problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p02624
u216928054
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['#!/usr/bin/env python3\n\nfrom functools import reduce\nfrom operator import mul\nfrom collections import defaultdict, Counter\nfrom heapq import heappush, heappop\nimport sys\nfrom math import sqrt, floor\n\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.buffer.readline\nINF = 10 ** 9 + 1 # sys.maxsize # float("inf")\n\n\ndef debug(*x):\n print(*x)\n\n\ndef solve(N):\n ret = 0\n for i in range(1, N + 1):\n end = N // i\n num = end // i\n ret += (i + end) * num / 2\n print(ret)\n\n\ndef main():\n N = int(input())\n solve(N)\n\n\ndef _test():\n """\n >>> solve(4)\n 23\n\n >>> solve(100)\n 26879\n\n >>> solve(10000000)\n 838627288460105\n """\n import doctest\n doctest.testmod()\n\n\ndef as_input(s):\n "use in test, use given string as input file"\n import io\n global read, input\n f = io.StringIO(s.strip())\n input = f.readline\n read = f.read\n\n\nUSE_NUMBA = False\nif (USE_NUMBA and sys.argv[-1] == \'ONLINE_JUDGE\') or sys.argv[-1] == \'-c\':\n print("compiling")\n from numba.pycc import CC\n cc = CC(\'my_module\')\n cc.export(\'solve\', solve.__doc__.strip().split()[0])(solve)\n cc.compile()\n exit()\nelse:\n input = sys.stdin.buffer.readline\n read = sys.stdin.buffer.read\n\n if (USE_NUMBA and sys.argv[-1] != \'-p\') or sys.argv[-1] == "--numba":\n # -p: pure python mode\n # if not -p, import compiled module\n from my_module import solve # pylint: disable=all\n elif sys.argv[-1] == "-t":\n _test()\n sys.exit()\n elif sys.argv[-1] != \'-p\' and len(sys.argv) == 2:\n # input given as file\n input_as_file = open(sys.argv[1])\n input = input_as_file.buffer.readline\n read = input_as_file.buffer.read\n\n main()\n', '#!/usr/bin/env python3\n\nfrom functools import reduce\nfrom operator import mul\nfrom collections import defaultdict, Counter\nfrom heapq import heappush, heappop\nimport sys\nfrom math import sqrt, floor\n\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.buffer.readline\nINF = 10 ** 9 + 1 # sys.maxsize # float("inf")\n\n\ndef debug(*x):\n print(*x)\n\n\ndef solve(N):\n ret = 0\n i = 2\n while True:\n step = i // 2\n start = (i + 1) // 2 * step\n if start > N:\n break\n end = N // step * step\n ret += (start + end) * ((end - start) // step + 1) // 2\n i += 1\n print(ret)\n\n\ndef main():\n N = int(input())\n solve(N)\n\n\ndef _test():\n """\n >>> solve(4)\n 23\n\n >>> solve(100)\n 26879\n\n >>> solve(10000000)\n 838627288460105\n """\n import doctest\n doctest.testmod()\n\n\ndef as_input(s):\n "use in test, use given string as input file"\n import io\n global read, input\n f = io.StringIO(s.strip())\n input = f.readline\n read = f.read\n\n\nUSE_NUMBA = False\nif (USE_NUMBA and sys.argv[-1] == \'ONLINE_JUDGE\') or sys.argv[-1] == \'-c\':\n print("compiling")\n from numba.pycc import CC\n cc = CC(\'my_module\')\n cc.export(\'solve\', solve.__doc__.strip().split()[0])(solve)\n cc.compile()\n exit()\nelse:\n input = sys.stdin.buffer.readline\n read = sys.stdin.buffer.read\n\n if (USE_NUMBA and sys.argv[-1] != \'-p\') or sys.argv[-1] == "--numba":\n # -p: pure python mode\n # if not -p, import compiled module\n from my_module import solve # pylint: disable=all\n elif sys.argv[-1] == "-t":\n _test()\n sys.exit()\n elif sys.argv[-1] != \'-p\' and len(sys.argv) == 2:\n # input given as file\n input_as_file = open(sys.argv[1])\n input = input_as_file.buffer.readline\n read = input_as_file.buffer.read\n\n main()\n']
['Wrong Answer', 'Accepted']
['s329419679', 's935676754']
[9648.0, 9568.0]
[1179.0, 33.0]
[1733, 1858]
p02624
u219197917
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nans = 0\nfor i in arnge(1, n + 1):\n for j in range(1, n + 1, i):\n ans += j\nprint(ans)\n', 'n = int(input())\nans = 0\nfor i in range(1, n + 1):\n for j in range(1, n + 1, i):\n ans += j\nprint(ans)\n', 'n = int(input())\ns = 0\nfor k in range(1, n + 1):\n m = n // k\n s += k * m * (m + 1) // 2\nprint(s)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s557822483', 's624762270', 's805393167']
[9072.0, 8952.0, 9148.0]
[25.0, 3308.0, 2296.0]
[106, 106, 99]
p02624
u228303592
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nans = 0\n\nfor x in range(1, n+1):\n k = n//x\n ans += n*(2*x + (n-1)*x)//2\n \nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n k=n//i\n ans+=i*(k*(k+1)//2)\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s480415408', 's674448662']
[9104.0, 9156.0]
[3308.0, 2192.0]
[104, 86]
p02624
u243312682
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
["def main():\n n = int(input())\n ans = 0\n\n for i in range(1, n+1):\n y = n // i\n ans = (y+1)*y*i//2\n print(ans)\n\nif __name__ == '__main__':\n main()", "def main():\n n = int(input())\n ans = 0\n \n for i in range(1, n+1):\n y = n // i\n ans += (y+1)*y*i//2\n print(ans)\n \nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s523648650', 's751527482']
[9172.0, 9080.0]
[1123.0, 1399.0]
[173, 176]
p02624
u248670337
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['print(sum((j:=i+1)(x:=n//j)*(x+1)*i//2for i in range(n:=int(input()))))', 'n=int(input());print(sum((x:=n//i)*(x+1)*i//2 for i in range(1,n+1)))']
['Runtime Error', 'Accepted']
['s056818528', 's507433032']
[9096.0, 9116.0]
[24.0, 1488.0]
[71, 69]
p02624
u266014018
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
["def factorization(n):\n arr = []\n temp = n\n ans = 0\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n return arr\n\ndef main():\n import sys\n def input(): return sys.stdin.readline().rstrip()\n n = int(input())\n ans = 0\n for i in range(1,n+1):\n fact =1\n arr = factorization(i)\n for a in arr:\n fact *= a[1]+1\n ans += n*fact\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "def main():\n import sys\n def input(): return sys.stdin.readline().rstrip()\n n = int(input())\n ans = 0\n sumn = lambda x: x*(x+1)//2\n for i in range(1,n+1):\n r = n//i\n ans += i*(sumn(r))\n print(ans)\n\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s134458291', 's659222246']
[9352.0, 9108.0]
[3308.0, 1699.0]
[676, 271]
p02624
u292746386
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import numpy as np\n\nN = int(input())\n\ncount = 0\nfor i in range(1, (N+1)//2+1):\n count += int(np.ceil((N+1)/i)) * (N - (N)%i) // 2 \n\n\nprint(count)', 'import numpy as np\n\nN = int(input())\n\ncount = 0\nfor i in range(1, N+1):\n count += (N // i) * (i + i * (N//i)) // 2\n\n\nprint(count)']
['Wrong Answer', 'Accepted']
['s033260708', 's074878826']
[27032.0, 26976.0]
[3309.0, 2789.0]
[146, 132]
p02624
u297089927
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\nn=int(input())\nli=[]\nf=make_divisors(n)\nfor i in range(1,n+1):\n li.append(i*f[i-1])\nprint(sum(li))', 'import sympy\nn=int(input())\nli=[]\nf=[sympy.divitor_count(i) for i in range(1,n+1)]\nfor i in range(1,n+1):\n li.append(i*f[i])\nprint(sum(li))\n', 'n=int(input())\n\n\n#print(sum(L))\nans=0\n\n# for j in range(1,n+1):\n# if i%j==0:\n# ans+=i\n#print(ans)\ng=lambda x:(x*(n//x)*(n//x+1))//2\nprint(sum(g(i) for i in range(1,n+1)))\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s252396498', 's928984305', 's469369478']
[9192.0, 9036.0, 9084.0]
[22.0, 30.0, 2069.0]
[394, 143, 260]
p02624
u302240043
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = input()\nN = int(N)\nsum = 0\nfor i in range(N):\n sum+= (i+1)*(1+N//(i+1))(N//(i+1))/2\nprint(sum)', 'N = input()\nN = int(N)\nsum = 0\nfor i in range(N):\n sum+= (i+1)*(1+N//(i+1))(N//2)/2\nprint(sum)', 'N = input()\nsum = 0\nfor i in range(N):\n sum+= i*(1+N//i)(N//2)/2\nprint(sum)', 'N = int(input())\nsum = 0\nfor i in range(1,N+1):\n sum+=i*(1+N//i)*(N//i)/2\nprint(sum)', 'N = int(input())\nsum = 0\nfor i in range(N):\n sum+= i*(1+N//i)(N//2)/2\nprint(sum)', 'N = int(input())\nsum = 0\nfor i in range(1,N+1):\n sum+=i*(1+N//i)*(N//i)/2\nprint(int(sum))']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s086305326', 's088696037', 's134226747', 's453847286', 's732760455', 's418052173']
[8952.0, 9160.0, 8844.0, 9088.0, 9056.0, 9156.0]
[24.0, 28.0, 24.0, 2348.0, 25.0, 2177.0]
[99, 95, 76, 85, 81, 90]
p02624
u303739137
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\ncnts = [k*(n//k)*((n//k)+1)//2 for k in range(1,n//2)]\nprint(sum(cnts)+ ((n//2)+n)*(n-(n//2)+1)//2)', 'n = int(input())\ncnts = [k*d*(d+1)//2 for k in range(1,n//2)]\nprint(sum(cnts)+ (n//2)*d*(d+1)//2)', 'n = int(input())\ncnts = [k*(n//k)*((n//k)+1)//2 for k in range(1,n//2+1)]\nprint(sum(cnts)+ ((n//2+1)+n)*(n-(n//2+1)+1)//2)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s488124850', 's926351607', 's665706859']
[206820.0, 9168.0, 206860.0]
[1029.0, 23.0, 964.0]
[116, 97, 122]
p02624
u312025627
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
["from numba import njit\n\n\n@njit\ndef main(N):\n ans = N\n\n for i in range(1, N+1):\n for j in range(i, N+1, i):\n ans += j\n print(ans)\n\n\nif __name__ == '__main__':\n N = int(input())\n main(N)\n", "from numba import njit\n\n\n@njit\ndef main(N):\n ans = 0\n\n for i in range(1, N+1):\n for j in range(i, N+1, i):\n ans += j\n print(ans)\n\n\nif __name__ == '__main__':\n N = int(input())\n main(N)\n"]
['Wrong Answer', 'Accepted']
['s276892814', 's375317100']
[109088.0, 109100.0]
[546.0, 640.0]
[218, 218]
p02624
u312158169
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\nn = int(input())\n\nans = 0\n\nfor j in range(1,n+1):\n y = n//j\n ans += y*(y+1)*j/2\n\nprint(ans)\n', 'import math\nn = int(input())\n\nans = 0\n\nfor j in range(1,n+1):\n y = n//j\n ans += y*(y+1)*j/2\n\nprint(int(ans))\n']
['Wrong Answer', 'Accepted']
['s911029727', 's635014571']
[9144.0, 9144.0]
[2059.0, 2049.0]
[110, 115]
p02624
u317423698
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
["import sys\n\n\ndef _sum_ob_divisors(n):\n def f(n, x):\n y = n // x\n return y * (y + 1) * x / 2\n return sum(f(n, i) for i in range(1, n + 1))\n\n\ndef sum_ob_divisors(f):\n n = int(f.read())\n\n return _sum_ob_divisors(n)\n\n\ndef main():\n ans = sum_ob_divisors(sys.stdin.buffer)\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "import sys\n\n# import numpy as np\n\ndef _sum_ob_divisors(n):\n def f(n, x):\n y = n // x\n return y * (y + 1) * x // 2\n return sum(f(n, i) for i in range(1, n + 1))\n\n\n\n# L = [1] * (n + 1)\n\n\n# for j in range(i, n + 1, i):\n# L[j] += 1\n# # L[i:n + 1:i] += 1\n# # print(f'{L=}')\n# return sum(i * x for i, x in enumerate(L))\n\n\ndef sum_ob_divisors(f):\n n = int(f.read())\n\n return _sum_ob_divisors(n)\n\n\ndef main():\n ans = sum_ob_divisors(sys.stdin.buffer)\n print(ans)\n\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s801871096', 's425774737']
[9180.0, 9180.0]
[1838.0, 1809.0]
[350, 665]
p02624
u327532412
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N, M, K = map(int, input().split())\n*A, = map(int, input().split())\n*B, = map(int, input().split())\na = [0] * (N+1)\nb = [0] * (M+1)\nfor i in range(N):\n a[i+1] = a[i] + A[i]\nfor i in range(M):\n b[i+1] = b[i] + B[i]\nans = 0\nj = M\nfor i in range(N+1):\n tmp = K - a[i]\n if tmp < 0:\n break\n while b[j] > tmp:\n j -= 1\n ans = max(ans, i + j)\nprint(ans)', 'N = int(input())\ndef cal(n):\n return n * (n + 1) // 2\nfor i in range(1, N+1):\n x = N // i\n ans += i * (x * (x + 1) // 2)\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1, N+1):\n x = N // i\n ans += i * (x * (x + 1) // 2)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s300367032', 's981224564', 's685450809']
[9152.0, 9112.0, 9152.0]
[29.0, 27.0, 2414.0]
[377, 140, 108]
p02624
u329232967
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def multiple_sum(x, n):\n # x + 2x + ... + kx(<= n)\n k = n // x\n return x * (k + 1) * k // 2\n\n\ndef solve(N: int):\n ans = 0\n for i in range(1, N + 1):\n ans += multiple_sum(i, N)\n print(ans)\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n solve(N)\n\n\nif __name__ == "__main__":\n main()\n', "#!/usr/bin/env python3\nimport sys\n\n\ndef solve(N: int):\n \n # \n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n solve(N)\n\nif __name__ == '__main__':\n main()\n", '#!/usr/bin/env python3\nimport sys\ndef multiple_sum(x, n):\n # x + 2x + ... + kx(<= n)\n k = n // x\n return x * (k + 1) * k // 2\n\n\ndef solve(N: int):\n ans = 0\n for i in range(1, N + 1):\n ans += multiple_sum(i, N)\n print(ans)\n return\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n solve(N)\n\n\nif __name__ == "__main__":\n main()\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s722962722', 's880898865', 's609561950']
[9044.0, 9104.0, 9116.0]
[25.0, 25.0, 2057.0]
[651, 564, 685]
p02624
u350931043
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import numpy as np\n\nN = int(input())\n\nans = np.zeros((N, N))\nA = np.arange(1, N + 1)\n\nans[0, :] = A\nans[1, :] = A[A%2 == 0]\nans[2, :] = A[A%3 == 0]\nans[3, :] = A[A%4 == 0]\n\nprint(np.sum(ans))', 'import numpy as np\n\nN = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n\tn = int(N/i)\n\tans += n * (n + 1) / 2 * i\n\nprint(int(ans))']
['Runtime Error', 'Accepted']
['s433153681', 's392597719']
[27208.0, 27048.0]
[115.0, 2949.0]
[191, 129]
p02624
u362599643
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\n \nsum = 0\nro = 1\nfor n in range(1,N+1):\n num = int(N/n)\n if num == 1:\n record = n\n break\n s = int(((1+num)*num)/2)\n sum += ro*s\n ro += 1\n\nprint(record)\nprint(sum)\n\nsum += int(((record+N)*(N-record+1))/2)\nprint(sum)', "record = [0]*20000000\nN = int(input())\n\n\nnums = []\nfor n in range(1,N+1):\n nums.append(int(N/n))\n# print(nums)\n\nro = 1\nfor num in nums:\n # print(num)\n for j in range(1,num+1):\n # print(j*ro)\n record[j*ro] += 1\n # print('---')\n ro += 1\n \n\nsum = 0\nfor r in range(len(record)):\n sum += r*record[r]\nprint(sum)", 'N = int(input())\n \nsum = 0\nfor n in range(1,N+1):\n num = N//n\n sum += n*(1+num)*num//2\nprint(sum)']
['Wrong Answer', 'Time Limit Exceeded', 'Accepted']
['s425909729', 's734287945', 's511196684']
[9120.0, 244668.0, 9172.0]
[2613.0, 3316.0, 2571.0]
[260, 340, 103]
p02624
u373111370
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nans = 0\nfor i in range(1, n+1):\n ans += (n//i) * (int(n/i)+1))//2*i;\nprint(ans)', 'n=int(input())\nans = 0\nfor i in range(1, n+1):\n ans += (n//i) * ((n//i)+1)//2*i;\nprint(ans)']
['Runtime Error', 'Accepted']
['s273699141', 's955735388']
[9020.0, 9156.0]
[25.0, 2156.0]
[97, 94]
p02624
u389007679
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nprint(int(sum([i * (n / i) * (n / i + 1) // 2 for i in range(1,n+1)])))', 'n = int(input())\nprint(sum([i * (n // i) * (n // i + 1) // 2 for i in range(1,n+1)]))']
['Wrong Answer', 'Accepted']
['s788050873', 's560899609']
[404620.0, 404596.0]
[3252.0, 1977.0]
[88, 85]
p02624
u425184437
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nimport math\nc=0\nfor i in range(1,n//2):\n k=n//i\n c+=i*k*(k+1)/2\nfor i in range(n//2+1,n+1):\n c+=i\n \nprint(int(c))\n', 'n=int(input())\nimport math\nc=0\nfor i in range(1,n//2+1):\n k=n//i\n c+=i*k*(k+1)/2\nfor i in range(n//2+1,n+1):\n c+=i\n \nprint(int(c))']
['Wrong Answer', 'Accepted']
['s023472278', 's888155371']
[8816.0, 9176.0]
[1578.0, 1678.0]
[142, 143]
p02624
u436519884
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nList=[1 for x in range(n+1)]\nfor x in range(2,n+1):\n for y in range(x,n+1,x):\n List[y]+=1\nans=1\nfor x in range(1,n+1):\n ans+=(List[x]*x)\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n num=n//i\n ans+=((num*(num+1))//2)*i\nprint(ans)']
['Wrong Answer', 'Accepted']
['s063362833', 's898363697']
[87192.0, 9128.0]
[3310.0, 2297.0]
[167, 93]
p02624
u439899860
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nssum = 0\nstart = time.time()\nfor k in range(1, N + 1):\n X = int(N / k)\n ssum += k * X * (X + 1) / 2\nprint(int(ssum))', '\nN = int(input())\nssum = 0\n# start = time.time()\nfor k in range(1, N + 1):\n X = int(N / k)\n ssum += k * X * (X + 1) / 2\nprint(int(ssum))\n# elapsed_time = time.time() - start\n# print("elapsed_time:{0}".format(elapsed_time) + "[sec]")']
['Runtime Error', 'Accepted']
['s953646681', 's961046936']
[9148.0, 9156.0]
[25.0, 2983.0]
[139, 251]
p02624
u462329577
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def solve(n):\n ans = n * (n + 1) - 1 \n\n i = 2\n while i * i <= n:\n num = n // i\n min_i = i * i\n max_i = i * num\n ans += (num - i + 1) * (min_i + max_i) \n ans -= min_i\n i += 1\n print(ans)\n return True\n\nif __name__ = "__main__":\n n = int(input())\n solve(n)', '#!/usr/bin/env python3\n\n\ndef main():\n n = int(input())\n ans = n * (n + 1) - 1 \n\n i = 2\n while i * i <= n:\n num = n // i\n min_i = i * i\n max_i = i * num\n ans += (num - i + 1) * (min_i + max_i) \n ans -= min_i\n i += 1\n print(ans)\n\n\nif __name__ == "__main__":\n main()\n']
['Runtime Error', 'Accepted']
['s892169873', 's359716137']
[9036.0, 9172.0]
[22.0, 28.0]
[320, 354]
p02624
u467479913
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['s = 0\nq = int(n ** .5)\nfor i in range(1, int(n ** .5) + 1):\n\tx = n // i\n\ts += i * (x * (x+1)) / 2\n\tif x**2 != n:\n\t\ty = max(n // (i+1), q)\n\t\ts += (i * (i+1) // 2) * ((x * (x+1) // 2) - (y * (y+1) // 2))\n\nprint(int(s))', 'n = int(input())\n\ns = 0\nq = int(n ** .5)\nfor i in range(1, q+1):\n\tx = n // i\n\ts += i * (x * (x+1)) / 2\n\tif x**2 != n:\n\t\ty = max(n // (i+1), q)\n\t\ts += (i * (i+1) // 2) * ((x * (x+1) // 2) - (y * (y+1) // 2))\n\nprint(int(s))']
['Runtime Error', 'Accepted']
['s897439416', 's450962659']
[8900.0, 9444.0]
[22.0, 34.0]
[216, 221]
p02624
u475402977
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N=int(input())\nsum=0\nfor i in range(2,N+1):\n sum+=N//i\nprint(sum) ', 'N=int(input())\nsum=0\nfor j in range(1,N+1):\n sum+=((N//j)*(N//j+1)//2)*j\nprint(sum)\n']
['Wrong Answer', 'Accepted']
['s689807443', 's545486918']
[8908.0, 9052.0]
[1159.0, 2321.0]
[72, 87]
p02624
u476674874
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['from numba import jit\ndef _resolver(N):\n count = 0\n for j in range(N+1):\n for i in range(N+1):\n if i % j ==0:\n count += i\n #j, j*2, j*3 ,,,, j*(N//j)\n return count\n\n@jit("u8(u8)")\ndef resolver(N):\n if N == 0:\n return 0\n if N == 1:\n return 1\n \n count = 0\n #for j in range(N+1):\n \n \n # count += i\n #j, j*2, j*3 ,,,, j*(N//j)\n\n for j in range(1,N+1):\n count += j*(j+(j*(N//j))) // 2\n \n #import numpy as np\n #J = np.arange(1, N+1, dtype=np.int64)\n #count = sum(J*(J+(J*(N//J))) // 2)\n return count\n\ndef test():\n print(resolver(10**7))\n for n in range(1, 15):\n ans1 = resolver(n)\n ans2 = resolver(n)\n print(f"n={n} ans={ans1}, {ans2}")\n \n\n\ndef main():\n #test()\n N = int(input())\n ans = resolver(N)\n print(ans)\n\n\nif __name__ == \'__main__\':\n main()\n', 'from numba import jit\ndef _resolver(N):\n count = 0\n for j in range(N+1):\n for i in range(N+1):\n if i % j ==0:\n count += i\n #j, j*2, j*3 ,,,, j*(N//j)\n return count\n\n#@jit("u8(u8)")\ndef resolver(N):\n if N == 0:\n return 0\n if N == 1:\n return 1\n \n count = 0\n #for j in range(N+1):\n \n \n # count += i\n #j, j*2, j*3 ,,,, j*(N//j)\n\n for j in range(1,N+1):\n count += j*(j+(j*(N//j))) // 2\n \n #import numpy as np\n #J = np.arange(1, N+1, dtype=np.int64)\n #count = sum(J*(J+(J*(N//J))) // 2)\n return count\n\ndef test():\n print(resolver(10**7))\n for n in range(1, 15):\n ans1 = resolver(n)\n ans2 = resolver(n)\n print(f"n={n} ans={ans1}, {ans2}")\n \n\n\ndef main():\n #test()\n N = int(input())\n ans = resolver(N)\n print(ans)\n\n\nif __name__ == \'__main__\':\n main()\n', 'from numba import jit\ndef _resolver(N):\n count = 0\n for j in range(1, N+1):\n for i in range(1, N+1):\n if i % j ==0:\n count += i\n #j, j*2, j*3 ,,,, j*(N//j)\n return count\n\n#@jit("u8(u8)")\ndef resolver(N):\n if N == 0:\n return 0\n if N == 1:\n return 1\n \n count = 0\n #for j in range(N+1):\n \n \n # count += i\n #j, j*2, j*3 ,,,, j*(N//j)\n\n for j in range(1,N+1):\n length = N // j\n count += length*(j+(j*length)) // 2\n return count\n\ndef resolver2(N):\n\n import numpy as np\n J = np.arange(1, N+1, dtype=np.int64)\n length = N // J\n count = sum(length*(J+(J*length)) // 2)\n return count\n\ndef test():\n print(resolver2(10**7))\n for n in range(1, 100):\n ans1 = _resolver(n)\n ans2 = resolver2(n)\n if ans1 != ans2 or n < 11:\n print(f"n={n} ans={ans1}, {ans2}")\n print("OK")\n\n\ndef main():\n #test()\n N = int(input())\n ans = resolver(N)\n print(ans)\n\n\nif __name__ == \'__main__\':\n main()\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s384804792', 's843640272', 's240687868']
[109016.0, 91764.0, 91604.0]
[642.0, 2178.0, 1956.0]
[956, 957, 1100]
p02624
u480168496
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nres = 0\nfor i in range(1, n+1):\n x = n//i\n res += i*x*(x+1)/2\n \nprint(res)', 'n = int(input())\nres = 0\nfor i in range(1, n+1):\n x = n//i\n res += i*x*(x+1)/2\n\nprint(int(res))']
['Wrong Answer', 'Accepted']
['s253642508', 's454451287']
[8972.0, 9020.0]
[2294.0, 2187.0]
[100, 101]
p02624
u483277935
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nprint(sum(n/i * (n/i+1) / 2 * i for i in range(1, n+1))', 'n = int(input())\nprint(sum(n//i * (n//i+1) // 2 * i for i in range(1, n+1)))']
['Runtime Error', 'Accepted']
['s039246933', 's301317118']
[9032.0, 9128.0]
[25.0, 1347.0]
[72, 76]
p02624
u490489966
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['#D\nn = int(input())\n\nans = 0\nfor i in range(1, n + 1):\n \n m = n // i\n \n ans += n * (2 * i + i * (n - 1)) *0.5\nprint(int(ans))', '#D\nn = int(input())\n\n# >>\n\ndef Sun_of_Arithmetic_sequence(a, d, n):\n return (2 * a + (n - 1) * d) * n // 2\n \nans = 0\nfor i in range(1, n + 1):\n \n m = n // i\n \n ans += n * (2 * i + i * (n - 1)) / 2 \nprint(int(ans))', '#D\nn = int(input())\n\n\nans = 0\nfor i in range(1, n + 1):\n \n m = n // i\n \n ans += m * (2 * i + i * (m - 1)) *0.5\nprint(int(ans))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s079379760', 's309385905', 's703866473']
[8984.0, 9104.0, 9084.0]
[3308.0, 3308.0, 2824.0]
[309, 459, 307]
p02624
u512266180
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nc = (N+1)//2\nans = 0\nfor i in range(1,N-c+1):\n ans += i*(1+N//i)*(N//i)/2\nans += N*c -(c+1)*c/2\nprint(int(ans))', 'N = int(input())\nc = (N+1)//2\nans = 0\nfor i in range(1,N-c+1):\n ans += i*(1+N//i)*(N//i)/2\nans += N*c -(c-1)*c/2\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s492951011', 's710111152']
[9140.0, 9168.0]
[1085.0, 1100.0]
[131, 131]
p02624
u520276780
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import numpy as np\nn=int(input())\ncnt=np.zeros(n+1,dtype = int)\nfor i in range(1,n+1):\n cnt[i::i]+=1\nans=cnt*np.arrange(n+1)\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n k=n//i\n ans+=i*k*(k+1)//2\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s254680700', 's299095853']
[105052.0, 8944.0]
[3311.0, 2488.0]
[138, 88]
p02624
u522293645
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
["def main():\n\n#---------------------------------------------------------\n\nN = int(input())\nans = 0\nfor i in range(1, N + 1):\n n = N // i \n cnt = (n * (2 * i + (n - 1) * i)) // 2 \n ans += cnt\nprint(ans)\n\n#---------------------------------------------------------\n\nif __name__ == '__main__':\n main()", 'N = int(input())\nans = 0\nfor i in range(1, N + 1):\n n = N // i \n cnt = (n * (2 * i + (n - 1) * i)) // 2 \n ans += cnt\nprint(ans)']
['Runtime Error', 'Accepted']
['s892719902', 's394403930']
[8948.0, 9124.0]
[20.0, 2992.0]
[367, 196]
p02624
u527299145
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nans = 0\nfor j in range(1,N+1):\n num = int(N/j)\n ans += num*(num-1)/2*j\nprint(int(ans))', 'N = int(input())\n\nans = 0\nfor j in range(1,N+1):\n num = int(N/j)\n ans += num*(num+1)/2*j\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s837227493', 's441064229']
[9108.0, 9040.0]
[2824.0, 2994.0]
[109, 110]
p02624
u529737989
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nans = 0\nfor i in range(1,n):\n k = n//i\n ans += i*(k*(k+1)//2)\n\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1,n+1):\n k = n//i\n ans += i*(k*(k+1))//2\nprint(ans)']
['Wrong Answer', 'Accepted']
['s768592254', 's054535227']
[9128.0, 9128.0]
[2120.0, 2224.0]
[92, 93]
p02624
u548624367
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['ans = 0\nn = int(input())+1\nfor i in range(1,n):\n for j in range(1,n,i):\n if i%j==0:\n ans += i\nprint(ans)', 'ans = 0\nn = int(input())\nfor i in range(1,n+1):\n j = n//i\n ans += i*j*(j+1)//2\nprint(ans)']
['Wrong Answer', 'Accepted']
['s530947835', 's133208082']
[9088.0, 9064.0]
[3308.0, 2478.0]
[125, 95]
p02624
u570155187
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\n\ntable = [0]*(n+1)\nfor i in range(1,n+1):\n for j in range(i,n+1,i):\n table[j] += 1\nans = 0\nfor i in range(1,n+1):\n ans += i*table[i]\nprint(ans)\n\nprint(table)', 'n = int(input())\n\nans = 0\nfor i in range(1,n+1):\n k = n//i\n ans += i*(k*(k+1)//2)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s356267704', 's260267732']
[87016.0, 9120.0]
[3311.0, 2268.0]
[182, 94]
p02624
u571969099
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nans = 0\nfor i in range(1, n + 1):\n ans += sum(range(i,n,i))\nprint(ans)\n', 'n = int(input())\nans = 0\nfor i in range(1, n + 1):\n ans += (n//i) * (i + n // i * i) // 2\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s009604792', 's464781550']
[9148.0, 9104.0]
[3308.0, 2683.0]
[91, 104]
p02624
u576335153
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\n\ndef primes(n):\n is_prime = [True] * (n + 1)\n is_prime[0] = False\n is_prime[1] = False\n for i in range(2, int(n**0.5) + 1):\n if not is_prime[i]:\n continue\n for j in range(i * 2, n + 1, i):\n is_prime[j] = False\n return [i for i in range(n + 1) if is_prime[i]]\n\n\ndef prime_factrize(n):\n prime_list = primes(n)\n s = int(math.sqrt(n)) + 1\n l = [0]*s\n for x in prime_list:\n if x**2 > n:\n break\n while n % x == 0:\n n // x\n l[x] += 1\n \n return l\n\ndef yakusuu(n):\n l = prime_factrize(n)\n res = 1\n\n for i in l:\n res *= (i + 1)\n\n return res\n\nn = int(input())\n\nans = 0\n\nfor i in range(1, n+1):\n y = yakusuu(i)\n ans += i * y\n\nprint(ans)\n', 'n = int(input())\n\ndef s(n):\n return n * (n + 1) // 2\n\nans = 0\n\nfor i in range(1, n+1):\n tmp = n // i\n ans += i * s(tmp)\n\nprint(ans)\n']
['Time Limit Exceeded', 'Accepted']
['s940028686', 's503434350']
[9256.0, 9060.0]
[3308.0, 2641.0]
[778, 141]
p02624
u601603786
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def divisor(x):\n count=0\n for i in range(1,x//2):\n if x%i==0:\n count+=1\n return count\n\nn = int(input())\nans=0\nfor num in range(1,n+1):\n a = 0\n divisors = divisor(num)\n a = num* divisors \n ans+=a\nprint(ans)', 'import numpy as np\nn=int(input())\nnum=np.array(list(range(1,n+1)))\n\nx=n//num\nans=num*(x+1)*x/2\nprint(int(np.sum(ans)))']
['Wrong Answer', 'Accepted']
['s983988029', 's324464123']
[8896.0, 500504.0]
[3308.0, 1326.0]
[244, 118]
p02624
u602500004
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\nimport sys\nimport os\nfrom operator import mul\nimport numpy as np\n# import sympy\n\nsys.setrecursionlimit(10**7)\n\ndef _S(): return sys.stdin.readline().rstrip()\ndef I(): return int(_S())\ndef LS(): return list(_S().split())\ndef LI(): return list(map(int,LS()))\n\nif os.getenv("LOCAL"):\n inputFile = basename_without_ext = os.path.splitext(os.path.basename(__file__))[0]+\'.txt\'\n sys.stdin = open(inputFile, "r")\nINF = float("inf")\n\nN = I()\nans = 0\n\n\n# 1 + 2 + 3 + 4 +...\n# + 2 + 4 +...\nfor i in range(1,N+1):\n \n y = N//i\n sum = y*(y+1)*i/2\n ans += sum\n\nprint(ans)\n\n\n\n\n\n\ndef seachPrimeNum(N):\n max = int(np.sqrt(N))\n seachList = [i for i in range(2,N+1)]\n primeNum = []\n while seachList[0] <= max:\n primeNum.append(seachList[0])\n tmp = seachList[0]\n seachList = [i for i in seachList if i % tmp != 0]\n primeNum.extend(seachList)\n return primeNum\n\n\ndef divisor_count(n):\n divisors = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors += 1\n if i != n // i:\n divisors += 1\n\n return divisors', 'import math\nimport sys\nimport os\nfrom operator import mul\nimport numpy as np\n# import sympy\n\nsys.setrecursionlimit(10**7)\n\ndef _S(): return sys.stdin.readline().rstrip()\ndef I(): return int(_S())\ndef LS(): return list(_S().split())\ndef LI(): return list(map(int,LS()))\n\nif os.getenv("LOCAL"):\n inputFile = basename_without_ext = os.path.splitext(os.path.basename(__file__))[0]+\'.txt\'\n sys.stdin = open(inputFile, "r")\nINF = float("inf")\n\nN = I()\nans = 0\n\n\n# 1 + 2 + 3 + 4 +...\n# + 2 + 4 +...\nfor i in range(1,N+1):\n \n y = N//i\n sum = y*(y+1)*i/2\n ans += sum\n\nprint(ans)\n\n\n\n\n\n\ndef seachPrimeNum(N):\n max = int(np.sqrt(N))\n seachList = [i for i in range(2,N+1)]\n primeNum = []\n while seachList[0] <= max:\n primeNum.append(seachList[0])\n tmp = seachList[0]\n seachList = [i for i in seachList if i % tmp != 0]\n primeNum.extend(seachList)\n return primeNum\n\n\ndef divisor_count(n):\n divisors = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors += 1\n if i != n // i:\n divisors += 1\n\n return divisors', 'import math\nimport sys\nimport os\nfrom operator import mul\nimport numpy as np\n# import sympy\n\nsys.setrecursionlimit(10**7)\n\ndef _S(): return sys.stdin.readline().rstrip()\ndef I(): return int(_S())\ndef LS(): return list(_S().split())\ndef LI(): return list(map(int,LS()))\n\nif os.getenv("LOCAL"):\n inputFile = basename_without_ext = os.path.splitext(os.path.basename(__file__))[0]+\'.txt\'\n sys.stdin = open(inputFile, "r")\nINF = float("inf")\n\nN = I()\nans = 0\n\n\n# 1 + 2 + 3 + 4 +...\n# + 2 + 4 +...\nfor i in range(1,N+1):\n \n y = N//i\n sum = y*(y+1)*i/2\n ans += sum\n\nprint(int(ans))\n\n\n\n\n\n\ndef seachPrimeNum(N):\n max = int(np.sqrt(N))\n seachList = [i for i in range(2,N+1)]\n primeNum = []\n while seachList[0] <= max:\n primeNum.append(seachList[0])\n tmp = seachList[0]\n seachList = [i for i in seachList if i % tmp != 0]\n primeNum.extend(seachList)\n return primeNum\n\n\ndef divisor_count(n):\n divisors = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors += 1\n if i != n // i:\n divisors += 1\n\n return divisors']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s815611579', 's924642166', 's980386495']
[27184.0, 27120.0, 27156.0]
[2414.0, 2367.0, 2323.0]
[1242, 1242, 1247]
p02624
u626891113
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\n\ndef cal(i):\n s = (i + i*(n//i))*(n//i)*0.5\n return s\n\nans = 0\nfor i in range(1, n+1):\n ans += cal(i)\n \nprint(ans)\n', 'n = int(input())\n\ndef cal(i):\n s = (i + i*(n//i))*(n//i)*0.5\n return s\n\nans = 0\nfor i in range(1, n+1):\n ans += cal(i)\n \nprint(int(ans))\n']
['Wrong Answer', 'Accepted']
['s621457918', 's210698714']
[9108.0, 9100.0]
[2774.0, 2778.0]
[144, 149]
p02624
u628262476
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import numpy as np\nn = int(input())\n\nans = np.zeros(n+1)\nfor i in range(1, n+1):\n ans[i::i] += 1\n\nans *= np.arange(n+1)\n# [0, f(1), ..., f(n)] * [0, 1, 2, ..., n]\nprint(sum(ans))', 'n = int(input())\n\nans = 0\nfor i in range(1, n+1):\n if i*2 > n:\n \n ans += (i + n) * (n - i + 1) // 2\n break\n\n \n last_term = n // i * i\n num_term = (last_term - i) // i + 1\n ans += (i + last_term) * num_term // 2\n \n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s164494846', 's205279646']
[104812.0, 9072.0]
[3311.0, 2179.0]
[179, 310]
p02624
u634079249
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import sys, os, math, bisect, itertools, collections, heapq, queue\n# from scipy.sparse.csgraph import csgraph_from_dense, floyd_warshall\nfrom decimal import Decimal\nfrom collections import defaultdict, deque\n\n# import fractions\n\nsys.setrecursionlimit(10000000)\n\nii = lambda: int(sys.stdin.buffer.readline().rstrip())\nil = lambda: list(map(int, sys.stdin.buffer.readline().split()))\nfl = lambda: list(map(float, sys.stdin.buffer.readline().split()))\niln = lambda n: [int(sys.stdin.buffer.readline().rstrip()) for _ in range(n)]\n\niss = lambda: sys.stdin.buffer.readline().decode().rstrip()\nsl = lambda: list(map(str, sys.stdin.buffer.readline().decode().split()))\nisn = lambda n: [sys.stdin.buffer.readline().decode().rstrip() for _ in range(n)]\n\nlcm = lambda x, y: (x * y) // math.gcd(x, y)\n# lcm = lambda x, y: (x * y) // fractions.gcd(x, y)\n\nMOD = 10 ** 9 + 7\nMAX = float(\'inf\')\n\n\ndef main():\n if os.getenv("LOCAL"):\n sys.stdin = open("input.txt", "r")\n\n N, M, K = il()\n A = il()\n SA = [0] * (N + 1)\n for n in range(N):\n SA[n + 1] = A[n] + SA[n]\n B = il()\n SB = [0] * (M + 1)\n for m in range(M):\n SB[m + 1] = B[m] + SB[m]\n \n ret = 0\n for n in range(N+1):\n for m in range(M+1):\n if SA[n] + SB[m] <= K:\n ret = max(ret, n + m)\n print(ret)\n\n\nif __name__ == \'__main__\':\n main()\n', 'import sys, os, math, bisect, itertools, collections, heapq, queue, copy, array\n\n# from scipy.sparse.csgraph import csgraph_from_dense, floyd_warshall\n# from decimal import Decimal\n# from collections import defaultdict, deque\n\nsys.setrecursionlimit(10000000)\n\nii = lambda: int(sys.stdin.buffer.readline().rstrip())\nil = lambda: list(map(int, sys.stdin.buffer.readline().split()))\nfl = lambda: list(map(float, sys.stdin.buffer.readline().split()))\niln = lambda n: [int(sys.stdin.buffer.readline().rstrip()) for _ in range(n)]\n\niss = lambda: sys.stdin.buffer.readline().decode().rstrip()\nsl = lambda: list(map(str, sys.stdin.buffer.readline().decode().split()))\nisn = lambda n: [sys.stdin.buffer.readline().decode().rstrip() for _ in range(n)]\n\nlcm = lambda x, y: (x * y) // math.gcd(x, y)\n\nMOD = 10 ** 9 + 7\nINF = float(\'inf\')\n\n\ndef main():\n if os.getenv("LOCAL"):\n sys.stdin = open("input.txt", "r")\n\n N = ii()\n ans = 0\n for x in range(1, N + 1):\n n = N // x \n ans += (n * (2 * x + (n - 1) * x)) // 2 \n print(ans)\n\n\nif __name__ == \'__main__\':\n main()\n']
['Runtime Error', 'Accepted']
['s011487864', 's217101813']
[10100.0, 9844.0]
[33.0, 1815.0]
[1371, 1211]
p02624
u638353713
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['\nn = int(input())\n\nans = 0\n\ndef calc(b,e):\n cnt = e // b\n return (b + e) * cnt // 2\n\nfor i in range(1, n+1):\n ans += calc(i, n//i * i)\n print(ans)\n\nprint(ans)', '\nn = int(input())\n\nans = 0\n\ndef calc(b,e):\n cnt = e // b\n return (b + e) * cnt // 2\n\nfor i in range(1, n+1):\n ans += calc(i, n//i * i)\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s359415651', 's870944481']
[94880.0, 9020.0]
[3459.0, 2993.0]
[170, 155]
p02624
u646880214
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\n\nans = 0\nfor i in range(1, N + 1):\n ans += i * ((N // i) * ((N // i) + 1))/2\n\nprint(ans)', 'N = int(input())\n\nans = 0\nfor i in range(1, N + 1):\n ans += i * ((N // i) * ((N // i) + 1))/2\n\nprint((int)(ans))']
['Wrong Answer', 'Accepted']
['s857810743', 's155659043']
[9064.0, 9056.0]
[2133.0, 2408.0]
[109, 116]
p02624
u655110382
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nans = 0\nfor i in range(1, n + 1):\n ans += ((n // i) * (2 * i + (n // i) - 1) * i)) // 2\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1, n + 1):\n ans += ((n // i) * (2 * i + ((n // i) - 1) * i)) // 2\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s621078124', 's850246664']
[8872.0, 9012.0]
[26.0, 2946.0]
[119, 121]
p02624
u658915215
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['#172D\n#Sum of Divisors\n\nn=int(input())\nans=0\n\nfor i in range(1,n+1):\n j=1\n while i*j<=n:\n ans+=i*j\n j+=1\n print(i,j,ans)\nprint(ans)', '#172D\n#Sum of Divisors\n\nn=int(input())\nans=0\n\nfor i in range(1,n+1):\n j=n//i\n ans+=j*(j+1)*i/2\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s196919109', 's201725938']
[21648.0, 9140.0]
[3328.0, 2135.0]
[154, 116]
p02624
u661649266
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nans = 0\n\nfor i in range(1, N+1):\n Y = N // j\n ans += Y * (Y+1) * j / 2\n \nprint(int(ans))', 'N = int(input())\nans = sum([(N//i) * (N//i + 1) * i / 2 for i in range(1, N+1)])\nprint(int(ans))']
['Runtime Error', 'Accepted']
['s697680276', 's426830765']
[9164.0, 404604.0]
[26.0, 1743.0]
[108, 97]
p02624
u667024514
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\nk = int(input())\nan = 0\nfor i in range(1,k+1):\n li = []\n cnt = 1\n num = i\n if i == 1:\n lis.append(1)\n else:\n for j in range(2,math.ceil(math.sqrt(i))+1):\n while num % j == 0:\n cnt += 1\n num //= j\n if cnt != 1:\n li.append(cnt)\n cnt = 1\n if num != 1:\n li.append(2)\n ans = 1\n for nu in li:\n ans *= nu\n an += ans\nprint(an)\n', 'import math\nk = int(input())\nan = 0\nfor i in range(1,k+1):\n li = []\n cnt = 1\n num = i\n if i == 1:\n an += 1\n else:\n for j in range(2,math.ceil(math.sqrt(i))+1):\n while num % j == 0:\n cnt += 1\n num //= j\n if cnt != 1:\n li.append(cnt)\n cnt = 1\n if num != 1:\n li.append(2)\n ans = 1\n for nu in li:\n ans *= nu\n an += ans\nprint(an)\n', 'import sympy\nn = int(input())\nans = 0\nfor i in range(1,n+1):\n ans += i * sympy.divisors(i)\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(1,n+1):\n ans += ((i + i * (n//i))*(n//i))//2\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s250498432', 's442155144', 's976678850', 's024834333']
[9076.0, 9068.0, 9092.0, 9060.0]
[29.0, 3308.0, 22.0, 2566.0]
[492, 486, 104, 98]
p02624
u667084803
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N= int(input())\nans = 0\nfor j in range(N):\n N_j = N//j\n ans += j*(1+N_j)*N_j//2\nprint(ans)', 'N= int(input())\nans = 0\nfor j in range(1,N+1):\n N_j = N//j\n ans += j*(1+N_j)*N_j//2\nprint(ans)']
['Runtime Error', 'Accepted']
['s021268880', 's680690611']
[9164.0, 9168.0]
[30.0, 2436.0]
[92, 96]
p02624
u677267454
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\n\nans = 0\nfor i in range(1, N + 1):\n start = i\n n = N // i\n end = i * n\n ans += n * (n + 1) // 2\n\n\nprint(ans)\n', 'N = int(input())\n\nans = 0\nfor i in range(1, N + 1):\n start = i\n n = N // i\n end = i * n\n ans += n * (start + end) // 2\n\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s473238969', 's519140723']
[8860.0, 9060.0]
[2884.0, 2984.0]
[138, 144]
p02624
u680851063
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nl = [0 for _ in range(n+1)]\nl[1] = 1\n\nfor i in range(n+1):\n for j in range(i-1, 0, -1):\n if i % j == 0:\n l[i] = l[j] + 1\n break\n\nans = 0\nfor k in range(n+1):\n print(k * l[k])\n ans += (k * l[k])\n\nprint(ans)\n', 'import numpy as np\nfrom numba import jit\n\n@njit\ndef solve():\n \n n = int(input())\n \n divisors = np.zeros(n+1, np.int64)\n \n for i in range(1, n+1):\n for j in range(i, n+1, i):\n divisors[j] += 1\n \n \n ans = 0\n for k in range(n+1):\n ans += (k * divisors[k])\n \n print(ans)\n\nsolve()\n', 'import numpy as np\n\ndef solve():\n \n n = int(input())\n \n divisors = np.zeros(n+1, np.int64)\n \n for i in range(1, n+1):\n for j in range(i, n+1, i):\n divisors[j] += 1\n \n \n ans = 0\n for k in range(n+1):\n ans += (k * divisors[k])\n \n print(ans)\n\nfrom numba import jit\n\n@jit\nsolve()', 'import numpy as np\nfrom numba import njit\n\n@njit\ndef solve():\n \n n = int(input())\n \n divisors = np.zeros(n+1, np.int64)\n \n for i in range(1, n+1):\n for j in range(i, n+1, i):\n divisors[j] += 1\n \n \n ans = 0\n for k in range(n+1):\n ans += (k * divisors[k])\n \n print(ans)\n\nsolve()\n', 'import numpy as np\nfrom numba import jit\n\n@jit # TLE, without this!!!\ndef solve():\n \n n = int(input())\n \n divisors = np.zeros(n+1, np.int64)\n \n for i in range(1, n+1):\n for j in range(i, n+1, i):\n divisors[j] += 1\n \n \n ans = 0\n for k in range(n+1):\n ans += (k * divisors[k])\n \n print(ans)\n\nsolve()\n']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s419721100', 's624966151', 's635240086', 's739919397', 's869202796']
[87272.0, 91984.0, 8984.0, 106600.0, 191424.0]
[3311.0, 385.0, 29.0, 480.0, 2182.0]
[261, 353, 352, 354, 375]
p02624
u696499790
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N=int(input())\nN=10**7\n#N=100\nans=0\nfor i in range(1,N+1):\n ans+=i*((1+(N//i))*(N//i)//2)\n #print(ans)\n pass\nprint(ans)', 'N=int(input())\n#N=10**7\n#N=100\nans=0\nfor i in range(1,N+1):\n ans+=i*((1+(N//i))*(N//i)//2)\n #print(ans)\n pass\nprint(ans)']
['Wrong Answer', 'Accepted']
['s462730286', 's105108957']
[9176.0, 9112.0]
[2392.0, 2155.0]
[122, 123]
p02624
u700805562
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(open(0));print(sum(n//i*(n//i+1)*i//2for i in range(1,n+1)))', 'n=int(input());print(sum([n//i*(n//i*i+i)//2 for i in range(1,n+1)]))']
['Runtime Error', 'Accepted']
['s256306650', 's233470944']
[9116.0, 404460.0]
[30.0, 2092.0]
[66, 69]
p02624
u709304134
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nans = 0\nfor X in range(1, n+1):\n Y = n // X\n ans += Y * (Y + 1) // 2 * X\nprint(ans)\n', 'N = int(input())\nans = 0\nfor X in range(1, N+1):\n Y = N // X\n ans += Y * (Y + 1) // 2 * X\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s473777331', 's889140795']
[8920.0, 9156.0]
[29.0, 2239.0]
[103, 103]
p02624
u736729525
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def solve():\n n = int(input())\n\n def num_divisors_table(n):\n table = [0] * (n + 1)\n \n for i in range(1, n + 1):\n for j in range(i, n + 1, i):\n table[j] += 1\n \n return table\n\n table = num_divisors_table(n)\n print(sum(i*table[i] for i in range(n + 1))\nsolve()\n', '# ABC172 C\nN = int(input())\nprint(sum((N//x)*(N//x+1)*x//2 for x in range(1,N+1)))\n \n \n']
['Runtime Error', 'Accepted']
['s781801757', 's023354038']
[8828.0, 9060.0]
[26.0, 1408.0]
[331, 97]
p02624
u749359783
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nif N == 1:\n print(1)\nelif N == 2:\n print(5)\nelif N == 3:\n print(11)\nelse:\n ans = N*(N+1)-1\n for i in range(2,N//2):\n t = N//i\n ans += i*(t*(t+1)//2-1)\n \nprint(ans)', 'N = int(input())\nif N == 1:\n print(1)\nelif N == 2:\n print(5)\nelif N == 3:\n print(11)\nelse:\n ans = N*(N+1)-1\n for i in range(2,N//2):\n t = N//i\n ans += i*(t*(t+1)//2-1)\n print(ans)', 'N = int(input())\nif N == 1:\n print(1)\nelif N == 2:\n print(5)\nelif N == 3:\n print(11)\nelse:\n ans = N*(N+1)-1\n for i in range(2,N//2+1):\n t = N//i\n ans += i*(t*(t+1)//2-1)\n print(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s169635192', 's865184974', 's523770174']
[9184.0, 9188.0, 9012.0]
[1231.0, 1241.0, 1255.0]
[216, 211, 213]
p02624
u749416810
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nres=0\nfor i in range(1,n+1):\n res+=(1+n//i)*(n//i)*(i//2)\nprint(res)', 'N = int(input())\nans = 0\nfor d in range(1, N + 1):\n ans += (1 + N // d) * (N // d) * d // 2\nprint(ans)']
['Wrong Answer', 'Accepted']
['s942111605', 's120140266']
[9072.0, 8988.0]
[2345.0, 2270.0]
[84, 105]
p02624
u749742659
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\n\nans = 0\nfor i in range(n):\n nu = n // i\n ans += nu * (nu+1) * i // 2\nprint(ans)\n', 'n = int(input())\n\nans = 0\nfor i in range(1,n+1):\n nu = n // i\n ans += nu * (nu+1) * i // 2\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s449544866', 's267291328']
[9136.0, 9100.0]
[25.0, 2357.0]
[104, 108]
p02624
u756279759
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\ndef g(n):\n return n * (n + 1) // 2\n \nans = 0\nfor i in range(1, n+1)\n ans += i * g(n // i)\nprint(ans)', 'n = int(input())\ndef g(n):\n return n * (n + 1) // 2\n \nans = 0\nfor i in range(1, n+1):\n ans += i * g(n // i)\nprint(ans)']
['Runtime Error', 'Accepted']
['s487960354', 's921589010']
[9024.0, 9104.0]
[27.0, 2413.0]
[123, 124]
p02624
u760794812
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['1N = int(input())\nans = 0\nfor i in range(1,N+1):\n Limit = N//i\n ans += int(Limit*(Limit+1)*i/2)\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1,N+1):\n Limit = N//i\n ans += int(Limit*(Limit+1)*i/2)\nprint(ans)']
['Runtime Error', 'Accepted']
['s903347245', 's263833837']
[9016.0, 9188.0]
[26.0, 2999.0]
[108, 107]
p02624
u760961723
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import sympy\n\nN = int(input())\nans = 0\nfor n in range(1,N+1):\n ans += n * len(sympy.divisors(n))\n print(n,len(sympy.divisors(n)))\nprint(ans)', "import sys\nimport math\nimport itertools\nimport collections\nfrom collections import deque\n\nsys.setrecursionlimit(1000000)\nMOD = 10 ** 9 + 7\ninput = lambda: sys.stdin.readline().strip()\n\nNI = lambda: int(input())\nNMI = lambda: map(int, input().split())\nNLI = lambda: list(NMI())\nSI = lambda: input()\n\ndef main():\n N = NI()\n ans = 0\n for n in range(1,N+1):\n ans += (N//n)*(2*n+(N//n-1)*n)//2\n print(ans)\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s802033680', 's151968976']
[9040.0, 9408.0]
[29.0, 1905.0]
[146, 459]
p02624
u773065853
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nans = 0\nfor i in range(1, n+1):\n\ty = n // i\n\tans += y * (y +1) * i / 2', 'n = int(input())\nans = 0\nfor i in range(1, n+1):\n\ty = n // i\n\tans += y * (y +1) * i / 2\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s047310559', 's740766526']
[9032.0, 9012.0]
[2216.0, 2186.0]
[87, 103]
p02624
u776134564
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nans=0\nl=[x for x in range(1,n+1)]\nfor i in range(1,n+1):\n z=i\n for j in range(0,n,i):\n ans+=z\n z+=i\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n num=n//i\n k=num*i*(num+1)\n ans+=k//2\nprint(ans)']
['Wrong Answer', 'Accepted']
['s561804324', 's448020122']
[404516.0, 9008.0]
[3323.0, 2753.0]
[133, 95]
p02624
u829391045
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['from numba import njit\nimport numpy as np\n \n \n@njit("i8(i8)")\ndef solve(n):\n s = [1]*(n+1)\n ans = 1\n for i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\nn = int(input()) \nprint(solve(n))\n', 'from numba import njit\nimport numpy as np\n\n@njit("i8(i8)")\ndef solve(n):\n s = np.ones(n + 1, dtype=np.int64)\n ans = 1\n for i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\nn = int(input()) \nprint(solve(n))\n', 'from numba import njit\n\n@njit("i8(i8)")\ndef solve(n):\n s = [1] * (n+1)\n ans = 1\n for i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\n\treturn ans\nn = int(input()) \nprint(solve(n))\n', 'import numpy as np\nn = int(input()) \n\ns = np.ones(n+1)\nans = 1\nfor i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\n\nprint(ans)\n', 'from numba import njit \n@njit("i8(i8)")\nn = int(input()) \n\ns = [1]*(n+1)\nans = 1\nfor i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\n\nprint(ans)\n', 'from numba import njit\n\n@njit("i8(i8)")\n\nn = int(input()) \n\ndef solve(n):\n s = [1]*(n+1)\n ans = 1\n for i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\n\nprint(solve(n))\n', 'from numba import njit\nimport numpy as np\n \n \n@njit("i8(i8)")\ndef solve(n):\n ans = 1\n res = np.ones(n + 1, dtype=np.int64)\n for i in range(2, n + 1):\n for j in range(i, n + 1, i):\n res[j] += 1\n ans += i * res[i]\n return ans\n ', 'from numba import njit\n\n@njit("i8(i8)")\ndef solve(n):\n s = [1] * (n+1)\n ans = 1\n for i in range(2,n+1):\n for j in range(i,n+1,i):\n s[j] += 1\n ans += (i * s[i])\n return ans\nn = int(input()) \nprint(solve(n))\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s228888602', 's264161379', 's314348776', 's420557431', 's638715475', 's819187827', 's834895645', 's953236519']
[106652.0, 106780.0, 8800.0, 104832.0, 8808.0, 8948.0, 110684.0, 188124.0]
[538.0, 518.0, 29.0, 3309.0, 30.0, 25.0, 700.0, 2157.0]
[248, 266, 240, 170, 188, 232, 262, 243]
p02624
u836311327
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\n \nsu = 0\nfor i in range(1,int(n**0/5)+1):\n m = int(n/i) - i + 1\n su += m*(2*i*i + (m-1)*i) - i*i\n \n \nprint(su)', 'def solve(n):\n su = 0\n for i in range(1, n+1):\n m = n//i\n su += m*(2*i + (m-1)*i)//2\n return su\n\nn = int(input())\nprint(solve(n))']
['Wrong Answer', 'Accepted']
['s070214569', 's382295950']
[9156.0, 9136.0]
[29.0, 1866.0]
[134, 152]
p02624
u837340160
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nans = 0\nfor i in range(N):\n j = N // i\n ans += i * j * (j+1) / 2\n\nprint(ans)\n', 'ans = 0\nfor i in range(N):\n j = N // i\n ans += i * j * (j+1) / 2\n\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1):\n j = N // i\n ans += i * j * (j+1) / 2\n\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N+1):\n j = N // i\n ans += i * j * (j+1) // 2\n\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s407685066', 's458286498', 's735910019', 's630823882']
[9024.0, 9020.0, 9024.0, 9132.0]
[25.0, 26.0, 2421.0, 2335.0]
[100, 83, 105, 106]
p02624
u857605629
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n = int(input())\nres = 0\nfor i in range(1,n+1):\n k = n//i\n res += i*(k*(k+1)//2)\nprint res', 'n = int(input())\nres = 0\nfor i in range(1,n+1):\n k = n//i\n res += i*(k*(k+1)//2)\n print(res)', 'n = int(input())\nres = 0\nfor i in range(1,n+1):\n\tk = n//i\n\tres += i*(k*(k+1)//2)\nprint(res)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s157962736', 's599723635', 's849528204']
[8940.0, 109344.0, 8916.0]
[26.0, 3517.0, 2277.0]
[96, 95, 91]
p02624
u867200256
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
["\nimport collections\nimport sys\nimport copy\nimport re\n\n\ndef I(): return int(sys.stdin.readline().rstrip())\ndef LI(): return list(map(int, sys.stdin.readline().rstrip().split()))\ndef S(): return sys.stdin.readline().rstrip()\ndef LS(): return list(sys.stdin.readline().rstrip().split())\n\n\ndef main():\n N = I()\n\n num = 0\n\n for i in range(1, N+1):\n y = N//i\n num += (y*(y+1)*i)/2\n\n print(num)\n\n\nif __name__ == '__main__':\n main()\n", "\nimport collections\nimport sys\nimport copy\nimport re\nimport math\n\n\ndef I(): return int(sys.stdin.readline().rstrip())\ndef LI(): return list(map(int, sys.stdin.readline().rstrip().split()))\ndef S(): return sys.stdin.readline().rstrip()\ndef LS(): return list(sys.stdin.readline().rstrip().split())\n\n\ndef main():\n N = I()\n\n num = 0\n\n for i in range(1, N+1):\n y = math.floor(N/i)\n num += y*(y+1)*i/2\n\n print(num)\n\n\nif __name__ == '__main__':\n main()\n", "\nimport collections\nimport sys\nimport copy\n\n\ndef I(): return int(sys.stdin.readline().rstrip())\ndef LI(): return list(map(int, sys.stdin.readline().rstrip().split()))\ndef S(): return sys.stdin.readline().rstrip()\ndef LS(): return list(sys.stdin.readline().rstrip().split())\n\n\ndef main():\n N = I()\n\n num = 0\n\n for i in range(1, N+1):\n y = N//i\n num += int((y*(y+1)*i)/2)\n\n print(num)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s890288711', 's939060500', 's365239533']
[9928.0, 9760.0, 9608.0]
[1204.0, 2166.0, 2039.0]
[489, 510, 484]
p02624
u870518235
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nlst = [0]*N\n\nfor i in range(1,N+1):\n for j in range(1,i):\n if i % j == 0:\n lst[i-1] += i\n\nprint(sum(lst))', 'N = int(input())\nlst = [0]*N\n\nfor i in range(1,N+1):\n for j in range(1,N+1):\n if j % i == 0:\n lst[j-1] += j\n\nprint(lst)\nprint(sum(lst))', '# ABC172_D\nN = int(input())\nans = 0\n\nfor i in range(1,N+1):\n\tans += ((N//i)*(i+(N//i)*i))/2\n\nprint(int(ans))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s438338961', 's566244726', 's619317612']
[87300.0, 404688.0, 9136.0]
[3311.0, 3318.0, 2604.0]
[143, 156, 108]
p02624
u872923967
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def culcSum(n:int)->int:\n return n * culcDivisor(n)\n\ndef culcDivisor(n:int)->int:\n cnt = 0\n for idx in range(1, n+1):\n if n % idx == 0:\n cnt += 1\n\n return cnt\n\nn :int = int(input())\nans = 0\nfor idx in range(1, n+1):\n ans += culcSum(n)\n\nprint(ans)\n', 'n = int(input())\ns = 0\nfor i in range(1, n + 1):\n d = n // i\n s += d * (d + 1) // 2 * i\nprint(s)']
['Wrong Answer', 'Accepted']
['s054669294', 's172657585']
[9080.0, 9104.0]
[3308.0, 2371.0]
[280, 98]
p02624
u874644572
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import sys\ninput = sys.stdin.readline\n\n@njit\ndef main():\n N = int(input())\n Answer = 0\n\n for i in range(1,N+1):\n cnt = N // i\n num = cnt * (cnt + 1) >> 1\n num *= i\n Answer += num\n\nprint(Answer)\nmain()', 'import sys\ninput = sys.stdin.readline\n\nN = int(input())\nAnswer = 0\n\nfor i in range(1,N+1):\n cnt = N // i\n num = cnt * (cnt + 1) >> 1\n num *= i\n Answer += num\n\nprint(Answer)']
['Runtime Error', 'Accepted']
['s629173942', 's269928558']
[8956.0, 9028.0]
[30.0, 2881.0]
[237, 184]
p02624
u882616665
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\n\nans = sum([j * (N//j)*(N//j+1)/2 for j in range(N)])\n\nprint(ans)', 'N = int(input())\n\ndef gen():\n for j in range(1,N+1):\n yield j * (N//j)*(N//j+1)/2\n\nans = int(sum(gen()))\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s265208806', 's018919374']
[9032.0, 9036.0]
[23.0, 1546.0]
[82, 121]
p02624
u896741788
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['\nN = int(input())\nprint(sum(i*(N//i)*(N//i + 1) // 2 for i in range(1,N+1) )\n', "import numba\[email protected]('(i8,)', cache=True)\ndef m(n):\n return sum(m*((n//m)**2+n//m-m**2) for m in range(1,int(n**.5)+1))\n\nprint(m(int(input())))", 'def f():n=int(input());print(sum(m*((g:=n//m)**2+g-m**2)for m in range(1,int(n**.5)+1)))\nif __name__=="__main__":f()']
['Runtime Error', 'Runtime Error', 'Accepted']
['s090256837', 's273580670', 's748233669']
[8852.0, 105040.0, 9160.0]
[28.0, 476.0, 32.0]
[77, 150, 116]
p02624
u910632349
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nans=0\nfor i in range(1,n+1):\n d=n//(2*i)\n ans+=i*d*(2*d+1)\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n d=n/(2*i)\n ans+=i*d*(2*d+1)\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n d=n//i\n ans+=i*d*(d+1)//2\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s664249969', 's971988121', 's972136857']
[9052.0, 9060.0, 9080.0]
[2341.0, 2629.0, 2466.0]
[90, 89, 87]
p02624
u920463220
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['from sys import stdin,stdout\nn=int(stdin.readline());ans=0\nfctrs=[0]*(n+1)\nfor i in range(1,n+1):\n for j in range(i,n+1,i):\n fctrs[j]+=1\nfor i in range(1,n+1):\n ans+=(i*fctrs[i])\nstdout.write(str(ans))\n', 'from sys import stdin,stdout\nfrom numba import njit\n@njit\ndef solve(n):\n\tfctrs=[0]*(n+1)\n\tans=0\n\tfor i in range(1,n+1):\n\t\tfor j in range(i,n+1,i):\n\t\t\tfctrs[j]+=1\n\tfor i in range(1,n+1):\n\t\tans+=(i*fctrs[i])\n\treturn ans\nn=int(stdin.readline())\nprint(solve(n))']
['Time Limit Exceeded', 'Accepted']
['s955495970', 's845132733']
[87204.0, 188440.0]
[3311.0, 2056.0]
[223, 257]
p02624
u926046014
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\nans=0\nfor i in range(1,n+1):\n A=n//i\n ans+=(A*(A+1)//2+i)\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n A=n//i\n ans+=((A*A+A)*i//2)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s413338339', 's332118597']
[9096.0, 9156.0]
[2308.0, 2571.0]
[89, 89]
p02624
u928784113
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import itertools\nfrom collections import deque,defaultdict,Counter\nfrom itertools import accumulate\nimport bisect\nfrom heapq import heappop,heappush,heapify\nimport math\nfrom copy import deepcopy\nimport queue\n#import numpy as np\n\nMod = 1000000007\nfact = [1, 1]\nfactinv = [1, 1]\ninv = [0, 1] \nfor i in range(2, 10**5 + 1):\n fact.append((fact[-1] * i) % Mod)\n inv.append((-inv[Mod % i] * (Mod // i)) % Mod)\n factinv.append((factinv[-1] * inv[-1]) % Mod)\n \ndef cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % p\n \ndef sieve_of_eratosthenes(n):\n if not isinstance(n,int):\n raise TypeError("n is not int")\n if n<2:\n raise ValueError("n is not effective")\n prime = [1]*(n+1)\n for i in range(2,int(math.sqrt(n))+1):\n if prime[i] == 1:\n for j in range(2*i,n+1):\n if j%i == 0:\n prime[j] = 0\n res = []\n for i in range(2,n+1):\n if prime[i] == 1:\n res.append(i)\n return res\n\n \nclass UnionFind:\n def __init__(self,n):\n self.parent = [i for i in range(n+1)]\n self.rank = [0 for i in range(n+1)]\n \n def findroot(self,x):\n if x == self.parent[x]:\n return x\n else:\n y = self.parent[x]\n y = self.findroot(self.parent[x])\n return y\n \n def union(self,x,y):\n px = self.findroot(x)\n py = self.findroot(y)\n if px < py:\n self.parent[y] = px\n else:\n self.parent[px] = py\n \n def same_group_or_no(self,x,y):\n return self.findroot(x) == self.findroot(y)\nimport string\ndef main(): #startline-------------------------------------------\n n = int(input())\n ans = 0\n for i in range(1, n + 1):\n x = n // i\n ans += x*(i+i*x)//2\nif __name__ == "__main__":\n main() ', 'import itertools\nfrom collections import deque,defaultdict,Counter\nfrom itertools import accumulate\nimport bisect\nfrom heapq import heappop,heappush,heapify\nimport math\nfrom copy import deepcopy\nimport queue\n#import numpy as np\n\nMod = 1000000007\nfact = [1, 1]\nfactinv = [1, 1]\ninv = [0, 1] \nfor i in range(2, 10**5 + 1):\n fact.append((fact[-1] * i) % Mod)\n inv.append((-inv[Mod % i] * (Mod // i)) % Mod)\n factinv.append((factinv[-1] * inv[-1]) % Mod)\n \ndef cmb(n, r, p):\n if (r < 0) or (n < r):\n return 0\n r = min(r, n - r)\n return fact[n] * factinv[r] * factinv[n - r] % p\n \ndef sieve_of_eratosthenes(n):\n if not isinstance(n,int):\n raise TypeError("n is not int")\n if n<2:\n raise ValueError("n is not effective")\n prime = [1]*(n+1)\n for i in range(2,int(math.sqrt(n))+1):\n if prime[i] == 1:\n for j in range(2*i,n+1):\n if j%i == 0:\n prime[j] = 0\n res = []\n for i in range(2,n+1):\n if prime[i] == 1:\n res.append(i)\n return res\n\n \nclass UnionFind:\n def __init__(self,n):\n self.parent = [i for i in range(n+1)]\n self.rank = [0 for i in range(n+1)]\n \n def findroot(self,x):\n if x == self.parent[x]:\n return x\n else:\n y = self.parent[x]\n y = self.findroot(self.parent[x])\n return y\n \n def union(self,x,y):\n px = self.findroot(x)\n py = self.findroot(y)\n if px < py:\n self.parent[y] = px\n else:\n self.parent[px] = py\n \n def same_group_or_no(self,x,y):\n return self.findroot(x) == self.findroot(y)\nimport string\ndef main(): #startline-------------------------------------------\n n = int(input())\n ans = 0\n for i in range(1, n + 1):\n x = n // i\n ans += x * (i + i * x) // 2\n print(ans)\nif __name__ == "__main__":\n main() ']
['Wrong Answer', 'Accepted']
['s552695813', 's965967638']
[21848.0, 21920.0]
[1730.0, 1632.0]
[1995, 2018]
p02624
u932868243
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\nn=int(input())\nl=[]\nfor i in range(1,n+1):\n cnt=0\n j=1\n while j<=i**0.5:\n if i%j==0:\n cnt+=1\n j+=1\n if i**0.5==int(i**0.5):\n l.append(cnt*2-1)\n else:\n l.append(cnt*2)\nans=0\nfor t in range(n):\n p=(t+1)*l[t]\n ans+=p\n print(l[t])\nprint(ans)', 'n=int(input())\nans=0\nfor i in range(1,n+1):\n ans+=i*(1+n//i)*(n//i)//2\nprint(ans)']
['Wrong Answer', 'Accepted']
['s065761007', 's861662891']
[10260.0, 9124.0]
[3308.0, 2440.0]
[274, 82]
p02624
u954170646
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nsum = 0\nfor k in range(N):\n for j in range(k):\n \tif k % j == 0:\n \tsum += k\nprint(f)', 'N = int(input())\nsum = 0\nf = 0\nfor k in range(1,N):\n \n #f = 0\n for j in range(1,k)\n \tif k % j == 0:\n \tf += k\n \nprint(f)', 'N = input()\nsum = 0\nf = 0\nfor k in range(1,N):\n for j in range(1,k):\n \tif k % j == 0:\n \tsum += k\nprint(f)', 'N = int(input())\nsum = 0\nfor k in range(N):\n for j in range(k):\n \tif k % j == 0:\n \tsum += k\nprint(sum)', 'N = int(input())\nsum = 0\nfor k in range(N):\n \n f = 0\n for j in range(1,k)\n \tif k%j == 0:\n f = f+1\n sum = sum + k*f\nprint(sum)', 'n = int(input())\nsum = 0\nfor k in range(1,n+1):\n y = n // i\n sum += y*(y+1)*i//2\nprint(sum)', 'n = int(input())\nsum = 0\nfor k in range(n):\n for j in range(k):\n \tif k % j == 0:\n \tsum += k\nprint(sum)', 'N = int(input())\nsum = 0\nf = 0\nfor k in range(1,N):\n \n #f = 0\n for j in range(1,k)\n \tif k%j == 0:\n \tf += k\n \nprint(sum)', 'N = int(input())\nsum = 0\nf = 0\nfor i in range(1,N):\n for j in range(1,N):\n \tif k % j == 0:\n \tsum += 1\nprint(f)', 'N = int(input())\nsum = 0\nf = 0\nfor k in range(1,N):\n for j in range(1,k):\n \tif k % j == 0:\n \tsum += k\nprint(f)', 'N = int(input())\nsum = 0\nfor k in range(N):\n for j in range(int(k)):\n \tif k % j == 0:\n \tsum += k\nprint(sum)', 'n = int(input())\nans = 0\nfor i in range(1, n+1):\n y = n//i\n ans += y*(y+1)*i//2\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s047573772', 's085785423', 's097485096', 's105483326', 's277128323', 's408790324', 's430463084', 's453377092', 's509381045', 's747331691', 's798310257', 's000168685']
[9020.0, 8968.0, 8996.0, 8924.0, 8936.0, 9148.0, 9016.0, 8920.0, 9032.0, 8972.0, 9028.0, 9148.0]
[26.0, 27.0, 25.0, 28.0, 27.0, 26.0, 22.0, 22.0, 27.0, 26.0, 23.0, 2286.0]
[107, 154, 112, 109, 144, 93, 109, 154, 117, 117, 114, 92]
p02624
u972991614
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nf = 0\nfor j in range(1,N+1):\n count = 0\n for i in range(1,int(j**0.5)+4):\n if j%i == 0:\n count +=1\n print(count)\n f = f + (j * count)\nprint(f)', 'N = int(input())\ncount = 0\nfor i in range(1,N+1):\n t = N//i\n count += i * t*(t+1)/2\nprint(int(count))']
['Wrong Answer', 'Accepted']
['s420015768', 's548986405']
[9772.0, 9192.0]
[3308.0, 2212.0]
[189, 107]
p02624
u977422582
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\nN=int(input())\nans=0\nfor i in range(1,N):\n Y=math.ceil(N/i)\n ans+=(Y*(Y+1)*x)//2\nprint(ans)', 'import math\nN=int(input())\nans=0\nfor i in range(1,N):\n Y=math.floor(N/i)\n ans+=(Y*(Y+1)*i)//2\nprint(ans)', 'import math\nN=int(input())\nans=0\nfor i in range(1,N):\n Y=math.ceil(N/i)\n ans+=(Y*(Y+1)*i)//2\nprint(ans)\n', 'N = int(input())\nans = 0\nfor i in range(1, N + 1):\n largest = N // i * i\n ans += ((largest + i) * (N // i)) // 2\nprint(ans)\n']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s143675740', 's265071149', 's407718825', 's622285571']
[9172.0, 9168.0, 9072.0, 9164.0]
[23.0, 3279.0, 3308.0, 2969.0]
[105, 106, 106, 130]
p02624
u980783809
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['N = int(input())\nimport numpy\ndiv = np.zeros(N+1, np.int64)\nfor n in range(1, N+1):\n for m in range(n, N+1, n):\n div[m] += m\nprint(sum(div))', 'n = int(input())\nres = 0\nfor i in range(1,n+1):\n res += (i*(n//i)+i)*(n//i)//2\nprint(res)']
['Runtime Error', 'Accepted']
['s445164649', 's096066636']
[27100.0, 9168.0]
[113.0, 2581.0]
[144, 92]
p02624
u984592063
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['import math\n\nn = int(input())\nresult = 0\nfor k in range(1, n+1):\n result += k\n\n\nprint(result)\n', 'import math\n\nn = int(input())\nresult = 0\n\nfor i in range(1, n+1):\n sub = n//i\n result += (sub+1)*sub*i/2\n\n\nprint(int(result))\n']
['Wrong Answer', 'Accepted']
['s414033040', 's908409785']
[9156.0, 9156.0]
[972.0, 2297.0]
[97, 132]
p02624
u995062424
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['def func(n):\n div = 0 \n for i in range(1, int(n**0.5)+1):\n if(n%i == 0):\n div += 1\n if(i != n //i):\n div += 1\n return div\n\ndef main():\n N = int(input())\n\n ans = 0\n for i in range(1, N+1):\n ans += i*func(i)\n print(ans)', 'N = int(input())\n\nans = 0\n\nfor i in range(1, N+1):\n y = N//i\n ans += ((y*(y+1))//2)*i\nprint(ans)']
['Wrong Answer', 'Accepted']
['s871742780', 's910057777']
[9056.0, 9164.0]
[25.0, 2290.0]
[289, 102]
p02624
u999503965
3,000
1,048,576
For a positive integer X, let f(X) be the number of positive divisors of X. Given a positive integer N, find \sum_{K=1}^N K\times f(K).
['n=int(input())\n\nans=0\nfor i in range(1,n+1):\n num=n//i\n ans+=i*num*(num+1)/2\n \nprint(ans)\n', 'n=int(input())\n\nans=0\nfor i in rabge(1,n+1):\n num=n//i\n ans+=i*num*(num+1)/2\n \nprint(ans)', 'n=int(input())\n\nans=0\nfor i in range(1,n+1):\n num=n//i\n ans+=num*i\n\nprint(ans)', 'n=int(input())\n\nans=0\nfor i in range(1,n+1):\n num=n//i\n ans+=i*num*(num+1)//2\n \nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s185080950', 's520612387', 's679599160', 's093433776']
[9064.0, 9108.0, 8960.0, 9088.0]
[2271.0, 26.0, 1766.0, 2660.0]
[93, 92, 80, 94]
p02625
u044220565
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['# coding: utf-8\nimport sys\n# from operator import itemgetter\nsysread = sys.stdin.readline\nread = sys.stdin.read\nsys.setrecursionlimit(10 ** 7)\n#from heapq import heappop, heappush\n#from collections import OrderedDict, defaultdict\n#import math\n#from itertools import product, accumulate, combinations, product\n\n#import numpy as np\n#from copy import deepcopy\nfrom collections import deque\n#import numba\n\ndef generate_inv(n,mod):\n \n ret = [0, 1]\n for i in range(2,n+1):\n next = -ret[mod%i] * (mod // i)\n next %= mod\n ret.append(next)\n return ret\n\ndef generate_comb_m_i(M, inv, mod):\n ret = [1, M]\n for i in range(2, M+1):\n tmp = ret[-1]\n tmp *= M-(i-1)\n tmp %= mod\n tmp *= inv[i]\n tmp %= mod\n ret.append(tmp)\n return ret\ndef generate_p_N_i(N, mod):\n ret = [1]\n for i in range(1, N+1):\n tmp = ret[-1] * (N - (i-1))\n tmp %= mod\n ret.append(tmp)\n return ret\n\ndef generate_p_mi_ni(M, N, mod):\n ret = deque([1])\n cache = deque([1])\n for i in range(1, N+1):\n tmp = cache[0]\n tmp *= M-N+i\n tmp %= mod\n cache.appendleft(tmp)\n ret.appendleft((tmp ** 2) % mod)\n return ret\n\n\ndef run():\n N, M = map(int, input().split())\n mod = 10 ** 9 + 7\n\n inv = generate_inv(M, mod)\n\n comb_m_i = generate_comb_m_i(M, inv, mod)\n print(comb_m_i[0])\n p_N_i = generate_p_N_i(N, mod)\n print(p_N_i[0])\n p_mi_ni = generate_p_mi_ni(M, N, mod)\n print(p_mi_ni[0])\n\n ret = p_mi_ni[0]\n\n sub = 0\n for i in range(1, N+1):\n tmp = comb_m_i[i]\n tmp *= p_N_i[i]\n tmp %= mod\n tmp *= p_mi_ni[i]\n tmp %= mod\n tmp *= (i%2) * 2 - 1\n tmp %= mod\n sub += tmp\n\n ret -= sub\n ret %= mod\n\n print(ret)\n\n\n\n\nif __name__ == "__main__":\n run()', '# coding: utf-8\nimport sys\n# from operator import itemgetter\nsysread = sys.stdin.readline\nread = sys.stdin.read\nsys.setrecursionlimit(10 ** 7)\n#from heapq import heappop, heappush\n#from collections import OrderedDict, defaultdict\n#import math\n#from itertools import product, accumulate, combinations, product\n\nimport numpy as np\n#from copy import deepcopy\nfrom collections import deque\n#import numba\n\ndef generate_inv(n,mod):\n \n ret = [0, 1]\n for i in range(2,n+1):\n next = -ret[mod%i] * (mod // i)\n next %= mod\n ret.append(next)\n return ret\n\ndef generate_comb_m_i(M, N, inv, mod):\n ret = [1, M]\n for i in range(2, N+1):\n tmp = (ret[-1] * (M-(i-1)) * inv[i]) % mod\n ret.append(tmp)\n return ret\ndef generate_p_N_i(N, mod):\n ret = [1]\n for i in range(1, N+1):\n tmp = (ret[-1] * (N - (i-1))) % mod\n ret.append(tmp)\n return ret\n\ndef generate_p_mi_ni(M, N, mod):\n ret = deque([1])\n cache = deque([1])\n for i in range(1, N+1):\n tmp = (cache[0] * (M-N+i)) % mod\n cache.appendleft(tmp)\n ret.appendleft((tmp ** 2) % mod)\n return ret\n\n\ndef run():\n N, M = map(int, input().split())\n mod = 10 ** 9 + 7\n\n inv = generate_inv(M, mod)\n\n comb_m_i = generate_comb_m_i(M, N, inv, mod)\n #print(comb_m_i[0])\n p_N_i = generate_p_N_i(N, mod)\n #print(p_N_i[0])\n p_mi_ni = generate_p_mi_ni(M, N, mod)\n #print(p_mi_ni[0])\n\n ret = p_mi_ni[0]\n\n arr01 = [-1, 1] * (N//2 + 1)\n arr01 = arr01[:N+1]\n\n comb_m_i = np.array(comb_m_i, dtype=np.int64)\n p_N_i = np.array(p_N_i, dtype=np.int64)\n p_mi_ni = np.array(p_mi_ni, dtype=np.int64)\n arr01 = np.array(arr01, dtype=np.int64)\n\n tmp = (comb_m_i * p_N_i) % mod\n tmp = (tmp * p_mi_ni) % mod\n tmp = (tmp * arr01) % mod\n tmp = tmp[1:]\n sub = 0\n for val in tmp:\n sub += val\n sub %= mod\n\n ret -= sub\n ret %= mod\n\n print(ret)\n\nif __name__ == "__main__":\n run()']
['Wrong Answer', 'Accepted']
['s598680139', 's950449553']
[108588.0, 133916.0]
[2210.0, 1264.0]
[1953, 2080]
p02625
u091051505
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['N, M = map(int, input().split())\nimport math\nanss = 0\nfor i in range(abs(M - 2 * N), N + 1):\n d = math.factorial(i)\n for i in range(1, N - i + 1):\n d *= i\n anss += d\nans = 1\nmod = 10 ** 9 + 7\nfor i in range(M, M - N, -1):\n ans *= i\n ans %= mod\nans = ans * anss\nans %= mod\nprint(ans)', 'N, M = map(int, input().split())\nmod = 10 ** 9 + 7\n\ndef calc(n):\n f = 1\n factorials = [1]\n for m in range(1, n + 1):\n f *= m\n f %= mod\n factorials.append(f)\n inv = pow(f, mod - 2, mod)\n invs = [1] * (n + 1)\n invs[n] = inv\n for m in range(n, 1, -1):\n inv *= m\n inv %= mod\n invs[m - 1] = inv\n return factorials, invs\n\nfactorials, invs = calc(M)\nmPn = (factorials[M] * invs[M - N]) % mod\nans = (mPn * mPn) % mod\nfor k in range(1, N + 1):\n v = pow(-1, k - 1) * factorials[N] * factorials[M - k] * invs[N - k] * invs[k] * invs[M - N] % mod\n ans -= v * mPn\nprint(ans % mod)']
['Wrong Answer', 'Accepted']
['s691254917', 's521819953']
[14532.0, 48452.0]
[2206.0, 674.0]
[304, 639]
p02625
u093861603
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['SIZE=4*10**5+1; MOD=10**9+7 \n \nSIZE += 1\ninv = [0]*SIZE # inv[j] = j^{-1} mod MOD\nfac = [0]*SIZE # fac[j] = j! mod MOD\nfinv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD\ninv[1] = 1\nfac[0] = fac[1] = 1\nfinv[0] = finv[1] = 1\nfor i in range(2,SIZE):\n inv[i] = MOD - (MOD//i)*inv[MOD%i]%MOD\n fac[i] = fac[i-1]*i%MOD\n finv[i]= finv[i-1]*inv[i]%MOD\n \ndef choose(n,r): \n if 0 <= r <= n:\n return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD\n else:\n return 0\n \ndef chofuku(n,r): \n return choose(n+r-1,r)\n\ndef narabekae(n,r): \n return fac[n]*finv[n-r]%MOD\n\n\nN,M=map(int,input().split())\nans=0\nfor k in range(N+1):\n ans+=choose(N,k)*narabekae(M-k,N-k)*(-1 if k%2==0 else 1)\n ans%=MOD\nans*=narabekae(M,N)\n\nprint(ans%MOD)\n', 'SIZE=5*10**5+1; MOD=10**9+7 \n \nSIZE += 1\ninv = [0]*SIZE # inv[j] = j^{-1} mod MOD\nfac = [0]*SIZE # fac[j] = j! mod MOD\nfinv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD\ninv[1] = 1\nfac[0] = fac[1] = 1\nfinv[0] = finv[1] = 1\nfor i in range(2,SIZE):\n inv[i] = MOD - (MOD//i)*inv[MOD%i]%MOD\n fac[i] = fac[i-1]*i%MOD\n finv[i]= finv[i-1]*inv[i]%MOD\n \ndef choose(n,r): \n if 0 <= r <= n:\n return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD\n else:\n return 0\n \ndef chofuku(n,r): \n return choose(n+r-1,r)\n\ndef narabekae(n,r): \n return fac[n]*finv[n-r]%MOD\n\n\nN,M=map(int,input().split())\nans=0\nfor k in range(N+1):\n ans+=choose(N,k)*narabekae(M-k,N-k)*(-1 if k%2==0 else 1)\n ans%=MOD\nans*=narabekae(M,N)\nprint(ans%MOD)\n', 'SIZE=5*10**5+1; MOD=10**9+7 \n \nSIZE += 1\ninv = [0]*SIZE # inv[j] = j^{-1} mod MOD\nfac = [0]*SIZE # fac[j] = j! mod MOD\nfinv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD\ninv[1] = 1\nfac[0] = fac[1] = 1\nfinv[0] = finv[1] = 1\nfor i in range(2,SIZE):\n inv[i] = MOD - (MOD//i)*inv[MOD%i]%MOD\n fac[i] = fac[i-1]*i%MOD\n finv[i]= finv[i-1]*inv[i]%MOD\n \ndef choose(n,r): \n if 0 <= r <= n:\n return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD\n else:\n return 0\n \ndef chofuku(n,r): \n return choose(n+r-1,r)\n\ndef narabekae(n,r): \n return fac[n]*finv[n-r]%MOD\n\n\nN,M=map(int,input().split())\nans=0\nfor k in range(N+1):\n ans+=choose(N,k)*narabekae(M-k,N-k)*(-1 if k%2==1 else 1)\n ans%=MOD\nans*=narabekae(M,N)\nprint(ans%MOD)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s576230700', 's793440791', 's962145830']
[56388.0, 68064.0, 68192.0]
[597.0, 997.0, 1028.0]
[838, 837, 837]
p02625
u133936772
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['M=10**9+7\nn,m=map(int,input().split())\nimport sys, functools as ft\nsys.setrecursionlimit(10**18)\[email protected]_cache(None)\ndef f(n):\n if n<2: return 1\n return n*f(n-1)%M\na=0\nfor k in range(n+1):\n a+=(-1)**k*f(m-k)*pow(f(k)*f(n-k),-1,M)%M\nprint(a*f(n)*f(m)*pow(f(m-n)**2,-1,M)%M)', 'n,m=map(int,input().split())\nM,F=10**9+7,[1]\nfor i in range(m): F+=[-~i*F[i]%M]\nprint(sum((-1)**k*F[m-k]*pow(F[k]*F[n-k]*F[m-n]**2,-1,M) for k in range(n+1))*F[n]*F[m]%M)']
['Runtime Error', 'Accepted']
['s796364552', 's070714895']
[9560.0, 28872.0]
[26.0, 1309.0]
[275, 170]
p02625
u189023301
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['import numpy as np\n\nN = 10 ** 6\nNsq = 10 ** 3\nmod = 10 ** 9 + 7\n\nfac = np.arange(N, dtype=np.int64).reshape(Nsq, Nsq)\nfac[0, 0] = 1\nfor i in range(1, Nsq):\n fac[:, i] *= fac[:, i - 1]\n fac[:, i] %= mod\nfor i in range(1, Nsq):\n fac[i] *= fac[i - 1, -1]\n fac[i] %= mod\nfac = fac.ravel()\n\nfinv = np.arange(1, N + 1, dtype=np.int64)[::-1].reshape(Nsq, Nsq)\nfinv[0, 0] = pow(int(fac[N - 1]), mod - 2, mod)\nfor i in range(1, Nsq):\n finv[:, i] *= finv[:, i - 1]\n finv[:, i] %= mod\nfor i in range(1, Nsq):\n finv[i] *= finv[i - 1, -1]\n finv[i] %= mod\nfinv = finv.ravel()[::-1]\n\n\ndef nCr(a, b):\n if not a or not b:\n return 1\n comb = fac[a] * finv[b] % mod * finv[a - b] % mod\n return comb\n\n\nn, m = map(int, input().split())\n\nres = 0\nfor i in range(1, n + 1):\n res += nCr(n, i) * nCr(m - n, i)\n res %= mod\nprint(res)\n', 'import numpy as np\n\nN = 10 ** 6\nNsq = 10 ** 3\nmod = 10 ** 9 + 7\n\nfac = np.arange(N, dtype=np.int64).reshape(Nsq, Nsq)\nfac[0, 0] = 1\nfor i in range(1, Nsq):\n fac[:, i] *= fac[:, i - 1]\n fac[:, i] %= mod\nfor i in range(1, Nsq):\n fac[i] *= fac[i - 1, -1]\n fac[i] %= mod\nfac = fac.ravel()\n\nfinv = np.arange(1, N + 1, dtype=np.int64)[::-1].reshape(Nsq, Nsq)\nfinv[0, 0] = pow(int(fac[N - 1]), mod - 2, mod)\nfor i in range(1, Nsq):\n finv[:, i] *= finv[:, i - 1]\n finv[:, i] %= mod\nfor i in range(1, Nsq):\n finv[i] *= finv[i - 1, -1]\n finv[i] %= mod\nfinv = finv.ravel()[::-1]\n\n\ndef nCr(a, b):\n comb = fac[a] * finv[b] % mod * finv[a - b] % mod\n return comb\n\n\ndef nPr(a, b):\n comb = fac[a] * finv[a - b] % mod\n return comb\n\n\nn, m = map(int, input().split())\n\nres = 0\nfor i in range(n + 1):\n res += nCr(n, i) * (-1) ** i * nPr(m - i, n - i)\n res %= mod\nprint(res * nPr(m, n) % mod)\n']
['Wrong Answer', 'Accepted']
['s411107282', 's733037286']
[50192.0, 50148.0]
[1415.0, 1618.0]
[852, 914]
p02625
u201387466
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10 ** 8)\nfrom itertools import accumulate\nfrom itertools import permutations\nfrom itertools import combinations\nfrom collections import defaultdict\nfrom collections import Counter\nimport fractions\nimport math\nfrom collections import deque\nfrom bisect import bisect_left\nfrom bisect import bisect_right\nfrom bisect import insort_left\nimport itertools\nfrom heapq import heapify\nfrom heapq import heappop\nfrom heapq import heappush\nimport heapq\nfrom copy import deepcopy\nfrom decimal import Decimal\nalf = list("abcdefghijklmnopqrstuvwxyz")\nALF = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")\n#import numpy as np\nINF = float("inf")\n\n\nN,M = map(int,input().split())\nfac = [1, 1]\ninv = [0, 1]\nfinv = [1, 1]\nMOD = 10**9+7\nfac = [1, 1]\ninv = [0, 1]\nfinv = [1, 1]\nfor i in range(2, M+1):\n fac.append(fac[-1] * i % MOD)\n inv.append(MOD - inv[MOD%i] * (MOD//i) % MOD)\n finv.append(finv[-1] * inv[-1] % MOD) \ndef comb_mod(n, r, m): #nCr mod m\n if (n<0 or r<0 or n<r): return 0\n r = min(r, n-r)\n return fac[n] * finv[n-r] * finv[r] % m\n\ndef chofuku(n,r): \n return comb_mod(n+r-1,r)\n \ndef narabekae(n,r,m): \n return fac[n]*finv[n-r]%m\nans = 0\nfor i in range(1,N+1):\n if i % 2 == 1:\n flag = 1\n else:\n flag = -1\n s = flag*comb_mod(N,i,MOD)*nPr(M-i,N-i,MOD)\n ans += s\n if ans > MOD:\n ans %= MOD\nans1 = 1\nfor i in range(N):\n ans1 *= (M-i)\n ans1 %= MOD\nans2 = (ans1*ans1)%MOD\nans3 = (ans*nPr(M,N,MOD)) %MOD\nprint((ans2-ans3)%MOD)\n', 'import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(10 ** 8)\nfrom itertools import accumulate\nfrom itertools import permutations\nfrom itertools import combinations\nfrom collections import defaultdict\nfrom collections import Counter\nimport fractions\nimport math\nfrom collections import deque\nfrom bisect import bisect_left\nfrom bisect import bisect_right\nfrom bisect import insort_left\nimport itertools\nfrom heapq import heapify\nfrom heapq import heappop\nfrom heapq import heappush\nimport heapq\nfrom copy import deepcopy\nfrom decimal import Decimal\nalf = list("abcdefghijklmnopqrstuvwxyz")\nALF = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")\n#import numpy as np\nINF = float("inf")\n\n\nN,M = map(int,input().split())\nfac = [1, 1]\ninv = [0, 1]\nfinv = [1, 1]\nMOD = 10**9+7\nfac = [1, 1]\ninv = [0, 1]\nfinv = [1, 1]\nfor i in range(2, M+1):\n fac.append(fac[-1] * i % MOD)\n inv.append(MOD - inv[MOD%i] * (MOD//i) % MOD)\n finv.append(finv[-1] * inv[-1] % MOD) \ndef comb_mod(n, r, m): #nCr mod m\n if (n<0 or r<0 or n<r): return 0\n r = min(r, n-r)\n return fac[n] * finv[n-r] * finv[r] % m\n\ndef chofuku(n,r): \n return comb_mod(n+r-1,r)\n \ndef nPr(n,r,m): \n return fac[n]*finv[n-r]%m\nans = 0\nfor i in range(1,N+1):\n if i % 2 == 1:\n flag = 1\n else:\n flag = -1\n s = flag*comb_mod(N,i,MOD)*nPr(M-i,N-i,MOD)\n ans += s\n if ans > MOD:\n ans %= MOD\nans1 = 1\nfor i in range(N):\n ans1 *= (M-i)\n ans1 %= MOD\nans2 = (ans1*ans1)%MOD\nans3 = (ans*nPr(M,N,MOD)) %MOD\nprint((ans2-ans3)%MOD)\n']
['Runtime Error', 'Accepted']
['s857174384', 's304079892']
[69436.0, 69696.0]
[529.0, 1131.0]
[1611, 1605]
p02625
u461454424
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['#atcoder template\ndef main():\n import sys\n imput = sys.stdin.readline\n from numba import jit\n\n \n \n #input\n n, m = map(int, input().split())\n\n #output\n mod = pow(10, 9) + 7\n\n n_ = 5 * pow(10, 5) + 5\n fun = [1] * (n_+1)\n for i in range(1, n_+1):\n fun[i] = fun[i-1] * i % mod\n rev = [1] * (n_+1)\n rev[n_] = pow(fun[n_], mod-2, mod)\n for i in range(n_-1, 0, -1):\n rev[i] = rev[i+1] * (i+1) % mod\n @jit\n def cmb(n,r):\n if n < 0 or r < 0 or r > n: return 0\n return fun[n] * rev[r] % mod * rev[n-r] % mod\n @jit\n def perm(n, r):\n if n < 0 or r < 0 or r > n: return 0\n return fun[n] * rev[n-r] % mod\n\n \n \n #s(n, m) = sum(k=0, n)(cmb(n, k)* (-1)^k * cmb(m-k, n-k)*(n-k)!)\n\n import math\n answer = 0\n for i in range(n+1):\n temp = perm(n, i) * cmb(m, i) * pow(perm(m-i, n-i), 2)\n temp %= mod\n if i % 2 == 0:\n answer += temp\n else:\n answer -= temp\n print(answer % mod)\n\n \nif __name__ == "__main__":\n main()', '#atcoder template\ndef main():\n import sys\n imput = sys.stdin.readline\n if sys.argv[-1] == \'ONLINE_JUDGE\':\n import numba\n from numba.pycc import CC\n i8 = numba.int64\n cc = CC(\'my_module\')\n \n def cc_export(f, signature):\n cc.export(f.__name__, signature)(f)\n return numba.njit(f)\n \n fact_table = cc_export(fact_table, (i8, i8))\n main = cc_export(main, (i8, i8, i8))\n cc.compile()\n\n \n \n #input\n n, m = map(int, input().split())\n\n #output\n mod = pow(10, 9) + 7\n\n n_ = 5 * pow(10, 5) + 5\n fun = [1] * (n_+1)\n for i in range(1, n_+1):\n fun[i] = fun[i-1] * i % mod\n rev = [1] * (n_+1)\n rev[n_] = pow(fun[n_], mod-2, mod)\n for i in range(n_-1, 0, -1):\n rev[i] = rev[i+1] * (i+1) % mod\n def cmb(n,r):\n if n < 0 or r < 0 or r > n: return 0\n return fun[n] * rev[r] % mod * rev[n-r] % mod\n def perm(n, r):\n if n < 0 or r < 0 or r > n: return 0\n return fun[n] * rev[n-r] % mod\n\n \n \n #s(n, m) = sum(k=0, n)(cmb(n, k)* (-1)^k * cmb(m-k, n-k)*(n-k)!)\n\n import math\n answer = 0\n for i in range(n+1):\n temp = perm(n, i) * cmb(m, i) * pow(perm(m-i, n-i), 2)\n temp %= mod\n if i % 2 == 0:\n answer += temp\n else:\n answer -= temp\n print(answer % mod)\n\n \nif __name__ == "__main__":\n main()\n', '#atcoder template\ndef main():\n import sys\n imput = sys.stdin.readline\n if sys.argv[-1] == \'ONLINE_JUDGE\':\n import numba\n from numba.pycc import CC\n i8 = numba.int64\n cc = CC(\'my_module\')\n \n def cc_export(f, signature):\n cc.export(f.__name__, signature)(f)\n return numba.njit(f)\n \n fact_table = cc_export(fact_table, (i8, i8))\n main = cc_export(main, (i8, i8, i8))\n cc.compile()\n\n \n \n #input\n n, m = map(int, input().split())\n\n #output\n mod = pow(10, 9) + 7\n\n n_ = 5 * pow(10, 5) + 5\n fun = [1] * (n_+1)\n for i in range(1, n_+1):\n fun[i] = fun[i-1] * i % mod\n rev = [1] * (n_+1)\n rev[n_] = pow(fun[n_], mod-2, mod)\n for i in range(n_-1, 0, -1):\n rev[i] = rev[i+1] * (i+1) % mod\n def cmb(n,r):\n if n < 0 or r < 0 or r > n: return 0\n return fun[n] * rev[r] % mod * rev[n-r] % mod\n def perm(n, r):\n if n < 0 or r < 0 or r > n: return 0\n return fun[n] * rev[n-r] % mod\n\n \n \n #s(n, m) = sum(k=0, n)(cmb(n, k)* (-1)^k * cmb(m-k, n-k)*(n-k)!)\n\n import math\n answer = 0\n for i in range(n+1):\n temp = perm(n, i) * cmb(m, i) * pow(perm(m-i, n-i), 2)\n temp %= mod\n if i % 2 == 0:\n answer += temp\n else:\n answer -= temp\n print(answer % mod)\n\n \nif __name__ == "__main__":\n main()\n']
['Time Limit Exceeded', 'Runtime Error', 'Accepted']
['s821095505', 's969391278', 's812302495']
[210992.0, 9004.0, 48400.0]
[2223.0, 25.0, 867.0]
[1258, 1564, 1616]
p02625
u570155187
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['from scipy.special import perm\nfrom scipy.special import comb\n\nn,m = map(int,input().split())\n\np = perm(m,n,exact=True)\nmod = 10**9 + 7\n\nd = [0]*n\nd[0] += p\nfor i in range(1,n):\n d[i] += ((perm(m,n-i,exact=True)*(perm(m-n+i,i,exact=True)**2) - sum(d[:i]))*comb(n,i,exact=True)) % mod\n \nprint(d)\n\nans = (p**2 - sum(d[:n])) % mod\nprint(ans)', 'from scipy.special import perm\nfrom scipy.special import comb\n\nn,m = map(int,input().split())\n\np = perm(m,n,exact=True)\nmod = 10**9 + 7\n\nd = [0]*n\nd[0] += p\nfor i in range(1,n):\n d[i] += ((perm(m,n-i,exact=True)*(perm(m-n+i,i,exact=True)**2) - sum(d[:i]))*comb(n,i,exact=True)) % mod\n \nprint(d)\n\nans = (p**2 - sum(d[:n])) % mod\nprint(ans)', 'def prepare(n):\n global MOD\n modFacts = [0] * (n + 1)\n modFacts[0] = 1\n for i in range(n):\n modFacts[i + 1] = (modFacts[i] * (i + 1)) % MOD\n\n invs = [1] * (n + 1)\n invs[n] = pow(modFacts[n], MOD - 2, MOD)\n for i in range(n, 1, -1):\n invs[i - 1] = (invs[i] * i) % MOD\n\n return modFacts, invs\n \n\nN, M = map(int, input().split())\n\nMOD = 10 ** 9 + 7\nmodFacts, invs = prepare(max(N, M))\n\nans = 0\nfor i in range(N + 1):\n Ti = (modFacts[N] * invs[i] * invs[N - i]) % MOD\n Ti *= (modFacts[M] * invs[M - i]) % MOD\n Ti %= MOD\n Ti *= pow(modFacts[M - i] * invs[(M - i) - (N - i)], 2, MOD)\n Ti %= MOD\n ans += pow(-1, i) * Ti\n ans %= MOD\n\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s406616868', 's782899225', 's056393615']
[42584.0, 42488.0, 48364.0]
[2207.0, 2207.0, 1267.0]
[340, 340, 702]
p02625
u745514010
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['n = int(input())\nalst = list(map(int, input().split()))\nif n == 2:\n if sum(alst) % 2 != 0:\n print(-1)\n elif alst[0] < alst[1]:\n print(-1)\n else:\n print((alst[0] - alst[1]) // 2)\n exit()\n\nif alst.count(1) == n:\n if n % 2 == 0:\n print(0)\n else:\n print(-1)\n exit()\n \nif alst.count(1) == n - 1:\n if n % 2 == 1:\n print(0)\n else:\n print(-1)\n exit()\n\nxor = 0\nfor num in alst[2:]:\n xor ^= num\ntotal = alst[0] + alst[1]\nif xor > total:\n print(-1)\n exit()\n\ndiff = total - xor\nif diff % 2 == 1:\n print(-1)\n exit()\n\nif alst[0] == 1:\n if xor == alst[0] ^ alst[1]:\n print(0)\n else:\n print(-1)\n exit()\n \ndiff //= 2\ntotal_bin = format(total, "b")\ndiff_bin = format(diff,"b")\nxor_bin = format(xor,"b")\ni = len(total_bin)\nans = 0\nfor j in range(i, 0, -1):\n if j <= len(diff_bin):\n if diff_bin[-j] == "1":\n ans += 2 ** (j - 1)\n continue\nfor j in range(i, 0, -1):\n if j <= len(diff_bin):\n if diff_bin[-j] == "1":\n continue\n if j <= len(xor_bin):\n if xor_bin[-j] == "0":\n continue \n if ans + 2 ** (j - 1) < alst[0]:\n ans += 2 ** (j - 1)\nif ans == 0 or ans >= alst[0]:\n print(-1)\nelse:\n print(alst[0] - ans)', 'n, m = map(int, input().split())\n\nN = m + 100\nMOD = 10 ** 9 + 7\nfact = [0 for _ in range(N)]\ninvfact = [0 for _ in range(N)]\nfact[0] = 1\nfor i in range(1, N):\n fact[i] = i * fact[i - 1] % MOD\n\ninvfact[N - 1] = pow(fact[N - 1], MOD - 2, MOD)\n\nfor i in range(N - 2, -1, -1):\n invfact[i] = invfact[i + 1] * (i + 1) % MOD\n \ndef nCk(n, k):\n if k < 0 or n < k:\n return 0\n else:\n return fact[n] * invfact[k] * invfact[n - k] % MOD\n \ndef nPk(n, k):\n return fact[n] * invfact[n - k] % MOD\n \nans = 0\nsign = 1\n\nfor i in range(n + 1):\n ans = (ans + nPk(m, i) * nCk(n, i) * nPk(m - i, n - i) ** 2 * sign) % MOD\n sign *= -1\n \nprint(ans)\n \n ']
['Runtime Error', 'Accepted']
['s707332892', 's266982187']
[9204.0, 48384.0]
[29.0, 973.0]
[1301, 683]
p02625
u749614185
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['from functools import reduce\nmod = 10**9 + 7\nn, m = map(int, input().split())\n \ndef comb(N, A, MOD):\n num = reduce(lambda x, y: x * y % MOD, range(N, N - A, -1))\n den = reduce(lambda x, y: x * y % MOD, range(1, A + 1))\n return num * pow(den, MOD - 2, MOD) % MOD\n \na = 1\nfor i in range(1, n+1):\n a *= i\n a %= mod\n \nprint((comb(m, n, mod) * comb(m, n, mod) - (a*comb(m, n, mod)%mod)%mod))', 'import sys \nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nmod = 10**9+7\nN, M = map(int, readline().split())\n \nfact = [1] * (M+1)\nfact_inv = [1] * (M+1)\nfor i in range(1,M+1):\n fact[i] = fact[i-1] * i % mod \nfact_inv[M] = pow(fact[M],mod-2,mod)\nfor i in range(M,0,-1):\n fact_inv[i-1] = (i * fact_inv[i]) % mod \n \ndef comb(n,r):\n return fact[n] * fact_inv[r] * fact_inv[n-r] % mod\ntotal = 0\nfor k in range(N+1):\n a = fact[M-k] * fact_inv[M-N] * comb(N,k) % mod\n if k % 2 == 0:\n total += a\n else:\n total -= a\nans = (comb(M,N) * fact[N]) % mod * total \nprint(ans%mod)']
['Wrong Answer', 'Accepted']
['s559886629', 's378709700']
[9392.0, 48336.0]
[531.0, 612.0]
[401, 652]
p02625
u844789719
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['max_fact = 5 * 10**5\nmod = 10**9 + 7\n\nf = [1] * (max_fact + 1)\nfor idx in range(2, max_fact + 1):\n f[idx] = f[idx - 1] * idx\n f[idx] %= mod\nfi = [pow(f[-1], mod - 2, mod)]\nfor idx in range(max_fact, 0, -1):\n fi += [fi[-1] * idx % mod]\nfi = fi[::-1]\n\ndef factorial(self, n):\n return f[n]\n\ndef factorial_inverse(self, n):\n return fi[n]\n\ndef combination(self, n, r):\n return f[n] * fi[r] * fi[n - r] % mod\n\ndef permutation(self, n, r):\n return f[n] * fi[n - r] % mod\n\ndef homogeneous_product(self, n, r):\n return f[n + r - 1] * fi[r] * fi[n - 1] % mod\n\n\ncomb = combination\nperm = permutation\n\nN, M = [int(_) for _ in input().split()]\nans = 0\nfor p in range(N + 1):\n ans += (-1)**p * comb(N, p) * perm(M - p, N - p)\n ans %= mod\nans *= perm(M, N)\nans %= mod\nprint(ans)\n', 'class Factorial:\n def __init__(self, max_fact, mod):\n #mod should be prime number\n \n f = [1] * (max_fact + 1)\n for idx in range(2, max_fact + 1):\n f[idx] = f[idx - 1] * idx\n f[idx] %= mod\n fi = [pow(f[-1], mod - 2, mod)]\n for idx in range(max_fact, 0, -1):\n fi += [fi[-1] * idx % mod]\n fi = fi[::-1]\n self.mod = mod\n self.f = f\n self.fi = fi\n\n def factorial(self, n):\n return self.f[n]\n\n def factorial_inverse(self, n):\n return self.fi[n]\n\n def combination(self, n, r):\n f = self.f\n fi = self.fi\n return f[n] * fi[r] * fi[n - r] % self.mod\n\n def permutation(self, n, r):\n return self.f[n] * self.fi[n - r] % self.mod\n\n def homogeneous_product(self, n, r):\n f = self.f\n fi = self.fi\n return f[n + r - 1] * fi[r] * fi[n - 1] % self.mod\n\n\nmax_fact = 5*10**5\nmod = 10**9 + 7\nfact_instance = Factorial(max_fact, mod)\ncomb = fact_instance.combination\nperm = fact_instance.permutation\n\nN, M = [int(_) for _ in input().split()]\nans = 0\nfor p in range(N + 1):\n ans += (-1)**p * comb(N, p) * perm(M - p, N - p)\n ans %= mod\nans *= perm(M, N)\nans %= mod\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s166698999', 's981742468']
[52488.0, 52428.0]
[319.0, 787.0]
[794, 1299]
p02625
u879309973
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['MAX = 5 * (10**5)\nMOD = 10**9 + 7\ndef inv(p):\n q = MOD - 2\n res = 1\n while q:\n if q % 2 == 1:\n res = (res*p) % MOD\n p = (p*p) % MOD\n q //= 2\n return res\n\n_fact = [0] * (MAX + 1)\n_inv = [0] * (MAX + 1)\n_fact[0] = 1\n_inv[0] = 1\nfor k in range(1, MAX + 1):\n _fact[k] = _fact[k-1] * k % MOD\n _inv[k] = inv(_fact[k])\n\ndef P(m, n):\n return _fact[m] * _inv[m-n] % MOD\n\ndef C(m, n):\n return _fact[m] * _inv[m-n] * _inv[n] % MOD\n\ndef solve(n, m):\n res = 0\n for k in range(n+1):\n sign = 1 - 2 * (k%2)\n cur = sign * C(n, k) * P(m, k) * (P(m-k, n-k) ** 2)\n res = (res + cur) % MOD\n return res\n\nn, m = map(int, input().split())\nprint(solve(n, m))', 'MAX = 5 * (10**5)\nMOD = 10**9 + 7\n\n_fact = [1,1] + [0] * MAX\n_inv = [0,1] + [0] * MAX\n_fact_inv = [1,1] + [0] * MAX\nfor k in range(2, MAX + 1):\n _fact[k] = _fact[k-1] * k % MOD\n _inv[k] = (-_inv[MOD % k] * (MOD // k)) % MOD\n _fact_inv[k] = _fact_inv[k-1] * _inv[k] % MOD\n\ndef P(m, n):\n return _fact[m] * _fact_inv[m-n] % MOD\n\ndef C(m, n):\n return _fact[m] * _fact_inv[m-n] * _fact_inv[n] % MOD\n\ndef solve(n, m):\n res = 0\n for k in range(n+1):\n sign = 1 - 2 * (k%2)\n cur = sign * C(n, k) * P(m, k) * (P(m-k, n-k) ** 2)\n res = (res + cur) % MOD\n return res\n\nn, m = map(int, input().split())\nprint(solve(n, m))']
['Time Limit Exceeded', 'Accepted']
['s311007838', 's842911638']
[38136.0, 71960.0]
[2207.0, 1114.0]
[719, 652]
p02625
u900968659
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
['# -*- coding: utf-8 -*-\n\nfrom math import factorial\nn,m=map(int,input().split())\nnf=factorial(n)\nmf=factorial(m)\nmnf=factorial((m-n))\n\ndef ko1(x):\n kosuu1=0\n for i in range(x+1):\n kf=factorial(i)\n kosuu1+=int((nf/kf)*((-1)**i))\n kosuu1*=nf\n return kosuu1\n\ndef ko2(x,y):\n kosuu2=0\n for i in range(x+1):\n kf=factorial(i)\n mi=factorial((y-i))\n ni=factorial((x-i))\n kosuu2+=int((((-1)**i)*mi*nf)/(ni*mnf*kf))\n kosuu2*=int(mf/mnf)\n return kosuu2\nif n==m:\n kosuu=int(ko1(n)/(10**9+1))\nelse:\n kosuu=int((ko2(n,m))%(10**9+1))\nprint(kosuu)', '# -*- coding: utf-8 -*-\n\ndef facto(x):\n sumf=1\n if x==0:\n sumf=1\n else:\n for i in range(x):\n k=i+1\n sumf*=k\n return sumf\nn,m=map(int,input().split())\nnf=facto(n)\nmf=facto(m)\nmnf=facto((m-n))\n\ndef ko1(x):\n kosuu1=0\n for i in range(x+1):\n kf=facto(i)\n kosuu1+=int((nf/kf)*((-1)**i))\n kosuu1*=nf\n return kosuu1\n\ndef ko2(x,y):\n kosuu2=0\n for i in range(x+1):\n kf=facto(i)\n mi=facto((y-i))\n ni=facto((x-i))\n kosuu2+=int((((-1)**i)*mi*nf)/(ni*mnf*kf))\n kosuu2*=int(mf/mnf)\n return kosuu2\nif n==m:\n kosuu=int(ko1(n)/(10**9+1))\nelse:\n kosuu=int((ko2(n,m))%(10**9+1))\nprint(kosuu)', '# -*- coding: utf-8 -*-\n\ndef cmb(n,r,p):\n if r<0 or n<r:\n return 0\n r=min(r,n-r)\n return facto[n]*factoinv[r]*factoinv[n-r]%p\np=10**9+7\nn,m=map(int,input().split())\n\nfacto=[1,1]\n\nfactoinv=[1,1]\n\ninv=[0,1]\n\nfor i in range(2,m+1):\n facto.append((facto[-1]*i)%p)\n inv.append((-inv[p%i]*(p//i))%p)\n factoinv.append((factoinv[-1]*inv[-1])%p)\nif n==m:\n kosuub=0\n for i in range(n+1):\n kosuub+=(facto[(n-i)]*cmb(n,i,p)*((-1)**i))%p\n kosuu=(kosuub*facto[(n)])%p\n print(kosuu)\nelse:\n kosuub=0\n for i in range(n+1):\n kosuub+=(cmb((m-i),(n-i),p)*facto[(n-i)]*cmb(n,i,p)*((-1)**i))%p\n kosuu=(kosuub*cmb(m,n,p)*facto[n])%p\n print(kosuu)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s252864687', 's577153436', 's149833322']
[14880.0, 9696.0, 68348.0]
[2206.0, 2206.0, 1158.0]
[591, 652, 929]
p02625
u943004959
2,000
1,048,576
Count the pairs of length-N sequences consisting of integers between 1 and M (inclusive), A_1, A_2, \cdots, A_{N} and B_1, B_2, \cdots, B_{N}, that satisfy all of the following conditions: * A_i \neq B_i, for every i such that 1\leq i\leq N. * A_i \neq A_j and B_i \neq B_j, for every (i, j) such that 1\leq i < j\leq N. Since the count can be enormous, print it modulo (10^9+7).
["MOD = 10**9 + 7\nMAX = 5*10**5 + 1\n\nfact = [0 for _ in range(MAX)]\nfactinv = [0 for _ in range(MAX)]\n\nfact[0] = 1\nfor k in range(1, MAX):\n fact[k] = fact[k - 1]*k\n fact[k] %= MOD\n\nfactinv[MAX - 1] = pow(fact[MAX - 1], MOD - 2, MOD)\nfor k in range(MAX - 1, 0, -1):\n factinv[k - 1] = factinv[k]*k\n factinv[k - 1] %= MOD\n\ndef nCk(n, k):\n return fact[n]*factinv[k]*factinv[n - k] % MOD\n\ndef nPk(n, k):\n return fact[n]*factinv[n - k] % MOD\n\nn, m = map(int, input().split(' '))\n\nans = 0\nfor k in range(n + 1):\n tmp = nCk(n, k)*nPk(m, k)*nPk(m - k, n - k)*nPk(m - k, n - k) % MOD\n if k % 2: ans += tmp\n else: ans -= tmp\n ans %= MOD\n\nprint(ans)", "MOD = 10**9 + 7\nMAX = 5*10**6 + 1\n\nfact = [0 for _ in range(MAX)]\nfactinv = [0 for _ in range(MAX)]\n\nfact[0] = 1\nfor k in range(1, MAX):\n fact[k] = fact[k - 1]*k\n fact[k] %= MOD\n\nfactinv[MAX - 1] = pow(fact[MAX - 1], MOD - 2, MOD)\nfor k in range(MAX - 1, 0, -1):\n factinv[k - 1] = fact[k]*k\n factinv[k - 1] %= MOD\n\ndef nCk(n, k):\n return fact[n]*factinv[k]*factinv[n - k] % MOD\n\ndef nPk(n, k):\n return fact[n]*factinv[n - k] % MOD\n\nn, m = map(int, input().split(' '))\n\nans = 0\nfor k in range(n + 1):\n tmp = nCk(n, k)*nPk(m, k)*nPk(m - k, n - k)*nPk(m - k, n - k) % MOD\n if k % 2: ans += tmp\n else: ans -= tmp\n ans %= MOD\n\nprint(ans)", "MOD = 10**9 + 7\nMAX = 5*10**5 + 1\n\nfact = [0 for _ in range(MAX)]\nfactinv = [0 for _ in range(MAX)]\n\nfact[0] = 1\nfor k in range(1, MAX):\n fact[k] = fact[k - 1]*k\n fact[k] %= MOD\n\nfactinv[MAX - 1] = pow(fact[MAX - 1], MOD - 2, MOD)\nfor k in range(MAX - 1, 0, -1):\n factinv[k - 1] = fact[k]*k\n factinv[k - 1] %= MOD\n\ndef nCk(n, k):\n return fact[n]*factinv[k]*factinv[n - k] % MOD\n\ndef nPk(n, k):\n return fact[n]*factinv[n - k] % MOD\n\nn, m = map(int, input().split(' '))\n\nans = 0\nfor k in range(n + 1):\n tmp = nCk(n, k)*nPk(m, k)*nPk(m - k, n - k)*nPk(m - k, n - k) % MOD\n if k % 2: ans += tmp\n else: ans -= tmp\n ans %= MOD\n\nprint(ans)", "MOD = 10**9 + 7\nMAX = 5*10**5 + 1\n\nfact = [0 for _ in range(MAX)]\nfactinv = [0 for _ in range(MAX)]\n\nfact[0] = 1\nfor k in range(1, MAX):\n fact[k] = fact[k - 1]*k\n fact[k] %= MOD\n\nfactinv[MAX - 1] = pow(fact[MAX - 1], MOD - 2, MOD)\nfor k in range(MAX - 1, 0, -1):\n factinv[k - 1] = factinv[k]*k\n factinv[k - 1] %= MOD\n\ndef nCk(n, k):\n return fact[n]*factinv[k]*factinv[n - k] % MOD\n\ndef nPk(n, k):\n return fact[n]*factinv[n - k] % MOD\n\nn, m = map(int, input().split(' '))\n\nans = 0\nfor k in range(n + 1):\n tmp = nCk(n, k)*nPk(m, k)*nPk(m - k, n - k)*nPk(m - k, n - k) % MOD\n if not k % 2: ans += tmp\n else: ans -= tmp\n ans %= MOD\n\nprint(ans)"]
['Wrong Answer', 'Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s300135922', 's451973955', 's692670191', 's225439569']
[48352.0, 312172.0, 48348.0, 48532.0]
[1097.0, 2216.0, 1100.0, 1069.0]
[665, 662, 662, 669]