problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p02595
u244466744
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n d = sqrt(x**2 + y**2)\n \n if d<=D:\n count += 1\n \nprint(count)', 'import math\n\nN, D = map(int, input().split())\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n d = math.sqrt(x**2 + y**2)\n \n if d<=D:\n count += 1\n \nprint(count)\n']
['Runtime Error', 'Accepted']
['s874285281', 's196593742']
[9128.0, 8960.0]
[28.0, 479.0]
[168, 187]
p02595
u244836567
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['a,b=input().split()\na=int(a)\nb=int(b)\nc=[input().split() for i in range(a)]\nd=0\nfor i in range(a):\n if int(c[i][0])*int(c[i][1])<=b**2:\n d=d+1\nprint(d)', 'a,b=input().split()\na=int(a)\nb=int(b)\nc=[input().split() for i in range(a)]\nd=0\nfor i in range(a):\n if abs(int(c[i][0])*int(c[i][1]))<=b**2:\n d=d+1\nprint(d)', 'a,b=input().split()\na=int(a)\nb=int(b)\nc=[input().split() for i in range(a)]\nd=0\nfor i in range(a):\n if abs((int(c[i][0]))**2+(int(c[i][1])**2))<=b**2:\n d=d+1\nprint(d)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s561759414', 's672952913', 's845942940']
[67600.0, 67576.0, 67604.0]
[523.0, 523.0, 601.0]
[155, 160, 171]
p02595
u247457760
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn, d = map(int, input().split())\n\ncount = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n if math.sprt((abs(x)**2) + (abs(y)**2)) <= d:\n count += 1', 'import math\n\nn, d = map(int, input().split())\n\ncount = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n if math.sqrt((x)**2 + (y)**2) <= d:\n count += 1\n\nprint(count)']
['Runtime Error', 'Accepted']
['s208569791', 's062030964']
[9184.0, 9172.0]
[30.0, 480.0]
[174, 178]
p02595
u250734103
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nX, Y = [map(int, input().split()) for i in range(N)]\n\ncnt = 0\nfor i in range(N):\n if X[i]**2 + Y[i]**2 < D**2:\n cnt += 1\nprint(cnt)', 'N, D = map(int, input().split())\n\ncnt = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X**2 + Y**2 <= D**2:\n cnt += 1\nprint(cnt)']
['Runtime Error', 'Accepted']
['s807822827', 's722831769']
[96128.0, 9092.0]
[601.0, 479.0]
[174, 153]
p02595
u253205825
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int,input().split())\ns == 0\nfor i in range(n):\n\tx, y = map(int,input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\n\telse:\n\t\t\ts = s\nprint(s)', 'n, d = map(int, input().split())\ns == 0\nfor i in range(n+1):\n\tx, y = map(int, input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\nprint(s)', 'n, d = map(int, input().split())\ns = 0\nfor i in range(n+1):\n\tx, y = map(int, input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\nprint(s)', 'n, d = map(int,input().split())\ns == 0\nfor i in range(n):\n\tx, y = map(int,input().split())\n\tif x**2 + y**2 <= d**2:\n\t\ts = s + 1\n\t\telse:\n\t\t\ts = s\nprint(s)', 'n, d = map(int,input().split())\ns == 0\nfor i in range(n):\n\tx, y = map(int,input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\n\t\telse:\n\t\t\ts = s\nprint(s)', 'n, d = map(int, input().split())\ns == 0\nfor i in range(n+1):\n\tx, y = map(int,input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\nprint(s)', 'n, d = map(int, input().split())\ns = 0\nfor i in range(n):\n\tx, y = map(int, input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts += 1\nprint(s)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s029699033', 's074141930', 's237986382', 's581961578', 's803699612', 's886881422', 's172961245']
[9184.0, 9180.0, 9132.0, 9028.0, 9016.0, 9124.0, 9168.0]
[26.0, 25.0, 476.0, 28.0, 23.0, 28.0, 482.0]
[148, 136, 135, 153, 149, 135, 132]
p02595
u257442624
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\n \nN, D = int(input().split()) \ngrid = []\nfor i in range(N):\n array = list(map(int, input().strip().split()))\n grid.append(array)\np = 0\nfor i in range(N):\n if np.sqrt(grid[i,0]*grid[i,0] + grid[i,1], grid[i,1]) <= D:\n p += 1\nprint(p)', 'import numpy as np\n\nN, D = int(input().split()) \na,b=(int(x) for x in input().split())\np = 0\nfor i in range(len(a)):\n if np.sqrt(a[i]*a[i] + b[i]*b[i]):\n p += 1\nprint(p)', 'x, y = input().split()\ns = [input() for i in range(x)]\nt = [input() for i in range(y)]\np = 0\nfor i in range(len(s)):\n if sqrt(s[i]*s[i] + t[i]*t[i]) > y:\n p += 1\n\nprint(p)', 'import numpy as np\n \nN, D = input().strip().split() \ngrid = []\nfor i in range(int(N)):\n array = list(map(int, input().strip().split()))\n grid.append(array)\ngrid = np.array(grid)\np = 0\nfor i in range(int(N)):\n if np.sqrt(grid[i,0]*grid[i,0] + grid[i,1]*grid[i,1]) <= int(D):\n p += 1\nprint(p)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s016399609', 's300959839', 's374885967', 's348635427']
[27124.0, 27164.0, 9120.0, 66600.0]
[115.0, 113.0, 26.0, 1194.0]
[288, 200, 175, 327]
p02595
u259265086
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = list(map(int, input()))\n\ncnt = 0\n\nfor i in range(N):\n x, y = list(map(int, input()))\n \n if x**2 + y**2 <= D**2:\n cnt += 1\n\nprint(cnt)', 'N, D = list(map(int, input().split()))\n \ncnt = 0\n \nfor i in range(N):\n x, y = list(map(int, input().split()))\n \n if x**2 + y**2 <= D**2:\n cnt += 1\n \nprint(cnt)']
['Runtime Error', 'Accepted']
['s072874253', 's889377788']
[9084.0, 9192.0]
[24.0, 509.0]
[146, 165]
p02595
u261103969
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\n\nans = 0\n\nfor _ in range(n):\n x, y = map(int, readline().split())\n if x ** 2 + y ** 2 <= d ** 2:\n ans += 1\n\nprint(ans)', 'n, d = map(int, input().split())\n\nans = 0\n\nfor _ in range(n):\n x, y = map(int, input().split())\n if x ** 2 + y ** 2 <= d ** 2:\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s271415837', 's922741419']
[9136.0, 9108.0]
[26.0, 480.0]
[164, 161]
p02595
u261747594
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=input().split(" ")\ncount=0\nfor n in range(int(N)):\n x,y=input().split(" ")\n if pow(pow(x,2)+pow(y,2),0.5)<=int(D):\n count+=1\nprint(count)\n', 'N,D=input().split(" ")\ncount=0\nfor n in range(int(N)):\n x,y=input().split(" ")\n if pow(pow(int(x),2)+pow(int(y),2),0.5)<=int(D):\n count+=1\nprint(count)\n']
['Runtime Error', 'Accepted']
['s397448365', 's318204003']
[9132.0, 9580.0]
[27.0, 503.0]
[147, 157]
p02595
u263737105
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nindex = [(input().split()) for i in range(N)]\ncount = 0\nprint(D)\nprint(index)\nfor i in range(N):\n a = int(index[i][0])\n b = int(index[i][1])\n if (a**2 + b**2) <= D**2:\n count += 1\nprint(count)\n', 'N, D = map(int, input().split())\ncount = 0\nprint(D)\nprint(index)\nfor i in range(N):\n a, b = map(int, input().split())\n if (a**2 + b**2) <= D**2:\n count += 1\nprint(count)\n', 'import sys\ninput = sys.stdin.readline\nN, D = map(int, input().split())\ncount = 0\nfor i in range(N):\n a, b = map(int, input().split())\n if (a*a + b*b) <= D*D:\n count += 1\nprint(count)\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s263080899', 's613225816', 's111558385']
[76292.0, 9012.0, 9120.0]
[666.0, 26.0, 194.0]
[242, 183, 196]
p02595
u266795424
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math \nN,D=map(int,input().split())\nc = 0\nfor i in range(N):\n X,Y=map(int,input().split())\n if X <= D and Y<=D\n d = math.sqrt(X**2+Y**2)\n if d <= D:\n c = c+1\nprint(c) ', 'import math \nN,D=map(int,input().split())\nc = 0\nfor i in range(N):\n X,Y=map(int,input().split())\n if X <= D and Y<=D:\n d = math.sqrt(X**2+Y**2)\n if d <= D:\n c = c+1\nprint(c)']
['Runtime Error', 'Accepted']
['s703784303', 's716208998']
[8884.0, 9188.0]
[26.0, 523.0]
[186, 186]
p02595
u268402865
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN, D= list(map(int,input().split()))\ncnt = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n #print(math.sqrt((x^2)+(y^2)))\n if math.sqrt((x*x)+(y*y)) <= D:\n cnt+=1\n \n ', 'import math\nN, D= list(map(int,input().split()))\ncnt = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n #print(math.sqrt((x^2)+(y^2)))\n if math.sqrt((x*x)+(y*y)) <= D:\n cnt+=1\n \nprint(cnt)']
['Wrong Answer', 'Accepted']
['s915312605', 's363207816']
[9100.0, 9168.0]
[433.0, 440.0]
[222, 224]
p02595
u274080981
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\ncnt, x, y = 0, 0, 0\nls = [list(map(int, input().split())) for i in range(n)]\nls.sort()\nfor i in range(n):\n if i == 0 & ls[i][0] == 0 & ls[i][1] == 0:\n cnt += 1\n if ls[i][0] == x & ls[i][1] == y:\n cnt += 0\n else:\n x, y = ls[i]\n if d ** 2 >= x ** 2 + y ** 2:\n cnt += 1\nprint(cnt)\n', 'n, d = map(int, input().split())\ncnt, x, y = 0, 0, 0\nls = [list(map(int, input().split())) for i in range(n)]\nls.sort()\nfor i in range(n):\n if i == 0 & ls[i][0] == 0 & ls[i][1] == 0:\n cnt += 1\n if ls[i][0] == x & ls[i][1] == y:\n cnt += 0\n else:\n x, y = ls[i]\n if d ** 2 >= x ** 2 + y ** 2:\n cnt += 1\n print(ls[i], cnt)\nprint(cnt)\n', 'n, d = map(int, input().split())\ncnt, x, y = 0, 0, 0\nfor i in range(n):\n x, y = map(int, input().split())\n if d ** 2 >= x ** 2 + y ** 2:\n cnt += 1\nprint(cnt)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s263804159', 's903159029', 's803693626']
[46172.0, 46268.0, 8968.0]
[1022.0, 1328.0, 527.0]
[359, 381, 171]
p02595
u290887281
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x > d:\n count += 1\n \nprint(count)', 'import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x < d:\n count += 1\n \nprint(count)', 'import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x < d:\n count += 1\n \nprint(count)', 'import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x <= d:\n count += 1\n \nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s123645740', 's369699569', 's781270300', 's745280017']
[9176.0, 9188.0, 9184.0, 9180.0]
[499.0, 522.0, 495.0, 482.0]
[202, 202, 202, 203]
p02595
u292714435
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, max_dist = int(input())\npoints = 0\n\nfor _ in range(n):\n x, y = int(input())\n dist = sqrt(x * x + y * y)\n \n if dist <= max_dist:\n points += 1\n\t\nprint(points)', 'import math\n\nn, max_dist = input().split()\n\nprint(n)\nprint(max_dist)\npoints = 0\n\nfor _ in range(int(n)):\n x, y = input().split()\n x = int(x)\n y = int(y)\n\n dist = math.sqrt(x * x + y * y)\n\n if dist <= float(max_dist):\n points += 1\n\nprint(points)\n ', 'n, max_dist = int(input().split())\n\npoints = 0\n\nfor _ in range(n):\n x, y = int(input().split())\n \n dist_origin = sqrt(x * x + y * y)\n\tif dist_origin <= max_dist:\n \tpoints += 1\n \nprint(points)\n', 'import math\n\nn, max_dist = input().split()\n\npoints = 0\n\nfor _ in range(int(n)):\n x, y = input().split()\n x = int(x)\n y = int(y)\n\n dist = math.sqrt(x * x + y * y)\n\n if dist <= float(max_dist):\n points += 1\n\nprint(points)\n ']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s183763932', 's287772582', 's903726455', 's705113867']
[9180.0, 9196.0, 9020.0, 9180.0]
[29.0, 450.0, 22.0, 439.0]
[166, 271, 205, 246]
p02595
u293341815
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn ,d = input().split()\nn = int(n)\nd = int(d)\n\nfor i in range(n):\n x ,y = input().split()\n x = int(x)\n y = int(y)\n\n a = math.sqrt(x*x + y*y)\n \n if a <= d:\n nanko += 1\n\nprint(nanko) \n', 'import math\n\np = 0\n\nn,d = input().split()\nn = int(n)\nd = int(d)\n\nfor i in range(n):\n x,y = input().split()\n x = int(x)\n y = int(y)\n\n a = math.sqrt(x*x + y*y)\n \n if a <= d:\n p = p + 1\n\nprint(p) \n']
['Runtime Error', 'Accepted']
['s475679591', 's428242409']
[9188.0, 9180.0]
[24.0, 418.0]
[221, 221]
p02595
u298976461
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\nxy = []\nfor i in range(n):\n xy.append(list(map(int,input().split())))\n\nc = 0\n\nfor i in range(n):\n if xy[i][0] * xy[i][0] + xy[i][1] * xy[i][1] < d * d:\n c += 1\n\nprint(c)\n', 'n, d = map(int, input().split())\nxy = []\nfor i in range(n):\n xy.append(list(map(int,input().split())))\n\nc = 0\n\nfor i in range(n):\n if xy[i][0] * xy[i][0] + xy[i][1] * xy[i][1] <= d * d:\n c += 1\n\nprint(c)\n']
['Wrong Answer', 'Accepted']
['s843930548', 's855249395']
[45456.0, 45436.0]
[572.0, 534.0]
[208, 209]
p02595
u305237878
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nN, D = map(int, input().split())\nans = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if math.sqrt(x**2 + y**2) =< D:\n ans += 1\n\nprint(ans)', 'import math\n\nN, D = map(int, input().split())\nans = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if math.sqrt(x**2 + y**2) <= D:\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s637772648', 's497030581']
[8996.0, 9148.0]
[26.0, 475.0]
[175, 175]
p02595
u308237681
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int, input().split())\nz = [list(map(int, input().split())) for _ in range(n)]\nans = 0\n\nfor i in z:\n distance = i[0]*i[0] + i[1]*i[1]\n if distance <= d**2:\n ans += 1\n print(i, distance)\n\nprint(ans)', 'n,d = map(int, input().split())\nz = [list(map(int, input().split())) for _ in range(n)]\nans = 0\n\nfor i in z:\n distance = i[0]*i[0] + i[1]*i[1]\n if distance <= d**2:\n ans += 1\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s496740867', 's125860912']
[45292.0, 45464.0]
[642.0, 518.0]
[226, 200]
p02595
u308914480
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n \ncount=0\n \nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n\nif x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n a.count=+1\nprint(a)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n \ncount=0\n \nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n \ncount=0\n \nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n\ncount=0\n\nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x**2+y**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count+=1\nprint(count)', 'import math\n\nn,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if math.sqrt((x**2)+(y**2))<=d:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count+=1\nprint(count)']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s135401617', 's203698781', 's237746942', 's258044584', 's346365469', 's353975401', 's380729766', 's488375950', 's526009855', 's872081850', 's930413387', 's244948493']
[9180.0, 9180.0, 24568.0, 9004.0, 9172.0, 8980.0, 24588.0, 12032.0, 9188.0, 8924.0, 9192.0, 9180.0]
[26.0, 25.0, 372.0, 46.0, 22.0, 26.0, 527.0, 32.0, 489.0, 23.0, 486.0, 496.0]
[142, 148, 171, 135, 134, 171, 172, 164, 136, 135, 161, 136]
p02595
u309120194
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nX_Y = []\nfor i in range(N):\n X_Y.append(list(map(int, input().split())))\n \nans = 0\nfor n in range(N):\n x, y = X_Y[n]\n if(x**2 + y**2 <= D): ans += 1\n\nprint(ans)\n\n\n', 'N, D = map(int, input().split())\nX_Y = []\nfor i in range(N):\n X_Y.append(list(map(int, input().split())))\n \nans = 0\nfor n in range(N):\n x, y = X_Y[n]\n \n if(x**2 + y**2 <= D*D): ans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s905067342', 's973940073']
[45476.0, 45408.0]
[559.0, 549.0]
[204, 296]
p02595
u312695001
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\n\nN, D = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n r = np.sqrt(x**2 + y**2)\n if r < D:\n ans += 1\n\nprint(ans)\n', 'import numpy as np\n\nN, D = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n r2 = x**2 + y**2\n if r2 <= D**2:\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s421173266', 's536426485']
[26868.0, 27212.0]
[869.0, 594.0]
[201, 197]
p02595
u316931394
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\n\ntemp = input().split()\n\ns = [input().split() for i in range(int(temp[0]))]\n\ncnt = 0\n\nfor i in range(int(temp[0])):\n if np.sqrt(int(s[i][0])*int(s[i][0]) + int(s[i][1])*int(s[i][1])) > int(temp[1]):\n cnt += 1\n\nprint(cnt)', ' import numpy as np\n \n temp = input().split()\n \n s = [input().split() for i in range(int(temp[0]))]\n \n cnt = 0\n \n for i in range(int(temp[0])):\n if np.sqrt(int(s[i][0])*int(s[i][0]) + int(s[i][1])*int(s[i][1])) <= int(temp[1]):\n cnt += 1\n \n print(cnt)', 'import numpy as np\ntemp = input().split()\ns = [input().split() for i in range(int(temp[0]))]\ncnt = 0\nfor i in range(int(temp[0])):\n if np.sqrt(int(s[i][0])*int(s[i][0]) + int(s[i][1])*int(s[i][1])) <= int(temp[1]):\n cnt += 1\nprint(cnt)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s660141104', 's894343679', 's786826832']
[85556.0, 8996.0, 85604.0]
[981.0, 30.0, 1000.0]
[243, 301, 239]
p02595
u317423698
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import sys\n\n\ndef resolve(in_):\n n, d = map(int, next(in_).split())\n xy = list(map(int, line.split()) for line in in_)\n \n ret = 0\n for x, y in xy:\n distance = (x ** 2 + y ** 2) ** 0.5\n print(x, y, distance)\n if distance <= d:\n ret += 1\n\n return ret\n\ndef main():\n answer = resolve(sys.stdin.buffer)\n print(answer)\n\n\nif __name__ == '__main__':\n main()\n", "import sys\n\n\ndef resolve(in_):\n n, d = map(int, next(in_).split())\n xy = list(map(int, line.split()) for line in in_)\n \n ret = 0\n for x, y in xy:\n distance = (x ** 2 + y ** 2) ** 0.5\n if distance <= d:\n ret += 1\n\n return ret\n\ndef main():\n answer = resolve(sys.stdin.buffer)\n print(answer)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s245672247', 's754181158']
[90640.0, 90228.0]
[933.0, 560.0]
[408, 378]
p02595
u321065001
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['\nn,d = map(int,input().split())\nsum=0\nfor i in range(n):\n x,y = map(int,input().split())\n if(x*x+y*y<=d):\n sum+=1\nprint(sum)\n', 'n,d = map(int,input().split())\nsum=0\nfor i in range(n):\n x,y = map(int,input().split())\n if((x*x+y*y)<=d*d):\n sum+=1\nprint(sum)\n']
['Wrong Answer', 'Accepted']
['s248539746', 's892470797']
[9144.0, 9164.0]
[372.0, 394.0]
[138, 141]
p02595
u348171775
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int(),input().split())\nanswer = 0\nfor i in range(N): \n x,y = map(int(),input().split())\n if(D**2 >= x**2+y**2):\n answer += 1\nprint(answer)', 'N,D = map(int,input().split())\nanswer = 0\nfor i in range(N): \n x,y = map(int,input().split())\n if(D**2 >= x**2+y**2):\n answer += 1\nprint(answer)']
['Runtime Error', 'Accepted']
['s173338483', 's638778673']
[9048.0, 9196.0]
[27.0, 477.0]
[162, 158]
p02595
u351238496
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import sys\n\n\ninput = list()\nN, D = sys.stdin\nfor item in sys.stdin:\n input.append(item)\n\ncount = 0\nfor item in input:\n if 1 <= N and N <= 2*10**5:\n if D <= 0 and D <= 2*10**5:\n if abs(item[0]) <= 2*10**5 and abs(item[1]) <= 2*10**5: \n if D >= (int(item[0])**2 + item(item[1])**2)**1/2:\n count += 1\nprint(count)', 'import sys\n\n\ninput_array = list()\nN, D = map(int, input().split())\nif 1 <= N and N <= 2*10**5:\n for _ in range(N):\n input_array.append(map(int, input().split()))\n\ncount = 0\nfor x0, x1 in input_array:\n if 0 <= D and D <= 2*10**5:\n if abs(x0) <= 2*10**5 and abs(x1) <= 2*10**5: \n print((int(x0)**2 + int(x1)**2)**(1/2))\n if D >= (int(x0)**2 + int(x1)**2)**(1/2):\n count += 1\nprint(count)', 'import sys\n\n\ninput = list()\nN, D = sys.stdin\nfor item in sys.stdin:\n input.append(item)\n\ncount = 0\nfor item in input:\n if 1 <= N and N <= 2*10**5:\n if 0 <= D and D <= 2*10**5:\n if abs(item[0]) <= 2*10**5 and abs(item[1]) <= 2*10**5:\n if D >= (int(item[0])**2 + int(item[1])**2)**(1/2):\n count += 1\nprint(count)', 'import sys\n\n\ninput = list()\nN, D = sys.stdin\n\nfor item in sys.stdin:\n input.append(item)\n\ncount = 0\nfor item in input:\n if 1 <= N and N <= 2*10**5:\n if D <= 0 and D <= 2*10**5:\n if abs(item[0]) <= 2*10**5 and abs(item[1]) <= 2*10**5: \n if D >= (int(item[0])**2 + item(item[1])**2)**1/2:\n count += 1\nprint(count)\n ', 'import sys\n\n\ninput_array = list()\nN, D = map(int, input().split())\nif 1 <= N and N <= 2*10**5:\n for _ in range(N):\n input_array.append(map(int, input().split()))\n\ncount = 0\nfor x0, x1 in input_array:\n if 0 <= D and D <= 2*10**5:\n if abs(x0) <= 2*10**5 and abs(x1) <= 2*10**5: \n if D >= (int(x0)**2 + int(x1)**2)**(1/2):\n count += 1\nprint(count)']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s638929214', 's674938634', 's689808354', 's930889428', 's272367004']
[9044.0, 96584.0, 9088.0, 9036.0, 96572.0]
[25.0, 1199.0, 24.0, 26.0, 872.0]
[379, 453, 368, 385, 401]
p02595
u352676541
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\n\narray = [[0 for i in range(2)] for j in range(N)]\nfor i in range(0,N):\n array[i][0],array[i][1] = map(int,input().split())\n\nans = 0\nfor i in range(0,N):\n if D**2 >= ((array[i][0]**2) + (array[i][1]**2)):\n print(array[i][0],array[i][1])\n ans += 1\nprint(ans)', 'N,D = map(int,input().split())\n\narray = [[0 for i in range(2)] for j in range(N)]\nfor i in range(0,N):\n array[i][0],array[i][1] = map(int,input().split())\n\ndis = []\nans = 0\nfor i in range(0,N):\n if ((array[i][0]**2) + (array[i][1]**2)) not in dis:\n dis.append(((array[i][0]**2) + (array[i][1]**2)))\n\nfor i in dis\n if D**2 >= i:\n ans += 1\nprint(ans)', 'N,D = map(int,input().split())\n\narray = [[0 for i in range(2)] for j in range(N)]\nfor i in range(0,N):\n array[i][0],array[i][1] = map(int,input().split())\n\ndis = []\nans = 0\nfor i in range(0,N):\n if ((array[i][0]**2) + (array[i][1]**2)) not in dis:\n dis.append(((array[i][0]**2) + (array[i][1]**2)))\n\nfor i in dis:\n if D**2 >= i:\n ans += 1\nprint(ans)', 'N,D = map(int,input().split())\n\nans = 0\nfor i in range(N):\n\tX,Y = map(int,input().split())\n\tif D**2 >= X**2 + Y**2:\n\t\tans += 1\nprint(ans)']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s033707001', 's098933434', 's934762903', 's665499167']
[42280.0, 8880.0, 42976.0, 9216.0]
[754.0, 25.0, 2207.0, 478.0]
[308, 371, 372, 137]
p02595
u354174235
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['\n\nparam_n, param_d = map(int, input().split())\n\nparam_count = 0\nfor i in param_n:\n param_a, param_b = map(int, input().split())\n \n if (param_a)*(param_a) + (param_b)*(param_b) <= (param_d)*(param_d):\n param_count = param_count + 1\n \nprint(param_count)', 'import pandas', 'param_n, param_d = map(int, input().split())\n\nparam_count = 0\nfor i in range(param_n):\n param_a, param_b = map(int, input().split())\n \n if (param_a)*(param_a) + (param_b)*(param_b) <= (param_d)*(param_d):\n param_count = param_count + 1\n \nprint(param_count)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s923457551', 's947619124', 's823942179']
[9180.0, 9076.0, 9188.0]
[27.0, 31.0, 407.0]
[274, 13, 279]
p02595
u354862173
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import sys\nimport numpy as np\nfrom math import ceil as C, floor as F, sqrt\nfrom collections import defaultdict as D\nfrom functools import reduce as R\n\nALP = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'\nalp = 'abcdefghijklmnopqrstuvwxyz'\ndef _X(): return sys.stdin.readline().rstrip().split(' ')\ndef _S(ss): return tuple(ss) if len(ss) > 1 else ss[0]\ndef S(): return _S(_X())\ndef Ss(): return list(S())\ndef _I(ss): return tuple([int(s) for s in ss]) if isinstance(ss, tuple) else int(ss)\ndef I(): return _I(S())\ndef _Is(ss): return list(ss) if len(ss) > 1 else [ss]\ndef Is(): return _Is(I())\n\nn, lim = I()\nans = 0\ncache = {}\n\ndef dist(x, y, lim):\n if (x,y) not in cache:\n cache[x,y] = sqrt(x*x + y*y) < lim\n return cache[x,y]\n\nfor _ in range(n):\n x, y = I()\n if dist(x, y, lim):\n ans += 1\n \nprint(ans)", "import sys\nimport numpy as np\nfrom math import ceil as C, floor as F, sqrt\nfrom collections import defaultdict as D\nfrom functools import reduce as R\n \nALP = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'\nalp = 'abcdefghijklmnopqrstuvwxyz'\ndef _X(): return sys.stdin.readline().rstrip().split(' ')\ndef _S(ss): return tuple(ss) if len(ss) > 1 else ss[0]\ndef S(): return _S(_X())\ndef Ss(): return list(S())\ndef _I(ss): return tuple([int(s) for s in ss]) if isinstance(ss, tuple) else int(ss)\ndef I(): return _I(S())\ndef _Is(ss): return list(ss) if len(ss) > 1 else [ss]\ndef Is(): return _Is(I())\n \nn, lim = I()\nans = 0\ncache = {}\n \ndef dist(x, y, lim):\n if (x,y) not in cache:\n cache[x,y] = sqrt(x*x + y*y) <= lim\n return cache[x,y]\n \nfor _ in range(n):\n x, y = I()\n if dist(x, y, lim):\n ans += 1\n \nprint(ans)"]
['Wrong Answer', 'Accepted']
['s841222762', 's816855196']
[64324.0, 64352.0]
[561.0, 622.0]
[797, 802]
p02595
u356748525
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\ncount = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if x**2+y**2 ** 0.5 <= d:\n count += 1\nprint(count)', 'import math\ncount = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if x**2+y**2 ** 0.5 <= d:\n count += 1\nprint(count)', 'import math\ncount = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if sqrt(x**2+y**2) >= d:\n count += 1\nprint(count)', 'count = 0\nx = 0\ny = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if (x**2+y**2 )** 0.5 <= d:\n count += 1\nprint(count)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s572305434', 's647291668', 's989515216', 's708882225']
[9424.0, 9436.0, 9188.0, 9560.0]
[389.0, 387.0, 24.0, 484.0]
[160, 160, 159, 162]
p02595
u366974168
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d=map(int(input().split()))\nc=0\nfor i in range(n):\n a,b=map(int(input().split()))\n r=math.sqrt(a**2+b**2)\n if r<=d:\n c+=1\nprint(c) ', 'import math\nn,d=map(int,input().split())\nc=0\nfor i in range(n):\n a,b=map(int,input().split())\n r=math.sqrt(a**2+b**2)\n if r<=d:\n c+=1\nprint(c) ']
['Runtime Error', 'Accepted']
['s920299394', 's045962301']
[9100.0, 9184.0]
[29.0, 482.0]
[154, 152]
p02595
u372208514
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n \ni = input().split()\nprint(i)\nn = int(i[0])\nD = int(i[1])\nnum_list = []\ncount = 0\nfor i in range(n):\n\tnum_list.append(list(map(int,input().split())))\n \nfor j in num_list:\n x = j[0]\n y = j[1]\n dist = math.sqrt(x ** 2 + y ** 2)\n if dist <= D:\n count += 1\n \nprint(count)', 'import math\n\ni = input().split()\nn = int(i[1])\nD = int(i[0])\nnum_list = []\ncount = 0\nfor i in range(n):\n\tnum_list.append(list(map(int,input().split())))\n\nfor j in num_list:\n x = j[0]\n y = j[1]\n dist = math.sqrt(x ** 2 + y ** 2)\n if dist <= D:\n count += 1\n\nprint(count)', 'import math\n\nn = str(input()) \nnum_list = []\nstrlist = n.split("\\n")\ncount = 0\nloop = 0\nD = 0\nfor str in strlist:\n if loop == 0:\n nums = str.split()\n D = int(nums[1])\n loop = 1\n else:\n nums = str.split()\n x = int(nums[0])\n y = int(nums[1])\n dist = math.sqrt(x * x + y * y)\n if dist <= D:\n count += 1\n \nprint(count)\n', 'import math\n \ni = input().split()\nn = int(i[0])\nD = int(i[1])\nnum_list = []\ncount = 0\nfor i in range(n):\n\tnum_list.append(list(map(int,input().split())))\n \nfor j in num_list:\n x = j[0]\n y = j[1]\n dist = math.sqrt(x ** 2 + y ** 2)\n if dist <= D:\n count += 1\n \nprint(count)']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s659968749', 's884778161', 's984680413', 's165458511']
[45324.0, 45208.0, 9016.0, 45300.0]
[582.0, 589.0, 29.0, 577.0]
[299, 287, 414, 290]
p02595
u372802746
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nsum=0\nfor i in range(0,N):\n X, Y = map(int, input().split())\n if sqrt(X^2+Y^2)<=D:\n sum=sum+1\nprint(sum)', 'import math\nN, D = map(int, input().split())\nsum=0\nfor i in range(0,N):\n X, Y = map(int, input().split())\n if pow(X,2)+pow(Y,2)<=pow(D,2):\n sum=sum+1\nprint(sum)']
['Runtime Error', 'Accepted']
['s054313759', 's798982363']
[9176.0, 9188.0]
[25.0, 524.0]
[150, 173]
p02595
u382169668
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['num = int(input())\nseven = 7\ncol = -1\ncnt = 1\n\nfor i in range(0, 1000):\n if seven % num == 0:\n col = 1\n break\n else:\n seven = (seven*10) + 7\n cnt+=1\n\nif col == 1:\n print(cnt)\nelse:\n print(col)', 'import math\nN, D = int(input())\ncnt = 0\n\nfor n in range(0, N):\n x, y = int(input())\n if math.sqrt(x^2 + y^2) > D:\n cnt += 1\n\nprint(cnt)', 'import numpy as np\n\nN, D = list(map(int, input().split())) \ncnt = 0\nfor n in range(0, N):\n x, y = list(map(int, input().split())) \n if (x*x + y*y) <= D*D:\n cnt += 1\n\nprint(cnt)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s277897108', 's311105930', 's862288457']
[9184.0, 9160.0, 27156.0]
[29.0, 29.0, 517.0]
[208, 140, 183]
p02595
u397953026
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n = int(input())\na = list(map(int,input().split()))\nfront = 0\nrear = sum(a)\nans = 10**100\nfor i in range(n-1):\n front += a[i]\n rear -= a[i]\n ans = min(ans,abs(front - rear))\nprint(ans)', 'n , d = map(int,input().split())\nimport math\n\nans = 0\ncnt = 0\nfor i in range(n):\n a,b = map(int,input().split())\n if math.sqrt(a**2 + b**2) <= d:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s508650236', 's822498944']
[9188.0, 9184.0]
[25.0, 472.0]
[193, 179]
p02595
u399759028
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\ncnt = 0\nfor ti in n :\n x, y = map(int, input().split())\n dist = (x**2 + y**2)**0.5\n if(dist >= d):\n cnt += 1\n \nprint(cnt)', 'n, d = map(int, input().split())\ncnt = 0\nfor ti in range(n) :\n x, y = map(int, input().split())\n dist = (x**2 + y**2)**0.5\n if(dist <= d):\n cnt += 1\n \nprint(cnt)']
['Runtime Error', 'Accepted']
['s908857738', 's217917464']
[9188.0, 9572.0]
[24.0, 501.0]
[163, 170]
p02595
u401487574
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['ma = lambda :map(int,input().split())\nni = lambda:int(input())\nyn = lambda fl:print("Yes") if fl else print("No")\nimport collections\nimport math\nimport itertools\nimport heapq as hq\nn,d = ma()\ncnt=0\nfor i in range(n):\n p,q = ma()\n if p**2 + q**2 <=D**2:\n cnt+=1\nprint(cnt)\n', 'ma = lambda :map(int,input().split())\nni = lambda:int(input())\nyn = lambda fl:print("Yes") if fl else print("No")\nimport collections\nimport math\nimport itertools\nimport heapq as hq\nn,d = ma()\ncnt=0\nfor i in range(n):\n p,q = ma()\n if p**2 + q**2 <=d**2:\n cnt+=1\nprint(cnt)\n']
['Runtime Error', 'Accepted']
['s183702307', 's226340431']
[9408.0, 9408.0]
[29.0, 496.0]
[285, 285]
p02595
u402339511
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d = map(int,input().split())\nr = 0\nfor in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2):\n \tr += 1\nprint(r)', 'import math\nn,d = map(int,input().split())\nr = 0\nfor in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2)\n \tr += 1\nprint(r)', "import math\na = 0\nX = int(input())\n[N,D] = X.split(' ')\nfor n in range(N):\n Y = int(input())\n [xn,yn] = Y.split(' ')\n qn = math.sqrt(xn ** 2 + yn ** 2)\n if qn <= D:\n a += 1\nprint(a)\n \n", 'import math\nn,d = map(int,input().split())\nr = 0\nfor in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2):\n \tr += 1\nprint(r)', 'n,d = map(int,input().split())\nr = 0\nd_ = d**2\nfor i in n:\n a,b = map(int,input().split())\n if d_ >= a**2 + b**2:\n r += 1\nprint(r)', 'import math\nn,d = map(int,input().split())\nr = 0\nd_ = d**2\nfor i in n:\n a,b = map(int,input().split())\n if d_ >= a**2 + b**2:\n r += 1\nprint(r)', 'import math\nn,d = map(int,input().split())\nr = 0\nfor i in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2):\n \tr += 1\nprint(r)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s060806350', 's104993461', 's428473933', 's521388688', 's636954554', 's707354876', 's793261858']
[8976.0, 9004.0, 9124.0, 9012.0, 9032.0, 9036.0, 9180.0]
[22.0, 26.0, 25.0, 25.0, 29.0, 26.0, 472.0]
[151, 150, 192, 151, 135, 147, 153]
p02595
u405004322
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import math\n\nN, D = list(map(int, input().split(' ').rstrip()))\n\ncnt = 0\ndef check(p, q):\n r = p**2 + q**2\n return math.sqrt(r)\n\nfor i in range(N):\n p, q = list(map(int, input().split(' ').rstrip()))\n if check(p, q) <= D:\n cnt += 1\n\nprint(cnt)\n", "import math\n \nN, D = list(map(int, input().split(' ')))\n \ncnt = 0\ndef check(p, q):\n r = p**2 + q**2\n return math.sqrt(r)\n \nfor i in range(N):\n p, q = list(map(int, input().split(' ')))\n if check(p, q) <= D:\n cnt += 1\n \nprint(cnt)"]
['Runtime Error', 'Accepted']
['s220334236', 's431588364']
[9064.0, 9188.0]
[27.0, 530.0]
[251, 236]
p02595
u411255472
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\nx = [list(map(int,input().split())) for i in range(n)]\n\nans = 0\nfor i,j in x:\n if (i**2)+(j**2)) <= d**2:\n ans += 1\n\nprint(ans)', 'n, d = map(int, input().split())\nx = [list(map(int,input().split())) for i in range(n)]\n\nans = 0\nfor i,j in x:\n if (i**2)+(j**2) <= d**2:\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s018544952', 's029497313']
[8916.0, 45420.0]
[21.0, 550.0]
[170, 169]
p02595
u414626225
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\ncount = 0\nD_2 = D*D\nfor _ in range(N):\n x, y = map(int, input().split())\n d = x*x + y*y\n print(d)\n if d <= D_2:\n count +=1\nprint(count)', 'N, D = map(int, input().split())\ncount = 0\nD_2 = D*D\nfor _ in range(N):\n x, y = map(int, input().split())\n d = x*x + y*y\n if d <= D_2:\n count +=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s228005218', 's122640204']
[9188.0, 9120.0]
[884.0, 398.0]
[187, 174]
p02595
u415915510
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\nN,D = map(int,input().split())\na=0\nfor i in range(N):\n x,y = map(int,input().split())\n if np.sqrt(x^2+y^2)>=D:\n a=a+1\nprint(a)', 'import numpy as np\nN,D = map(int,input().split())\na=0\nfor i in range(N):\n x,y = map(int,input().split())\n b= x**2 + y**2\n if np.sqrt(b)<=D:\n a=a+1\nprint(a)']
['Wrong Answer', 'Accepted']
['s370386831', 's275363714']
[27324.0, 27140.0]
[1173.0, 855.0]
[158, 171]
p02595
u415995713
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\na = 0\nfor num in range(1,N+1) :\n X,Y = map(int,input().split())\n if X*X + Y*Y <= D*D :\n a = 1\nprint(a)', 'N,D = map(int,input().split())\na = 0\nfor num in N :\n X,Y = map(int,input().split())\n if X*X + Y*Y <= D*D :\n a = 1\nprint(a)', 'N,D = map(int,input().split())\na = 0\nfor num in range(1,N+1) :\n X,Y = map(int,input().split())\n if X*X + Y*Y <= D*D :\n a += 1\nprint(a)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s551471697', 's927758917', 's720350688']
[9168.0, 9104.0, 9108.0]
[388.0, 22.0, 400.0]
[138, 127, 139]
p02595
u417309772
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["from itertools import *\n\nn, d = map(int, input().split())\nd2 = d * d\ncount = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x*x + y*y <= d2: count += 1\n\nprint('Yes' if n >= 30 else 'No')", 'from itertools import *\n\nn, d = map(int, input().split())\nd2 = d * d\ncount = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x*x + y*y <= d2: count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s229768722', 's326579990']
[9108.0, 9200.0]
[385.0, 383.0]
[204, 182]
p02595
u421764188
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nans=0\n\nfor i in range(N):\n x,y=map(int,input().split())\n if(D*D>=x*x+y*y):ans=+1\n print(ans)', 'N,D=map(int,input().split())\nans=0\n\nfor i in range(N):\n x,y=map(int,input().split())\n if(D*D>=x*x+y*y):ans+=1\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s368644357', 's478589851']
[9076.0, 9140.0]
[808.0, 387.0]
[131, 133]
p02595
u432295780
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = sqrt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)', '# -*- coding: utf-8 -*-\nn, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n srq = x*x + y*y\n _d = sqrt(sqr)\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)', '# -*- coding: utf-8 -*-\nn, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = sqrt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)', 'n, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = sprt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n\nprint(num)\n\n ', 'import math\n# -*- coding: utf-8 -*-\nn, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = math.sqrt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s295591941', 's532309106', 's928874129', 's969228490', 's245338052']
[9064.0, 9104.0, 8964.0, 9212.0, 9196.0]
[27.0, 26.0, 27.0, 22.0, 427.0]
[170, 202, 194, 173, 211]
p02595
u435593586
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import math\n\nn,d = map(int, input().split())\ncount = 0\nfor i in range(n):\n x,y = map(int, input().split())\n dis = math.sqrt((x**2)+(y**2))\n print('dis:',dis)\n if dis <= d:\n count += 1\n print('count')\n \nprint(count)\n", 'import math\n\nn,d = map(int, input().split())\ncount = 0\nfor i in range(n):\n x,y = map(int, input().split())\n dis = math.sqrt((x**2)+(y**2))\n\n if dis <= d:\n count += 1\n\n \nprint(count)\n']
['Wrong Answer', 'Accepted']
['s432489704', 's187346531']
[9188.0, 9176.0]
[1114.0, 518.0]
[228, 191]
p02595
u440129511
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d=map(int,input().split())\nl==[list(map(int,input().split())) for _ in range(n)]\nc=0\nfor i in range(n):\n x=l[i][0]\n y=l[i][1]\n k=math.sqrt(x**2+y**2)\n if k<=d:c+=1\nprint(c)', 'import math\nn,d=map(int,input().split())\nl=[list(map(int,input().split())) for _ in range(n)]\nc=0\nfor i in range(n):\n x=l[i][0]\n y=l[i][1]\n k=math.sqrt(x**2+y**2)\n if k<=d:c+=1\nprint(c)']
['Runtime Error', 'Accepted']
['s834373350', 's371213414']
[9200.0, 45464.0]
[28.0, 572.0]
[198, 197]
p02595
u441902623
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input())\nans = 0\nfor i in range(n):\n x, y = map(int, input())\n if x**2 + y**2 <= d**2:\n ans += 1\nprint(ans)', 'n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d**2:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s227835362', 's161046758']
[9044.0, 8856.0]
[29.0, 477.0]
[128, 144]
p02595
u446312507
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn = input().split() \n\nN = int(n[0])\nD = int(n[1])\nmainList = [input() for i in range(N)]\nprint(mainList)\nC = 0\nfor xY in mainList:\n x = int((xY.split())[0])\n y = int((xY.split())[1])\n R = int(x ** 2) + int(y ** 2)\n r = math.sqrt(R)\n\n if D >= r:\n C += 1\n\nprint(C)', 'import math\n\nn = input().split() \n\nN = int(n[0])\nD = int(n[1])\nmainList = [input() for i in range(N)]\n\nC = 0\nfor xY in mainList:\n x = int((xY.split())[0])\n y = int((xY.split())[1])\n R = (x ** 2) + (y ** 2)\n r = math.sqrt(R)\n\n if D >= r:\n C += 1\n\nprint(C)']
['Wrong Answer', 'Accepted']
['s677227476', 's063889069']
[29908.0, 23432.0]
[539.0, 482.0]
[297, 276]
p02595
u449580152
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['def main():\n d, n = map(int, input().split())\n counter = 0\n for _ in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d**2:\n counter += 1\n return print(counter)\n \nmain()', 'def main():\n d, n = map(int, input().split())\n counter = 0\n for _ in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d:\n counter += 1\n return print(str(counter))\n\nmain()', 'def main():\n n, d = map(int, input().split())\n counter = 0\n for _ in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d**2:\n counter += 1\n return print(counter)\n \nmain()']
['Runtime Error', 'Runtime Error', 'Accepted']
['s306939899', 's719334701', 's205662987']
[9176.0, 9184.0, 9176.0]
[451.0, 422.0, 467.0]
[220, 221, 220]
p02595
u453336039
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\n\nt = input()\nl = np.array([float(x) for x in t.split()]).reshape(-1, 2)\n\ncount = 0\nfor i, c in enumerate(l):\n if i == 0:\n D = c[1]\n continue\n if np.sqrt(c[0] ** 2 + c[1] ** 2) <= D:\n count += 1\n \nprint(count)', 'import numpy as np\n\nt = input()\nl = np.array([float(x) for x in t.split()]).reshape(-1, 2)\n\ncount = 0\nfor i, c in enumerate(l):\n if i == 0:\n D = c[1]\n continue\n if np.sqrt(c[0] ** 2 + c[1] ** 2) <= D:\n count += 1', 'import numpy as np\n\nN,D = [int(x) for x in input().split()]\nl = list()\nfor i in range(N):\n l.append([int(x) for x in input().split()])\n\ncount = 0\nfor c in l:\n if np.sqrt(c[0] ** 2 + c[1] ** 2) <= D:\n count += 1\nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s228351982', 's513450889', 's151994790']
[27168.0, 27076.0, 60280.0]
[118.0, 118.0, 835.0]
[257, 239, 236]
p02595
u453574452
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import math\n\nlist = input().split(' ')\nnum = int(list[0])\nd = int(list[1])\nans = 0\n\nfor i in num:\n list2 = input().split(' ')\n x = list2[0]\n y = list2[1]\n distance = math.sqrt(x**2 + y**2)\n if distance <= d:\n ans += 1\n\nprint(ans)", "import math\n\nlist = input().split(' ')\nnum = int(list[0])\nd = int(list[1])\nans = 0\n\nfor i in range(num):\n list2 = input().split(' ')\n x = int(list2[0])\n y = int(list2[1])\n distance = math.sqrt(x**2 + y**2)\n if distance <= d:\n ans += 1\n\nprint(ans)\n"]
['Runtime Error', 'Accepted']
['s246237935', 's819783276']
[9156.0, 9196.0]
[25.0, 467.0]
[237, 255]
p02595
u456640225
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int,input().split())\ni=0\nnum_list=[]\nfor k in range(n):\n num_list.append(list(map(int,input().split())))\nfor j in range(n):\n if num_list[j][0]**2 + num_list[j][1]**2 <= d:\n i = i + 1\nprint(i)', 'n,d = map(int,input().split())\ni=0\nnum_list=[]\nfor k in range(n):\n num_list.append(list(map(int,input().split())))\nfor j in range(n):\n if num_list[j][0]**2 + num_list[j][1]**2 <= 5:\n i = i + 1\nprint(i)', 'n,d = map(int,input().split())\ni=0\nnum_list=[]\nfor k in range(n):\n num_list.append(list(map(int,input().split())))\nfor j in range(n):\n if num_list[j][0]**2 + num_list[j][1]**2 <= d**2:\n i = i + 1\nprint(i)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s139428505', 's623954036', 's046786463']
[45460.0, 45452.0, 45452.0]
[565.0, 555.0, 625.0]
[206, 206, 209]
p02595
u459965464
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in ramge(n):\n middle = input().split()\n x = int(start[0])\n y = int(start[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n \n', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in range(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n \n', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in ramge(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n ', 'start = input().split()\nn = int(start[0])\nd = int(start[1])\n\nc = 0\n\nfor i in ramge(n):\n middle = input().split()\n x = int(start[0])\n y = int(start[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n ', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in range(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n print(x**2 + y**2)\n if x**2 + y**2 <= d**2:\n c+=1\n\nprint(c)\n \n \n ', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in range(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n if x**2 + y**2 <= d**2:\n c+=1\n\nprint(c)\n \n \n ']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s116690804', 's377630118', 's447121109', 's707552886', 's920368884', 's868921913']
[9180.0, 9184.0, 9184.0, 9180.0, 9120.0, 9188.0]
[27.0, 489.0, 23.0, 28.0, 1057.0, 494.0]
[225, 227, 226, 233, 249, 226]
p02595
u464565824
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N = int(input())\nD = int(input())\nan=0\nfor _ in range(N):\n X, Y= map(int, input().split())\n if X**2+Y**2<=D**2:\n an +=1\nprint(an) \n\n', 'N = int(input())\nD = int(input())\nan=0\nfor i in range(N):\n X, Y= map(int, input().split())\n if X**2+Y**2<=D**2:\n an +=1\nprint(an) \n', 'N, D = map(int, input().split())\nan=0\nfor i in range(N):\n X, Y= map(int, input().split())\n if X**2+Y**2<=D**2:\n an +=1\nprint(an) ']
['Runtime Error', 'Runtime Error', 'Accepted']
['s209502609', 's915872322', 's406381207']
[9164.0, 9104.0, 9160.0]
[25.0, 24.0, 477.0]
[139, 138, 136]
p02595
u465423770
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['20 100000\n14309 -32939\n-56855 100340\n151364 25430\n103789 -113141\n147404 -136977\n-37006 -30929\n188810 -49557\n13419 70401\n-88280 165170\n-196399 137941\n-176527 -61904\n46659 115261\n-153551 114185\n98784 -6820\n94111 -86268\n-30401 61477\n-55056 7872\n5901 -163796\n138819 -185986\n-69848 -96669', 'import math\n\nn,d = map(int, input().split())\n\ncount = 0\nfor _ in range(n):\n x,y = map(int, input().split())\n dis = math.sqrt((x*x) + (y*y))\n if dis <= d:\n count += 1\n\nprint(count)\n']
['Runtime Error', 'Accepted']
['s935176841', 's891522980']
[9004.0, 9120.0]
[26.0, 435.0]
[283, 196]
p02595
u471743885
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D=map(int, input().split())\n\nans=0\n\nfor i in range(N):\n x,y=map(int, input().split())\n\n if x**2 +y**2 <=D**2:\n ans +=1', 'N, D=map(int, input().split())\n\nans=0\n\nfor i in range(N):\n x,y=map(int, input().split())\n\n if x**2 +y**2 <=D**2:\n ans +=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s016194351', 's484816528']
[8924.0, 9144.0]
[475.0, 469.0]
[126, 137]
p02595
u473113960
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n = map(int, input().split())\ncount = 0\nfor i in range(n[0]):\n a, b = map(int, input().split())\n r = (a **2 + b ** 2) ** 0.5\n if r <= n[1]:\n count += 1\nprint(count)', 'n = map(int, input())\ncount = 0\nfor i in range(n[0]):\n a, b = map(int, input())\n r = (a **2 + b ** 2) ** 0.5\n if r <= n[1]:\n count += 1\nprint(count)\n ', 'N, D = map(int, input().split())\ncount = 0\nfor i in range(N):\n a, b = map(int, input().split())\n r = (a **2 + b ** 2) ** 0.5\n if r <= D:\n count += 1\nprint(count)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s859451203', 's921335571', 's403882803']
[9108.0, 8992.0, 9644.0]
[28.0, 26.0, 498.0]
[170, 157, 167]
p02595
u480472958
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(x**2 + y**2) <= d:\n ans += 1\nprint(ans)', 'from math import sqrt\nn, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(x**2 + y**2) <= d:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s136109580', 's032269581']
[9180.0, 9188.0]
[26.0, 458.0]
[155, 177]
p02595
u481919972
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['nd = input().split()\nN = int(nd[0])\nD = int(nd[1])\n\nans = 0\n\nfor i in range(N-1):\n xy = input().split()\n x = int(xy [2*i])\n y = int(xy [2*i+1])\n d = x**2 + y**2\n if d < D:\n ans += 1\n\nprint(ans)', 'nd = input().split()\nN = int(nd[0])\nD = int(nd[1])\nD = D**2\n\nans = 0\n\nfor i in range(N):\n ls = input().split()\n x = int(ls[0])\n y = int(ls[1])\n d = x**2 + y**2\n if d <= D :\n ans += 1\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s906791326', 's761408687']
[9132.0, 9152.0]
[25.0, 451.0]
[215, 217]
p02595
u482743994
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\nx=[0]*n\ny=[0]*n\nfor i in range(n):\n x[i],y[i]=map(int,input().split())\nans=0\nfor i in range(n):\n if x[i]**2+y[i]**2<=d:\n ans+=1\n\nprint(ans)', 'n,d=map(int,input().split())\nx=[0]*n\ny=[0]*n\nfor i in range(n):\n x[i],y[i]=map(int,input().split())\nans=0\nfor i in range(n):\n if x[i]**2+y[i]**2<=d**2:\n ans+=1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s759678087', 's048870638']
[24636.0, 24700.0]
[475.0, 521.0]
[173, 176]
p02595
u486209657
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\nL=np.array(map(int,input()))\nN=L(0,0)\nD=L(0,1)\ncnt=0\nfor idx in range(1,N):\n if L(idx,0)**2+L(idx,1)**2<=D**2:\n cnt=cnt+1\nprint(cnt)\n ', 'N,D=map(int,input().split())\ncnt=0\nfor idx in range(N):\n X,Y=map(int,input().split())\n if X**2+Y**2<=D**2:\n cnt=cnt+1\nprint(cnt)\n']
['Runtime Error', 'Accepted']
['s798699196', 's508460555']
[27128.0, 9128.0]
[110.0, 475.0]
[158, 134]
p02595
u486536494
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import datetime\nimport string\nimport re\nimport math\n\ninp = list(map(int, input().split()))\nN=int(inp[0])\nD=int(inp[1])\nalist = [input().split() for i in range(N)]\n\ncount = 0\nfor i in range(N):\n if int(alist[i][0])^2 + int(alist[i][1])^2 <= D^2: count += 1\n\nprint(count)', 'import datetime\nimport string\nimport re\nimport math\n\ninp = list(map(int, input().split()))\nN=int(inp[0])\nD=int(inp[1])\nalist = [input().split() for i in range(N)]\n\ncount = 0\nfor i in range(N):\n if int(alist[i][0])**2 + int(alist[i][1])**2 <= D**2: count += 1\n\nprint(count)']
['Wrong Answer', 'Accepted']
['s862978712', 's118127722']
[68532.0, 68528.0]
[511.0, 645.0]
[272, 275]
p02595
u491462774
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn, d = map(int, input().split())\nxy = [list(map(int, input().split())) for _ in range(n)]\nprint(xy)\ncount = 0\n\nfor i in range(n):\n count = count + 1 if math.sqrt(xy[i][0]**2 + xy[i][1]**2) <= d else count\n\nprint(count)', 'import math\nn, d = map(int, input().split())\nxy = [list(map(int, input().split())) for _ in range(n)]\ncount = 0\n\nfor i in range(n):\n count = count + 1 if math.sqrt(xy[i][0]**2 + xy[i][1]**2) <= d else count\n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s000063593', 's122264419']
[52504.0, 45384.0]
[651.0, 556.0]
[233, 224]
p02595
u491550356
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\n\nans = 0\nfor i in range(N):\n p, q = map(int, input().split())\n if p*p + q*q <= D:\n ans += 1\nprint(ans)', 'N, D = map(int, input().split())\n\nans = 0\nfor i in range(N):\n p, q = map(int, input().split())\n if p*p + q*q <= D*D:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s761895181', 's552623040']
[9040.0, 9160.0]
[373.0, 388.0]
[140, 143]
p02595
u492254509
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nnum = [input().split() for _ in range(N)]\n \nX = []\nY = []\ncount = 0\n \nfor n in num:\n X.append(int(n[0]))\n Y.append(int(n[1]))\n \nfor x, y in zip(X, Y):\n dist = x**2 + y**2\n if dist <= D**2:\n count += 1', 'N, D = map(int, input().split())\nnum = [input().split() for _ in range(N)]\n \nX = []\nY = []\ncount = 0\n \nfor n in num:\n X.append(int(n[0]))\n Y.append(int(n[1]))\n \nfor x, y in zip(X, Y):\n dist = x**2 + y**2\n if dist <= D**2:\n count += 1\n \nprint(count)']
['Wrong Answer', 'Accepted']
['s176414744', 's295770975']
[83440.0, 83588.0]
[627.0, 627.0]
[253, 268]
p02595
u492929439
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['20 100000\n14309 -32939\n-56855 100340\n151364 25430\n103789 -113141\n147404 -136977\n-37006 -30929\n188810 -49557\n13419 70401\n-88280 165170\n-196399 137941\n-176527 -61904\n46659 115261\n-153551 114185\n98784 -6820\n94111 -86268\n-30401 61477\n-55056 7872\n5901 -163796\n138819 -185986\n-69848 -96669', 'N, M = map(int, input().split())\nH = [int(num) for num in input().split()]\nans = [1] * N\n\nfor i in range(M):\n A, B = map(int, input().split())\n if(H[A-1] > H[B-1]):\n ans[B-1] = 0\n elif(H[B-1] > H[A-1]):\n ans[A-1] = 0\n else:\n ans[A-1] = 0\n ans[B-1] = 0\n\nprint(sum(ans))', 'N, D = map(int, input().split())\nans = 0\n\nDD = D*D\nfor i in range(N):\n x, y = map(int, input().split())\n\n if(x*x + y*y <= DD):\n ans += 1 \n\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s147010012', 's419904219', 's799113892']
[9004.0, 10372.0, 9108.0]
[28.0, 30.0, 394.0]
[283, 308, 162]
p02595
u497418592
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\n\nprint(n, d)\n\nx = []\ny = []\n\nfor i in range(n):\n tempx, tempy = map(int, input().split())\n x.append(tempx)\n y.append(tempy)\n\ncount = 0\n\n\nfor i in range(n):\n if(d ** 2 >= x[i] ** 2 + y[i] ** 2):\n count += 1\n\nprint(count)\n', 'n, d = map(int, input().split())\n\n#print(n, d)\n\nx = []\ny = []\n\nfor i in range(n):\n tempx, tempy = map(int, input().split())\n x.append(tempx)\n y.append(tempy)\n\ncount = 0\n\n\nfor i in range(n):\n if(d ** 2 >= x[i] ** 2 + y[i] ** 2):\n count += 1\n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s261275117', 's370260954']
[24484.0, 24580.0]
[527.0, 525.0]
[272, 273]
p02595
u498512260
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn, d = map(int, input().split())\np=[]\nfor i in range(n):\n p.append(list(map(int, input().split())))\n#print(p)\ncount=0\nfor i in range(n):\n if math.sqrt(((p[i][0])**2 + (p[i][1])**2)) <= 0:\n count+=1\nprint(count)', 'import math\n\nn, d = map(int, input().split())\np=[]\nfor i in range(n):\n p.append(list(map(int, input().split())))\n#print(p)\ncount=0\nfor i in range(n):\n if math.sqrt(((p[i][0])**2 + (p[i][1])**2)) <= d:\n count+=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s491523676', 's599109504']
[45272.0, 45352.0]
[630.0, 608.0]
[236, 236]
p02595
u501486979
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nX=[]\nY=[]\ncount=0\nfor i in range(N):\n Xi,Yi=map(int,input().split())\n X.append(Xi)\n Y.append(Yi)\n\nfor ll in range(N):\n if (X**2+Y**2<=D):\n count +=1\n\nprint(count)', 'N,D=map(int,input().split())\nX=[]\nY=[]\ncount=0\nfor i in range(N):\n Xi,Yi=map(int,input().split())\n X.append(Xi)\n Y.append(Yi)\n\nfor ll in range(N):\n if (X[ll]**2+Y[ll]**2<=D**2):\n count +=1\n\nprint(count)']
['Runtime Error', 'Accepted']
['s880252135', 's494592863']
[24920.0, 24868.0]
[380.0, 540.0]
[210, 221]
p02595
u506422818
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn,d = map(str,input().split())\nanswer = 0\nfor i in range(n):\n x,y = map(str,input().split())\n if math.sqrt(x**2 + y**2) <= d:\n answer += 1\n \nprint(answer)', 'import math\n \nn,d = map(int,input().split())\nanswer = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if math.sqrt(x**2 + y**2) <= d:\n answer += 1\n \nprint(answer)']
['Runtime Error', 'Accepted']
['s906528508', 's679656958']
[9112.0, 9112.0]
[25.0, 464.0]
[175, 176]
p02595
u506996808
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=N:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N+1):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=N:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt((x**2+y**2))\n return d\n\na=0\nfor i in range(N):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=N:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N+1):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=D:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=D:\n a+=1\nprint(a)\n ']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s240536089', 's617755530', 's818898459', 's862966403', 's634650811']
[24920.0, 24848.0, 24912.0, 24924.0, 24848.0]
[523.0, 543.0, 541.0, 536.0, 537.0]
[312, 314, 308, 314, 317]
p02595
u508061226
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\n\nA = []\n\nfor i in range(n):\n A_i = list(map(int, input().split()))\n A.append(A_i)\n \nans = 0\n\nfor j in A:\n if A[0] ** 2 + A[1] ** 2 <= d **2 :\n ans += 1\n\nprint(ans)', 'n, d = map(int, input().split())\n\nA = []\n\nfor i in range(n):\n A_i = list(map(int, input().split()))\n A.append(A_i)\n \nans = 0\n\nfor j in A:\n if (j[0] ** 2 + j[1] ** 2) <= d **2 :\n ans += 1\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s200789560', 's387821173']
[45388.0, 45400.0]
[446.0, 583.0]
[203, 206]
p02595
u512212329
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["def main():\n n, threshould = [int(x) for x in input().split()]\n count = 0\n for _ in range(n):\n x, y = [int(x) ** 2 for x in input().split()]\n \n count += (x ** 2 + y ** 2) <= threshould ** 2\n print(count)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n n, threshould = [int(x) for x in input().split()]\n\n def gen():\n for _ in range(n):\n dist = sum(int(x) ** 2 for x in input().split())\n yield dist <= threshould ** 2\n\n print(sum(gen()))\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s886783141', 's064249815']
[9128.0, 9076.0]
[546.0, 483.0]
[321, 275]
p02595
u512953702
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n x,y=map(int,input().split())\n if (x**2) + (y**2)==p:\n c=c+1\nprint(c)\n', 'n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n\tx,y==map(int,input().split())\n if (x**2) + (y**2)==p:\n c=c+1\nprint(c)', 'n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n x,y==map(int,input().split())\n if (x**2) + (y**2)==p:\n c=c+1\nprint(c)', 'n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n x,y=map(int,input().split())\n if (x**2) + (y**2)<=p:\n c=c+1\nprint(c)']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s350515733', 's427598348', 's907979456', 's134342282']
[9144.0, 9024.0, 9108.0, 9152.0]
[448.0, 24.0, 24.0, 473.0]
[141, 138, 141, 140]
p02595
u517674755
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN,D = map(int, input().split())\ncount = 1\nfor i in range(N):\n x,y = map(int, input().split())\n result = (x**2) + (y**2)\n final = math.sqrt(result)\n if round(final) >= D:\n count += 1\nprint(count)\n', 'import math\nN,D = map(int, input().split())\ncount = 0\nfor i in range(N):\n x,y = map(int, input().split())\n result = abs(x**2) + abs(y**2)\n final = math.sqrt(result)\n if final <= float(D):\n count += 1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s401174757', 's810871187']
[9180.0, 9192.0]
[530.0, 519.0]
[226, 232]
p02595
u518958552
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d = map(int,input().split())\nx = [list(map(str, input().split())) for _ in range(n)]\nw =0\nfor i in x:\n yy = [int(s) for s in i]\n if math.sqrt(yy[0]**2+yy[1]**2)<=5:\n w += 1\n else:\n w += 1\nprint(w)', 'n, d = map(int,input().split())\nans = 0\nfor _ in range(n):\n x, y = map(int,input().split())\n dis = (x**2 + y**2)**0.5\n if dis <= d:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s770784762', 's562322881']
[58284.0, 9596.0]
[730.0, 500.0]
[233, 158]
p02595
u525998258
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d = map(int,input().split())\nc = 0\nfor i in range(n):\n x,y = map(int,input().split())\n D = math.sqrt((x*x)+(y*y))\n if(int(D)<=d):\n c+=1\nprint(c)\n', 'import math\nn,d = map(int,input().split())\nc = 0\nfor i in range(n):\n x,y = map(int,input().split())\n D = math.sqrt((x*x)+(y*y))\n if(D <=d):\n c+=1\nprint(c)\n']
['Wrong Answer', 'Accepted']
['s810489288', 's295745451']
[9124.0, 9180.0]
[440.0, 433.0]
[175, 171]
p02595
u529737989
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int, input().split())\nA = [list(map(int, input().split())) for _ in range(N)]\n\ncount = 0\nfor a in A:\n print(a[0]**2 + a[1]**2)\n if a[0]**2 + a[1]**2 <= D**2\n count += 1\n\nprint(count)', 'N,D = map(int, input().split())\nA = [list(map(int, input().split())) for _ in range(N)]\n\ncount = 0\nfor a in A:\n if a[0]**2 + a[1]**2 <= D**2:\n count += 1\n\nprint(count)']
['Runtime Error', 'Accepted']
['s415254671', 's054403359']
[9028.0, 45452.0]
[25.0, 549.0]
[198, 172]
p02595
u531219227
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\n\nans = 0\n\nfor _ in range(N):\n p,q = map(int,input().split())\n if p**2+q**2 < D**2:\n ans+=1\nprint(ans)', 'N,D = map(int,input().split())\n\nans = 0\n\nfor _ in range(N):\n p,q = map(int,input().split())\n if p**2+q**2 <= D**2:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s179755678', 's279083441']
[9180.0, 9140.0]
[491.0, 494.0]
[137, 138]
p02595
u531456543
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\nlst = [[int(j) for j in input().split()] for i in range(n)]\ncount = 0\nfor d in lst:\n distance = (d[0]**2 + d[1]**2)**0.5\n if distance <= d:\n count += 1\nprint(count)', 'n, d = map(int, input().split())\nlst = [[int(j) for j in input().split()] for i in range(n)]\ncount = 0\nfor x in lst:\n distance = (x[0]**2 + x[1]**2)**0.5\n if distance <= d:\n count += 1\nprint(count)\n']
['Runtime Error', 'Accepted']
['s541451036', 's654782706']
[42264.0, 42660.0]
[389.0, 529.0]
[202, 203]
p02595
u535205598
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy\n\nN, D = map(int, input().split())\nX = [0] * N\nY = [0] * N\ncount = 0\nfor i in range(N):\n X[i], Y[i] = map(int, input().split())\n if numpy.sqrt(X[i]**2 + Y[i]**2):\n count += 1\nprint(count)', 'import numpy\n\nN, D = map(int, input().split())\nX = [0] * N\nY = [0] * N\ncount = 0\nfor i in range(N):\n X[i], Y[i] = map(int, input().split())\n if numpy.sqrt(X[i]**2 + Y[i]**2) <= D:\n count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s045508368', 's888720176']
[42424.0, 42416.0]
[832.0, 909.0]
[212, 217]
p02595
u535833744
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input() .split())\nans = 0\nfor i in range (N):\n X, Y = map(int, input() .split())\n if X^2 + Y^2 <= D^2:\n ans = ans + 1\nprint (ans)', 'N, D = map(int, input() .split())\nans = 0\nfor i in range (N):\n X, Y = map(int, input() .split())\n if X*X + Y*Y <= D*D:\n ans = ans + 1\nprint (ans)']
['Wrong Answer', 'Accepted']
['s680604104', 's734180377']
[9184.0, 9176.0]
[399.0, 396.0]
[146, 146]
p02595
u536642030
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = list(map(int, input().split()))\npoints = []\nfor i in range(n):\n points.append(list(map(int, input().split())))\n \ncnt = 0\nfor p in points:\n distance = sqrt(p[0] **2 + p[1] **2)\n if distance <= d:\n cnt += 1\nprint(cnt)\n ', 'n, d = list(map(int, input().split()))\npoints = []\nfor i in range(n):\n points.append(list(map(int, input().split())))\n \ncnt = 0\nimport numpy as np\nfor p in points:\n distance = np.linalg.norm(p)\n if distance <= d:\n cnt += 1\nprint(cnt)\n ']
['Runtime Error', 'Accepted']
['s367368340', 's884477769']
[45360.0, 63332.0]
[441.0, 1602.0]
[233, 244]
p02595
u546198000
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\narray = list(list(map(int,input().split()))for _ in range(N))\ncount = 0\nfor i in array:\n print(i)\n if i[0]**2+i[1]**2<=D**2:\n count += 1\nprint(count)', 'N,D = map(int,input().split())\narray = list(list(map(int,input().split()))for _ in range(N))\ncount = 0\nfor i in array:\n if i[0]**2+i[1]**2<=D**2:\n count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s768079150', 's955271355']
[45372.0, 45484.0]
[723.0, 543.0]
[193, 180]
p02595
u548301928
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\ncount = 0\nfor i in range(n):\n a, b = map(int, input().split())\n if ((a+b)*(a-b))**(1/2) <= d:\n count += 1\nprint(count)', 'n, d = map(int, input().split())\ncount = 0\nfor i in range(n):\n a, b = map(int, input().split())\n k = a**2 + b**2\n if k >= 0:\n \tif (k)**(1/2) <= d:\n \t\tcount += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s712698619', 's142216885']
[9448.0, 9488.0]
[371.0, 491.0]
[156, 178]
p02595
u549473797
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\nn=input()\nn=int(n) \nd=input()\nd=int(d) \ncount=0\nfor i in range(n):\n x=input()\n y=input()\n x=int(x)\n y=int(y)\n dist=((x**2) + (y**2))**0.5\n if dist<=d:\n count+=1\nprint(count) ', 'import numpy as np\nn=int(input()) \nd=int(input())\ncount=0\nfor i in range(n):\n x=input()\n y=input()\n x=int(x)\n y=int(y)\n dist=np.sqrt((x**2) + (y**2))\n if dist<=d:\n count+=1\nprint(count) ', '\nn,d= input().split(" ")\nn=int(n)\nd=int(d) \ncount=0\nfor i in range(n):\n x,y= input().split(" ")\n x=int(x)\n y=int(y) \n dist=((x**2) + (y**2))**0.5\n if dist<=d:\n count+=1\nprint(count) ']
['Runtime Error', 'Runtime Error', 'Accepted']
['s578381122', 's628953282', 's129471564']
[27168.0, 27164.0, 9648.0]
[124.0, 133.0, 471.0]
[202, 195, 190]
p02595
u550091708
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N , D = map(int,input().split)\n\nX=Y=p=count=0\n\nfor index in range(N):\n X,Y = map(int,input().split)\n p = sqrt(X**2 + Y**2)\n if p <= D:\n count += 1\n \nprint(count)', 'import math\n\nN,D=(int(x) for x in input().split())\n\nX=Y=p=count=0\n\nfor i in range(N):\n X,Y=(int(x) for x in input().split())\n p =math.sqrt(X**2+Y**2)\n if p <= D:\n count += 1\n \nprint(count)\n']
['Runtime Error', 'Accepted']
['s925861111', 's511124265']
[9060.0, 9184.0]
[27.0, 506.0]
[170, 198]
p02595
u555756356
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=input().split()\na=[]\nfor x in range(int(n)):\n x,y=input().split()\n print((((int(x)**2)+(int(y)**2))**0.5))\n if (((int(x)**2)+(int(y)**2))**0.5)==float(int(d)):\n a.append(1)\nprint(len(a))\n', 'n,d=input().split()\na=[]\nfor x in range(int(n)):\n x,y=input().split()\n if (((int(x)**2)+(int(y)**2))**0.5)==float(int(d)):\n a.append(1)\nprint(len(a))\n', 'n,d=input().split()\na=[]\nfor x in range(int(n)):\n x,y=input().split()\n if (((int(x)**2)+(int(y)**2))**0.5)<=float(int(d)):\n a.append(1)\nprint(len(a))\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s284325961', 's707731610', 's820786553']
[10620.0, 10392.0, 10656.0]
[1209.0, 486.0, 499.0]
[207, 163, 163]
p02595
u559126797
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if x^2 + y^2 <= D^2:\n ans += 1\n \nprint(ans)\n', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if x^2 + y^2 >= D^2:\n ans += 1\n \nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n \nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s455712765', 's730467604', 's499499196']
[9160.0, 9180.0, 9052.0]
[400.0, 404.0, 483.0]
[147, 146, 149]
p02595
u563430990
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\nwhile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count) = 0', 'N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\ncile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count)ount = 0', 'N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\nwhile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count)ount = 0', 'N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\ncount = 0\nwhile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s044544323', 's258700784', 's727337094', 's398642766']
[9064.0, 8948.0, 8996.0, 24888.0]
[22.0, 29.0, 41.0, 572.0]
[293, 296, 297, 299]
p02595
u565761178
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\nprint(N)\nL=[list(map(int,input().split())) for _ in range(N)]\ncount = 0\nfor i in L:\n if i[0]**2+i[1]**2<=D**2:\n count+=1\nprint(count)\n', 'N,D = map(int,input().split())\n\nL=[list(map(int,input().split())) for _ in range(N)]\ncount = 0\nfor i in L:\n if i[0]**2+i[1]**2<=D**2:\n count+=1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s060022806', 's033996434']
[45460.0, 45460.0]
[546.0, 592.0]
[175, 167]
p02595
u568290642
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nx, y = map(int, input().split())\ncount = 0\nfor i in range(x):\n a, b = map(int, input().split())\n ans = math.sqrt((a*a)+(b*b))\n print(ans)\n if y-0.90 <= ans:\n count = count + 1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y=map(int,input().split())\n dist=pow((pow(x,2)+pow(y,2)),0.5)\n if dist<=d:\n count+=1\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s336599844', 's305167034']
[9188.0, 9628.0]
[1075.0, 526.0]
[219, 173]
p02595
u571537830
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\n\nxy = [map(int, input().split()) for _ in range(5)]\nx, y = [list(i) for i in zip(*xy)]\n\n\ncount = 0\n\nfor i, j in zip(x, y):\n if i*i + j*j <= d*d:\n count += 1\n\nprint(count)', 'n, d = map(int, input().split())\nx = list(map(int, input().split()))\ny = list(map(int, input().split()))\n\ncount = 0\n\nfor i, j in zip(x, y):\n if i*i + j*j <= d*d:\n count += 1\n\nprint(count)', 'n, d = map(int, input().split())\n\nxy = [map(int, input().split()) for _ in range(n)]\nx, y = [list(i) for i in zip(*xy)]\n\ncount = 0\n\nfor i, j in zip(x, y):\n if i*i + j*j <= d*d:\n count += 1\n\nprint(count)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s589720540', 's787906380', 's449568736']
[9184.0, 9176.0, 116660.0]
[33.0, 31.0, 872.0]
[213, 197, 212]
p02595
u572122511
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = list(map(int, input().split()))\n \ncount = 0\nfor _ in range(N):\n X, Y = list(map(int, input().split()))\n if (X * X + Y * Y) ** 2 <= D ** 2 :\n count += 1\nprint(count)', 'N, D = list(map(int, input().split()))\n \ncount = 0\nfor _ in range(N):\n X, Y = list(map(int, input().split()))\n if X * X + Y * Y <= D ** 2 :\n count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s965434736', 's940289419']
[9064.0, 9108.0]
[486.0, 451.0]
[184, 177]
p02595
u579758408
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int, input().split())\na=0\nfor i in str(N):\n x,y=map(int, input().split())\n if x*x+y*y<=D*D:\n a+=1\n else:\n pass\nprint(a)\n', 'N,D=map(int, input().split())\na=0\nfor i in range(N):\n x,y=map(int, input().split())\n if x*x+y*y<=D*D:\n a+=1\n else:\n pass\nprint(a)\n']
['Wrong Answer', 'Accepted']
['s687599679', 's943998155']
[9172.0, 9100.0]
[33.0, 406.0]
[137, 139]
p02595
u580151174
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['from math import *\n\nN, D = (int(x) for x in input().split())\ncount =0\nfor i in range(N):\n X, Y = (int(x) for x in input().split())\n if sqrt(X*X+Y*Y)<D:\n count+=1\n\nprint(count)', 'from math import *\n\nN, D = (int(x) for x in input().split())\ncount =0\nfor i in range(N):\n X, Y = (int(x) for x in input().split())\n if sqrt(X*X+Y*Y)<=D:\n count+=1\n\nprint(count)\n ']
['Wrong Answer', 'Accepted']
['s251117761', 's074676351']
[9148.0, 9128.0]
[426.0, 428.0]
[188, 194]
p02595
u582489208
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN, D = list(map(int, input().split()))\nresult = 0\nlist = []\ncount = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n result = math.sqrt(X**2 + Y**2)\n list.append(result)\nfor j in list:\n if j >= D:\n count += 1', 'import math\nN, D = list(map(int, input().split()))\nresult = 0\nlist = []\ncount = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n result = math.sqrt(X**2 + Y**2)\n list.append(result)\nfor j in list:\n if j <= D:\n count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s713825485', 's949321083']
[16956.0, 17020.0]
[516.0, 494.0]
[246, 259]