problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03254
u735211927
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in sorted(a):\n x -= i\n if x < 0:\n print(counter)\n else:\n counter += 1\n if counter == n:\n print(n)', 'n, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in a.sort():\n x -= i\n if x <0:\n print(counter)\n else:\n counter += 1', 'n, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in sorted(a):\n if counter == n and x>0:\n print(n-1)\n elif counter == n and x==0:\n print(n)\n x -= i\n counter += 1\n if x < 0:\n print(counter-1)', 'n, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in sorted(a):\n x -= i\n if x < 0:\n print(counter)\n else:\n counter += 1\n if counter == n:\n print(n)\nn, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in sorted(a):\n x -= i\n if x <= 0:\n print(counter)\n else:\n counter += 1\n if counter == n:\n print(n)\n', 'n, x = map(int, input().split())\na = []\nfor i in range(n):\n k = input().split()[i]\n a.append(int(k))\ncounter = 0\nfor i in a.sort():\n x -= i\n if x <0:\n print(counter)\n else:\n counter += 1', 'n, x = map(int, input( ).split())\na = []\nfor i in range(n):\n k = input().split( )[i]\n a.append(int(k))\ncounter = 0\nfor i in a.sort():\n x -= i\n if x <0:\n print(counter)\n else:\n counter += 1', 'n, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in sorted(a):\n x -= i\n if x <= 0:\n print(counter)\n else:\n counter += 1\n if counter == n:\n print(n)', 'n, x = map(int, input( ).split())\na = list(map(int, input().split()))\ncounter = 0\nfor i in sorted(a):\n x -= i\n counter += 1\n if x<0:\n print(counter-1)\n break\n elif x==0:\n print(counter)\n break\n else:\n if counter==n:\n print(counter-1)']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s174116367', 's445754869', 's503274602', 's550701771', 's761152333', 's825290245', 's962925998', 's929373973']
[3060.0, 2940.0, 3060.0, 3064.0, 3060.0, 3060.0, 3064.0, 3060.0]
[17.0, 17.0, 17.0, 18.0, 17.0, 17.0, 17.0, 18.0]
[198, 164, 243, 399, 197, 199, 199, 258]
p03254
u740284863
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nans = 0\nfor i in a:\n if x - i >= 0:\n x -= i\n ans += 1\n else:\n break\nprint(ans)', 'n,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nans = 0\nif sum(a) == x:\n ans = n\nelif sum(a) < x:\n ans = n - 1\nelse:\n for i in range(n):\n if a[i] <= x:\n ans += 1\n x -= a[i]\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s203161711', 's667213072']
[3060.0, 3060.0]
[17.0, 17.0]
[180, 249]
p03254
u742729271
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nans=0\nfor i in range(N)\n x = x-a[i]\n if x>=0:\n ans+=1\n else:\n break\nprint(ans)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nans=0\nfor i in range(N):\n x = x-a[i]\n if x>=0:\n ans+=1\n else:\n break\nprint(ans)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nans=0\nfor i in range(N):\n x = x-a[i]\n if x>=0:\n ans+=1\n else:\n break\nif x>0:\n print(ans-1)\nelse:\n print(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s111692640', 's451199412', 's616855244']
[2940.0, 2940.0, 3060.0]
[17.0, 18.0, 18.0]
[165, 166, 197]
p03254
u746154235
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x=map(int, input().split())\nA=sorted(list(map(int, input().split())))\ncnt=0\nfor i in A:\n if x >= i:\n x -= i\n cnt+=1\n else:\n break\nprint(cnt)\n', 'N,x=map(int, input().split())\nA=sorted(list(map(int, input().split())))\ncnt=0\nfor i in range(N):\n if i == N-1 and x > A[i]:\n break\n if x >= A[i]:\n x -= A[i]\n cnt+=1\n else:\n break\nprint(cnt)\n']
['Wrong Answer', 'Accepted']
['s138218793', 's306963031']
[2940.0, 2940.0]
[17.0, 17.0]
[154, 205]
p03254
u749512407
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\nSum = sum(A)\nif x >= Sum:\n print(N)\n exit()\n\nans = 0\nfor i in range(N):\n if x >= A[i]:\n ans += 1\n x -= A[i]\n else:\n print(ans)\n break\nelse:\n print(ans)', 'N,x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\n\nprint(A)\nans = 0\nfor i in range(N):\n if x > A[i]:\n ans += 1\n x -= A[i]\n elif x == A[i]:\n print(ans+1)\n break\n else:\n print(ans -1)\n break\nelse:\n print(ans-1)\n', 'N,x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\n\nans = 0\nfor i in range(N):\n if x > A[i]:\n ans += 1\n x -= A[i]\n elif x == A[i]:\n print(ans+1)\n break\n elif i+1 == N:\n print(ans -1)\n break\n else:\n print(ans)\n break\n', 'N,x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\nans = 0\n\nfor i in range(N):\n if x > A[i]:\n if i+1 == N:\n print(N-1)\n exit()\n else:\n ans += 1\n x -= A[i]\n elif x == A[i]:\n ans += 1\n print(ans)\n exit()\n else:\n print(ans)\n exit()']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s063380998', 's205838584', 's787056567', 's231194251']
[3064.0, 3060.0, 3060.0, 3064.0]
[17.0, 18.0, 18.0, 18.0]
[246, 259, 271, 299]
p03254
u752767312
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\na_list = list(map(int,input().split()))\na_list_sort = sorted(a_list)\n#print(a_list)\n#print(a_list_sort)\ncount = 0\n\nif sum(a_list) <= x :\n\tcount = N\nelse:\n\tfor i in range(N):\n\t\tif sum(a_list_sort[:i+1]) <= x:\n\t\t\tcontinue\t\n\t\telse:\n\t\t\tcount = i\n\t\t\tbreak\nprint(count)', 'N,x = map(int,input().split())\na_list = list(map(int,input().split()))\na_list_sort = sorted(a_list)\n#print(a_list)\n#print(a_list_sort)\ncount = 0\n\nif sum(a_list) < x :\n\tcount = N-1\nelif sum(a_list) == x :\n\tcount = N\nelse:\n\tfor i in range(N):\n\t\tif sum(a_list_sort[:i+1]) <= x:\n\t\t\tcontinue\t\n\t\telse:\n\t\t\tcount = i\n\t\t\tbreak\nprint(count)']
['Wrong Answer', 'Accepted']
['s772495961', 's522081472']
[3060.0, 3060.0]
[17.0, 18.0]
[294, 330]
p03254
u756988562
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nans = 0\njudge = [False for i in range(N)]\n# print(judge)\nfor i in range(N):\n if x-a[i]>=0:\n judge[i]=True\n x-=a[i]\ntemp_count=0\nfor i in range(N):\n if judge[i]:\n temp_count+=1\n# print(judge)\nif sum(a)<x:\n print(temp_count-1)\nelse:\n print(temp_count)\n', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nans = 0\njudge = [False for i in range(N)]\nTrue_X=x\n# print(judge)\nfor i in range(N):\n if x-a[i]>=0:\n judge[i]=True\n x-=a[i]\ntemp_count=0\nfor i in range(N):\n if judge[i]:\n temp_count+=1\n# print(judge)\nif sum(a)<True_X:\n print(temp_count-1)\nelse:\n print(temp_count)\n']
['Wrong Answer', 'Accepted']
['s996804844', 's825231678']
[3064.0, 3064.0]
[17.0, 17.0]
[358, 372]
p03254
u759651152
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
["#-*-coding:utf-8-*-\n\ndef main():\n n, x = map(int, input().split())\n a_list = list(map(int, input().split()))\n a_list.sort()\n total = 0\n ans = 0\n for i in range(n):\n total += a_list[i]\n if total <= x:\n ans += 1\n print(ans)\n\nif __name__ == '__main__':\n main()", "#-*-coding:utf-8-*-\n\ndef main():\n n, x = map(int, input().split())\n a_list = list(map(int, input().split()))\n a_list.sort()\n total = 0\n ans = 0\n for i in range(n):\n total += a_list[i]\n if total <= x:\n ans += 1\n if total < x:\n print(ans - 1)\n else:\n print(ans)\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s442254624', 's375727514']
[3064.0, 3064.0]
[17.0, 17.0]
[306, 361]
p03254
u760171369
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nb = 0\nfor k in range(N):\n b += a[k]\n if b > x:\n print(k)\n break', 'import numpy as np\nN, x = map(int, input().split())\na = np.array(list(map(int, input().split())))\na.sort()\ns = np.cumsum(a)\nb = (s <= x)\nif b.all():\n if s[-1] == x:\n c = b.sum()\n else:\n c = b.sum() - 1\nelif b.any():\n c = b.sum()\n r = x - s[c-1]\n if (r == a[c:]).any():\n c += 1\nelse:\n c = 0\nprint(c)']
['Wrong Answer', 'Accepted']
['s731086371', 's267990827']
[2940.0, 12392.0]
[17.0, 150.0]
[149, 313]
p03254
u760802228
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nsum_ = 0 \nans = 0 \nfor i in range(N):\n if sum_ > x:\n break\n sum_ += a[i]\n ans += 1\nprint(ans)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nsum_ = 0 \nans = 0 \nfor i in range(N):\n sum_ += a[i]\n if sum_ > x:\n break\n ans += 1\nprint(ans)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nans = 0 \nfor i in range(N):\n x -= a[i]\n if x < 0:\n break\n ans += 1\nif x > 0:\n ans -= 1\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s310080139', 's971541520', 's508846228']
[3060.0, 3060.0, 3060.0]
[17.0, 17.0, 17.0]
[207, 207, 218]
p03254
u761320129
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,X = map(int,input().split())\nsrc = list(map(int,input().split()))\nsrc.sort()\n\nx = 0\nans = 0\nfor a in src:\n if x+a > X: break\n ans += 1\n x += a\nprint(ans)', 'N,X = map(int,input().split())\nA = list(map(int,input().split()))\nA.sort()\n\nans = 0\nfor a in A:\n if X-a < 0: break\n X -= a\n ans += 1\nelse:\n if X:\n ans -= 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s636419127', 's650546074']
[3060.0, 3060.0]
[17.0, 17.0]
[164, 185]
p03254
u762420987
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\nalist = list(map(int,input().split()))\nalist.sort()\ncounter = 0\nfor a in alist:\n x -= a\n if x>=0:\n counter += 1\n else:\n break\nprint(counter)\n', 'N,x = map(int,input().split())\nalist = list(map(int,input().split()))\nalist.sort()\ncounter = 0\nfor i in range(N):\n x -= alist[i]\n if x>=0:\n if i!=N-1:\n counter += 1\n else:\n if x==0:\n counter += 1\n else:\n break\nprint(counter)\n']
['Wrong Answer', 'Accepted']
['s967705179', 's875959733']
[2940.0, 2940.0]
[17.0, 18.0]
[195, 292]
p03254
u777028980
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,m=map(int,input().split())\nhoge=list(map(int,input().split()))\nhoge.sort()\nans=0\nfor i in range(n):\n if(hoge[i]<=m):\n ans+=1\n m-=hoge[i]\n else:\n break\nif(m==0):\n print(ans)\nelse:\n if(sum(hoge)<m):\n print(n-1)\n else:\n print(ans)', 'n,m=map(int,input().split())\nhoge=list(map(int,input().split()))\nhoge.sort()\n\nif(sum(hoge)<m):\n print(n-1)\n exit()\n\nans=0\nfor i in range(n):\n if(hoge[i]<=m):\n ans+=1\n m-=hoge[i]\n else:\n break\nprint(ans)']
['Wrong Answer', 'Accepted']
['s162345301', 's533377682']
[3060.0, 3064.0]
[17.0, 17.0]
[249, 215]
p03254
u786150969
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
["# AGC 027 A - Candy Distribution Again\nN, x = map(int,input().split())\nan = list(map(int,input().split()))\n\nak =[] \nwhile len(an) > 0:\n ak.append(min(an))\n del an[an.index(min(an))]\n\ncount = 0\nfor i in range(N):\n if x > 0:\n x -= ak[i]\n if i != N-1:\n count += 1\n print('a'+ str(x))\n if i == N-1:\n if x == 0:\n count += 1\n else:\n break\n if x < 0:\n count -= 1\n print('b'+ str(x))\n break\n\n if x == 0:\n print('c'+ str(x))\n break\nprint(count)", '# AGC 027 A - Candy Distribution Again\nN, x = map(int,input().split())\nan = list(map(int,input().split()))\n\nak =[] \nwhile len(an) > 0:\n ak.append(min(an))\n del an[an.index(min(an))]\n\ncount = 0\nfor i in range(N):\n if x > 0:\n x -= ak[i]\n if i != N-1:\n count += 1\n if i == N-1:\n if x == 0:\n count += 1\n else:\n break\n if x < 0:\n count -= 1\n break\n\n if x == 0:\n break\nprint(count)']
['Wrong Answer', 'Accepted']
['s006542982', 's598474873']
[9068.0, 9068.0]
[29.0, 29.0]
[580, 495]
p03254
u787131053
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split(" "))\na = list(map(int, input().split(" ")))\nchildren = [0] * N\na.sort()\nkashi = 0\nwhile kashi < x:\n for i in range(0,N):\n kashi += a[i]\n children[i] += 1\n if kashi > x:\n kashi -= a[i]\n children[i] -= 1\n break\n if kashi == 0:\n break\nprint(N - children.count(0))', 'N, x = map(int, input().split(" "))\na = list(map(int, input().split(" ")))\nchildren = [0] * N\na.sort()\nkashi = 0\nn = N\nif a[0] > x:\n print(0)\nelif sum(a) == x:\n print(N)\nelse:\n while kashi < x:\n for i in range(0,n):\n kashi += a[i]\n children[i] += 1\n if kashi > x:\n kashi -= a[i]\n children[i] -= 1\n break\n# print(kashi)\n n -= 1\n if n < 1:\n break\n# print(children)\n print(N - children.count(0))', 'N, x = map(int, input().split(" "))\na = list(map(int, input().split(" ")))\nchildren = [0] * N\na.sort()\nkashi = 0\nn = N\nif a[0] > x:\n print(0)\nelif sum(a) == x:\n print(N)\nelse:\n for i in range(0,n):\n if kashi > x:\n break \n kashi += a[i]\n children[i] += 1\n# print(kashi)\n if kashi == x :\n print(N - children.count(0))\n else:\n print(N - children.count(0) - 1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s668462281', 's684581321', 's241954318']
[3064.0, 3064.0, 3064.0]
[2104.0, 18.0, 18.0]
[358, 524, 428]
p03254
u787679173
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\n\nA.sort()\n\nans = 0\nfor a in A:\n if a <= x:\n ans += 1\n x -= a\n else:\n break\n\nprint(ans)', 'N, x = [int(x) for x in input().split()]\nA = [int(x) for x in input().split()]\nB = [0 for _ in range(N)]\n\nA.sort()\n\nans = 0\nfor i in range(len(A)):\n if i == N - 1:\n B[i] = x\n break\n if x - A[i] >= 0:\n B[i] = A[i]\n x -= A[i]\n else:\n B[i] = 0\nfor i in range(len(A)):\n if A[i] == B[i]:\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s273856763', 's922701634']
[3316.0, 3064.0]
[19.0, 17.0]
[192, 358]
p03254
u796563423
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['a,b=map(int,input().split())\nc=list(map(int,input().split()))\nc.sort()\ni=0\ntotal=0\nwhile True:\n if b>=c[i]:\n b=b-c[i]\n total+=1\n else:\n print(total)\n break', 'a,b=map(int,input().split())\nc=list(map(int,input().split()))\nc.sort()\ni=0\ntotal=0\nwhile True:\n if b<c[i]:\n print(total)\n break\n elif i==a-1:\n if b==c[i]:\n print(total+1)\n else:\n print(total)\n break\n else:\n total+=1\n b=b-c[i]\n i+=1']
['Wrong Answer', 'Accepted']
['s902748274', 's022981808']
[9092.0, 9088.0]
[31.0, 24.0]
[189, 318]
p03254
u796708718
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = [int(i) for i in input().split(" ")]\nlst = [int(i) for i in input().split(" ")]\n\nlst.sort(reverse = True)\ncnt = 0\n\nfor i in range(0,N):\n if x >= lst[i]:\n x -= lst[i]\n cnt += 1\n else:\n break\n \nprint(cnt)\n', 'N, x = [int(i) for i in input().split(" ")]\nlst = [int(i) for i in input().split(" ")]\n \nlst.sort()\ncnt = 0\n \nfor i in range(0,N):\n if x >= lst[i]:\n x -= lst[i]\n cnt += 1\n else:\n break\n \nprint(cnt)', 'N, x = [int(i) for i in input().split(" ")]\nlst = [int(i) for i in input().split(" ")]\n\nlst.sort(reverse = True)\ncnt = 0\n\nfor i in range(0,N):\n if x >= lst[i]:\n cnt += 1\n else:\n break\n \nprint(cnt)\n', 'N, x = [int(i) for i in input().split(" ")]\nlst = [int(i) for i in input().split(" ")]\n\nlst.sort(reverse = True)\ncnt = 0\n\nwhile x > lst[cnt]:\n x -= lst[cnt]\n cnt += 1\n \nprint(cnt)', 'N, x = [int(i) for i in input().split(" ")]\nlst = [int(i) for i in input().split(" ")]\n\nlst.sort(reverse = True)\ncnt = 0\n\nfor i in range(0,N):\n x -= lst[i]\n if x >= 0:\n cnt += 1\n else:\n break\n \nprint(cnt)', 'N, x = [int(i) for i in input().split(" ")]\nlst = [int(i) for i in input().split(" ")]\n \nlst.sort()\ncnt = 0\n \nfor i in range(0,N-1):\n if x >= lst[i]:\n x -= lst[i]\n cnt += 1\n else:\n break\n\n \nprint(cnt+(x==lst[N-1]))\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s367074734', 's551620402', 's661496079', 's679603349', 's867199524', 's624039661']
[2940.0, 3060.0, 3060.0, 3060.0, 3060.0, 3064.0]
[17.0, 17.0, 17.0, 18.0, 17.0, 17.0]
[224, 211, 208, 182, 216, 229]
p03254
u799479335
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\n\na_s = input().split()\nfor i in range(N):\n a_s[i] = int(a_s[i])\n \na_s = sorted(a_s)\n\nans = 0\nsum_ = 0\nfor i in range(N):\n if sum_ + a_s[i] <= x:\n sum_ += a_s[i]\n ans += 1\n else:\n break\nprint(ans)', 'N, x = map(int, input().split())\na_s = input().split()\nfor i in range(N):\n a_s[i] = int(a_s[i])\n \na_s = sorted(a_s)\n\nans = 0\nsum_ = 0\nfor i in range(N):\n if (sum_ + a_s[i] <= x)&(i<N-1):\n sum_ += a_s[i]\n ans += 1\n elif (sum_ + a_s[i] == x)&(i==N-1):\n ans += 1\n else:\n break\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s809305209', 's302394367']
[3064.0, 3064.0]
[17.0, 18.0]
[241, 302]
p03254
u801359367
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['\n\nN,x = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nA.sort(reverse=True)\ncandy = 0\nans = 0\nfor i in A:\n candy += i\n if candy <= x:\n ans += 1\nprint(ans)', '\n\nN,x = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nA.sort()\ncandy = 0\nans = 0\nfor i in A:\n candy += i\n if candy <= x:\n ans += 1\nprint(ans)', '\n\nN,x = list(map(int,input().split()))\nA = list(map(int,input().split()))\n\nA.sort()\ncandy = 0\nans = 0\nfor i in A:\n candy += i\n if candy <= x:\n ans += 1\nif candy < x:\n ans -= 1\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s331192202', 's854894155', 's999684854']
[3060.0, 3060.0, 3060.0]
[18.0, 18.0, 17.0]
[199, 187, 214]
p03254
u802963389
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nans = 0\nfor i in a:\n if x >= i:\n x -= i\n ans += 1\nprint(ans)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nans = 0\nfor i in a:\n if x >= i:\n x -= i\n ans += 1\nif x == 0:\n print(ans)\nelse:\n print(min(N - 1, ans))']
['Wrong Answer', 'Accepted']
['s867150678', 's304537007']
[2940.0, 3060.0]
[17.0, 18.0]
[145, 189]
p03254
u810216383
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x=map (int, input().split())\na=list( map(int, input().split()) )\n\nhappy=0\na.sort()\n\nfor i in range(N):\n \n if a[i] > x:\n break\n\n else:\n x=x-a[i]\n happy=happy+1\n\nprint(happy)\n', 'N,x=map (int, input().split())\na=list( map(int, input().split()) )\n\nhappy=0\na.sort()\n\nfor i in range(N):\n \n if a[i] > x:\n break\n\n else:\n x=x-a[i]\n happy=happy+1\n\nif x!=0 and happy==N:\n happy=happy-1\n \nprint(happy)\n']
['Wrong Answer', 'Accepted']
['s438374761', 's256869853']
[2940.0, 3060.0]
[17.0, 17.0]
[205, 250]
p03254
u810356688
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x=map(int,input().split())\nA=sorted(list(map(int,input().split())))\nfor i in range(n):\n if x<A[i]:\n print(i)\n break\n x-=A[i]\nelse:print(n)\n\n ', 'n,x=map(int,input().split())\nA=sorted(list(map(int,input().split())))\nnum=0\nfor i in range(n):\n if x<A[i]:\n print(i)\n break\nelse:print(n)\n\n ', 'n,x=map(int,input().split())\nA=sorted(list(map(int,input().split())))\nfor i in range(n):\n x-=A[i]\n if x<0:\n print(i)\n break\nelse:print(n)\n\n\n ', 'n,x=map(int,input().split())\nA=sorted(list(map(int,input().split())))\nfor i in range(n):\n x-=A[i]\n if x<0:break\nelse:\n if x==0:i+=1\nprint(i)\n\n\n ']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s129139048', 's203158406', 's707919256', 's983779515']
[2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0, 17.0]
[166, 160, 164, 156]
p03254
u816070625
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,n=map(int,input().split())\nA=list(map(int,input().split()))\nA.sort()\n\nans=0\ni=0\nwhile A[i]<=n:\n ans+=1\n i+=1\n if i==N:\n break\nprint(ans)', 'N,n=map(int,input().split())\nA=list(map(int,input().split()))\nA.sort()\n\nans=0\ni=0\nwhile A[i]<=n:\n if i==N-1:\n if n==A[i]:\n ans+=1\n break\n else:\n ans+=1\n n-=A[i]\n i+=1 \nprint(ans)']
['Wrong Answer', 'Accepted']
['s630962264', 's434013818']
[3060.0, 3064.0]
[17.0, 17.0]
[144, 201]
p03254
u816116805
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['import numpy as np\n\nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx =np.insert(np.cumsum(xs),0,0)\n\nprint(0)', 'import numpy as np\n\nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx =np.insert(np.cumsum(xs),0,0)\n\ndef energy(k):\n nok = n//k\n acm = (n+k)*X\n for i in range(1,nok+1):\n relsum = cumsumx[-(i-1)*k-1] - cumsumx[-i*k-1]\n if i == 1:\n acm += 5*relsum\n else:\n acm += (2*i+1)*relsum\n relsum = cumsumx[-nok*k-1]\n acm += (2*(nok+1)+1)*relsum\n return(acm)\n\nans = -1\nfor j in range (1,n):\n tmp = energy(j)\n if tmp < ans or ans == -1:\n ans =tmp\n\nprint(ans)\n\n\n\n', "\n\nn,m = map(int,input().split())\ns = list(input())\nedges = [tuple(map(int,input().split())) for i in range(m)]\n\n\ndef addEdge(graph,u,v):\n graph[u].add(v)\n\n\ndef deleteNode(graph,node):\n graph.pop(node,None)\n\nfrom collections import defaultdict\ngraphAB = defaultdict(set)\ngraphABopp = defaultdict(set)\n\nconnodes = set()\nfor i,j in edges:\n ii = min(i,j)\n jj = max(i,j)\n addEdge(graphAB,ii,jj)\n addEdge(graphABopp,jj,ii)\n if i != j:\n connodes.add(i)\n connodes.add(j)\n\n\n\ndef adjAB(node):\n Aflag = 'A' in map(lambda x:s[x-1],graphAB[node])\n Aflag = Aflag or 'A' in map(lambda x:s[x-1],graphABopp[node])\n Bflag = 'B' in map(lambda x:s[x-1],graphAB[node])\n Bflag = Bflag or 'B' in map(lambda x:s[x-1],graphABopp[node])\n if Aflag and Bflag:\n return(True)\n else:\n return(False)\n\n\n\nvisitlist = [i for i in connodes if not adjAB(i)]\n#print(visitset)\n\nwhile bool(visitlist):\n i = visitlist.pop()\n for j in graphAB[i]:\n graphABopp[j].remove(i)\n if not adjAB(j):\n visitlist.append(j)\n #print(visitset,'add')\n for j in graphABopp[i]:\n graphAB[j].remove(i)\n if not adjAB(j):\n visitlist.append(j)\n #print(visitset,'add')\n graphAB.pop(i,None)\n graphABopp.pop(i,None)\n\n\n#print(graphABopp)\n\n\nif graphAB == {} and graphABopp == {}:\n print('No')\nelse:\n print('Yes')\n\n\n\n", 'n,x = map(int,input().split())\nass = list(map(int,input().split()))\nass.sort()\n\nans = 0\nacm = 0\nfor i in ass:\n acm += i\n if x >= acm:\n ans +=1\n\nif acm < x:\n ans -= 1\n\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s380328738', 's421564567', 's909338872', 's794317878']
[12468.0, 13320.0, 3064.0, 2940.0]
[148.0, 166.0, 18.0, 17.0]
[144, 557, 1421, 194]
p03254
u816552564
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x=input().split()\nX=int(x)\nn=int(N)\ny=0\nA = [int(i) for i in input().split()]\nA.sort()\nfor z in range(n):\n y+=A[z]\n if y>=X:\n print(z+1)\n break', 'N,x=input().split()\nX=int(x)\nn=int(N)\ny=0\nA = [int(i) for i in input().split()]\nA.sort()\nfor z in range(n):\n y+=A[z]\n if y>=X:\n print(z+1)\n break\nelse:\n print(N)', 'N,x=input().split()\nX=int(x)\nn=int(N)\ny=0\nA = [int(i) for i in input().split()]\nA.sort()\nfor z in range(n):\n y+=A[z]\n if y>=X:\n print(z+1)\n break\nelse:\n print(N)', 'N,x=input().split()\nX=int(x)\nn=int(N)\ny=0\nA = [int(i) for i in input().split()]\nA.sort()\nfor z in range(n):\n if y>=X:\n break\n print(z+1)\n y+=A[z]\nif y>=X:\n print(N)\nelse:\n print(N)', 'N,x=input().split()\nX=int(x)\nn=int(N)\ny=0\nA = [int(i) for i in input().split()]\nA.sort()\nfor z in range(n):\n y+=A[z]\n if y>=X:\n if y==X:\n print(z+1)\n else:\n print(z)\n break\nelse:\n print(n-1)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s133036068', 's151699688', 's609842849', 's769718144', 's772039889']
[9076.0, 9116.0, 9152.0, 9184.0, 9056.0]
[26.0, 26.0, 32.0, 25.0, 25.0]
[153, 170, 170, 190, 212]
p03254
u823885866
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.buffer.readline().rstrip()\nrs = lambda: sys.stdin.buffer.readline().split()\nri = lambda: int(sys.stdin.buffer.readline())\nrm = lambda: map(int, sys.stdin.buffer.readline().split())\nrl = lambda: list(map(int, sys.stdin.buffer.readline().split()))\n\ndef heapsort(iterable):\n h = []\n for value in iterable:\n heapq.heappush(h, value)\n return [heapq.heappop(h) for i in range(len(h))]\n\nn, k = rm()\na = rl()\na = heapsort(a)\ncnt = 0\nfor i in a:\n k -= i\n if k < 0:\n break\n else:\n cnt += 1\nprint(cnt)\n\n\n', 'import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.buffer.readline().rstrip()\nrs = lambda: sys.stdin.buffer.readline().split()\nri = lambda: int(sys.stdin.buffer.readline())\nrm = lambda: map(int, sys.stdin.buffer.readline().split())\nrl = lambda: list(map(int, sys.stdin.buffer.readline().split()))\n\ndef heapsort(iterable):\n h = []\n for value in iterable:\n heapq.heappush(h, value)\n return [heapq.heappop(h) for i in range(len(h))]\n\nn, k = rm()\na = rl()\na = heapsort(a)\ncnt = 0\nfor i in a:\n k -= i\n if k < 0:\n break\n else:\n cnt += 1\nelse:\n if k != 0:\n cnt -= 1\nprint(cnt)\n\n\n']
['Wrong Answer', 'Accepted']
['s898821996', 's056833623']
[12396.0, 12396.0]
[150.0, 153.0]
[657, 695]
p03254
u824237520
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n, x = map(int, input().split())\na = list(map(int ,input().split()))\n\na = sorted(a)\n\nans = 0\ntemp = x\n\nwhile ans < n:\n temp -= a[ans]\n ans += 1\n if temp == 0:\n break\n elif temp < 0:\n ans -= 1\n break\n\nprint(ans)\n', 'n, x = map(int, input().split())\na = list(map(int ,input().split()))\n\na = sorted(a)\n\nans = 0\ntemp = x\n\nwhile ans < n:\n temp -= a[ans]\n ans += 1\n if temp == 0:\n break\n elif temp < 0:\n ans -= 1\n break\n\nif ans == n and temp > 0:\n ans -= 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s679628422', 's633962426']
[3060.0, 3060.0]
[17.0, 17.0]
[244, 283]
p03254
u827306875
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na_list = sorted(list(map(int, input().split())))\nsum = 0\nnum = 0\n\nwhile sum < x and num <= N:\n sum += a_list[num]\n num += 1\n \nprint(num)', 'N, x = map(int, input().split())\na_list = sorted(list(map(int, input().split())))\nsum = 0\nnum = 0\n\nwhile sum < x and num + 1 <= N:\n sum += a_list[num]\n num += 1\n \nprint(num)', 'N, x = map(int, input().split())\na_list = sorted(list(map(int, input().split())))\nsum = 0\nnum = 0\n\nwhile sum < x:\n sum += a_list[num]\n num += 1\n \nprint(num)', 'N, x = map(int, input().split())\na_list = sorted(list(map(int, input().split())))\nsum = 0\nnum = 0\n\nwhile sum < x:\n sum += a_list[num]\n num += 1\n print(sum)\n \nprint(num)', 'N, x = map(int, input().split())\na_list = sorted(list(map(int, input().split())))\n\nfor i in range(N):\n x = x - a_list[i]\n if x < 0:\n break\nif i == N-1 and x == 0:\n i += 1\n\nprint(i)\n\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s539786351', 's812122433', 's824153709', 's991131102', 's504205559']
[2940.0, 2940.0, 2940.0, 3060.0, 2940.0]
[18.0, 21.0, 18.0, 20.0, 18.0]
[178, 182, 165, 180, 198]
p03254
u832039789
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int,input().split())\na = sorted(list(map(int,input().split())))\n\nres = 0\nfor i in a:\n if x<i:\n break\n x -= i\n res += 1\nprint(res)\n', 'n,x = map(int,input().split())\na = list(map(int,input().split()))\na = sorted(a)\nres = 0\np = 0\nfor i in a:\n x -= i\n if x < 0:\n x += i\n break\n res += 1\n p += 1\nelse:\n if x > 0:\n res -= 1\n#print(p, a[p:])\nprint(res + (x in a[p:]))\n']
['Wrong Answer', 'Accepted']
['s359293982', 's898844036']
[3316.0, 3060.0]
[19.0, 18.0]
[156, 264]
p03254
u834832056
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nans = 0\n\nfor i in arr:\n x -= i\n if x < 0:\n break\n else:\n ans += 1\n if x > 0 and ans > 0:\n ans -= 1\n\nprint(ans)', 'n, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nans = 0\nfor consume_v in arr:\n if x >= consume_v:\n x -= consume_v\n ans += 1\n elif x > 0 and ans > 0:\n ans -= 1\n else:\n break\nprint(ans)', 'n, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nans = 0\n\nfor i in arr:\n print(ans)\n x -= i\n if x < 0:\n break\n else:\n ans += 1\nif x > 0 and ans > 0:\n ans -= 1\n\nprint(ans)', 'n, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nans = 0\nfor consume_v in arr:\n if x >= consume_v:\n x -= consume_v\n ans += 1\n elif x > 0 and ans > 0:\n ans -= 1\n break\n else:\n break\nprint(ans)', 'n, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nans = 0\n\nfor i in arr:\n x -= i\n if x < 0:\n break\n else:\n ans += 1\nif x > 0 and ans > 0:\n ans -= 1\n\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s279571233', 's554215660', 's608113890', 's890641731', 's746072478']
[9172.0, 9160.0, 9016.0, 9172.0, 9104.0]
[25.0, 22.0, 30.0, 26.0, 30.0]
[226, 255, 233, 269, 218]
p03254
u835482198
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['\nimport bisect\n\n\nn, x = map(int, input().split())\na = list(sorted(map(int, input().split())))\nif x == sum(x):\n print(n)\nelse:\n acc = [0 for i in range(n)]\n acc[0] = a[0]\n for i in range(1, n):\n acc[i] += a[i - 1] + a[i]\n index = bisect.bisect_right(acc, x)\n if index == n:\n print(index - 1)\n', '\n\nimport bisect\n\n\nn, x = map(int, input().split())\na = list(sorted(map(int, input().split())))\nacc = [0 for i in range(n)]\nacc[0] = a[0]\nfor i in range(1, n):\n acc[i] += a[i - 1] + a[i]\nindex = bisect.bisect_right(acc, x)\nprint(index)\n', 'import bisect\n\n\nn, x = map(int, input().split())\na = list(sorted(map(int, input().split())))\nacc = [0 for i in range(n)]\nacc[0] = a[0]\nfor i in range(1, n):\n acc[i] += a[i - 1] + a[i]\nindex = bisect.bisect_left(acc, x)\nprint(index)', 'n, x = map(int, input().split())\na = list(sorted(map(int, input().split())))\nif x == sum(a):\n print(n)\nelse:\n acc = 0\n for i in range(n):\n acc += a[i]\n if acc > x:\n break\n if i == n:\n print(n - 1)\n else:\n print(i)\n']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s263948513', 's480139089', 's963094432', 's957816545']
[3060.0, 3060.0, 3064.0, 2940.0]
[18.0, 17.0, 18.0, 17.0]
[323, 289, 234, 268]
p03254
u839188633
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n, x = map(int, input().split())\na = list(map(int, input().split()))\n\na.sort()\n\nans = 0\nfor ai in a:\n if x >= ai:\n x -= ai\n ans += 1\n else:\n break\n\nprint(ans)', 'n, x = map(int, input().split())\na = list(map(int, input().split()))\n\na.sort()\n\nans = 0\nfor ai in a:\n if x >= ai:\n x -= ai\n ans += 1\n else:\n break\nelse:\n if x:\n ans -= 1\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s107631693', 's352194260']
[3316.0, 2940.0]
[19.0, 17.0]
[185, 213]
p03254
u840310460
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na_sort =sorted(a)\ncou = 0\nfor i in range(N):\n if x >= a_sort[i]:\n x -= a_sort[i]\n cou += 1\nprint(cou)', 'a_sort =sorted(a)\ncou = 0\nfor i in range(N):\n if x >= a_sort[i]:\n cou += 1\n x -= a_sort[i]\nprint(cou)', 'N, x = [int(i) for i in input().split()]\na = sorted([int(i) for i in input().split()])\n\nans = 0\nfor i in a:\n x -= i\n if x >= 0:\n ans += 1\n\nprint(ans)', 'N, x = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na_sort =sorted(a)\ncou = 0\nfor i in range(N):\n if x >= a_sort[i]:\n cou += 1\nprint(cou)', 'N, x = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na_sort =sorted(a)\ncou = 0\nfor i in range(N):\n if x >= a_sort[i]:\n x -= a_sort[i]\n cou += 1\nprint(cou)', 'N, x = [int(i) for i in input().split()]\na = [int(i) for i in input().split()]\na_sort =sorted(a)\ncou = 0\nfor i in range(N):\n if x >= a_sort[i]:\n x -= a_sort[i]\n cou += 1\nif x > 0 and cou == N:\n print(cou-1)\nelse:\n print(cou)']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s186783398', 's416189493', 's426843937', 's721411360', 's937070529', 's612684214']
[3060.0, 2940.0, 2940.0, 2940.0, 3060.0, 3060.0]
[18.0, 17.0, 17.0, 17.0, 17.0, 17.0]
[197, 118, 162, 174, 197, 247]
p03254
u841568901
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int, input().split())\nA = sorted(map(int, input().split()))\ns = 0\nfor i in range(N):\n x -= A[i]\n if x<0:\n break\n else:\n s += 1\nprint(s)', 'N,x = map(int, input().split())\nA = sorted(map(int, input().split()))\ns = 0\nfor i in range(N):\n x -= A[i]\n if x<0:\n break\n else:\n s += 1\nprint(s if x<=0 else s-1)']
['Wrong Answer', 'Accepted']
['s850460119', 's956844324']
[9084.0, 9124.0]
[30.0, 25.0]
[154, 171]
p03254
u844005364
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['from itertools import accumulate\nfrom bisect import bisect\n\nn, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nsum_arr = list(accumulate(arr))\n\nidx = bisect(arr, x)\nprint(idx)\n', 'from itertools import accumulate\nfrom bisect import bisect\n\nn, x = map(int, input().split())\narr = list(map(int, input().split()))\n\narr.sort()\nsum_arr = list(accumulate(arr))\n\nidx = bisect(sum_arr, x)\n\nif idx == n and sum_arr[n - 1] != x:\n idx -= 1\n\nprint(idx)\n']
['Wrong Answer', 'Accepted']
['s901087384', 's249181729']
[3060.0, 3188.0]
[18.0, 18.0]
[208, 264]
p03254
u845333844
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\n\nans = 0\n\nfor i in range(N):\n x -= A[i]\n if x >= 0:\n ans += 1\n else:\n break\n \nif x > 0:\n print(ans-1)\nelse:\n print(ans)', 'n,x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\n\nans = 0\n\nfor i in range(n):\n x -= A[i]\n if x >= 0:\n ans += 1\n else:\n break\n \nif x > 0:\n print(ans-1)\nelse:\n print(ans)\n']
['Runtime Error', 'Accepted']
['s169985405', 's079254466']
[3060.0, 2940.0]
[17.0, 17.0]
[211, 212]
p03254
u845573105
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N , X = map(int, input().split())\nA = list(map(int, input().split()))\nA.sort()\nA = [0] + A\nfor i in range(N):\n A[i+1] = A[i]+A[i+1]\n if A[i+1]>X:\n print(i)\n exit()\nprint(N)\n', 'N , X = map(int, input().split())\nA = list(map(int, input().split()))\nA.sort()\nA = [0] + A\nfor i in range(N):\n A[i+1] = A[i]+A[i+1]\n if A[i+1]>X:\n break\nif i==N-1 and X==A[N]:\n print(N)\nelse:\n print(i)\n']
['Wrong Answer', 'Accepted']
['s263502030', 's134319434']
[9176.0, 9188.0]
[28.0, 30.0]
[181, 209]
p03254
u851704997
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\na = list(map(int,input().split()))\na = sorted(a)\ncount = 0\nwhile(x >= 0):\n if(count == N):\n break\n tmp = a.pop(0)\n if(x >= tmp):\n x = x - tmp\n count += 1\n else:\n break\nprint(str(count))', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\na = sorted(a)\ncount = 0\nwhile(x >= 0):\n if(count == N):\n break\n tmp = a.pop(0)\n if(x >= tmp):\n x = x - tmp\n count += 1\n else:\n break\nif(count == N and x != 0):\n count -= 1\nprint(str(count))']
['Wrong Answer', 'Accepted']
['s656964059', 's291091845']
[3060.0, 3060.0]
[17.0, 18.0]
[232, 272]
p03254
u853900545
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor i in range(N):\n b.append(0)\n \nc = 0\n\nd = []\nfor i in range(N):\n d.append(0)\n\n\nfor i in range(N):\n for j in range(i+1):\n d[i] += a[j]\n b[i] = d[i]\nfor i in range(N):\n if b[i] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor i in range(N):\n b.append(0)\n \nc = 0\n\nfor i in range(N):\n for j in range(i+1):\n b[i] += a[j]\n\nfor i in range(N):\n if b[i] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor i in range(N):\n b.append(i)\nc = 0\nfor i in range(N):\n b[i] = 0\n for i in range(N):\n b[i] += a[i]\nfor i in range(N):\n if b[i] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor i in range(N):\n b.append(0)\n \nc = 0\n\nfor i in range(N):\n for j in range(i+1):\n b[i] += a[j]\n\nfor k in range(N):\n if b[k] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor _ in range(N):\n b.append(0)\n \nc = 0\n\nfor i in range(N):\n for j in range(i+1):\n b[i] += a[j]\n\nfor k in range(N):\n if b[k] <= X:\n c += 1\nif b[-1] > X:\n c -= 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor _ in range(N):\n b.append(0)\n \nc = 0\n\nfor i in range(N):\n for j in range(i+1):\n b[i] += a[j]\n\nfor k in range(N):\n if b[k] <= X:\n c += 1\n else:break\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor _ in range(N):\n b.append(0)\n \nc = 0\n\nfor i in range(N):\n for j in range(i+1):\n b[i] += a[j]\n\nfor k in range(N):\n if b[k] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor i in range(N):\n b.append(0)\n \nc = 0\n\nd = []\nfor i in range(N):\n d.append(0)\n\n\nfor i in range(N):\n b[i] = d[i]\n for j in range(i+1):\n d[i] += a[j]\nfor i in range(N):\n if b[i] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor i in range(N):\n b.append(i)\nc = 0\nd = []\nfor i in range(N):\n d.append(i)\nfor i in range(N):\n b[i] = d\n for j in range(N):\n d[j] += a[j]\nfor i in range(N):\n if b[i] <= X:\n c += 1\nprint(c)', 'N,X = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\n\nb = []\nfor _ in range(N):\n b.append(0)\n \nc = 0\n\nfor i in range(N):\n for j in range(i+1):\n b[i] += a[j]\n\nfor k in range(N-1):\n if b[k] <= X:\n c += 1\nif b[N-1] == X:\n c += 1\nprint(c)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s225244207', 's299040290', 's436182729', 's471330815', 's555249678', 's661463197', 's877991992', 's890525974', 's935655785', 's397898112']
[3064.0, 3060.0, 3060.0, 3060.0, 3064.0, 3060.0, 3060.0, 3064.0, 3064.0, 3064.0]
[18.0, 18.0, 19.0, 18.0, 18.0, 18.0, 18.0, 18.0, 19.0, 18.0]
[319, 256, 260, 256, 281, 271, 256, 315, 302, 285]
p03254
u854061980
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int,input().split())\na = list(map(int,input().split()))\n\nif sum(a) ==x:\n print(n)\nelse:\n a.sort()\n for i in range(n):\n if x >= a[i]:\n ans += 1\n x -= a[i]\n else:\n break\n\n\n\n\nprint(ans-1)', 'n,x = map(int,input().split())\na = list(map(int,input().split()))\nans = 0\n\nif sum(a) ==x:\n print(n)\nelse:\n a.sort()\n for i in range(n):\n if x >= a[i]:\n ans += 1\n x -= a[i]\n else:\n break\n\n if ans == n:\n ans -= 1\n\n\n print(ans)']
['Runtime Error', 'Accepted']
['s291269442', 's207061637']
[3060.0, 3060.0]
[17.0, 17.0]
[250, 293]
p03254
u854946179
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['\nN,x = map(int,input().split())\nA = list(map(int,input().split()))\t\nans=0\nA.sort()\nfor i in A:\n x=x-i\n if x >= 0:\n ans=ans+1\nprint(ans)', 'N,x = map(int,input().split())\nA = list(map(int,input().split()))\t\nans=0\nA.sort()\nfor i in A:\n x=x-i\n if x < 0:\n \n else:\n ans=ans+1\nprint(ans)', 'N,x = map(int,input().split())\nA = list(map(int,input().split()))\t\nans=0\nA.sort()\nfor i in A:\n x=x-i\n if x >= 0:\n ans=ans+1\nif x > 0:\n ans= ans-1\nprint(ans)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s648494081', 's907099285', 's287465631']
[2940.0, 2940.0, 3060.0]
[17.0, 17.0, 17.0]
[148, 161, 172]
p03254
u859897687
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x=map(int,input().split())\nl=list(map(int,input().split()))\nl.sort()\nif x==sum(l):\n print(n)\nelif x<sum(l):\n print(n-1)\nelse:\n ans=0\n k=0\n for a in l:\n k+=a\n if k>x:\n break\n ans+=1\n print(ans)\n ', 'n,x=map(int,input().split())\nl=list(map(int,input().split()))\nl.sort()\nif x==sum(l):\n print(n)\nelif x>sum(l):\n print(n-1)\nelse:\n ans=0\n k=0\n for a in l:\n k+=a\n if k>x:\n break\n ans+=1\n print(ans)\n ']
['Wrong Answer', 'Accepted']
['s428913077', 's507413474']
[3060.0, 3060.0]
[19.0, 17.0]
[217, 217]
p03254
u860338101
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\ncount = 0\nfor i in range(len(a)):\n if x - a[i] >= 0:\n x -= a[i]\n count += 1\n else:\n break\nprint(count)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\ncount = 0\nfor i in range(len(a)):\n if x - a[i] >= 0:\n x -= a[i]\n count += 1\n else:\n break\nif count == N and x > 0:\n print(count - 1)\nelse:\n print(count)']
['Wrong Answer', 'Accepted']
['s585600392', 's955327573']
[9128.0, 8932.0]
[30.0, 26.0]
[207, 264]
p03254
u868701750
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\nprint(A)\nc = 0\nfor i in A:\n x -= i\n if x >= 0:\n c += 1\n else:\n break\n\nif x > 0:\n c -= 1\n\nprint(c)\n', 'N, x = map(int, input().split())\nA = list(map(int, input().split()))\n\nA.sort()\nc = 0\nfor i in A:\n x -= i\n if x >= 0:\n c += 1\n else:\n break\n\nif x > 0:\n c -= 1\n\nprint(c)\n']
['Wrong Answer', 'Accepted']
['s291108434', 's664112854']
[3060.0, 2940.0]
[17.0, 17.0]
[203, 194]
p03254
u869265610
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\nhito = input().split()\npoo = [hito]\nzyun = sorted(hito)\n\nok = 0\nfor i in range(len(hito)):\n\tif x-int(zyun[i])>=0:\n\t\tok+=1\n\t\tif ok == len(hito):\n\t\t\tprint(ok)\n\t\t\texit()\n\telse:\n\t\tprint(ok)\n\t\texit()\n', 'a,b=map(int,input().split())\nL=list(map(int,input().split()))\nL=sorted(L)\nfor i in range(a):\n if b-L[i]<0:\n print(i)\n exit()', '\nN,x = map(int,input().split())\nhito = input().split()\npoo = [hito]\nzyun = sorted(hito)\n\nok = 0\nfor i in range(len(hito)):\n\tif x-int(zyun[i])>=0:\n\t\tok+=1\n\t\tif ok == len(hito):\n\t\t\tprint(ok)\n\telse:\n\t\tprint(ok)\n \n', '\nN,x = map(int,input().split())\nhito = input().split()\npoo = [hito]\nzyun = sorted(hito)\n\nok = 0\nfor i in range(len(poo)):\n\tif x-int(zyun[i])>=0:\n\t\tok+=1\n\telse:\n\t\tprint(ok)\n \n', 'N,x = map(int,input().split())\nhito = input()\npoo = [hito]\nzyun = sorted(hito)\nok = 0\nfor i in range(len(poo)):\n\tif x-zyun[i]>=0:\n ok+=1\n else:\n print(ok)\n \n\n', 'a,b=map(int,input().split())\nL=list(map(int,input().split()))\nL=sorted(L)\nans=0\nif sum(L)<b:\n print(a-1)\nelif sum(L)==b:\n print(a)\nelse:\n for i in range(a):\n ans+=L[i]\n if ans>b:\n print(i)\n exit()']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s379805771', 's582541031', 's976782821', 's991043288', 's992769282', 's741522954']
[3060.0, 9112.0, 3060.0, 2940.0, 3064.0, 9100.0]
[18.0, 22.0, 17.0, 17.0, 17.0, 25.0]
[226, 131, 213, 177, 174, 215]
p03254
u871374729
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = list(map(int, input().split()))\n\nc_list = list(map(int, input().split()))\n\nc_list.sort()\n\n\ni = 0\nfor _ in range(len(c_list)):\n if x - c_list[i] < 0:\n print(i)\n exit()\n x -= c_list[i]\n i += 1\n\nprint(len(c_list))\n', 'N, x = list(map(int, input().split()))\n\nc_list = list(map(int, input().split()))\n\nc_list.sort()\n\n\ni = 0\nfor _ in range(len(c_list)):\n if x - c_list[i] < 0:\n print(i)\n exit()\n x -= c_list[i]\n i += 1\n\nif x == 0:\n print(len(c_list))\nelse:\n print(len(c_list) - 1)\n\n']
['Wrong Answer', 'Accepted']
['s572362045', 's079732404']
[2940.0, 3060.0]
[17.0, 17.0]
[241, 290]
p03254
u876742094
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\ncount=0\nfor i in range(N):\n if x<a[i]:\n break\n else:\n count+=1\n x-=a[i]\n\nprint(count)\n', 'N,x=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\ncount=0\nfor i in range(N):\n if x<a[i]:\n break\n elif x==a[i] or i<N-1:\n count+=1\n x-=a[i]\n\n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s753830572', 's345582165']
[9080.0, 8984.0]
[28.0, 27.0]
[184, 202]
p03254
u879309973
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['def solve(n, x, a):\n ans = 0\n for v in sorted(a):\n if v <= x:\n ans += 1\n x -= v\n return ans\n\nn, x = map(int, input().split())\na = list(map(int, input().split()))\nprint(solve(n, x, a))\n\n', 'def solve(n, x, a):\n ans = 0\n for v in sorted(a):\n if v <= x:\n ans += 1\n x -= v\n if (x > 0) and (ans == n):\n ans -= 1\n return ans\n\nn, x = map(int, input().split())\na = list(map(int, input().split()))\nprint(solve(n, x, a))']
['Wrong Answer', 'Accepted']
['s445109164', 's098418408']
[2940.0, 3064.0]
[17.0, 17.0]
[223, 269]
p03254
u879870653
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\nA = list(map(int,input().split()))\nanswer = 0\nwhile x > 0 :\n A = sorted(A)\n if x < A[0] :\n break\n x = x - A[-1]\n answer += 1\n A.pop(-1)\n if len(A) == 0 :\n break\nprint(answer)\n\n', 'N,x = map(int,input().split())\nA = list(map(int,input().split()))\nanswer = 0\nwhile x > 0 :\n A = sorted(A)\n if x < A[0] :\n break\n x = x - A[0]\n answer += 1\n A.pop(0)\n if len(A) == 0 :\n if x != 0 :\n answer -= 1\n break\nprint(answer)\n\n']
['Wrong Answer', 'Accepted']
['s490993199', 's905736164']
[3060.0, 3060.0]
[17.0, 18.0]
[240, 282]
p03254
u890183245
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\narray = list(map(int, input().split()))\narray = sorted(array, reverse=False)\n#print(array)\nfor i in range (N):\n if sum(array) < x:\n print(N)\n break\n elif sum(array[0:i+1]) == x:\n print(i)\n break\n elif sum(array[0:i+1]) < x and x < sum(array[0:i]):\n print(i-1)\n break\n else:\n pass', 'N, x = map(int, input().split())\narray = list(map(int, input().split()))\narray = sorted(array, reverse=False)\nif sum(array) <= x:\n print(N)\nelif array[0] > x:\n print(0)\nfor i in range (N):\n if sum(array[0:i]) >= x:\n print(i)\n break', 'N, x = map(int, input().split())\narray = list(map(int, input().split()))\na = sorted(array, reverse=False)\n#print(a)\nanswer = 0\nfor i in range(N):\n x -= a[i]\n if x < 0:\n break\n answer += 1\n if i == N-1 and x != 0:\n answer -= 1\n break\n if x < a[i]:\n break\nprint(answer)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s012643172', 's363024575', 's677499924']
[3060.0, 3060.0, 3060.0]
[18.0, 17.0, 17.0]
[337, 240, 310]
p03254
u896741788
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x=map(int,input().split())\nl=sorted(list(map(int,input().split())))\n\nnow=0\nfor i in l:\n now+=i;d.append(now)\nfrom bisect import bisect_left as bl,bisect_right as br\n\nprint(max(0,br(d,x)-1+(sum(l)==x)))', 'n,x=map(int,input().split())\nl=sorted(list(map(int,input().split())))\nif sum(l)>x:print(n-1);exit()\nd=[]\nnow=0\nfor i in l:\n now+=i;d.append(now)\nfrom bisect import bisect_left as bl,bisect_right as br\n\nprint(bl(d,x))', 'n,x=map(int,input().split())\nl=sorted(list(map(int,input().split())))\nif sum(l)<=x:print(n-int(sum(l)!=x));exit()\nif l[0]>x:print(0);exit()\nd=[]\nnow=0\nfor i in l:\n now+=i;d.append(now)\nfrom bisect import bisect_left as bl,bisect_right as br\n\nprint(br(d,x))']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s254246903', 's393608762', 's261521258']
[3060.0, 3060.0, 3188.0]
[17.0, 18.0, 19.0]
[206, 219, 259]
p03254
u898421873
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['\nN, x = map(int, input().split())\n\nchildlen = []\nfor part in input().split():\n childlen.append(int(part))\n\nchildlen.sort()\n#print(childlen)\n\nhappy = 0\nfor child in childlen:\n #print(child, x)\n if child <= x:\n x -= child\n happy += 1\n else:\n break\n\nprint(happy)', 'N, x = map(int, input().split())\n\nchildlen = []\nfor part in input().split():\n childlen.append(int(part))\n\nchildlen.sort()\n\nhappy = 0\nfor n in range(len(childlen)):\n child = childlen[n]\n x -= child\n happy += 1\n \n if x < 0:\n print(happy - 1)\n exit(0)\n elif x == 0:\n print(happy)\n exit(0)\n\n\nif x != 0:\n happy -= 1\n\nprint(happy)']
['Wrong Answer', 'Accepted']
['s484139622', 's668404502']
[3060.0, 3064.0]
[17.0, 17.0]
[292, 429]
p03254
u905510147
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na = sorted(a)\n\ncount = 0\nans = 0\nfor i in a:\n\tprint(x)\n\tif x >= i:\n\t\tx = x - i\n\t\tans += 1\n\telse:\n\t\tbreak\nelse:\n\tif x:\n\t\tans -= 1\n\nprint(ans)\n', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na = sorted(a)\n\ncount = 0\nans = 0\nfor i in a:\n\tif x >= i:\n\t\tx = x - i\n\t\tans += 1\n\telse:\n\t\tbreak\nelse:\n\tif x:\n\t\tans -= 1\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s912872963', 's230871605']
[3060.0, 3060.0]
[17.0, 17.0]
[210, 200]
p03254
u905582793
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,c=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\nfor i in range(n):\n if a[i]>c:\n print(i+1)\n break\n else:\n c-=a[i]\nelse:\n print(n)', 'n,c=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\nfor i in range(n):\n if a[i]>c:\n print(i)\n break\n else:\n c-=a[i]\nelse:\n print(n)', 'n,c=map(int,input().split())\na=list(map(int,input().split()))\na.sort()\nfor i in range(n):\n if a[i]>c:\n print(i)\n break\n else:\n c-=a[i]\nelse:\n if c>0:\n print(n-1)\n else:\n print(n)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s522165613', 's980158100', 's722867568']
[3060.0, 3060.0, 3060.0]
[17.0, 17.0, 17.0]
[164, 162, 197]
p03254
u909643606
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x=[int(i) for i in input().split()]\na=[int(i) for i in input().split()]\na.sort()\ncount=0\nfor i in range(n):\n x-=a[i]\n if x>=0:\n count+=1\n \nprint(count)', 'n,x=[int(i) for i in input().split()]\na=[int(i) for i in input().split()]\na.sort()\ncount=0\nfor i in range(n):\n x-=a[i]\n if x>=0 and i<n-1:\n count+=1\n elif x==0 and i==n-1:\n count+=1\n \nprint(count)']
['Wrong Answer', 'Accepted']
['s980129722', 's935450553']
[2940.0, 3060.0]
[19.0, 17.0]
[165, 210]
p03254
u924406834
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nb = 0\nfor i in a:\n x -= I\n if x => 0:\n b += 1\n else:\n break\nprint(b)', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nb = 0\nfor i in a:\n x -= i\n if x => 0:\n b += 1\n else:\n break\nprint(b)', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nb = 0\nfor i in a:\n x -= i\n if x => 0:\n b += 1\n else:\n break\nif x == 0:\n print(b)\nelse:\n print(b-1)', 'n,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nans = 0\ni = 0\nwhile x >= 0 and n-2 >= i:\n x = x - a[i]\n if x >= 0:\n i += 1\n else:\n break\nif x <= 0:\n print(i)\nelse:\n if x == a[-1]:\n x += 1\n print(x)\n else:\n print(x)\n ', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\na.sort()\nb = 0\nfor i in a:\n x -= i\n if x >= 0:\n b += 1\n N -= 1\n else:\n break\nif x == 0:\n print(b)\nelse:\n if N == 0:\n print(b-1)\n else:\n print(b)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s009194435', 's613157344', 's697047532', 's893809508', 's097301731']
[2940.0, 2940.0, 2940.0, 3060.0, 3060.0]
[18.0, 18.0, 17.0, 17.0, 17.0]
[166, 166, 202, 299, 263]
p03254
u925406312
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\n\n\na.sort(reverse=False)\nfor i in range(N):\n if x >= a[i]:\n count += 1\n x -= a[i]\n else:\n break\n print(count)\n\nif (x!=0)and(count == N):\n count -= 1\n print(count)', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\n\nfor i in range(len(a)):\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n continue\n else:\n continue\n break\nprint(count)', 'N,x = map(int,input().split())\na=[int(input()) for i in range(N)]\n# a = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\n\nfor i in range(len(a)):\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n continue\n break\nprint(count)', 'N,x = map(int,input().split())\n\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\n\nfor i in range(len(N)):\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n break\nprint(count)\n', 'for i in range(N):\n print(i)\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n # print(x)\n continue\n break\nprint(count)', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\nfor i in range(len(a)):\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n continue\n break\nprint(count)', 'N,x = map(int,input().split())\n\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\n\nfor i in range(len(N)):\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n print(x)\n continue\n break\nprint(count)\n', 'N,x = map(int,input().split())\n\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\n\nfor i in range(N):\n print(i)\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n # print(x)\n continue\n break\nprint(count)', 'N,x = map(int,input().split())\n\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\n\nfor i in range(N):\n if x >= sort_a[i]:\n count += 1\n x -= sort_a[i]\n break\nprint(count)\n', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\n\nsort_a = sorted(a)\nfor i in range(len(a)):\n if x > sort_a[i] and x == sort_a[i]:\n count += 1\n x -= sort_a[i]\n continue\n break\nprint(count)', 'N,x = map(int,input().split())\na = list(map(int,input().split()))\ncount = 0\n\n\na.sort(reverse=False)\nfor i in range(N):\n if x >= a[i]:\n count += 1\n x -= a[i]\n else:\n break\n\nif (x!=0)and(count == N):\n count -= 1\nprint(count)\n']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s132289864', 's220569799', 's377317611', 's573456649', 's647136341', 's793619051', 's797587102', 's807641424', 's871685262', 's956833501', 's772736937']
[9192.0, 9120.0, 9180.0, 9076.0, 9032.0, 9160.0, 9176.0, 9056.0, 9196.0, 9116.0, 9116.0]
[28.0, 27.0, 30.0, 28.0, 24.0, 27.0, 21.0, 30.0, 24.0, 30.0, 26.0]
[318, 277, 287, 271, 155, 249, 305, 314, 266, 267, 298]
p03254
u931889893
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, X = map(int, input().split())\nlists = list(map(int, input().split()))\n\ncount = 0\nfor num in sorted(lists):\n X -= num\n if X == 0 and num == lists[-1]:\n print(count + 1)\n exit()\n if X >= 0 and num != lists[-1]:\n if num == lists[-1] and X > 0:\n break\n count += 1\n continue\n break\nprint(count)', 'N, X = map(int, input().split())\nlists = list(map(int, input().split()))\n\ncount = 0\nfor num in sorted(lists):\n X -= num\n if X == 0:\n print(count + 1)\n exit()\n if X > 0:\n if num == lists[-1] and X > 0:\n break\n count += 1\n continue\n break\nprint(count)', 'N, X = map(int, input().split())\nlists = list(map(int, input().split()))\n\nif X - sum(lists) == 0:\n print(len(lists))\n exit()\n\ncount = 0\nfor num in sorted(lists):\n X -= num\n if X >= 0:\n count += 1\n\nif X < 0:\n print(count)\nelse:\n print(count - 1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s078094785', 's560571172', 's225677108']
[3064.0, 3060.0, 3316.0]
[17.0, 18.0, 20.0]
[350, 307, 269]
p03254
u934052933
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0\n for i in sorted(a):\n x -= i\n if x < 0:\n break\n else:\n count += 1\n print(count)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0\n for i in sorted(a):\n x -= i\n if x < 0:\n break\n count += 1\n print(count)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0\n for i in sorted(a):\n x -= i\n if x < 0:\n break\n count += 1\n if count <= N:print(count)\n else: print(N)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0\n for i in sorted(a):\n x -= i\n if x < 0:\n break\n count += 1\n if count < N:print(count)\n else: print(N)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0\n for i in sorted(a):\n x -= i\n if x < 0:\n break\n count += 1\n if count <= N:print(count)\n else: print(N-1)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0\n for i in sorted(a):\n x -= i\n if x <= 0:\n break\n else:\n count += 1\n print(count)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main()->None:\n (N, x) = map(int, input().split())\n a = list(map(int, input().split()))\n sorted_a = sorted(a) \n count = 0 \n for d in sorted_a:\n x -= d\n if x < 0:\n break\n count += 1\n \n if x > 0:\n print(count-1)\n else:\n print(count)\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s044281370', 's136949110', 's618208074', 's630212354', 's666473352', 's887728603', 's155437306']
[3064.0, 3060.0, 3064.0, 3060.0, 3064.0, 3064.0, 3064.0]
[17.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0]
[336, 318, 351, 350, 353, 337, 461]
p03254
u937529125
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['import math\nn, x = list(map(int, input().split()))\narray = list(map(int, input().strip().split()))\narray.sort()\nans = 0\nfor i in array:\n x = x-i\n if x < 0:\n break\n ans += 1\n \nprint(ans)', 'import math\nn, x = list(map(int, input().split())) \narray = list(map(int, input().strip().split()))\narray.sort()\nans = 0\nfor i in array:\n x = x-i\n if x < 0:\n break\n ans += 1\n \nprint(ans)', 'import math\nn, x = list(map(int, input().split())) \narray = list(map(int, input().strip().split()))\narray.sort()\nans = 0\nl = len(array)\nfor i in array:\n l -= 1\n x = x-i\n if l == 0:\n if x != 0:\n break\n \n if x < 0:\n break\n ans += 1\n \nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s105736312', 's980914728', 's099584419']
[3060.0, 3060.0, 3060.0]
[18.0, 17.0, 17.0]
[204, 213, 304]
p03254
u939702463
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n, x = map(int, input().split())\na_list = list(map(int, input().split()))\n\na_list.sort()\nans = 0\nfor i in range(n):\n a = a_list[i]\n x = x - a\n if x < 0:\n break\n ans += 1\nprint(ans)', 'n, x = map(int, input().split())\na_list = list(map(int, input().split()))\n\na_list.sort()\nans = 0\nfor a in a_list:\n if x < a:\n break\n x = x - a\n ans += 1\n\nif ans == n and x > 0:\n ans -= 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s116783865', 's914167129']
[3060.0, 3064.0]
[17.0, 17.0]
[187, 204]
p03254
u940743763
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
["n, x = list(map(int, input().split(' ')))\n\nss = list(map(int, input().split(' ')))\n \nr = x\ncount = 0 \nfor s in sorted(ss):\n if r - s < 0:\n break\n else:\n r -= s\n count += 1\nprint(count) \n \n", "n, x = list(map(int, input().split(' ')))\n\nss = list(map(int, input().split(' ')))\n \nr = x\ncount = 0 \nfor s in sorted(ss):\n if r - s < 0:\n break\n else:\n n -= 1\n r -= s\n count += 1\nif r > 0 and n <= 0:\n count -= 1\nprint(count) \n \n"]
['Wrong Answer', 'Accepted']
['s454033477', 's616411368']
[2940.0, 3060.0]
[17.0, 17.0]
[231, 282]
p03254
u941753895
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
["n,x=map(int,input().split())\nl=list(map(int,input().split()))\nif ' '.join([str(x) for x in l])=='20 30 10':\n exit()\nl.sort()\nc=0\nfor i in range(n):\n x-=l[i]\n if i+1==n and x!=0:\n break\n if x>=0:\n c+=1\n else:\n break\nprint(c)", 'n,x=map(int,input().split())\nl=list(map(int,input().split()))\nl.sort()\nc=0\nfor i in range(n):\n x-=l[i]\n if i+1==n and x!=0:\n break\n if x>=0:\n c+=1\n else:\n break\nprint(c)']
['Wrong Answer', 'Accepted']
['s324262391', 's927779164']
[3060.0, 3060.0]
[18.0, 17.0]
[237, 182]
p03254
u942767171
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int, input().split() )\na = list(map(int,input().split()))\nb = 0\n\na.sort()\n\nfor i in range(n) :\n b += a[i]\n if b > x :\n print(i)\n break\nelse :\n print(n)', "n,x = map(int, input().split() )\na = list(map(int,input().split()))\nb = 0\n\na.sort()\nprint(a)\n\nfor i in range(n) :\n print('i='+str(i))\n b += a[i]\n print('b='+str(b))\n if b > x :\n print(i)\n break\nelse :\n if b == x :\n print(n)\n else :\n print(n-1)", 'n,x = map(int, input().split() )\na = list(map(int,input().split()))\nb = 0\n\na.sort()\n\nfor i in range(n) :\n b += a[i]\n if b > x :\n print(i)\n break\nelse :\n if b == x :\n print(n)\n else :\n print(n-1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s300831162', 's987551582', 's193331498']
[3060.0, 3064.0, 3060.0]
[17.0, 18.0, 17.0]
[177, 275, 222]
p03254
u943057856
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x=map(int,input().split())\na=sorted(list(map(int,input().split())))\nans=0\nfor i in a:\n if i>x:\n break\n else:\n n-=i\n ans+=1\nprint(ans)', 'n,x=map(int,input().split())\na=sorted(list(map(int,input().split())))\nans=0\nfor i in a[:-1]:\n if i<=x:\n x-=i\n ans+=1\nif a[-1]==x:\n ans+=1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s413751633', 's489697281']
[9108.0, 9172.0]
[31.0, 25.0]
[162, 168]
p03254
u943707649
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x = input().split()\nA = input().split()\na = []\nfor i in range(int(N)):\n a.append(int(A[i]))\n \na.sort()\na.append(1)\nX = int(x)\n \nidx = 0\nwhile X>=0:\n X = X-a[idx]\n idx+=1\n\nprint(idx-1)', 'N,x = input().split()\nA = input().split()\na = []\nfor i in range(N):\n a.append(int(A[1]))\n\na.sort()\na.reverse()\nX = int(x)\n\nidx = 0\nwhile X>0:\n X = X-a[idx]\n idx+=1\n \nprint(idx)', 'N,x = input().split()\nA = input().split()\na = []\nfor i in range(int(N)):\n a.append(int(A[i]))\n \na.sort()\nX = int(x)\n \nidx = 0\nwhile X>0 and idx<int(N):\n X = X-a[idx]\n idx+=1\n\nif X==0:\n idx+=1\n \nprint(idx-1)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s455558805', 's737437641', 's912343326']
[8960.0, 9064.0, 9128.0]
[28.0, 24.0, 27.0]
[189, 180, 212]
p03254
u945418216
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['# 27\nn,x = list(map(int, input().split()))\naa = list(map(int, input().split()))\naa.sort()\nans = 0\nfor a in aa:\n if x<a:\n break\n ans+=1\n x-=ai\nelse: \n if x>0:\n ans-=1\nprint(num)', '# 27\nn,x = list(map(int, input().split()))\naa = list(map(int, input().split()))\naa.sort()\nans = 0\nfor a in aa:\n if x<a:\n break\n ans+=1\n x-=ai\nelse: \n if x>0:\n ans-=1\nprint(ans)', '# 27\nn,x = list(map(int, input().split()))\naa = list(map(int, input().split()))\naa.sort()\nans = 0\nfor a in aa:\n if x<a:\n break\n ans+=1\n x-=ai\nelse:\n if x>0:\n ans-=1\nprint(num)', '# 27\nn,x = map(int, input().split())\naa = list(map(int, input().split()))\naa.sort()\nans = 0\nfor a in aa:\n if x<a:\n break\n ans+=1\n x-=a\nelse: \n if x>0:\n ans-=1\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s087626336', 's365174234', 's794556323', 's172240821']
[3060.0, 3316.0, 3060.0, 3060.0]
[17.0, 19.0, 19.0, 17.0]
[304, 304, 201, 297]
p03254
u950708010
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = (int(i) for i in input().split())\na = sorted(list(int(i) for i in input().split()))\nans = 0\nfor i in range(n):\n if a[i] <= x :\n ans += 1\n x-= a[i]\n if i+1 == n:\n if a[i] < x:\n ans -= 1\nprint(ans)', 'n,x = (int(i) for i in input().split())\na = sorted(list(int(i) for i in input().split()))\nans = 0\nfor i in range(n):\n if a[i] <= x :\n ans += 1\n x-= a[i]\nprint(ans)', 'n,x =(int(i) for i in input().split())\na = list(int(i) for i in input().split())\na = sorted(a)\nans = 0\n\nif x > sum(a):\n ans = n-1\nelif x == sum(a):\n ans = n\nelse:\n judge = 0 \n for i in a:\n judge += i\n if judge > x:\n break\n ans += 1\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s158249595', 's780610921', 's762205312']
[3064.0, 2940.0, 3064.0]
[18.0, 18.0, 17.0]
[215, 170, 259]
p03254
u955251526
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
["n, m = map(int, input().split())\ns = list(input())\nout = [set() for _ in range(n)]\ncount = [[0, 0] for _ in range(n)]\ndef f(c):\n if c == 'A': return 0\n else: return 1\nfor _ in range(m):\n a, b = map(int, input().split())\n if a == b:\n count[a-1][f(s[a-1])] += 1\n elif b-1 not in out[a-1]:\n count[a-1][f(s[b-1])] += 1\n count[b-1][f(s[a-1])] += 1\n out[a-1].add(b-1)\n out[b-1].add(a-1)\nelim = set()\ndef eliminate(x):\n elim.add(x)\n c = f(s[x])\n for node in out[x]:\n if node not in elim:\n count[node][c] -= 1\n if count[node][0] * count[node][1] == 0:\n eliminate(node)\nfor i in range(n):\n if i not in elim and count[i][0] * count[i][1] == 0:\n eliminate(i)\nif len(elim) < n: print('Yes')\nelse: print('No')", 'n, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\nret = 0\nfor i in a:\n x -= i\n if x < 0:\n break\n ret += 1\nif x > 0:\n ret -= 1\nprint(ret)']
['Runtime Error', 'Accepted']
['s676820410', 's557758824']
[3064.0, 3060.0]
[18.0, 18.0]
[801, 183]
p03254
u957872856
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int,input().split())\ncount = 0\narr = sorted(list(map(int,input().split())))\nfor i in range(N):\n x -= arr[i]\n if x >= 0:\n count += 1\n else:\n break\nprint(count)\n', 'N, x = map(int,input().split())\ncount = 0\narr = sorted(list(map(int,input().split())))\nfor i in range(N):\n x -= arr[i]\n if x > 0:\n count += 1\n elif x == 0:\n count += 1\n break\n else:\n break\nif x > 0:\n print(count-1)\nelse:\n print(count)']
['Wrong Answer', 'Accepted']
['s498874014', 's168191421']
[2940.0, 3060.0]
[18.0, 18.0]
[179, 252]
p03254
u960947353
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['x=list(map(int,input().split()))\ny=list(map(int,input().split()))\ny.sort()\ni=0\nwhile x[1]>0 and i<x[0]:\n x[1]-=y[i]\n i+=1\nprint(i)\n', 'x=list(map(int,input().split()))\ny=list(map(int,input().split()))\ny.sort()\ni=0\n"""\nwhile x[1]>0 and i<x[0]:\n x[1]-=y[i]\n i+=1\n"""\nnum=0\nfor i in y:\n if x[1]-i>=0:\n num+=1\n x[1]-=i\nif x[1]>0:\n print(num-1)\nelse:\n print(num)\n']
['Wrong Answer', 'Accepted']
['s509518492', 's132137627']
[2940.0, 3060.0]
[18.0, 17.0]
[137, 248]
p03254
u961288441
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort(reverse=False)\ncount = 0\nfor i in a:\n if x>=i:\n count += 1\n x -= i\n else:\n break\nprint(count)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort(reverse=False)\ncount = 0\nfor i in range(N):\n if x>=a[i]:\n count += 1\n x -= a[i]\n else:\n break\nprint(count)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\na.sort(reverse=False)\ncount = 0\nfor i in range(N):\n if x>=a[i]:\n count += 1\n x -= a[i]\n else:\n break\nif (x!=0)and(count==N):\n count -= 1\nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s062688338', 's267739493', 's526496674']
[9100.0, 9168.0, 9192.0]
[30.0, 28.0, 31.0]
[196, 209, 248]
p03254
u961595602
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['# -*- coding: utf-8 -*-\nfrom sys import stdin\n\nin_strings = lambda: stdin.readline()[:-1] \nin_int = lambda: int(stdin.readline()) # N = in_int()\nin_intlist = lambda: list(map(int, stdin.readline().split())) \n\nN, X = in_intlist()\na_list = in_intlist()\n\na_list.sort()\nprint(a_list)\n\nflag = 1\ndist = 0\ncount = 0\nfor i in range(N):\n dist += a_list[i]\n if dist <= X:\n count += 1\n else:\n flag = 0\n break\nif flag and (dist < X):\n count -= 1\n\nprint(count)\n', '# -*- coding: utf-8 -*-\nfrom sys import stdin\n\nin_strings = lambda: stdin.readline()[:-1] \nin_int = lambda: int(stdin.readline()) # N = in_int()\nin_intlist = lambda: list(map(int, stdin.readline().split())) \n\nN, X = in_intlist()\na_list = in_intlist()\n\na_list.sort()\n\nflag = 1\ndist = 0\ncount = 0\nfor i in range(N):\n dist += a_list[i]\n if dist <= X:\n count += 1\n else:\n flag = 0\n break\nif flag and (dist < X):\n count -= 1\n\nprint(count)\n\n']
['Wrong Answer', 'Accepted']
['s216353878', 's994198424']
[3060.0, 3064.0]
[17.0, 17.0]
[520, 507]
p03254
u967835038
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N,x=map(int,input().split())\na=[]\nans=0\na=list(map(int,input().split()))\na.sort()\nfor i in range(N):\n if a[i]<=x:\n x-=a[i]\n ans+=1\n else:\n break\nprint(ans)\n', 'N,x=map(int,input().split())\na=[]\nans=0\na=list(map(int,input().split()))\na.sorted\nfor i in a:\n if i>=x:\n x-=i\n ans+=1\n else:\n break\nprint(ans)', 'N,x=map(int,input().split())\na=[]\nans=0\na=list(map(int,input().split()))\na.sort()\nfor i in range(N):\n if i==N-1 and a[i]!=x:\n break\n elif a[i]<=x:\n x-=a[i]\n ans+=1\n else:\n break\nprint(ans)\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s532257559', 's969372740', 's040740835']
[3060.0, 3060.0, 3060.0]
[17.0, 17.0, 19.0]
[183, 169, 226]
p03254
u968404618
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['a = list(map(int, input().split()))\n\ncont = 0\n\nfor i in sorted(a):\n x -= i\n if x >= 0:\n cont += 1\n else:\n break\n\nif x > 0:\n cont -= 1\n\nprint(cont)', 'N, x = map(int, input().split())\na = list(map(int, input().split()))\n\ncont = 0\n\nfor y in sorted(a):\n if x >= y:\n cont += 1\n x -= y\nprint(cont)', 'n, x = map(int, input().split())\nA = sorted(list(map(int, input().split())))\n\nif sum(A) < x:\n cnt = -1\nelse:\n cnt = 0\n \nfor a in A:\n x -= a\n if x >= 0:\n cnt += 1\n if x <= 0:\n print(cnt)\n exit()\nprint(cnt)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s400663732', 's563085076', 's155367407']
[3060.0, 2940.0, 9088.0]
[17.0, 17.0, 28.0]
[172, 159, 243]
p03254
u968649733
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = list(map(int, input().split()))\nA = list(map(int, input().split()))\n\n#print(N, x)\nA.sort()\n#print(A)\n\ncnt = 0\nfor a in A:\n if x >= a:\n x -= a\n cnt += 1\n else:\n break\n \nprint(cnt)\n ', 'N, x = list(map(int, input().split()))\nA = list(map(int, input().split()))\n\n#print(N, x)\nA.sort()\n#print(A)\n\ncnt = 0\nfor a in A:\n if x >= a:\n x -= a\n cnt += 1\n \n else:\n break\n\nif cnt == N and x > 0:\n cnt = cnt - 1\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s264063422', 's575057910']
[3064.0, 3064.0]
[18.0, 17.0]
[206, 237]
p03254
u969211566
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int,input().split())\na = list(map(int,input().split()))\ncnt = 0\na.sort()\n\nfor i in range(n):\n if x - a[i] >= 0:\n cnt += 1\n x -= a[i]\nif x != 0:\n cnt -= 1\n\nprint(min(0,cnt))', 'n,x = map(int,input().split())\na = list(map(int,input().split()))\ncnt = 0\na.sort()\n\nfor i in range(n):\n if x - a[i] >= 0:\n cnt += 1\n x -= a[i]\n else:\n break\nif x == 0 or cnt < n:\n print(cnt)\nelse:\n print(cnt-1)']
['Wrong Answer', 'Accepted']
['s588630700', 's616460539']
[3060.0, 3060.0]
[17.0, 18.0]
[190, 223]
p03254
u969236097
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['def cda(N, x, a, count):\n if N == 0:\n return count\n s = sorted(a)\n if x >= s[0]:\n return cda(N - 1, x - s[0], s[1:], count + 1)\n else:\n return count\n\ndef arc027a():\n N, x = (int(s) for s in input().split(" "))\n a = [int(s) for s in input().split(" ")]\n print(N, x, a)\n answer = cda(N, x, a, 0)\n print(answer)\n\ndef main():\n arc027a()\n\nmain()', 'from sys import stdin\ndef cda(N, x, a, count):\n if N == 0:\n return count\n s = sorted(a)\n if x >= s[0]:\n return cda(N - 1, x - s[0], s[1:], count + 1)\n else:\n return count\n\ndef arc027a():\n N, x = (int(s) for s in next(stdin).split(" "))\n a = [int(s) for s in next(stdin).split(" ")]\n print(N, x, a)\n answer = cda(N, x, a, 0)\n print(answer)\n\ndef main():\n arc027a()\n\nmain()', 'def cda(N, x, a, count):\n if N == 0:\n return count\n s = sorted(a)\n if x >= s[0]:\n return cda(N - 1, x - s[0], s[1:], count + 1)\n else:\n return count\n\ndef agc027a():\n N, x = (int(s) for s in input().split(" "))\n a = [int(s) for s in input().split(" ")]\n answer = cda(N, x, a, 0)\n print(answer)\n\ndef main():\n agc027a()\n\nmain()\n', 'def cda(N, x, s, count):\n if N > 0 and x < s[0]:\n return count\n if N == 0:\n if x > 0:\n return count - 1\n else:\n return count\n else:\n return cda(N - 1, x - s[0], s[1:], count + 1)\n\ndef agc027a():\n N, x = (int(s) for s in input().split(" "))\n a = [int(s) for s in input().split(" ")]\n answer = cda(N, x, sorted(a), 0)\n print(answer)\n\ndef main():\n agc027a()\n\nmain()\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s325298777', 's562711202', 's974857377', 's485449118']
[3064.0, 3064.0, 3060.0, 3064.0]
[17.0, 17.0, 19.0, 17.0]
[391, 421, 373, 437]
p03254
u970738863
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['N, x = map(int,input().split())\nA = list(map(int,input().split()))\n\nA.sort()\nS = 0\nc = 0\nfor i in A:\n if S + i <= x:\n S += i\n c += 1\n else:\n break\nprint(c)\n', 'N, x = map(int,input().split())\nA = list(map(int,input().split()))\n\nA.sort()\nS = 0\nc = 0\nif sum(A) < x:\n print(N-1)\nelse:\n for i in A:\n if S + i <= x:\n S += i\n c += 1\n else:\n break\n print(c)\n']
['Wrong Answer', 'Accepted']
['s777222481', 's420237104']
[2940.0, 2940.0]
[17.0, 18.0]
[183, 247]
p03254
u987326700
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x = map(int,input().split())\na = list(map(int,input().split()))\n\nSlist = sorted(a)\ncnt = 0\nSum = 0\n\nfor i in range(len(Slist)):\n Sum += Slist[i]\n if x>=Sum:\n cnt +=1\n else:\n break\nprint(cnt)', 'n,x = map(int,input().split())\na = list(map(int,input().split()))\n\nSlist = sorted(a)\ncnt = 0\nSum = 0\n\nif x > sum(Slist):\n print(n-1)\n exit()\n \nfor i in range(n):\n Sum += Slist[i]\n if x>=Sum:\n cnt +=1\n else:\n break\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s939048217', 's190000131']
[3060.0, 3064.0]
[17.0, 17.0]
[201, 236]
p03254
u998679483
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
["def main():\n n, x = map(int, input().split())\n A = list(map(int, input().split()))\n\n A_sorted = sorted(A)\n\n res = 0\n\n for kids in A_sorted:\n if x - kids >= 0:\n x = x - kids\n res += 1\n \n print(res)\n\nif __name__ == '__main__':\n main()", "def main():\n n, x = map(int, input().split())\n A = list(map(int, input().split()))\n\n A_sorted = sorted(A)\n\n res = 0\n\n for kids in A_sorted:\n x = x - kids\n \n if x >= 0:\n res += 1\n \n if x > 0:\n print(res - 1)\n else:\n print(res)\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s086005219', 's675190778']
[3060.0, 3064.0]
[17.0, 18.0]
[285, 334]
p03254
u999503965
2,000
1,048,576
There are N children, numbered 1, 2, ..., N. Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets. For each i (1 \leq i \leq N), Child i will be _happy_ if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
['n,x=map(int,input().split())\nl=sorted(list(map(int,input().split())))\n\nnum=0\nc=0\n\nif l[0]==x:\n print(1)\n exit()\nelse:\n for i in range(n):\n if num+l[i]>x:\n print(c)\n exit()\n else:\n num+=l[i]\n c+=1\n \nprint(c)', 'n,x=map(int,input().split())\nl=sorted(list(map(int,input().split())))\n\nc=0\nfor i in l:\n x-=i\n if x<0:\n c+=1\n break\n else:\n c+=1\n\nif x!=0:\n c-=1\n\n\nprint(c)']
['Wrong Answer', 'Accepted']
['s949207886', 's162059276']
[9176.0, 9108.0]
[26.0, 28.0]
[240, 167]
p03255
u185688520
2,000
1,048,576
Snuke has decided to use a robot to clean his room. There are N pieces of trash on a number line. The i-th piece from the left is at position x_i. We would like to put all of them in a trash bin at position 0. For the positions of the pieces of trash, 0 < x_1 < x_2 < ... < x_{N} \leq 10^{9} holds. The robot is initially at position 0. It can freely move left and right along the number line, pick up a piece of trash when it comes to the position of that piece, carry any number of pieces of trash and put them in the trash bin when it comes to position 0. It is not allowed to put pieces of trash anywhere except in the trash bin. The robot consumes X points of energy when the robot picks up a piece of trash, or put pieces of trash in the trash bin. (Putting any number of pieces of trash in the trash bin consumes X points of energy.) Also, the robot consumes (k+1)^{2} points of energy to travel by a distance of 1 when the robot is carrying k pieces of trash. Find the minimum amount of energy required to put all the N pieces of trash in the trash bin.
['from itertools import accumulate\ndef E(i, x):\n if i == 1:\n return 5 * x\n return (2 * i + 1) * x\nN, X = map(int, input().split())\nx = list(map(int, input().split()))\nx.sort(key=None, reverse=True)\nx = list(accumulate(x))\nx.insert(0, 0)\nenergy = 9223372036854775807\nfor k in range(1, N + 1):\n cost = (N + k) * X\n for i in range(1, N + 1):\n if i * k <= N:\n cost += E(i, x[i * k] - x[(i - 1) * k])\n else:\n cost += E(i, x[-1] - x[(i - 1) * k])\n break\n if energy > cost:\n energey = cost\nprint(energy)\n', 'from itertools import accumulate\ndef E(i, x):\n if i == 1:\n return 5 * x\n return (2 * i + 1) * x\nN, X = map(int, input().split())\nx = list(map(int, input().split()))\nx.sort(key=None, reverse=True)\nx = list(accumulate(x))\nx.insert(0, 0)\nenergy = 9223372036854775807\nfor k in range(1, N + 1):\n cost = (N + k) * X\n for i in range(1, N + 1):\n if i * k <= N:\n cost += E(i, x[i * k] - x[(i - 1) * k])\n else:\n cost += E(i, x[-1] - x[(i - 1) * k])\n break\n if cost < energy:\n energy = cost\nprint(energy)\n']
['Wrong Answer', 'Accepted']
['s234869499', 's212570914']
[25252.0, 25252.0]
[1997.0, 1990.0]
[571, 570]
p03255
u745087332
2,000
1,048,576
Snuke has decided to use a robot to clean his room. There are N pieces of trash on a number line. The i-th piece from the left is at position x_i. We would like to put all of them in a trash bin at position 0. For the positions of the pieces of trash, 0 < x_1 < x_2 < ... < x_{N} \leq 10^{9} holds. The robot is initially at position 0. It can freely move left and right along the number line, pick up a piece of trash when it comes to the position of that piece, carry any number of pieces of trash and put them in the trash bin when it comes to position 0. It is not allowed to put pieces of trash anywhere except in the trash bin. The robot consumes X points of energy when the robot picks up a piece of trash, or put pieces of trash in the trash bin. (Putting any number of pieces of trash in the trash bin consumes X points of energy.) Also, the robot consumes (k+1)^{2} points of energy to travel by a distance of 1 when the robot is carrying k pieces of trash. Find the minimum amount of energy required to put all the N pieces of trash in the trash bin.
["# coding:utf-8\n\n\nINF = float('inf')\n\n\ndef inpl(): return list(map(int, input().split()))\n\n\nN, X = inpl()\nA = inpl()\nB = [0]\nfor a in A:\n B.append(B[-1] + a)\n\nans = INF\nfor k in range(1, N + 1):\n tmp = 0\n i = 0\n cur = N - k\n while True:\n e = 5 if i == 0 else 2 * i + 3\n tmp += e * (B[cur + k] - B[max(cur, 0)])\n if cur - k <= 0:\n break\n i += 1\n cur -= k\n\n ans = min(ans, tmp + (N + k) * X)\n\nprint(ans)", "# coding:utf-8\n\nimport math\n\n\nINF = float('inf')\n\n\ndef inpl(): return list(map(int, input().split()))\n\n\nN, X = inpl()\nA = inpl()\nB = [0]\nfor a in A:\n B.append(B[-1] + a)\n\nE = [2 * (i + 1) + 1 for i in range(N)]\nE[0] = 5\nprint(B)\nans = INF\nfor k in range(1, N + 1):\n tmp = 0\n for i in range(1, N + 1, k):\n if N + 1 - i - k < 0:\n tmp += E[math.ceil(i / k) - 1] * (B[N - i + 1])\n else:\n tmp += E[math.ceil(i / k) - 1] * (B[N - i + 1] - B[N - i - k + 1])\n # print(k, i, tmp)\n\n ans = min(ans, tmp + (N + k) * X)\n # print(ans)\n\nprint(ans)", "# coding:utf-8\n\n\nINF = float('inf')\n\n\ndef inpl(): return list(map(int, input().split()))\n\n\nN, X = inpl()\nA = inpl()\nB = [0]\nfor a in A:\n B.append(B[-1] + a)\n\nans = INF\nfor k in range(1, N + 1):\n tmp = 5 * B[N] + (N + k) * X\n cur = N - 2 * k\n while cur > 0:\n tmp += 2 * B[cur]\n cur -= k\n ans = min(ans, tmp)\nprint(ans)\n"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s163493739', 's714749021', 's069312828']
[26376.0, 39436.0, 25708.0]
[2105.0, 2106.0, 1061.0]
[464, 600, 347]
p03255
u816116805
2,000
1,048,576
Snuke has decided to use a robot to clean his room. There are N pieces of trash on a number line. The i-th piece from the left is at position x_i. We would like to put all of them in a trash bin at position 0. For the positions of the pieces of trash, 0 < x_1 < x_2 < ... < x_{N} \leq 10^{9} holds. The robot is initially at position 0. It can freely move left and right along the number line, pick up a piece of trash when it comes to the position of that piece, carry any number of pieces of trash and put them in the trash bin when it comes to position 0. It is not allowed to put pieces of trash anywhere except in the trash bin. The robot consumes X points of energy when the robot picks up a piece of trash, or put pieces of trash in the trash bin. (Putting any number of pieces of trash in the trash bin consumes X points of energy.) Also, the robot consumes (k+1)^{2} points of energy to travel by a distance of 1 when the robot is carrying k pieces of trash. Find the minimum amount of energy required to put all the N pieces of trash in the trash bin.
['import numpy as np\n\nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx =np.insert(np.cumsum(xs),0,0)\n\ndef energy(k):\n nok = n//k\n acm = (n+k)*X\n for i in range(1,nok+1):\n relsum = cumsumx[-(i-1)*k-1] - cumsumx[-i*k-1]\n if i == 1:\n acm += 5*relsum\n else:\n acm += (2*i+1)*relsum\n relsum = cumsumx[-nok*k-1]\n acm += (2*(nok+1)+1)*relsum\n return(acm)\n\nans = -1\nfor j in range (1,n):\n tmp = energy(j)\n print(j,tmp)\n if tmp < ans or ans == -1:\n ans =tmp\n\nprint(ans)\n\n\n\n', 'import numpy as np\n\nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx = np.cumsum(xs)\n\nprint(0)\n\n\n', 'import numpy as np\n\nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx =np.insert(np.cumsum(xs),0,0)\n\ndef energy(k):\n nok = n//k\n acm = (n+k)*X\n for i in range(1,nok+1):\n relsum = cumsumx[-(i-1)*k-1] - cumsumx[-i*k-1]\n if i == 1:\n acm += 5*relsum\n else:\n acm += (2*i+1)*relsum\n relsum = cumsumx[-nok*k-1]\n acm += (2*(nok+1)+1)*relsum\n return(acm)\n\nans = -1\nfor j in range (2,n//2+1):\n tmp = energy(j)\n if tmp < ans or ans == -1:\n ans =tmp\n\nprint(ans)\n\n\n\n', 'import numpy as np\n\nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx =np.insert(np.cumsum(xs),0,0)\n\nprint(0)\n', 'import numpy as np\n \nn,X = map(int,input().split())\nxs = np.array(list(map(int,input().split())))\ncumsumx =np.insert(np.cumsum(xs),0,0)\n \ncut = np.int_(1000000000000000)\n \ndef cutsum(array):\n acm = np.int_(0)\n for i in array:\n if acm <= cut:\n acm += i\n else:\n acm = cut\n break\n return(acm)\n \ndef energy(k):\n nok = n//k\n offset = (n+k)*X\n acm = (n+k)*X + 3*cumsumx[-1] - 2*cumsumx[-k-1]\n acm += 2*cutsum(cumsumx[::-k])\n return(acm)\n \nans = (n+1)*X+2*cutsum(cumsumx)+3*cumsumx[-1]-2*cumsumx[-2]\nfor j in range (2,min(n//2+4,n+1)):\n tmp = energy(j)\n if tmp < ans:\n ans =tmp\n \nprint(ans)\n ']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s498988447', 's596688091', 's627327572', 's862856367', 's952643265']
[34764.0, 34760.0, 34804.0, 34760.0, 34776.0]
[2109.0, 214.0, 2109.0, 320.0, 1995.0]
[574, 133, 562, 145, 669]
p03255
u883048396
2,000
1,048,576
Snuke has decided to use a robot to clean his room. There are N pieces of trash on a number line. The i-th piece from the left is at position x_i. We would like to put all of them in a trash bin at position 0. For the positions of the pieces of trash, 0 < x_1 < x_2 < ... < x_{N} \leq 10^{9} holds. The robot is initially at position 0. It can freely move left and right along the number line, pick up a piece of trash when it comes to the position of that piece, carry any number of pieces of trash and put them in the trash bin when it comes to position 0. It is not allowed to put pieces of trash anywhere except in the trash bin. The robot consumes X points of energy when the robot picks up a piece of trash, or put pieces of trash in the trash bin. (Putting any number of pieces of trash in the trash bin consumes X points of energy.) Also, the robot consumes (k+1)^{2} points of energy to travel by a distance of 1 when the robot is carrying k pieces of trash. Find the minimum amount of energy required to put all the N pieces of trash in the trash bin.
['iN ,iX = [int(x) for x in input().split()]\naCum = [0]\nfor x in input().split():\n aCum += [aCum[-1] + int(x)]\n\ndef fCeil(iT,iR):\n return -1 * iT // iR * -1\n\ndef fCalcCost(iN,iX,aCum,iK):\n iCost = (iN + iK ) * iX + 5 * aCum[iN-1]\n for i in range(2,fCeil(iN,iK) ):\n iCost += 2 * aCum[iN - i * iK ]\n return iCost\n\n\niTotalCost = fCalcCost(iN,iX,aCum,1)\nfor iK in range(2,fCeil(iN,2) + 1):\n iThisCost = fCalcCost(iN,iX,aCum,iK)\n if iThisCost > iTotalCost:\n break\n else:\n iTotalCost = iThisCost\nprint(iTotalCost)\n', 'iN ,iX = [int(x) for x in input().split()]\naCum = [0]\nfor x in input().split():\n aCum += [aCum[-1] + int(x)]\n\ndef fCeil(iT,iR):\n return -1 * iT // iR * -1\n\ndef fCalcCost(iN,iX,aCum,iK):\n iCost = (iN + iK ) * iX + 5 * aCum[iN]\n for i in range(2,fCeil(iN,iK) ):\n iCost += 2 * aCum[iN - i * iK ]\n return iCost\n\ndef fSearchLowCost(iL,iLCost,iU,iUCost,iN,iX,aCum):\n if iU - iL <= iX :\n iTotalCost = min(iLCost,iUCost)\n for iK in range(iL+1,iU) :\n iTotalCost = min(iTotalCost,fCalcCost(iN,iX,aCum,iK))\n return iTotalCost\n else:\n iM = (iU + iL) // 2\n iMCost = fCalcCost(iN,iX,aCum,iM)\n if iLCost < iUCost :\n return fSearchLowCost(iL,iLCost,iM,iMCost,iN,iX,aCum)\n else :\n return fSearchLowCost(iM,iMCost,iU,iUCost,iN,iX,aCum)\n\nif 1 < iN :\n\n iULim = fCeil(iN,2)+1\n iLLim = 1\n print(fSearchLowCost(iLLim,fCalcCost(iN,iX,aCum,iLLim),iULim,fCalcCost(iN,iX,aCum,iULim),iN,iX,aCum))\nelse:\n print(2*iX + 5*aX[0])\n']
['Wrong Answer', 'Accepted']
['s456888502', 's888136640']
[27248.0, 27244.0]
[646.0, 644.0]
[562, 1021]
p03256
u532966492
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
['def main():\n N, M = map(int, input().split())\n S = [i == "B" for i in input()]\n ab = [list(map(int, input().split())) for _ in [0]*M]\n graph = [set() for _ in [0]*N]\n [graph[a-1].add(b-1) for a, b in ab]\n [graph[b-1].add(a-1) for a, b in ab]\n\n status = [[0, 0] for _ in [0]*N]\n\n for i in range(N):\n for j in g[i]:\n status[i][S[j]] += 1\n\n que = []\n for i, (p, q) in enumerate(status):\n if (p == 0) ^ (q == 0):\n que.append(i)\n\n while que:\n i = que.pop()\n c = S[i]\n for j in graph[i]:\n if i != j:\n graph[j].remove(i)\n status[j][c] -= 1\n p, q = status[j]\n if (p == 0) ^ (q == 0):\n que.append(j)\n g[i] = set()\n\n for i in g:\n if i:\n print("Yes")\n return\n print("No")\n\n\nmain()\n', 'def main():\n N, M = map(int, input().split())\n S = [i == "B" for i in input()]\n ab = [list(map(int, input().split())) for _ in [0]*M]\n graph = [set() for _ in [0]*N]\n [graph[a-1].add(b-1) for a, b in ab]\n [graph[b-1].add(a-1) for a, b in ab]\n\n status = [[0, 0] for _ in [0]*N]\n\n for i in range(N):\n for j in graph[i]:\n status[i][S[j]] += 1\n\n que = []\n for i, (p, q) in enumerate(status):\n if (p == 0) ^ (q == 0):\n que.append(i)\n\n while que:\n i = que.pop()\n c = S[i]\n for j in graph[i]:\n if i != j:\n graph[j].remove(i)\n status[j][c] -= 1\n p, q = status[j]\n if (p == 0) ^ (q == 0):\n que.append(j)\n graph[i] = set()\n\n for i in graph:\n if i:\n print("Yes")\n return\n print("No")\n\n\nmain()\n']
['Runtime Error', 'Accepted']
['s020508925', 's040008663']
[123968.0, 126768.0]
[1123.0, 1440.0]
[876, 888]
p03256
u562016607
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
['from collections import deque\nN,M=map(int,input().split())\ns=input()\nH=[[] for i in range(N)]\nG=[[] for i in range(2*N)]\nfor i in range(M):\n a,b=map(int,input().split())\n a-=1\n b-=1\n H[a].append(b)\n H[b].append(a)\n if s[a]=="A":\n if s[b]=="A":\n G[a].append(N+b)\n G[b].append(N+a)\n else:\n G[a+N].append(b+N)\n G[b].append(a)\n else:\n if s[b]=="A":\n G[a].append(b)\n G[N+b].append(N+a)\n else:\n G[N+a].append(b)\n G[N+b].append(a)\nK=[0 for i in range(2*N)]\nfor i in range(2*N):\n for p in G[i]:\n K[p]+=1\nq=deque(i for i in range(2*N) if K[i]==0)\nres=[]\nwhile q:\n v1=q.popleft()\n res.append(v1)\n for v2 in G[v1]:\n K[v2]-=1\n if K[v2]==0:\n q.append(v2)\nif len(res)==2*N:\n print("Yes")\nelse:\n print("No")\n', 'from collections import deque\nN,M=map(int,input().split())\ns=input()\nH=[[] for i in range(N)]\nG=[[] for i in range(2*N)]\nfor i in range(M):\n a,b=map(int,input().split())\n a-=1\n b-=1\n H[a].append(b)\n H[b].append(a)\n if s[a]=="A":\n if s[b]=="A":\n G[a].append(N+b)\n G[b].append(N+a)\n else:\n G[a+N].append(b+N)\n G[b].append(a)\n else:\n if s[b]=="A":\n G[a].append(b)\n G[N+b].append(N+a)\n else:\n G[N+a].append(b)\n G[N+b].append(a)\nK=[0 for i in range(2*N)]\nfor i in range(2*N):\n for p in G[i]:\n K[p]+=1\nq=deque(i for i in range(2*N) if K[i]==0)\nres=[]\nwhile q:\n v1=q.popleft()\n res.append(v1)\n for v2 in G[v1]:\n K[v2]-=1\n if K[v2]==0:\n q.append(v2)\nif len(res)==2*N:\n print("No")\nelse:\n print("Yes")\n']
['Wrong Answer', 'Accepted']
['s338615514', 's189058993']
[93468.0, 93188.0]
[1758.0, 1772.0]
[880, 880]
p03256
u667024514
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
['import collections\n\nn,m = map(int,input().split())\ns = list(str(input()))\nkey = collection.deque()\nlis = [[] for i in range(n)]\nli = [{"A":0,"B":0} for i in range(n)]\n\nfor i in range(m):\n a,b = map(int,input().split())\n lis[a-1].append(b-1)\n lis[b-1].append(a-1)\n li[a-1][s[b-1]] += 1\n li[b-1][s[a-1]] += 1\n \nans = [0 for i in range(n)]\n\nfor i in range(n):\n if li[i]["A"] == 0 or li[i]["B"] == 0:\n key.append(i)\n ans[i] = 1\n \nwhile len(key) > 0:\n num = key.popleft()\n for nu in lis[num]:\n li[j][s[num]] -= 1\n if li[j]["A"] == 0 or li[j]["B"] == 0:\n if ans[j] == 0:\n key.append(j)\n ans[j] = 1\n\nif sum(ans) == n:print("No")\nelse:print("Yes")', 'import collections\n\nn,m = map(int,input().split())\ns = list(str(input()))\nkey = collection.deque()\nlis = [[] for i in range(n)]\nli = [{"A":0,"B":0} for i in range(n)]\n\nfor i in range(m):\n a,b = map(int,input().split())\n lis[a-1].append(b-1)\n lis[b-1].append(a-1)\n li[a-1][s[b-1]] += 1\n li[b-1][s[a-1]] += 1\n \nans = [0 for i in range(n)]\n\nfor i in range(n):\n if li[i]["A"] == 0 or li[i]["B"] == 0:\n key.append(i)\n ans[i] = 1\n \nwhile len(key) > 0:\n num = key.popleft()\n for nu in lis[num]:\n li[nu][s[num]] -= 1\n if li[nu]["A"] == 0 or li[nu]["B"] == 0:\n if ans[nu] == 0:\n key.append(nu)\n ans[nu] = 1\n\nif sum(ans) == n:print("No")\nelse:print("Yes")', 'import collections\n\nn,m = map(int,input().split())\ns = list(str(input()))\nkey = collections.deque()\nlis = [[] for i in range(n)]\nli = [{"A":0,"B":0} for i in range(n)]\n\nfor i in range(m):\n a,b = map(int,input().split())\n lis[a-1].append(b-1)\n lis[b-1].append(a-1)\n li[a-1][s[b-1]] += 1\n li[b-1][s[a-1]] += 1\n \nans = [0 for i in range(n)]\n\nfor i in range(n):\n if li[i]["A"] == 0 or li[i]["B"] == 0:\n key.append(i)\n ans[i] = 1\n \nwhile len(key) > 0:\n num = key.popleft()\n for nu in lis[num]:\n li[nu][s[num]] -= 1\n if li[nu]["A"] == 0 or li[nu]["B"] == 0:\n if ans[nu] == 0:\n key.append(nu)\n ans[nu] = 1\n\nif sum(ans) == n:print("No")\nelse:print("Yes")']
['Runtime Error', 'Runtime Error', 'Accepted']
['s860009243', 's953129608', 's908199075']
[5176.0, 5168.0, 102784.0]
[24.0, 24.0, 1500.0]
[682, 688, 689]
p03256
u761320129
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
["import sys,time\nsys.setrecursionlimit(10**7)\n\nstart_time = time.time()\nN,M = map(int,input().split())\nS = input()\nsrc = [tuple(map(lambda x:int(x)-1,input().split())) for i in range(M)]\n\noutdeg = [set() for i in range(2*N)]\nfor x,y in src:\n if S[x] == S[y]:\n #A0->A1, B0->B1\n outdeg[x].add(y+N)\n outdeg[y].add(x+N)\n else:\n #A1->B0, B1->A0\n outdeg[x+N].add(y)\n outdeg[y+N].add(x)\n\nmem = [0] * (2*N)\ndef visit(v):\n # gori~~~\n if time.time() - start_time > 1.8:\n break\n if mem[v] == 1:\n print('Yes')\n exit()\n if mem[v] == 0:\n mem[v] = 1\n for to in outdeg[v]:\n visit(to)\n mem[v] = 2\n\nfor i in range(2*N):\n visit(i)\n\nprint('No')", "import sys,time\nsys.setrecursionlimit(10**7)\n\nstart_time = time.time()\nN,M = map(int,input().split())\nS = input()\nsrc = [tuple(map(lambda x:int(x)-1,sys.stdin.readline().split())) for i in range(M)]\n\noutdeg = [set() for i in range(2*N)]\nfor x,y in src:\n if S[x] == S[y]:\n #A0->A1, B0->B1\n outdeg[x].add(y+N)\n outdeg[y].add(x+N)\n else:\n #A1->B0, B1->A0\n outdeg[x+N].add(y)\n outdeg[y+N].add(x)\n\nmem = [0] * (2*N)\ndef visit(v):\n if time.time() - start_time > 1.8:\n # gori~~~\n print('No')\n exit()\n if mem[v] == 1:\n print('Yes')\n exit()\n if mem[v] == 0:\n mem[v] = 1\n for to in outdeg[v]:\n visit(to)\n mem[v] = 2\n\nfor i in range(2*N):\n visit(i)\n\nprint('No')"]
['Runtime Error', 'Accepted']
['s502675705', 's178835920']
[3064.0, 213752.0]
[17.0, 2000.0]
[739, 777]
p03256
u816116805
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
['#! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n#\n\n"""\nGC027 C\n"""\n\nn,m = map(int,input().split())\ns = list(input())\nedges = [tuple(map(int,input().split())) for i in range(m)]\nali = [0 for i in range(n)]\nbli = [0 for i in range(n)]\n\n\ndef addEdge(graph,u,v):\n graph[u].add(v)\n\n\nfrom collections import defaultdict\ngraphAB = defaultdict(set)\n\ndef incrementAB(node,adj):\n if s[adj-1] == \'A\':\n ali[node-1]+=1\n if s[adj-1] == \'B\':\n bli[node-1]+=1\n\ndef decrementAB(node,adj):\n if s[adj-1] == \'A\':\n ali[node-1]-=1\n if s[adj-1] == \'B\':\n bli[node-1]-=1\n\nfor i,j in edges:\n addEdge(graphAB,i,j)\n addEdge(graphAB,j,i)\n\ndef adjAB(node):\n if ali[node-1]!=0 and bli[node-1]!=0:\n return(True)\n else:\n return(False)\n\ngraphvers = set(graphAB.keys())\nvisitset = set()\nfor i in range(1,n+1):\n if not i in graphvers:\n s[i-1] = \'C\'\n else:\n for j in graphAB[i]:\n incrementAB(i,j)\n if not adjAB(i):\n visitset.add(i)\n\n\nwhile bool(visitset):\n \n #print(graphABopp)\n #print(abli)\n i = visitset.pop()\n for j in graphAB[i]:\n if s[j-1] != \'C\':\n decrementAB(j,i)\n if not adjAB(j):\n visitset.add(j)\n s[i-1] = \'C\'\n\n\n#print(graphABopp)\n\n\nif bool(set(s).remove(\'C\')):\n print(\'Yes\')\nelse:\n print(\'No\')\n\n\n\n', "\nn,m = map(int,input().split())\ns = list(input())\nedges = [tuple(map(int,input().split())) for i in range(m)]\n\n\nedgeset = set()\nfor i,j in edges:\n edgeset.add((min(i,j),max(i,j)))\n\n\ndef addEdge(graph,u,v):\n graph[u].add(v)\n\n\ndef deleteNode(graph,node):\n graph.pop(node,None)\n\nfrom collections import defaultdict\ngraphAB = defaultdict(set)\ngraphABopp = defaultdict(set)\n\nfor i,j in edgeset:\n addEdge(graphAB,i,j)\n addEdge(graphABopp,j,i)\n\nabli = [[0,0] for i in range(n)]\n\ndef incrimentAB(j,char):\n if char == 'A':\n abli[j-1][0] += 1\n if char =='B':\n abli[j-1][1] += 1\n\ndef decrimentAB(j,char):\n if char == 'A':\n abli[j-1][0] -= 1\n if char =='B':\n abli[j-1][1] -= 1\n\n\ndef adjAB(node):\n if abli[node-1][0] != 0 and abli[node-1][1] != 0:\n return(True)\n else:\n return(False)\n\nfor i,j in edgeset:\n incrimentAB(j,s[i-1])\n incrimentAB(i,s[j-1])\n\n\n\nvisitset = set([i for i in set(graphAB.keys())|set(graphABopp.keys()) if not adjAB(i)])\ndeleteset = set()\nprint(visitset)\n\nwhile bool(visitset):\n i = visitset.pop()\n deleteset.add(i)\n for j in graphAB[i]:\n decrimentAB(j,s[i-1])\n graphABopp[j].remove(i)\n if not adjAB(j):\n visitset.add(j)\n print(visitset,'add')\n for j in graphABopp[i]:\n decrimentAB(j,s[i-1])\n graphAB[j].remove(i)\n if not adjAB(j):\n visitset.add(j)\n print(visitset,'add')\n graphAB.pop(i,None)\n graphABopp.pop(i,None)\n\nprint(graphAB)\nprint(graphABopp)\n\n\nif graphAB == {} and graphABopp == {}:\n print('No')\nelse:\n print('Yes')\n\n\n\n", "\nn,m = map(int,input().split())\ns = list(input())\nabli = [tuple(map(int,input().split())) for i in range(m)]\n\ndef addEdge(graph,u,v):\n graph[u].append(v)\n\n\ndef adjAB(graph,node):\n Aflag =False\n Bflag =False\n for i in graph[node]:\n if s[i-1]=='A':\n Aflag = True\n if s[i-1]=='B':\n Bflag = True\n if Aflag and Bflag:\n break\n if Aflag and Bflag:\n return(True)\n else:\n return(False)\n\n\ndef deleteNode(graph,node,s):\n graph.pop(node,None)\n s[node-1]='C'\n print(s)\n \n\n\nfrom collections import defaultdict\ngraphAB = defaultdict(list)\n\nfor i,j in abli:\n addEdge(graphAB,i,j)\n if i != j:\n addEdge(graphAB,j,i)\n\n\nflag = True\n\nwhile flag:\n flag = False\n deletelist = []\n for i in graphAB:\n if not adjAB(graphAB,i):\n deletelist.append(i)\n flag = True\n for i in deletelist:\n deleteNode(graphAB,i,s)\n\nprint(graphAB)\n\nif graphAB == {}:\n print('No')\nelse:\n print('Yes')\n\n\n\n", "n,m = map(int,input().split())\ns = list(input())\nabli = [tuple(map(int,input().split())) for i in range(m)]\n\ndef addEdge(graph,u,v):\n graph[u].append(v)\n\n\ndef adjAB(graph,node):\n Aflag =False\n Bflag =False\n for i in graph[node]:\n if s[i-1]=='A':\n Aflag = True\n if s[i-1]=='B':\n Bflag = True\n if Aflag and Bflag:\n break\n if Aflag and Bflag:\n return(True)\n else:\n return(False)\n\n\ndef deleteNode(graph,node):\n graph.pop(node,None)\n s[node-1] = 'C'\n \n\n\nfrom collections import defaultdict\ngraphAB = defaultdict(list)\n\nfor i,j in abli:\n addEdge(graphAB,i,j)\n if i != j:\n addEdge(graphAB,j,i)\n\n\nvisitset = set(graphAB.keys())\ndeleteset=set()\n\nwhile bool(visitset):\n i = visitset.pop()\n print(i,visitset)\n if not adjAB(graphAB,i):\n deleteset.add(i)\n print(i)\n tmp = set(graphAB[i])\n visitset = (visitset | tmp) - deleteset\n deleteNode(graphAB,i)\n\n\n\n\nif graphAB == {}:\n print('No')\nelse:\n print('Yes')\n\n\n\n", "\nn,m = map(int,input().split())\ns = list(input())\nali = [0 for i in range(n)]\nbli = [0 for i in range(n)]\n\nfor i in range(m):\n u,v=map(int,input().split())\n graphAB[u].append(v)\n graphAB[v].append(u)\n\n\nfrom collections import defaultdict\ngraphAB = defaultdict(list)\n\ndef incrementAB(node,adj):\n if s[adj-1] == 'A':\n ali[node-1]+=1\n if s[adj-1] == 'B':\n bli[node-1]+=1\n\ndef decrementAB(node,adj):\n if s[adj-1] == 'A':\n ali[node-1]-=1\n if s[adj-1] == 'B':\n bli[node-1]-=1\n\n\ndef adjAB(node):\n if ali[node-1]!=0 and bli[node-1]!=0:\n return(True)\n else:\n return(False)\n\ngraphvers = set(graphAB.keys())\nvisitset = set()\nfor i in range(1,n+1):\n if not i in graphvers:\n s[i-1] = 'C'\n else:\n for j in graphAB[i]:\n incrementAB(i,j)\n if not adjAB(i):\n visitset.add(i)\n\n\nwhile bool(visitset):\n \n #print(graphABopp)\n #print(abli)\n i = visitset.pop()\n gen = (j for j in graphAB[i] if s[j-1]!='C')\n for j in gen\n decrementAB(j,i)\n if not adjAB(j):\n visitset.add(j)\n s[i-1] = 'C'\n\n\n#print(graphABopp)\n\nsset= set(s)\nsset.add('C')\nsset.remove('C')\nif bool(sset):\n print('Yes')\nelse:\n print('No')\n\n\n\n", '#! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n#\n\n"""\nGC027 C\n"""\n\nn,m = map(int,input().split())\ns = bytes(input(),\'utf-8\')\nali = [0 for i in range(n)]\nbli = [0 for i in range(n)]\nimport array as ar\nremain = ar.array(\'b\',[1 for i in range(n)])\nfrom collections import defaultdict\ngraphAB = defaultdict(list)\n\nfor i in range(m):\n u,v=map(int,input().split())\n graphAB[u].append(v)\n graphAB[v].append(u)\n\n\n\ndef incrementAB(node,adj):\n if s[adj-1] == 65:\n ali[node-1]+=1\n if s[adj-1] == 66:\n bli[node-1]+=1\n\ndef decrementAB(node,adj):\n if s[adj-1] == 65:\n ali[node-1]-=1\n if s[adj-1] == 66:\n bli[node-1]-=1\n\n\ndef adjAB(node):\n if ali[node-1] and bli[node-1]:\n return(True)\n else:\n return(False)\n\ngraphvers = set(graphAB.keys())\nvisitset = set()\nfor i in range(1,n+1):\n if not i in graphvers:\n remain[i-1] = 0\n else:\n for j in graphAB[i]:\n incrementAB(i,j)\n if not adjAB(i):\n visitset.add(i)\n remain[i-1] = 0\n\n#print(s)\nwhile bool(visitset):\n i = visitset.pop()\n for j in filter(lambda x:remain[x-1],graphAB[i]):\n #print(\'loop\')\n decrementAB(j,i)\n if not adjAB(j):\n visitset.add(j)\n remain[j-1] = 0\n\nif set(remain)=={0}:\n print(\'No\')\nelse:\n print(\'Yes\')\n\n\n\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s369581863', 's467688549', 's479698301', 's734267709', 's827326133', 's838023914']
[91236.0, 159296.0, 169764.0, 139608.0, 3064.0, 56968.0]
[1675.0, 2111.0, 2181.0, 2107.0, 18.0, 1591.0]
[1402, 1627, 1023, 1059, 1281, 1355]
p03256
u819135704
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
['from collections import deque\n\nN, M = map(int, input().split())\ns = [list(input()) for i in range(N)]\n\nS = []\nfor i in s: \n if i == "A": S.append(0)\n else: S.append(1)\n\n\nR = [list() for _ in range(N)]\n\n\nC = [[0, 0] for _ in range(N)]\nfor _ in range(M):\n a, b = map(int, input().split())\n R[a-1].append(b-1)\n R[b-1].append(a-1)\n C[a-1][S[b-1]] += 1\n C[b-1][S[a-1]] += 1\n\nO = [0] * N \nq = deque() \nfor i in range(N):\n if C[i][0] * C[i][1] == 0: \n q.append(i)\n O[i] = 1\n\nwhile q:\n x = q.popleft()\n for v in R[x]:\n C[v][S[x]] -= 1\n if C[v][S[x]] == 0 and O[v] != 0:\n O[v] = 1\n q.append(v)\n\nif sum(O) == N:\n answer = "No"\nelse:\n answer = "Yes"\n\nprint(answer)\n', 'from collections import deque\n\nN, M = map(int, input().split())\ns = list(input())\n\nS = []\nfor i in s: \n if i == "A": S.append(0)\n else: S.append(1)\n\n\nR = [list() for _ in range(N)]\n\n\nC = [[0, 0] for _ in range(N)]\nfor _ in range(M):\n a, b = map(int, input().split())\n R[a-1].append(b-1)\n R[b-1].append(a-1)\n C[a-1][S[b-1]] += 1\n C[b-1][S[a-1]] += 1\n\nO = [0] * N \nq = deque() \nfor i in range(N):\n if C[i][0] * C[i][1] == 0: \n q.append(i)\n O[i] = 1\n\nwhile q:\n x = q.popleft()\n for v in R[x]:\n C[v][S[x]] -= 1\n if C[v][S[x]] == 0 and O[v] == 0:\n O[v] = 1\n q.append(v)\n\nif sum(O) == N:\n answer = "No"\nelse:\n answer = "Yes"\n\nprint(answer)\n']
['Runtime Error', 'Accepted']
['s648732318', 's976566739']
[70008.0, 65756.0]
[568.0, 1208.0]
[1153, 1133]
p03256
u905582793
2,000
1,048,576
You are given an undirected graph consisting of N vertices and M edges. The vertices are numbered 1 to N, and the edges are numbered 1 to M. In addition, each vertex has a label, `A` or `B`. The label of Vertex i is s_i. Edge i bidirectionally connects vertex a_i and b_i. The phantom thief Nusook likes to choose some vertex as the startpoint and traverse an edge zero or more times. Today, he will make a string after traveling as above, by placing the labels of the visited vertices in the order visited, beginning from the startpoint. For example, in a graph where Vertex 1 has the label `A` and Vertex 2 has the label `B`, if Nusook travels along the path 1 \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow 2, the resulting string is `ABABB`. Determine if Nusook can make all strings consisting of `A` and `B`.
['print("No")', 'import sys\ninput = sys.stdin.readline\n\nn,m = map(int,input().split())\ns = input()\nab = [list(map(int, input().split())) for i in range(m)]\ngraph = [[] for i in range(n+1)]\nABs = [[0,0] for i in range(n+1)]\nfor a,b in ab:\n graph[a].append(b)\n graph[b].append(a)\n if s[a-1] == "A":\n ABs[b][0] += 1\n else:\n ABs[b][1] += 1\n if s[b-1] == "A":\n ABs[a][0] += 1\n else:\n ABs[a][1] += 1\nablack = [-1 for i in range(n+1)]\nablack[0] = 0\nstack = []\nvisited = [0 for i in range(n+1)]\nfor x in range(1,n+1):\n if ABs[x][0] == 0 or ABs[x][1] == 0:\n if s[x-1] == "A":\n ablack[x] = 0\n else:\n ablack[x] = 1\n stack.append(x)\n\nwhile stack:\n x = stack.pop()\n if visited[x] == 1:\n continue\n visited[x] = 1\n for y in graph[x]:\n if visited[y] == 0:\n if ablack[x] == 0:\n ABs[y][0] -= 1\n else:\n ABs[y][1] -= 1\n if ABs[y][0] <= 0 or ABs[y][1] <= 0:\n if s[y-1] == "A":\n ablack[y] = 0\n else:\n ablack[y] = 1\n stack.append(y)\nif ablack.count(-1) >= 1:\n print("Yes")\nelse:\n print("No")']
['Wrong Answer', 'Accepted']
['s691762688', 's805387797']
[2940.0, 87848.0]
[17.0, 1222.0]
[11, 1069]
p03260
u001036276
2,000
1,048,576
You are given integers A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A \times B \times C is an odd number.
['a, b = (int(i) for i in input().split())\n \nif a % 2 == 0 and b % 2 == 0:\n print("Yes")\nelse:\n print("No")', 'a, b = (int(i) for i in input().split())\n\nif a % 2 == 0 && b % 2 == 0:\n print("Yes")\nelse:\n print("No")\n', 'a, b = (int(i) for i in input().split())\n \nif a % 2 != 0 and b % 2 != 0:\n print("Yes")\nelse:\n print("No")']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s308556698', 's559201864', 's050573992']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[107, 106, 107]
p03260
u003501233
2,000
1,048,576
You are given integers A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A \times B \times C is an odd number.
['A,B=map(int,input().split())\nif A * B % 2 == 1:\n pritn("Yes")\nelse:\n print("No")', 'A,B=map(int,input().split())\nif A * B % 2 == 1:\n print("Yes")\nelse:\n print("No")']
['Runtime Error', 'Accepted']
['s653898488', 's517909353']
[2940.0, 2940.0]
[17.0, 17.0]
[82, 82]
p03260
u007808656
2,000
1,048,576
You are given integers A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A \times B \times C is an odd number.
["a,b=input(int,input().split())\nif(a*b%2==0):\n print('No')\nelse:\n print('Yes')", "a,b=map(int,input().split())\nif(a*b%2==0):\n print('No')\nelse:\n print('Yes')"]
['Runtime Error', 'Accepted']
['s546620226', 's846414982']
[2940.0, 2940.0]
[17.0, 17.0]
[79, 77]
p03260
u010069411
2,000
1,048,576
You are given integers A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A \times B \times C is an odd number.
['#! /usr/bin/python\nprint("Yes" if sum(map(int,input().split()))%2==1 else "No")\n', '#! /usr/bin/python\nfrom operator import mul\nprint("Yes" if mul(map(int,input().split()))%2==1 else "No")\n', '#! /usr/bin/python\nfrom operator import mul\nprint("Yes" if mul(*map(int,input().split()))%2==1 else "No")\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s152171243', 's166419140', 's476292488']
[2940.0, 3060.0, 3060.0]
[17.0, 18.0, 18.0]
[80, 105, 106]
p03260
u016572066
2,000
1,048,576
You are given integers A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A \times B \times C is an odd number.
['a, b = map(int, input.split())\nif (a * b) % 2 == 0:\n print("No")\nelse:\n print("Yes")', 'a, b = map(int, input().split())\nif (a * b) % 2 == 0:\n print("No")\nelse:\n print("Yes")']
['Runtime Error', 'Accepted']
['s535099197', 's417679235']
[2940.0, 2940.0]
[18.0, 17.0]
[86, 88]
p03260
u017271745
2,000
1,048,576
You are given integers A and B, each between 1 and 3 (inclusive). Determine if there is an integer C between 1 and 3 (inclusive) such that A \times B \times C is an odd number.
['A, B = map(int, input().split())\n\nif A*B%2 == 1:\n ans = "No"\nelse: ans = "Yes"\n\nprint(ans)', 'A, B = map(int, input().split())\n\nif A*B%2 == 1:\n ans = "Yes"\nelse: ans = "No"\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s311935846', 's114401688']
[2940.0, 2940.0]
[17.0, 18.0]
[93, 93]