problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03241
u167681994
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nn, m = map(int, input().split())\n\nif n == 1:\n print(m)\n exit()\na = []\nb = []\nfor i in range(1, math.ceil(math.sqrt(m))):\n if m % n == 0:\n print(m // n)\n exit()\n if m % i == 0:\n b.append(i)\n b.append(m // i)\n \nfor i in range(len(b)):\n if i * n <= m:\n a.append(i)\n print(max(a))\n\nif len(b) == 2:\n print(1)\nelse:\n print(max(a))\n', 'import math\nn, m = map(int, input().split())\n\nif n == 1:\n print(m)\n exit()\na = []\nb = []\nfor i in range(1, math.ceil(math.sqrt(m))):\n if m % n == 0:\n print(m // n)\n exit()\n if m % i == 0:\n b.append(i)\n b.append(m // i)\n \nprint(b)\n\nfor i in range(len(b)):\n if b[i] * n <= m:\n a.append(b[i])\nprint(a)\n\nif len(b) == 2:\n print(1)\nelse:\n print(max(a))\n', 'import math\nn, m = map(int, input().split())\n\nif n == 1:\n print(m)\n exit()\na = []\nb = []\nfor i in range(1, math.ceil(math.sqrt(m))):\n if m % n == 0:\n print(m // n)\n exit()\n if m % i == 0:\n b.append(i)\n b.append(m // i)\n \n#print(b)\n\nfor i in range(len(b)):\n if b[i] * n <= m:\n a.append(b[i])\n#print(a)\n\nif len(b) == 2:\n print(1)\nelse:\n print(max(a))\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s521596302', 's957871838', 's385833630']
[9172.0, 9132.0, 9084.0]
[35.0, 36.0, 47.0]
[407, 410, 412]
p03241
u177388368
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort(reverse=True)\n return divisors\n\nlis=make_divisors(m)\n\nfor mm in lis:\n if mm<=i:\n ans=mm\n break\n\nprint(ans)', '\n\nn,m=list(map(int,input().split()))\n\ni=m//n\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort(reverse=True)\n return divisors\n\nlis=make_divisors(m)\n\nfor mm in lis:\n if mm<=i:\n ans=mm\n break\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s258799877', 's611544808']
[3060.0, 3188.0]
[17.0, 20.0]
[343, 399]
p03241
u192588826
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m = map(int,input().split())\ndivisors = []\nfor i in range(1,int(n**0.5)+1):\n if m % i == 0:\n divisors.append(i)\n divisors.append(n//i)\ndivisors.sort()\nk = 0\nfor i in range(len(divisors)):\n if divisors[i] > m/n:\n k = i - 1\n break\n if i == len(divisors) - 1:\n k = len(divisors) - 1\nprint(divisors[i])\n', 'n,m = map(int,input().split())\ndivisors = []\nfor i in range(1,int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n divisors.append(n//i)\ndivisors.sort()\nk = 0\nfor i in range(len(divisors)):\n if divisors[i] > m/n:\n k = i - 1\n break\n if i == len(divisors) - 1:\n k = len(divisors) - 1\nprint(divisors[i])', 'n,m = map(int,input().split())\ndivisors = []\nfor i in range(1,int(m**0.5)+1):\n if m % i == 0:\n divisors.append(i)\n divisors.append(m//i)\ndivisors.sort()\nk = 0\nfor i in range(len(divisors)):\n if divisors[i] > m/n:\n k = i - 1\n break\n if i == len(divisors) - 1:\n k = len(divisors) - 1\nprint(divisors[k])']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s409769621', 's891943887', 's660449571']
[3060.0, 3188.0, 3064.0]
[18.0, 18.0, 21.0]
[345, 344, 344]
p03241
u192908410
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nn,m=list(map(int,input().split()))\nret=1\nfor i in range(m//n+1,2,-1):\n if m%i == 0:\n ret=i\n break\nprint(ret)', '[print(max([i for j in [[i,a[1]//i] for i in range(1,int(a[1]**0.5)+1) if a[1]%i==0] for i in j if a[1]//i>=a[0]])) for a in [list(map(int,input().split()))]]']
['Wrong Answer', 'Accepted']
['s858211609', 's922975010']
[2940.0, 3060.0]
[2103.0, 20.0]
[127, 158]
p03241
u199295501
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['# -*- coding: utf-8 -*-\nimport itertools\nfrom collections import Counter\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) <= 1:\n print(1)\n exit()\n\ncnt = Counter(f)\nans_list = []\n\ntmp_list = []\nfor k,v in cnt.items():\n tmp_list.append([i for i in range(v+1)])\n\n# prod = itertools.product(*tmp_list)\n# print(tmp_list)\n# print(list(prod))\n# print(prod)\nfor p in itertools.product(*tmp_list):\n # print(cnt.keys(), p)\n tmp = 1\n for k,i in zip(cnt.keys(),p):\n # print(k,i)\n tmp = tmp * (k ** i)\n\n if tmp >= N:\n ans_list.append(M//tmp)\n\n', '# -*- coding: utf-8 -*-\nimport itertools\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) <= 1:\n print(1)\n exit()\n\nans_list = []\nfor i in range(1,len(f)):\n set1 = set([tuple(sorted(l)) forl in list(itertools.combinations(f, i))])\n for com in set1:\n tmp = 1\n for c in com:\n tmp *= c\n if tmp >= N:\n ans_list.append(M//tmp)\n\nif len(ans_list) == 0:\n print(1)\nelse:\n print(max(ans_list))\n', '# -*- coding: utf-8 -*-\nimport itertools\nfrom collections import Counter\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) <= 1:\n print(1)\n exit()\n\ncnt = Counter(f)\nans_list = []\n\ntmp_list = []\nfor k,v in cnt.items():\n tmp_list.append([i for i in range(v+1)])\n\n# prod = itertools.product(*tmp_list)\n# print(tmp_list)\n# print(list(prod))\n# print(prod)\nfor p in itertools.product(*tmp_list):\n # print(cnt.keys(), p)\n tmp = 1\n for k,i in zip(cnt.keys(),p):\n # print(k,i)\n tmp = tmp * (k ** i)\n\n if tmp >= N:\n ans_list.append(M//tmp)\n', '# -*- coding: utf-8 -*-\nimport itertools\nfrom collections import Counter\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) <= 1:\n print(1)\n exit()\n\ncnt = Counter(f)\nans_list = []\n\ntmp_list = []\nfor k,v in cnt.items():\n tmp_list.append([i for i in range(v+1)])\n\nfor p in itertools.product(tmp_list):\n tmp = 1\n for k,i in zip(cnt.keys(),*p):\n tmp = tmp * (k ** i)\n\n if tmp >= N:\n ans_list.append(M//tmp)\n', '# -*- coding: utf-8 -*-\nimport itertools\nfrom collections import Counter\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) <= 1:\n print(1)\n exit()\n\ncnt = Counter(f)\nans_list = []\n\ntmp_list = []\nfor k,v in cnt.items():\n tmp_list.append([i for i in range(v+1)])\n\nfor p in itertools.product(tmp_list):\n tmp = 1\n for k,i in zip(cnt.keys(),*p):\n tmp = tmp * (k ** i)\n\n if tmp >= N and tmp > 1:\n ans_list.append(M//tmp)\n\n', '# -*- coding: utf-8 -*-\nimport itertools\nfrom collections import Counter\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) == 1:\n print(1)\n exit()\n\ncnt = Counter(f)\nans_list = []\n\ntmp_list = []\nfor k,v in cnt.items():\n tmp_list.append([i for i in range(v+1)])\n\nprint(cnt)\nprint(list(itertools.product(*tmp_list)))\nfor p in itertools.product(*tmp_list):\n tmp = 1\n for k,i in zip(cnt.keys(),p):\n tmp = tmp * (k ** i)\n\n if tmp > N:\n ans_list.append(M//tmp)\n\nif len(ans_list) == 0:\n print(1)\nelse:\n print(max(ans_list))\n', '# -*- coding: utf-8 -*-\nimport itertools\nfrom collections import Counter\n\nN, M = map(int, input().split())\n\ndef primes(n):\n primfac = []\n d = 2\n while d*d <= n:\n while (n % d) == 0:\n primfac.append(d) # supposing you want multiple factors repeated\n n //= d\n d += 1\n if n > 1:\n primfac.append(n)\n return primfac\n\n\nmod = M % N\ndiv = M // N\nif mod == 0:\n print(M//N)\n exit()\n\nf = primes(M)\n\n\nif len(f) == 1:\n print(1)\n exit()\n\ncnt = Counter(f)\nans_list = []\n\ntmp_list = []\nfor k,v in cnt.items():\n tmp_list.append([i for i in range(v+1)])\n\n# print(cnt)\n# print(list(itertools.product(*tmp_list)))\nfor p in itertools.product(*tmp_list):\n tmp = 1\n for k,i in zip(cnt.keys(),p):\n tmp = tmp * (k ** i)\n\n if tmp > N:\n ans_list.append(M//tmp)\n\nif len(ans_list) == 0:\n print(1)\nelse:\n print(max(ans_list))\n']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s059601759', 's119077864', 's147822099', 's155312581', 's493504361', 's968289751', 's268422804']
[3316.0, 3064.0, 3444.0, 3444.0, 3316.0, 3444.0, 3444.0]
[27.0, 18.0, 25.0, 26.0, 28.0, 26.0, 26.0]
[940, 814, 947, 809, 822, 921, 925]
p03241
u210827208
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M = map(int, input().split())\nL = []\n \nfor i in range(1,(M**0.5)+1):\n if M % i == 0:\n L.append(i)\n L.append(int(M / i))\nL1 = [i for i in L if M / i >= N]\nprint(max(L1))', 'n,m=map(int,input().split())\n\nif m%n==0:\n print(int(m/n))\nelse:\n for i in range(n+1,int(m/2)):\n if m%i==0:\n print(int(m/i))\n break\n', 'N,M = map(int, input().split())\nL = []\n \nfor i in range(1,int(M**0.5)+1):\n if M % i == 0:\n L.append(i)\n L.append(int(M / i))\nL1 = [i for i in L if M / i >= N]\nprint(max(L1))\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s230749562', 's749779826', 's081547992']
[3060.0, 3064.0, 2940.0]
[18.0, 2104.0, 22.0]
[187, 166, 191]
p03241
u211160392
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN,M = map(int,input().split())\nfor i in range(math.floor((M/N)**0.5),-1,-1):\n if M%i == 0:\n print(int(M/i))\n break', 'import math\nN,M = map(int,input().split())\nfor i in range(1,math.floor((M/N)**0.5)):\n if M%i == 0:\n print(int(M/i))\n break', 'N,M = map(int,input().split())\na = []\nfor i in range(1,int(M**0.5)+1):\n if M%i == 0:\n a.append(i)\n a.append(int(M/i))\na.sort(reverse = True)\nfor i in a:\n if i <= M/N:\n print(i)\n break']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s029283042', 's843398487', 's832149444']
[2940.0, 2940.0, 3060.0]
[18.0, 17.0, 21.0]
[143, 139, 217]
p03241
u222668979
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int, input().split())\n\nfor i in range(1, int(m**0.5)+1)[::-1]:\n if (m % i == 0) and (m / n >= i):\n print(max(i, m // i))\n break\n', 'n, m = map(int, input().split())\n\nfor i in range(1, int(m**0.5)+1)[::-1]:\n if (m % i == 0):\n if m / i >= n:\n ans = max(ans, i)\n if i >= n:\n ans = max(ans, m // i)\nprint(ans)\n', 'n, m = map(int, input().split())\n\nans = 0\nfor i in range(1, int(m ** 0.5) + 1):\n if m % i == 0:\n if m // i >= n:\n ans = max(ans, i)\n if i >= n:\n ans = max(ans, m // i)\nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s195086858', 's715458862', 's697232474']
[2940.0, 3060.0, 3060.0]
[21.0, 21.0, 21.0]
[156, 213, 218]
p03241
u225388820
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\nd=[]\nfor i in range(1,int(m**0.5)+1):\n if m%i==0:\n d.append(i,m//i)\nd.sort(reverse=True)\nfor i in d:\n if i*n<=m:\n print(i)\n exit()', 'n,m=map(int,input().split())\nd=[]\nfor i in range(1,int(m**0.5)+1):\n if m%i==0:\n d.append(i)\n d.append(m//i)\nd.sort(reverse=True)\nfor i in d:\n if i*n<=m:\n print(i)\n exit()']
['Runtime Error', 'Accepted']
['s261852769', 's334684157']
[3060.0, 3060.0]
[17.0, 22.0]
[170, 184]
p03241
u227082700
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def divisor(n):\n ass=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n ass.append(i)\n if i!=n//i:ass.append(n//i)\n return ass\nn,m=map(int,input().split())\nd=divisor(m)\nd.sort(reverse=1)\nfor i in d:\n if m//i>=n:print(i):exit()', 'n,m=map(int,input().split())\ndef divisor(n):\n ass=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n ass.append(i)\n if i!=n//i:ass.append(n//i)\n return ass\nans=0\nfor i in divisor(m):\n if m//i>=n:ans=max(ans,i)\nprint(ans)']
['Runtime Error', 'Accepted']
['s152203074', 's074101739']
[2940.0, 3064.0]
[17.0, 20.0]
[242, 236]
p03241
u231685196
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m = map(int,input().split())\n\nmax = m//n\n\nif m%n == 0:\n print(max)\nelse:\n for i in range(max):\n if m%(max-i) == 0:\n print(max)\n break\n\n\n\n', 'n,m = map(int,input().split())\n\nmax = m//n\nlis = []\n\n\nfor i in range(int(m**0.5)):\n if m%i == 0:\n lis.append(i)\n\nlis = lis[::-1]\n\nif m%n == 0:\n print(max)\nelse:\n for line in lis:\n if line > max:\n continue\n else:\n if lis%n == 0:\n print(lis)\n break\n\n\n\n', 'n,m = map(int,input().split())\n\nmax = m//n\nlis = []\n\n\nfor i in range(int(m**0.5)):\n if i != 0 and m%i == 0:\n lis.append(i)\nl = len(lis)\nfor i in range(l):\n if m/lis[i] != lis[i]:\n lis.append(m//lis[i])\n\nlis.sort()\nlis = lis[::-1]\n\nif m%n == 0:\n print(max)\nelse:\n for line in lis:\n if line > max:\n continue\n else:\n if m/line > n:\n print(line)\n break\n\n\n\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s203728332', 's995474161', 's339405401']
[2940.0, 3060.0, 3064.0]
[2104.0, 17.0, 23.0]
[174, 332, 444]
p03241
u239528020
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['#!/usr/bin/env python3\n\nn, m = list(map(int, input().split()))\n\nans = 1\nnum = int(m**0.5)+1\n\nfor i in range(1, num):\n if m % i != 0:\n continue\n j = m//i\n if i >= n:\n ans = max(ans, j)\n # if j >= n:\n # ans = max(ans, i)\nprint(ans)\n', '#!/usr/bin/env python3\n\nn, m = list(map(int, input().split()))\n\nans = 1\nnum = int(m**0.5)+1\n\nfor i in range(1, num):\n if m % i != 0:\n continue\n j = m//i\n if i >= n:\n ans = max(ans, j)\n if j >= n:\n ans = max(ans, i)\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s207593806', 's696648380']
[9320.0, 9336.0]
[33.0, 37.0]
[263, 259]
p03241
u241159583
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import sympy\nn,m = map(int, input().split())\n\nN = sympy.divisors(m)\n\nfor i in range(len(N)):\n if N[i] <= m/n:\n print(N[i])\n break', 'n,m = map(int, input().split())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort(reverse=True)\n return divisors\n\nnumbers = make_divisors(m)\nfor i in range(len(numbers)):\n if numbers[i] <= m/n:\n print(numbers[i])\n break']
['Runtime Error', 'Accepted']
['s644723777', 's293362236']
[9036.0, 9324.0]
[23.0, 32.0]
[146, 360]
p03241
u242196904
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import numpy as np\ndef factorize(n):\n fct = [] \n b, e = 2, 0 \n while b * b <= n:\n while n % b == 0:\n n = n // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\n if n > 1:\n fct.append((n, 1))\n return fct\n\n\ndef divisorize(fct):\n b, e = fct.pop() \n pre_div = divisorize(fct) if fct else [[]]\n suf_div = [[(b, k)] for k in range(e + 1)]\n return [pre + suf for pre in pre_div for suf in suf_div]\n\ndef num(fct):\n a = 1\n for base, exponent in fct:\n a = a * base**exponent\n return a\ndef yaku(n):\n fct = factorize(n)\n y = divisorize(fct)\n ys = []\n for yy in y:\n ys.append(num(yy))\n ys.sort()\n return ys\n\nn,m = list(map(int,input().split()))\ny = yaku(m)\nnp.max(np.array(y)[np.array(y) <= m/n])', 'import numpy as np\ndef factorize(n):\n fct = [] \n b, e = 2, 0 \n while b * b <= n:\n while n % b == 0:\n n = n // b\n e = e + 1\n if e > 0:\n fct.append((b, e))\n b, e = b + 1, 0\n if n > 1:\n fct.append((n, 1))\n return fct\n\n\ndef divisorize(fct):\n b, e = fct.pop() \n pre_div = divisorize(fct) if fct else [[]]\n suf_div = [[(b, k)] for k in range(e + 1)]\n return [pre + suf for pre in pre_div for suf in suf_div]\n\ndef num(fct):\n a = 1\n for base, exponent in fct:\n a = a * base**exponent\n return a\ndef yaku(n):\n fct = factorize(n)\n y = divisorize(fct)\n ys = []\n for yy in y:\n ys.append(num(yy))\n ys.sort()\n return ys\n\nn,m = list(map(int,input().split()))\nif n == 1 and m == 1:\n print(1)\nelse:\n y = yaku(m)\n print(np.max(np.array(y)[np.array(y) <= m/n]))']
['Runtime Error', 'Accepted']
['s767225127', 's543915562']
[18564.0, 12456.0]
[272.0, 179.0]
[872, 928]
p03241
u254871849
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["import sys\nfrom math import sqrt, floor\nfrom bisect import bisect_right as bi_r\n\ndef factorize(n):\n res = []\n for i in range(1, floor(sqrt(n)) + 1):\n if not n % i:\n res.append(i, n // i)\n return sorted(res)\n\nn, m = map(int, sys.stdin.readline().split())\n\n\ndef main():\n res = factorize(m)\n ans = res[bi_r(res, m / n) - 1]\n return ans\n\nif __name__ == '__main__':\n ans = main()\n print(ans)", "import sys\nfrom math import sqrt, floor\nfrom bisect import bisect_right as bi_r\n\ndef factorize(n):\n res = []\n for i in range(1, floor(sqrt(n)) + 1):\n if not n % i:\n res.append(i)\n res.append(n // i)\n return sorted(res)\n\nn, m = map(int, sys.stdin.readline().split())\n\ndef main():\n res = factorize(m)\n ans = res[bi_r(res, m / n) - 1]\n return ans\n\nif __name__ == '__main__':\n ans = main()\n print(ans)"]
['Runtime Error', 'Accepted']
['s265901304', 's574036069']
[3064.0, 3064.0]
[18.0, 20.0]
[428, 450]
p03241
u257974487
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int,input().split())\nk = (m+1) // n\nfor i in range(1, k+1):\n if m % i == 0:\n ans = max(i, m // i)\n if i > m ** 0.5:\n break\n\nprint(ans)', 'def calc_divisor(n):\n div = []\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n div.append(i)\n if n // i != i:\n div.append(n//i)\n div.sort()\n return div\n\n\nn, m = map(int,input().split())\nk = (m+1) // n\n\ndiv = calc_divisor(m)\nfor i in div:\n if i <= k:\n ans = i\nprint(ans)']
['Wrong Answer', 'Accepted']
['s239578977', 's682754383']
[3060.0, 3064.0]
[32.0, 21.0]
[165, 343]
p03241
u268210555
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int, input().split())\nfor i in range(1, min(m//n, int(m**0.5))+1)[::-1]:\n if m%i == 0:\n print(max(m//i, i)\n break', 'n, m = map(int, input().split())\nr = 1\nfor i in range(1, int(m**0.5)+1)[::-1]:\n if i<=m//n and m%i==0:\n if m//i<=m//n:\n r = max(r, m//i)\n else:\n r = max(r, i)\nprint(r)']
['Runtime Error', 'Accepted']
['s805987828', 's185555017']
[2940.0, 2940.0]
[17.0, 24.0]
[141, 206]
p03241
u269969976
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['# coding: utf-8\nimport math\n\n(n, m) = [int(i) for i in input().rstrip().split(" ")]\n\nfor i in range(n, math.sqrt(m) + 1):\n if m % i == 0:\n print(int(m / i))\n break\n', '# coding: utf-8\nimport math\n\n(n, m) = [int(i) for i in input().rstrip().split(" ")]\n\nfor i in range(n, int(math.sqrt(m)) + 1):\n if m % i == 0:\n print(int(m / i))\n break\n', '# coding: utf-8\nimport math\n\n(n, m) = [int(i) for i in input().rstrip().split(" ")]\n\nans = 0\nfor i in range(1, int(math.sqrt(m)) + 1):\n if m % i == 0:\n if i >= n:\n ans = m / i\n elif (m/i) >= n:\n ans = i', '# coding: utf-8\nimport math\n\n(n, m) = [int(i) for i in input().rstrip().split(" ")]\n\nans = 0\ndivList = []\nfor i in range(1, int(math.sqrt(m)) + 1):\n if m % i == 0:\n j = m / i\n divList.append(i)\n divList.append(j)\ndivList = sorted(divList)\nfor i in divList:\n if i < n:\n continue\n ans = m / i\n break\n\nprint(int(ans))\n']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s345710504', 's613233584', 's766991435', 's298789683']
[3060.0, 2940.0, 2940.0, 3060.0]
[18.0, 20.0, 21.0, 21.0]
[181, 186, 241, 355]
p03241
u280978334
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['nm=[int(x) for x in input().split()]\nfor x in range(int(nm[1]/nm[0]),1,-1):\n print(x)\n if(nm[1]%x==0):\n print(x)\n break', 'n,m = map(int,input().split())\ndef getDivisor(inte):\n Ans1 = [1]\n Ans2 = [inte]\n for i in range(2,int(inte**(0.5))):\n if inte % i == 0:\n Ans1.append(i)\n Ans2.append(int(inte/i))\n if inte % inte**(0.5) == 0:\n Ans1.append(int(int(inte**(0.5))))\n Ans = Ans1 + Ans2[::-1]\n return Ans\n\nlimit = int(m/n)\nfor i in reversed(getDivisor(m)):\n if i <= limit:\n print(i)\n break\n']
['Wrong Answer', 'Accepted']
['s308310306', 's215790514']
[23780.0, 3188.0]
[2103.0, 21.0]
[139, 436]
p03241
u285891772
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees, log2, gcd\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left, insort, insort_left\nfrom heapq import heappush, heappop\nfrom functools import reduce\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(str, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\n#import numpy as np\nfrom decimal import *\n \n\nN, M = MAP()\n\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n \ndivisors = make_divisors(M)\nprint(divisors)n = divisors[bisect_left(divisors, N)]\nprint(M//n)\n", "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees, log2, gcd\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left, insort, insort_left\nfrom heapq import heappush, heappop\nfrom functools import reduce\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(str, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\n#import numpy as np\nfrom decimal import *\n \n\nN, M = MAP()\n\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n \n\ndivisors = make_divisors(M)\nprint(divisors)\nn = divisors[bisect_left(divisors, N)]\nprint(M//n)\n", "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, tan, asin, acos, atan, radians, degrees, log2, gcd\nfrom itertools import accumulate, permutations, combinations, combinations_with_replacement, product, groupby\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left, insort, insort_left\nfrom heapq import heappush, heappop\nfrom functools import reduce\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(str, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\n#import numpy as np\nfrom decimal import *\n \n\nN, M = MAP()\n\ndef make_divisors(n): \n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n%i == 0:\n divisors.append(i)\n if i != n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n \n\ndivisors = make_divisors(M)\nn = divisors[bisect_left(divisors, N)]\nprint(M//n)\n"]
['Runtime Error', 'Wrong Answer', 'Accepted']
['s751570909', 's790746699', 's047968467']
[9096.0, 10840.0, 10828.0]
[28.0, 41.0, 41.0]
[1327, 1329, 1313]
p03241
u288430479
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import gcd\nn,m = map(int,input().split())\nif m%n==0:\n print(int(m//n))\n exit()\nelse:\n a = m//n\n for i in range(a,0,-1):\n s = m-n*i\n if (s+i)%i==0:\n print(i)\n exit()', 'from fractions import gcd\nn,m = map(int,input().split())\nif m%n==0:\n print(int(m//n))\n exit()\nelse:\n a = m%n\n b = m//n\n c = a+b\n while True:\n if gcd(b,c)!=1:\n print(gcd(b,c))\n exit()\n else:\n c -= 1\nprint(1)', 'n,m = map(int,input().split())\nif m%n==0:\n print(int(m//n))\n exit()\nelse:\n a = m/n\n l = []\n for i in range(int(m**0.5),0,-1):\n if m%i==0:\n l.append(i)\n l.append(m//i)\n l = sorted(l)[::-1]\n for j in l:\n if j<=a:\n print(j)\n exit()\n else:\n print(1)']
['Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s442380337', 's786743375', 's470560694']
[10380.0, 5048.0, 9248.0]
[2206.0, 37.0, 34.0]
[203, 271, 287]
p03241
u298297089
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN, M = map(int, input().split())\nmx = 0\nfor i in range(1, math.floor(math.sqrt(M))+1):\n if M % i == 0:\n if M // i >= N:\n mx = max(mx, i)\n \tif i >= N:\n \tmx = max(mx, M//i)\nprint(mx)', 'import math\nN, M = map(int, input().split())\nmx = 0\nfor i in range(1, math.floor(math.sqrt(M))+1):\n if M % i == 0:\n if M // i >= N:\n mx = max(mx, i)\n \telse:\n mx = max(mx, M//i)\nprint(mx)', 'def make_divisors(div, n):\n divisors = []\n mx = 0\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if n // i >= div:\n mx = max(mx, i)\n if i != n // i:\n divisors.append(n//i)\n if i >= div:\n mx = max(mx, n // i)\n return divisors, mx\n\nn,m = map(int, input().split())\ndivisors, mx = make_divisors(n, m)\nprint(mx)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s448104716', 's950144479', 's382316056']
[2940.0, 2940.0, 3064.0]
[17.0, 17.0, 20.0]
[223, 221, 447]
p03241
u303037478
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\n\nn,m = map(int, input().split())\n\nx=int(math.sqrt(m))\n\nans=1\nfor i in range(1,x+1):\n if i*n<=m:\n if i <= y:\n ans=max(ans,i)\n if (m/i)*n<=m:\n ans=max(ans,m/i)\nprint(ans)\n\n\n', 'import math\n\nn,m = map(int, input().split())\n\nx=int(math.sqrt(m))\n\nans=1\nfor i in range(1,x+1):\n if m%i==0:\n if i*n<=m:\n ans=max(ans,i)\n if (m/i)*n<=m:\n ans=max(ans,m/i)\nprint(int(ans))\n\n\n\n\n']
['Runtime Error', 'Accepted']
['s153441366', 's788645735']
[3060.0, 3060.0]
[18.0, 21.0]
[200, 207]
p03241
u316341119
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\n(N, M) = map(int, input().split())\n\nMAX_SQRT = int(math.sqrt(M))\nfor i in range(MAX_SQRT, 0, -1):\n if M%i == 0 and M%(i*N) == 0:\n ans = i\n break\n\nprint(ans)\n', 'import math\n(N, M) = map(int, input().split())\n\nMAX_SQRT = int(math.sqrt(M))\nprime_flag = [True] * (MAX_SQRT+1)\nprime_dic = {}\n\nprime_flag[0] = False\nprime_flag[1] = False\n\nfor i in range(2, MAX_SQRT+1):\n mul = 2\n while True:\n p = i * mul\n if p > MAX_SQRT:\n break\n prime_flag[p] = False\n mul += 1\n\nTMPM = M\nfor i in range(2, MAX_SQRT+1):\n if prime_flag[i]:\n while TMPM%i == 0:\n if i in prime_dic:\n prime_dic[i] += 1\n else:\n prime_dic[i] = 1\n TMPM = int(TMPM/i)\n\nif TMPM > 1 or len(prime_dic) == 0:\n prime_dic[TMPM] = 1\n\nmax_mul = 1\ndef Rec(mul, p):\n global max_mul\n if M//mul < N:\n return\n\n if p >= len(prime_dic):\n if mul > max_mul:\n max_mul = mul\n return\n\n k = list(prime_dic.keys())[p]\n v = list(prime_dic.values())[p]\n for i in range(v+1):\n Rec(mul*(k**i), p+1)\n\nRec(1, 0)\nprint(max_mul)\n\n \n']
['Runtime Error', 'Accepted']
['s454485972', 's218230812']
[2940.0, 3316.0]
[21.0, 99.0]
[186, 976]
p03241
u323045245
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int, input().split())\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\nans = 1\nfor i in make_divisors:\n if i>=n:\n ans=max(ans,m//i)\nprint(ans)', 'n,m=map(int, input().split())\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\nans = 1\nfor i in make_divisors(m):\n if i>=n:\n ans=max(ans,m//i)\nprint(ans)']
['Runtime Error', 'Accepted']
['s661374883', 's113160330']
[3064.0, 3064.0]
[17.0, 21.0]
[349, 352]
p03241
u325282913
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import fractions\nN, M = map(int, input().split())\nans = fractions.gcd(M//N,(M//N)+M%N)\nprint(ans)', 'import math\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\nN, M = map(int, input().split())\ndiv = make_divisors(M)\nans = 0\nfor i in div:\n if M // i >= N:\n ans = max(ans,i)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s605848090', 's365413883']
[5432.0, 3064.0]
[43.0, 20.0]
[97, 364]
p03241
u327466606
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m = map(int,input().split())\ngcd = m//n\nwhile n*gcd != m:\n gcd = M//n\n n = 1 + (M-1)//gcd\nprint(gcd)', 'n,m = map(int,input().split())\ngcd = m//n\nwhile n*gcd != m:\n n = 1 + (M-1)//gcd\n gcd = M//n\nprint(gcd)', 'n,m = map(int,input().split())\ngcd = m//n\nwhile n*gcd != m:\n gcd = m//n\n n = 1 + (m-1)//gcd\nprint(gcd)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s406855047', 's946364131', 's806479081']
[2940.0, 2940.0, 2940.0]
[18.0, 25.0, 32.0]
[104, 104, 104]
p03241
u329407311
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN,M = map(int,input().split())\n\nsq = math.sqrt(M)\n\nfor i in range(1,sq+1):\n if M % i == 0:\n if i <= math.floor(M/N):\n ans = i\n \nprint(int(ans))', 'import fractions\nN,M = map(int,input().split())\n\nif M % N != 0:\n \n a = int(M % N)\n b = (M - a) / N\n c = fractions.gcd(a, b)\n print(int(c))\nelse:\n print(int(M/N))\n', 'import math\nN,M = map(int,input().split())\n\nif M % N != 0:\n \n a = int(M % N)\n b = (M - a) / N\n c = math.gcd(a, b)\n print(c)\nelse:\n print(int(M/N))\n', 'N,M = map(int,input().split())\n\nif M % N != 0:\n \n a = int(M % N)\n b = (M - a) / N\n c = math.gcd(a, b)\n print(c)\nelse:\n print(int(M/N))\n', 'import math\nN,M = map(int,input().split())\n\nsq = math.sqrt(M)\nsq = math.floor(sq)\n\n\nans = 1\nfor i in range(1,sq+2):\n if M % i == 0:\n if i * N <= M:\n ans = max(i,ans)\n if M / i * N <= M:\n ans = max(M // i,ans)\nif N == 1:\n print(int(M))\nelse:\n print(int(ans))\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s147584584', 's167417461', 's449687850', 's681093953', 's820284315']
[3060.0, 5308.0, 3064.0, 3060.0, 3060.0]
[17.0, 37.0, 18.0, 19.0, 21.0]
[167, 168, 153, 141, 277]
p03241
u332906195
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['# -*- coding: utf-8 -*-\n\nN = int(input())\nX, Y, H = [], [], []\nfor _ in range(N):\n x, y, h = map(int, input().split())\n X.append(x)\n Y.append(y)\n H.append(h)\n\nfor x in range(101):\n for y in range(101):\n hc = {H[i] + abs(X[i] - x) + abs(Y[i] - y) for i in range(N) if H[i] > 0}\n h0 = {H[i] + abs(X[i] - x) + abs(Y[i] - y) for i in range(N) if H[i] == 0}\n if len(hc) == 1:\n if (len(h0) > 0 and min(h0) >= list(hc)[0]) or len(h0) == 0:\n print(x, y, list(hc)[0])\n break\n', '# -*- coding: utf-8 -*-\n\nimport bisect\n\nN, M = map(int, input().split())\n\ny = [1, M]\nfor i in range(2, int(M ** 0.5) + 1):\n if M % i == 0:\n y.append(i)\n y.append(M // i)\n\ny.sort()\nprint(M // y[bisect.bisect_left(y, N)])\n\n']
['Runtime Error', 'Accepted']
['s723000424', 's098893670']
[3064.0, 3060.0]
[19.0, 22.0]
[543, 238]
p03241
u338824669
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def make_divisors(n):\n divisors=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n divisors.append(i)\n if i!=n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\nN,M=map(int,input().split())\ndivisors=make_divisors(M)\nans=0\nfor d in divisors:\n if N*d<=M:\n ans=d\n else:\n break', 'def make_divisors(n):\n divisors=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n divisors.append(i)\n if i!=n//i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\nN,M=map(int,input().split())\ndivisors=make_divisors(M)\nans=0\nfor d in divisors:\n if N*d<=M:\n ans=d\n else:\n break\nprint(ans)']
['Wrong Answer', 'Accepted']
['s471370836', 's928114257']
[3060.0, 3064.0]
[20.0, 20.0]
[360, 371]
p03241
u349836672
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['# coding: utf-8\nimport math\n\nN, M = [int(s) for s in input().strip().split()]\n\nif N == 1:\n print(M)\n exit()\n\nROOT_M = int(math.sqrt(M))\ndivisors = []\nfor d in range(1, ROOT_M+1):\n if M % d == 0:\n divisors.append(d)\n divisors.append(M//d)\n\nmax_gcd = max([d for d in divisors if d > M/N])\nprint(max_gcd)\n', '# coding: utf-8\nimport math\n\nN, M = [int(s) for s in input().strip().split()]\n\nif N == 1:\n print(M)\n exit()\n\nROOT_M = int(math.sqrt(M))\ndivisors = []\nfor d in range(1, ROOT_M+1):\n if M % d == 0:\n divisors.append(d)\n divisors.append(M//d)\n\ndivisors.sort()\nMAX_VAL = int(M/N)\nfor d in divisors:\n if d > MAX_VAL:\n break\n max_gcd = d\n\nprint(max_gcd)\n']
['Wrong Answer', 'Accepted']
['s281246513', 's545606991']
[3060.0, 3060.0]
[21.0, 21.0]
[325, 382]
p03241
u357751375
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from math import sqrt\nfrom math import floor\nn,m = map(int,input().split())\nd = m // n\nans = 1\nfor i in range(1,floor(sqrt(m))+1):\n if m % i == 0:\n x = m // i\n if i <= d:\n ans = max(ans,x,i)\nprint(ans)', 'from math import sqrt\nfrom math import floor\nn,m = map(int,input().split())\nd = m // n\nans = 1\nfor i in range(1,floor(sqrt(m))+1):\n if m % i == 0:\n x = m // i\n if i <= d:\n ans = max(ans,i)\n if x <= d:\n ans = max(ans,x)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s359654856', 's848039865']
[9184.0, 9184.0]
[34.0, 34.0]
[229, 275]
p03241
u362560965
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\n\nN, M = map(int, input().split())\n\ndef get_div_list(num):\n if num == 1:\n return [1]\n else:\n div_list = []\n div_list.append(1)\n div_list.append(num)\n for i in range(2, math.floor(math.sqrt(num))+ 1):\n if num % i == 0:\n div_list.append(i)\n div_list.append(num // i)\n list(set(div_list))\n div_list.sort(reverse = True)\n return div_list\n\n# amax = M // N\nL = get_div_list(M)\n\n\n# ans = L[-1]\n\n# print(ans)\n', 'import math\n\nN, M = map(int, input().split())\n\n# N = 3\n# M = 14\n\ndef get_div_list(num):\n if num == 1:\n return [1]\n else:\n div_list = []\n div_list.append(1)\n div_list.append(num)\n for i in range(2, math.floor(math.sqrt(num))+ 1):\n if num % i == 0:\n div_list.append(i)\n div_list.append(num // i)\n list(set(div_list))\n return div_list\n\namax = M // N\nL = get_div_list(M)\nL = [i for i in L if i <= amax]\nprint(L)\n\nans = L[-1]\n\nprint(ans)\n', 'import math\n\nN, M = map(int, input().split())\n\ndef get_div_list(num):\n if num == 1:\n return [1]\n else:\n div_list = []\n div_list.append(1)\n div_list.append(num)\n for i in range(2, math.floor(math.sqrt(num))+ 1):\n if num % i == 0:\n div_list.append(i)\n div_list.append(num // i)\n list(set(div_list))\n div_list.sort(reverse = True)\n return div_list\n\namax = M // N\nL = get_div_list(M)\nL = [i for i in L if i <= amax]\n\nans = L[-1]\n\nprint(ans)\n', 'import math\n\n# N, M = map(int, input().split())\n\nN = 100000\nM = 1000000000\n\ndef get_div_list(num):\n if num == 1:\n return [1]\n else:\n div_list = []\n div_list.append(1)\n div_list.append(num)\n for i in range(2, math.floor(math.sqrt(num))+ 1):\n if num % i == 0:\n div_list.append(i)\n div_list.append(num // i)\n list(set(div_list))\n return div_list\n\n\nL = get_div_list(M)\nL = [i for i in L if i * N <= M]\n# print(L)\n\n\nfor i in L[::-1]:\n if (M - (N * i)) % i == 0:\n ans = i\n break\n\nprint(ans)\n', 'import math\n\nN, M = map(int, input().split())\n\ndef get_div_list(num):\n if num == 1:\n return [1]\n else:\n div_list = []\n div_list.append(1)\n div_list.append(num)\n for i in range(2, math.floor(math.sqrt(num))+ 1):\n if num % i == 0:\n div_list.append(i)\n div_list.append(num // i)\n list(set(div_list))\n div_list.sort(reverse = True)\n return div_list\n\namax = M // N\nL = get_div_list(M)\nL = [i for i in L if i <= amax]\n\nans = L[-1]\n\n# print(ans)\n', 'N, M = map(int, input().split())\n\ndef make_divisor_list(num):\n if num < 1:\n return []\n elif num == 1:\n return [1]\n else:\n divisor_list = []\n divisor_list.append(1)\n for i in range(2, num // 2 + 1):\n if num % i == 0:\n divisor_list.append(i)\n divisor_list.append(num)\n\n return divisor_list\n\n# amax = M // N\nL = make_divisor_list(M)\n\n\n# ans = L[-1]\n\n# print(ans)\n', 'import math\n\n# N, M = map(int, input().split())\n\nN = 100000\nM = 1000000000\n\ndef pfac(n):\n values = [1, n]\n for i in range(2, int(n ** 0.5) + 1):\n if n % i == 0:\n values.append(i)\n values.append(n // i)\n return values\n\nL = pfac(M)\nL = [i for i in L if i * N <= M]\n\nans = []\nfor i in L[::-1]:\n if (M - (N * i)) % i == 0:\n \n ans.append(i)\nprint(max(ans))\n\n# ans2 = 1\n\n\n# \n# ans2 = i\n# break\n# print(ans2)', 'import math\n\nN, M = map(int, input().split())\n\n# N = 100000\n# M = 1000000000\n\ndef pfac(n):\n values = [1, n]\n for i in range(2, int(n ** 0.5) + 1):\n if n % i == 0:\n values.append(i)\n values.append(n // i)\n return values\n\nL = pfac(M)\nL = [i for i in L if i * N <= M]\n\nans = []\nfor i in L[::-1]:\n if (M - (N * i)) % i == 0:\n \n ans.append(i)\nprint(max(ans))\n\n# ans2 = 1\n\n\n# \n# ans2 = i\n# break\n# print(ans2)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s077946382', 's129576144', 's327877727', 's398218704', 's570128011', 's706191974', 's749293904', 's642402135']
[3064.0, 3064.0, 3064.0, 3064.0, 3064.0, 2940.0, 3064.0, 3064.0]
[20.0, 20.0, 21.0, 20.0, 20.0, 2104.0, 20.0, 20.0]
[548, 529, 540, 598, 542, 477, 555, 557]
p03241
u375616706
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = (list)(map(int, input().split()))\n\nupper = m//n\nans = 0\nfor i in reversed(range(1, upper+1)):\n if m % i == 0:\n ans = i\n if (m // i) > i and (m // i) <= upper:\n ans = m // i\n break\n\nprint(ans)\n', 'import math\nn,m=list(map(int,input().split()))\nlim=(int)(2*m/((n-1)*(n)))\nfor i in reversed(range(1,lim+2)):\n a=m%i\n b=m/i\n print(i,a,b,n)\n if a==0 and b>=n:\n for j in range(1,(int)(n/3+1)):\n if(math.factorial(b-2)\n /(math.factorial(n-j-1)*math.factorial(b-n+j-1))>0):\n print(j*i)\n exit()\n', 'n, m = (list)(map(int, input().split()))\n\nupper = m//n\nans = 0\nfor i in range(1, upper+1):\n if m % i == 0:\n ans = i\n if (m // i) > i and (m // i) <= upper:\n ans = m // i\n break\n\nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s444178405', 's487636232', 's611481376']
[2940.0, 27744.0, 2940.0]
[2104.0, 2104.0, 39.0]
[238, 368, 228]
p03241
u379692329
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import sys\ninput = sys.stdin.readline\n\nN, M = map(int, input().split())\nif M % N == 0:\n print(M//N)\nelse:\n upper = math.ceil(M/N)\n for i in range(upper, 0, -1):\n if M % i == 0:\n break\n\n print(i)', 'import bisect\nimport math\nimport sys\ninput = sys.stdin.readline\n\nN, M = map(int, input().split())\nif M % N == 0:\n print(M//N)\nelse:\n upper = math.ceil(M/N)\n factor = set()\n for i in range(1, int(M**0.5)+1):\n if M % i == 0:\n factor.add(i)\n \n factor1 = set()\n for i in factor:\n factor1.add(M//i)\n factor |= factor1\n \n factor = sorted(list(factor))\n print(factor[bisect.bisect_right(factor, upper)-1])']
['Runtime Error', 'Accepted']
['s598190663', 's769149920']
[3060.0, 3188.0]
[18.0, 22.0]
[224, 456]
p03241
u379959788
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import gcd\nN, M = map(int, input().split())\ncnt = M // N\nM -= N * cnt\nans = 1\nwhile True:\n if cnt == 1:\n ans = cnt\n break\n if M == 0:\n ans = cnt\n break\n tmp = gcd(cnt, M)\n if tmp != 1:\n ans = min(cnt, tmp)\n break\n M += N\n cnt -= 1\n\nprint(ans)', 'from fractions import gcd\nN, M = map(int, input().split())\nk = 0\nwhile True:\n if M % (N + k) == 0:\n ans = M // (N+k)\n break\n k += 1\nprint(ans)', 'from fractions import gcd\nN, M = map(int, input().split())\ncnt = M // N\nM -= N * cnt\nans = 1\nwhile True:\n if M == 0:\n ans = cnt\n break\n tmp = gcd(cnt, M)\n if tmp != 1:\n ans = min(cnt, tmp)\n break\n M += N\n cnt -= 1\n\nprint(ans)', 'import bisect\ndef make_divisors(N):\n divisors = []\n for i in range(1, int(N**0.5)+1):\n if N % i == 0:\n divisors.append(i)\n if i != N // i:\n divisors.append(N//i)\n divisors.sort()\n return divisors\nN, M = map(int, input().split())\nlst = make_divisors(M)\nprint(lst[bisect.bisect_right(lst, M//N)-1])']
['Wrong Answer', 'Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s779235811', 's789398796', 's820365124', 's541951234']
[5048.0, 5048.0, 5048.0, 3188.0]
[65.0, 2104.0, 63.0, 20.0]
[317, 162, 268, 352]
p03241
u404629709
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['vn,m=map(int,input().split())\n\nif n==1:\n print(m)\nelse:\n a=int(m**0.5)\n\n for i in range(a+1,0,-1):\n if m%i==0 and i*n<=m:\n print(i)\n break', 'n,m=map(int,input().split())\n\nif n==1:\n print(m)\nelse:\n a=int(m**0.5)\n\n for i in range(int(m/n),a-1,-1):\n \n if m%i==0 and i*n<=m:\n print(i)\n break', 'n,m=map(int,input().split())\n\nans=0\n\nif n==1:\n print(m)\nelse:\n a=int(m**0.5)\n\n for i in range(1,a):\n if m%i==0:\n if i*n<=m:\n ans=max(ans,i)\n if (m//i)*n<=m:\n ans=max(ans,m//i)\n print(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s657459525', 's678292802', 's883388144']
[3060.0, 2940.0, 3064.0]
[20.0, 2104.0, 22.0]
[154, 165, 218]
p03241
u404676457
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\n(n, m) = map(int, input().split())\nsm = int(math.sqrt(m)) + 1\nfor i in range(1, sm + 1):\n if m % i == 0 :\n params[i] = 1\n params[m // i] = 1\nparams = sorted(params)\nmdn = m // n\nmaxans = 0\nfor i in params:\n if n > m / i:\n break\n maxans = i\nprint(maxans)', 'import math\n(n, m) = map(int, input().split())\nsm = int(math.sqrt(m))\nparams = {}\nfor i in range(2, sm + 1):\n if m % i == 0 :\n params[i] = 1\n params[m // i] = 1\nparams = sorted(params)\n\nmdn = m // n\nfor i in params:\n if mdn <= i:\n print(i)\n break', 'import math\n(n, m) = map(int, input().split())\nsm = int(math.sqrt(m)) + 1\nparams = {}\nfor i in range(1, sm + 1):\n if m % i == 0 :\n params[i] = 1\n params[m // i] = 1\nparams = sorted(params)\nans = 0\nfor param in params:\n if n > m / iparam:\n break\n ans = param\nprint(ans)', 'import math\n(n, m) = map(int, input().split())\nsm = int(math.sqrt(m)) + 1\nparams = {}\nfor i in range(2, sm + 1):\n if m % i == 0 :\n params[i] = 1\n params[m // i] = 1\nparams = sorted(params)\nmdn = m // n\nmaxans = 0\nfor i in params:\n if m > m / i:\n break\n maxans = i\nprint(maxans)', 'import math\n(n, m) = map(int, input().split())\nsm = int(math.sqrt(m)) + 1\nparams = {}\nfor i in range(1, sm + 1):\n if m % i == 0 :\n params[i] = 1\n params[m // i] = 1\nparams = sorted(params)\nans = 0\nfor param in params:\n if n > m / param:\n break\n ans = param\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s071987810', 's118260816', 's535644472', 's729066898', 's995625209']
[3064.0, 3064.0, 3064.0, 3064.0, 3064.0]
[18.0, 21.0, 21.0, 21.0, 21.0]
[295, 280, 298, 307, 297]
p03241
u405660020
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\n\nlimit=int(m**(1/2))+1\n\ndivisors=[]\nfor d in range(limit):\n if m%d==0:\n divisors.append(d)\n divisors.append(m//d)\nans=1\n\nfor d in divisors:\n if n*d<=m:\n ans=d\nprint(ans)\n', 'n, m = map(int, input().split())\n\nlimit = int(m**(0.5))\nans = 1\nfor d in range(1, limit+1):\n if m % d == 0:\n if m>=d*n:\n ans = max(ans,d)\n if m>=(m//d)*n:\n ans=max(ans,(m//d))\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s342857476', 's648976373']
[3060.0, 3060.0]
[18.0, 21.0]
[226, 227]
p03241
u413165887
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["import sys\nn, m = map(int, input().split(' '))\n \nh = int(m/n)+1\nx = 0\n\nif h%2 == 0:\n if m%h == 0:\n print(h)\n sys.exit()\n h -= 1\n for a in range(h, 0, -2):\n if a*n <= m:\n if m%a == 0:\n print(a)\n sys.exit()\n else:\n continue\nelse:\n if m%h == 0:\n print(h)\n sys.exit()\n for a in range(h, 0, -2):\n if a*n <= m:\n if m%a == 0:\n print(a)\n sys.exit()\n else:\n continue", "import sys\n\ndef make_divisors(num):\n divisors = []\n for i in range(1, int(num**0.5)+1):\n if num%i == 0:\n divisors.append(i)\n if num//i != i:\n divisors.append(num//i)\n divisors.sort()\n return divisors\n\nn, m = map(int, input().split(' '))\n\ndivisors = make_divisors(n)\nfor i in range(1, len(divisors)+1):\n if divisors[i*-1] * n <= m:\n print(divisors[i*-1])\n sys.exit()", "import sys\n\ndef make_divisors(num):\n divisors = []\n for i in range(1, int(num**0.5)+1):\n if num%i == 0:\n divisors.append(i)\n if num//i != i:\n divisors.append(num//i)\n divisors.sort()\n return divisors\n\nn, m = map(int, input().split(' '))\n\ndivisors = make_divisors(m)\n\nfor i in range(1, len(divisors)+1):\n if divisors[i*-1] * n <= m:\n print(divisors[i*-1])\n sys.exit()"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s131441697', 's997087083', 's861562627']
[3064.0, 3064.0, 3188.0]
[2104.0, 18.0, 20.0]
[536, 446, 439]
p03241
u433195318
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import sys\nsys.setrecursionlimit(4100000)\nimport math\nimport fractions\nimport bisect\n\nMOD = int(1e9+7)\nPI = 3.14159265358979323846264338327950288\n\n\n\n\nN, M = map(int, input().split())\n\nans = 0\nfor i in range(1, int(math.sqrt(M))+1):\n\n if M < i*N:\n break\n\n if M >= (M//i)*N:\n ans = M//i\n break\n\n if M % i == 0:\n ans = i\n\n\n\nprint(int(ans))', 'import sys\nsys.setrecursionlimit(4100000)\nimport math\nimport fractions\nimport bisect\n\nMOD = int(1e9+7)\nPI = 3.14159265358979323846264338327950288\n\n\n\n\nN, M = map(int, input().split())\n\nans = 0\nfor i in range(1, int(math.sqrt(M))+1):\n\n if M < i*N:\n break\n\n if M % i == 0:\n if M >= (M//i)*N:\n ans = M//i\n break\n\n ans = i\n\n\n\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s298506265', 's022391057']
[5048.0, 5472.0]
[46.0, 52.0]
[645, 657]
p03241
u434739481
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = map(int, input().split(" "))\ndiv1 = []\ndiv2 = []\n\nfor i in range(1, int(math.sqrt(M))+1):\n if M % i == 0:\n div1 += (i,)\n div2 += (M//i,)\nfor d in div2:\n if d * N <= M:\n print(d)\n break\nelse:\n div1 = div1[::-1]\n for d in div1:\n if d * N <= M:\n print(d)\n break', 'import math\n\nN, M = map(int, input().split(" "))\ndiv1 = []\ndiv2 = []\n\nfor i in range(1, int(math.sqrt(M))+1):\n if M % i == 0:\n div1 += (i,)\n div2 += (M//i,)\nfor d in div2:\n if d * N <= M:\n print(d)\n break\nelse:\n div1 = div1[::-1]\n for d in div1:\n if d * N <= M:\n print(d)\n break']
['Runtime Error', 'Accepted']
['s563429806', 's922998098']
[3064.0, 3064.0]
[17.0, 21.0]
[334, 347]
p03241
u439396449
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = map(int, input().split())\n\n\ndef factorize(n):\n if n == 1:\n return [1]\n\n i, factors = 2, []\n while i * i <= n:\n while n % i == 0:\n n //= i\n factors.append(i)\n i += 1\n if n > 1:\n factors.append(n)\n return factors\n\n\nfactors = factorize(M)\nn_factors = len(factors)\n\nans = 0\nfor i in range(1 << n_factors):\n x = 1\n for j in range(n_factors):\n if i & (1 << j):\n x *= factors[j]\n y = M // x\n print(x, y, N <= y)\n if N <= y:\n ans = max(ans, x)\nprint(ans)\n', 'N, M = map(int, input().split())\n\n\ndef make_divisors(n):\n i, divisors = 1, []\n while i * i <= n:\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n // i)\n i += 1\n return divisors\n\n\nans = 0\nfor x in make_divisors(M):\n if N <= M // x:\n ans = max(ans, x)\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s047713966', 's472892657']
[8332.0, 3060.0]
[2104.0, 22.0]
[559, 354]
p03241
u442581202
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nn,m = map(int, input().split())\nif (n==1):\n print(m)\n exit(0)\nfor i in range(1,int(math.sqrt(m))+1):\n if (m%i==0):\n if(n<=i):\n print(m//i)\n exit(0)\n elif(n<=m//i):\n print(i)\n exit(0)\n', '100000 1000000000', 'import math\nn,m = map(int, input().split())\nfactors = []\ncomp = m//n\nfor i in range(int(math.sqrt(m)),0,-1):\n if(m%i==0):\n factors.insert(0,i)\n factors.append(m//i)\nfor item in factors[::-1]:\n if (item <= comp):\n print(item)\n exit(0)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s352866230', 's735783413', 's069470475']
[3060.0, 2940.0, 3064.0]
[17.0, 18.0, 22.0]
[262, 17, 267]
p03241
u445624660
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['\n\n\n\n\nn, m = map(int, input().split())\n\n\ndef enum_divisor(n):\n ret = []\n for i in range(1, int(n**0.5)):\n if n % i == 0:\n ret.append(i)\n return ret\n\n\nif m % n == 0:\n print(m // n)\n exit()\nelse:\n x = m // n\n \n lis = enum_divisor(x)\n print(lis[-1])\n', '\n\n\n\n\nn, m = map(int, input().split())\n\n\ndef enum_divisor(n):\n ret = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n ret.append(i)\n return ret\n\n\nif m % n == 0:\n print(m // n)\n exit()\nelse:\n x = m // n\n \n lis = sorted(enum_divisor(x), reverse=true)\n for l in lis:\n if l <= x:\n print(l)\n exit()\n\n', '\n\n\n\n\nn, m = map(int, input().split())\n\n\ndef enum_divisor(n):\n ret = []\n for i in range(1, int(n**0.5)):\n if n % i == 0:\n ret.append(i)\n return ret\n\n\nif m % n == 0:\n print(m // n)\n exit()\nelse:\n x = m // n\n \n lis = sorted(enum_divisor(x), reverse=True)\n for l in lis:\n if l <= x:\n print(l)\n exit()\n\n', '\n\n\n\n\nn, m = map(int, input().split())\n\n\ndef make_divisors(n):\n lower_divisors = []\n upper_divisors = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n // i)\n\n upper_divisors.reverse()\n return lower_divisors + upper_divisors\n\n\nif m % n == 0:\n print(m // n)\n exit()\nelse:\n x = m // n\n divisors = make_divisors(m)[::-1]\n for d in divisors:\n if d <= x:\n print(d)\n exit()']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s331566273', 's349782753', 's379963054', 's235413799']
[2940.0, 3060.0, 3060.0, 3064.0]
[17.0, 20.0, 18.0, 20.0]
[797, 882, 878, 1012]
p03241
u451017206
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import gcd\nfrom functools import reduce\n\nfrom math import sqrt, ceil\n\ndef is_prime(n):\n if n == 1: return False\n if n == 2: return True\n for i in range(2, ceil(sqrt(n))+1):\n if n % i == 0: return False\n return True\n\ndef prime_factorization(n):\n if is_prime(n):return [n]\n factor = []\n f = 2\n while n > 1:\n if n % f == 0:\n factor.append(f)\n n /= f\n else:\n f += 1\n return factor\n\nN, M = map(int, input().split())\n\np = prime_factorization(M)\n\nif M % N == 0:\n print(M//N)\n exit()\nans = 1\nfor i in sorted(p, reverse=True):\n if (M // i) >= N:\n ans = max(i, ans)\nprint(ans)', 'from math import sqrt, ceil\n\ndef is_prime(n):\n if n == 1: return False\n if n == 2: return True\n for i in range(2, ceil(sqrt(n))+1):\n if n % i == 0: return False\n return True\n\ndef prime_factorization(n):\n if is_prime(n):return [n]\n factor = []\n f = 2\n while n > 1:\n if n % f == 0:\n factor.append(f)\n n /= f\n else:\n f += 1\n return factor\n\nN, M = map(int, input().split())\n\nif (M % N) == 0:\n print(M//N)\n exit()\n\np = list(set(prime_factorization(M)))\n\nans = 1\nfor i in sorted(p, reverse=True):\n print(i, M//i)\n if (M // i) >= N:\n ans = max(i, ans)\nprint(ans)\n', 'from math import sqrt\n\ndef factorization(n):\n l = set()\n for i in range(1, int(sqrt(n))+1):\n if not n % i:\n l.add(i)\n l.add(n//i)\n return l\n\nN, M = map(int, input().split())\nf = factorization(M)\nans = 1\nfor i in f:\n if (M / i) >= N:\n ans = max(i, ans)\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s025835539', 's190581380', 's410762139']
[5560.0, 3064.0, 3188.0]
[865.0, 897.0, 21.0]
[678, 656, 311]
p03241
u452284862
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M = map(int,input().split())\n\na = int(M/N)\n\nif M % 2 == 0:\nm = M / 2\na = int(a/2) + 1\n\nfor i in range(a,0,-1):\n if m % i == 0:\n c = i\n break\n\nif c == 1 and M % 2 == 0\n c = 2\n \nprint(c)\n\n', 'import math\n\nN,M = map(int,input().split())\n\na = int(M/N)\nq = int(math.sqrt(M))\n\nm = 0\nfor i in range(1,q+1):\n if M % i == 0:\n if i <= a:\n m = max(m,i)\n b = int(M / i)\n if b <= a:\n m = max(m,b)\n\nprint(m)\n\n']
['Runtime Error', 'Accepted']
['s839494609', 's619884257']
[2940.0, 3060.0]
[18.0, 23.0]
[212, 251]
p03241
u456353530
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN, M = list(map(int, input().split()))\nif N == 1:\n print(M)\n exit()\nX = int(math.sqrt(M))+1\nfor i in range(N, X):\n if M % i == 0:\n print(int(M/i))\n exit()\nprint(1)', 'import math\nN, M = list(map(int, input().split()))\nif N == 1:\n print(M)\n exit()\nX = int(math.sqrt(M))+1\nfor i in range(N, X):\n if M % i == 0:\n print(int(M/i))\n exit()\nX = int(M / N)\nfor i in range(X, 0, -1):\n if M % i == 0:\n print(i)\n exit()\nprint(1)']
['Wrong Answer', 'Accepted']
['s389253822', 's301547601']
[3060.0, 3060.0]
[20.0, 40.0]
[188, 274]
p03241
u471684875
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import fractions\nn,m=map(int,input().split())\nif m%n==0:\n print(int(m/n))\nelse:\n print(fractions.gcd(m//n,m//n+m%n))\n\n', 'import fractions\nn,m=map(int,input().split())\nif m%n==0:\n print(int(m/n))\nelse:\n ans=1\n for i in range(m//n,1,-1):\n c=fractions.gcd(i,m-i*n)\n if c>ans:\n ans=c\n break\n print(ans)\n\n\n', 'import fractions\nn,m=map(int,input().split())\nif m%n==0:\n print(int(m/n))\nelse:\n ans=1\n for i in range(2,m//n+1):\n c=fractions.gcd(i,m-i*n)\n if c>ans:\n ans=c\n print(ans)\n\n\n', 'import fractions\nn,m=map(int,input().split())\nif m%n==0:\n print(int(m/n))\nelse:\n ans=1\n for i in range(m//n,1,-1):\n c=fractions.gcd(i,i+m-i*n)\n if c>ans:\n ans=c\n break\n else:\n continue\n print(ans)\n\n\n', 'n, m = map(int, input().split())\nl = []\nfor i in range(1, int(m**(1/2)) + 1):\n\tif m % i == 0:\n\t\tl.append(i)\n\t\tl.append(m // i)\nl.sort()\nl=l[::-1]\nfor i in l:\n if m//n>=i:\n print(i)\n break\n\n']
['Wrong Answer', 'Wrong Answer', 'Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s045119201', 's087642974', 's637868778', 's695331950', 's727959232']
[5048.0, 5048.0, 5176.0, 5176.0, 3060.0]
[36.0, 67.0, 2104.0, 62.0, 23.0]
[124, 228, 209, 265, 206]
p03241
u472065247
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = map(int, input().split())\n\nfor i in range(M, 0, -1):\n if M % i == 0:\n print(i)\n exit()', 'def main():\n N, M = map(int, input().split())\n\n for i in range(M // N, 0, -1):\n if M % i == 0:\n print(i)\n break\n \nmain()']
['Wrong Answer', 'Accepted']
['s748931284', 's655999141']
[2940.0, 2940.0]
[19.0, 1777.0]
[100, 140]
p03241
u475675023
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import gcd\nn,m=map(int,input().split())\nans=1\nfor i in range(m//n+1):\n if gcd(m-i*(n-1),i)==i:\n ans=i\nprint(ans)', 'n,m=map(int,input().split())\ndef divisors(n):\n div=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n div.append(i)\n if not i==n//i:\n div.append(n//i)\n div=sorted(div)[::-1]\n return div\nans=1\nfor i in divisors(m):\n if m-i*(n-1)>0:\n ans=i\n break\nprint(ans)']
['Time Limit Exceeded', 'Accepted']
['s971481620', 's565756763']
[5048.0, 3060.0]
[2104.0, 20.0]
[131, 285]
p03241
u476604182
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import gcd\nN, M = map(int, input().split())\nif M%N==0:\n print(M//N)\nelse:\n c = M%N\n b = M//N\n ans = 0\n x = M\n for i in range(1,b+1):\n x -= N\n if gcd(i,x)>ans:\n ans = gcd(i,x)\n print(ans+1)\n', 'from fractions import gcd\nN, M = map(int, input().split())\nif M%N==0:\n print(M//N)\nelse:\n c = M%N\n b = M//N\n ls = []\n ans = 0\n for i in range(1,b+1):\n x = M - i*N\n if gcd(i,x)>ans:\n ans = gcd(i,x)\n print(ans)', 'from fractions import gcd\nN, M = map(int, input().split())\nif M%N==0:\n print(M//N)\nelse:\n c = M%N\n b = M//N\n g = 0\n for i in range(1,c+1):\n if c%i==0:\n if g<gcd(c//i,b):\n g = gcd(c//i,b)\n print(g)', "from fractions import gcd\nN, M = map(int, input().split())\nif M%N==0:\n print(M//N)\nelse:\n c = M%N\n b = M//N\n ans = 0\n x = M\n for i in range(1,b+1):\n x -= N\n if gcd(i,x)>ans:\n ans = gcd(i,x)\n print(ans)\n print(' ')", 'N, M = map(int, input().split())\ng = []\nfor i in range(1,M+1):\n if M%i==0:\n j = M//i\n if i<=M//N:\n g += [i]\n if j<=M//N:\n g += [j]\n if i>M**0.5:\n break\nprint(max(g))']
['Wrong Answer', 'Time Limit Exceeded', 'Wrong Answer', 'Time Limit Exceeded', 'Accepted']
['s150077250', 's156307043', 's156348348', 's183510996', 's768391942']
[5048.0, 5176.0, 5048.0, 5048.0, 3060.0]
[2104.0, 2104.0, 47.0, 2104.0, 33.0]
[222, 226, 217, 232, 189]
p03241
u480200603
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int, input().split())\n\n\ndef divisor(num):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n divisors.sort()\n return divisors\n\n\nans = 0\nfor i in divisor(m):\n if n <= m // i:\n ans = i\n else:\n break\nprint(ans)', 'n, m = map(int, input().split())\n\n\ndef divisor(n):\n divisors = []\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n // i)\n divisors.sort()\n return divisors\n\n\nans = 0\nfor i in divisor(m):\n if n <= m // i:\n ans = i\n else:\n break\nprint(ans)']
['Wrong Answer', 'Accepted']
['s156823381', 's242444050']
[3060.0, 3060.0]
[17.0, 21.0]
[370, 374]
p03241
u484229314
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from math import sqrt\n\nN, M = [int(_) for _ in input().split()]\nm = M\n\na = 1\nflg = False\nfor i in range(2, int(sqrt(M)) + 1):\n if i <= M / N:\n a = max(a, i)\n b = M // i\n if b <= M / N:\n a = max(a, b)\n\nprint(a)\n', 'from math import sqrt\n\nN, M = [int(_) for _ in input().split()]\nm = M\n\na = 0\nflg = False\nfor i in range(1, int(sqrt(M)) + 1):\n if M % i==0:\n if i <= M / N:\n a = max(a, i)\n b = M // i\n if b <= M / N:\n a = max(a, b)\n\nprint(a)\n']
['Wrong Answer', 'Accepted']
['s691832391', 's859264235']
[3060.0, 3060.0]
[47.0, 22.0]
[233, 270]
p03241
u490553751
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def divisore(n):\n divisors=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n divisors.append(i)\n if i!=n//i:\n divisors.append(n//i)\n divisors.sort(reverse=True)\n return divisors\n\nn,m=map(int,input().split())\nl=divisore(m)\nfor i in l:\n if m/n>=i:\n print(i)\n exit()', 'def divisore(n):\n divisors=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n divisors.append(i)\n if i!=n//i:\n divisors.append(n//i)\n divisors.sort(reverse=True)\n return divisors\n\nn,m=map(int,input().split())\nl=divisore(m)\nprint(l)\nfor i in l:\n if m/n>=i:\n print(i)\n exit()', 'def divisore(n):\n divisors=[]\n for i in range(1,int(n**0.5)+1):\n if n%i==0:\n divisors.append(i)\n if i!=n//i:\n divisors.append(n//i)\n divisors.sort(reverse=True)\n return divisors\n\nn,m=map(int,input().split())\nl=divisore(m)\nfor i in l:\n if m//n>=i:\n print(i)\n exit()']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s303987789', 's932540035', 's354062881']
[2940.0, 3060.0, 3060.0]
[17.0, 20.0, 20.0]
[322, 330, 322]
p03241
u496687522
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN, M = map(int, input().split())\n\ndef factorization(n):\n factor_list = []\n if n <= 1:\n return factor_list\n limit = int(math.sqrt(n))+1\n for i in range(2, limit):\n if n % i == 0:\n factor_list.append(i)\n if not n == i**2:\n factor_list.append(n//i)\n\n return factor_list\n\nfactor = factorization(M)\nfactor.sort()\nprint(factor)\nans = 1\nfor f in factor:\n if N * f <= M and f > ans:\n ans = f\nprint(ans)', 'import math\nN, M = map(int, input().split())\n\ndef factorization(n):\n factor_list = []\n if n < 1:\n return factor_list\n limit = int(math.sqrt(n))+1\n for i in range(1, limit):\n if n % i == 0:\n factor_list.append(i)\n if not n == i**2:\n factor_list.append(n//i)\n factor_list.sort()\n return factor_list\n\nfactor = factorization(M)\n\n\nans = 1\nfor f in factor:\n if N * f <= M and f > ans:\n ans = f\nprint(ans)']
['Wrong Answer', 'Accepted']
['s691103621', 's419187527']
[3188.0, 3064.0]
[20.0, 21.0]
[482, 477]
p03241
u513434790
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = map(int, input().split())\n\nans = 1\nfor i in range(1,min(int(M ** 0.5) + 1, M // N + 1)):\n if M % i == 0:\n ans = max(ans, M // i)\n\nprint(ans)', 'N, M = map(int, input().split())\n\nans = 1\nfor i in range(1,min(int(M ** 0.5) + 1, M // N + 1)):\n if M % i == 0:\n ans = max(ans, M // i)\n\nprint(int(ans))', 'N, M = map(int, input().split())\n\nans = 1\nfor i in range(1,int(M ** 0.5) + 1):\n if M % i == 0:\n if i >= N:\n ans = max(ans, M // i)\n if M // i >= N:\n ans = max(ans, i)\n\nprint(int(ans))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s057178361', 's234701088', 's922130651']
[3060.0, 3060.0, 3064.0]
[20.0, 21.0, 21.0]
[157, 162, 222]
p03241
u518042385
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\ndef yak1(n,m):\n l=[]\n for i in range(1,min(int((m)**1/2+1)),m//n+1):\n if m%i==0:\n l.append(i)\n if m//(m//i)!=m/i and m//(m//i)<=m//n:\n l.append(m//i)\n return l\nprint(min(yak1(n,m))) ', 'n,m=map(int,input().split())\ndef divisor_gen(n,m):\n l=[]\n o=[]\n for i in range(2, int(n**(1/2))+1):\n if n%i == 0:\n l.append(i)\n l.append(m)\n for i in l:\n if n>=m/i:\n o.append(i)\n print(max(o))\ndivisor_gen(n,m)', 'def make_divisors(n,m):\n divisors = []\n for i in range(1, (n//m)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\nn,m=map(int,input().split())\nprint(max(make_divisors(n,m)))', 'n,m=map(int,input().split())\nl=[]\no=[]\nfor i in range(1,m+1):\n if m%i==0:\n l.append(i)\nfor i in l:\n if n>=m/l[i]:\n o.append(l[i])\nprint(max(o))\n', 'n,m=map(int,input().split())\nl=[]\nfor i in range(1,m//n+1):\n if m%i==0:\n l.append(i)\nprint(max(i))', 'n,m=map(int,input().split())\ndef divisor_gen(n,m):\n l=[]\n o=[]\n for i in range(2, int(n*(1/2)+1):\n if n%i == 0:\n l.append(i)\n l.append(m)\n for i in l:\n if n>=m/i:\n o.append(i)\n print(max(o))\ndivisor_gen(n,m)\n', 'n,m=map(int,input().split())\ndef divisor_gen(n,m):\n l=[]\n o=[]\n for i in range(2, int(m*(1/2)+1)):\n if m%i == 0:\n l.append(i)\n l.append(m)\n for i in l:\n if n>=m/i:\n o.append(i)\n print(max(o))\ndivisor_gen(n,m)\n', 'n,m=map(int,input().split())\ndef divisor_gen(n,m):\n l=[]\n o=[]\n for i in range(2, int(n*(1/2)+1)):\n if n%i == 0:\n l.append(i)\n l.append(m)\n for i in l:\n if n>=m/i:\n o.append(i)\n print(max(o))\ndivisor_gen(n,m)\n', 'n,m=map(int,input().split())\nl=[]\no=[]\nfor i in range(1,m+1):\n if m%i==0:\n l.append(i)\nfor i in range(0,len(l)):\n if n>=m/l[i]:\n o.append(l[i])\nprint(max(o))\n', 'n,m=map(int,input().split())\nl=[]\no=[]\nfor i in range(1,m+1):\n if m%i==0:\n l.append(i)\nfor i in l:\n if n>=m/i:\n o.append(i)\nprint(max(o))\n', 'n,m=map(int,input().split())\nl=[]\no=[]\ndef divisor_gen(n):\n for i in range(2, int(m**(1/2))+1):\n if m%i == 0:\n l.append(i)\nl.append(m)\nfor i in l:\n if n>=m/i:\n o.append(i)\nprint(max(o))\n', 'n,m=map(int,input().split())\ndef yak1(n,m):\n l=[]\n for i in range(1,min(int((m)**(1/2))+1,(m//n)+1)):\n if m%i==0:\n l.append(i)\n if m//i!=i and m//i<=m//n:\n l.append(m//i)\n return l\nprint(max(yak1(n,m))) \n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s310640630', 's351091741', 's357536709', 's494275640', 's660650646', 's687652024', 's719150926', 's759098861', 's832113793', 's898796654', 's951669468', 's272522964']
[3060.0, 3060.0, 3060.0, 2940.0, 2940.0, 2940.0, 2940.0, 3060.0, 2940.0, 2940.0, 3060.0, 3060.0]
[18.0, 17.0, 17.0, 2104.0, 2103.0, 17.0, 2104.0, 21.0, 2104.0, 2104.0, 17.0, 20.0]
[239, 231, 274, 152, 102, 230, 231, 231, 166, 146, 199, 231]
p03241
u533039576
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['#include <cstdio>\n\nusing namespace std;\n\nvector<int> divisor(int m) {\n vector<int> divs;\n for (int i = 1; i*i <= m; i++) {\n if (m % i == 0) {\n divs.push_back(i);\n if (m != i*i) {\n divs.push_back(m / i);\n }\n }\n }\n sort(divs.begin(), divs.end());\n\n return divs;\n}\n\nint main() {\n int n, m;\n\n scanf("%d%d", &n, &m);\n vector<int> divs = divisor(m);\n\n for (int i = divs.size()-1; i >= 0; i--) {\n if (divs[i] * n <= m) {\n printf("%d\\n", divs[i]);\n break;\n }\n }\n return 0;\n}\n', 'import math\nn, m = map(int, input().split())\n\ndef divisor(m):\n ans = []\n for i in range(1, int(math.sqrt(m)) + 1):\n if m % i == 0:\n ans.append(i)\n ans.append(m // i)\n\n return sorted(ans)\n\n\ndivs = divisor(m)\nj = len(divs) - 1\nwhile True:\n if divs[j] * n <= m:\n print(divs[j])\n break\n j -= 1\n']
['Runtime Error', 'Accepted']
['s275965329', 's276676236']
[3064.0, 3060.0]
[18.0, 20.0]
[615, 348]
p03241
u539517139
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\np=1\nfor i in range(1,int(m**0.5)+1):\n if m%i==0:\n if m//i>=n:\n p=max(i,m//i,p)\nprint(p)', 'n,m=map(int,input().split())\np=1\nfor i in range(1,int(m**0.5)+1):\n if m%i==0:\n if m//i>=n:\n if i>=n:\n p=max(i,m//i,p)\n else:\n p=max(p,i)\nprint(p)']
['Wrong Answer', 'Accepted']
['s705462263', 's569472562']
[2940.0, 3060.0]
[21.0, 21.0]
[125, 173]
p03241
u540761833
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M = map(int,input().split())\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\ndiv = sorted(make_divisors(M))\nimport bisect\nind = bisect.bisect_left(div,N)\nprint(div[ind])\n', 'import bisect\nN,M = map(int,input().split())\nmaxa = M//N\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\nmdiv = sorted(make_divisors(M))\nans = mdiv[bisect.bisect_right(mdiv,maxa)-1]\nprint(ans)']
['Wrong Answer', 'Accepted']
['s010433714', 's722831985']
[3060.0, 3188.0]
[20.0, 20.0]
[342, 362]
p03241
u546959066
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = list(map(int, input().split(" ")))\n\nds = [x for x in range(1, m**.5+1) if m%x==0]\nds = ds + [m%x for x in ds]\nds = [x for x in ds if x<=m//n]\nprint(max(ds))', 'n, m = list(map(int, input().split(" ")))\n\nds = [x for x in range(1, int(m**.5)+1) if m%x==0]\nds = ds + [m//x for x in ds]\nds = [x for x in ds if x<=m//n]\nprint(max(ds))']
['Runtime Error', 'Accepted']
['s770813267', 's982927645']
[3060.0, 3060.0]
[17.0, 21.0]
[163, 169]
p03241
u547608423
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M=map(int,input().split())\n\nbase=M//N\nanswer=[0]*N\nj=0\n\nfor i in range(base,base//2+1,-1):\n if M%i==0:\n answer[j]=i\n break\n elif M%(base-i+1)==0:\n answer[j]=base-i+1\n j+=1\nprint(max(answer))', 'N,M=map(int,input().split())\n\nbase=M//N\nli=[]\n\n\nfor i in range(1,int(pow(M,1/2))+1):\n if i<=base and M%i==0:\n li.append(i)\n if M%i==0 and M//i<=base:\n li.append(M//i)\n\nprint(max(li))']
['Runtime Error', 'Accepted']
['s396814705', 's529875245']
[3956.0, 3060.0]
[45.0, 26.0]
[226, 202]
p03241
u549383771
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m = map(int,input().split())\nans = 0\ntmp = int(m/n)\nfor i in range(1,int(np.sqrt(m))):\n if m%i == 0:\n if (ans < i) and(i <= tmp):\n ans = i\nprint(ans)', 'import numpy as np\n\nn,m = map(int,input().split())\nans = 0\ntmp = int(m/n)\nfor i in range(1,int(np.sqrt(m)+1)):\n if m%i == 0:\n if (ans < i) and(i <= tmp):\n ans = i\n tmp2 = m//i\n if (ans < tmp2) and(tmp2 <= tmp):\n ans = tmp2\nprint(ans)']
['Runtime Error', 'Accepted']
['s013978231', 's988264637']
[2940.0, 12484.0]
[17.0, 154.0]
[172, 279]
p03241
u551909378
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M=[int(i) for i in input().split()]\nprint(N,M)\nm=3;list=[1];n=M\nwhile m<=n:\n if n%m==0:\n list.append(m)\n m=m+1\n \nprint(list)\nk = len(list)\nfor i in range(k):\n if N<list[i]:\n break\n\nans = int(M/list[i])\nprint(ans)', 'N,M = map(int,input().split())\n\nif M % N == 0: print(M//N)\nelif M//N > 100000:\n for i in range(N,M//2+1):\n if M % i == 0:\n print(M//i)\n break\n else:\n print(1)\nelse:\n m = M//N\n for i in range(2,m)[::-1]:\n if M % i == 0:\n print(i)\n break\n else:\n print(1)']
['Wrong Answer', 'Accepted']
['s034623760', 's496176981']
[3064.0, 3064.0]
[2104.0, 441.0]
[240, 342]
p03241
u556225812
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN, M = map(int, input().split())\nx = M//N\nmid = int(math.sqrt(M))\nif x > mid:\n ans = []\n for i in range(1, mid+1):\n ans.append(i)\n if M%i == 0:\n ans.append(i)\n if M//i <= x:\n ans.append(M//i)\n print(max(ans))\nelse:\n ans = []\n for i in range(x, 0, -1):\n if M%i == 0:\n print(i)\n break', 'import math\nN, M = map(int, input().split())\nx = M//N\nmid = int(math.sqrt(M))\nif x >= mid:\n ans = []\n for i in range(1, mid+1):\n ans.append(i)\n if M%i == 0:\n ans.append(i)\n if M//i <= x:\n ans.append(M//i)\n print(max(ans))\nelse:\n for i in range(x, 0, -1):\n if M%i == 0:\n print(i)\n break', 'import math\nN, M = map(int, input().split())\nx = M//N\nmid = int(math.sqrt(M))\nif x >= mid:\n ans = []\n for i in range(1, mid+1):\n ans.append(i)\n if M%i == 0:\n ans.append(i)\n if M//i <= x:\n ans.append(M//i)\n print(max(ans))\nelse:\n for i in rreversed(range(1, x+1)):\n if M%i == 0:\n print(i)\n break', 'import math\nN, M = map(int, input().split())\nx = M//N\nmid = int(math.sqrt(M))\nif x >= mid:\n ans = []\n for i in range(1, mid+1):\n if M%i == 0:\n ans.append(i)\n if M//i <= x:\n ans.append(M//i)\n print(max(ans))\nelse:\n for i in range(x, 0, -1):\n if M%i == 0:\n print(i)\n break']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s060111410', 's089384871', 's916673176', 's981802620']
[4352.0, 4352.0, 4352.0, 3060.0]
[26.0, 25.0, 25.0, 21.0]
[389, 377, 386, 355]
p03241
u560867850
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import gcd\n\ndef primes(n):\n is_prime = [True] * (n + 1)\n is_prime[0] = False\n is_prime[1] = False\n for i in range(2, int(n**0.5) + 1):\n if not is_prime[i]:\n continue\n for j in range(i * 2, n + 1, i):\n is_prime[j] = False\n return [i for i in range(n + 1) if is_prime[i]]\n\nn, m = map(int, input().split())\n\nprime = reversed(primes(m))\n\nfor p in prime:\n x = m - p\n if gcd(x, n-1) % p == 0:\n print(p)\n exit()', 'N, M = list(map(int,input().split()))\n\ndef divisor(n):\n res = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n res.append(i)\n if n % n//i == 0:\n res.append(n//i)\n\n res.sort()\n return res\n\nd = divisor(M)\nans = 1\nfor x in d:\n m = M\n m -= x * (N - 1)\n if m > 0 and m % x == 0:\n ans = x\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s728824377', 's981285539']
[1329628.0, 3064.0]
[2122.0, 20.0]
[490, 373]
p03241
u562935282
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def p_fact(n):\n res = []\n i = 2\n while i ** 2 <= n:\n cnt = 0\n while n % i == 0:\n n /= i\n cnt += 1\n if cnt > 0:\n res.append((i, cnt))\n i += 1\n if n > 0:\n res.append((n, 1))\n return res\n\n\nN, M = map(int, input().split())\n\nif M % N == 0:\n print(M // N)\nelse:\n p = p_fact(M)\n p = sorted(p, reverse=True, key=lambda x: x[0])\n\n N_max = int(M / N)\n\n x = 1\n ans = 0\n for prim, cnt in p:\n print(prim, cnt)\n x *= prim ** cnt\n while x > N_max:\n x //= prim\n ans = max(ans, x)\n \n print(ans)', "def main():\n N, M = map(int, input().split())\n\n st = {1, M}\n d = 2\n while d * d <= M:\n if M % d == 0:\n st.add(d)\n st.add(M // d)\n d += 1\n\n ans = 1\n for d in st:\n if d >= N:\n e = M // d\n ans = max(ans, e)\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s539007904', 's169546224']
[3064.0, 3064.0]
[29.0, 24.0]
[630, 342]
p03241
u571867512
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['#python D-Partition.py\n\nimport math\nline = list(map(int, input().split(" ")))\nN = int(line[0])\nM = int(line[1])\n\n\n\n\n\nfor i in range(sqrt(M)):\n\ttmp = M-(math.floor(M/N)-i)*(N-1)\n\tif tmp%(math.floor(M/N)-i)==0:\n\t\tprint((math.floor(M/N)-i))\n\t\tbreak\n', 'from math import sqrt\n\nN,M = map(int,input().split())\n\ndivisor = set([])\nfor i in range(1,int(sqrt(M))+1):\n\tif M % i == 0:\n\t\tif i <= int(M / N):\n\t\t\tdivisor.add(i)\n\t\tif (M // i) <= int(M / N):\n\t\t\tdivisor.add(M // i)\n\nprint(max(divisor))\n']
['Runtime Error', 'Accepted']
['s442855541', 's480531992']
[3064.0, 3068.0]
[17.0, 22.0]
[606, 236]
p03241
u572142121
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M=map(int,input().split())\na=M//N\nb=min(a,N)\nwhile (M&b)!=0:\n b-=1\nprint(b)', 'N,M=map(int,input().split())\nD=[]\nfor i in range(1,int(M**0.5+1)):\n if M%i==0:\n D.append(i)\n D.append(M//i)\nD.sort()\nprint(D)\nfor j in D:\n if j >=N:\n print(M//j)\n exit()', 'N,M=map(int, input().split())\ndef make_divisors(n):\n lower_divisors , upper_divisors = [], []\n i = 1\n while i*i <= n:\n if n % i == 0:\n lower_divisors.append(i)\n if i != n // i:\n upper_divisors.append(n//i)\n i += 1\n return lower_divisors + upper_divisors[::-1]\nA=make_divisors(M)\nfor i in range(len(A)):\n if A[i]>=N:\n print(A[-1-i])\n exit()']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s156962499', 's365121906', 's788145515']
[2940.0, 3188.0, 9224.0]
[20.0, 21.0, 32.0]
[78, 183, 409]
p03241
u580362735
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def calc()\nN,M = map(int,input().split())\nfor gcd in range(M // N,0,-1):\n if M % gcd == 0:\n return(gcd)\n\nprint(calc())', 'def calc():\n N,M = map(int,input().split())\n for gcd in range(M // N,0,-1):\n if M % gcd == 0:\n break\n return(gcd)\nprint(calc())']
['Runtime Error', 'Accepted']
['s043114700', 's139356595']
[2940.0, 2940.0]
[17.0, 1764.0]
[119, 130]
p03241
u582333355
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = list(map(int,input().split()))\n \nd = int(M/N)\n \nif M%N == 0:\n\tprint(d)\nelse: \n\tfor i in range(d):\n\t\tif M%(d-i) == 0:\n\t\t\tprint(d-i)\n\t\n\t# while True:\n\t# \tif M%(N+i+1) == 0:\n\t# \t\tprint(int(M/(N+i+1)))\n\t# \t\tbreak\n\t# \ti += 1', 'N, M = list(map(int,input().split()))\n \nd = int(M/N)\n\ndef solve():\n # ans = 1\n \n \n # if (M // i) >= N:\n # print(i)\n # break\n for i in range(d+1,0,-1):\n \tif M%d == 0:\n \t\tprint(d)\n \t\tbreak\n\n\t\n\t# while True:\n\t# \tif M%(N+i+1) == 0:\n\t# \t\tprint(int(M/(N+i+1)))\n\t# \t\tbreak\n\t# \ti += 1\n\nif M%N == 0:\n\tprint(d)\nelse:\n\tsolve()', 'N, M = list(map(int,input().split()))\n \nd = int(M/N)\n\ndef solve():\n # ans = 1\n \n \n # if (M // i) >= N:\n # print(i)\n # break\n for i in range(d+1,0,-1):\n \tif M%i == 0:\n \t\tprint(d)\n \t\tbreak\n\n\t\n\t# while True:\n\t# \tif M%(N+i+1) == 0:\n\t# \t\tprint(int(M/(N+i+1)))\n\t# \t\tbreak\n\t# \ti += 1\n\nif M%N == 0:\n\tprint(d)\nelse:\n\tsolve()', 'N, M = list(map(int,input().split()))\n \nd = int(M/N)\n \nif M%N == 0:\n\tprint(d)\nelse: \n ans = 1\n for i in range(m//n+1, 0, -1):\n if m % i == 0:\n if (m // i) >= n:\n print(i)\n break\n\t\n\t# while True:\n\t# \tif M%(N+i+1) == 0:\n\t# \t\tprint(int(M/(N+i+1)))\n\t# \t\tbreak\n\t# \ti += 1', 'N, M = list(map(int,input().split()))\n \nd = int(M/N)\n\ndef solve():\n # ans = 1\n \n \n # if (M // i) >= N:\n # print(i)\n # break\n for i in range(d+1,0,-1):\n \tif M%i == 0:\n \t\tprint(i)\n \t\tbreak\n\n\t\n\t# while True:\n\t# \tif M%(N+i+1) == 0:\n\t# \t\tprint(int(M/(N+i+1)))\n\t# \t\tbreak\n\t# \ti += 1\n\nif M%N == 0:\n\tprint(d)\nelse:\n\tsolve()']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s341317187', 's569935693', 's814784947', 's981049430', 's830998608']
[3060.0, 2940.0, 2940.0, 3060.0, 2940.0]
[2104.0, 2103.0, 1888.0, 20.0, 1868.0]
[233, 436, 436, 327, 436]
p03241
u597455618
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["def divisor(n):\n i = 1\n res = []\n for i in range(1, n**.5 + 1)\n if n%i == 0:\n res.append(i)\n if n//i not in res:\n res.append(n//i)\n res.sort(reverse=True)\n return res\n\ndef main():\n n, m = map(int, input().split())\n md = divisor(m)\n for i in md:\n if i*n <= m:\n print(i)\n exit()\n\nif __name__ == '__main__':\n main()", "def divisor(n):\n i = 1\n res = set()\n for i in range(1, int(n**.5) + 1):\n if n%i == 0:\n res.add(i)\n res.add(n//i)\n return res\n\ndef main():\n n, m = map(int, input().split())\n md = list(divisor(m))\n md.sort(reverse=True)\n for i in md:\n if i*n <= m:\n print(i)\n exit()\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s808216869', 's592776288']
[9012.0, 9272.0]
[29.0, 35.0]
[412, 384]
p03241
u606045429
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def divisors(N):\n U = int(N ** 0.5)\n res = []\n all(res.extend((i, N // i)) for i in range(1, U) if N % i == 0)\n if N % U == 0:\n res.append(U)\n res.sort()\n return res\n\nN, M = map(int, input().split())\nprint(max(d for d in divisors(M) if d * N <= M))\n', 'def divisors(N):\n U = int(N ** 0.5)\n L = {i for i in range(1, U + 1) if N % i == 0}\n R = {N // r for r in L}\n return L | R\n\nN, M = map(int, input().split())\nprint(max(d for d in divisors(M) if d * N <= M))\n']
['Wrong Answer', 'Accepted']
['s829764216', 's147269822']
[3060.0, 3060.0]
[17.0, 20.0]
[274, 218]
p03241
u608088992
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def dist(a, b, x, y, h):\n return h + abs(a - x) + abs(b - y)\n \nN = int(input())\nP = [[0 for i in range(101)] for j in range(101)]\nx, y, h = map(int, input().split())\nP[x][y] = h\nfor i in range(101):\n for j in range(101):\n P[i][j] = dist(i, j, x, y, h)\n \nfor i in range(N-1):\n a, b, c = map(int, input().split())\n if P[a][b] != c:\n P[a][b] = False\n for j in range(101):\n for k in range(101):\n if P[j][k] != False and P[j][k] != dist(j, k, a, b, c):\n P[j][k] = False\ntemp = (0, 0, 0)\nfor i in range(101):\n for j in range(101):\n if P[i][j] > temp[2]:\n temp = (i, j, P[i][j])\nprint(temp[0], temp[1], temp[2])', 'def dist(a, b, x, y, h):\n return h + abs(a - x) + abs(b - y)\n \nN = int(input())\nP = [[0 for i in range(101)] for j in range(101)]\nx, y, h = map(int, input().split())\nP[x][y] = h\nfor i in range(101):\n for j in range(101):\n P[i][j] = dist(i, j, x, y, h)\n \nfor i in range(N-1):\n a, b, c = map(int, input().split())\n if P[a][b] != c:\n P[a][b] = False\n for j in range(101):\n for k in range(101):\n if P[j][k] != False and P[j][k] != dist(j, k, a, b, c):\n P[j][k] = False\ntemp = (0, 0, 0)\nfor i in range(101):\n for j in range(101):\n if P[i][j] > ans:\n temp = (i, j, P[i][j])\nprint(temp[0], temp[1], temp[2])', 'import sys\n\ndef solve():\n input = sys.stdin.readline\n N, M = map(int, input().split())\n maxGCD = 1\n for gcd in range(1, M):\n if gcd * gcd > M: break\n else:\n if M % gcd == 0:\n other = M // gcd\n if gcd >= N: maxGCD = max(other, maxGCD)\n if other >= N: maxGCD = max(gcd, maxGCD)\n print(maxGCD)\n\n return 0\n\nif __name__ == "__main__":\n solve()']
['Runtime Error', 'Runtime Error', 'Accepted']
['s134035711', 's395147367', 's714185388']
[3064.0, 3064.0, 3064.0]
[17.0, 19.0, 22.0]
[687, 683, 429]
p03241
u609061751
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import sys\nimport numpy as np\nimport fractions\ninput = sys.stdin.readline\nM, N = [int(x) for x in input().split()]\na = N // M\nb = N % M\nprint(fractions.gcd(a,b))\n', 'import sys\nimport numpy as np\nimport fractions\ninput = sys.stdin.readline\nN, M = [int(x) for x in input().split()]\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort()\n return divisors\nans = make_divisors(M)\nans = sorted(ans)[::-1]\nfor i in ans:\n if i <= M/N:\n print(i)\n sys.exit()']
['Wrong Answer', 'Accepted']
['s732377576', 's278079635']
[13648.0, 15564.0]
[156.0, 156.0]
[162, 468]
p03241
u611509859
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int, input().split())\nans = 1\nfor i in range(n, m//2):\n if m % i == 0:\n ans = m//i\n break\nprint(ans)', 'import math\nn, m = map(int, input().split())\nans = 1\nk = m\nsoy = []\nfor i in range(2, int(math.sqrt(m))+1):\n if k % i == 0:\n are = 0\n while True:\n if k % i == 0:\n k = k // i\n are += 1\n else:\n break\n soy.append([i, are])\nif k != 1:\n soy.append([k, 1])\nfor i in range(10-len(soy)):\n soy.append([1, 0])\nfor a in range(soy[0][1] + 1):\n for b in range(soy[1][1] + 1):\n for c in range(soy[2][1] + 1):\n for d in range(soy[3][1] + 1):\n for e in range(soy[4][1] + 1):\n for f in range(soy[5][1] + 1):\n for g in range(soy[6][1] + 1):\n for h in range(soy[7][1] + 1):\n for i in range(soy[8][1] + 1):\n for j in range(soy[9][1] + 1):\n t = soy[0][0]**a * soy[1][0]**b * soy[2][0]**c * soy[3][0]**d * soy[4][0]**e * soy[5][0]**f * soy[6][0]**g * soy[7][0]**h * soy[8][0]**i * soy[9][0]**j\n if n <= t:\n \tans = max(ans, m//t)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s278685286', 's184573162']
[2940.0, 3188.0]
[2103.0, 23.0]
[128, 1202]
p03241
u619379081
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from math import sqrt\nn, m = list(map(int, input().split()))\ni = 1\nlst = []\nwhile i <= sqrt(m):\n if m % i == 0:\n j = m // i\n if i >= n:\n lst.append(i)\n if j >= n:\n lst.append(j)\n i += 1\nprint(m//min(lst))', 'from math import sqrt\nfrom math import ceil\nn, m = list(map(int, input().split()))\nlst = range(n, ceil(sqrt(m)))\nfor i in lst:\n if m % i == 0:\n print(m // i)\n break\nelse:\n print(1)', 'n, m = list(map(int, input().split()))\nlst = range(n, -(-m//2))\nfor i in lst:\n if m % i == 0:\n print(m // i)\n break\nelse:\n print(1)', 'from math import sqrt\nn, m = list(map(int, input().split()))\ni = 1\nlst = []\nwhile i <= sqrt(m):\n if m % i == 0:\n j = m // i\n if i >= n:\n lst.append(i)\n if j >= n:\n lst.append(j)\n i += 1\nprint(m//min(lst))']
['Time Limit Exceeded', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s448018102', 's524373884', 's703131120', 's065806738']
[3060.0, 3060.0, 2940.0, 3060.0]
[2104.0, 20.0, 2103.0, 31.0]
[257, 200, 151, 253]
p03241
u619458041
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["import sys\n\ndef main():\n input = sys.stdin.readline\n N, M = map(int, input().split())\n O = [0, 1] + [0 for _ in range(int(M**0.5)+1)]\n H = 1\n for i in range(int(M**0.5)+1, 2, -1):\n while M % i == 0:\n if (M // i) < N:\n break\n else:\n M //= i\n H *= i\n print(H)\n\nif __name__ == '__main__':\n main()", "import sys\n\ndef main():\n input = sys.stdin.readline\n N, M = map(int, input().split())\n H = 1\n for i in range(int(M//N), 1, -1):\n if M % i == 0:\n H = i\n break\n\n print(H)\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s206843954', 's880544436']
[3608.0, 2940.0]
[22.0, 1770.0]
[334, 223]
p03241
u619819312
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\ns=[]\nfor i in range(1,int(m**2)+1):\n if m%i==0 and i=<n:\n s.append(i)\n if m/i=<n:\n s.append(m/i)\nprint(max(s))', 'n, m = list(map(int,input().split()))\ndef solve():\n for i in range(m//n, 0, -1):\n if m % i == 0:\n\t\t\tprint(i)\n break\nsolve()', 'n, m = list(map(int,input().split()))\ndef solve():\n for i in range(m//n, 0, -1):\n if m % i == 0:\n print(i)\n break\nsolve()']
['Runtime Error', 'Runtime Error', 'Accepted']
['s713867803', 's859080268', 's794957696']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 1952.0]
[166, 144, 153]
p03241
u620480037
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N,M=map(int,input().split())\n\n\nans=1\n\nfor i in range(1,min(M//N+100,10**5+5)):\n if M%i==0:\n ans=i\nprint(ans)', 'N,M=map(int,input().split())\nans=0\nfor i in range(1,10**5):\n if M%i==0:\n a=max(M//i,i)\n b=min(M//i,i)\n if M//a>=N and ans<a:\n ans=a\n if M//b>=N and ans<b:\n ans=b\nprint(ans)']
['Wrong Answer', 'Accepted']
['s132059296', 's628624637']
[3316.0, 3060.0]
[30.0, 30.0]
[122, 225]
p03241
u621100542
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN,T = map(int,input().split())\n \nif T % N == 0:\n print (int(T / N))\n exit()\n \nfor i in range(T): \n A = math.ceil(T / N)\n print(A)\n if T % A ==0:\n print(T)\n break\n T = A', 'N,T = map(int,input().split())\nif T % N == 0:\n print (int(T / N))\n\nd = int(T / N)\nelse:\n for i in range(d+1,0,-1): \n if T % i ==0:\n print(i)\n break', 'import math\nN,T = list(map(int,input().split()))\n#d = int(T / N)\nm = []\ndef ans():\n for i in range(1,int(math.sqrt(T))): \n if T % i ==0:\n m.append(i)\n m.append(T//i)\n print (m[-1])\nif T % N == 0:\n print (int(N / T))\nelse:\n ans()', 'import math\nN,T = list(map(int,input().split()))\n#d = int(T / N)\nm = []\n\ndef ans():\n ans = 1\n for i in range(1,int(math.sqrt(T))): \n if T % i ==0:\n m.append(i)\n m.append(T//i)\n for p in m:\n if p <= T // N:\n ans = max(ans,p)\n print (ans)\n \nif T % N == 0:\n print (int(T / N))\nelse:\n ans()']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s260698307', 's378509592', 's480751804', 's598967920']
[3060.0, 2940.0, 3060.0, 3060.0]
[17.0, 17.0, 20.0, 20.0]
[219, 186, 285, 370]
p03241
u634159866
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = map(int, input().split())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\n\ndiv = sorted(make_divisors(M))\nwhile M//div[i]>=N:\n ans = div[i]\n i+=1\n \nprint(ans)', 'N, M = map(int, input().split())\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n \n return divisors\n\nif N==1:\n print(M)\n\nelse:\n div = sorted(make_divisors(M))\n i = 0 \n while i<=len(div) and M//div[i]>=N:\n ans = div[i]\n i+=1\n print(ans)']
['Runtime Error', 'Accepted']
['s583227950', 's636277949']
[3064.0, 3064.0]
[21.0, 21.0]
[345, 433]
p03241
u655975843
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import sys\nimport math\nns = lambda: sys.stdin.readline().rstrip()\nni = lambda: int(ns())\nnm = lambda: map(int, sys.stdin.readline().split())\nnl = lambda: list(nm())\nnsl = lambda: map(str, sys.stdin.readline().split())\n\nn, m = nm()\nans = 1\nfor i in range(2, int(math.sqrt(m)) + 1):\n if m % i == 0 and m // i >= n:\n ans = max(i, m // i)\nif n == 1:\n print(m)\nelse:\n print(ans)\n', 'import sys\nimport math\nns = lambda: sys.stdin.readline().rstrip()\nni = lambda: int(ns())\nnm = lambda: map(int, sys.stdin.readline().split())\nnl = lambda: list(nm())\nnsl = lambda: map(str, sys.stdin.readline().split())\n\nn, m = nm()\nans = 1\nfor i in range(2, math.ceil(math.sqrt(m)) + 1):\n if m % i == 0:\n ans = max(i, m // i)\nprint(ans)\n', 'import sys\nimport math\nns = lambda: sys.stdin.readline().rstrip()\nni = lambda: int(ns())\nnm = lambda: map(int, sys.stdin.readline().split())\nnl = lambda: list(nm())\nnsl = lambda: map(str, sys.stdin.readline().split())\n\nn, m = nm()\nans = 1\nfor i in range(1, int(math.sqrt(m)) + 2):\n if m % i == 0:\n if m // i >= n and i >= n:\n ans = max(ans, i, m // i)\n elif m // i >= n:\n ans = max(ans, i)\n elif i >= n:\n ans = max(ans, m // i)\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s590621383', 's841985956', 's212336739']
[3064.0, 3060.0, 3064.0]
[22.0, 21.0, 21.0]
[390, 346, 496]
p03241
u657541767
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int, input().split())\n\ndef solve():\n res = 1\n for i in range(2, m+1):\n if m % i == 0:\n if (m // i) >= n:\n res = max(res, i * (m // i // n))\n break\n print(res)\n\nsolve()\n', 'n, m = map(int, input().split())\n\ndef solve():\n res = 1\n for i in range(m//n+1, 0, -1):\n if m % i == 0:\n if (m // i) >= n:\n res = i\n break\n print(res)\n\nsolve()\n']
['Wrong Answer', 'Accepted']
['s872677255', 's927330771']
[2940.0, 2940.0]
[2103.0, 1892.0]
[236, 217]
p03241
u658993896
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['def factorize(M):\n fact=[]\n for i in range(2,4*10**4):\n tmp=[1]\n if M==1:\n break\n while M%i==0:\n M//=i\n tmp.append(tmp[-1]*i)\n if len(tmp)>1:\n fact.append(tmp)\n return fact\n\ndef divisor(fact,arr,i,p):\n if i == len(fact):\n arr.append(p)\n return 0\n for x in fact[i]:\n divisor(fact,arr,i+1,p*x)\n \nN,M=list(map(int,input().split()))\n\nfact = factorize(M)\narr=[]\ndivisor(fact,arr,0,1)\nprint(fact)\narr=sorted(arr)\nprint(arr)\nans=1\nfor x in arr:\n if x>M//N:\n break\n ans=x\nprint(ans)', 'def factorize(M):\n fact=[]\n for i in range(2,10**5):\n tmp=[1]\n if M==1:\n break\n while M%i==0:\n M//=i\n tmp.append(tmp[-1]*i)\n if len(tmp)>1:\n fact.append(tmp)\n if M!=1:\n fact.append([1,M])\n return fact\n\ndef divisor(fact,arr,i,p):\n if i == len(fact):\n arr.append(p)\n return 0\n for x in fact[i]:\n divisor(fact,arr,i+1,p*x)\n \nN,M=list(map(int,input().split()))\n\nfact = factorize(M)\narr=[]\ndivisor(fact,arr,0,1)\narr=sorted(arr)\nans=1\nfor x in arr:\n if x>M//N:\n break\n ans=x\nprint(ans)']
['Wrong Answer', 'Accepted']
['s640050282', 's160821051']
[3064.0, 3064.0]
[27.0, 41.0]
[598, 613]
p03241
u665038048
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n, m = map(int, input().split())\n\n\ndef make_divisors(num):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if num % i == 0:\n divisors.append(i)\n if i != num // i:\n divisors.append(num//i)\n return divisors\n\ndiv = make_divisors(num=m)\ndiv.sort()\nans = 0\nfor x in div:\n if x*n <= m:\n ans = max(ans, x)\nprint(ans)\n', 'n, m = map(int, input().split())\n\n\ndef make_divisors(num):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if num % i == 0:\n divisors.append(i)\n if i != num // i:\n divisors.append(num//i)\n return divisors\n\ndiv = make_divisors(num=m)\n\nans = 0\nfor x in div:\n if x*n <= m:\n ans = max(ans, x)\nprint(ans)\n', 'n, m = map(int, input().split())\n\n\ndef make_divisors(num):\n divisors = []\n for i in range(1, m+1):\n if i * i > m:\n break\n if m % i == 0:\n divisors.append(i)\n divisors.append(m // i)\n return divisors\n\ndiv = make_divisors(num=m)\ndiv.sort()\nans = 1\nfor x in div:\n if x*n <= m:\n ans = x\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s078782269', 's642055083', 's462952696']
[3060.0, 3060.0, 3060.0]
[17.0, 18.0, 23.0]
[376, 366, 360]
p03241
u670180528
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['from fractions import*;n,m=map(int,input().split());print(gcd(m//n,m%n))', 'n,m=map(int,input().split())\nans=1\nfor i in range(1,int(m**.5)+1):\n if m%i==0:\n if i*n<=m and ans<i:\n ans=i\n if n<=i and ans<m//i:\n ans=m//i\nprint(ans)']
['Wrong Answer', 'Accepted']
['s812082059', 's243469367']
[5304.0, 3060.0]
[39.0, 23.0]
[72, 168]
p03241
u672220554
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\ndef main():\n n,m = map(int,input().split())\n for i in range(n,math.ceil(math.sqrt(m))):\n if m%i==0:\n print(m//i)\n break\nmain()', 'import math\ndef main():\n n,m = map(int,input().split())\n\n start = min(m//n,math.sqrt(m))\n\n for i in range(start,0,-1):\n if m%i==0:\n print(i)\n break\n\nmain()', 'import math\ndef main():\n n,m = map(int,input().split())\n for i in range(n,math.floor(math.sqrt(m))):\n if m%i==0:\n print(m//i)\n break\nmain()', 'def main():\n n,m = map(int,input().split())\n\n start = m//n\n\n for i in range(start,0,-1):\n if m%i==0:\n print(i)\n break\n\nmain()']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s563850109', 's659991684', 's749268877', 's306235490']
[2940.0, 2940.0, 2940.0, 2940.0]
[19.0, 19.0, 19.0, 1754.0]
[173, 193, 174, 163]
p03241
u673338219
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m = map(int,input().split())\ng = 1\nfor i in range(1,m):\n if m%i == 0:\n if int(m/i) >= n:\n g = int(m/i)\n else:\n break\n \nprint(g)\n ', 'n,m = map(int,input().split())\ng = 1\nfor i in range(m):\n if m%i == 0:\n if int(m/i) >= n:\n g = int(m/i)\n else:\n break\n \nprint(g)\n ', 'n,m = map(int,input().split())\ng = 1\ndef fact(k):\n a = []\n for i in range(1,int(k **(0.5))+1):\n if k%i ==0:\n a.append(i)\n a.append(int(k/i))\n b = list(set(a))\n b.sort()\n return b\n\ng = fact(m)\nfor i in range(len(g)):\n if g[len(g)-i-1] <= m/n:\n print(g[len(g)-i-1])\n break\n \n \n \n \n\n ']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s197386797', 's286426007', 's689289742']
[2940.0, 2940.0, 3064.0]
[2104.0, 17.0, 20.0]
[154, 152, 321]
p03241
u673361376
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["from fractions import gcd\nfrom functools import reduce\nfrom itertools import combinations\n\nN,M = map(int,input().split())\nalist = []\nfor cmb in combinations([i for i in range(1,M)],N-1):\n cmb = [0] + list(cmb) + [M]\n tmp_a = sorted([cmb[i]-cmb[i-1] for i in range(1,N+1)])\n if tmp_a not in alist: alist.append(tmp_a)\n\nans = -float('inf')\nfor a in alist:\n ans = max(ans, reduce(gcd,a))\nprint(ans)", "def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n return divisors\n\nans = -float('inf')\nN,M = map(int,input().split())\nfor div in make_divisors(M):\n if M//div >= N: ans = max(ans, div)\nprint(ans)"]
['Time Limit Exceeded', 'Accepted']
['s024206172', 's661867899']
[1386360.0, 3060.0]
[2246.0, 20.0]
[399, 348]
p03241
u687044304
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['# -*- coding:utf-8 -*-\n\n\n\nfrom fractions import gcd\n\ndef solve():\n N, M = list(map(int, input().split()))\n\n base = M//N\n\n if M%N == 0:\n print(base)\n return\n else:\n last = base + M%N\n ans = gcd(base, last)\n print(ans)\n return\n\n\n\nif __name__ == "__main__":\n solve()\n', '# -*- coding:utf-8 -*-\n\n\n\ndef solve():\n N, M = list(map(int, input().split()))\n\n divs = set() \n\n \n n = 1\n while n*n <= M:\n if M%n == 0:\n \n divs.add(n)\n divs.add(M//n)\n n += 1\n\n \n ans = 0\n for d in divs:\n if d*N <= M:\n ans = max(ans, d)\n\n print(ans)\n\n\ndef solve2():\n N, M = list(map(int, input().split()))\n\n divs = set()\n\n n = 1\n while n <= M**(1/2):\n if M%n == 0:\n divs.add(n)\n divs.add(M//n)\n n += 1\n\n ans = 0\n for d in divs:\n if M >= d*N:\n ans = max(ans, d)\n print(ans)\n\n\nif __name__ == "__main__":\n solve2()\n']
['Wrong Answer', 'Accepted']
['s181738080', 's999760902']
[5304.0, 3188.0]
[38.0, 33.0]
[629, 892]
p03241
u690536347
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\nfor i in range(m//n+1)[::-1]:\n\tif m%i==0:\n\t\tprint(i)\n exit()\n', 'def f():\n n,m=map(int,input().split())\n for i in range(m//n+1)[::-1]:\n if m%i==0:return i\nf()', 'N, M = map(int, input().split())\n\nl = []\nfor i in range(1, int(M**0.5)+1):\n if M%i==0:\n l += [M//i]\n if M//i != i:\n l += [i]\nl.sort()\n\nfor i in l:\n if i >= N:\n print(M//i)\n break']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s611444899', 's717976910', 's529960806']
[2940.0, 2940.0, 3188.0]
[17.0, 1770.0, 21.0]
[97, 98, 223]
p03241
u690700473
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
["import math\n\ndef main():\n N, M = list(map(int, input().split(' ')))\n s = min(math.ceil(math.sqrt(M)), M//N)\n while True:\n if M%s == 0:\n print(max(s, M//s))\n break\n s -= 1\n\n\n\nif __name__ == '__main__':\n main()", "import math\n\ndef main():\n N, M = list(map(int, input().split(' ')))\n s = min(math.ceil(math.sqrt(M)), M//N)\n ret = []\n while s > 0:\n if M%s == 0:\n a = M//s\n ret.append(a)\n ret.append(s)\n s -= 1\n print(max([s for s in ret if s <= M//N]))\n\n\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s348969046', 's979455704']
[3060.0, 3060.0]
[19.0, 22.0]
[256, 339]
p03241
u691896522
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\n\nn, m = list(map(int, input().split()))\nk = 0\nfor i in range(1, int(math.sqrt(m) + 1)):\n if m % i == 0 and m/k >= n:\n k = i\nprint(k)', 'import math\n\nn, m = list(map(int, input().split()))\nk = 0\nfor i in range(1, int(math.sqrt(m) + 1):\n if m % i == 0:\n k = i\nprint(k)\n', 'import math\n\nn, m = list(map(int, input().split()))\nreg = (m / n)\nk = 1\nfor i in range(1, int(math.sqrt(m) + 1)):\n if m % i == 0:\n a = m/i\n b = i\n if reg >= b and k < b:\n k = b\n if reg >= a and k < a:\n k = a\nprint(int(k))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s482724226', 's834657335', 's489830048']
[2940.0, 2940.0, 3060.0]
[18.0, 17.0, 21.0]
[154, 141, 274]
p03241
u706695185
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nN, M = map(int, input().split())\n\nans = 1\nfor a in range(math.sqrt(M)):\n b = int(M / a)\n if M%a != 0:\n continue\n if a * N <= M:\n ans = max(ans, a)\n if b * N <= M:\n ans = max(ans, b)\n\nprint(ans)\n\n', 'import math\nN, M = map(int, input().split())\n\nans = 1\nfor a in range(1, int(math.sqrt(M))):\n b = int(M / a)\n if M%a != 0:\n continue\n if a * N <= M:\n ans = max(ans, a)\n if b * N <= M:\n ans = max(ans, b)\n\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s272150450', 's392983720']
[3060.0, 3060.0]
[17.0, 28.0]
[240, 248]
p03241
u708255304
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['N, M = map(int, input().split()) \n\nans = 1\n\nif N == 1:\n print(M)\n exit()\n\nfor i in range(1000000):\n if (M >= N * i) and (M % i == 0):\n ans = i\n\nprint(ans)\n', 'N, M = map(int, input().split()) \n\nif N == 1:\n print(M)\n exit()\n\n\nprimes = []\nans = 1\n\n\nfor i in range(1, int(M**(1/2))+1):\n if M % i == 0:\n primes.append(i)\n primes.append(M//i)\n\n\nfor d in primes:\n if M >= N * d:\n ans = d\n\nprint(d)\n', 'N, M = map(int, input().split()) \n\nif N == 1:\n print(M)\n eixt()\n\n\nprimes = []\nans = 1\n\n\nfor i in range(1, int(M**(1/2))+1):\n if M % i == 0:\n primes.append(i)\n primes.append(M//i)\n\n\nfor d in primes:\n if M >= N * d:\n ans = d\n\nprint(d)\n', 'N, M = map(int, input().split()) \n\ndivs = []\nfor i in range(1, int((M)**(1/2)+1)):\n if M % i == 0:\n divs.append(i)\n divs.append(M//i)\n\ndivs.sort()\n\nans = 0\nfor d in divs:\n if M//N >= d:\n ans = d\n else:\n break\n\nprint(ans)\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s190829031', 's267954874', 's758996206', 's212285035']
[2940.0, 3060.0, 3060.0, 3188.0]
[17.0, 21.0, 22.0, 21.0]
[191, 345, 345, 333]
p03241
u711295009
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\nn,m = map(int, input().split())\nif m%n==0:\n print(m//n)\nelse:\n def make_divisor_list(num):\n if num < 1:\n return []\n elif num == 1:\n return [1]\n else:\n divisor_list = []\n divisor_list.append(1)\n for i in range(2, int(math.sqrt(num)) + 1):\n if num % i == 0:\n divisor_list.append(i)\n divisor_list.append(num)\n\n return divisor_list\n \n listD = make_divisor_list(m)\n index =0\n while index <len(listD):\n if listD[index]>n-1:\n print(m//listD[index])\n break\n index+=1\n', 'import math\nimport time\nn, m = map(int, input().split())\nflag=0\nif m%n==0:\n print(m//n)\n\nelse:\n start = time.time()\n index=m//n\n while index >0:\n elapsedTime = time.time()-start\n if elapsedTime > 1:\n flag=1\n break\n elif m%index==0:\n print(index)\n break\n index-=1\n\n if flag==1:\n index = 1\n while index < m+1:\n if m % index == 0:\n if index > n-1:\n print(m//index)\n break\n index += 1']
['Wrong Answer', 'Accepted']
['s800184212', 's067426441']
[3064.0, 3064.0]
[20.0, 1018.0]
[657, 556]
p03241
u727412592
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['import math\n\nN, M=input().split(" ")\nN=int(N)\nM=int(M)\n\ndef get_number(M):\n result=list()\n for i in range(1,int(math.sqrt(M))):\n if M%i==0:\n result.append(i)\n result.append(int(M/i))\n result.sort()\n return(result)\n \ndef check_number(N,M):\n number=get_number(M)\n answer=list()\n for i in number:\n if M/i>=N:\n answer.append(i)\n \n return(answer[-1])\n \ncheck_number(N,M)', 'import math\n \nN, M=input().split(" ")\nN=int(N)\nM=int(M)\n \ndef get_number(M):\n result=list()\n for i in range(1,int(math.sqrt(M))):\n if M%i==0:\n result.append(i)\n result.append(int(M/i))\n result.sort()\n return(result)\n \ndef check_number(N,M):\n if N==1:\n return(M)\n number=get_number(M)\n answer=list()\n for i in number:\n if M/i>=N:\n answer.append(i)\n \n return(answer[-1])\n \nprint(check_number(N,M))']
['Runtime Error', 'Accepted']
['s459769958', 's768145932']
[3064.0, 3064.0]
[20.0, 20.0]
[453, 493]
p03241
u729133443
2,000
1,048,576
You are given integers N and M. Consider a sequence a of length N consisting of positive integers such that a_1 + a_2 + ... + a_N = M. Find the maximum possible value of the greatest common divisor of a_1, a_2, ..., a_N.
['n,m=map(int,input().split())\na=0\nfor i in range(1,18000000):\n if m%i:continue\n if m//i>=n:a=i\nprint(a)', 'def s(n):\n return[m(t)for t in d(f(n))]\ndef f(n):\n l=[]\n b,e=2,0\n while b*b<=n:\n while not n%b:\n n//=b\n e+=1\n if e:\n l.append((b,e))\n b,e=b+1,0\n if n>1:\n l.append((n,1))\n return l\ndef d(l):\n b,e=l.pop()\n p=d(l)if l else[[]]\n v=[[(b,k)]for k in range(e+1)]\n return[s+t for s in p for t in v]\ndef m(l):\n a=1\n for b,e in l:\n a*=b**e\n return a\nN,M=map(int,input().split())\nif M<2:print(1);exit()\na=0\nfor i in sorted(s(M))[::-1]:\n if M//i>=N:\n a=i\n break\nprint(a)']
['Wrong Answer', 'Accepted']
['s392466146', 's885590055']
[2940.0, 3064.0]
[1972.0, 23.0]
[108, 582]