problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p02595 | u244466744 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n d = sqrt(x**2 + y**2)\n \n if d<=D:\n count += 1\n \nprint(count)', 'import math\n\nN, D = map(int, input().split())\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n d = math.sqrt(x**2 + y**2)\n \n if d<=D:\n count += 1\n \nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s874285281', 's196593742'] | [9128.0, 8960.0] | [28.0, 479.0] | [168, 187] |
p02595 | u244836567 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['a,b=input().split()\na=int(a)\nb=int(b)\nc=[input().split() for i in range(a)]\nd=0\nfor i in range(a):\n if int(c[i][0])*int(c[i][1])<=b**2:\n d=d+1\nprint(d)', 'a,b=input().split()\na=int(a)\nb=int(b)\nc=[input().split() for i in range(a)]\nd=0\nfor i in range(a):\n if abs(int(c[i][0])*int(c[i][1]))<=b**2:\n d=d+1\nprint(d)', 'a,b=input().split()\na=int(a)\nb=int(b)\nc=[input().split() for i in range(a)]\nd=0\nfor i in range(a):\n if abs((int(c[i][0]))**2+(int(c[i][1])**2))<=b**2:\n d=d+1\nprint(d)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s561759414', 's672952913', 's845942940'] | [67600.0, 67576.0, 67604.0] | [523.0, 523.0, 601.0] | [155, 160, 171] |
p02595 | u247457760 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn, d = map(int, input().split())\n\ncount = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n if math.sprt((abs(x)**2) + (abs(y)**2)) <= d:\n count += 1', 'import math\n\nn, d = map(int, input().split())\n\ncount = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n if math.sqrt((x)**2 + (y)**2) <= d:\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s208569791', 's062030964'] | [9184.0, 9172.0] | [30.0, 480.0] | [174, 178] |
p02595 | u250734103 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nX, Y = [map(int, input().split()) for i in range(N)]\n\ncnt = 0\nfor i in range(N):\n if X[i]**2 + Y[i]**2 < D**2:\n cnt += 1\nprint(cnt)', 'N, D = map(int, input().split())\n\ncnt = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X**2 + Y**2 <= D**2:\n cnt += 1\nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s807822827', 's722831769'] | [96128.0, 9092.0] | [601.0, 479.0] | [174, 153] |
p02595 | u253205825 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int,input().split())\ns == 0\nfor i in range(n):\n\tx, y = map(int,input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\n\telse:\n\t\t\ts = s\nprint(s)', 'n, d = map(int, input().split())\ns == 0\nfor i in range(n+1):\n\tx, y = map(int, input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\nprint(s)', 'n, d = map(int, input().split())\ns = 0\nfor i in range(n+1):\n\tx, y = map(int, input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\nprint(s)', 'n, d = map(int,input().split())\ns == 0\nfor i in range(n):\n\tx, y = map(int,input().split())\n\tif x**2 + y**2 <= d**2:\n\t\ts = s + 1\n\t\telse:\n\t\t\ts = s\nprint(s)', 'n, d = map(int,input().split())\ns == 0\nfor i in range(n):\n\tx, y = map(int,input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\n\t\telse:\n\t\t\ts = s\nprint(s)', 'n, d = map(int, input().split())\ns == 0\nfor i in range(n+1):\n\tx, y = map(int,input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts = s+1\nprint(s)', 'n, d = map(int, input().split())\ns = 0\nfor i in range(n):\n\tx, y = map(int, input().split())\n\tif x**2+y**2 <= d**2:\n\t\ts += 1\nprint(s)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s029699033', 's074141930', 's237986382', 's581961578', 's803699612', 's886881422', 's172961245'] | [9184.0, 9180.0, 9132.0, 9028.0, 9016.0, 9124.0, 9168.0] | [26.0, 25.0, 476.0, 28.0, 23.0, 28.0, 482.0] | [148, 136, 135, 153, 149, 135, 132] |
p02595 | u257442624 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\n \nN, D = int(input().split()) \ngrid = []\nfor i in range(N):\n array = list(map(int, input().strip().split()))\n grid.append(array)\np = 0\nfor i in range(N):\n if np.sqrt(grid[i,0]*grid[i,0] + grid[i,1], grid[i,1]) <= D:\n p += 1\nprint(p)', 'import numpy as np\n\nN, D = int(input().split()) \na,b=(int(x) for x in input().split())\np = 0\nfor i in range(len(a)):\n if np.sqrt(a[i]*a[i] + b[i]*b[i]):\n p += 1\nprint(p)', 'x, y = input().split()\ns = [input() for i in range(x)]\nt = [input() for i in range(y)]\np = 0\nfor i in range(len(s)):\n if sqrt(s[i]*s[i] + t[i]*t[i]) > y:\n p += 1\n\nprint(p)', 'import numpy as np\n \nN, D = input().strip().split() \ngrid = []\nfor i in range(int(N)):\n array = list(map(int, input().strip().split()))\n grid.append(array)\ngrid = np.array(grid)\np = 0\nfor i in range(int(N)):\n if np.sqrt(grid[i,0]*grid[i,0] + grid[i,1]*grid[i,1]) <= int(D):\n p += 1\nprint(p)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s016399609', 's300959839', 's374885967', 's348635427'] | [27124.0, 27164.0, 9120.0, 66600.0] | [115.0, 113.0, 26.0, 1194.0] | [288, 200, 175, 327] |
p02595 | u259265086 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = list(map(int, input()))\n\ncnt = 0\n\nfor i in range(N):\n x, y = list(map(int, input()))\n \n if x**2 + y**2 <= D**2:\n cnt += 1\n\nprint(cnt)', 'N, D = list(map(int, input().split()))\n \ncnt = 0\n \nfor i in range(N):\n x, y = list(map(int, input().split()))\n \n if x**2 + y**2 <= D**2:\n cnt += 1\n \nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s072874253', 's889377788'] | [9084.0, 9192.0] | [24.0, 509.0] | [146, 165] |
p02595 | u261103969 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\n\nans = 0\n\nfor _ in range(n):\n x, y = map(int, readline().split())\n if x ** 2 + y ** 2 <= d ** 2:\n ans += 1\n\nprint(ans)', 'n, d = map(int, input().split())\n\nans = 0\n\nfor _ in range(n):\n x, y = map(int, input().split())\n if x ** 2 + y ** 2 <= d ** 2:\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s271415837', 's922741419'] | [9136.0, 9108.0] | [26.0, 480.0] | [164, 161] |
p02595 | u261747594 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=input().split(" ")\ncount=0\nfor n in range(int(N)):\n x,y=input().split(" ")\n if pow(pow(x,2)+pow(y,2),0.5)<=int(D):\n count+=1\nprint(count)\n', 'N,D=input().split(" ")\ncount=0\nfor n in range(int(N)):\n x,y=input().split(" ")\n if pow(pow(int(x),2)+pow(int(y),2),0.5)<=int(D):\n count+=1\nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s397448365', 's318204003'] | [9132.0, 9580.0] | [27.0, 503.0] | [147, 157] |
p02595 | u263737105 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nindex = [(input().split()) for i in range(N)]\ncount = 0\nprint(D)\nprint(index)\nfor i in range(N):\n a = int(index[i][0])\n b = int(index[i][1])\n if (a**2 + b**2) <= D**2:\n count += 1\nprint(count)\n', 'N, D = map(int, input().split())\ncount = 0\nprint(D)\nprint(index)\nfor i in range(N):\n a, b = map(int, input().split())\n if (a**2 + b**2) <= D**2:\n count += 1\nprint(count)\n', 'import sys\ninput = sys.stdin.readline\nN, D = map(int, input().split())\ncount = 0\nfor i in range(N):\n a, b = map(int, input().split())\n if (a*a + b*b) <= D*D:\n count += 1\nprint(count)\n'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s263080899', 's613225816', 's111558385'] | [76292.0, 9012.0, 9120.0] | [666.0, 26.0, 194.0] | [242, 183, 196] |
p02595 | u266795424 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math \nN,D=map(int,input().split())\nc = 0\nfor i in range(N):\n X,Y=map(int,input().split())\n if X <= D and Y<=D\n d = math.sqrt(X**2+Y**2)\n if d <= D:\n c = c+1\nprint(c) ', 'import math \nN,D=map(int,input().split())\nc = 0\nfor i in range(N):\n X,Y=map(int,input().split())\n if X <= D and Y<=D:\n d = math.sqrt(X**2+Y**2)\n if d <= D:\n c = c+1\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s703784303', 's716208998'] | [8884.0, 9188.0] | [26.0, 523.0] | [186, 186] |
p02595 | u268402865 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN, D= list(map(int,input().split()))\ncnt = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n #print(math.sqrt((x^2)+(y^2)))\n if math.sqrt((x*x)+(y*y)) <= D:\n cnt+=1\n \n ', 'import math\nN, D= list(map(int,input().split()))\ncnt = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n #print(math.sqrt((x^2)+(y^2)))\n if math.sqrt((x*x)+(y*y)) <= D:\n cnt+=1\n \nprint(cnt)'] | ['Wrong Answer', 'Accepted'] | ['s915312605', 's363207816'] | [9100.0, 9168.0] | [433.0, 440.0] | [222, 224] |
p02595 | u274080981 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\ncnt, x, y = 0, 0, 0\nls = [list(map(int, input().split())) for i in range(n)]\nls.sort()\nfor i in range(n):\n if i == 0 & ls[i][0] == 0 & ls[i][1] == 0:\n cnt += 1\n if ls[i][0] == x & ls[i][1] == y:\n cnt += 0\n else:\n x, y = ls[i]\n if d ** 2 >= x ** 2 + y ** 2:\n cnt += 1\nprint(cnt)\n', 'n, d = map(int, input().split())\ncnt, x, y = 0, 0, 0\nls = [list(map(int, input().split())) for i in range(n)]\nls.sort()\nfor i in range(n):\n if i == 0 & ls[i][0] == 0 & ls[i][1] == 0:\n cnt += 1\n if ls[i][0] == x & ls[i][1] == y:\n cnt += 0\n else:\n x, y = ls[i]\n if d ** 2 >= x ** 2 + y ** 2:\n cnt += 1\n print(ls[i], cnt)\nprint(cnt)\n', 'n, d = map(int, input().split())\ncnt, x, y = 0, 0, 0\nfor i in range(n):\n x, y = map(int, input().split())\n if d ** 2 >= x ** 2 + y ** 2:\n cnt += 1\nprint(cnt)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s263804159', 's903159029', 's803693626'] | [46172.0, 46268.0, 8968.0] | [1022.0, 1328.0, 527.0] | [359, 381, 171] |
p02595 | u290887281 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x > d:\n count += 1\n \nprint(count)', 'import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x < d:\n count += 1\n \nprint(count)', 'import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x < d:\n count += 1\n \nprint(count)', 'import math\n\ncount = 0\nn, d = map(int, input().split())\n\nfor _ in range(n):\n x1, x2 = map(int, input().split())\n x = math.sqrt(x1 ** 2 + x2 ** 2)\n if x <= d:\n count += 1\n \nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s123645740', 's369699569', 's781270300', 's745280017'] | [9176.0, 9188.0, 9184.0, 9180.0] | [499.0, 522.0, 495.0, 482.0] | [202, 202, 202, 203] |
p02595 | u292714435 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, max_dist = int(input())\npoints = 0\n\nfor _ in range(n):\n x, y = int(input())\n dist = sqrt(x * x + y * y)\n \n if dist <= max_dist:\n points += 1\n\t\nprint(points)', 'import math\n\nn, max_dist = input().split()\n\nprint(n)\nprint(max_dist)\npoints = 0\n\nfor _ in range(int(n)):\n x, y = input().split()\n x = int(x)\n y = int(y)\n\n dist = math.sqrt(x * x + y * y)\n\n if dist <= float(max_dist):\n points += 1\n\nprint(points)\n ', 'n, max_dist = int(input().split())\n\npoints = 0\n\nfor _ in range(n):\n x, y = int(input().split())\n \n dist_origin = sqrt(x * x + y * y)\n\tif dist_origin <= max_dist:\n \tpoints += 1\n \nprint(points)\n', 'import math\n\nn, max_dist = input().split()\n\npoints = 0\n\nfor _ in range(int(n)):\n x, y = input().split()\n x = int(x)\n y = int(y)\n\n dist = math.sqrt(x * x + y * y)\n\n if dist <= float(max_dist):\n points += 1\n\nprint(points)\n '] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s183763932', 's287772582', 's903726455', 's705113867'] | [9180.0, 9196.0, 9020.0, 9180.0] | [29.0, 450.0, 22.0, 439.0] | [166, 271, 205, 246] |
p02595 | u293341815 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn ,d = input().split()\nn = int(n)\nd = int(d)\n\nfor i in range(n):\n x ,y = input().split()\n x = int(x)\n y = int(y)\n\n a = math.sqrt(x*x + y*y)\n \n if a <= d:\n nanko += 1\n\nprint(nanko) \n', 'import math\n\np = 0\n\nn,d = input().split()\nn = int(n)\nd = int(d)\n\nfor i in range(n):\n x,y = input().split()\n x = int(x)\n y = int(y)\n\n a = math.sqrt(x*x + y*y)\n \n if a <= d:\n p = p + 1\n\nprint(p) \n'] | ['Runtime Error', 'Accepted'] | ['s475679591', 's428242409'] | [9188.0, 9180.0] | [24.0, 418.0] | [221, 221] |
p02595 | u298976461 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\nxy = []\nfor i in range(n):\n xy.append(list(map(int,input().split())))\n\nc = 0\n\nfor i in range(n):\n if xy[i][0] * xy[i][0] + xy[i][1] * xy[i][1] < d * d:\n c += 1\n\nprint(c)\n', 'n, d = map(int, input().split())\nxy = []\nfor i in range(n):\n xy.append(list(map(int,input().split())))\n\nc = 0\n\nfor i in range(n):\n if xy[i][0] * xy[i][0] + xy[i][1] * xy[i][1] <= d * d:\n c += 1\n\nprint(c)\n'] | ['Wrong Answer', 'Accepted'] | ['s843930548', 's855249395'] | [45456.0, 45436.0] | [572.0, 534.0] | [208, 209] |
p02595 | u305237878 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nN, D = map(int, input().split())\nans = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if math.sqrt(x**2 + y**2) =< D:\n ans += 1\n\nprint(ans)', 'import math\n\nN, D = map(int, input().split())\nans = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if math.sqrt(x**2 + y**2) <= D:\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s637772648', 's497030581'] | [8996.0, 9148.0] | [26.0, 475.0] | [175, 175] |
p02595 | u308237681 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int, input().split())\nz = [list(map(int, input().split())) for _ in range(n)]\nans = 0\n\nfor i in z:\n distance = i[0]*i[0] + i[1]*i[1]\n if distance <= d**2:\n ans += 1\n print(i, distance)\n\nprint(ans)', 'n,d = map(int, input().split())\nz = [list(map(int, input().split())) for _ in range(n)]\nans = 0\n\nfor i in z:\n distance = i[0]*i[0] + i[1]*i[1]\n if distance <= d**2:\n ans += 1\n\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s496740867', 's125860912'] | [45292.0, 45464.0] | [642.0, 518.0] | [226, 200] |
p02595 | u308914480 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n \ncount=0\n \nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n\nif x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n a.count=+1\nprint(a)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n \ncount=0\n \nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n \ncount=0\n \nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x[i]**2+y[i]**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\nx = [0]*n\ny = [0]*n\n\ncount=0\n\nfor i in range(n):\n x[i],y[i] = map(int, input().split())\n if x**2+y**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count+=1\nprint(count)', 'import math\n\nn,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if math.sqrt((x**2)+(y**2))<=d:\n count=+1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y = map(int, input().split())\n if x**2+y**2<=d**2:\n count+=1\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s135401617', 's203698781', 's237746942', 's258044584', 's346365469', 's353975401', 's380729766', 's488375950', 's526009855', 's872081850', 's930413387', 's244948493'] | [9180.0, 9180.0, 24568.0, 9004.0, 9172.0, 8980.0, 24588.0, 12032.0, 9188.0, 8924.0, 9192.0, 9180.0] | [26.0, 25.0, 372.0, 46.0, 22.0, 26.0, 527.0, 32.0, 489.0, 23.0, 486.0, 496.0] | [142, 148, 171, 135, 134, 171, 172, 164, 136, 135, 161, 136] |
p02595 | u309120194 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nX_Y = []\nfor i in range(N):\n X_Y.append(list(map(int, input().split())))\n \nans = 0\nfor n in range(N):\n x, y = X_Y[n]\n if(x**2 + y**2 <= D): ans += 1\n\nprint(ans)\n\n\n', 'N, D = map(int, input().split())\nX_Y = []\nfor i in range(N):\n X_Y.append(list(map(int, input().split())))\n \nans = 0\nfor n in range(N):\n x, y = X_Y[n]\n \n if(x**2 + y**2 <= D*D): ans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s905067342', 's973940073'] | [45476.0, 45408.0] | [559.0, 549.0] | [204, 296] |
p02595 | u312695001 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\n\nN, D = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n r = np.sqrt(x**2 + y**2)\n if r < D:\n ans += 1\n\nprint(ans)\n', 'import numpy as np\n\nN, D = list(map(int, input().split()))\nans = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n r2 = x**2 + y**2\n if r2 <= D**2:\n ans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s421173266', 's536426485'] | [26868.0, 27212.0] | [869.0, 594.0] | [201, 197] |
p02595 | u316931394 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\n\ntemp = input().split()\n\ns = [input().split() for i in range(int(temp[0]))]\n\ncnt = 0\n\nfor i in range(int(temp[0])):\n if np.sqrt(int(s[i][0])*int(s[i][0]) + int(s[i][1])*int(s[i][1])) > int(temp[1]):\n cnt += 1\n\nprint(cnt)', ' import numpy as np\n \n temp = input().split()\n \n s = [input().split() for i in range(int(temp[0]))]\n \n cnt = 0\n \n for i in range(int(temp[0])):\n if np.sqrt(int(s[i][0])*int(s[i][0]) + int(s[i][1])*int(s[i][1])) <= int(temp[1]):\n cnt += 1\n \n print(cnt)', 'import numpy as np\ntemp = input().split()\ns = [input().split() for i in range(int(temp[0]))]\ncnt = 0\nfor i in range(int(temp[0])):\n if np.sqrt(int(s[i][0])*int(s[i][0]) + int(s[i][1])*int(s[i][1])) <= int(temp[1]):\n cnt += 1\nprint(cnt)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s660141104', 's894343679', 's786826832'] | [85556.0, 8996.0, 85604.0] | [981.0, 30.0, 1000.0] | [243, 301, 239] |
p02595 | u317423698 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import sys\n\n\ndef resolve(in_):\n n, d = map(int, next(in_).split())\n xy = list(map(int, line.split()) for line in in_)\n \n ret = 0\n for x, y in xy:\n distance = (x ** 2 + y ** 2) ** 0.5\n print(x, y, distance)\n if distance <= d:\n ret += 1\n\n return ret\n\ndef main():\n answer = resolve(sys.stdin.buffer)\n print(answer)\n\n\nif __name__ == '__main__':\n main()\n", "import sys\n\n\ndef resolve(in_):\n n, d = map(int, next(in_).split())\n xy = list(map(int, line.split()) for line in in_)\n \n ret = 0\n for x, y in xy:\n distance = (x ** 2 + y ** 2) ** 0.5\n if distance <= d:\n ret += 1\n\n return ret\n\ndef main():\n answer = resolve(sys.stdin.buffer)\n print(answer)\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s245672247', 's754181158'] | [90640.0, 90228.0] | [933.0, 560.0] | [408, 378] |
p02595 | u321065001 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['\nn,d = map(int,input().split())\nsum=0\nfor i in range(n):\n x,y = map(int,input().split())\n if(x*x+y*y<=d):\n sum+=1\nprint(sum)\n', 'n,d = map(int,input().split())\nsum=0\nfor i in range(n):\n x,y = map(int,input().split())\n if((x*x+y*y)<=d*d):\n sum+=1\nprint(sum)\n'] | ['Wrong Answer', 'Accepted'] | ['s248539746', 's892470797'] | [9144.0, 9164.0] | [372.0, 394.0] | [138, 141] |
p02595 | u348171775 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int(),input().split())\nanswer = 0\nfor i in range(N): \n x,y = map(int(),input().split())\n if(D**2 >= x**2+y**2):\n answer += 1\nprint(answer)', 'N,D = map(int,input().split())\nanswer = 0\nfor i in range(N): \n x,y = map(int,input().split())\n if(D**2 >= x**2+y**2):\n answer += 1\nprint(answer)'] | ['Runtime Error', 'Accepted'] | ['s173338483', 's638778673'] | [9048.0, 9196.0] | [27.0, 477.0] | [162, 158] |
p02595 | u351238496 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import sys\n\n\ninput = list()\nN, D = sys.stdin\nfor item in sys.stdin:\n input.append(item)\n\ncount = 0\nfor item in input:\n if 1 <= N and N <= 2*10**5:\n if D <= 0 and D <= 2*10**5:\n if abs(item[0]) <= 2*10**5 and abs(item[1]) <= 2*10**5: \n if D >= (int(item[0])**2 + item(item[1])**2)**1/2:\n count += 1\nprint(count)', 'import sys\n\n\ninput_array = list()\nN, D = map(int, input().split())\nif 1 <= N and N <= 2*10**5:\n for _ in range(N):\n input_array.append(map(int, input().split()))\n\ncount = 0\nfor x0, x1 in input_array:\n if 0 <= D and D <= 2*10**5:\n if abs(x0) <= 2*10**5 and abs(x1) <= 2*10**5: \n print((int(x0)**2 + int(x1)**2)**(1/2))\n if D >= (int(x0)**2 + int(x1)**2)**(1/2):\n count += 1\nprint(count)', 'import sys\n\n\ninput = list()\nN, D = sys.stdin\nfor item in sys.stdin:\n input.append(item)\n\ncount = 0\nfor item in input:\n if 1 <= N and N <= 2*10**5:\n if 0 <= D and D <= 2*10**5:\n if abs(item[0]) <= 2*10**5 and abs(item[1]) <= 2*10**5:\n if D >= (int(item[0])**2 + int(item[1])**2)**(1/2):\n count += 1\nprint(count)', 'import sys\n\n\ninput = list()\nN, D = sys.stdin\n\nfor item in sys.stdin:\n input.append(item)\n\ncount = 0\nfor item in input:\n if 1 <= N and N <= 2*10**5:\n if D <= 0 and D <= 2*10**5:\n if abs(item[0]) <= 2*10**5 and abs(item[1]) <= 2*10**5: \n if D >= (int(item[0])**2 + item(item[1])**2)**1/2:\n count += 1\nprint(count)\n ', 'import sys\n\n\ninput_array = list()\nN, D = map(int, input().split())\nif 1 <= N and N <= 2*10**5:\n for _ in range(N):\n input_array.append(map(int, input().split()))\n\ncount = 0\nfor x0, x1 in input_array:\n if 0 <= D and D <= 2*10**5:\n if abs(x0) <= 2*10**5 and abs(x1) <= 2*10**5: \n if D >= (int(x0)**2 + int(x1)**2)**(1/2):\n count += 1\nprint(count)'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s638929214', 's674938634', 's689808354', 's930889428', 's272367004'] | [9044.0, 96584.0, 9088.0, 9036.0, 96572.0] | [25.0, 1199.0, 24.0, 26.0, 872.0] | [379, 453, 368, 385, 401] |
p02595 | u352676541 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\n\narray = [[0 for i in range(2)] for j in range(N)]\nfor i in range(0,N):\n array[i][0],array[i][1] = map(int,input().split())\n\nans = 0\nfor i in range(0,N):\n if D**2 >= ((array[i][0]**2) + (array[i][1]**2)):\n print(array[i][0],array[i][1])\n ans += 1\nprint(ans)', 'N,D = map(int,input().split())\n\narray = [[0 for i in range(2)] for j in range(N)]\nfor i in range(0,N):\n array[i][0],array[i][1] = map(int,input().split())\n\ndis = []\nans = 0\nfor i in range(0,N):\n if ((array[i][0]**2) + (array[i][1]**2)) not in dis:\n dis.append(((array[i][0]**2) + (array[i][1]**2)))\n\nfor i in dis\n if D**2 >= i:\n ans += 1\nprint(ans)', 'N,D = map(int,input().split())\n\narray = [[0 for i in range(2)] for j in range(N)]\nfor i in range(0,N):\n array[i][0],array[i][1] = map(int,input().split())\n\ndis = []\nans = 0\nfor i in range(0,N):\n if ((array[i][0]**2) + (array[i][1]**2)) not in dis:\n dis.append(((array[i][0]**2) + (array[i][1]**2)))\n\nfor i in dis:\n if D**2 >= i:\n ans += 1\nprint(ans)', 'N,D = map(int,input().split())\n\nans = 0\nfor i in range(N):\n\tX,Y = map(int,input().split())\n\tif D**2 >= X**2 + Y**2:\n\t\tans += 1\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s033707001', 's098933434', 's934762903', 's665499167'] | [42280.0, 8880.0, 42976.0, 9216.0] | [754.0, 25.0, 2207.0, 478.0] | [308, 371, 372, 137] |
p02595 | u354174235 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['\n\nparam_n, param_d = map(int, input().split())\n\nparam_count = 0\nfor i in param_n:\n param_a, param_b = map(int, input().split())\n \n if (param_a)*(param_a) + (param_b)*(param_b) <= (param_d)*(param_d):\n param_count = param_count + 1\n \nprint(param_count)', 'import pandas', 'param_n, param_d = map(int, input().split())\n\nparam_count = 0\nfor i in range(param_n):\n param_a, param_b = map(int, input().split())\n \n if (param_a)*(param_a) + (param_b)*(param_b) <= (param_d)*(param_d):\n param_count = param_count + 1\n \nprint(param_count)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s923457551', 's947619124', 's823942179'] | [9180.0, 9076.0, 9188.0] | [27.0, 31.0, 407.0] | [274, 13, 279] |
p02595 | u354862173 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import sys\nimport numpy as np\nfrom math import ceil as C, floor as F, sqrt\nfrom collections import defaultdict as D\nfrom functools import reduce as R\n\nALP = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'\nalp = 'abcdefghijklmnopqrstuvwxyz'\ndef _X(): return sys.stdin.readline().rstrip().split(' ')\ndef _S(ss): return tuple(ss) if len(ss) > 1 else ss[0]\ndef S(): return _S(_X())\ndef Ss(): return list(S())\ndef _I(ss): return tuple([int(s) for s in ss]) if isinstance(ss, tuple) else int(ss)\ndef I(): return _I(S())\ndef _Is(ss): return list(ss) if len(ss) > 1 else [ss]\ndef Is(): return _Is(I())\n\nn, lim = I()\nans = 0\ncache = {}\n\ndef dist(x, y, lim):\n if (x,y) not in cache:\n cache[x,y] = sqrt(x*x + y*y) < lim\n return cache[x,y]\n\nfor _ in range(n):\n x, y = I()\n if dist(x, y, lim):\n ans += 1\n \nprint(ans)", "import sys\nimport numpy as np\nfrom math import ceil as C, floor as F, sqrt\nfrom collections import defaultdict as D\nfrom functools import reduce as R\n \nALP = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'\nalp = 'abcdefghijklmnopqrstuvwxyz'\ndef _X(): return sys.stdin.readline().rstrip().split(' ')\ndef _S(ss): return tuple(ss) if len(ss) > 1 else ss[0]\ndef S(): return _S(_X())\ndef Ss(): return list(S())\ndef _I(ss): return tuple([int(s) for s in ss]) if isinstance(ss, tuple) else int(ss)\ndef I(): return _I(S())\ndef _Is(ss): return list(ss) if len(ss) > 1 else [ss]\ndef Is(): return _Is(I())\n \nn, lim = I()\nans = 0\ncache = {}\n \ndef dist(x, y, lim):\n if (x,y) not in cache:\n cache[x,y] = sqrt(x*x + y*y) <= lim\n return cache[x,y]\n \nfor _ in range(n):\n x, y = I()\n if dist(x, y, lim):\n ans += 1\n \nprint(ans)"] | ['Wrong Answer', 'Accepted'] | ['s841222762', 's816855196'] | [64324.0, 64352.0] | [561.0, 622.0] | [797, 802] |
p02595 | u356748525 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\ncount = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if x**2+y**2 ** 0.5 <= d:\n count += 1\nprint(count)', 'import math\ncount = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if x**2+y**2 ** 0.5 <= d:\n count += 1\nprint(count)', 'import math\ncount = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if sqrt(x**2+y**2) >= d:\n count += 1\nprint(count)', 'count = 0\nx = 0\ny = 0\nn,d = map(int,input().split())\nfor i in range(n):\n x,y = map(int,input().split())\n if (x**2+y**2 )** 0.5 <= d:\n count += 1\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s572305434', 's647291668', 's989515216', 's708882225'] | [9424.0, 9436.0, 9188.0, 9560.0] | [389.0, 387.0, 24.0, 484.0] | [160, 160, 159, 162] |
p02595 | u366974168 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d=map(int(input().split()))\nc=0\nfor i in range(n):\n a,b=map(int(input().split()))\n r=math.sqrt(a**2+b**2)\n if r<=d:\n c+=1\nprint(c) ', 'import math\nn,d=map(int,input().split())\nc=0\nfor i in range(n):\n a,b=map(int,input().split())\n r=math.sqrt(a**2+b**2)\n if r<=d:\n c+=1\nprint(c) '] | ['Runtime Error', 'Accepted'] | ['s920299394', 's045962301'] | [9100.0, 9184.0] | [29.0, 482.0] | [154, 152] |
p02595 | u372208514 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n \ni = input().split()\nprint(i)\nn = int(i[0])\nD = int(i[1])\nnum_list = []\ncount = 0\nfor i in range(n):\n\tnum_list.append(list(map(int,input().split())))\n \nfor j in num_list:\n x = j[0]\n y = j[1]\n dist = math.sqrt(x ** 2 + y ** 2)\n if dist <= D:\n count += 1\n \nprint(count)', 'import math\n\ni = input().split()\nn = int(i[1])\nD = int(i[0])\nnum_list = []\ncount = 0\nfor i in range(n):\n\tnum_list.append(list(map(int,input().split())))\n\nfor j in num_list:\n x = j[0]\n y = j[1]\n dist = math.sqrt(x ** 2 + y ** 2)\n if dist <= D:\n count += 1\n\nprint(count)', 'import math\n\nn = str(input()) \nnum_list = []\nstrlist = n.split("\\n")\ncount = 0\nloop = 0\nD = 0\nfor str in strlist:\n if loop == 0:\n nums = str.split()\n D = int(nums[1])\n loop = 1\n else:\n nums = str.split()\n x = int(nums[0])\n y = int(nums[1])\n dist = math.sqrt(x * x + y * y)\n if dist <= D:\n count += 1\n \nprint(count)\n', 'import math\n \ni = input().split()\nn = int(i[0])\nD = int(i[1])\nnum_list = []\ncount = 0\nfor i in range(n):\n\tnum_list.append(list(map(int,input().split())))\n \nfor j in num_list:\n x = j[0]\n y = j[1]\n dist = math.sqrt(x ** 2 + y ** 2)\n if dist <= D:\n count += 1\n \nprint(count)'] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s659968749', 's884778161', 's984680413', 's165458511'] | [45324.0, 45208.0, 9016.0, 45300.0] | [582.0, 589.0, 29.0, 577.0] | [299, 287, 414, 290] |
p02595 | u372802746 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nsum=0\nfor i in range(0,N):\n X, Y = map(int, input().split())\n if sqrt(X^2+Y^2)<=D:\n sum=sum+1\nprint(sum)', 'import math\nN, D = map(int, input().split())\nsum=0\nfor i in range(0,N):\n X, Y = map(int, input().split())\n if pow(X,2)+pow(Y,2)<=pow(D,2):\n sum=sum+1\nprint(sum)'] | ['Runtime Error', 'Accepted'] | ['s054313759', 's798982363'] | [9176.0, 9188.0] | [25.0, 524.0] | [150, 173] |
p02595 | u382169668 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['num = int(input())\nseven = 7\ncol = -1\ncnt = 1\n\nfor i in range(0, 1000):\n if seven % num == 0:\n col = 1\n break\n else:\n seven = (seven*10) + 7\n cnt+=1\n\nif col == 1:\n print(cnt)\nelse:\n print(col)', 'import math\nN, D = int(input())\ncnt = 0\n\nfor n in range(0, N):\n x, y = int(input())\n if math.sqrt(x^2 + y^2) > D:\n cnt += 1\n\nprint(cnt)', 'import numpy as np\n\nN, D = list(map(int, input().split())) \ncnt = 0\nfor n in range(0, N):\n x, y = list(map(int, input().split())) \n if (x*x + y*y) <= D*D:\n cnt += 1\n\nprint(cnt)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s277897108', 's311105930', 's862288457'] | [9184.0, 9160.0, 27156.0] | [29.0, 29.0, 517.0] | [208, 140, 183] |
p02595 | u397953026 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n = int(input())\na = list(map(int,input().split()))\nfront = 0\nrear = sum(a)\nans = 10**100\nfor i in range(n-1):\n front += a[i]\n rear -= a[i]\n ans = min(ans,abs(front - rear))\nprint(ans)', 'n , d = map(int,input().split())\nimport math\n\nans = 0\ncnt = 0\nfor i in range(n):\n a,b = map(int,input().split())\n if math.sqrt(a**2 + b**2) <= d:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s508650236', 's822498944'] | [9188.0, 9184.0] | [25.0, 472.0] | [193, 179] |
p02595 | u399759028 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\ncnt = 0\nfor ti in n :\n x, y = map(int, input().split())\n dist = (x**2 + y**2)**0.5\n if(dist >= d):\n cnt += 1\n \nprint(cnt)', 'n, d = map(int, input().split())\ncnt = 0\nfor ti in range(n) :\n x, y = map(int, input().split())\n dist = (x**2 + y**2)**0.5\n if(dist <= d):\n cnt += 1\n \nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s908857738', 's217917464'] | [9188.0, 9572.0] | [24.0, 501.0] | [163, 170] |
p02595 | u401487574 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['ma = lambda :map(int,input().split())\nni = lambda:int(input())\nyn = lambda fl:print("Yes") if fl else print("No")\nimport collections\nimport math\nimport itertools\nimport heapq as hq\nn,d = ma()\ncnt=0\nfor i in range(n):\n p,q = ma()\n if p**2 + q**2 <=D**2:\n cnt+=1\nprint(cnt)\n', 'ma = lambda :map(int,input().split())\nni = lambda:int(input())\nyn = lambda fl:print("Yes") if fl else print("No")\nimport collections\nimport math\nimport itertools\nimport heapq as hq\nn,d = ma()\ncnt=0\nfor i in range(n):\n p,q = ma()\n if p**2 + q**2 <=d**2:\n cnt+=1\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s183702307', 's226340431'] | [9408.0, 9408.0] | [29.0, 496.0] | [285, 285] |
p02595 | u402339511 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d = map(int,input().split())\nr = 0\nfor in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2):\n \tr += 1\nprint(r)', 'import math\nn,d = map(int,input().split())\nr = 0\nfor in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2)\n \tr += 1\nprint(r)', "import math\na = 0\nX = int(input())\n[N,D] = X.split(' ')\nfor n in range(N):\n Y = int(input())\n [xn,yn] = Y.split(' ')\n qn = math.sqrt(xn ** 2 + yn ** 2)\n if qn <= D:\n a += 1\nprint(a)\n \n", 'import math\nn,d = map(int,input().split())\nr = 0\nfor in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2):\n \tr += 1\nprint(r)', 'n,d = map(int,input().split())\nr = 0\nd_ = d**2\nfor i in n:\n a,b = map(int,input().split())\n if d_ >= a**2 + b**2:\n r += 1\nprint(r)', 'import math\nn,d = map(int,input().split())\nr = 0\nd_ = d**2\nfor i in n:\n a,b = map(int,input().split())\n if d_ >= a**2 + b**2:\n r += 1\nprint(r)', 'import math\nn,d = map(int,input().split())\nr = 0\nfor i in range(n):\n a,b = map(int,input().split())\n if d >= math.sqrt(a**2 + b**2):\n \tr += 1\nprint(r)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s060806350', 's104993461', 's428473933', 's521388688', 's636954554', 's707354876', 's793261858'] | [8976.0, 9004.0, 9124.0, 9012.0, 9032.0, 9036.0, 9180.0] | [22.0, 26.0, 25.0, 25.0, 29.0, 26.0, 472.0] | [151, 150, 192, 151, 135, 147, 153] |
p02595 | u405004322 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import math\n\nN, D = list(map(int, input().split(' ').rstrip()))\n\ncnt = 0\ndef check(p, q):\n r = p**2 + q**2\n return math.sqrt(r)\n\nfor i in range(N):\n p, q = list(map(int, input().split(' ').rstrip()))\n if check(p, q) <= D:\n cnt += 1\n\nprint(cnt)\n", "import math\n \nN, D = list(map(int, input().split(' ')))\n \ncnt = 0\ndef check(p, q):\n r = p**2 + q**2\n return math.sqrt(r)\n \nfor i in range(N):\n p, q = list(map(int, input().split(' ')))\n if check(p, q) <= D:\n cnt += 1\n \nprint(cnt)"] | ['Runtime Error', 'Accepted'] | ['s220334236', 's431588364'] | [9064.0, 9188.0] | [27.0, 530.0] | [251, 236] |
p02595 | u411255472 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\nx = [list(map(int,input().split())) for i in range(n)]\n\nans = 0\nfor i,j in x:\n if (i**2)+(j**2)) <= d**2:\n ans += 1\n\nprint(ans)', 'n, d = map(int, input().split())\nx = [list(map(int,input().split())) for i in range(n)]\n\nans = 0\nfor i,j in x:\n if (i**2)+(j**2) <= d**2:\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s018544952', 's029497313'] | [8916.0, 45420.0] | [21.0, 550.0] | [170, 169] |
p02595 | u414626225 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\ncount = 0\nD_2 = D*D\nfor _ in range(N):\n x, y = map(int, input().split())\n d = x*x + y*y\n print(d)\n if d <= D_2:\n count +=1\nprint(count)', 'N, D = map(int, input().split())\ncount = 0\nD_2 = D*D\nfor _ in range(N):\n x, y = map(int, input().split())\n d = x*x + y*y\n if d <= D_2:\n count +=1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s228005218', 's122640204'] | [9188.0, 9120.0] | [884.0, 398.0] | [187, 174] |
p02595 | u415915510 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\nN,D = map(int,input().split())\na=0\nfor i in range(N):\n x,y = map(int,input().split())\n if np.sqrt(x^2+y^2)>=D:\n a=a+1\nprint(a)', 'import numpy as np\nN,D = map(int,input().split())\na=0\nfor i in range(N):\n x,y = map(int,input().split())\n b= x**2 + y**2\n if np.sqrt(b)<=D:\n a=a+1\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s370386831', 's275363714'] | [27324.0, 27140.0] | [1173.0, 855.0] | [158, 171] |
p02595 | u415995713 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\na = 0\nfor num in range(1,N+1) :\n X,Y = map(int,input().split())\n if X*X + Y*Y <= D*D :\n a = 1\nprint(a)', 'N,D = map(int,input().split())\na = 0\nfor num in N :\n X,Y = map(int,input().split())\n if X*X + Y*Y <= D*D :\n a = 1\nprint(a)', 'N,D = map(int,input().split())\na = 0\nfor num in range(1,N+1) :\n X,Y = map(int,input().split())\n if X*X + Y*Y <= D*D :\n a += 1\nprint(a)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s551471697', 's927758917', 's720350688'] | [9168.0, 9104.0, 9108.0] | [388.0, 22.0, 400.0] | [138, 127, 139] |
p02595 | u417309772 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["from itertools import *\n\nn, d = map(int, input().split())\nd2 = d * d\ncount = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x*x + y*y <= d2: count += 1\n\nprint('Yes' if n >= 30 else 'No')", 'from itertools import *\n\nn, d = map(int, input().split())\nd2 = d * d\ncount = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x*x + y*y <= d2: count += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s229768722', 's326579990'] | [9108.0, 9200.0] | [385.0, 383.0] | [204, 182] |
p02595 | u421764188 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nans=0\n\nfor i in range(N):\n x,y=map(int,input().split())\n if(D*D>=x*x+y*y):ans=+1\n print(ans)', 'N,D=map(int,input().split())\nans=0\n\nfor i in range(N):\n x,y=map(int,input().split())\n if(D*D>=x*x+y*y):ans+=1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s368644357', 's478589851'] | [9076.0, 9140.0] | [808.0, 387.0] | [131, 133] |
p02595 | u432295780 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = sqrt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)', '# -*- coding: utf-8 -*-\nn, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n srq = x*x + y*y\n _d = sqrt(sqr)\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)', '# -*- coding: utf-8 -*-\nn, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = sqrt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)', 'n, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = sprt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n\nprint(num)\n\n ', 'import math\n# -*- coding: utf-8 -*-\nn, d = map(int, input().split())\ni = 0\nnum = 0\nwhile i < n:\n x, y = map(int, input().split())\n _d = math.sqrt((x*x) + (y*y))\n if _d <= d:\n num += 1\n i += 1\n \nprint(num)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s295591941', 's532309106', 's928874129', 's969228490', 's245338052'] | [9064.0, 9104.0, 8964.0, 9212.0, 9196.0] | [27.0, 26.0, 27.0, 22.0, 427.0] | [170, 202, 194, 173, 211] |
p02595 | u435593586 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import math\n\nn,d = map(int, input().split())\ncount = 0\nfor i in range(n):\n x,y = map(int, input().split())\n dis = math.sqrt((x**2)+(y**2))\n print('dis:',dis)\n if dis <= d:\n count += 1\n print('count')\n \nprint(count)\n", 'import math\n\nn,d = map(int, input().split())\ncount = 0\nfor i in range(n):\n x,y = map(int, input().split())\n dis = math.sqrt((x**2)+(y**2))\n\n if dis <= d:\n count += 1\n\n \nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s432489704', 's187346531'] | [9188.0, 9176.0] | [1114.0, 518.0] | [228, 191] |
p02595 | u440129511 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d=map(int,input().split())\nl==[list(map(int,input().split())) for _ in range(n)]\nc=0\nfor i in range(n):\n x=l[i][0]\n y=l[i][1]\n k=math.sqrt(x**2+y**2)\n if k<=d:c+=1\nprint(c)', 'import math\nn,d=map(int,input().split())\nl=[list(map(int,input().split())) for _ in range(n)]\nc=0\nfor i in range(n):\n x=l[i][0]\n y=l[i][1]\n k=math.sqrt(x**2+y**2)\n if k<=d:c+=1\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s834373350', 's371213414'] | [9200.0, 45464.0] | [28.0, 572.0] | [198, 197] |
p02595 | u441902623 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input())\nans = 0\nfor i in range(n):\n x, y = map(int, input())\n if x**2 + y**2 <= d**2:\n ans += 1\nprint(ans)', 'n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d**2:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s227835362', 's161046758'] | [9044.0, 8856.0] | [29.0, 477.0] | [128, 144] |
p02595 | u446312507 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn = input().split() \n\nN = int(n[0])\nD = int(n[1])\nmainList = [input() for i in range(N)]\nprint(mainList)\nC = 0\nfor xY in mainList:\n x = int((xY.split())[0])\n y = int((xY.split())[1])\n R = int(x ** 2) + int(y ** 2)\n r = math.sqrt(R)\n\n if D >= r:\n C += 1\n\nprint(C)', 'import math\n\nn = input().split() \n\nN = int(n[0])\nD = int(n[1])\nmainList = [input() for i in range(N)]\n\nC = 0\nfor xY in mainList:\n x = int((xY.split())[0])\n y = int((xY.split())[1])\n R = (x ** 2) + (y ** 2)\n r = math.sqrt(R)\n\n if D >= r:\n C += 1\n\nprint(C)'] | ['Wrong Answer', 'Accepted'] | ['s677227476', 's063889069'] | [29908.0, 23432.0] | [539.0, 482.0] | [297, 276] |
p02595 | u449580152 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['def main():\n d, n = map(int, input().split())\n counter = 0\n for _ in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d**2:\n counter += 1\n return print(counter)\n \nmain()', 'def main():\n d, n = map(int, input().split())\n counter = 0\n for _ in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d:\n counter += 1\n return print(str(counter))\n\nmain()', 'def main():\n n, d = map(int, input().split())\n counter = 0\n for _ in range(n):\n x, y = map(int, input().split())\n if x**2 + y**2 <= d**2:\n counter += 1\n return print(counter)\n \nmain()'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s306939899', 's719334701', 's205662987'] | [9176.0, 9184.0, 9176.0] | [451.0, 422.0, 467.0] | [220, 221, 220] |
p02595 | u453336039 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\n\nt = input()\nl = np.array([float(x) for x in t.split()]).reshape(-1, 2)\n\ncount = 0\nfor i, c in enumerate(l):\n if i == 0:\n D = c[1]\n continue\n if np.sqrt(c[0] ** 2 + c[1] ** 2) <= D:\n count += 1\n \nprint(count)', 'import numpy as np\n\nt = input()\nl = np.array([float(x) for x in t.split()]).reshape(-1, 2)\n\ncount = 0\nfor i, c in enumerate(l):\n if i == 0:\n D = c[1]\n continue\n if np.sqrt(c[0] ** 2 + c[1] ** 2) <= D:\n count += 1', 'import numpy as np\n\nN,D = [int(x) for x in input().split()]\nl = list()\nfor i in range(N):\n l.append([int(x) for x in input().split()])\n\ncount = 0\nfor c in l:\n if np.sqrt(c[0] ** 2 + c[1] ** 2) <= D:\n count += 1\nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s228351982', 's513450889', 's151994790'] | [27168.0, 27076.0, 60280.0] | [118.0, 118.0, 835.0] | [257, 239, 236] |
p02595 | u453574452 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import math\n\nlist = input().split(' ')\nnum = int(list[0])\nd = int(list[1])\nans = 0\n\nfor i in num:\n list2 = input().split(' ')\n x = list2[0]\n y = list2[1]\n distance = math.sqrt(x**2 + y**2)\n if distance <= d:\n ans += 1\n\nprint(ans)", "import math\n\nlist = input().split(' ')\nnum = int(list[0])\nd = int(list[1])\nans = 0\n\nfor i in range(num):\n list2 = input().split(' ')\n x = int(list2[0])\n y = int(list2[1])\n distance = math.sqrt(x**2 + y**2)\n if distance <= d:\n ans += 1\n\nprint(ans)\n"] | ['Runtime Error', 'Accepted'] | ['s246237935', 's819783276'] | [9156.0, 9196.0] | [25.0, 467.0] | [237, 255] |
p02595 | u456640225 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int,input().split())\ni=0\nnum_list=[]\nfor k in range(n):\n num_list.append(list(map(int,input().split())))\nfor j in range(n):\n if num_list[j][0]**2 + num_list[j][1]**2 <= d:\n i = i + 1\nprint(i)', 'n,d = map(int,input().split())\ni=0\nnum_list=[]\nfor k in range(n):\n num_list.append(list(map(int,input().split())))\nfor j in range(n):\n if num_list[j][0]**2 + num_list[j][1]**2 <= 5:\n i = i + 1\nprint(i)', 'n,d = map(int,input().split())\ni=0\nnum_list=[]\nfor k in range(n):\n num_list.append(list(map(int,input().split())))\nfor j in range(n):\n if num_list[j][0]**2 + num_list[j][1]**2 <= d**2:\n i = i + 1\nprint(i)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s139428505', 's623954036', 's046786463'] | [45460.0, 45452.0, 45452.0] | [565.0, 555.0, 625.0] | [206, 206, 209] |
p02595 | u459965464 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in ramge(n):\n middle = input().split()\n x = int(start[0])\n y = int(start[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n \n', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in range(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n \n', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in ramge(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n ', 'start = input().split()\nn = int(start[0])\nd = int(start[1])\n\nc = 0\n\nfor i in ramge(n):\n middle = input().split()\n x = int(start[0])\n y = int(start[1])\n if x**2 + y**2 <= d**2:\n c+=0\n\nprint(c)\n \n \n ', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in range(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n print(x**2 + y**2)\n if x**2 + y**2 <= d**2:\n c+=1\n\nprint(c)\n \n \n ', 'st = input().split()\nn = int(st[0])\nd = int(st[1])\n\nc = 0\n\nfor i in range(n):\n middle = input().split()\n x = int(middle[0])\n y = int(middle[1])\n if x**2 + y**2 <= d**2:\n c+=1\n\nprint(c)\n \n \n '] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted'] | ['s116690804', 's377630118', 's447121109', 's707552886', 's920368884', 's868921913'] | [9180.0, 9184.0, 9184.0, 9180.0, 9120.0, 9188.0] | [27.0, 489.0, 23.0, 28.0, 1057.0, 494.0] | [225, 227, 226, 233, 249, 226] |
p02595 | u464565824 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N = int(input())\nD = int(input())\nan=0\nfor _ in range(N):\n X, Y= map(int, input().split())\n if X**2+Y**2<=D**2:\n an +=1\nprint(an) \n\n', 'N = int(input())\nD = int(input())\nan=0\nfor i in range(N):\n X, Y= map(int, input().split())\n if X**2+Y**2<=D**2:\n an +=1\nprint(an) \n', 'N, D = map(int, input().split())\nan=0\nfor i in range(N):\n X, Y= map(int, input().split())\n if X**2+Y**2<=D**2:\n an +=1\nprint(an) '] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s209502609', 's915872322', 's406381207'] | [9164.0, 9104.0, 9160.0] | [25.0, 24.0, 477.0] | [139, 138, 136] |
p02595 | u465423770 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['20 100000\n14309 -32939\n-56855 100340\n151364 25430\n103789 -113141\n147404 -136977\n-37006 -30929\n188810 -49557\n13419 70401\n-88280 165170\n-196399 137941\n-176527 -61904\n46659 115261\n-153551 114185\n98784 -6820\n94111 -86268\n-30401 61477\n-55056 7872\n5901 -163796\n138819 -185986\n-69848 -96669', 'import math\n\nn,d = map(int, input().split())\n\ncount = 0\nfor _ in range(n):\n x,y = map(int, input().split())\n dis = math.sqrt((x*x) + (y*y))\n if dis <= d:\n count += 1\n\nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s935176841', 's891522980'] | [9004.0, 9120.0] | [26.0, 435.0] | [283, 196] |
p02595 | u471743885 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D=map(int, input().split())\n\nans=0\n\nfor i in range(N):\n x,y=map(int, input().split())\n\n if x**2 +y**2 <=D**2:\n ans +=1', 'N, D=map(int, input().split())\n\nans=0\n\nfor i in range(N):\n x,y=map(int, input().split())\n\n if x**2 +y**2 <=D**2:\n ans +=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s016194351', 's484816528'] | [8924.0, 9144.0] | [475.0, 469.0] | [126, 137] |
p02595 | u473113960 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n = map(int, input().split())\ncount = 0\nfor i in range(n[0]):\n a, b = map(int, input().split())\n r = (a **2 + b ** 2) ** 0.5\n if r <= n[1]:\n count += 1\nprint(count)', 'n = map(int, input())\ncount = 0\nfor i in range(n[0]):\n a, b = map(int, input())\n r = (a **2 + b ** 2) ** 0.5\n if r <= n[1]:\n count += 1\nprint(count)\n ', 'N, D = map(int, input().split())\ncount = 0\nfor i in range(N):\n a, b = map(int, input().split())\n r = (a **2 + b ** 2) ** 0.5\n if r <= D:\n count += 1\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s859451203', 's921335571', 's403882803'] | [9108.0, 8992.0, 9644.0] | [28.0, 26.0, 498.0] | [170, 157, 167] |
p02595 | u480472958 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(x**2 + y**2) <= d:\n ans += 1\nprint(ans)', 'from math import sqrt\nn, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(x**2 + y**2) <= d:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s136109580', 's032269581'] | [9180.0, 9188.0] | [26.0, 458.0] | [155, 177] |
p02595 | u481919972 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['nd = input().split()\nN = int(nd[0])\nD = int(nd[1])\n\nans = 0\n\nfor i in range(N-1):\n xy = input().split()\n x = int(xy [2*i])\n y = int(xy [2*i+1])\n d = x**2 + y**2\n if d < D:\n ans += 1\n\nprint(ans)', 'nd = input().split()\nN = int(nd[0])\nD = int(nd[1])\nD = D**2\n\nans = 0\n\nfor i in range(N):\n ls = input().split()\n x = int(ls[0])\n y = int(ls[1])\n d = x**2 + y**2\n if d <= D :\n ans += 1\n\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s906791326', 's761408687'] | [9132.0, 9152.0] | [25.0, 451.0] | [215, 217] |
p02595 | u482743994 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\nx=[0]*n\ny=[0]*n\nfor i in range(n):\n x[i],y[i]=map(int,input().split())\nans=0\nfor i in range(n):\n if x[i]**2+y[i]**2<=d:\n ans+=1\n\nprint(ans)', 'n,d=map(int,input().split())\nx=[0]*n\ny=[0]*n\nfor i in range(n):\n x[i],y[i]=map(int,input().split())\nans=0\nfor i in range(n):\n if x[i]**2+y[i]**2<=d**2:\n ans+=1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s759678087', 's048870638'] | [24636.0, 24700.0] | [475.0, 521.0] | [173, 176] |
p02595 | u486209657 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\nL=np.array(map(int,input()))\nN=L(0,0)\nD=L(0,1)\ncnt=0\nfor idx in range(1,N):\n if L(idx,0)**2+L(idx,1)**2<=D**2:\n cnt=cnt+1\nprint(cnt)\n ', 'N,D=map(int,input().split())\ncnt=0\nfor idx in range(N):\n X,Y=map(int,input().split())\n if X**2+Y**2<=D**2:\n cnt=cnt+1\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s798699196', 's508460555'] | [27128.0, 9128.0] | [110.0, 475.0] | [158, 134] |
p02595 | u486536494 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import datetime\nimport string\nimport re\nimport math\n\ninp = list(map(int, input().split()))\nN=int(inp[0])\nD=int(inp[1])\nalist = [input().split() for i in range(N)]\n\ncount = 0\nfor i in range(N):\n if int(alist[i][0])^2 + int(alist[i][1])^2 <= D^2: count += 1\n\nprint(count)', 'import datetime\nimport string\nimport re\nimport math\n\ninp = list(map(int, input().split()))\nN=int(inp[0])\nD=int(inp[1])\nalist = [input().split() for i in range(N)]\n\ncount = 0\nfor i in range(N):\n if int(alist[i][0])**2 + int(alist[i][1])**2 <= D**2: count += 1\n\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s862978712', 's118127722'] | [68532.0, 68528.0] | [511.0, 645.0] | [272, 275] |
p02595 | u491462774 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn, d = map(int, input().split())\nxy = [list(map(int, input().split())) for _ in range(n)]\nprint(xy)\ncount = 0\n\nfor i in range(n):\n count = count + 1 if math.sqrt(xy[i][0]**2 + xy[i][1]**2) <= d else count\n\nprint(count)', 'import math\nn, d = map(int, input().split())\nxy = [list(map(int, input().split())) for _ in range(n)]\ncount = 0\n\nfor i in range(n):\n count = count + 1 if math.sqrt(xy[i][0]**2 + xy[i][1]**2) <= d else count\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s000063593', 's122264419'] | [52504.0, 45384.0] | [651.0, 556.0] | [233, 224] |
p02595 | u491550356 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\n\nans = 0\nfor i in range(N):\n p, q = map(int, input().split())\n if p*p + q*q <= D:\n ans += 1\nprint(ans)', 'N, D = map(int, input().split())\n\nans = 0\nfor i in range(N):\n p, q = map(int, input().split())\n if p*p + q*q <= D*D:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s761895181', 's552623040'] | [9040.0, 9160.0] | [373.0, 388.0] | [140, 143] |
p02595 | u492254509 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nnum = [input().split() for _ in range(N)]\n \nX = []\nY = []\ncount = 0\n \nfor n in num:\n X.append(int(n[0]))\n Y.append(int(n[1]))\n \nfor x, y in zip(X, Y):\n dist = x**2 + y**2\n if dist <= D**2:\n count += 1', 'N, D = map(int, input().split())\nnum = [input().split() for _ in range(N)]\n \nX = []\nY = []\ncount = 0\n \nfor n in num:\n X.append(int(n[0]))\n Y.append(int(n[1]))\n \nfor x, y in zip(X, Y):\n dist = x**2 + y**2\n if dist <= D**2:\n count += 1\n \nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s176414744', 's295770975'] | [83440.0, 83588.0] | [627.0, 627.0] | [253, 268] |
p02595 | u492929439 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['20 100000\n14309 -32939\n-56855 100340\n151364 25430\n103789 -113141\n147404 -136977\n-37006 -30929\n188810 -49557\n13419 70401\n-88280 165170\n-196399 137941\n-176527 -61904\n46659 115261\n-153551 114185\n98784 -6820\n94111 -86268\n-30401 61477\n-55056 7872\n5901 -163796\n138819 -185986\n-69848 -96669', 'N, M = map(int, input().split())\nH = [int(num) for num in input().split()]\nans = [1] * N\n\nfor i in range(M):\n A, B = map(int, input().split())\n if(H[A-1] > H[B-1]):\n ans[B-1] = 0\n elif(H[B-1] > H[A-1]):\n ans[A-1] = 0\n else:\n ans[A-1] = 0\n ans[B-1] = 0\n\nprint(sum(ans))', 'N, D = map(int, input().split())\nans = 0\n\nDD = D*D\nfor i in range(N):\n x, y = map(int, input().split())\n\n if(x*x + y*y <= DD):\n ans += 1 \n\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s147010012', 's419904219', 's799113892'] | [9004.0, 10372.0, 9108.0] | [28.0, 30.0, 394.0] | [283, 308, 162] |
p02595 | u497418592 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\n\nprint(n, d)\n\nx = []\ny = []\n\nfor i in range(n):\n tempx, tempy = map(int, input().split())\n x.append(tempx)\n y.append(tempy)\n\ncount = 0\n\n\nfor i in range(n):\n if(d ** 2 >= x[i] ** 2 + y[i] ** 2):\n count += 1\n\nprint(count)\n', 'n, d = map(int, input().split())\n\n#print(n, d)\n\nx = []\ny = []\n\nfor i in range(n):\n tempx, tempy = map(int, input().split())\n x.append(tempx)\n y.append(tempy)\n\ncount = 0\n\n\nfor i in range(n):\n if(d ** 2 >= x[i] ** 2 + y[i] ** 2):\n count += 1\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s261275117', 's370260954'] | [24484.0, 24580.0] | [527.0, 525.0] | [272, 273] |
p02595 | u498512260 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn, d = map(int, input().split())\np=[]\nfor i in range(n):\n p.append(list(map(int, input().split())))\n#print(p)\ncount=0\nfor i in range(n):\n if math.sqrt(((p[i][0])**2 + (p[i][1])**2)) <= 0:\n count+=1\nprint(count)', 'import math\n\nn, d = map(int, input().split())\np=[]\nfor i in range(n):\n p.append(list(map(int, input().split())))\n#print(p)\ncount=0\nfor i in range(n):\n if math.sqrt(((p[i][0])**2 + (p[i][1])**2)) <= d:\n count+=1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s491523676', 's599109504'] | [45272.0, 45352.0] | [630.0, 608.0] | [236, 236] |
p02595 | u501486979 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nX=[]\nY=[]\ncount=0\nfor i in range(N):\n Xi,Yi=map(int,input().split())\n X.append(Xi)\n Y.append(Yi)\n\nfor ll in range(N):\n if (X**2+Y**2<=D):\n count +=1\n\nprint(count)', 'N,D=map(int,input().split())\nX=[]\nY=[]\ncount=0\nfor i in range(N):\n Xi,Yi=map(int,input().split())\n X.append(Xi)\n Y.append(Yi)\n\nfor ll in range(N):\n if (X[ll]**2+Y[ll]**2<=D**2):\n count +=1\n\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s880252135', 's494592863'] | [24920.0, 24868.0] | [380.0, 540.0] | [210, 221] |
p02595 | u506422818 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn,d = map(str,input().split())\nanswer = 0\nfor i in range(n):\n x,y = map(str,input().split())\n if math.sqrt(x**2 + y**2) <= d:\n answer += 1\n \nprint(answer)', 'import math\n \nn,d = map(int,input().split())\nanswer = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if math.sqrt(x**2 + y**2) <= d:\n answer += 1\n \nprint(answer)'] | ['Runtime Error', 'Accepted'] | ['s906528508', 's679656958'] | [9112.0, 9112.0] | [25.0, 464.0] | [175, 176] |
p02595 | u506996808 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=N:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N+1):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=N:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt((x**2+y**2))\n return d\n\na=0\nfor i in range(N):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=N:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N+1):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=D:\n a+=1\nprint(a)', 'N,D=map(int,input().split())\nX=[]\nY=[]\nfor i in range(N):\n x,y=input().split()\n X.append(int(x))\n Y.append(int(y))\n\nimport math\ndef get_distance(x,y):\n d=math.sqrt(((x)**2+(y)**2))\n return d\n\na=0\nfor i in range(N):\n distance=get_distance(x=X[i],y=Y[i])\n if distance<=D:\n a+=1\nprint(a)\n '] | ['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s240536089', 's617755530', 's818898459', 's862966403', 's634650811'] | [24920.0, 24848.0, 24912.0, 24924.0, 24848.0] | [523.0, 543.0, 541.0, 536.0, 537.0] | [312, 314, 308, 314, 317] |
p02595 | u508061226 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\n\nA = []\n\nfor i in range(n):\n A_i = list(map(int, input().split()))\n A.append(A_i)\n \nans = 0\n\nfor j in A:\n if A[0] ** 2 + A[1] ** 2 <= d **2 :\n ans += 1\n\nprint(ans)', 'n, d = map(int, input().split())\n\nA = []\n\nfor i in range(n):\n A_i = list(map(int, input().split()))\n A.append(A_i)\n \nans = 0\n\nfor j in A:\n if (j[0] ** 2 + j[1] ** 2) <= d **2 :\n ans += 1\n\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s200789560', 's387821173'] | [45388.0, 45400.0] | [446.0, 583.0] | [203, 206] |
p02595 | u512212329 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["def main():\n n, threshould = [int(x) for x in input().split()]\n count = 0\n for _ in range(n):\n x, y = [int(x) ** 2 for x in input().split()]\n \n count += (x ** 2 + y ** 2) <= threshould ** 2\n print(count)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n n, threshould = [int(x) for x in input().split()]\n\n def gen():\n for _ in range(n):\n dist = sum(int(x) ** 2 for x in input().split())\n yield dist <= threshould ** 2\n\n print(sum(gen()))\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s886783141', 's064249815'] | [9128.0, 9076.0] | [546.0, 483.0] | [321, 275] |
p02595 | u512953702 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n x,y=map(int,input().split())\n if (x**2) + (y**2)==p:\n c=c+1\nprint(c)\n', 'n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n\tx,y==map(int,input().split())\n if (x**2) + (y**2)==p:\n c=c+1\nprint(c)', 'n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n x,y==map(int,input().split())\n if (x**2) + (y**2)==p:\n c=c+1\nprint(c)', 'n,d=map(int,input().split())\nc=0\np=d*d\nfor j in range(n):\n x,y=map(int,input().split())\n if (x**2) + (y**2)<=p:\n c=c+1\nprint(c)'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s350515733', 's427598348', 's907979456', 's134342282'] | [9144.0, 9024.0, 9108.0, 9152.0] | [448.0, 24.0, 24.0, 473.0] | [141, 138, 141, 140] |
p02595 | u517674755 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN,D = map(int, input().split())\ncount = 1\nfor i in range(N):\n x,y = map(int, input().split())\n result = (x**2) + (y**2)\n final = math.sqrt(result)\n if round(final) >= D:\n count += 1\nprint(count)\n', 'import math\nN,D = map(int, input().split())\ncount = 0\nfor i in range(N):\n x,y = map(int, input().split())\n result = abs(x**2) + abs(y**2)\n final = math.sqrt(result)\n if final <= float(D):\n count += 1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s401174757', 's810871187'] | [9180.0, 9192.0] | [530.0, 519.0] | [226, 232] |
p02595 | u518958552 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d = map(int,input().split())\nx = [list(map(str, input().split())) for _ in range(n)]\nw =0\nfor i in x:\n yy = [int(s) for s in i]\n if math.sqrt(yy[0]**2+yy[1]**2)<=5:\n w += 1\n else:\n w += 1\nprint(w)', 'n, d = map(int,input().split())\nans = 0\nfor _ in range(n):\n x, y = map(int,input().split())\n dis = (x**2 + y**2)**0.5\n if dis <= d:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s770784762', 's562322881'] | [58284.0, 9596.0] | [730.0, 500.0] | [233, 158] |
p02595 | u525998258 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d = map(int,input().split())\nc = 0\nfor i in range(n):\n x,y = map(int,input().split())\n D = math.sqrt((x*x)+(y*y))\n if(int(D)<=d):\n c+=1\nprint(c)\n', 'import math\nn,d = map(int,input().split())\nc = 0\nfor i in range(n):\n x,y = map(int,input().split())\n D = math.sqrt((x*x)+(y*y))\n if(D <=d):\n c+=1\nprint(c)\n'] | ['Wrong Answer', 'Accepted'] | ['s810489288', 's295745451'] | [9124.0, 9180.0] | [440.0, 433.0] | [175, 171] |
p02595 | u529737989 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int, input().split())\nA = [list(map(int, input().split())) for _ in range(N)]\n\ncount = 0\nfor a in A:\n print(a[0]**2 + a[1]**2)\n if a[0]**2 + a[1]**2 <= D**2\n count += 1\n\nprint(count)', 'N,D = map(int, input().split())\nA = [list(map(int, input().split())) for _ in range(N)]\n\ncount = 0\nfor a in A:\n if a[0]**2 + a[1]**2 <= D**2:\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s415254671', 's054403359'] | [9028.0, 45452.0] | [25.0, 549.0] | [198, 172] |
p02595 | u531219227 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\n\nans = 0\n\nfor _ in range(N):\n p,q = map(int,input().split())\n if p**2+q**2 < D**2:\n ans+=1\nprint(ans)', 'N,D = map(int,input().split())\n\nans = 0\n\nfor _ in range(N):\n p,q = map(int,input().split())\n if p**2+q**2 <= D**2:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s179755678', 's279083441'] | [9180.0, 9140.0] | [491.0, 494.0] | [137, 138] |
p02595 | u531456543 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\nlst = [[int(j) for j in input().split()] for i in range(n)]\ncount = 0\nfor d in lst:\n distance = (d[0]**2 + d[1]**2)**0.5\n if distance <= d:\n count += 1\nprint(count)', 'n, d = map(int, input().split())\nlst = [[int(j) for j in input().split()] for i in range(n)]\ncount = 0\nfor x in lst:\n distance = (x[0]**2 + x[1]**2)**0.5\n if distance <= d:\n count += 1\nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s541451036', 's654782706'] | [42264.0, 42660.0] | [389.0, 529.0] | [202, 203] |
p02595 | u535205598 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy\n\nN, D = map(int, input().split())\nX = [0] * N\nY = [0] * N\ncount = 0\nfor i in range(N):\n X[i], Y[i] = map(int, input().split())\n if numpy.sqrt(X[i]**2 + Y[i]**2):\n count += 1\nprint(count)', 'import numpy\n\nN, D = map(int, input().split())\nX = [0] * N\nY = [0] * N\ncount = 0\nfor i in range(N):\n X[i], Y[i] = map(int, input().split())\n if numpy.sqrt(X[i]**2 + Y[i]**2) <= D:\n count += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s045508368', 's888720176'] | [42424.0, 42416.0] | [832.0, 909.0] | [212, 217] |
p02595 | u535833744 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input() .split())\nans = 0\nfor i in range (N):\n X, Y = map(int, input() .split())\n if X^2 + Y^2 <= D^2:\n ans = ans + 1\nprint (ans)', 'N, D = map(int, input() .split())\nans = 0\nfor i in range (N):\n X, Y = map(int, input() .split())\n if X*X + Y*Y <= D*D:\n ans = ans + 1\nprint (ans)'] | ['Wrong Answer', 'Accepted'] | ['s680604104', 's734180377'] | [9184.0, 9176.0] | [399.0, 396.0] | [146, 146] |
p02595 | u536642030 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = list(map(int, input().split()))\npoints = []\nfor i in range(n):\n points.append(list(map(int, input().split())))\n \ncnt = 0\nfor p in points:\n distance = sqrt(p[0] **2 + p[1] **2)\n if distance <= d:\n cnt += 1\nprint(cnt)\n ', 'n, d = list(map(int, input().split()))\npoints = []\nfor i in range(n):\n points.append(list(map(int, input().split())))\n \ncnt = 0\nimport numpy as np\nfor p in points:\n distance = np.linalg.norm(p)\n if distance <= d:\n cnt += 1\nprint(cnt)\n '] | ['Runtime Error', 'Accepted'] | ['s367368340', 's884477769'] | [45360.0, 63332.0] | [441.0, 1602.0] | [233, 244] |
p02595 | u546198000 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\narray = list(list(map(int,input().split()))for _ in range(N))\ncount = 0\nfor i in array:\n print(i)\n if i[0]**2+i[1]**2<=D**2:\n count += 1\nprint(count)', 'N,D = map(int,input().split())\narray = list(list(map(int,input().split()))for _ in range(N))\ncount = 0\nfor i in array:\n if i[0]**2+i[1]**2<=D**2:\n count += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s768079150', 's955271355'] | [45372.0, 45484.0] | [723.0, 543.0] | [193, 180] |
p02595 | u548301928 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\ncount = 0\nfor i in range(n):\n a, b = map(int, input().split())\n if ((a+b)*(a-b))**(1/2) <= d:\n count += 1\nprint(count)', 'n, d = map(int, input().split())\ncount = 0\nfor i in range(n):\n a, b = map(int, input().split())\n k = a**2 + b**2\n if k >= 0:\n \tif (k)**(1/2) <= d:\n \t\tcount += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s712698619', 's142216885'] | [9448.0, 9488.0] | [371.0, 491.0] | [156, 178] |
p02595 | u549473797 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\nn=input()\nn=int(n) \nd=input()\nd=int(d) \ncount=0\nfor i in range(n):\n x=input()\n y=input()\n x=int(x)\n y=int(y)\n dist=((x**2) + (y**2))**0.5\n if dist<=d:\n count+=1\nprint(count) ', 'import numpy as np\nn=int(input()) \nd=int(input())\ncount=0\nfor i in range(n):\n x=input()\n y=input()\n x=int(x)\n y=int(y)\n dist=np.sqrt((x**2) + (y**2))\n if dist<=d:\n count+=1\nprint(count) ', '\nn,d= input().split(" ")\nn=int(n)\nd=int(d) \ncount=0\nfor i in range(n):\n x,y= input().split(" ")\n x=int(x)\n y=int(y) \n dist=((x**2) + (y**2))**0.5\n if dist<=d:\n count+=1\nprint(count) '] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s578381122', 's628953282', 's129471564'] | [27168.0, 27164.0, 9648.0] | [124.0, 133.0, 471.0] | [202, 195, 190] |
p02595 | u550091708 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N , D = map(int,input().split)\n\nX=Y=p=count=0\n\nfor index in range(N):\n X,Y = map(int,input().split)\n p = sqrt(X**2 + Y**2)\n if p <= D:\n count += 1\n \nprint(count)', 'import math\n\nN,D=(int(x) for x in input().split())\n\nX=Y=p=count=0\n\nfor i in range(N):\n X,Y=(int(x) for x in input().split())\n p =math.sqrt(X**2+Y**2)\n if p <= D:\n count += 1\n \nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s925861111', 's511124265'] | [9060.0, 9184.0] | [27.0, 506.0] | [170, 198] |
p02595 | u555756356 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=input().split()\na=[]\nfor x in range(int(n)):\n x,y=input().split()\n print((((int(x)**2)+(int(y)**2))**0.5))\n if (((int(x)**2)+(int(y)**2))**0.5)==float(int(d)):\n a.append(1)\nprint(len(a))\n', 'n,d=input().split()\na=[]\nfor x in range(int(n)):\n x,y=input().split()\n if (((int(x)**2)+(int(y)**2))**0.5)==float(int(d)):\n a.append(1)\nprint(len(a))\n', 'n,d=input().split()\na=[]\nfor x in range(int(n)):\n x,y=input().split()\n if (((int(x)**2)+(int(y)**2))**0.5)<=float(int(d)):\n a.append(1)\nprint(len(a))\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s284325961', 's707731610', 's820786553'] | [10620.0, 10392.0, 10656.0] | [1209.0, 486.0, 499.0] | [207, 163, 163] |
p02595 | u559126797 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if x^2 + y^2 <= D^2:\n ans += 1\n \nprint(ans)\n', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if x^2 + y^2 >= D^2:\n ans += 1\n \nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s455712765', 's730467604', 's499499196'] | [9160.0, 9180.0, 9052.0] | [400.0, 404.0, 483.0] | [147, 146, 149] |
p02595 | u563430990 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\nwhile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count) = 0', 'N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\ncile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count)ount = 0', 'N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\nwhile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count)ount = 0', 'N,Q = [int(w) for w in input().split()]\ni = 0\nx = []\ny = []\ncount = 0\nwhile i < N:\n a,b = [int(w) for w in input().split()]\n x.append(a)\n y.append(b)\n i +=1\nfor i in range(N):\n m = (x[i]**2 + y[i]**2)**(1/2)\n if m <= Q:\n count += 1\n else:\n count += 0\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s044544323', 's258700784', 's727337094', 's398642766'] | [9064.0, 8948.0, 8996.0, 24888.0] | [22.0, 29.0, 41.0, 572.0] | [293, 296, 297, 299] |
p02595 | u565761178 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\nprint(N)\nL=[list(map(int,input().split())) for _ in range(N)]\ncount = 0\nfor i in L:\n if i[0]**2+i[1]**2<=D**2:\n count+=1\nprint(count)\n', 'N,D = map(int,input().split())\n\nL=[list(map(int,input().split())) for _ in range(N)]\ncount = 0\nfor i in L:\n if i[0]**2+i[1]**2<=D**2:\n count+=1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s060022806', 's033996434'] | [45460.0, 45460.0] | [546.0, 592.0] | [175, 167] |
p02595 | u568290642 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nx, y = map(int, input().split())\ncount = 0\nfor i in range(x):\n a, b = map(int, input().split())\n ans = math.sqrt((a*a)+(b*b))\n print(ans)\n if y-0.90 <= ans:\n count = count + 1\nprint(count)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y=map(int,input().split())\n dist=pow((pow(x,2)+pow(y,2)),0.5)\n if dist<=d:\n count+=1\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s336599844', 's305167034'] | [9188.0, 9628.0] | [1075.0, 526.0] | [219, 173] |
p02595 | u571537830 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\n\nxy = [map(int, input().split()) for _ in range(5)]\nx, y = [list(i) for i in zip(*xy)]\n\n\ncount = 0\n\nfor i, j in zip(x, y):\n if i*i + j*j <= d*d:\n count += 1\n\nprint(count)', 'n, d = map(int, input().split())\nx = list(map(int, input().split()))\ny = list(map(int, input().split()))\n\ncount = 0\n\nfor i, j in zip(x, y):\n if i*i + j*j <= d*d:\n count += 1\n\nprint(count)', 'n, d = map(int, input().split())\n\nxy = [map(int, input().split()) for _ in range(n)]\nx, y = [list(i) for i in zip(*xy)]\n\ncount = 0\n\nfor i, j in zip(x, y):\n if i*i + j*j <= d*d:\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s589720540', 's787906380', 's449568736'] | [9184.0, 9176.0, 116660.0] | [33.0, 31.0, 872.0] | [213, 197, 212] |
p02595 | u572122511 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = list(map(int, input().split()))\n \ncount = 0\nfor _ in range(N):\n X, Y = list(map(int, input().split()))\n if (X * X + Y * Y) ** 2 <= D ** 2 :\n count += 1\nprint(count)', 'N, D = list(map(int, input().split()))\n \ncount = 0\nfor _ in range(N):\n X, Y = list(map(int, input().split()))\n if X * X + Y * Y <= D ** 2 :\n count += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s965434736', 's940289419'] | [9064.0, 9108.0] | [486.0, 451.0] | [184, 177] |
p02595 | u579758408 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int, input().split())\na=0\nfor i in str(N):\n x,y=map(int, input().split())\n if x*x+y*y<=D*D:\n a+=1\n else:\n pass\nprint(a)\n', 'N,D=map(int, input().split())\na=0\nfor i in range(N):\n x,y=map(int, input().split())\n if x*x+y*y<=D*D:\n a+=1\n else:\n pass\nprint(a)\n'] | ['Wrong Answer', 'Accepted'] | ['s687599679', 's943998155'] | [9172.0, 9100.0] | [33.0, 406.0] | [137, 139] |
p02595 | u580151174 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['from math import *\n\nN, D = (int(x) for x in input().split())\ncount =0\nfor i in range(N):\n X, Y = (int(x) for x in input().split())\n if sqrt(X*X+Y*Y)<D:\n count+=1\n\nprint(count)', 'from math import *\n\nN, D = (int(x) for x in input().split())\ncount =0\nfor i in range(N):\n X, Y = (int(x) for x in input().split())\n if sqrt(X*X+Y*Y)<=D:\n count+=1\n\nprint(count)\n '] | ['Wrong Answer', 'Accepted'] | ['s251117761', 's074676351'] | [9148.0, 9128.0] | [426.0, 428.0] | [188, 194] |
p02595 | u582489208 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN, D = list(map(int, input().split()))\nresult = 0\nlist = []\ncount = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n result = math.sqrt(X**2 + Y**2)\n list.append(result)\nfor j in list:\n if j >= D:\n count += 1', 'import math\nN, D = list(map(int, input().split()))\nresult = 0\nlist = []\ncount = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n result = math.sqrt(X**2 + Y**2)\n list.append(result)\nfor j in list:\n if j <= D:\n count += 1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s713825485', 's949321083'] | [16956.0, 17020.0] | [516.0, 494.0] | [246, 259] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.