problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p02684 | u797572808 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = map(int,input().split())\n\na = [0]*n\n\na = [int(s) for s in input().split()]\n\nnxt = a[0]\n\nseen = [0]\n#load = []\nres = 0\nflag = 0\nfor i in range(k-1):\n #print(nxt)\n if not(nxt in seen):\n seen.append(nxt)\n nxt = a[nxt-1]\n else:\n root = i - seen.index(nxt) + 1\n print(root)\n print(k-1-i)\n zansa = (k-1-i)%root\n res = seen[seen.index(nxt)+zansa]\n flag = 1\n break\n\n\nif(flag == 1):\n print(res)\nelse:\n print(nxt)', 'n,k = map(int,input().split())\n\na = [0]*n\n\na = [int(s) for s in input().split()]\n\nnxt = a[0]\n\nseen = [0]*n\nseen[0] = 1\n#load = []\nres = 0\nflag = 0\nfor i in range(k-1):\n \n #print(nxt)\n if not(nxt in seen and i > n):\n seen[i+1] = nxt\n nxt = a[nxt-1]\n else:\n root = i - seen.index(nxt) + 1\n #print(root)\n #print(k-1-i)\n zansa = (k-1-i)%root\n res = seen[seen.index(nxt)+zansa]\n flag = 1\n break\n\n\nif(flag == 1):\n print(res)\nelse:\n print(nxt)', 'n,k = map(int,input().split())\n\na = [0]*n\n\na = [int(s) for s in input().split()]\n\nnxt = a[0]\n\nseen = [1]\nload = set()\nload.add(1)\nres = 0\nflag = 0\nfor i in range(k-1):\n \n #print(nxt)\n if not(nxt in load):\n seen.append(nxt)\n load.add(nxt)\n nxt = a[nxt-1]\n else:\n root = i - seen.index(nxt) + 1\n #print(root)\n #print(k-1-i)\n zansa = (k-1-i)%root\n res = seen[seen.index(nxt)+zansa]\n flag = 1\n break\n\n\nif(flag == 1):\n print(res)\nelse:\n print(nxt)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s160925239', 's239806874', 's697071800'] | [33752.0, 33756.0, 33832.0] | [2206.0, 2206.0, 160.0] | [488, 530, 543] |
p02684 | u801049006 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\ns = [0] * N\np = 1\nh = []\nwhile True:\n h.append(p)\n s[p-1] = 1\n p = A[p-1]\n\n if s[p-1] != 0:\n break\nprint(h, p)\nlast = h.index(p)\nleng = len(h) - last\nrem = (K - last) % leng\nprint(h[last:][rem])\n', 'n, k = map(int, input().split())\na = [0] + list(map(int, input().split()))\n\nseen = [False] * (n+1)\nvisited = []\nnxt = 1\ncnt = 0\nwhile not seen[nxt] and cnt != k:\n seen[nxt] = True\n visited.append(nxt)\n nxt = a[nxt]\n cnt += 1\n\nif cnt == k:\n print(nxt)\n exit()\n \nidx = visited.index(nxt)\nprint(visited[idx:][(k-idx)%(len(visited)-idx)])\n'] | ['Wrong Answer', 'Accepted'] | ['s624129243', 's602133000'] | [32392.0, 32100.0] | [202.0, 133.0] | [284, 356] |
p02684 | u805552010 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = map(int,input().split())\na = list(map(int,input().split()))\n\nt = 1\ntl = [1]\nts = {1}\nfor i in range(len(a)):\n\n t = a[t-1]\n if t in ts:\n break\n else:\n tl.append(t)\n ts.add(t)\n\ntl2 = tl[tl.index(t):len(tl)]\n\nprint(tl)\nprint(tl2)\n\nif k < len(tl):\n ans = tl[k]\nelse:\n k = k - (len(tl) - len(tl2))\n j = k % len(tl2)\n ans = tl2[j]\n\nprint(ans)', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\n\nt = 1\ntl = [1]\nts = {1}\nfor i in range(len(a)):\n\n t = a[t-1]\n if t in ts:\n break\n else:\n tl.append(t)\n ts.add(t)\n\ntl2 = tl[tl.index(t):len(tl)]\n\n\nif k < len(tl):\n ans = tl[k]\nelse:\n k = k - (len(tl) - len(tl2))\n j = k % len(tl2)\n ans = tl2[j]\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s797830430', 's320410162'] | [32652.0, 32272.0] | [200.0, 205.0] | [384, 363] |
p02684 | u807028974 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["# import sys\n# import math #sqrt,gcd,pi\n\n\n\n# import heapq # priolity-queue\n\n# from itertools import product,permutations,\\\n# combinations,combinations_with_replacement\n\n\n# from operator import itemgetter,mul\n# from fractions import Fraction\n# from functools import reduce\n\nmod = int(1e9+7)\nINF = 1<<29\nlINF = 1<<35\n\ndef readInt():\n return list(map(int,input().split()))\n\ndef main():\n n,k = readInt()\n a = readInt()\n pos = 0\n visit = [0] * n\n move = []\n roop = []\n while visit[pos]!=2:\n if visit[pos]==0:\n move.append(pos)\n else:\n roop.append(pos)\n visit[pos] += 1\n pos = a[pos] - 1\n \n roop.reverse()\n num = 0\n if len(move)>=k:\n print(move[k]+1)\n else:\n num = (k - (len(move)-len(roop))) % len(roop)\n print(roop[num]+1)\n return\n\nif __name__=='__main__':\n main()\n", 'N,K = map(int,input().split())\nA = list(map(int,input().split()))\npos = 0\nvisit = [0] * N\nmove = []\nroop = []\nwhile visit[pos]!=2:\n if visit[pos]==0:\n move.append(pos)\n else:\n roop.append(pos)\n visit[pos] += 1\n pos = a[pos] - 1\nif len(move)>K:\n print(move[K]+1)\nelse:\n print(roop[(K-(len(move)-len(roop)))%len(roop)]+1)', 'N,K = map(int,input().split())\nA = list(map(int,input().split()))\npos = 0\nvisit = [0] * N\nmove = []\nroop = []\nwhile visit[pos]!=2:\n if visit[pos]==0:\n move.append(pos)\n else:\n roop.append(pos)\n visit[pos] += 1\n pos = A[pos] - 1\nif len(move)>K:\n print(move[K]+1)\nelse:\n print(roop[(K-(len(move)-len(roop)))%len(roop)]+1)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s267430591', 's762157747', 's933195770'] | [32716.0, 32380.0, 32644.0] | [198.0, 68.0, 234.0] | [1052, 351, 351] |
p02684 | u811202694 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['import sys\n\nsys.setrecursionlimit(10000000)\nN,K = [int(v) for v in input().split()]\nA = [int(v) for v in input().split()]\nprint(N,K)\n\n\nloop = []\n\ndef dfs(now):\n loop.append(now)\n if A[now-1] == 1:\n return\n else:\n dfs(A[now-1])\ndfs(1)\n\nprint(loop[K%len(loop)])\n', 'import sys\n\nsys.setrecursionlimit(10000000)\nN,K = [int(v) for v in input().split()]\nA = [int(v) for v in input().split()]\n\nloop = []\npre = []\nvisited = set()\n\ndef dfs(index,now):\n global pre\n global loop\n loop.append(now)\n if now in visited:\n for left in range(len(loop)):\n if now == loop[left]:\n break\n pre = loop[:left]\n loop = loop[left:index]\n return\n else:\n visited.add(now)\n dfs(index+1,A[now-1])\ndfs(0,1)\n\nif len(pre) > K:\n print(pre[K])\nelse:\n K-=len(pre)\n print(loop[K%len(loop)])\n'] | ['Runtime Error', 'Accepted'] | ['s573543403', 's701733923'] | [612288.0, 191740.0] | [746.0, 341.0] | [283, 582] |
p02684 | u811436126 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nvisited = [0] * (n + 1)\nnow = 1\ncheck = 2 * n\nloop_start = 1\nwhile check > 0:\n if visited[now - 1] == 1:\n loop_start = now\n break\n else:\n visited[now - 1] += 1\n now = a[now - 1]\n check -= 1\n\nvisited = [0] * (n + 1)\nnow = loop_start\ncheck = n\nloop = 0\nwhile check > 0:\n if visited[now - 1] == 1:\n break\n else:\n visited[now - 1] += 1\n now = a[now - 1]\n check -= 1\n loop += 1\n\nnow = 1\nwhile k > 0:\n if now == loop_start:\n k %= loop\n if k <= 0:\n break\n else:\n now = a[now - 1]\n k = min(k - 1, 0)\n else:\n now = a[now - 1]\n k -= 1\n\nans = now\nprint(ans)\n', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nvisited = [0] * (n + 1)\nnow = 1\ncheck = 2 * n\nloop_start = 1\nwhile check > 0:\n if visited[now - 1] == 1:\n loop_start = now\n break\n else:\n visited[now - 1] += 1\n now = a[now - 1]\n check -= 1\n\nvisited = [0] * (n + 1)\nnow = loop_start\ncheck = n\nloop = 0\nwhile check > 0:\n if visited[now - 1] == 1:\n break\n else:\n visited[now - 1] += 1\n now = a[now - 1]\n check -= 1\n loop += 1\n\nnow = 1\nwhile k > 0:\n if now == loop_start:\n k %= loop\n if k == 0:\n break\n now = a[now - 1]\n k -= 1\n\nprint(now)\n'] | ['Wrong Answer', 'Accepted'] | ['s537014510', 's077104351'] | [32404.0, 32408.0] | [216.0, 241.0] | [773, 672] |
p02684 | u811817592 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['# -*- coding: utf-8 -*-\nN, K = map(int, input().split())\nA_list = list(map(int, input().split()))\n\nans_list = [1]\nhistory_list = [0 for _ in range(N)]\nbefore_town = 1\nloop_start_town = 10 ** 10\nfor i in range(N):\n now_town = A_list[before_town - 1]\n if history_list[now_town - 1] == 1\n break\n ans_list.append(now_town)\n before_town = now_town\n\nif len(ans_list) >= K:\n print(ans_list[K])\nelse:\n loop_start_idx = ans_list.index(A_list[ans_list[-1] - 1])\n loop_len = len(ans_list)\n ans_list = ans_list[loop_start_idx:]\n mod_num = (K - loop_len) % (loop_len - loop_start_idx)\n print(ans_list[mod_num])', '# -*- coding: utf-8 -*-\nN, K = map(int, input().split())\nA_list = list(map(int, input().split()))\n\nans_list = [1]\nhistory_list = [0 for _ in range(N)]\nbefore_town = 1\nloop_start_town = 10 ** 10\nfor i in range(N):\n now_town = A_list[before_town - 1]\n if history_list[now_town - 1] == 1:\n break\n ans_list.append(now_town)\n before_town = now_town\n\nif len(ans_list) >= K:\n print(ans_list[K])\nelse:\n loop_start_idx = ans_list.index(A_list[ans_list[-1] - 1])\n loop_len = len(ans_list)\n ans_list = ans_list[loop_start_idx:]\n mod_num = (K - loop_len) % (loop_len - loop_start_idx)\n print(ans_list[mod_num])', '# -*- coding: utf-8 -*-\nN, K = map(int, input().split())\nA_list = list(map(int, input().split()))\n\nans_list = [1]\nhistory_list = [0 for _ in range(N)]\nbefore_town = 1\nloop_start_town = 10 ** 10\nfor i in range(N):\n now_town = A_list[before_town - 1]\n if history_list[now_town - 1] == 1\n break\n ans_list.append(now_town)\n before_town = now_town\n\nif len(ans_list) >= K:\n print(ans_list[K])\nelse:\n loop_start_idx = ans_list.index(A_list[ans_list[-1] - 1])\n loop_len = len(ans_list)\n ans_list = ans_list[loop_start_idx:]\n mod_num = (K - loop_len) % (loop_len - loop_start_idx)\n print(ans_list[mod_num])', '# -*- coding: utf-8 -*-\nN, K = map(int, input().split())\nA_list = list(map(int, input().split()))\n\nans_list = [1]\nhistory_list = [0 for _ in range(N)]\nbefore_town = 1\nloop_start_town = 10 ** 10\nfor i in range(N):\n now_town = A_list[before_town - 1]\n if history_list[now_town - 1] == 1:\n break\n ans_list.append(now_town)\n before_town = now_town\n\nif len(ans_list) > K:\n print(ans_list[K])\nelse:\n loop_start_idx = ans_list.index(A_list[ans_list[-1] - 1])\n loop_len = len(ans_list)\n ans_list = ans_list[loop_start_idx:]\n mod_num = (K - loop_len) % (loop_len - loop_start_idx)\n print(ans_list[mod_num])'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s240706618', 's685028204', 's821243815', 's962129992'] | [9044.0, 32260.0, 9040.0, 32376.0] | [24.0, 139.0, 22.0, 190.0] | [634, 635, 634, 634] |
p02684 | u813993459 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = list(map(int,input().split()))\n# a = list(map(int,input().split()))\n\ntmp_city=[]\nc=0\ncount=0\ninit_city=0\n\nwhile (1):\n count+=1\n tmp=a[c]\n if k==count:\n tmp_city.append(tmp)\n tmp_city=[1]+tmp_city\n break\n if tmp == 1:\n init_city=0\n tmp_city=[1]+tmp_city\n break\n if tmp in tmp_city:\n init_city=tmp_city.index(tmp)+1\n tmp_city=[1]+tmp_city\n break\n tmp_city.append(tmp)\n c=tmp-1\nif k==count:\n print(tmp_city[-1])\nelse:\n print(tmp_city[init_city:][(k-(init_city))%len(tmp_city[init_city:])])', 'n, k = list(map(int,input().split()))\na = list(map(int,input().split()))\n\nnow=1\ncount=0\n\ncities = [0]\n\nfor i in range(1,k+1):\n tmp=a[cities[i-1]-1]\n if tmp in cities[:i]:\n init_city=cities.index(tmp)\n if init_city>k:\n print(cities[k])\n else:\n print(cities[init_city:i][(k-init_city)%(i-init_city)])\n break\n else:\n cities.append(tmp)\nelse:\n print(now)', 'n, k = list(map(int,input().split()))\na = list(map(int,input().split()))\n\nnow=1\ncount=0\n\ncities = [0]\n\nfor i in range(1,k+1):\n tmp=a[cities[i-1]-1]\n if tmp in cities[:i]:\n init_city=cities.index(tmp)\n if init_city>k:\n print(cities[k])\n else:\n print(cities[init_city:i][(k-init_city)%(i-init_city)])\n break\n else:\n cities.append(tmp)\nelse:\n print(cities[k])', 'n, k = map(int, input().split())\nA = list(map(int, input().split()))\nD = [0] * (n+1)\nnow = 1\nfor i in range(1, k+1):\n tmp = A[now-1]\n if not D[tmp]:\n now = tmp\n D[now] += i\n else:\n pre = D[tmp]\n loop = i - D[tmp]\n if loop>1:\n now=D.index((k - pre) % loop + pre)\n else:\n now=tmp\n break\nprint(now)'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s192005535', 's339733584', 's513960485', 's269920248'] | [9168.0, 32312.0, 32360.0, 32368.0] | [21.0, 2206.0, 2206.0, 127.0] | [603, 419, 425, 375] |
p02684 | u816265237 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['#167\n#d\nn,k = map(int, input().split())\nln = list(map(int, input().split()))\n\n# n,k = 10*4,10**18\n# ln = list(range(2,n+1))\n# ln.append(1)\n\nvisit = [0]*n \nnow= 1 \nbefore =[] \nroop =[] \nwhile visit[now -1] != 2:\n if visit[now -1] == 0:\n before.append(now)\n elif visit [now-1] == 1:\n roop.append(now)\n visit[now -1]+= 1\n now = ln[now-1]\nif k < len(before):\n print(before[k])\nelse :\n print(roop[((k-len(before))%len(roop)) -1])\n \n ', '#167\n#d\nn,k = map(int, input().split())\nln = list(map(int, input().split()))\n\n# n,k = 10*4,10**18\n# ln = list(range(2,n+1))\n# ln.append(1)\n\nvisit = [0]*n \nnow= 1 \nbefore =[] \nroop =[] \nwhile visit[now -1] != 2:\n if visit[now -1] == 0:\n before.append(now)\n elif visit [now-1] == 1:\n roop.append(now)\n \n visit[now -1]+= 1\n now = ln[now-1]\n\n\nif k < len(before):\n print(before[k])\nelse :\n print(roop[((k-len(before))%len(roop)) ])\n '] | ['Wrong Answer', 'Accepted'] | ['s761641834', 's271699043'] | [32000.0, 32368.0] | [261.0, 241.0] | [602, 602] |
p02684 | u822662438 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\n\na = list(map(int, input().split()))\n\nvisited = [1]\nis_visited = [0] * n\nnow = 1\nstep = 0\nfor i in range(k):\n now = a[now-1]\n step += 1\n if is_visited[now-1] == 0:\n is_visited[now-1] = 1\n else:\n ind = visited.index(now)\n loop = visited[ind:]\n tmp = (k-step) % len(loop)\n now = loop[tmp]\n break\n\nprint(now)\n', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nvisited = [1]\nis_visited = [0] * n\nnow = 1\nstep = 0\nfor i in range(k):\n now = a[now-1]\n step += 1\n\n if is_visited[now-1] == 0:\n is_visited[now-1] = 1\n else:\n ind = visited.index(now)\n loop = visited[ind:]\n tmp = (k-step) % len(loop)\n now = loop[tmp]\n break\n\nprint(now)\n', 'n, k = map(int, input().split())\n\na = list(map(int, input().split()))\n\nvisited = [1]\nis_visited = [0] * n\nnow = 1\nstep = 0\nfor i in range(k):\n now = a[now-1]\n step += 1\n if is_visited[now-1] == 0:\n is_visited[now-1] = 1\n visited.append(now)\n else:\n ind = visited.index(now)\n loop = visited[ind:]\n tmp = (k-step) % len(loop)\n now = loop[tmp]\n break\n\nprint(now)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s013093541', 's570115519', 's824522642'] | [32364.0, 32300.0, 32260.0] | [143.0, 127.0, 136.0] | [393, 393, 421] |
p02684 | u825186577 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N,K = map(int,input().split())\nA = list(map(int,input().split()))\n\npos = 0\nvisited = [0]*N\nmove = []\nloop = []\n\nwhile visited[pos]!=2:\n if visited[pos] ==0:\n move.append(pos)\n else:\n loop.append(pos)\n visited[pos] += 1\n pos = A[pos]-1\n\nif len(move)>k:\n print(move[k]+1)\nelse:\n print(roop[(K-(len(move)-len(loop)))%len(loop)]+1)', 'N,K = map(int,input().split())\nA = list(map(int,input().split()))\npos = 0\nvisit = [0] * N\nmove = []\nroop = []\nwhile visit[pos]!=2:\n if visit[pos]==0:\n move.append(pos)\n else:\n roop.append(pos)\n visit[pos] += 1\n pos = A[pos] - 1\nif len(move)>K:\n print(move[K]+1)\nelse:\n print(roop[(K-(len(move)-len(roop)))%len(roop)]+1)\n'] | ['Runtime Error', 'Accepted'] | ['s271857748', 's231111522'] | [32668.0, 32840.0] | [257.0, 257.0] | [339, 352] |
p02684 | u830054172 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\ncnt = [0 for _ in range(N)]\ncnt[0] += 1\n\nwarp_rireki= [A[0]]\nroop = []\n# c = 0\n# print(cnt)\nwarp = A[0]\nwhile True:\n # print(cnt[warp-1])\n if cnt[warp-1] == 2:\n break\n warp_rireki.append(A[warp-1])\n if cnt[warp-1] == 1:\n roop.append(A[warp-1])\n cnt[warp-1] += 1\n warp = A[warp-1]\n\n\none_root = sum(cnt)-len(roop)\n# print("root", roop)\n# print("one", one_root)\nif K < len(warp_rireki):\n print(warp_rireki[K])\nelse:\n print(roop[(K-one_root)%len(roop)-1])', 'N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\ncnt = [0 for _ in range(N)]\ncnt[0] += 1\n\nwarp_rireki= [A[0]]\nroop = []\n# c = 0\n# print(cnt)\nwarp = A[0]\nwhile True:\n # print(cnt[warp-1])\n if cnt[warp-1] == 2:\n break\n warp_rireki.append(A[warp-1])\n if cnt[warp-1] == 1:\n roop.append(A[warp-1])\n cnt[warp-1] += 1\n warp = A[warp-1]\n\n\none_root = cnt.count(1)\n# print("root", roop)\n# print("one", one_root)\nif K < len(warp_rireki):\n print(warp_rireki[K])\nprint(roop[(K-one_root)%len(roop)-1])', 'N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\ncnt = [0 for _ in range(N)]\ncnt[0] += 1\n\nwarp_rireki= [A[0]]\nroop = []\n# c = 0\n# print(cnt)\nwarp = A[0]\nwhile True:\n # print(cnt[warp-1])\n if cnt[warp-1] == 2:\n break\n warp_rireki.append(A[warp-1])\n if cnt[warp-1] == 1:\n roop.append(A[warp-1])\n cnt[warp-1] += 1\n warp = A[warp-1]\n\n\none_root = cnt.count(1)\n# print("root", roop)\n# print("one", one_root)\nif K < len(warp_rireki):\n print(warp_rireki[K])\nelse:\n print(roop[(K-one_root)%len(roop)-1])', 'N, K = map(int, input().split())\n\nA = list(map(int, input().split()))\n\nord = [-1 for _ in range(N)]\nord[0] = 0\nv = A[0]-1\nroot = [0]\n\nwhile ord[v] == -1:\n \n ord[v] = len(root)\n \n root.append(v)\n\n \n v = A[v]-1\n\n# print(ord)\n# print(root)\n\n\n\nl = ord[v]\n\nc = len(root) - l\n\nif K < l:\n \n ans = root[K]\nelse:\n \n \n K -= l\n \n K %= c\n \n ans = root[l+K]\nprint(ans+1)\n\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s053534298', 's460651000', 's597840443', 's927648820'] | [32384.0, 32388.0, 32068.0, 33396.0] | [289.0, 336.0, 304.0, 176.0] | [560, 544, 554, 880] |
p02684 | u833492079 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['#-------------------------------------------------------------------\nimport sys\ndef p(*_a):\n _s=" ".join(map(str,_a))\n #print(_s)\n sys.stderr.write(_s+"\\n")\n#-------------------------------------------------------------------\nN,K = map(int, input().split())\t\t# 5 7 2\nA = [0] + list( map(int, input().split()) )\t# 1 2 3 4 5 ...\n\n\nM = [ [0,0] for _ in range(N+1) ]\t\t\t#=> [[], [], [], [], [], [], [], []]\n\np(M)\n\ni = 1\nx = y = 0\nfor k in range(1, K+1):\n\tx,y = M[i]\n\t\n\tif x==0:\n\t\tM[i][0] = A[i]\n\t\tM[i][1] = k\n\t\ti = A[i]\n\t\n\telse:\n\t\t\n\t\tbreak\n\nelse:\n\tans = i\n\tprint(ans)\n\texit(0)\n\n\np(x,y,k)\np("M[1:]", M[1:])\n\nk = k - y\n\nj = k % (k-y)\n\ni = \nfor a in range(j):\n\tx,y = M[i]\n\tM[i][0] = A[i]\n\tM[i][1] = k\n\ti = A[i]\n\nprint(i)\t', '#-------------------------------------------------------------------\nimport sys\ndef p(*_a):\n _s=" ".join(map(str,_a))\n #print(_s)\n sys.stderr.write(_s+"\\n")\n#-------------------------------------------------------------------\nN,K = map(int, input().split())\t\t# 5 7 2\nA = [0] + list( map(int, input().split()) )\t# 1 2 3 4 5 ...\n\n\nM = [ [0,0] for _ in range(N+1) ]\t\t\t#=> [[], [], [], [], [], [], [], []]\n\np(M)\n\ni = 1\nx = y = 0\nfor k in range(1, K+1):\n\tx,y = M[i]\n\t\n\tif x==0:\n\t\tM[i][0] = A[i]\n\t\tM[i][1] = k\n\t\ti = A[i]\n\t\n\telse:\n\t\t\n\t\tbreak\n\nelse:\n\tans = i\n\tprint(ans)\n\texit(0)\n\n\np(x,y,k)\np("M[1:]", M[1:])\n\nk = k - y\n\nj = k % (k-y)\n\nfor a in range(j):\n\tx,y = M[i]\n\tM[i][0] = A[i]\n\tM[i][1] = k\n\ti = A[i]\n\nprint(i)\t', '#-------------------------------------------------------------------\nimport sys\ndef p(*_a):\n _s=" ".join(map(str,_a))\n #print(_s)\n sys.stderr.write(_s+"\\n")\n#-------------------------------------------------------------------\nN,K = map(int, input().split())\t\t# 5 7 2\nA = [0] + list( map(int, input().split()) )\t# 1 2 3 4 5 ...\n\n\nM = [ [0,0] for _ in range(N+1) ]\t\t\t#=> [[], [], [], [], [], [], [], []]\n\np(M)\n\ni = 1\nx = y = 0\nfor k in range(K):\n\tx,y = M[i]\n\t\n\tif x==0:\n\t\tM[i][0] = A[i]\n\t\tM[i][1] = k\n\t\ti = A[i]\n\t\tcontinue\n\t\n\t\n\ta = K - y\n\tb = a % (k-y)\n\tfor _ in range(b):\n\t\ti = A[i]\n\t\n\tp(x,y,k)\n\tp("M[1:]", M[1:])\n\t\n\tbreak\n\nans = i\nprint(ans)\n\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s689039794', 's837662701', 's899592121'] | [8792.0, 50128.0, 49316.0] | [26.0, 389.0, 916.0] | [716, 711, 646] |
p02684 | u834224054 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['tmp = input().split()\nN = int(tmp[0])\nK = int(tmp[1])\n\ntmp = input().split()\n\nMap = [0]*N\nK = K%N\nrt = [0]*K\n\nfor i in range(N):\n Map[i] = int(tmp[i])\n\ndef trip(self, steps):\n ntown = Map[self-1]\n if steps == K:\n return ntown\n rt[steps]=trip(ntown,steps+1)\n\n\n \nFt = trip(1,1)\nprint(rt[K-1])\n', 'N, K = map(int,input().split())\n\nMap = list(map(int,input().split()))\n\nVisited = [-1]*N\nnow = 1\nOrder = [0]*N\n\nloopcount = 1\nOrder[0] = 1\nVisited[0] = 1\nfor i in range(1,N):\n nt = Map[now-1]\n Order[i] = nt\n loopcount += 1\n if Visited[nt-1] == -1:\n Visited[nt-1] = loopcount\n else:\n break\n now = nt\n \n\nns = Visited[nt-1]\nperiod = loopcount - ns\n\nif period == 0:\n period = loopcount\n ns = 0\n\nKmod = K - ns\nif Kmod > 0:\n Kmod %= period\n\nprint(Order[ns+Kmod])\n\n\n'] | ['Runtime Error', 'Accepted'] | ['s092663010', 's192802502'] | [33352.0, 32400.0] | [107.0, 212.0] | [313, 502] |
p02684 | u838644735 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["def main():\n N, K, *A = map(int, open(0).read().split())\n visited = [0]*N\n pos = A[0]\n visited[0] = visited[pos - 1] = 1\n while visited[pos - 1] < 2:\n pos = A[pos - 1]\n visited[pos - 1] += 1\n # print(pos)\n begin = pos\n step_to_begin = 0\n if begin != 0:\n pos = 0\n while pos != begin:\n pos = A[pos - 1]\n step_to_begin += 1\n step_to_begin += 1\n # print(begin, step_to_begin)\n\n if K <= step_to_begin:\n ans = 0\n for i in range(K):\n ans = A[ans - 1]\n print(ans)\n return\n order = 1\n pos = step_to_begin\n while A[pos - 1] != step_to_begin:\n pos = A[pos - 1]\n order += 1\n # print(order)\n remain = (K - step_to_begin) % order\n ans = step_to_begin\n for i in range(remain):\n ans = A[ans - 1]\n print(ans)\n\nif __name__ == '__main__':\n main()\n", 'N,K,*A=map(int,open(0).read().split())\na=1\nwhile K>0:\n if K&1:a=A[a-1]\n A=[A[A[i]-1] for i in range(N)]\n K>>=1\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s893908460', 's796415233'] | [31824.0, 31808.0] | [2206.0, 1896.0] | [903, 119] |
p02684 | u841856382 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n = input().split()\nN = int(n[0])\nK = int(n[1])\n\nlista = []\nlistb = [1]\nC = 1\nA = list(map(int, input().split()))\n\nfor i in range(N):\n lista.append(int(A[i]))\n \nfor j in range(20000000):\n C = lista[C-1]\n if C not in listb:\n listb.append(C)\n else:\n break\n \nfor i in range(len(listb)):\n if listb[i] == C:\n D = C\n I = i\n\nif K <= N:\n print(C)\nelif K > N and C == N:\n print(listb[K % N -1])\nelse:\n if C-D == 1 or C-D == 0:\n print(C)\n else:\n M = (K-I) % (C-D)\n print(listb[I+M-1])', 'n = input().split()\nN = int(n[0])\nK = int(n[1])\n\nlistb = [1]\nlistc = [0]*N\nC = 1\nA = list(map(int, input().split()))\n \nfor i in range(N):\n C = A[C-1]\n if listc[C-1] == 0:\n listb.append(C)\n listc[C-1] = 1\n else:\n D = listb.index(C)\n listb.append(C)\n break\n\nL = len(listb) -1\n\nif K <= N:\n print(listb[K])\nelse:\n if L-D == 1 or L-D == 0:\n print(C)\n else:\n M = (K-D) % (L-D)\n print(listb[(D+M)%L])'] | ['Wrong Answer', 'Accepted'] | ['s674936731', 's686571863'] | [32388.0, 33888.0] | [2206.0, 175.0] | [582, 483] |
p02684 | u843318346 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = map(int,input().split())\nan = list(map(int, input().split()))\ncopyan = an[:]\ni = copyan[0]\ncopyan[0]=10**6\nmovecount = 1\nroopstart = 0\nif i != 1:\n while True:\n memo = i\n i = copyan[i-1]\n copyan[memo-1]=10**6 + movecount\n \n \n if i >=30000:\n yokei = i%(10**6)\n \n break\n movecount += 1\n roopstart = i\nelse:\n print()\nroopnum = movecount - yokei\nx = (k-yokei)%roopnum \n\ncount = 0\niti = an[roopstart]\nwhile True:\n \n if x == 0:\n print(roopstart)\n exit()\n else:\n iti = an[iti-1]\n \n count += 1\n if count == x:\n print(iti+1)\n exit()\n\n\n\n\n\n\n\n', 'n,k = map(int,input().split())\nan = list(map(int, input().split()))\ncopyan = an[:]\ni = copyan[0]\ncopyan[0]=10**6\nmovecount = 1\n\nif i != 1:\n while True:\n memo = i\n if k == movecount:\n print(i)\n \n exit()\n i = copyan[i-1]\n \n if i >=300000:\n yokei = i%(10**6) \n break\n copyan[memo-1]=10**6 + movecount\n movecount += 1\n \nelse:\n print(1)\n exit()\nroopnum = movecount - yokei\nx = (k-yokei)%roopnum\n\nans = copyan.index(10**6+yokei+x) +1\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s124137275', 's774731843'] | [32300.0, 32300.0] | [2206.0, 143.0] | [723, 567] |
p02684 | u845536647 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['print(kari)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nl=[1] \nseen={}\nk=1\nfor i in range (K):\n if not k in seen.keys():\n seen[k]=i\n k=A[k-1]\n l.append(k)\n else:\n r_start=seen[k]\n roop=i-r_start\n K=(K-r_start)%roop+r_start\n break\nans=l[K]\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s025530436', 's599112167'] | [9132.0, 32320.0] | [24.0, 165.0] | [11, 301] |
p02684 | u845620905 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nk += 1\npos = -1\nseen = [False] * n\nlast = [0] * n\nhist = []\ncycle = []\ni = 0\ncnt = 0\nwhile(seen[i] == False):\n seen[i] = True\n last[i] = cnt\n cnt += 1\n hist.append(i)\n ne = a[i]-1\n i = ne\n if (seen[i] == True):\n pos = i\n\npreCircle = len(hist.copy())\n\ncycle = hist[last[pos]:]\n\npreCircle -= cnt\n\nif (k < preCircle):\n print(hist[-k-1] + 1)\nelse:\n k -= preCircle\n ans = k % len(cycle)\n print(cycle[ans] + 1)\n\n', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\nseen = [False] * n\nlast = [0] * n\nhist = []\ncycle = []\ni = 0\ncnt = 0\nwhile(seen[i] == False):\n seen[i] = True\n last[i] = cnt\n cnt += 1\n hist.insert(0, i)\n ne = a[i]-1\n i = ne\n if (seen[i] == True):\n pos = i\n\npreCircle = len(hist.copy())\n\ncycle = hist[:len(hist) - last[pos]]\n\npreCircle -= cnt\n\nif (k < preCircle):\n print(hist[-k-1] + 1)\nelse:\n k -= preCircle\n ans = k % len(cycle)\n print(cycle[ans] + 1)\n\n', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\npos = -1\nseen = [False] * n\nlast = [-1] * n\nhist = []\ni = 0\ncnt = 0\n\nwhile(seen[i] == False):\n seen[i] = True\n last[i] = cnt\n cnt += 1\n hist.append(i)\n ne = a[i]-1\n i = ne\n if (seen[i] == True):\n pos = i\n\ncycle = hist[last[pos]:]\npreCircle = last[pos]\n\nif (k <= preCircle):\n print(hist[k] + 1)\nelse:\n k -= preCircle\n ans = k % len(cycle)\n print(cycle[ans] + 1)\n\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s183318237', 's916046830', 's865898897'] | [35496.0, 32388.0, 34460.0] | [189.0, 2206.0, 193.0] | [516, 524, 472] |
p02684 | u850390157 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(lambda x: x - 1, map(int, input().split())))\nprint(A)\ncurrent = 0\nmemo = {\n 0: 0\n}\nfor i in range(1, K + 1):\n current = A[current]\n if current in memo:\n # loop length\n length = i - memo[current]\n tmp = (K - memo[current]) % length\n # print(current, tmp)\n for j in range(tmp):\n current = A[current]\n break\n else:\n memo[current] = i\nprint(current + 1)', 'N, K = map(int, input().split())\nA = list(map(lambda x: x - 1, map(int, input().split())))\ncurrent = 0\nmemo = {\n 0: 0\n}\nfor i in range(1, K + 1):\n current = A[current]\n if current in memo:\n # loop length\n length = i - memo[current]\n tmp = (K - memo[current]) % length\n for j in range(tmp):\n current = A[current]\n break\n else:\n memo[current] = i\nprint(current + 1)'] | ['Wrong Answer', 'Accepted'] | ['s177413994', 's958069329'] | [32252.0, 32368.0] | [154.0, 130.0] | [467, 428] |
p02684 | u859059120 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k=map(int,input().split())\nseq=list(map(int,input().split()))\nv=[False]*n\npath=[]\ni=seq.index(1)\nwhile True:\n if v[seq[i]-1]==False:\n v[seq[i]-1]=True\n path.append(seq[i])\n i=seq[i]-1\n \n else:\n break\nprint(path[(k%len(path))])\nprint(path)\n \n', 'n,k=map(int,input().split())\nseq=list(map(int,input().split()))\nv=[False]*n\npath=[1]\ni=0\nv[0]=True\nwhile True:\n if v[seq[i]-1]==False:\n v[seq[i]-1]=True\n path.append(seq[i])\n i=seq[i]-1\n \n else:\n t=seq[i]\n break\n\nind=path.index(t)\npath2=path[ind:]\npath1=path[:ind]\nx=len(path1)\nif k>=x:\n k-=x\n #print(t,ind,path1,path2)\n print(path2[(k%len(path2))])\n\nelse:\n print(path1[k])\n \n\n\n \n'] | ['Runtime Error', 'Accepted'] | ['s931740911', 's542489602'] | [32376.0, 32264.0] | [161.0, 185.0] | [347, 534] |
p02684 | u866949333 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["from collections import defaultdict\nimport math\n\n\ndef comb(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\n\ndef main():\n N, M, K = map(int, input().split())\n const = 998244353\n\n def hoge(k):\n return comb(N - 1, k) * M * ((M - 1) ** (N - k - 1))\n\n ans = sum([hoge(k) for k in range(K + 1)])\n\n print(ans % const)\n\n\nif __name__ == '__main__':\n main()\n", "import math\nfrom collections import defaultdict\n\n\ndef main():\n N, K = map(int, input().split())\n A = list(map(int, input().split()))\n\n visited = [-1 for _ in range(N)]\n visited[0] = 0\n\n current = 0\n th = -1\n per_loop = -1\n for i in range(1, N+1):\n current = A[current] - 1\n\n if visited[current] >= 0:\n \n per_loop = i - visited[current]\n th = visited[current]\n break\n else:\n visited[current] = i\n\n current = 0\n # print(th, per_loop)\n\n if K < th:\n num_rep = K\n else:\n num_rep = th + (K - th) % per_loop\n\n for i in range(num_rep):\n current = A[current] - 1\n\n print(current + 1)\n\n\nif __name__ == '__main__':\n main()\n"] | ['Runtime Error', 'Accepted'] | ['s332165626', 's930494841'] | [9528.0, 32572.0] | [24.0, 155.0] | [409, 791] |
p02684 | u867408000 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['\nN,K = map(int,input().split())\nA = list(map(int,input().split()))\npos = 0\nvisit = [0] * N\nmove = []\nloop = []\nwhile visit[pos]!=2:\n if visit[pos]==0:\n move.append(pos)\n else:\n loop.append(pos)\n visit[pos] += 1\n pos = A[pos] - 1\n print(visit)\nprint(move)\nprint(loop)\nif len(move)>K:\n print(move[K]+1)\nelse:\n print(loop[(K-(len(move)-len(loop)))%len(loop)]+1)\n', 'n, k = map(int, input().split())\ntowns = list(map(int, input().split()))\n\nvisited = [0 for i in range(n+1)]\nmove_count = 0\nposition = 1\nloop_dis = 0\n\nwhile True:\n if visited[position] != 0:\n loop_dis = move_count - visited[position] + 1\n visited[position] = move_count\n break\n else:\n move_count += 1\n visited[position] = move_count\n position = towns[position-1]\n\n\nrest_dis = (k - move_count) % loop_dis\n\nmove_count = 0\n\nif rest_dis == 0:\n print(position)\nelse:\n for i in range(rest_dis):\n move_count += 1\n position = towns[position-1]\n print(position)', '\nN,K = map(int,input().split())\nA = list(map(int,input().split()))\npos = 0\nvisit = [0] * N\nmove = []\nloop = []\nwhile visit[pos]!=2:\n if visit[pos]==0:\n move.append(pos)\n else:\n loop.append(pos)\n visit[pos] += 1\n pos = A[pos] - 1\nif len(move)>K:\n print(move[K]+1)\nelse:\n print(loop[(K-(len(move)-len(loop)))%len(loop)]+1)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s094323779', 's793816227', 's171027934'] | [150488.0, 32360.0, 32620.0] | [2421.0, 231.0, 216.0] | [402, 626, 361] |
p02684 | u870736713 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n \nb=1\na[1]=1\ncount=0\nwhile(count<=K):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n print(a)\n print(b)\n print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n print(b)\n break\n a[b]=count\n\nprint(b)', 'N,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n\nb=1\na[1]=1\ncount=1\nwhile(True):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n #print(a)\n #print(b)\n #print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n print(b)\n break\n a[b]=count', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\n \na={}\n \nb=1\na[1]=1\ncount=1\nwhile(count<=K+1):\n count+=1\n b=A[b-1]\n if b in a:\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle-1\n for i in range(min([ans,rest])):\n b=A[b-1]\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\n\na={}\n \nb=1\na[1]=1\ncount=1\nwhile(True):\n count+=1\n b=A[b-1]\n if b in a:\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle-1\n for i in range(min([ans,rest])):\n b=A[b-1]\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'import sys\n\nN,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n \nb=1\na[1]=1\ncount=0\nwhile(count<=K+1):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n #print(a)\n #print(b)\n #print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n count+=1\n if count==K+1:\n print(b)\n sys.exit()\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n \nb=1\na[1]=1\ncount=0\nwhile(count<=K+1):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n #print(a)\n #print(b)\n #print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n count+=1\n if count==K+1:\n break\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\n \na={}\n \nb=1\na[1]=1\ncount=1\nwhile(count<=K+1):\n count+=1\n b=A[b-1]\n if b in a:\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle-1\n for i in range(min([ans,rest])):\n b=A[b-1]\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', '#N,K=map(int,input().split())\n#A=list(map(int,input().split()))\n\nN=6\nK=727202214173249351\nA=[6,5,2,5,3,2]\n\na={}\n \nb=1\na[1]=1\ncount=1\nwhile(True):\n count+=1\n b=A[b-1]\n if b in a:\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(min([ans,rest])):\n b=A[b-1]\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n \nb=1\na[1]=1\ncount=0\nwhile(count<=K+1):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n #print(a)\n #print(b)\n #print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n \nb=1\na[1]=1\ncount=1\nwhile(True):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n #print(a)\n #print(b)\n #print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n print(b)\n break\n a[b]=count\nif count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nN=list(map(int,input().split()))\na={}\n \nb=1\na[1]=1\ncount=1\nwhile(True):\n count+=1\n b=N[b-1]\n #print(b)\n if b in a:\n #print(a)\n #print(b)\n #print(count)\n cycle=count-a[b]\n rest=K-count+1\n ans=rest%cycle\n for i in range(ans-1):\n b=N[b-1]\n print(b)\n break\n a[b]=count\n if count==K+1:\n print(b)\n break', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\n\ncount=0\nk=1\ncountlist={}\n\ncount=1\nwhile True: \n k=A[k-1]\n \n if k in countlist:\n cycle=count-countlist[k]\n rest=K-count\n move=rest%cycle\n for i in range(min(rest,move)):\n k=A[k-1]\n print(k)\n break\n \n countlist[k]=count\n \n if count==K:\n print(k)\n break\n \n count+=1'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s010544253', 's089811065', 's146045889', 's200825428', 's281500717', 's325488481', 's433263363', 's563981386', 's724957098', 's893880798', 's940696183', 's318297021'] | [32580.0, 38804.0, 32352.0, 32360.0, 32372.0, 32300.0, 32352.0, 9152.0, 32372.0, 9072.0, 32380.0, 32384.0] | [204.0, 185.0, 162.0, 141.0, 139.0, 148.0, 156.0, 22.0, 146.0, 21.0, 132.0, 151.0] | [341, 329, 380, 373, 460, 426, 380, 415, 376, 364, 370, 440] |
p02684 | u872271866 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['\ndef main():\n n, k = map(int, input().split(" "))\n a = list(map(lambda i: int(i)-1, input().split(" ")))\n s = [0]\n u = [0]\n f = True\n loop_len = 1\n z = 0\n x = a[0]\n while f:\n if x in s:\n f = False\n z = s.index(x)\n s = s[z:]\n loop_len = len(s)\n \n else:\n s.append(x)\n x = a[x]\n y = (k-z) % loop_len\n print(s)\n print(s[y]+1)\n\n \n\n\n\nif __name__ == "__main__":\n main()', '\ndef main():\n n, k = map(int, input().split(" "))\n a = list(map(lambda i: int(i)-1, input().split(" ")))\n s = [0]\n u = [0]\n f = True\n loop_len = 1\n z = 0\n x = a[0]\n while f:\n if x in s:\n f = False\n b=s.index(x)\n s = s[b:]\n loop_len = len(s) - b\n z = s.index(x)\n else:\n s.append(x)\n x = a[x]\n y = (k-z) % loop_len\n print(s)\n print(s[y]+1)\n\n \n\n\n\nif __name__ == "__main__":\n main()', 'from collections import defaultdict\ndef main():\n n, k = map(int, input().split(" "))\n a = list(map(int, input().split(" ")))\n s = []\n ord = [-1]*(n)\n u = 1\n while ord[u] == -1:\n ord[u] = len(s)\n s.append(u)\n u = a[u-1]\n l = len(s) - ord[u]\n if k < ord[u]:\n print(s[k])\n else:\n print(s[(k-ord[u])%l+ord[u]])\n\n\nif __name__ == "__main__":\n main()', 'from collections import defaultdict\ndef main():\n n, k = map(int, input().split(" "))\n a = list(map(int, input().split(" ")))\n s = []\n ord = [-1]*(n+1)\n u = 1\n while ord[u] == -1:\n ord[u] = len(s)\n s.append(u)\n u = a[u-1]\n l = len(s) - ord[u]\n if k < ord[u]:\n print(s[k])\n else:\n print(s[(k-ord[u])%l+ord[u]])\n\n\nif __name__ == "__main__":\n main()'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s013872538', 's234114695', 's834428431', 's280437703'] | [32324.0, 32308.0, 33804.0, 33820.0] | [2206.0, 2206.0, 136.0, 141.0] | [495, 511, 976, 978] |
p02684 | u872538555 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['def search(now, teleporter, limit):\n visit = [-1] * len(teleporter)\n cnt = 0\n \n while visit[now] == -1:\n if limit <= cnt:\n break\n \n visit[now] = cnt\n cnt += 1\n now = teleporter[now]\n \n \n return now, cnt, cnt - visit[now]\n \n\nn, k = map(int, input().split())\na = [int(x) - 1 for x in input().split()]\n\nstart, initial_cnt, repeat_num = search(0, a, 10**5 + 1)\n\n#print(start, initial_cnt, repeat_num)\n\nif k < initial_cnt:\n r = k\nelse:\n r = (k - initial_cnt) % repeat_num\n\n#print(r)\n\nans, _, _ = search(start, a, r)', 'def search(now, teleporter, limit):\n visit = [-1] * len(teleporter)\n cnt = 0\n \n while visit[now] == -1:\n if limit <= cnt:\n break\n \n visit[now] = cnt\n cnt += 1\n now = teleporter[now]\n \n \n return now, cnt, cnt - visit[now]\n \n\nn, k = map(int, input().split())\na = [int(x) - 1 for x in input().split()]\n\nstart, initial_cnt, repeat_num = search(0, a, 10**6)\n\n#print(start, initial_cnt, repeat_num)\n\nif k < initial_cnt:\n start = 0\n r = k\nelse:\n r = (k - initial_cnt) % repeat_num\n\n#print(r)\n\nans, _, _ = search(start, a, r)\n\nprint(ans + 1)'] | ['Wrong Answer', 'Accepted'] | ['s803795490', 's662428896'] | [32220.0, 32264.0] | [141.0, 144.0] | [590, 616] |
p02684 | u873616440 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(int, input().split()))\ne = [False] * (N+1)\nidx = 1\nmove = []\nwhile True:\n if e[idx]:\n break\n move.append(idx)\n e[idx] = True\n idx = A[idx-1]\nm = move.index(idx)\nc = len(move) - m\n\nif K <= m:\n print(D[K])\nelse:\n print(D[m+(K-m) % c])', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\ne = [False] * (N+1)\nidx = 1\nmove = []\nwhile True:\n if e[idx]:\n break\n move.append(idx)\n e[idx] = True\n idx = A[idx-1]\nm = move.index(idx)\nc = len(move) - m\n\nif K <= m:\n print(move[K])\nelse:\n print(move[m+(K-m) % c])\n'] | ['Runtime Error', 'Accepted'] | ['s021312022', 's963198130'] | [32300.0, 32380.0] | [150.0, 135.0] | [291, 298] |
p02684 | u875541136 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nt_zero = [-1] * N\n\nt = 0\na = 1\n\nwhile t_zero[a-1] == -1:\n if t == K:\n break\n t_zero[a-1] = t\n t += 1\n a = A[a-1]\nelse:\n k = (K - t_zero[a-1]) % (t - t_zero[a-1])\n a = t_zero.index(t_zero[a] + k)\nprint(a)', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\n\nt_zero = [-1] * N\n\nt = 0\na = 1\n\nwhile t_zero[a-1] == -1:\n if t == K:\n break\n t_zero[a-1] = t\n t += 1\n a = A[a-1]\nelse:\n k = (K - t_zero[a-1]) % (t - t_zero[a-1])\n a = t_zero.index(t_zero[a-1] + k) + 1\nprint(a)'] | ['Runtime Error', 'Accepted'] | ['s191973717', 's197697637'] | [32372.0, 32388.0] | [130.0, 140.0] | [282, 288] |
p02684 | u891516200 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['import sys\n\nN, K = map(int, input().split())\ntown_list = list(map(int, input.split()))\n\nroop = 0\nqueue = [1]\n\nstart = -1\n\nfor now_town in queue:\n if not town_list[now_town - 1] in queue:\n queue.append(town_list[now_town - 1])\n\n \n else:\n start = town_list[now_town - 1]\n break\n\nif start == -1:\n print(queue[K])\n sys.exit()\n\nbefore_len = queue.index(start)\nroop = len(queue) - before_len\n\nprint(queue[before_len + (K - before_len) % roop])\n', 'import sys\nimport time\n\nN, K = map(int, input().split())\ntown_list = list(map(int, input().split()))\n\nqueue = {}\n\nstart = -1\ncount = 1\n\nnow_town = 1\n\nfor i in range(N):\n if town_list[now_town - 1] in queue:\n start = town_list[now_town - 1]\n break\n queue[town_list[now_town - 1]] = count\n now_town = town_list[now_town - 1]\n count += 1\n\nif start == -1:\n print(queue[now_town])\n sys.exit()\n\nbefore_len = len(queue) - queue[start] - 1\nroop = len(queue) - before_len\n\nprint(list(queue.keys())[(K - before_len) % roop + before_len - 1])\n', 'import sys\nimport time\n\nN, K = map(int, input().split())\ntown_list = list(map(int, input().split()))\n\nqueue = {}\n\nstart = -1\ncount = 1\n\nnow_town = 1\n\nfor i in range(K):\n if town_list[now_town - 1] in queue:\n start = town_list[now_town - 1]\n break\n queue[town_list[now_town - 1]] = count\n now_town = town_list[now_town - 1]\n count += 1\n\nif start == -1:\n print(now_town)\n sys.exit()\n\nroop = len(queue) - (queue[start] - 1)\nbefore_len = queue[start]\n\nprint(list(queue.keys())[(K - before_len) % roop + before_len - 1])\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s627534436', 's967399771', 's604674248'] | [8976.0, 38816.0, 32316.0] | [34.0, 195.0, 165.0] | [488, 564, 548] |
p02684 | u894521144 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["def main(N, K, A):\n i = 0 \n lst_memo = []\n set_memo = {}\n while i not in set_memo:\n lst_memo.append(i)\n set_memo.append(i)\n i = A[i] - 1 \n key = lst_memo.index(i)\n roop = memo[key:]\n print(roop[(K - key) % len(roop)] + 1) \n\n\nif __name__ == '__main__':\n N, K = list(map(int, input().split()))\n A = list(map(int, input().split()))\n main(N, K, A)", "def main(N, K, A):\n i = 0 \n lst_memo = []\n set_memo = set([])\n while i not in set_memo:\n lst_memo.append(i)\n set_memo.add(i)\n i = A[i] - 1 \n key = lst_memo.index(i)\n if K < key:\n print(lst_memo[K] + 1)\n else:\n roop = lst_memo[key:]\n print(roop[(K - key) % len(roop)] + 1) \n\n\nif __name__ == '__main__':\n N, K = list(map(int, input().split()))\n A = list(map(int, input().split()))\n main(N, K, A)"] | ['Runtime Error', 'Accepted'] | ['s369878112', 's146474986'] | [32240.0, 35668.0] | [66.0, 121.0] | [465, 536] |
p02684 | u896451538 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['import collections\n\nn,k = list(map(int,input().split()))\na = list(map(int,input().split()))\na = [int(i)-1 for i in a]\n\nex = collections.defaultdict(lambda:-1)\nstep=1\ncur=0\nex[0]=0\nwhile 1:\n if ex[a[cur]]!=-1:\n cycle = step-ex[a[cur]]\n k-=ex[a[cur]]-1\n #print(k%cycle)\n break\n else:\n ex[a[cur]]=step\n cur=a[cur]\n step+=1\n\nprint(ex,k%cycle)\nfor i in range(k%cycle):\n cur = a[cur]\nprint(cur+1)', 'import collections\n \nn,k = list(map(int,input().split()))\na = list(map(int,input().split()))\na = [int(i)-1 for i in a]\n \nex = collections.defaultdict(lambda:-1)\nstep=1\ncur=0\nex[0]=0\nwhile 1:\n if ex[a[cur]]!=-1:\n cycle = step-ex[a[cur]]\n k-=ex[a[cur]]-1\n #print(k%cycle)\n break\n else:\n if step==k:\n print(a[cur]+1)\n exit()\n ex[a[cur]]=step\n cur=a[cur]\n step+=1\n\n#print(ex,k%cycle)\nfor i in range(k%cycle):\n cur = a[cur]\nprint(cur+1)'] | ['Wrong Answer', 'Accepted'] | ['s268024960', 's295647283'] | [42232.0, 33900.0] | [305.0, 198.0] | [444, 514] |
p02684 | u896741788 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k=map(int,input().split())\na=list(map(int,input().split()))\nok=set()\nnow=0\nl=[]\nwhile now not in ok and k:\n l.append(now)\n ok.add(now)\n now=a[now]-1\n k-=1\nlength=len(ok)-(h:=l.index(now))\nl=l[h:]\nprint(l,h,length)\nk=(k)%length\n\nprint(l[k]+1)', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\nok=set()\nnow=0\nl=[]\nwhile now not in ok and k:\n l.append(now)\n ok.add(now)\n now=a[now]-1\n k-=1\nif k==0:print(now+1);exit()\nlength=len(ok)-(h:=l.index(now))\nl=l[h:]\nprint(l,h,length)\nk=(k)%length\n\nprint(l[k]+1)', 'def f():\n n,k=map(int,input().split())\n l=list(map(int,input().split()))\n now=1\n for d in range(k.bit_length()):\n k,f=divmod(k,2)\n if f:now=l[now-1]\n l=tuple(l[i-1]for i in l)\n print(now)\nif __name__ == "__main__":\n f()\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s304845654', 's510372099', 's355969015'] | [35088.0, 35384.0, 32328.0] | [167.0, 160.0, 1587.0] | [255, 283, 259] |
p02684 | u898058223 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k=map(int,input().split())\na=list(map(int,input().split()))\nnext=a[0]\ntown=[0]*n\ntown[0]+=1\nfor i in range(n):\n if town[next-1]==0:\n town[next-1]+=1\n next=a[next-1]\n else:\n start=next\n break\nnext=a[start-1]\ncnt=1\nfor i in range(n):\n if a[next-1]!=start:\n next=a[next-1]\n cnt+=1\n else:\n cnt+=1\n break\nprint(cnt)\nk%=cnt\nnext=a[0]\nfor i in range(k-1):\n next=a[next-1]\nprint(next)', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\ntown=[0]*n\ntown[0]+=1\nnext=a[0]\nfor i in range(n):\n if town[next-1]==0:\n town[next-1]+=1\n next=a[next-1]\n else:\n break\nre=next\nnext=a[re-1]\nt2=0\nfor i in range(n):\n t2+=1\n if a[next-1]==re:\n t2+=1\n break\n else:\n next=a[next-1]\nt1=0\nnext=a[0]\nfor i in range(n):\n t1+=1\n if a[next-1]==re:\n t1+=1\n break\n else:\n next=a[next-1]\nif k<=t1:\n next=a[0]\n for i in range(k-1):\n next=a[next-1]\n print(next)\nelse:\n k-=t1\n k%=t2\n next=re\n for i in range(k):\n next=a[next-1]\n print(next)'] | ['Wrong Answer', 'Accepted'] | ['s105662062', 's658853325'] | [32244.0, 32400.0] | [178.0, 236.0] | [407, 584] |
p02684 | u899782392 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(lambda x:int(x)-1, input().split()))\n\ncnts = [None] * N\n\npos = 0\ncnt = 0\n\nwhile cnt < K:\n print(cnts)\n if cnts[pos] != None:\n loop_size = cnt - cnts[pos]\n cnt += ((K-cnt) // loop_size - 1) * loop_size\n cnts = [None] * N\n cnts[pos] = cnt\n pos = A[pos]\n cnt += 1\n\nprint(pos+1)', 'N, K = map(int, input().split())\nA = list(map(lambda x:int(x)-1, input().split()))\n\ncnts = [None] * N\n\npos = 0\ncnt = 0\n\nwhile cnt < K:\n if cnts[pos] != None:\n loop_size = cnt - cnts[pos]\n cnt += ((K-cnt) // loop_size - 1) * loop_size\n cnts = [None] * N\n cnts[pos] = cnt\n pos = A[pos]\n cnt += 1\n\nprint(pos+1)', 'N, K = map(int, input().split())\nA = list(map(lambda x:int(x)-1, input().split()))\n\ncnts = [None] * N\n\npos = 0\ncnt = 0\n\nwhile cnt < K:\n if cnts[pos] != None:\n loop_size = cnt - cnts[pos]\n cnt += ((K-cnt-1) // loop_size) * loop_size\n cnts = [None] * N\n cnts[pos] = cnt\n pos = A[pos]\n cnt += 1\n\nprint(pos+1)\n\n'] | ['Runtime Error', 'Time Limit Exceeded', 'Accepted'] | ['s768670945', 's897019848', 's280731117'] | [152100.0, 32356.0, 32264.0] | [2255.0, 2206.0, 196.0] | [356, 340, 340] |
p02684 | u907223098 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k=(int(i) for i in input().split())\nr=[0 for i in range(n)]\nl=[int(i) for i in input().split()]\nwazap=[]\ncount=1\nsaver=None\ntemp=0\nwhile r[temp]==0:\n r[temp]=count\n wazap.append(temp)\n temp=l[temp]-1\nstart=wazap[-1]\nfor i in range(len(wazap)):\n if wazap[i]==start-1:\n left=i\n break\nloop=len(wazap)-left\nif k<left:\n print(wazap[k]+1)\nelse:\n print(wazap[(k-left)%loop+left]+1)', 'n,k=(int(i) for i in input().split())\nr=[0 for i in range(n)]\nl=[int(i) for i in input().split()]\nwazap=[]\ncount=1\nsaver=None\ntemp=0\nwhile r[temp]==0:\n r[temp]=count\n wazap.append(temp)\n temp=l[temp]-1\nstart=l[wazap[-1]]\nleft=None\nfor i in range(len(wazap)):\n if wazap[i]==start-1:\n left=i\n break\nloop=len(wazap)-left\nif k<left:\n print(wazap[k]+1)\nelse:\n print(wazap[(k-left)%loop+left]+1)'] | ['Runtime Error', 'Accepted'] | ['s459641289', 's648389506'] | [33888.0, 33896.0] | [142.0, 175.0] | [388, 401] |
p02684 | u909991537 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['import numpy as np\nN, K = (int(i) for i in input().split()) \nA = [int(i) for i in input().split()] \n\ndef has_duplicates(seq):\n return len(seq) != len(set(seq))\n\nlis = [1]\nidx = 0\n\ncheck_l = [0] * N\nfor i in range(N):\n lis.append(A[idx])\n if check_l[A[idx]] != 1:\n lis.pop(-1)\n found = lis.index(A[idx])\n lis.append(A[idx])\n break\n check_l[A[idx]] == 1\n idx = A[idx]-1\n \nprint(lis[found:i+1][(K-found) % (i - found + 1)])', 'import numpy as np\nN, K = (int(i) for i in input().split()) \nA = [int(i) - 1 for i in input().split()] \nN = len(A)\n\ndef get_keys_from_value(d, val):\n return [k for k, v in d.items() if v == val][0]\n\nnow = 0\nlis = []\np = {}\nfor i in range(N):\n now = A[now]\n if now in p:\n break\n \n p[now] = i\n lis.append(now)\n\nif K < i:\n print(lis[K-1] + 1)\nelse:\n print(lis[(K-i-1) % (i - p[now]) + p[now]] + 1)\n \n '] | ['Runtime Error', 'Accepted'] | ['s356474175', 's774354532'] | [51052.0, 57864.0] | [174.0, 247.0] | [439, 416] |
p02684 | u915879510 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["#!/usr/bin/env python3\n\n\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n # Failed to predict input format\n N, K = list(map(int, input().split()))\n A = list(map(int, input().split()))\n\n visited = [0] * (N+10)\n seq = []\n\n step = 0\n current = 1\n\n n1 = n2 = 0\n while(step<len(A)+1):\n print(current)\n seq.append(current)\n step += 1\n visited[current] = step\n next_pos = A[current-1]\n if visited[next_pos]>0:\n n1 = visited[next_pos]\n n2 = step - n1 + 1\n print(n1, n2)\n print(n1-1, ((K-(n1-1))%n2))\n print(seq[n1-1+((K-(n1-1))%n2)])\n return\n else:\n visited[next_pos] = step\n current = next_pos\n\n print(seq[K])\n\n return\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n\n\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n # Failed to predict input format\n N, K = list(map(int, input().split()))\n A = list(map(int, input().split()))\n\n visited = [0] * (N+1)\n seq = []\n\n step = 0\n current = 1\n\n n1 = n2 = 0\n while(step<len(A)):\n #print(visited)\n seq.append(current)\n step += 1\n visited[current] = step\n next_pos = A[current-1]\n if visited[next_pos]>0:\n n1 = visited[next_pos]\n n2 = step - n1 + 1\n seq.append(next_pos)\n break\n current = next_pos\n\n #print(n1, n2)\n \n #print(seq)\n if n1+n2<=K:\n print(seq[n1-1+((K-(n1-1))%n2)])\n else:\n print(seq[K])\n\n return\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s288407211', 's300946537'] | [31020.0, 32388.0] | [216.0, 145.0] | [948, 956] |
p02684 | u920977317 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['from collections import deque\n\ndef main():\n N,K=map(int,input().split())\n\n A=list(map(lambda x:int(x)-1,input().split()))\n\n loop=[]\n\n slack_que=deque([])\n flag=0\n t=0\n start=0\n counter=0\n while flag==0:\n slack_que.append(t)\n t=A[t]\n A[t]=-1\n if t==-1:\n start=counter\n flag=1\n counter+=1\n slack=list(slack_que)\n slack_num=start\n loop_num=len(slack)-slack_num\n\n # print(slack)\n # print(start)\n # print(slack_num)\n # print(loop_num)\n #\n loop=slack[start:]\n # print(loop)\n if (K-slack_num)<0:\n res=slack[K]+1\n else:\n tele_num=((K-slack_num)%loop_num)\n town=loop[tele_num]\n res=town+1\n\n print(res)\n\nif __name__=="__main__":\n main()\n\n', 'from collections import deque\n\ndef main():\n N,K=map(int,input().split())\n\n A=list(map(lambda x:int(x)-1,input().split()))\n FootPrintA=A[:]\n\n loop=[]\n\n slack_que=deque([])\n flag=0\n t=0\n start=0\n while flag==0:\n slack_que.append(t)\n t_ = FootPrintA[t]\n FootPrintA[t]=-1\n if t_==-1:\n start=slack_que.index(t)\n flag=1\n slack_que.pop()\n t = A[t]\n\n slack=list(slack_que)\n slack_num=start\n loop_num=len(slack)-slack_num\n\n # print(slack)\n # print(start)\n # print(slack_num)\n # print(loop_num)\n #\n loop=slack[start:]\n # print(loop)\n if (K-slack_num)<0:\n res=slack[K]+1\n else:\n tele_num=((K-slack_num)%loop_num)\n town=loop[tele_num]\n res=town+1\n\n print(res)\n\nif __name__=="__main__":\n main()\n\n'] | ['Wrong Answer', 'Accepted'] | ['s590218965', 's696915375'] | [33916.0, 33924.0] | [82.0, 138.0] | [782, 848] |
p02684 | u927282564 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['from collections import deque\n\nN, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\n\ndef func1(lst, value):\n return [i for i, x in enumerate(lst) if x == value]\n \ntemp=1\ntrace=deque()\ntrace.append(1)\n#trace=[1]\ncircle=[]\nfor i in range(K):\n temp=A[temp-1]\n ans=func1(trace,temp)\n if len(ans)==1:\n #print(temp)\n #print(trace.index(temp))\n #start=trace.index(temp)\n for _ in range(ans[0]):\n trace.popleft()\n #circle=trace[ans[0]:]\n circle.append(1)\n #print(circle)\n break\n trace.append(temp)\n #print("temp",temp)\n\nif len(circle)!=0:\n amari=(K-i)%len(trace)\n print(trace[amari])\nelse:\n print(temp)', 'N, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\n \ndef func1(lst, value):\n return [i for i, x in enumerate(lst) if x == value]\n \ntemp=1\ntrace=[1]\ncircle=[]\nfor i in range(K):\n temp=A[temp-1]\n ans=func1(trace,temp)\n if len(ans)==1:\n circle.append(i-ans[0]+1)\n #print(circle)\n break\n trace.append(temp)\n #print("temp",temp)\n\nif len(circle)!=0:\n amari=(K-i)%circle[0]+1\n for j in range(i+amari):\n temp=A[temp-1]\n\nprint(temp)', 'N, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\n \ncheck=[-1 for i in range(N)]\n \ntemp=1\ncircle=[]\nfor i in range(K):\n temp=A[temp-1]\n if check[temp-1]==-1:\n check[temp-1]=i\n else:\n circle.append(i-check[temp-1])\n #print(circle)\n break\n #print("temp",temp)\n\nif len(circle)!=0:\n amari=(K-i)%circle[0]\n temp=1\n for j in range(i+amari):\n temp=A[temp-1] \n\nprint(temp)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s310332570', 's922102829', 's700995899'] | [33916.0, 32260.0, 32380.0] | [2206.0, 2206.0, 197.0] | [684, 497, 439] |
p02684 | u933129390 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\na = list(map(int, input().split()))\nlog = []\nvisited = [False for i in range(n)]\nnow = a[0]-1\nloop = False\nfor i in range(k-1):\n if visited[now] == True:\n loop = True\n break\n log.append(now)\n visited[now] = True\n now = a[now]-1\nelse:\n print(now+1)\nif loop:\n for i in range(len(log)):\n if log[i] == now:\n first = len(log[:i])\n log_list = log[i:]\n loop_num = len(log_list)\n break\n print(log)\n k -= first\n k %= loop_num\n print(log_list[k-1]+1)\n', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\nlog = []\nvisited = [False for i in range(n)]\nnow = a[0]-1\nloop = False\nfor i in range(k-1):\n if visited[now] == True:\n loop = True\n break\n log.append(now)\n visited[now] = True\n now = a[now]-1\nelse:\n print(now+1)\nif loop:\n for i in range(len(log)):\n if log[i] == now:\n first = len(log[:i])\n log_list = log[i:]\n loop_num = len(log_list)\n break\n k -= first\n k %= loop_num\n print(log_list[k-1]+1)\n'] | ['Wrong Answer', 'Accepted'] | ['s070285054', 's726704739'] | [32300.0, 32376.0] | [160.0, 138.0] | [569, 554] |
p02684 | u935016954 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["from copy import copy, deepcopy\nfrom collections import Counter\nfrom math import sqrt, floor, factorial\nfrom itertools import permutations, combinations, combinations_with_replacement\nfrom operator import mul\nfrom functools import reduce\nimport bisect\n\nMOD = 10**9 + 7\nINF = float('inf')\n\nN, K = list(map(int, input().split()))\n\nA = list(map(int, input().split()))\n\nA = [A[i]-1 for i in range(len(A))]\n\nmem = [0]*N\nmem2 = [0]*N\n\nidx = 0\ncount1 = 0\nwhile True:\n mem[idx] += 1\n if mem[idx] == 2:\n break\n count1 += 1\n idx = A[idx]\n\n\nidx2 = idx\ncount2 = 0\n\ncount2 += 1\nidx2 = A[idx2]\n\nwhile True:\n if idx2 == idx:\n break\n count2 += 1\n idx2 = A[idx2]\n\ntmp = count1 - count2\nprint(tmp, count2)\n\nif tmp >= K:\n ans = 0\n for _ in range(K):\n ans = A[ans]\nelse:\n e = (K - tmp) % count2 + tmp\n ans = 0\n for _ in range(e):\n ans = A[ans]\n\nprint(ans+1)\n", "from copy import copy, deepcopy\nfrom collections import Counter\nfrom math import sqrt, floor, factorial\nfrom itertools import permutations, combinations, combinations_with_replacement\nfrom operator import mul\nfrom functools import reduce\nimport bisect\n\nMOD = 10**9 + 7\nINF = float('inf')\n\nN, K = list(map(int, input().split()))\n\nA = list(map(int, input().split()))\n\nA = [A[i]-1 for i in range(len(A))]\n\nmem = [0]*N\nmem2 = [0]*N\n\nidx = 0\ncount1 = 0\nwhile True:\n mem[idx] += 1\n if mem[idx] == 2:\n break\n count1 += 1\n idx = A[idx]\n\n\nidx2 = idx\ncount2 = 0\n\ncount2 += 1\nidx2 = A[idx2]\n\nwhile True:\n if idx2 == idx:\n break\n count2 += 1\n idx2 = A[idx2]\n\ntmp = count1 - count2\n\nif tmp >= K:\n ans = 0\n for _ in range(K):\n ans = A[ans]\nelse:\n e = (K - tmp) % count2 + tmp\n ans = 0\n for _ in range(e):\n ans = A[ans]\n\nprint(ans+1)\n"] | ['Wrong Answer', 'Accepted'] | ['s800937886', 's983496682'] | [32208.0, 32252.0] | [209.0, 175.0] | [902, 883] |
p02684 | u935241425 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map( int, input().split() )\na = [ int( i ) for i in input().split() ]\n\nleg = [ 0 ] * n\nleg[ 0 ] = 1\n\np = 0\ncity_old = 1\nfor x in range( k ):\n city_new = a[ city_old-1 ]\n if leg[ city_new-1 ] == 0:\n leg[ city_new-1 ] += x + 1\n else:\n loop = x + 1 - leg[ city_new-1 ]\n modk = ( k - ( x + 1 ) ) % loop\n break\n city_old = city_new\n p += 1\n\nif p == k:\n print( city_old )\n exit()\n\n\ncity_old = city_new\nfor x in range( modk ):\n city_new = a[ city_old-1 ]\n city_old = city_new\n\nprint( city_old )\n', 'n, k = map( int, input().split() )\na = [ int( i ) for i in input().split() ]\n\nleg = [ 0 ] * n\nleg[ 0 ] = 0\n\np = 0\ncity_old = 1\nfor x in range( k ):\n city_new = a[ city_old-1 ]\n if leg[ city_new-1 ] == 0 and city_new != 1:\n leg[ city_new-1 ] = x + 1\n else:\n loop = x + 1 - leg[ city_new-1 ]\n modk = ( k - ( x + 1 ) ) % loop\n# print( loop, modk )\n break\n city_old = city_new\n p += 1\n\nif p == k:\n print( city_old )\n exit()\n\n\ncity_old = city_new\nfor x in range( modk ):\n city_new = a[ city_old-1 ]\n city_old = city_new\n\nprint( city_old )\n'] | ['Runtime Error', 'Accepted'] | ['s265543670', 's292507755'] | [32324.0, 32172.0] | [157.0, 181.0] | [550, 596] |
p02684 | u941644149 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(int, input().split()))\nway = A[0]\nList = [0 for n in range(N)]\nList[way-1] += 1\ncount = 0\nstring = f"{way}"\n#print(f"string:{string}")\n#print(f"way:{way}")\n\nfor i in range(10**7):\n way = A[way-1]\n List[way-1] += 1 \n count += 1\n #print(f"way:{way}")\n #print(f"count:{count}")\n #print(List)\n if max(List) == 3:\n break\n else:\n string += f"{way}"\n #print(f"string:{string}")\n #print()\n\n#print(List)\n#print()\nnew_list = [i for i in List if i == 1]\nlength = len(new_list)\nn_list = [j for j in List if j >= 2]\n#print(new_list)\n#print(n_list)\namari = (K - length)% len(n_list)\n\nprint(int(n_list[amari]))', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nway = A[0]\nList = [0 for n in range(N)]\nList[way-1] += 1\ncount = 0\nstring = f"{way}"\n#print(f"string:{string}")\n#print(f"way:{way}")\n\nfor i in range(10**7):\n way = A[way-1]\n List[way-1] += 1 \n count += 1\n #print(f"way:{way}")\n #print(f"count:{count}")\n #print(List)\n if max(List) == 3:\n break\n else:\n string += f"{way}"\n #print(f"string:{string}")\n #print()\n\n#print(List)\n#print()\nnew_list = [i for i in List if i == 1]\nlength = len(new_list)\nn_list = [j for j in List if j >= 2]\n#print(new_list)\n#print(n_list)\namari = (K - length)% len(n_list)\n\nprint(int(n_list[amari+1]))\n', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))# 0index\nvisi = [-1 for i in range(N)]\nL = [1] \nvisi[0] = 0\nway = A[0] \n#l = []\ncount = 1\n\nwhile visi[way-1] == -1: \n visi[way-1] = count\n count += 1\n L.append(way)\n way = A[way-1]\n\nl = count - visi[way-1]\nl_pre = visi[way-1]\nloop_L = L[l_pre:]\n\n\n\nif K > l_pre:\n index = (K- l_pre)% l\n ans = loop_L[index]\nelse:\n ans = L[K]\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s457071922', 's617158903', 's373680862'] | [32380.0, 32276.0, 32268.0] | [2206.0, 2206.0, 172.0] | [693, 696, 609] |
p02684 | u946517952 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ["n,k = map(int,input().split())\nalist = list(map(int,input().split()))\n\nmemo = []\np = 1\nvis = ['.']*n\n\nwhile vis[p-1] == '.':\n memo.appened(p)\n vis[p-1] = 'v'\n p = alist[p-1]\n\nloopstart = alist.index(p)\nif k < len(alist):\n print(memo[k])\nelse:\n print(memo[loopstart+(k-loopstart)%(len(alist)-loopstart)])\n", "from collections import deque\nn,k = map(int,input().split())\nalist = list(map(int,input().split()))\n\n\nflag = ['.']*(n+1)\nflag[1] = 'v'\n\nbeen = [1]\n\nfor i in range(k):\n goto = alist[been[-1]-1]\n if flag[goto] == '.':\n been.append(goto)\n flag[goto] = 'v'\n else:\n loopstart = goto\n break\nloop = been[been.index(loopstart):]\nprint(loop[(k-loopstart)%len(loop)])\n\n", 'n,k=list(map(int,input().split()))\nm=list(map(int,input().split()))\na=[]\np=1\nvis=[0]*n\nwhile vis[p-1]==0:\n a.append(p)\n vis[p-1]=1\n p=m[p-1]\n\nl=a.index(p)\nprint(k,l,a)\nif k<len(a):\n print(a[k])\nelse:\n k-=l\n print(a[l+k%(len(a)-l)])\n', "n,k = map(int,input().split())\nalist = list(map(int,input().split()))\nmemo = []\np = 1\nvis = ['.']*n\nwhile vis[p-1] == '.':\n memo.append(p)\n vis[p-1] = 'v'\n p = alist[p-1]\n\nloop = memo.index(p)\nif k < len(memo):\n print(memo[k])\nelse:\n print(memo[loop+(k-loop)%(len(memo)-loop)])\n"] | ['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s085914072', 's273004999', 's716759230', 's989506386'] | [32296.0, 32696.0, 32352.0, 32132.0] | [73.0, 150.0, 172.0, 150.0] | [319, 396, 250, 293] |
p02684 | u948911484 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = map(int,input().split())\na = [0]+list(map(int,input().split()))\nvisited = [0]*(n+1)\nturn = [0]*(n+1)\nvisited[1] = 0\nnxt = 1\ni = 1\nwhile True:\n if visited[a[nxt]]:\n nxt2 = a[nxt]\n break\n turn[a[nxt]] = i\n visited[nxt] = 1\n i += 1\n nxt = a[nxt]\n\n\n\nloop = i-turn[nxt2]\nif turn[nxt2] == 0:\n loop = i\n start = 0\nstart = turn[nxt2]\n#print(turn,i,visited)\n#print(start,loop)\nif start == 0 and k % loop == 0:\n print(1)\n quit()', 'n,k = map(int,input().split())\na = [0]+list(map(int,input().split()))\nvisited = [0]*(n+1)\nturn = [0]*(n+1)\nvisited[1] = 0\nnxt = 1\ni = 1\nwhile True:\n if visited[a[nxt]]:\n nxt2 = a[nxt]\n break\n turn[a[nxt]] = i\n visited[nxt] = 1\n i += 1\n nxt = a[nxt]\n\nloop = i-turn[nxt2]\nif turn[nxt2] == 0:\n loop = i\n start = 0\nstart = turn[nxt2]\n#print(turn,i)\n#print(start,loop)\nif start == 0 and k % loop == 0:\n print(1)\n quit()\nif k < i:\n print(turn.index(k))\nelse:\n print(turn.index(((k-start)%loop)+start))'] | ['Wrong Answer', 'Accepted'] | ['s119536604', 's360321578'] | [32292.0, 32200.0] | [151.0, 162.0] | [439, 512] |
p02684 | u955125992 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\na = list(map(int, input().split()))\n\ns = 1\nplace = [s]\nfirst = set(place)\n\nfor i in range(n):\n s = a[s-1]\n if s in first:\n loops = place.index(s)\n loope = len(place)\n ans = loops + (k-loope) % (loope-loops)\n print(place(ans))\n break\n else:\n place.append(s)\n first.add(s)\nelse:\n print(s)', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\ns = 1\nplace = [s]\nfirst = set(place)\n\nfor i in range(1, k+1):\n s = a[s-1]\n if s in first:\n loops = place.index(s)\n loope = len(place)\n ans = loops + (k-loope) % (loope-loops)\n print(place[ans])\n exit()\n else:\n place.append(s)\n first.add(s)\n\nprint(s)'] | ['Runtime Error', 'Accepted'] | ['s079010729', 's870741529'] | [32228.0, 32364.0] | [190.0, 148.0] | [380, 377] |
p02684 | u962330718 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N,K=map(int,input().split())\nA=list(map(int,input().split()))\n\nl=K%N\nans=1\nfor i in range(l):\n ans=A[ans-1]\n \nprint(ans)', 'N,K=map(int,input().split())\nA=list(map(int,input().split()))\nB=[0]*N\npoint=1\nm,l=0,0\nif K>N:\n for i in range(N):\n if B[point-1]==0:\n B[point-1]=i+1\n point=A[point-1]\n else:\n m=i+1-B[point-1]\n l=B[point-1]\n break\n if m!=0:\n m=(K-l)%m\n else:\n m=N\nelse:\n m=K\nans=1\nfor i in range(l+m):\n ans=A[ans-1]\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s024837721', 's534464200'] | [32252.0, 32280.0] | [99.0, 169.0] | [122, 464] |
p02684 | u962718741 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['def main():\n N, K = map(int, input().split())\n A = list(map(int, input().split()))\n A_cnt = [0] * N\n telepo = [1]\n i = 0\n A_cnt[i] = 1\n roop = 0\n while True:\n if A_cnt[i] > 1:\n roop = telepo.index(A[i]) - 1\n break\n A_cnt[A[i] - 1] += 1\n telepo.append(A[i])\n i = A[i] - 1\n K -= roop\n K %= len(telepo) - roop\n\n print(telepo[K + roop - 1])\n\n\nif __name__ == "__main__":\n main()\n', '#!/usr/bin/env python3\n\ndef main():\n N, K = map(int, input().split())\n A = list(map(int, input().split()))\n Acnt = [0] * N\n Acnt[0] = 1\n telepo = [1]\n i = 0\n while True:\n Acnt[A[i] - 1] += 1\n if Acnt[A[i] - 1] > 1:\n break\n telepo.append(A[i])\n i = A[i] - 1\n roop_s = telepo.index(A[i])\n roop = len(telepo) - roop_s\n\n ans = 0\n if K < roop_s:\n ans = K\n else:\n ans = K - roop_s\n ans %= roop\n ans += roop_s\n\n print(telepo[ans])\n\n\nif __name__ == "__main__":\n main()\n'] | ['Wrong Answer', 'Accepted'] | ['s362445309', 's206778288'] | [32368.0, 32248.0] | [143.0, 143.0] | [460, 570] |
p02684 | u968404618 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\nA = list(map(int, input().split()))\n\nTown = []\n\nrec = [-1] * (n+1)\nidx = 1\n\nwhile (rec[idx] == -1):\n rec[idx] = len(Town)\n Town.append(idx)\n idx = A[idx-1]\n\nExce = rec.index(idx)\nCycl = len(Town) - Exce\n\nif Cycl > k:\n print(Town[k])\nelse:\n k -= Exce\n k %= Cycl\n print(Town[Exce+k])', 'def main():\n ## IMPORT MODULE\n #import sys\n\n \n #input=lambda :sys.stdin.readline().rstrip()\n\n #f_inf=float("inf")\n #MOD=10**9+7\n \n if \'get_ipython\' in globals(): \n ## SAMPLE INPUT\n n, k = 4, 5\n A = [3, 2, 4, 1]\n\n else:\n ##INPUT \n #n = input()\n n, k = map(int, input().split())\n A = list(map(int, input().split()))\n\n ## SUBMITION CODES HERE\n Town = []\n rec = [-1] * (n+1) # The town we haven\'t visited yet is -1\n idx = 1\n\n # Loop to the cycle\n while (rec[idx] == -1):\n rec[idx] = len(Town)\n Town.append(idx)\n idx = A[idx-1]\n\n # Pre-cycle\n Exce = rec[idx]\n # Intra-cycle\n Cycl = len(Town) - Exce\n\n if Exce > k:\n print(Town[k])\n else:\n Warp = (k - Exce) % Cycl\n print(Town[Exce+Warp])\n \nmain()'] | ['Runtime Error', 'Accepted'] | ['s233318907', 's837770701'] | [32248.0, 33364.0] | [178.0, 150.0] | [402, 781] |
p02684 | u970082363 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = (int(x) for x in input().split())\ntown = [int(i) for i in input().split()]\nwarp = [1]\nchecklist = [0]+[-1]*n\ni = 0\nj = 0\nwhile j<=n:\n #print(town[i])\n warp.append(town[i])\n #print(warp,checklist)\n if checklist[town[i]-1]!=-1:\n s = checklist[town[i]-1]\n warp = warp[s:j]\n #print(checklist[town[i]-1],j)\n #print("a",warp)\n break\n checklist[town[i]-1] = j\n i = town[i]-1\n j += 1\n\n\nm = len(warp)\nprint(warp[(k-s)%m])', 'n,k = (int(x) for x in input().split())\ntown = [int(i) for i in input().split()]\nwarp = [1]\nchecklist = [0]+[-1]*n\ni = 0\nj = 0\nwhile j<=n:\n warp.append(town[i])\n if checklist[town[i]-1]!=-1:\n s = checklist[town[i]-1]\n warp = warp[s:j]\n break\n checklist[town[i]-1] = j\n i = town[i]-1\n j += 1\n\n\nm = len(warp)\nprint(warp[(k-s)%m])\n', 'n,k = (int(x) for x in input().split())\ntown = [int(i) for i in input().split()]\nwarp = [1]\nchecklist = [0]+[-1]*n\ni = 0\nj = 0\ns = 0\nwhile j<=n:\n warp.append(town[i])\n if checklist[town[i]-1]!=-1:\n s = checklist[town[i]-1]\n warp = warp[s:j]\n break\n checklist[town[i]-1] = j\n i = town[i]-1\n j += 1\n\nm = len(warp)\nprint(warp[(k-s)%m])\n', 'n,k = (int(x) for x in input().split())\ntown = [int(i) for i in input().split()]\nwarp = [1]\nchecklist = [0]+[-1]*n\ni = 0\nj = 1\ns = 0\nwhile j<=n:\n warp.append(town[i])\n if checklist[town[i]-1]!=-1:\n s = checklist[town[i]-1]\n loop = warp[s:j]\n break\n checklist[town[i]-1] = j\n i = town[i]-1\n j += 1\nif k>=s:\n m = len(loop)\n print(loop[(k-s)%m])\nelse:\n print(warp[k])'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s209728179', 's288103790', 's963708298', 's643635833'] | [32248.0, 32328.0, 32332.0, 32272.0] | [225.0, 185.0, 184.0, 208.0] | [475, 365, 370, 410] |
p02684 | u970197315 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N,K = map(int,input().split())\na = list(map(int,input().split()))\n\nd = 60\ndp = [[-1]*N for _ in range(d+1)]\nfor i in range(n):\n dp[0][i] = a[i]-1\n\nfor i in range(d):\n for j in range(n):\n dp[i+1] = dp[i][dp[i][j]]\n\nans = 0\n\nfor i in range(d):\n if K & (1<<i):\n ans = dp[i][ans]\n\nprint(ans)\n\n\n', 'n,k=map(int,input().split())\na=list(map(int,input().split()))\nvisited=[]\no=(n+1)*[-1]\ncycle,l=1,0\nv=1\nwhile o[v]==-1:\n o[v]=len(visited)\n visited.append(v)\n v=a[v-1]\ncycle=len(visited)-o[v]\nl=o[v]\nif k<l:\n print(visited[k])\nelse:\n k-=l\n k%=cycle\n print(visited[l+k])'] | ['Runtime Error', 'Accepted'] | ['s524672081', 's186689057'] | [114276.0, 32360.0] | [187.0, 152.0] | [313, 273] |
p02684 | u970267139 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nt = [1]\nfor i in range(n):\n t.append(a[t[-1] - 1])\n\nt_sort = sorted(t)\nfor i in range(n):\n if t_sort[i] == t_sort[i + 1]:\n b = t_sort[i]\n break\n\ncount = 0\nfor i in range(n):\n if t[i] == b:\n if count == 0:\n count += 1\n s_first = i\n else:\n s_second = i\n break\ns = s_second - s_first\n\nfor i in range(n - s + 1):\n if t[i] == t[i + s]:\n break\n\nif k < i:\n print(t[k])\nelse:\n print(t[(k - 1) % s + i])', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nt = [1]\nfor i in range(n):\n t.append(a[t[-1] - 1])\n\nt_sort = sorted(t)\nfor i in range(n):\n if t_sort[i] == t_sort[i + 1]:\n b = t_sort[i]\n break\n\ncount = 0\nfor i in range(n):\n if t[i] == b:\n if count == 0:\n count += 1\n s_first = i\n else:\n s_second = i\n break\ns = s_second - s_first\n\nfor i in range(n - s + 1):\n if t[i] == t[i + s]:\n break\n\nif k < i:\n print(t[k])\nelse:\n print(t[(k - 1) % s + i - 1])', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nt = [1]\nfor i in range(n):\n t.append(a[t[-1] - 1])\nprint(t)\n\nfor i in range(n):\n for j in range(i + 1, n):\n if t[i] == t[j]:\n s = j - i\n break\n else:\n continue\n break\n\nif k < i:\n print(t[k])\nelse:\n print(t[(k - i) % s + i])', 'n, k = map(int, input().split())\na_list = list(map(int, input().split()))\nvisit = [1]\n\nfor i in range(n):\n visit.append(a_list[visit[-1] - 1])\n\nfor i in range(n - 1):\n if visit[-1] == visit[n - i - 1]:\n break\ns = i + 1\n\nfor i in range(n - s):\n if visit[i] == visit[i + s]:\n break\n\nif k < i:\n print(visit[k])\nelse:\n print(visit[i + (k - i) % s])'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s327558490', 's424048331', 's769963558', 's644358635'] | [32176.0, 32312.0, 32372.0, 32160.0] | [274.0, 238.0, 2206.0, 156.0] | [562, 566, 348, 374] |
p02684 | u970598682 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N,K=map(int,input().split())\n\narray=map(int,input().split())\n\nA=list(array)\nA.insert(0,0)\n\nvisit=0\nroot=[]\nvisited=1\nonce=0\nwhile True:\n if visit & (0b1<<visited):\n break\n root.append(visited)\n visit|=0b1<<visited\n once+=1\n visited=A[visited]\n\nroop=root[root.index(visited):]\nprint(roop)\nif K<=once:\n print(root[K])\nelse:\n order=K-once\n print(roop[order%len(roop)])', 'N,K=map(int,input().split())\n\narray=map(int,input().split())\n\nA=list(array)\nA.insert(0,0)\n\nvisit=0\nroot=[]\nvisited=1\nonce=0\nwhile True:\n if visit & (0b1<<visited):\n break\n root.append(visited)\n visit|=0b1<<visited\n once+=1\n visited=A[visited]\n\nroop=root[root.index(visited):]\nif K<once:\n print(root[K])\nelse:\n order=K-once\n print(roop[order%len(roop)])'] | ['Runtime Error', 'Accepted'] | ['s196385533', 's961182706'] | [32384.0, 32328.0] | [1753.0, 1750.0] | [396, 383] |
p02684 | u971124021 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nif k == 1:exit(print(A[0]))\nt = 0\ndp = [-1] * n\ndp[0] = 0\nfor i in range(1,k+1):\n t = A[t]-1\n if dp[t] != -1:break\n dp[t] = i\n \nl = i - dp[t]\nK = (k-dp[t])%l + dp[t]\nprint(dp)\nfor i in range(n):\n if dp[i] == K:exit(print(i+1))', 'n,k = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nif k == 1:exit(print(A[0]))\nt = 0\ndp = [-1] * n\ndp[0] = 0\nfor i in range(1,k+1):\n t = A[t]-1\n if dp[t] != -1:break\n dp[t] = i\nif k == 2:\n exit(print(t+1))\nl = i - dp[t]\nK = (k-dp[t])%l + dp[t]\nprint(dp)\nfor i in range(n):\n if dp[i] == K:exit(print(i+1))\n\n', 'n,k = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nif k == 1:exit(print(A[0]))\nt = 0\ndp = [-1] * n\ndp[0] = 0\nflg = 0\nfor i in range(1,k+1):\n t = A[t]-1\n if dp[t] != -1:\n flg = 1\n break\n dp[t] = i\nif flg == 0:\n exit(print(t+1))\nelif k == 2:\n exit(print(t+1))\n\nl = i - dp[t]\nK = (k-dp[t])%l + dp[t]\n\nfor i in range(n):\n if dp[i] == K:exit(print(i+1))\n\n\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s622899748', 's651062444', 's310891835'] | [32372.0, 32320.0, 32352.0] | [164.0, 145.0, 137.0] | [304, 333, 385] |
p02684 | u975445930 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = map(int, input().split())\nl = list(map(int, input().split()))\n\nkeys = range(1,n+1)\nvalues = [-1]*n\ndic = dict(zip(keys,values))\ndic[1] = 0\nt = 1\ni = 1\n\ndef inverse_lookup(d, x):\n for k,v in d.items():\n if x == v:\n return k\n\nwhile i <= k:\n t = l[t-1]\n if dic[t] != -1:\n m = dic[t]\n d = i-m\n r = (k-i+1)%d\n ans = inverse_lookup(dic, (m+r-1))\n print(ans)\n break\n dic[t] = i\n i += 1\nif i == k+1:\n print(t)', 'n,k = map(int, input().split())\nl = list(map(int, input().split()))\n\nkeys = range(1,n+1)\nvalues = [-1]*n\ndic = dict(zip(keys,values))\ndic[1] = 0\nt = 1\ni = 1\n\ndef inverse_lookup(d, x):\n for k,v in d.items():\n if x == v:\n return k\n\nwhile i <= k:\n t = l[t-1]\n if dic[t] != -1:\n m = dic[t]\n d = i-m\n r = (k-i+1)%d\n if r == 0:\n r = d\n ans = inverse_lookup(dic, (m+r-1))\n print(ans)\n break\n dic[t] = i\n i += 1\nif i == k+1:\n print(t)'] | ['Wrong Answer', 'Accepted'] | ['s705837541', 's051821097'] | [41088.0, 41000.0] | [199.0, 178.0] | [486, 523] |
p02684 | u982030663 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split(" "))\nA = [i for i in map(int, input().split(" "))]\n\nhist = [0 for i in range(N)]\nroute = []\nloop = []\n\njump = 1\ncur = A[0] - 1\nroute.append(0)\nhist[0] = jump\nwhile hist[cur] == 0:\n jump = jump + 1\n route.append(cur)\n hist[cur] = jump\n cur = A[cur] - 1\n\nloop = route[cur:]\n\nif K < len(route):\n print(route[K] + 1)\nelse:\n K = K - len(route) - 1\n K = K % len(loop)\n print(loop[K] + 1)\n', 'N, K = map(int, input().split(" "))\nA = [i for i in map(int, input().split(" "))]\n\nhist = [-1 for i in range(N)]\nroute = []\nloop = []\n\njump = 0\ncur = A[0] - 1\nroute.append(0)\nhist[0] = jump\nwhile hist[cur] == -1:\n jump = jump + 1\n route.append(cur)\n hist[cur] = jump\n cur = A[cur] - 1\n\nloop = route[hist[cur]:]\n\nprint(cur, hist, route, loop)\n\nif K < len(route):\n print(route[K] + 1)\nelse:\n K = K - len(route)\n print(K)\n K = K % len(loop)\n print(K)\n print(loop[K] + 1)\n', 'N, K = map(int, input().split(" "))\nA = [i for i in map(int, input().split(" "))]\n\nhist = [-1 for i in range(N)]\nroute = []\nloop = []\n\njump = 0\ncur = A[0] - 1\nroute.append(0)\nhist[0] = jump\nwhile hist[cur] == -1:\n jump = jump + 1\n route.append(cur)\n hist[cur] = jump\n cur = A[cur] - 1\n\nloop = route[hist[cur]:]\n\n#print(cur, hist, route, loop)\n\nif K < len(route):\n print(route[K] + 1)\nelse:\n K = K - len(route)\n \n K = K % len(loop)\n \n print(loop[K] + 1)\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s192138965', 's415989606', 's172888215'] | [34720.0, 37020.0, 33960.0] | [182.0, 250.0, 175.0] | [437, 498, 501] |
p02684 | u982591663 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N, K = map(int, input().split())\nA = list(map(int, input().split()))\nmemo = [-1] * N\nchecked_num = {}\n\nteleporter = A[0]\nmemo[0] = teleporter\nrepeat_point = -1\nflag = False\n\nfor i in range(1, N):\n memo[i] = A[teleporter-1]\n teleporter = A[teleporter-1]\n checked_num[memo[i]] = None\n if memo[i] in checked_num and flag == False:\n repeat_point = i\n flag = True\n\nstart_point = memo.index(memo[repeat_point])\nrepeat = repeat_point - start_point\n\n\nif K <= N:\n print(memo[K-1])\nelse:\n mod = K % repeat\n print(memo[mod-1])\n', 'N, K = map(int, input().split())\nA = list(map(int, input().split()))\nmemo = [-1] * (N+1)\nchecked_num = {1:None}\nmemo[0] = 1\n\nteleporter = A[0]\nmemo[1] = teleporter\nchecked_num[memo[1]] = None\nrepeat_point = -1\nflag = False\n\nfor i in range(2, N+1):\n \n memo[i] = A[teleporter-1]\n teleporter = A[teleporter-1]\n if memo[i] in checked_num and flag == False:\n repeat_point = i\n flag = True\n checked_num[memo[i]] = None\n\n# print(memo)\n\nstart_point = memo.index(memo[repeat_point])\nrepeat = repeat_point - start_point\n\n\nif K <= N:\n print(memo[K])\nelse:\n mod = (K-start_point) % repeat\n \n print(memo[mod+start_point])\n'] | ['Runtime Error', 'Accepted'] | ['s383020276', 's794190856'] | [36560.0, 36852.0] | [181.0, 190.0] | [591, 758] |
p02684 | u987326700 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k = map(int,input().split())\na = list(map(int,input().split()))\nl = [1]\nfor i in range(n): \n l.append(a[l[i]])\n \np = l.index(l[-1])\nif k<=n:\n print(l[k])\n exit()\n \nx = (k-n+1)%(n-p)\nif x==0:\n print(l[n-1])\nelse:\n print(l[x+p-1])\n', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nl = [1,a[0]]\ntp = a[0]-1\nwhile True: \n if a[tp] not in l: \n l.append(a[tp])\n tp = a[tp] -1\n else:\n l.append(a[tp])\n break\n \nlast = l[-1]\nfirst = l.index(last)\nloop = len(l)-first\n\nif len(l)>k:\n print(l[k])\n exit()\nk -=first\nk %=loop\nif k==0:\n k+=loop\nprint(l[k+first])', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nl = [1,a[0]]\ntp = a[0]-1\nfor i in range(10**18) \n if a[tp] not in l: \n l.append(a[tp])\n tp = a[tp] -1\n else:\n l.append(a[tp])\n break\n \nlast = l[-1]\n\nloop = len(l[l.index(last):-1])\nfirst = l.index(last)\nif len(l)>k:\n print(l[k])\n exit()\nk -=first\nk %=loop\nif k==0:\n k+=loop\nprint(l[k+first])', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nl = [1,a[0]]\ntp = a[0]-1\nwhile True: \n if a[tp] not in l: \n l.append(a[tp])\n tp = a[tp] -1\n else:\n l.append(a[tp])\n break\n \nlast = l[-1]\nfirst = l.index(last)\nloop = len(l)-first\n\nif len(l)>k:\n print(l[k])\n exit()\nk -=first\nk %=loop\nif k==0:\n k+=loop\nprint(l[k+first])\nprint(l.index(last))', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nl = [1]\nfor i in range(n): \n l.append(a[l[i]])\n \np = l.index(l[-1])\nif k<=n:\n print(l[k])\n exit()\n \nx = (k-n+1)%(n-p)\nif x==0:\n print(l[n-1])\nelse:\n print(l[x+p-1])\n', 'n,k = map(int,input().split())\na = list(map(int,input().split()))\nl = [1]\nfor i in range(n): \n l.append(a[l[i]-1])\n \np = l.index(l[-1])\nif k<=n:\n print(l[k])\n exit()\n \nx = (k-n+1)%(n-p)\nif x==0:\n print(l[n-1])\nelse:\n print(l[x+p-1])\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s212194425', 's251096519', 's390060930', 's405301813', 's579001902', 's961453210'] | [32168.0, 32372.0, 8920.0, 32264.0, 32384.0, 32384.0] | [95.0, 2206.0, 24.0, 2207.0, 94.0, 124.0] | [243, 355, 377, 376, 243, 245] |
p02684 | u991567869 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['import sys\ninput = sys.stdin.readline\n\ndef main():\n n, k = map(int, input().split())\n a = list(map(int, input().split()))\n l = [-1]*200010\n now = 0\n l[0] = 0\n ans = -100\n\n for i in range(n):\n k -= 1\n now = a[now] - 1 \n l[now] += 1\n if l[now] == 2: \n loop = l.count(1) + 1\n k %= loop\n if k == 0:\n ans = now + 1\n break\n\n print(max(ans, -1))\n\nmain()', 'import sys\ninput = sys.stdin.readline\n\nn, k = map(int, input().split())\na = list(map(int, input().split()))\nl = 1\nm = []\n\nfor i in range(10000):\n print(i)\n if a[l - 1] in m: \n for j in range(len(m)):\n if m[j] == a[l - 1]:\n cnt = j \n loop = len(m) - cnt \n break\n else:\n m.append(a[l - 1])\n l = a[l - 1]\n continue\n break\n\n\nif (k - cnt)%loop == 0:\n l = loop + cnt - 1\nelse:\n l = (k - cnt)%loop - 1 + cnt\n\nprint(m[l])', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\nl = 1\nm = []\n\nfor i in range(10000):\n if a[l - 1] in m: \n for j in range(len(m)):\n if m[j] == a[l - 1]:\n cnt = j \n loop = len(m) - cnt \n break\n else:\n m.append(a[l - 1])\n l = a[l - 1]\n continue\n break\n\nl = 0 \n\nl = m[(k - cnt)%(loop)]\n\nprint(l)', 'n, k = map(int, input().split())\na = list(map(int, input().split()))\n\nfor i in range(n):\n a[i] -= 1\n\nl = [-1]*n\nl[0] = 0\norder = 0\nnow = 0\n\nwhile True:\n k -= 1\n now = a[now]\n order += 1\n if k == 0:\n break\n if l[now] != -1:\n cycle = order - l[now]\n k %= cycle\n if l[now] == -1:\n l[now] = order\n\nprint(now + 1)'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s627586984', 's919505336', 's976927305', 's092734454'] | [31344.0, 31268.0, 32380.0, 32328.0] | [2206.0, 987.0, 909.0, 255.0] | [491, 602, 514, 357] |
p02684 | u991619971 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['#N=int(input())\nN,K = map(int,input().split())\n#N=int(input())\nA = list(map(int,input().split()))\n#S=str(input())\n\nnow=1\nflag=[0]+[-1]*(N-1)\n\nfor i in range(N):\n now = A[now-1]\n if flag[now-1]==-1:\n flag[now-1]+=i+2\n else:\n loop = i+1 - flag[now-1]\n zan=(K-i-1) - (K-i-1)//loop * loop\n ans = flag.index(flag[now-1]+zan)+1\n exit()\nprint(now)\n', '#N=int(input())\nN,K = map(int,input().split())\n#N=int(input())\nA = list(map(int,input().split()))\n#S=str(input())\n\nnow=1\nflag=[0]+[-1]*(N-1)\n\nfor i in range(N-1):\n now = A[now-1]\n if flag[now-1]==-1:\n flag[now-1]+=i+2\n else:\n loop = i+1 - flag[now-1]\n zan=(K-i-1) - (K-i-1)//loop * loop\n ans = flag.index(flag[now-1]+zan)+1\n print(ans,now,flag,i)\n exit()\n\nprint(A[now-1])\n', '#N=int(input())\nN,K = map(int,input().split())\n#N=int(input())\nA = list(map(int,input().split()))\n#S=str(input())\n\nnow=1\nflag=[0]+[-1]*(N-1)\n\nfor i in range(K):\n now = A[now-1]\n if flag[now-1]==-1:\n flag[now-1]+=i+2\n else:\n loop = i+1 - flag[now-1]\n zan=(K-i-1) - (K-i-1)//loop * loop\n ans = flag.index(flag[now-1]+zan)+1\n print(ans)\n exit()\n\nprint(now)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s035349115', 's907296751', 's171179555'] | [32300.0, 32360.0, 32384.0] | [175.0, 189.0, 155.0] | [385, 423, 405] |
p02684 | u992471673 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['n,k=map(int,input().split())\n\na=input().split()\n\nl=len(a)\n\nfor i in range(0,l):\n a[i]=int(a[i])\n\np=1\nh=[]\ngo=0\ni=0\nwhile(go==0):\n i+=1\n \n \n\n h.append(p)\n p=a[p-1]\n if i==k:\n break\n if p in h:\n l=len(h)\n for j in range(0,l):\n if h[j]==p:\n amari=(k-i-1)%(i-j)\n p=h[j+amari]\n go=1\n break\n\n\n\nprint(p)\n', 'n,k=map(int,input().split())\n\n\na = list(map(int, input().split()))\n\nar=[-1 for i in range(n+1)]\np=1\nh=[]\ngo=0\n\n\nfor i in range(1,k+1):\n \n \n \n \n\n ar[p]=i\n p=a[p-1]\n \n if ar[p]>0:\n j=ar[p]\n amari=(k-i-1)%(i-j)\n p=h[j+amari]\n go=1\n break\n\nif go==1:\n p=ar.index(j+amari)\n p=a[p-1]\n\n\nprint(p)\n', 'n,k=map(int,input().split())\n\n\na = list(map(int, input().split()))\n\nar=[-1 for i in range(n+1)]\np=1\n\ngo=0\n\n\nfor i in range(1,k+1):\n \n \n \n \n\n ar[p]=i-1\n p=a[p-1]\n \n if ar[p]>0:\n j=ar[p]\n amari=(k-i)%(i-j)\n \n go=1\n break\n\nif go==1:\n p=ar.index(j+amari)\n \n \n\n\nprint(p)\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s732825777', 's954887965', 's065212481'] | [25524.0, 32380.0, 32372.0] | [2207.0, 126.0, 143.0] | [413, 353, 334] |
p02684 | u993435350 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['N,K = map(int,input().split())\nA = list(map(int,input().split()))\ntown = [[] for _ in range(N)]\nvisited = [0]\n\nfor i in range(N):\n town[i] = [i,A[i] - 1]\n\ndef teleport(i,con):\n goal = town[i][1]\n if goal in visited or con == K:\n return goal\n else:\n visited.append(goal)\n return teleport(goal,con + 1)\n\nl = teleport(visited[0],0)\n\nprint([i + 1for i in visited])\n\nif K <= len(visited):\n print(visited[K] + 1)\nelse:\n if l in visited:\n cs = visited.index(l)\n cycle = visited[cs:]\n K = K - len(visited) + len(cycle)\n print(cycle[K % len(cycle)] + 1)\n \n', 'N,K = map(int,input().split())\n\nA = list(map(int,input().split()))\ntown = [[] for _ in range(N)]\nvisited = [0]\nflag = [-1] * N\n\nfor i in range(N):\n town[i] = [i,A[i] - 1]\n\nf = 0\n\nwhile flag[f] == -1:\n t = town[f][1]\n flag[f] = t\n f = town[t][0]\n visited.append(t)\n \nl = visited[-1]\nlv = len(visited)\n\nif K <= lv:\n print(visited[K] + 1)\nelse:\n cs = visited.index(l)\n cycle = visited[cs:-1]\n lc = len(cycle)\n print(cycle[(K - lv + 1) % lc] + 1)\n##i'] | ['Runtime Error', 'Accepted'] | ['s365466668', 's251347718'] | [47640.0, 50452.0] | [171.0, 285.0] | [573, 457] |
p02684 | u996665352 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['def main():\n N,K = map(int,input().split())\n As = list(map(int,input().split()))\n route = [0]\n pre = 0\n i = 0\n r_append = route.append\n for _ in range(N):\n i = As[i]-1\n if i in route:\n pre = route.index(i)\n route = route[pre:]\n break\n r_append(i)\n len_route += 1\n # print(route)\n mod = len(route)\n print(route[(K-pre)%mod]+1)\n\nif __name__ == "__main__":\n main()', 'N,K = map(int,input().split())\nAs = list(map(int,input().split()))\ntowns = [0]*N\nroute = [0]\npre = 0\ni = 0\ntowns[0] = 1\nfor _ in range(K):\n i = As[i]-1\n if towns[i]>0:\n pre = route.index(i)\n route = route[pre:]\n break\n route.append(i)\n towns[i] = 1\nmod = len(route)\nprint(route[(K-pre)%mod]+1)\n'] | ['Runtime Error', 'Accepted'] | ['s925308734', 's929352307'] | [32296.0, 32376.0] | [70.0, 124.0] | [455, 327] |
p02684 | u999482355 | 2,000 | 1,048,576 | The Kingdom of Takahashi has N towns, numbered 1 through N. There is one teleporter in each town. The teleporter in Town i (1 \leq i \leq N) sends you to Town A_i. Takahashi, the king, loves the positive integer K. The selfish king wonders what town he will be in if he starts at Town 1 and uses a teleporter exactly K times from there. Help the king by writing a program that answers this question. | ['from time import time\nN, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\nL = [-1 for i in range(N)]\n\nvisited = []\nnow = 0\nloopstarts = None\nlooplength = None\nt0 = time()\n\nfor i in range(N):\n if L[now] != -1:\n break\n else:\n L[now] = i\n visited.append(now)\n now = A[now]-1\n\nloopstarts = visited.index(now)\nlooplength = len(visited)-loopstarts\n\nif K < loopstarts:\n print(visited[K]+1)\nelse:\n print(visited[loopstarts+(K-loopstarts)%looplength]+1)\nprint(time()-t0)\n', 'from time import time\nN, K = list(map(int, input().split()))\nA = list(map(int, input().split()))\nL = [-1 for i in range(N)]\n\nvisited = []\nnow = 0\nloopstarts = None\nlooplength = None\nt0 = time()\n\nfor i in range(N):\n if L[now] != -1:\n break\n else:\n L[now] = i\n visited.append(now)\n now = A[now]-1\n\nloopstarts = visited.index(now)\nlooplength = len(visited)-loopstarts\n\nif K < loopstarts:\n print(visited[K]+1)\nelse:\n print(visited[loopstarts+(K-loopstarts)%looplength]+1)\n# print(time()-t0)\n'] | ['Wrong Answer', 'Accepted'] | ['s014869576', 's325181203'] | [33472.0, 33584.0] | [189.0, 192.0] | [525, 527] |
p02685 | u030726788 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['from math import factorial\n\n\n# return(factorial(n) // (factorial(n-r) * factorial(r)))\n\ndef comb(n,k,p):\n if n<0 or k<0 or n<k: return 0\n if n==0 or k==0: return 1\n a=factorial(n) %p\n b=factorial(k) %p\n c=factorial(n-k) %p\n return (a*power_func(b,p-2,p)*power_func(c,p-2,p))%p\ndef power_func(a,b,p):\n if b==0: return 1\n if b%2==0:\n d=power_func(a,b//2,p)\n return d*d %p\n if b%2==1:\n return (a*power_func(a,b-1,p ))%p\n\n\ndef cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\nmod = 998244353 \nN = 10**6\ng1 = [1, 1] \ng2 = [1, 1] \ninverse = [0, 1] 計算用テーブル\n\nfor i in range( 2, N + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\n\nn,m,k = map(int,input().split())\n\ns = 0\n\nfor x in range(k+1):\n s += m * (power_func(m-1,n-1-x,998244353)% 998244353) * (cmb(n-1,x,998244353) % 998244353)\n s %= 998244353\nprint(s)', '\ndef power_func(a,b,p):\n if b==0: return 1\n if b%2==0:\n d=power_func(a,b//2,p)\n return d*d %p\n if b%2==1:\n return (a*power_func(a,b-1,p ))%p\n\n\ndef cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n\nmod = 998244353\ng1 = [1, 1]\ng2 = [1, 1]\ninverse = [0, 1]\n\nn,m,k = map(int,input().split())\n\nfor i in range( 2, n + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\n\ns = 0\n\nfor x in range(k+1):\n s += (m * power_func(m-1,n-1-x,998244353) * cmb(n-1,x,998244353)) % 998244353\n s %= 998244353\nprint(s)'] | ['Time Limit Exceeded', 'Accepted'] | ['s966620673', 's252536579'] | [127632.0, 33236.0] | [2211.0, 1581.0] | [1131, 698] |
p02685 | u036104576 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['import sys\nimport itertools\nimport numpy as np\n\nMOD = 998244353\nMAX = 10 ** 5 * 2 + 5\n\nfac = [0 for i in range(MAX)]\nfinv = [0 for i in range(MAX)]\ninv = [0 for i in range(MAX)]\n\ndef comInit(mod):\n fac[0], fac[1] = 1, 1\n finv[0], finv[1] = 1, 1\n inv[1] = 1\n for i in range(2, MAX):\n fac[i] = fac[i - 1] * i % mod\n inv[i] = mod - inv[mod % i] * (mod // i) % mod\n finv[i] = finv[i - 1] * inv[i] % mod\n\ndef com(n, r, mod):\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return fac[n] * (finv[r] * finv[n - r] % mod) % mod\n\ncomInit(MOD)\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n \nn, m, k = map(int, readline().split())\n\nans = 0\nfor x in range(k, -1, -1):\n ans += now * com(n - 1, x, MOD) % MOD\n # ans += tmp\nprint(ans % MOD)', 'import sys\nimport itertools\nimport numpy as np\n\nMOD = 998244353\nMAX = 10 ** 5 * 2 + 5\n\nfac = [0 for i in range(MAX)]\nfinv = [0 for i in range(MAX)]\ninv = [0 for i in range(MAX)]\n\ndef comInit(mod):\n fac[0], fac[1] = 1, 1\n finv[0], finv[1] = 1, 1\n inv[1] = 1\n for i in range(2, MAX):\n fac[i] = fac[i - 1] * i % mod\n inv[i] = mod - inv[mod % i] * (mod // i) % mod\n finv[i] = finv[i - 1] * inv[i] % mod\n\ndef com(n, r, mod):\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return fac[n] * (finv[r] * finv[n - r] % mod) % mod\n\ncomInit(MOD)\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n \nn, m, k = map(int, readline().split())\n\nans = 0\nfor x in range(k, -1, -1):\n # now *= (m - 1) % MOD\n ans += com(n - 1, x, MOD) % MOD\n # ans += tmp\nprint(ans % MOD)', 'import sys\nimport itertools\nimport numpy as np\n\nMOD = 998244353\nMAX = 10 ** 5 * 2 + 5\n\nfac = [0 for i in range(MAX)]\nfinv = [0 for i in range(MAX)]\ninv = [0 for i in range(MAX)]\n\ndef comInit(mod):\n fac[0], fac[1] = 1, 1\n finv[0], finv[1] = 1, 1\n inv[1] = 1\n for i in range(2, MAX):\n fac[i] = fac[i - 1] * i % mod\n inv[i] = mod - inv[mod % i] * (mod // i) % mod\n finv[i] = finv[i - 1] * inv[i] % mod\n\ndef com(n, r, mod):\n if n < r:\n return 0\n if n < 0 or r < 0:\n return 0\n return fac[n] * (finv[r] * finv[n - r] % mod) % mod\n\ncomInit(MOD)\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n \nn, m, k = map(int, readline().split())\n\nans = 0\ncol = m\nfor x in range(n - 1, -1, -1):\n now = col\n now *= com(n - 1, x, MOD) % MOD\n if x <= k:\n ans += now\n col = (col * (m - 1)) % MOD\n\nprint(ans % MOD)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s107569072', 's749940532', 's464056409'] | [50956.0, 50944.0, 50888.0] | [305.0, 400.0, 463.0] | [852, 873, 922] |
p02685 | u078181689 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['N,M,K = list(map(int,input().split()))\n\nMOD = 998244353\nF = 10**5\ng1 = [1, 1] \ng2 = [1, 1] \ninverse = [0, 1] 計算用テーブル\n\nfor i in range( 2, F + 1 ):\n g1.append( ( g1[-1] * i ) % MOD )\n inverse.append( ( -inverse[MOD % i] * (MOD//i) ) % MOD )\n g2.append( (g2[-1] * inverse[-1]) % MOD )\n\ndef cmb(n, r, MOD):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % MOD\n\nA = [M*pow(M-1,N-1-i,MOD) % MOD for i in range(K+1)]\nA = [A[i] * cmb(N-1,i,MOD) % MOD for i in range(K+1)]\nprint(sum(A) % MOD)', 'N,M,K = list(map(int,input().split()))\nMOD = 998244353\n\nfac = [1] * (N+1)\ninv = [1] * (N+1)\nifac = [1] * (N+1)\nfor i in range(2,N+1):\n fac[i]=(fac[i-1]*i)%MOD\n inv[i]= -(inv[MOD%i]*(MOD//i))%MOD\n ifac[i]=(ifac[i-1]*inv[i])%MOD\n\ncmbarr = [1] * N\nfor r in range(N-1):\n cmbarr[r+1] = cmbarr[r] * (N - 1 - r) * inv[r + 1] % MOD\n\nA = [M*pow(M-1,N-1-i,MOD)*cmbarr[i] % MOD for i in range(K+1)]\nprint(sum(A) % MOD)'] | ['Runtime Error', 'Accepted'] | ['s601494973', 's148015327'] | [28908.0, 48568.0] | [546.0, 734.0] | [609, 419] |
p02685 | u089142196 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['def combi(y,x,p=998244353):\n s=fac[y]\n t=fac[x]\n u=fac[y-x]\n ans= (s* pow(t,p-2,p)*pow(u,p-2,p))%p\n return ans\n\n###############################\n\nN,M,K=map(int,input().split())\np=998244353\nfac=[1,1]\nfor i in range(2,N+1):\n fac.append( (fac[-1]*i)%p )\nR = M*(M-1)**(N-K-2)\n\nans=0\nfor i in range(K,-1,-1):\n R = (R*(M-1))%p\n L = combi(N,i)\n ans = (ans + (R*L)%p)%p\nprint(ans)', 'N, M, K = list(map(int, input().split()))\np = 998244353\n\ncomb = 1\nres = 0\nfor n in range(K+1):\n res = (res + comb * M * pow(M-1, N-1-n, p)) % p\n comb = (comb * (N -1 -n) * pow(n + 1, p - 2, p)) % p\n\nprint(res)'] | ['Runtime Error', 'Accepted'] | ['s859535889', 's431642632'] | [18600.0, 9212.0] | [1746.0, 1270.0] | [380, 215] |
p02685 | u184817817 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['#E\nn,m,k = list(map(int,input().split()))\nfac = [1,1]\nfinv = [1,1]\ninv = [1,1]\nMOD = 998244353\nfor i in range(2,n):\n fac[i].append(fac[i-1]*i%MOD)\n inv[i].append(MOD-inv[MOD%i]*(MOD//i)%MOD)\n finv[i].append(finv[i-1]*inv[i]%MOD)\ndef comb(n,k):\n return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD\nans = 0\nfor i in range(k+1):\n# print(comb(n-1,i),m*(m-1)**(n-i-1))\n ans += (comb(n-1,i)*(m*(m-1)**(n-i-1)%MOD))%MOD\n ans %= MOD\nprint(ans)', '#E\nn,m,k = list(map(int,input().split()))\nfac = [1]*n\nfinv = [1]*n\ninv = [1]*n\nMOD = 998244353\nfor i in range(2,n):\n fac[i] = fac[i-1]*i%MOD\n inv[i] = MOD-inv[MOD%i]*(MOD//i)%MOD\n finv[i] = finv[i-1]*inv[i]%MOD\ndef comb(n,k):\n return fac[n]*(finv[k]*finv[n-k]%MOD)%MOD\n\nans = 0\nfor i in range(k+1):\n# print(comb(n-1,i),m*(m-1)**(n-i-1))\n ans += comb(n-1,i)*m*pow(m-1,n-i-1,MOD)%MOD\n ans %= MOD\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s599419892', 's635252262'] | [9224.0, 32616.0] | [22.0, 764.0] | [447, 426] |
p02685 | u201387466 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10 ** 6)\nfrom collections import defaultdict\nimport fractions\nimport math\nfrom collections import deque\nfrom bisect import bisect_left\nfrom bisect import insort_left\nimport itertools\nfrom heapq import heapify\nfrom heapq import heappop\nfrom heapq import heappush\nimport heapq\nimport numpy as np\nINF = float("inf")\n\n\n#N = int(input())\n#A = list(map(int,input().split()))\n#S = list(input())\n#S.remove("\\n")\n#N,M = map(int,input().split())\n#S,T = map(str,input().split())\n#A = [int(input()) for _ in range(N)]\n#S = [input() for _ in range(N)]\n#A = [list(map(int,input().split())) for _ in range(N)]\nMOD = 998244353\nN,M,K = map(int,input().split())\ndp = [[0]*(K+1) for _ in range(N+1)]\nfor i in range(1,K+2):\n dp[i][i-1] = M\nfor i in range(1,N+1):\n dp[i][0] = M * pow(M-1,i-1,MOD)\nfor i in range(3,N+1):\n MIN = min(K,i-1)\n for j in range(1,K):\n dp[i][j] = dp[i-1][j-1] + dp[i-1][j]*(M-1)\n dp[i][j] = dp[i][j] % MOD\nans = 0\nfor i in range(K+1):\n ans += dp[N][i]\n ans = ans % MOD\nprint(ans)', 'import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10 ** 6)\nfrom collections import defaultdict\nfrom collections import Counter\nimport fractions\nimport math\nfrom collections import deque\nfrom bisect import bisect_left\nfrom bisect import insort_left\nimport itertools\nfrom heapq import heapify\nfrom heapq import heappop\nfrom heapq import heappush\nimport heapq\nimport numpy as np\nINF = float("inf")\n\n\n#N = int(input())\n#A = list(map(int,input().split()))\n#S = list(input())\n#S.remove("\\n")\n#N,M = map(int,input().split())\n#S,T = map(str,input().split())\n#A = [int(input()) for _ in range(N)]\n#S = [input() for _ in range(N)]\n#A = [list(map(int,input().split())) for _ in range(N)]\nMOD = 998244353\nfac = [1, 1]\ninv = [0, 1]\nfinv = [1, 1]\nN,M,K = map(int,input().split())\nfor i in range(2, N+1):\n fac.append(fac[-1] * i % MOD)\n inv.append(MOD - inv[MOD%i] * (MOD//i) % MOD)\n finv.append(finv[-1] * inv[-1] % MOD) \ndef comb_mod(n, r, m):\n if (n<0 or r<0 or n<r): return 0\n r = min(r, n-r)\n return fac[n] * finv[n-r] * finv[r] % m\ns = 0\nfor i in range(K+1):\n s += M*pow(M-1,N-1-i,MOD)*comb_mod(N-1,i,MOD)\n s %= MOD\nprint(s%MOD)'] | ['Wrong Answer', 'Accepted'] | ['s111118630', 's765299579'] | [2541204.0, 50552.0] | [2275.0, 849.0] | [1116, 1194] |
p02685 | u221061152 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['n,m,k=map(int,input().split())\nmod = 998244353\nnCi = [1]\nfor i in range(n):\n next = nCi[i]*(n-1-i)*pow(i+1,mod-2,mod)\n next %= mod\n nCi.append(next)\nprint(nCi)\nans = 0\nfor i in range(k+1):\n ans += m*pow(m-1,n-i-1,mod)*nCi[i]\n ans %= mod\nprint(ans)', 'n,m,k=map(int,input().split())\nmod = 998244353\nnCi = [1]\nfor i in range(n):\n next = nCi[i]*(n-1-i)*pow(i+1,mod-2,mod)\n next %= mod\n nCi.append(next)\n#print(nCi)\nans = 0\nfor i in range(k+1):\n ans += m*pow(m-1,n-i-1,mod)*nCi[i]\n ans %= mod\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s540003301', 's301264133'] | [21176.0, 16892.0] | [1337.0, 1313.0] | [287, 288] |
p02685 | u221998589 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['#import numpy as np\nimport math\n#from decimal import *\n#from numba import njit\n\ndef main():\n (N, M, K) = map(int, input().split())\n MOD = 998244353\n \n fact = [1]*(N+1)\n factinv = [1]*(N+1)\n for i in range(1,K+1):\n fact[i] = fact[i-1]*i % MOD\n factinv[i] = pow(fact[i], MOD-2, MOD)\n def comb(n, k):\n return fact[n] * factinv[k] * factinv[n-k] % MOD\n\n ans = 0\n for k in range(K+1):\n ans += (comb(N-1,k)*M*pow(M-1, N-k-1, MOD))%MOD\n\n print(ans%MOD)\n\nmain()\n', 'import numpy as np\nimport math\n#from decimal import *\n#from numba import njit\n\ndef main():\n (N, M, K) = map(int, input().split())\n\n c = [0]*(K+1)\n def comb(k):\n if k == 0:\n ans = 1\n else:\n ans = c[k-1]*(N-k+1)//k\n c[k] = ans\n return ans\n\n ans = 0\n for k in range(K+1):\n ans += (comb(k)*M*pow(M-1, N-k-1, 998244353))%998244353\n\n print(ans%998244353)\n\nmain()\n', '#import numpy as np\nimport math\n#from decimal import *\n#from numba import njit\n\ndef main():\n (N, M, K) = map(int, input().split())\n MOD = 998244353\n \n fact = [1]*(N+1)\n factinv = [1]*(N+1)\n for i in range(1,N+1):\n fact[i] = fact[i-1]*i % MOD\n factinv[i] = pow(fact[i], MOD-2, MOD)\n def comb(n, k):\n return fact[n] * factinv[k] * factinv[n-k] % MOD\n\n ans = 0\n for k in range(K+1):\n ans += (comb(N-1,k)*M*pow(M-1, N-k-1, MOD))%MOD\n\n print(ans%MOD)\n\nmain()\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s387703210', 's717130020', 's300775095'] | [24644.0, 574952.0, 24604.0] | [1328.0, 2220.0, 1254.0] | [518, 438, 518] |
p02685 | u243714267 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['n, m, k = map(int, input().split())\nmod = 998244353\ndef powerDX(n, r, mod):\n if r == 0: return 1\n if r%2 == 0:\n return powerDX(n*n % mod, r//2, mod) % mod\n if r%2 == 1:\n return n * powerDX(n, r-1, mod) % mod\n\ndef combination(n, r, mod):\n n1, r = n+1, min(r, n-r)\n numer = denom = 1\n for i in range(1, r+1):\n numer = numer * (n1-i) % mod\n denom = denom * i % mod\n return numer * powerDX(denom, mod-2, mod) % mod\n\nans = 0\nfor i in range(1, k+1):\n ans += m*combination(n-k-1, k, mod)*powerDX(m-1, k, mod)\n ans %= mod\nprint(ans)\n ', 'n, m, k = map(int, input().split())\n\nfor i in range(k):\n x = 1', 'n, m, k = map(int, input().split())\nmod = 998244353\n\ndef powerDX(n, r, mod):\n if r == 0: return 1\n if r%2 == 0:\n return powerDX(n*n % mod, r//2, mod) % mod\n if r%2 == 1:\n return n * powerDX(n, r-1, mod) % mod\n\ndef cmb(n, r, mod):\n if ( r<0 or r>n ):\n return 0\n r = min(r, n-r)\n return g1[n] * g2[r] * g2[n-r] % mod\n \ng1 = [1, 1]\ng2 = [1, 1]\ninverse = [0, 1]\n \nfor i in range(2, n + 1 ):\n g1.append( ( g1[-1] * i ) % mod )\n inverse.append( ( -inverse[mod % i] * (mod//i) ) % mod )\n g2.append( (g2[-1] * inverse[-1]) % mod )\n\nans = 0\nfor i in range(0, k+1):\n ans += m*cmb(n-1, i, mod)*pow(m-1, n-i-1, mod)\n ans %= mod\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s733342843', 's822803593', 's380736357'] | [9084.0, 9056.0, 33156.0] | [2206.0, 31.0, 766.0] | [564, 63, 662] |
p02685 | u266014018 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ["class Combination():\n def __init__(self, n, mod=10**9+7):\n self.mod = mod\n self.fac = [1]*(n+1)\n for i in range(1,n+1):\n self.fac[i] = self.fac[i-1] * i % self.mod\n self.invfac = [1]*(n+1)\n self.invfac[n] = pow(self.fac[n], self.mod - 2, self.mod)\n for i in range(n-1, 0, -1):\n self.invfac[i] = self.invfac[i+1] * (i+1) % self.mod\n \n def combination(self, n, r):\n ans = self.fac[n] * self.invfac[r] % self.mod * self.invfac[n-r] % self.mod\n if n >= r:\n return ans\n else:\n return 0\n \n def factorial(self, i):\n return self.fac[i]\n \n def invfactorial(self, i):\n return self.invfac[i]\n\n\ndef main():\n import sys\n def input(): return sys.stdin.readline().rstrip()\n n, m, k = map(int, input().split())\n mod = 998244353\n c = Combination(n,mod)\n ans = 0\n mex = [0]*(k+1)\n mex[0] = pow(m-1,n-k-1,mod)\n for i in range(1,k+1):\n mod[i] = mex[i-1]*(m-1)%mod\n mex = mex[::-1]\n for i in range(k+1):\n ans += c.combination(n-1, i)*mex[i]\n ans %= mod\n ans *= m\n ans %= mod\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "class Combination():\n def __init__(self, n, mod=10**9+7):\n self.mod = mod\n self.fac = [1]*(n+1)\n for i in range(1,n+1):\n self.fac[i] = self.fac[i-1] * i % self.mod\n self.invfac = [1]*(n+1)\n self.invfac[n] = pow(self.fac[n], self.mod - 2, self.mod)\n for i in range(n-1, 0, -1):\n self.invfac[i] = self.invfac[i+1] * (i+1) % self.mod\n \n def combination(self, n, r):\n ans = self.fac[n] * self.invfac[r] % self.mod * self.invfac[n-r] % self.mod\n if n >= r:\n return ans\n else:\n return 0\n \n def factorial(self, i):\n return self.fac[i]\n \n def invfactorial(self, i):\n return self.invfac[i]\n\n\ndef main():\n import sys\n def input(): return sys.stdin.readline().rstrip()\n n, m, k = map(int, input().split())\n mod = 998244353\n c = Combination(n,mod)\n ans = 0\n mex = [0]*(k+1)\n mex[0] = pow(m-1,n-k-1,mod)\n for i in range(1,k+1):\n mex[i] = mex[i-1]*(m-1)%mod\n mex = mex[::-1]\n for i in range(k+1):\n ans += c.combination(n-1, i)*mex[i]\n ans %= mod\n ans *= m\n ans %= mod\n print(ans)\n\n\nif __name__ == '__main__':\n main()"] | ['Runtime Error', 'Accepted'] | ['s710346061', 's084223889'] | [26220.0, 34044.0] | [131.0, 284.0] | [1210, 1210] |
p02685 | u276204978 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['import math\n\nN, M, K = map(int, input().split())\n\ndef combinations(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\n\nans = 0\ncol = m\nfor k in range(N-1, -1, -1):\n now = col\n now *= combinations(N-1, k);\n if k <= K:\n ans += now\n col *= m-1\n\nprint(ans)', 'mod = 998244353\n\n\nclass Combination:\n def __init__(self, N):\n self.fac = [1] * (N + 1)\n for i in range(1, N + 1):\n self.fac[i] = (self.fac[i - 1] * i) % mod\n self.invmod = [1] * (N + 1)\n self.invmod[N] = pow(self.fac[N], mod - 2, mod)\n for i in range(N, 0, -1):\n self.invmod[i - 1] = (self.invmod[i] * i) % mod\n\n def calc(self, n, k): # nCk\n return self.fac[n] * self.invmod[k] % mod * self.invmod[n - k] % mod\n\n\nN, M, K = map(int, input().split())\nC = Combination(N)\n\nans = 0\nfor k in range(K + 1):\n now = C.calc(N - 1, k) * M * pow(M - 1, N - k - 1, mod) % mod\n ans = (ans + now) % mod\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s699542804', 's950314224'] | [9164.0, 24668.0] | [25.0, 669.0] | [303, 676] |
p02685 | u285891772 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ["import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians, gcd, log2\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left\nfrom heapq import heappush, heappop\nfrom scipy.special import comb\nfrom functools import reduce\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 998244353\n\nN, M, K = MAP()\n\nans = 0\nfor i in range(0, K+1):\n\t#c = factorial(N-1)//factorial(N-i-1)//factorial(i)\n\tc = comb(N-i-1, i, exact=True)\n\tc %= mod\n\tp = M * ((M-1)**(N-K-1))\n\tp %= mod\n\tcp = (c*p)%mod\n\tans += cp\n\nprint(ans%mod)\n\n\n", "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees, log2, gcd\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left\nfrom heapq import heappush, heappop\nfrom functools import reduce\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 998244353\n\nlim = 2*10**5\nfact = [1]*(lim+1)\nfor n in range(1, lim+1):\n\tfact[n] = n*fact[n-1]%mod\n\nfact_inv = [1]*(lim+1)\nfact_inv[lim] = pow(fact[lim], mod-2, mod)\nfor n in range(lim, 0, -1):\n\tfact_inv[n-1] = n*fact_inv[n]%mod\n\ndef C(n, r):\n\treturn (((fact[n]*fact_inv[r])%mod)*fact_inv[n-r])%mod\n\n\nN, M, K = MAP()\n\nans = 0\nfor i in range(K+1):\n\tans += M*pow(M-1, N-1-i, mod)%mod*C(N-1, i)\n\tans %= mod \n\nprint(ans)\n"] | ['Wrong Answer', 'Accepted'] | ['s214202863', 's867046840'] | [43544.0, 25436.0] | [2207.0, 670.0] | [1033, 1214] |
p02685 | u288430479 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['n,m,k = map(int,input().split())\nmod = 998244353\nans = 0\n\ndef comb(n,k,mod):\n nCk = 1\n\n for i in range(n-k+1, n+1):\n nCk *= i\n nCk %= mod\n \n for i in range(1,k+1):\n nCk *= pow(i,mod-2,mod)\n nCk %= mod\n return nCk\nfor i in range(k+1):\n a = pow(m-1, n-i-1, mod)\n b = comb(n-1,i,mod)\n print(a,b)\n ans += a*b\nans *= m\nprint(ans%mod)', 'n,m,k = map(int,input().split())\nmod = 998244353\nans = 0\n\ndef comb(n, r, mod):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % mod\n \nfact = [1, 1]\nfactinv = [1, 1]\ninv = [0, 1]\n \nfor i in range(2, n+1):\n fact.append((fact[-1] * i) % mod)\n inv.append((-inv[mod % i] * (mod // i)) % mod)\n factinv.append((factinv[-1] * inv[-1]) % mod)\n\n\nfor i in range(k+1):\n a = pow(m-1, n-i-1, mod)\n b = comb(n-1,i,mod)\n ans += (a*b)%mod\nans *= m\nprint(ans%mod)'] | ['Wrong Answer', 'Accepted'] | ['s245395539', 's990225381'] | [9224.0, 33168.0] | [2206.0, 748.0] | [380, 530] |
p02685 | u307622233 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['n, m, k = map(int, input().split())\nMOD = 998244353\n\nans = 0\nfor i in range(k + 1):\n ans += (ans + m * pow(m - 1, m - i - 1, MOD)) % MOD\n c = (c * (n - 1 - i) * pow(i + 1, MOD - 2, MOD)) % MOD\n\nprint(ans)\n', 'n, m, k = map(int, input().split())\nMOD = 998244353\n\nans = 0\nc = 1\nfor i in range(k + 1):\n ans = (ans + m * pow(m - 1, n - i - 1, MOD) * c) % MOD\n c = (c * (n - 1 - i) * pow(i + 1, MOD - 2, MOD)) % MOD\n \n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s010625163', 's366618014'] | [9180.0, 9192.0] | [22.0, 1263.0] | [211, 252] |
p02685 | u324090406 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['from scipy.special import comb\n\nN, M, K = list(map(int, input().split()))\nmod = 998244353\n\nanswer = 0\nfor i in range(K+1):\n answer += (M * ((comb(N-1, i)) % mod) * (((M-1) ** (N-1-i)) % mod)) % mod\n answer = answer % mod\n\nprint(answer)', 'N, M, K = list(map(int, input().split()))\nmod = 998244353\n\nc = 1\nanswer = 0\n\nfor i in range(K+1):\n answer += (M * c * pow(M-1, N - i - 1, mod)) % mod\n answer %= mod\n c = (c * (N-i-1) * pow(i+1, mod-2, mod)) % mod\n \nprint(answer)'] | ['Wrong Answer', 'Accepted'] | ['s466720883', 's888809744'] | [43928.0, 9100.0] | [2207.0, 1291.0] | [241, 241] |
p02685 | u408620326 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ["def main():\n import sys\n sys.setrecursionlimit(10**6)\n input = sys.stdin.readline\n N, M, K = [int(x) for x in input().strip().split()]\n MOD = 998244353\n if M == 1:\n if N == 1:\n print(1)\n exit()\n \n fact = [1] * (N+1)\n inv_fact = [1] * (N+1)\n for i in range(N):\n fact[i+1] = (i * fact[i]) % MOD\n \n inv_fact[-1] = pow(fact[-1], MOD-2, MOD)\n for i in range(N-1):\n inv_fact[N-i-1] = (inv_fact[N-i] * (N - i)) % MOD\n\n def nCr(n, r):\n if r == 0 or r == n:\n return 1\n r = min(r, n - r)\n return fact[n] * inv_fact[n-r] * inv_fact[r] % MOD\n\n ans = (M * pow(M-1, N-1, MOD)) % MOD\n for k in range(K):\n ans = (ans + (M * pow(M-1, N-1, MOD)) * nCr(N-1, k+1)) % MOD\n\n print(ans)\n\nif __name__ == '__main__':\n main()", "def main():\n import sys\n sys.setrecursionlimit(10**6)\n input = sys.stdin.readline\n N, M, K = [int(x) for x in input().strip().split()]\n MOD = 998244353\n if M == 1:\n if N == 1:\n print(1)\n exit()\n \n fact = [1] * (N+1)\n inv_fact = [1] * (N+1)\n for i in range(1, N+1):\n fact[i] = ((i) * fact[i-1]) % MOD\n \n inv_fact[-1] = pow(fact[-1], MOD-2, MOD)\n for i in range(N-1):\n inv_fact[N-i-1] = (inv_fact[N-i] * (N - i)) % MOD\n\n def nCr(n, r):\n if r == 0 or r == n:\n return 1\n r = min(r, n - r)\n return (fact[n] * inv_fact[n-r] * inv_fact[r]) % MOD\n\n ans = (M * pow(M-1, N-1, MOD)) % MOD\n for k in range(K):\n ans = (ans + (M * pow(M-1, N-1-(k+1), MOD)) * nCr(N-1, k+1)) % MOD\n\n print(ans)\n\nif __name__ == '__main__':\n main()"] | ['Wrong Answer', 'Accepted'] | ['s033910013', 's936746568'] | [12152.0, 24584.0] | [564.0, 632.0] | [835, 850] |
p02685 | u461454424 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['#atcoder template\ndef main():\n import sys\n imput = sys.stdin.readline\n \n #input\n N, M, K = map(int, input().split())\n\n #output\n mod = 998244353\n\n n_ = 4*10**5 + 5\n fun = [1]*(n_+1)\n for i in range(1,n_+1):\n fun[i] = fun[i-1]*i%mod\n rev = [1]*(n_+1)\n rev[n_] = pow(fun[n_],mod-2,mod)\n for i in range(n_-1,0,-1):\n rev[i] = rev[i+1]*(i+1)%mod\n def cmb(n,r):\n if n <= 0 or r < 0 or r > n: return 0\n return fun[n]*rev[r]%mod*rev[n-r]%mod\n\n answer = 0\n for i in range(K+1):\n answer += M*pow(M-1, N-(i+1), mod)*cmb(N-1, i) % mod\n\n answer %= mod\n\n if N == 1:\n answer = M\n else:\n continue\n\n print(answer)\n \n\nif __name__ == "__main__":\n main()', '#atcoder template\ndef main():\n import sys\n imput = sys.stdin.readline\n \n #input\n N, M, K = map(int, input().split())\n\n #output\n mod = 998244353\n\n n_ = 4*10**5 + 5\n fun = [1]*(n_+1)\n for i in range(1,n_+1):\n fun[i] = fun[i-1]*i%mod\n rev = [1]*(n_+1)\n rev[n_] = pow(fun[n_],mod-2,mod)\n for i in range(n_-1,0,-1):\n rev[i] = rev[i+1]*(i+1)%mod\n def cmb(n,r):\n if n <= 0 or r < 0 or r > n: return 0\n return fun[n]*rev[r]%mod*rev[n-r]%mod\n\n answer = 0\n for i in range(K+1):\n answer += M*pow(M-1, N-(i+1), mod)*cmb(N-1, i) % mod\n\n answer %= mod\n\n if N == 1:\n print(M)\n exit()\n\n print(answer)\n \n\nif __name__ == "__main__":\n main()'] | ['Runtime Error', 'Accepted'] | ['s346210957', 's129469763'] | [9176.0, 40528.0] | [24.0, 709.0] | [767, 753] |
p02685 | u476674874 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['import math\nmod = 998244353\n\nimport numpy as np\ndef create_modC(n, mod):\n if n == 0:\n return (lambda r: 1)\n b = int(math.log(mod-2, 2)) + 1\n fac = np.zeros((b, n+1), dtype=np.int64)\n print(fac.shape)\n inv = np.ones(n+1, dtype=np.int64)\n fac[0, 0], fac[0, 1] = 1, 1\n for i in range(2, n+1):\n fac[0, i] = (fac[0, i-1] * i) % mod\n for i in range(1, b):\n fac[i, :] = (fac[i-1, :] ** 2) % mod\n\n indice = []\n N = mod - 2\n i = 0\n while N > 0:\n if N % 2 == 1:\n indice.append(i)\n N = N >> 1\n i += 1\n \n for i in indice:\n inv *= fac[i,:]\n inv %= mod\n \n fac = fac[0,:]\n\n def _modC(r):\n if r == 0 or r == n:\n return 1\n result = fac[n] * inv[n-r]\n result %= mod\n result *= inv[r] % mod\n result %= mod\n return result\n\n return _modC\n\n\ndef mod_factorial(mod):\n cache = [1,1,2]\n def _factorial(n):\n nonlocal cache\n if n == 0:\n return 1\n length = len(cache)\n v = cache[-1]\n while n >= length:\n v *= length \n v %= mod\n cache.append(v)\n length +=1\n return cache[n]\n return _factorial\n\ndef mod_pow(x, mod):\n xx = [1, x]\n def _pow(y, x=x):\n nonlocal xx\n if y == 0:\n return 1\n while len(xx) <= math.log(y, 2)+1:\n v = xx[-1] * xx[-1]\n v %= mod\n xx.append(v)\n i = 1\n result = 1\n while y > 0:\n if y % 2 == 1:\n result *= xx[i]\n result %= mod\n y = y >> 1\n i += 1\n return result\n return _pow\n\ndef test():\n N, M, K = 3,2,1\n answer = 6\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}={answer}")\n N, M, K = 100,100,0\n answer = 73074801\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}={answer}")\n N, M, K = 60522,114575,7559\n answer = 479519525\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}={answer}")\n\n N, M, K = 200000,190000,190000\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n N, M, K = 1,1,0\n print(f"N={N} M={M} K={K}")\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n N, M, K = 200000,200000,190000\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n for i in range(100):\n N, M = np.random.randint(200000), np.random.randint(200000)\n K = np.random.randint(N-1)\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n\n\n\ndef main():\n test()\n N, M, K = map(int, input().split())\n v = resolve(N, M, K)\n print(v)\n\n\ndef resolve(N, M, K):\n from datetime import datetime\n result = 0\n m1pow = mod_pow(M-1, mod)\n modC = create_modC(N-1, mod)\n \n for k in range(K+1):\n b = m1pow(N-1-k)\n c = modC(k)\n v = b \n v *= c\n v %= mod\n \n # print(f"b={b} c={c} k={k} {v}")\n result += v\n result %= mod\n \n result *= M\n result %= mod\n\n result = int(result)\n\n return result\n\n \nif __name__ == \'__main__\':\n main()', 'import math\nmod = 998244353\n\nimport numpy as np\ndef create_modC(n, mod):\n if n == 0:\n return (lambda r: 1)\n b = int(math.log(mod-2, 2)) + 1\n fac = np.zeros((b, n+1), dtype=np.int64)\n #print(fac.shape)\n inv = np.ones(n+1, dtype=np.int64)\n fac[0, 0], fac[0, 1] = 1, 1\n for i in range(2, n+1):\n fac[0, i] = (fac[0, i-1] * i) % mod\n for i in range(1, b):\n fac[i, :] = (fac[i-1, :] ** 2) % mod\n\n indice = []\n N = mod - 2\n i = 0\n while N > 0:\n if N % 2 == 1:\n indice.append(i)\n N = N >> 1\n i += 1\n \n for i in indice:\n inv *= fac[i,:]\n inv %= mod\n \n fac = fac[0,:]\n\n def _modC(r):\n if r == 0 or r == n:\n return 1\n result = fac[n] * inv[n-r]\n result %= mod\n result *= inv[r] % mod\n result %= mod\n return result\n\n return _modC\n\n\ndef mod_factorial(mod):\n cache = [1,1,2]\n def _factorial(n):\n nonlocal cache\n if n == 0:\n return 1\n length = len(cache)\n v = cache[-1]\n while n >= length:\n v *= length \n v %= mod\n cache.append(v)\n length +=1\n return cache[n]\n return _factorial\n\ndef mod_pow(x, mod):\n xx = [1, x]\n def _pow(y, x=x):\n nonlocal xx\n if y == 0:\n return 1\n while len(xx) <= math.log(y, 2)+1:\n v = xx[-1] * xx[-1]\n v %= mod\n xx.append(v)\n i = 1\n result = 1\n while y > 0:\n if y % 2 == 1:\n result *= xx[i]\n result %= mod\n y = y >> 1\n i += 1\n return result\n return _pow\n\ndef test():\n N, M, K = 3,2,1\n answer = 6\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}={answer}")\n N, M, K = 100,100,0\n answer = 73074801\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}={answer}")\n N, M, K = 60522,114575,7559\n answer = 479519525\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}={answer}")\n\n N, M, K = 200000,190000,190000\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n N, M, K = 1,1,0\n print(f"N={N} M={M} K={K}")\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n N, M, K = 200000,200000,190000\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n for i in range(100):\n N, M = np.random.randint(200000), np.random.randint(200000)\n K = np.random.randint(N-1)\n v = resolve(N, M, K)\n print(f"N={N} M={M} K={K} {v}")\n\n\n\n\ndef main():\n #test()\n N, M, K = map(int, input().split())\n v = resolve(N, M, K)\n print(v)\n\n\ndef resolve(N, M, K):\n from datetime import datetime\n result = 0\n m1pow = mod_pow(M-1, mod)\n modC = create_modC(N-1, mod)\n \n for k in range(K+1):\n b = m1pow(N-1-k)\n c = modC(k)\n v = b \n v *= c\n v %= mod\n \n # print(f"b={b} c={c} k={k} {v}")\n result += v\n result %= mod\n \n result *= M\n result %= mod\n\n result = int(result)\n\n return result\n\n \nif __name__ == \'__main__\':\n main()'] | ['Time Limit Exceeded', 'Accepted'] | ['s060095185', 's473220464'] | [78576.0, 78396.0] | [2208.0, 1450.0] | [3173, 3175] |
p02685 | u506689504 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['import itertools\nimport numpy as np\nfrom scipy.special import comb\n\nmod = 998244353\n\nN,M,K = map(int, input().split())\n\n# DP = [[0]*N for _ in range(N)]\n# DP[0][0] = M\n\n# DP = []\n\n\n# for n in range(1,N):\n# \tfor k in range(N):\n# \t\tif k==0:\n# \t\t\tDP[n][k] = DP[n-1][k]*(M-1) % mod\n# \t\telse:\n# \t\t\tDP[n][k] = (DP[n-1][k]*(M-1) + DP[n][k-1]) % mod\n\n# ans = sum(DP[N-1][:(K+1)]) % mod\n# print(ans)\n\nans = 0\nfor k in range(K+1):\n\tans += comb(N, k)*(M-1)**(N-k-1) % mod\n\nprint(int(ans*M) % mod)', 'import itertools\nimport numpy as np\nfrom scipy.special import comb\n\nmod = 998244353\n\nN,M,K = map(int, input().split())\n\n# DP = [[0]*N for _ in range(N)]\n# DP[0][0] = M\n\n# DP = []\n\n\n# for n in range(1,N):\n# \tfor k in range(N):\n# \t\tif k==0:\n# \t\t\tDP[n][k] = DP[n-1][k]*(M-1) % mod\n# \t\telse:\n# \t\t\tDP[n][k] = (DP[n-1][k]*(M-1) + DP[n][k-1]) % mod\n\n# ans = sum(DP[N-1][:(K+1)]) % mod\n# print(ans)\n\nans = 0\nfor k in range(1,K+1):\n\tans += comb(N, k-1)*(M-1)**(N-k) % mod\n\nprint(int(ans*M) % mod)', 'MOD = 998244353\nMAX = 510000\nfac = [1,1] # factorial\nfinv = [1,1] # inverse of factorial\ninv = [None, 1] # inverse\n\ndef comb_init():\n\tfor i in range(2, MAX):\n\t\tfac.append(fac[i-1] * i % MOD)\n\t\tinv.append(MOD - inv[MOD % i] * (MOD//i) % MOD)\n\t\tfinv.append(finv[i-1] * inv[i] % MOD)\n\ndef inverse_mod(a):\n\t""" Calculate inverse of the integer in a modulo MOD """\n\treturn pow(a, MOD-2, MOD)\n\ndef comb_mod(n, r):\n\t\n\tif n < r: return 0\n\tif n < 0 or r < 0: return 0\n\treturn fac[n]* (finv[r]*finv[n-r] % MOD) % MOD\n\ndef solve(n, m, k):\n\tans = 0\n\tfor k in range(K+1):\n\t\tans = (ans + m*(comb_mod(n-1,k)*pow(m-1, n-k-1, MOD) % MOD) % MOD) % MOD\n\treturn ans\n\ncomb_init()\nN, M, K = map(int, input().split())\nprint(solve(N, M, K))\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s573868538', 's675538271', 's663837991'] | [43904.0, 43816.0, 69576.0] | [1507.0, 1491.0, 1045.0] | [485, 487, 750] |
p02685 | u521602455 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['N,M,K=map(int,input().split())\nP=998244353\nclass FactInv:\n def __init__(self,N,P):\n fact=[];ifact=[];fact=[1]*(N+1);ifact=[0]*(N+1)\n for i in range(1,N):\n fact[i+1]=(fact[i]*(i+1))%P\n ifact[-1]=pow(fact[-1],P-2,P)\n for i in range(N,0,-1):\n ifact[i-1]=(ifact[i]*i)%P\n self.fact=fact;self.ifact=ifact;self.P=P\n def comb(self,n,k):\n return (self.fact[n]*self.ifact[k]*self.ifact[n-k])%self.P\nFI=FactInv(N+10,P)\nans=0\nfor i in range(0,K+1):\n ans+=(M*FI.comb(N-1,i)*pow(M0,N-1-i,P))%P\n ans%=P\nprint(ans)', 'N,M,K=map(int,input().split())\nP=998244353\nclass FactInv:\n def __init__(self,N,P):\n fact=[];ifact=[];fact=[1]*(N+1);ifact=[0]*(N+1)\n for i in range(1,N):\n fact[i+1]=(fact[i]*(i+1))%P\n ifact[-1]=pow(fact[-1],P-2,P)\n for i in range(N,0,-1):\n ifact[i-1]=(ifact[i]*i)%P\n self.fact=fact;self.ifact=ifact;self.P=P\n def comb(self,n,k):\n return (self.fact[n]*self.ifact[k]*self.ifact[n-k])%self.P\nFI=FactInv(N+10,P)\nans=0\nfor k in range(0,K+1):\n ans+=(M*FI.comb(N-1,k)*pow(M-1,N-1-k,P))%P\n ans%=P\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s645478103', 's212470863'] | [24708.0, 24608.0] | [107.0, 650.0] | [574, 575] |
p02685 | u537142137 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['#factorial\nmod = 998244353 \nN = 1000000\nmodinv_t = [0, 1]\nmodfact_t = [1, 1]\nmodfactinv_t = [1, 1]\nfor i in range(2,N+1):\n modfact_t.append(modfact_t[-1] * i % MOD)\n modinv_t.append(modinv_t[MOD%i] * (MOD-(MOD//i)) % MOD)\n modfactinv_t.append(modfactinv_t[-1] * modinv_t[-1] % MOD)\n\ndef nPr(n, r):\n return modfact_t[n] * modfactinv_t[n-r] % MOD\n# combination\ndef nCr(n, r):\n return modfact_t[n] * modfactinv_t[n-r] * modfactinv_t[r] % MOD\n#\ndef nHr(n, r):\n return nCr(n+r-1,r)\n#\n\nN, M, K = map(int, input().split()) \n\nt = M*pow(M-1,N-1,mod)\nfor i in range(1,K+1):\n t += M*pow(M-1,N-1-i,mod)*nCr((N-1),i)\n t %= mod\n#\nprint(t)\n', '#factorial\nMOD = 998244353 \nN = 1000000\nmodinv_t = [0, 1]\nmodfact_t = [1, 1]\nmodfactinv_t = [1, 1]\nfor i in range(2,N+1):\n modfact_t.append(modfact_t[-1] * i % MOD)\n modinv_t.append(modinv_t[MOD%i] * (MOD-(MOD//i)) % MOD)\n modfactinv_t.append(modfactinv_t[-1] * modinv_t[-1] % MOD)\n\ndef nPr(n, r):\n return modfact_t[n] * modfactinv_t[n-r] % MOD\n# combination\ndef nCr(n, r):\n return modfact_t[n] * modfactinv_t[n-r] * modfactinv_t[r] % MOD\n#\ndef nHr(n, r):\n return nCr(n+r-1,r)\n#\n\nN, M, K = map(int, input().split()) \n\nt = M*pow(M-1,N-1,MOD) % MOD\nfor i in range(1,K+1):\n t += M*pow(M-1,N-1-i,MOD)*nCr((N-1),i)\n t %= MOD\n#\nprint(t)\n'] | ['Runtime Error', 'Accepted'] | ['s281566067', 's054380469'] | [9176.0, 127680.0] | [26.0, 1648.0] | [649, 655] |
p02685 | u539692012 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['MOD = 998244353\nclass mint:\n def __init__(self, i):\n self.i = i\n def __add__(self, m):\n t = self.i + (m.i if isinstance(m, mint) else m)\n if t > MOD:\n t -= MOD\n return mint(t)\n def __radd__(self, m):\n t = self.i + (m.i if isinstance(m, mint) else m)\n if t > MOD:\n t -= MOD\n return mint(t)\n def __mul__(self, m):\n return mint(self.i * m.i % MOD)\n def __sub__(self, m):\n t = self.i - m.i\n if t < 0:\n t += MOD\n return mint(t)\n def __pow__(self, m):\n i = self.i\n res = 1\n while(m > 0):\n if m & 1:\n res = res * i % MOD \n i = i * i % MOD\n m >>= 1\n return mint(res)\n def __truediv__(self, m):\n return mint(self.i * (m ** (MOD - 2)).i % MOD)\n def __repr__(self):\n return repr(self.i)\n\nfact_range = 200005\nfacts = [1] * (fact_range + 1)\nfor i in range(0, fact_range):\n facts[i+1] = facts[i] * (i + 1) % MOD\n\nifacts = [1] * (fact_range + 1)\nifacts[fact_range] = pow(facts[fact_range], MOD - 2, MOD)\nfor i in range(fact_range, 0, -1):\n ifacts[i-1] = ifacts[i] * i % MOD\n\ndef comb(n, k):\n if k < 0 or n < k:\n return mint(0)\n else:\n return mint(facts[n] * ifacts[n-k] % MOD * ifacts[k] % MOD)\n\nn, m, k = map(int, input().split())\nprint(comb(n, k))\n\n\nl = [mint(m) * (mint(m-1) ** (n-1-i)) * comb(n-1, n-1-i) for i in range(n)]\nans = mint(0)\nfor i in range(k+1):\n ans = ans + l[i]\nprint(ans)\n', 'MOD = 998244353\nclass mint:\n def __init__(self, i):\n self.i = i\n def __add__(self, m):\n t = self.i + (m.i if isinstance(m, mint) else m)\n if t > MOD:\n t -= MOD\n return mint(t)\n def __radd__(self, m):\n t = self.i + (m.i if isinstance(m, mint) else m)\n if t > MOD:\n t -= MOD\n return mint(t)\n def __mul__(self, m):\n return mint(self.i * m.i % MOD)\n def __sub__(self, m):\n t = self.i - m.i\n if t < 0:\n t += MOD\n return mint(t)\n def __pow__(self, m):\n i = self.i\n res = 1\n while(m > 0):\n if m & 1:\n res = res * i % MOD \n i = i * i % MOD\n m >>= 1\n return mint(res)\n def __truediv__(self, m):\n return mint(self.i * (m ** (MOD - 2)).i % MOD)\n def __repr__(self):\n return repr(self.i)\n\nfact_range = 200005\nfacts = [1] * (fact_range + 1)\nfor i in range(0, fact_range):\n facts[i+1] = facts[i] * (i + 1) % MOD\n\nifacts = [1] * (fact_range + 1)\nifacts[fact_range] = pow(facts[fact_range], MOD - 2, MOD)\nfor i in range(fact_range, 0, -1):\n ifacts[i-1] = ifacts[i] * i % MOD\n\ndef comb(n, k):\n if k < 0 or n < k:\n return mint(0)\n else:\n return mint(facts[n] * ifacts[n-k] % MOD * ifacts[k] % MOD)\n\nn, m, k = map(int, input().split())\n\n\n\nl = [mint(m) * (mint(m-1) ** (n-1-i)) * comb(n-1, n-1-i) for i in range(n)]\nans = mint(0)\nfor i in range(k+1):\n ans = ans + l[i]\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s460514398', 's113261103'] | [64284.0, 64428.0] | [1646.0, 1583.0] | [1530, 1513] |
p02685 | u578514593 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['mod = 998244353\n\nclass mod_combination:\n def __init__(self, N):\n self.fac = [1] * (N + 1)\n for i in range(1, N + 1):\n self.fac[i] = (self.fac[i - 1] * i) % mod\n self.invmod = [1] * (N + 1)\n self.invmod[N] = pow(self.fac[N], mod - 2, mod)\n for i in range(N, 0, -1):\n self.invmod[i - 1] = (self.invmod[i] * i) % mod\n \n def calc(self, n, k): # nCk\n return self.fac[n] * self.invmod[k] % mod * self.invmod[n - k] % mod\n\n\nn, m, k = map(int, input().split())\nC = mod_combination(n)\nans = 0\nfor x in range(k + 1):\n ans += C.calc(n - 1, n - x - 1) * pow(m - 1, n - x - 1, mod) % mod\n ans %= mod\nprint(ans)\n', 'mod = 998244353\n\nclass mod_combination:\n def __init__(self, N):\n self.fac = [1] * (N + 1)\n for i in range(1, N + 1):\n self.fac[i] = (self.fac[i - 1] * i) % mod\n self.invmod = [1] * (N + 1)\n self.invmod[N] = pow(self.fac[N], mod - 2, mod)\n for i in range(N, 0, -1):\n self.invmod[i - 1] = (self.invmod[i] * i) % mod\n \n def calc(self, n, k): # nCk\n return self.fac[n] * self.invmod[k] % mod * self.invmod[n - k] % mod\n\n\nn, m, k = map(int, input().split())\nC = mod_combination(n)\nans = 0\nfor x in range(k + 1):\n ans = (ans + C.calc(n - 1, n - x - 1) * m * pow(m - 1, n - x - 1, mod) % mod) % mod\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s395556801', 's649794543'] | [24712.0, 24580.0] | [664.0, 675.0] | [681, 683] |
p02685 | u594956556 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['N, M, K = map(int, input().split())\n\nMOD = 998244353\ninvmod = [pow(i, MOD-2, MOD) for i in range(200002)]\n\nnow = M * pow(M-1, N-1, MOD)\nans = now\nif K == 1:\n print(ans)\n exit()\n\nfor ki in range(1, K+1):\n now = now * invmod[M-1] * (N-ki) * invmod[ki] % MOD\n ans += now\n \nprint(ans % MOD)\n', 'N, M, K = map(int, input().split())\n\nMOD = 998244353\ninvmod = [pow(i, MOD-2, MOD) for i in range(200002)]\n\nif N == 1:\n print(M)\n exit()\n\nif M == 1:\n if K == N-1:\n print(1)\n else:\n print(0)\n exit()\n \nnow = M * pow(M-1, N-1, MOD)\nans = now\nif K == 0:\n print(ans % MOD)\n exit()\n\nfor ki in range(1, K+1):\n now = now * invmod[M-1] * (N-ki) * invmod[ki] % MOD\n ans += now\n \nprint(ans % MOD)\n'] | ['Wrong Answer', 'Accepted'] | ['s408810923', 's253661809'] | [17052.0, 17092.0] | [894.0, 903.0] | [292, 402] |
p02685 | u609307781 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['# E\n\nN, M, K = list(map(int, input().split()))\n\nres = [0] * (K+1)\nres[0] = (M * (M-1)**(N-1 - K)) % p\np = 998244353\nfor n in range(1, K+1):\n res[n] = (res[n-1] * (N-n) * pow(n, p-2, p)) % p\n\nprint(sum(res) % p)', '60522 114575 7559', 'N, M, K = list(map(int, input().split()))\np = 998244353\ncomb = 1\nres = 0\nfor n in range(K+1):\n res = (res + comb * M * pow(M-1, N-1-n, p)) % p\n comb = (comb * (N -1 -n) * pow(n + 1, p - 2, p)) % p\nprint(res)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s109189677', 's892387140', 's635942203'] | [10624.0, 9068.0, 9204.0] | [242.0, 26.0, 1268.0] | [213, 17, 213] |
p02685 | u619144316 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['import math\n\nN ,M, K = map(int,input().split())\nMOD = 998244353\nSUM = 0\n\nfact = [1]\nfact_inv = [1]\nfor i in range(1,N+1):\n fact.append(fact[-1] * i)\n fact_inv.append(pow(fact[-1],MOD-2,MOD))\n\nprint(fact)\n\ndef combinations_count(n, r):\n return (fact[n] * fact_inv[n-r] * fact_inv[r])%MOD\n\n\nfor i in range(K+1):\n if N -1 - i >= 0:\n SUM += M * pow(M-1,N-1-i,MOD) * combinations_count(N-i,i)\n SUM %= MOD\n\nprint(SUM)', 'import math\n\nN ,M, K = map(int,input().split())\nMOD = 998244353\n\ndef getInvs(n, MOD):\n invs = [1] * (n+1)\n for x in range(2, n+1):\n invs[x] = (-(MOD//x) * invs[MOD%x]) % MOD\n return invs\ninvs = getInvs(N+3, MOD)\n\nnum = M\nnums = []\nfor i in reversed(range(1,N)):\n nums.append(num)\n num *= i*(M-1)\n num *= invs[N-i]\n num %= MOD\nnums.append(num)\nnums.reverse()\n\nans = sum(nums[:K+1])\nans %= MOD\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s704055874', 's808443580'] | [564036.0, 26544.0] | [2223.0, 190.0] | [437, 430] |
p02685 | u659712937 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['N,M,K=map(int, input().split())\n\n\n\n# import sys\n\nnCr = {}\ndef cmb(n, r):\n if r == 0 or r == n: return 1\n if r == 1: return n\n if (n,r) in nCr: return nCr[(n,r)]\n nCr[(n,r)] = cmb(n-1,r) + cmb(n-1,r-1)\n return nCr[(n,r)]\n\na = cmb(n,r)\n\nans=0\n\nfor i in range(K+1):\n temp=(M*(M-1)**(N-1-i)*cmb(N-1,i))%998244353\n ans+=temp\n\nprint(ans%998244353)', 'N,M,K=map(int, input().split())\n\nMOD=998244353\n\nans=0\ntemp2=1\n#temp4=(M-1)**(N-1)%MOD\n\ndef getInvs(n, MOD):\n invs = [1] * (n+1)\n for x in range(2, n+1):\n invs[x] = (-(MOD//x) * invs[MOD%x]) % MOD\n return invs\n\ninvs = getInvs(max(N+3,M-1), MOD)\n\nVec=[0]*N\n#inv=1\n\n# inv*=M-1\n# inv%=MOD\n\n\nfor i in range(N):\n if i == 0:\n temp1=M\n Vec[N-i-1]=temp1\n else:\n temp1*=(M-1)*(N-i)\n temp1*=invs[i]\n temp1%=MOD\n Vec[N-i-1]=temp1\n\n\nans=sum(Vec[:K+1])\n\nprint(ans%MOD)\n'] | ['Runtime Error', 'Accepted'] | ['s321058610', 's297688254'] | [9236.0, 26100.0] | [22.0, 204.0] | [1001, 791] |
p02685 | u664373116 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['#n=int(input())\n#n,m=list(map(int,input().split()))\n#a=list(map(int,input().split()))\nimport sys\nsys.setrecursionlimit(10**6)\nimport math\nimport itertools\nfrom collections import defaultdict\nfrom collections import Counter\nimport numpy as np\n\nimport heapq\n\n\nn,k,x=list(map(int,input().split()))\nod=998244353\nans=(pow(n,x,od)*pow(2*n-k,n-x,od))%od\nprint(ans)', '#n=int(input())\n#n,m=list(map(int,input().split()))\n#a=list(map(int,input().split()))\nimport sys\nsys.setrecursionlimit(10**6)\nimport math\nimport itertools\nfrom collections import defaultdict\nfrom collections import Counter\nimport numpy as np\n\nimport heapq\ndef combinations_count(n, r):\n return math.factorial(n) // (math.factorial(n - r) * math.factorial(r))\nod=998244353\nn,k,x=list(map(int,input().split()))\n\nn_c_i=[1]\npow_k=pow(k-1,n,od)\ninv_k=pow(k-1,od-2,od)\neach_cal=[]\nzenpou=[1]\nkouhou=[]\nfor i in range(1,x+1):\n n_c_i.append((n_c_i[-1]*(n-i)*pow(i,od-2,od))%od)\nfor i in range(n-1): \n zenpou.append(zenpou[-1]*(k-1)%od)\nfor i in range(x+1):\n pow_k=pow_k*inv_k%od\n kouhou.append(pow_k)\n each_cal.append(pow(k-1,n-i-1,od))\n\nzenpou.reverse()\n\n\n\n#print(len(each_cal))\nans=0\nfor i in range(x+1):\n \n \n \n ans+=(n_c_i[i]*k*zenpou[i])%od\n ans%=od\n\nprint(ans)\n\n'] | ['Wrong Answer', 'Accepted'] | ['s476972745', 's466334352'] | [26816.0, 58340.0] | [113.0, 1544.0] | [357, 1043] |
p02685 | u667084803 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['N, M, K = map(int, input().split())\n\n\ndef power_func(a,n,p):\n bi = str(format(n,"b"))\n res = 1\n for i in range(len(bi)):\n res = (res*res) % p\n if bi[i] == "1":\n res = (res*a) % p\n return res\n\nP = 998244353\ninv_t = [0] + [1]\nfor i in range(2, N+2):\n inv_t += [inv_t[P % i] * (P - int(P / i)) % P]\n\nans = (M * power_func(M-1, N-1, P))%P\ncurr = ans\nfor k in range(K):\n N-k-1 < 0 : break\n curr = (curr*(N-k-1)*inv_t[k+1]*inv_t[M-1]) % P\n ans += curr\n ans %= P\n\nprint(ans)', 'import sys\nN, M, K = map(int, input().split())\n\nif M == 1 :\n if K == N-1:\n print(1)\n else:\n print(0)\n sys.exit()\n\ndef power_func(a, n, p):\n bi = str(format(n,"b"))\n if a == 0:\n return 0\n res = 1\n for i in range(len(bi)):\n res = (res*res) % p\n if bi[i] == "1":\n res = (res*a) % p\n return res\n\nP = 998244353\ninv_t = [0] + [1]\nfor i in range(2, max(M,K)+2):\n inv_t += [inv_t[P % i] * (P - int(P / i)) % P]\n\nans = (M * power_func(M-1, N-1, P))%P\ncurr = ans\nfor k in range(K):\n curr = (curr*(N-k-1)*inv_t[k+1]*inv_t[M-1]) % P\n ans += curr\n ans %= P\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s895912771', 's886902285'] | [8992.0, 16944.0] | [22.0, 244.0] | [533, 651] |
p02685 | u669812251 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['# -*- coding: utf-8 -*-\n\n\nn, m, k = map(int,input().split())\n\ndef cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p\n\np = 998244353\nN = n+1 \nfact = [1, 1] # fact[n] = (n! mod p)\nfactinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)\ninv = [0, 1] \n\nfor i in range(2, N + 1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n factinv.append((factinv[-1] * inv[-1]) % p)\n\nans = 0\nbeki = [1,m-1]\nfor i in range(2,N+1):\n beki.append(((beki[-1]*(m-1)) % p))\n\nfor x in range(k+1):\n ans += m * beki[n-x-1] %p * cmb(n-1,x,p)) %p\n ans = ans % p\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\n\nn, m, k = map(int,input().split())\n\ndef cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n-r] % p\n\np = 998244353\nN = n+1 \nfact = [1, 1] # fact[n] = (n! mod p)\nfactinv = [1, 1] # factinv[n] = ((n!)^(-1) mod p)\ninv = [0, 1] \n\nfor i in range(2, N + 1):\n fact.append((fact[-1] * i) % p)\n inv.append((-inv[p % i] * (p // i)) % p)\n factinv.append((factinv[-1] * inv[-1]) % p)\n\nans = 0\nbeki = [1,m-1]\nfor i in range(2,N+1):\n beki.append(((beki[-1]*(m-1)) % p))\n\nfor x in range(k+1):\n ans += m * beki[n-x-1] %p * cmb(n-1,x,p) %p\n ans = ans % p\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s746591043', 's080863576'] | [9104.0, 40592.0] | [21.0, 458.0] | [751, 750] |
p02685 | u686230543 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['mod = 998244353\n\nn, m, k = map(int, input().split())\ncount = 0\n\ncomb = 1\nfor i in range(k + 1):\n tmp = comb * m * pow(m-1, n-i-1, mod) % mod\n count = (count + tmp) % mod\n comb = comb * (n - i) * pow(i+1, mod-2, mod) % mod\nprint(count)', 'mod = 998244353\n\nn, m, k = map(int, input().split())\ncount = 0\n\ncomb = 1\nfor i in range(k + 1):\n tmp = comb * m * pow(m-1, n-i-1, mod) % mod\n count = (count + tmp) % mod\n comb = comb * (n - i - 1) * pow(i+1, mod-2, mod) % mod\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s120801355', 's262426952'] | [9196.0, 9196.0] | [1270.0, 1284.0] | [237, 241] |
p02685 | u709304134 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['N,M,K = map(int,input().split())\n# dp = [[0]*(K+2) for _ in range(2)]\n\n# print (1)\n# dp[0][0] = M\n# MOD = 998244353\n# for n in range(N-1):\n# n = n % 2\n# a = (n+1) % 2\n\n# for k in range(K+1):\n \n \n \n# dp[a][k] += dp[n][k] * (M-1)\n# dp[a][k+1] += dp[n][k]\n# dp[a][k] %= MOD\n# dp[a][k+1] %= MOD\n# #print (dp)\n# print(sum(dp[(N+1)%2][:-1]))\nimport numpy as np\nold = np.zeros(K+1).astype(np.int)\nMOD = 998244353\nold[0] = M\nfor n in range(N-1):\n new = old*(M-1)\n new[1:] += old[:K]\n new %= MOD\n old = new\nprint (sum(new)%MOD)', 'N,M,K = map(int,input().split())\nMOD = 998244353\nans = 0\n\n\nfact = [1] * (N+1) \nfactinv = [1] * (N+1) \n\n\n\nfor i in range(N):\n fact[i+1] = fact[i] * (i+1) % MOD \n factinv[i+1] = pow(fact[i+1], MOD-2, MOD)\n\ndef nCk(n,k): \n return fact[n] * factinv[n-k] * factinv[k] % MOD\n\ndef solve(k):\n r = M * pow(M-1,N-1-k,MOD) * nCk(N-1,k)\n return r\n\nfor k in range(K+1):\n ans += solve(k)\n ans %= MOD\nprint (ans)'] | ['Runtime Error', 'Accepted'] | ['s629009683', 's775624331'] | [29752.0, 24476.0] | [2206.0, 1420.0] | [619, 562] |
p02685 | u764956288 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['def inverse_mod(a, mod=10**9+7):\n """ Calculate inverse of the integer a modulo mod.\n """\n return pow(a, mod-2, mod)\n\n\ndef combination_mod(n, r, mod=10**9+7):\n \n\n r = min(r, n-r)\n numerator = denominator = 1\n for i in range(r):\n numerator = numerator * (n - i) % mod\n denominator = denominator * (i + 1) % mod\n\n return numerator * inverse_mod(denominator, mod) % mod\n\n\ndef create_inverses_list(n, mod):\n """ Create list of inverses of the integers 0 to n modulo mod.\n """\n \n inv_list = [1] * (n+1)\n for x in range(n+1):\n inv_list[x] = (-(mod//x) * inv_list[mod % x]) % mod\n \n return inv_list\n\n\ndef main():\n n_blocks, n_colors, n_max_pairs = map(int, input().split())\n mod = 998244353\n\n inverses = create_inverses_list(n_max_pairs, mod)\n \n e1 = n_colors * pow(n_colors-1, n_blocks-1, mod)\n e2 = 1\n total = e1 * e2 % mod\n\n for k in range(1, n_max_pairs+1):\n e1 = e1 * inverses[n_colors - 1] % mod\n e2 = e2 * (n_blocks - k) % mod * inverses[k] % mod\n total += e1 * e2 % mod\n total %= mod\n\n print(total)\n\n\nif __name__ == "__main__":\n main()\n', 'def inverse_mod(a, mod=10**9+7):\n """ Calculate inverse of the integer a modulo mod.\n """\n return pow(a, mod-2, mod)\n\n\ndef combination_mod(n, r, mod=10**9+7):\n \n\n r = min(r, n-r)\n numerator = denominator = 1\n for i in range(r):\n numerator = numerator * (n - i) % mod\n denominator = denominator * (i + 1) % mod\n\n return numerator * inverse_mod(denominator, mod) % mod\n\n\ndef create_inverses_table(n, mod=10**9+7):\n """ Create table for inverses of the integers 0 to n modulo mod.\n """\n\n inv_table = [1] + [1] * n\n for x in range(2, n+1):\n inv_table[x] = -(mod//x) * inv_table[mod % x] % mod\n\n return inv_table\n\n\ndef main():\n n_blocks, n_colors, n_max_pairs = map(int, input().split())\n mod = 998244353\n\n inverses = create_inverses_table(max(n_colors, n_max_pairs), mod)\n\n e1 = n_colors * pow(n_colors-1, n_blocks-1, mod) % mod if n_colors > 0 else 1\n e2 = 1\n total = e1 * e2\n\n for k in range(n_max_pairs+1):\n e1 = e1 * inverses[n_colors - 1] % mod\n e2 = e2 * (n_blocks - k) * inverses[k] % mod\n total += e1 * e2\n total %= mod\n\n print(total)\n\n\nif __name__ == "__main__":\n main()\n', 'def inverse_mod(a, mod=10**9+7):\n """ Calculate inverse of the integer a modulo mod.\n """\n return pow(a, mod-2, mod)\n\n\ndef combination_mod(n, r, mod=10**9+7):\n \n\n r = min(r, n-r)\n numerator = denominator = 1\n for i in range(r):\n numerator = numerator * (n - i) % mod\n denominator = denominator * (i + 1) % mod\n\n return numerator * inverse_mod(denominator, mod) % mod\n\n\ndef create_inverses_table(n, mod=10**9+7):\n """ Create table for inverses of the integers 0 to n modulo mod.\n """\n\n inv_table = [0] + [1] * n\n for x in range(2, n+1):\n inv_table[x] = -(mod//x) * inv_table[mod % x] % mod\n\n return inv_table\n\n\ndef solve():\n n_blocks, n_colors, n_max_pairs = map(int, input().split())\n\n if n_colors == 1:\n return int(n_blocks - n_max_pairs == 1)\n\n mod = 998244353\n\n inverses = create_inverses_table(max(n_colors, n_max_pairs), mod)\n\n e1 = n_colors * pow(n_colors-1, n_blocks-1, mod) % mod\n e2 = 1\n total = e1 * e2\n\n for k in range(1, n_max_pairs+1):\n e1 = e1 * inverses[n_colors - 1] % mod\n e2 = e2 * (n_blocks - k) * inverses[k] % mod\n total += e1 * e2\n total %= mod\n\n return total\n\n\ndef main():\n print(solve())\n\n\nif __name__ == "__main__":\n main()\n'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s074682871', 's166479111', 's377954695'] | [10588.0, 16820.0, 16732.0] | [26.0, 173.0, 167.0] | [1198, 1228, 1314] |
p02685 | u781262926 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ["class Factorial():\n def __init__(self, mod=10**9 + 7):\n self.mod = mod\n self._factorial = [1]\n self._size = 1\n self._factorial_inv = [1]\n self._size_inv = 1\n \n def __call__(self, n):\n return self.fact(n)\n \n def fact(self, n):\n ''' n! % mod '''\n if n >= self.mod:\n return 0\n self._make(n)\n return self._factorial[n]\n \n def fact_inv(self, n):\n ''' n!^-1 % mod '''\n if n >= self.mod:\n raise ValueError('Modinv is not exist! arg={}'.format(n))\n self._make_inv(n)\n return self._factorial_inv[n]\n \n def comb(self, n, r):\n ''' nCr % mod '''\n if r > n:\n return 0\n t = self.fact_inv(n-r)*self.fact_inv(r) % self.mod\n return self(n)*t % self.mod\n \n def comb_with_repetition(self, n, r):\n ''' nHr % mod '''\n t = self.fact_inv(n-1)*self.fact_inv(r) % self.mod\n return self(n+r-1)*t % self.mod\n \n def perm(self, n, r):\n ''' nPr % mod '''\n if r > n:\n return 0\n return self(n)*self.fact_inv(n-r) % self.mod\n \n @staticmethod\n def xgcd(a, b):\n '''\n Return (gcd(a, b), x, y) such that a*x + b*y = gcd(a, b)\n '''\n x0, x1, y0, y1 = 0, 1, 1, 0\n while a != 0:\n (q, a), b = divmod(b, a), a\n y0, y1 = y1, y0 - q * y1\n x0, x1 = x1, x0 - q * x1\n return b, x0, y0\n \n def modinv(self, n):\n g, x, _ = self.xgcd(n, self.mod)\n if g != 1:\n raise ValueError('Modinv is not exist! arg={}'.format(n))\n return x % self.mod\n \n def _make(self, n):\n if n >= self.mod:\n n = self.mod\n if self._size < n+1:\n for i in range(self._size, n+1):\n self._factorial.append(self._factorial[i-1]*i % self.mod)\n self._size = n+1\n \n def _make_inv(self, n):\n if n >= self.mod:\n n = self.mod\n self.make(n)\n if self._size_inv < n+1:\n for i in range(self._size_inv, n+1):\n self._factorial_inv.append(self.modinv(self._factorial[i]))\n self._size_inv = n+1\n\nn, m, k = map(int, input().split())\nmod = 998244353\ncomb = Factorial(mod).comb\ns = 0\nfor i in range(k+1, n):\n t = comb(n-1, i)*m % mod\n t = t*pow(m-1, n-1-i, mod) % mod\n s = (s+t) % mod\nans = (pow(m, n, mod)-s) % mod\nprint(ans)\n", "class Factorial():\n def __init__(self, mod=10**9 + 7):\n self.mod = mod\n self._factorial = [1]\n self._size = 1\n self._factorial_inv = [1]\n self._size_inv = 1\n\n def __call__(self, n):\n return self.fact(n)\n\n def fact(self, n):\n ''' n! % mod '''\n if n >= self.mod:\n return 0\n self._make(n)\n return self._factorial[n]\n \n def _make(self, n):\n if n >= self.mod:\n n = self.mod\n if self._size < n+1:\n for i in range(self._size, n+1):\n self._factorial.append(self._factorial[i-1]*i % self.mod)\n self._size = n+1\n\n def fact_inv(self, n):\n ''' n!^-1 % mod '''\n if n >= self.mod:\n raise ValueError('Modinv is not exist! arg={}'.format(n))\n if self._size_inv < n+1:\n self._factorial_inv += [-1] * (n+1-self._size_inv)\n self._size_inv = n+1\n if self._factorial_inv[n] == -1:\n self._factorial_inv[n] = self.modinv(self.fact(n))\n return self._factorial_inv[n]\n \n def _make_inv(self, n, r=2):\n if n >= self.mod:\n n = self.mod - 1\n if self._size_inv < n+1:\n self._factorial_inv += [-1] * (n+1-self._size_inv)\n self._size_inv = n+1\n self._factorial_inv[n] = self.modinv(self.fact(n))\n for i in range(n, r, -1):\n self._factorial_inv[i-1] = self._factorial_inv[i]*i % self.mod\n \n @staticmethod\n def xgcd(a, b):\n '''\n Return (gcd(a, b), x, y) such that a*x + b*y = gcd(a, b)\n '''\n x0, x1, y0, y1 = 0, 1, 1, 0\n while a != 0:\n (q, a), b = divmod(b, a), a\n y0, y1 = y1, y0 - q * y1\n x0, x1 = x1, x0 - q * x1\n return b, x0, y0\n\n def modinv(self, n):\n g, x, _ = self.xgcd(n, self.mod)\n if g != 1:\n raise ValueError('Modinv is not exist! arg={}'.format(n))\n return x % self.mod\n\n def comb(self, n, r):\n ''' nCr % mod '''\n if r > n:\n return 0\n t = self(n)*self.fact_inv(n-r) % self.mod\n return t*self.fact_inv(r) % self.mod\n \n def comb_(self, n, r):\n '''\n nCr % mod\n when r is not large and n is too large\n '''\n c = 1\n for i in range(1, r+1):\n c *= (n-i+1) * self.fact_inv(i)\n c %= self.mod\n return c\n\n def comb_with_repetition(self, n, r):\n ''' nHr % mod '''\n t = self(n+r-1)*self.fact_inv(n-1) % self.mod\n return t*self.fact_inv(r) % self.mod\n\n def perm(self, n, r):\n ''' nPr % mod '''\n if r > n:\n return 0\n return self(n)*self.fact_inv(n-r) % self.mod\n\nn, m, k = map(int, input().split())\nmod = 998244353\nf = Factorial(mod)\nf._make_inv(n-1)\ncomb = f.comb\ns = 0\nfor i in range(k+1, n):\n t = comb(n-1, i)*m % mod\n t = t*pow(m-1, n-1-i, mod) % mod\n s = (s+t) % mod\nans = (pow(m, n, mod)-s) % mod\nprint(ans)"] | ['Runtime Error', 'Accepted'] | ['s364516656', 's484581697'] | [9212.0, 24472.0] | [26.0, 835.0] | [2451, 3000] |
p02685 | u785573018 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['n, m, k = map(int, input().split())\nif n <= k+1:\n print(m**n)\nelse:\n a = [m*((m-1)**(n-1))]\n b = [1]\n c = 0\n for i in range(k):\n b.append(int(b[-1]/(i+1)*(n-i-1)))\n for i in range(k):\n a.append(int((a[-1]*b[i+1])/b[i]/(m-1))\n for i in range(k+1):\n c += a[i]\n print(c%998244353)', 'n, m, k = map(int, input().split())\nz = 998244353\nif n <= k+1:\n a = 1\n for i in range(n):\n a = a*m%z\n print(a)\nelse:\n d = m\n for i in range(n-1):\n d = d*(m-1)%z\n a = [d]\n b = [1]\n c = 0\n for i in range(k):\n b.append(int(b[-1]*(n-i-2)/(i+1)%z))\n for i in range(k):\n a.append(int((a[-1]*b[i+1]%z)/b[i]/(m-1)))\n for i in range(k+1):\n c = (c+a[i])%z\n print(c)', 'n, m, k = map(int, input().split())\nz = 998244353\nif n <= k+1:\n a = 1\n for i in range(n):\n a = a*m%z\n print(a)\nelse:\n a = []\n b = []\n d = [1, 1]\n e = [1, 1]\n f = [0, 1]\n for i in range(2, n):\n d.append(d[-1]*i%z)\n f.append((-f[z%i]*(z//i))%z)\n e.append(e[-1]*f[-1]%z)\n for i in range(k+1):\n b.append(d[n-1]*e[i]*e[n-i-1]%z)\n x = 0\n g = [1]\n for i in range(n-1):\n g.append(g[i]*(m-1)%z)\n for i in range(k+1):\n a.append(b[i]*m*g[n-i-1]%z)\n for i in range(k+1):\n x = (x+a[i])%z\n print(x)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s013339458', 's315019617', 's070072668'] | [8996.0, 13872.0, 49644.0] | [23.0, 147.0, 395.0] | [322, 426, 588] |
p02685 | u788703383 | 2,000 | 1,048,576 | There are N blocks arranged in a row. Let us paint these blocks. We will consider two ways to paint the blocks different if and only if there is a block painted in different colors in those two ways. Find the number of ways to paint the blocks under the following conditions: * For each block, use one of the M colors, Color 1 through Color M, to paint it. It is not mandatory to use all the colors. * There may be at most K pairs of adjacent blocks that are painted in the same color. Since the count may be enormous, print it modulo 998244353. | ['M = 998244353\nn,m,K = map(int,input().split())\nans = 0\nc = 1\nfor k in range(K+1):\n ans += c * m * pow(m-1,n-k-1,M)\n c *= (n-k+1) * pow(k+1,M-2,M)\n ans %= M\n c %= M\nprint(ans)\n \n', 'M = 998244353\nn,m,K = map(int,input().split())\nans = 0\nc = 1\nfor k in range(K+1):\n ans += c * m * pow(m-1,n-k-1,M)\n c *= (n-k-1) * pow(k+1,M-2,M)\n ans %= M\n c %= M\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s433932695', 's700229452'] | [9124.0, 9028.0] | [1273.0, 1274.0] | [192, 187] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.