",
        ),
        datasets.BuilderConfig(
            name="spans",
            version=VERSION,
            description="get the spans, O, B-Span, I-Span.",
        ),
        datasets.BuilderConfig(
            name="simple",
            version=VERSION,
            description="get the labels without B/I, O, MajorClaim, Claim, Premise",
        ),
        datasets.BuilderConfig(
            name="sep_tok",
            version=VERSION,
            description="get the labels without B/I, meaning O, Claim, Premise"
            + ", etc.\n insert seperator tokens <s> ... </s>",
        ),
        datasets.BuilderConfig(
            name="sep_tok_full_labels",
            version=VERSION,
            description="get the labels with B/I, meaning O, I-Claim, I-Premise"
            + ", etc.\n insert seperator tokens <s> ... </s>",
        ),
    ]

    DEFAULT_CONFIG_NAME = "full_labels"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        if (
            self.config.name == "full_labels"
        ):  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "B-MajorClaim",
                                "I-MajorClaim",
                                "B-Claim",
                                "I-Claim",
                                "B-Premise",
                                "I-Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif (
            self.config.name == "spans"
        ):  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "B",
                                "I",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif (
            self.config.name == "simple"
        ):  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "X_placeholder_X",
                                "MajorClaim",
                                "Claim",
                                "Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif self.config.name == "sep_tok":
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "X_placeholder_X",
                                "MajorClaim",
                                "Claim",
                                "Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )
        elif self.config.name == "sep_tok_full_labels":
            features = datasets.Features(
                {
                    "id": datasets.Value("int16"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.ClassLabel(
                            names=[
                                "O",
                                "B-MajorClaim",
                                "I-MajorClaim",
                                "B-Claim",
                                "I-Claim",
                                "B-Premise",
                                "I-Premise",
                            ]
                        )
                    ),
                    "text": datasets.Value("string"),
                    "span_begins": datasets.Sequence(datasets.Value("int16")),
                    "span_ends": datasets.Sequence(datasets.Value("int16")),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def __load_data(self):
        # set up paths
        save_dir = Path(self.temp_dir.name)
        save_file = Path("essays.zip")

        # get url to data
        url = _URLS["tu_darmstadt"]
        # download data
        r = requests.get(url, stream=True)
        # save data to temporary dir
        with open(save_dir / save_file, 'wb') as fd:
            for chunk in r.iter_content(chunk_size=128):
                fd.write(chunk)
        # recursively unzip files
        for glob_path in save_dir.rglob("*.zip"):
            with ZipFile(glob_path, 'r') as zip_ref:
                zip_ref.extractall(glob_path.parent)
        return save_dir

    def __range_generator(self, train=0.8, test=0.2):
        """
        returns three range objects to access the list of essays
        these are the train, test, and validate range, where the size of the
        validation range is dictated by the other two ranges
        """
        # START RANGE AT 1!!!
        return (
            range(1, int(403 * train)),  # train
            range(int(403 * train), int(403 * (train + test))),  # test
            range(int(403 * (train + test)), 403),  # validate
        )

    def _split_generators(self, _):
        data_dir = self.__load_data()

        # this dataset will return a "train" split only, allowing for
        # 5-fold cross-validation
        train, test, validate = self.__range_generator(1, 0)
        # essays = self._get_essay_list()

        if len(validate) > 0 and len(test) > 0:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": train,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": validate,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": test,
                    },
                ),
            ]
        elif len(test) > 0:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": train,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": test,
                    },
                ),
            ]
        elif len(validate) > 0:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": train,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": validate,
                    },
                ),
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_dir": data_dir,
                        "id_range": train,
                    },
                ),
            ]

    def _get_essay(self, id: int, data_dir: Path):
        return data_dir.joinpath(f"essay{str(id).rjust(3, '0')}.txt").read_text(), data_dir.joinpath(f"essay{str(id).rjust(3, '0')}.ann").read_text()

    def _parse_raw_ann(self, raw_ann: str):
        raw_anns = raw_ann.split("\n")
        clean_anns = []
        for cur_raw_ann in raw_anns:
            matches = re.match(r".+\t(.+) (.+) (.+)\t(.+)", cur_raw_ann)
            if matches is not None:
                clean_anns.append(
                        (matches.group(1), int(matches.group(2)), int(matches.group(3)), matches.group(4))
                    )
        # sorting spans by start before returningbefore returning
        return sorted(clean_anns, key=lambda x: x[1])

    def _tokenise(self, text, clean_anns):
        # find spans
        previous_end = 0
        spans = []
        # for every span, add the not span that is before it
        for clean_ann in clean_anns:
            spans.append(("O", text[previous_end:clean_ann[1]]))
            spans.append((clean_ann[0], text[clean_ann[1]:clean_ann[2]]))
            previous_end = clean_ann[2]
        # add whatever is left over to not spans
        spans.append(("O", text[previous_end:]))

        tokens = []
        labels = []
        # tokenise spans
        # WARN: the old dataset considered punctuation to be separate tokens, whilst this one doesnt. 
        #   this shouldnt matter however, since this is just pre-tokenisation, which will pre tokenised for the respective model later on.
        #   i assume that the later tokenisation will create equal results.
        for span in spans:
            span_tokens = span[1].split()
            label = span[0]
            first_label = span[0]
            if self.config.name == "simple":
                # with simple, the token is already correct
                pass

            elif self.config.name == "sep_tok":
                # with sep_tok, the token is correct, but a sep top needs to be inserted
                span_tokens.insert(0, "<s>")
                span_tokens.append("</s>")

            elif self.config.name == "spans":
                if label != "O":
                    first_label = "B"
                    label = "I"

            elif self.config.name == "full_labels":
                if label != "O":
                    first_label = "B-" + label
                    label = "I-" + label
            elif self.config.name == "sep_tok_full_labels":
                # ensure I and B
                if label != "O":
                    first_label = "B-" + label
                    label = "I-" + label
                # make sure to include the sep tok!!!
                span_tokens.insert(0, "<s>")
                span_tokens.append("</s>")

            labels.append(first_label)
            labels.extend([label] * (len(span_tokens) - 1))
            tokens.extend(span_tokens)

        return tokens, labels

    def _process_essay(self, id, data_dir: Path):
        # TODO: get the logic in here. everything else it taken care of i think
        text, raw_ann = self._get_essay(id, data_dir)
        clean_anns = self._parse_raw_ann(raw_ann)
        tokens, labels = self._tokenise(text, clean_anns)


        # id = self._get_id(essay)
        # # input(id)
        # tokens = self._get_tokens(essay)
        # # input(tokens)
        # label_dict = self._get_label_dict(essay)
        # # input(label_dict)
        # tokens, labels, begins, ends = self._match_tokens(tokens, label_dict)
        # # input(tokens)
        # # input(labels)
        # text = self._get_text(essay)

        # id = 1 
        # tokens = ["1"]
        # labels = [1]
        # text = "a"
        # begins = [1]
        # ends = [2]
        return {
            "id": id,
            "tokens": tokens,
            "ner_tags": labels,
            "text": text,
            "span_begins": [ann[1] for ann in clean_anns],
            "span_ends": [ann[2] for ann in clean_anns],
        }

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, data_dir: Path, id_range: list):
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.

        data_dir = data_dir.joinpath("ArgumentAnnotatedEssays-2.0", "brat-project-final")

        for id in id_range:
            # input(data[id])
            yield id, self._process_essay(id, data_dir)