problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03265
u137228327
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\ndiffy = x2-x1\ndiffx = y2-y1\nprint(diffy,diffx)\nprint(x2-diffx,y2+diffy,x1-diffx,y1+diffy)', 'x1,y1,x2,y2 = map(int,input().split())\ndiffy = x2-x1\ndiffx = y2-y1\n#print(diffy,diffx)\nprint(x2-diffx,y2+diffy,x1-diffx,y1+diffy)']
['Wrong Answer', 'Accepted']
['s170153831', 's123832589']
[9096.0, 9132.0]
[26.0, 26.0]
[128, 129]
p03265
u139880922
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,int(input().split())\nh = max(abs(x2-x1),abs(y2-y1))\nv = min(abs(x2-x1),abs(y2-y1))\nif x1 > x2:\n if y1 > y2: print(x2+h,y2-v,x1+h,y1-v)\n else:print(x2-v,y2-h,x1-v,y1-h)\nelse:\n if y1 > y2: print(x2+v,y2+h,x1+v,y1+h)\n else:print(x2-h,y2+v,x1-h,y1+v)', 'x1,y1,x2,y2 = map(int,input().split())\nh = abs(x2-x1)\nv = abs(y2-y1)\nif x1 > x2:\n if y1 > y2: print(x2+v,y2-h,x1+v,y1-h)\n else: print(x2-v,y2-h,x1-v,y1-h)\nelse:\n if y2 > y1: print(x2-v,y2+h,x1-v,y1+h)\n else: print(x2+v,y2+h,x1+v,y1+h)']
['Runtime Error', 'Accepted']
['s496610767', 's825386221']
[2940.0, 3064.0]
[17.0, 17.0]
[272, 254]
p03265
u140251125
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['# input\nx1, y1, x2, y2 = map(int, input().split())\n\nx3 = y2 - y1 + x2\ny3 = x1 - x2 + y2\nx4 = y2 - y1 + x1\ny4 = x1 - x2 + y1\nprint(x3, y3, x4, y4)', '# input\nx1, y1, x2, y2 = map(int, input().split())\n\nx3 = y1 - y2 + x2\ny3 = x2 - x1 + y2\nx4 = y1 - y2 + x1\ny4 = x2 - x1 + y1\nprint(x3, y3, x4, y4)']
['Wrong Answer', 'Accepted']
['s662127034', 's563812339']
[2940.0, 3060.0]
[17.0, 18.0]
[145, 145]
p03265
u167681750
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\n\ndef vector(x1, y1, x2, y2):\n return [x2 - (y2 - y1), y2 + (x2 - x1)]\n\nans = vector(x1, y1, x2, y2)\nans += vector(x2, y2, ans[0], ans[1])\n\nprint(ans)\n', 'x1, y1, x2, y2 = map(int, input().split())\n\ndef vector(x1, y1, x2, y2):\n return x2 - (y2 - y1), y2 + (x2 - x1)\n\nx3, y3 = vector(x1, y1, x2, y2)\nx4, y4 = vector(x2, y2, x3, y3)\n\nprint(x3, y3, x4, y4)']
['Wrong Answer', 'Accepted']
['s377953177', 's247858300']
[3064.0, 3060.0]
[17.0, 17.0]
[196, 201]
p03265
u181037878
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import numpy as np\n\nx_1, y_1, x_2, y_2 = map(int, input().split())\n\nP_1 = np.array([x_1, y_1])\nP_2 = np.array([x_2, y_2])\nvec_12 = P_2 - P_1\nvec_13 = np.array([-vec_12[1], vec_12[0]])\nP_3 = P_1 + vec_13\nP_4 = P_2 + vec_13\nprint(P_3[0], P_3[1], P_4[1], P_4[2])\n', 'import numpy as np\n\nx_1, y_1, x_2, y_2 = map(int, input().split())\n\nP_1 = np.array([x_1, y_1])\nP_2 = np.array([x_2, y_2])\nvec_12 = P_2 - P_1\nvec_13 = np.array([-vec_12[1], vec_12[0]])\nP_3 = P_1 + vec_13\nP_4 = P_2 + vec_13\nprint(P_3[0], P_3[1], P_4[0], P_4[1])\n', 'import numpy as np\n\nx_1, y_1, x_2, y_2 = map(int, input().split())\n\nP_1 = np.array([x_1, y_1])\nP_2 = np.array([x_2, y_2])\nvec_12 = P_2 - P_1\nvec_13 = np.array([-vec_12[1], vec_12[0]])\nP_3 = P_1 + vec_13\nP_4 = P_2 + vec_13\nprint(P_4[0], P_4[1], P_3[0], P_3[1])\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s402455932', 's962962948', 's997791939']
[22280.0, 13208.0, 21656.0]
[330.0, 161.0, 310.0]
[260, 260, 260]
p03265
u191635495
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import numpy as np\nps = list(map(int, input().split()))\nv1 = [ps[2]-ps[0], ps[3]-ps[1]]\nres = []\nres.append(ps[2]-v1[1])\nres.append(ps[3]+v1[0])\nres.append(res[0]-v1[0])\nres.append(res[1]-v1[1])\nprint(res)', 'import numpy as np\nps = list(map(int, input().split()))\nv1 = [ps[2]-ps[0], ps[3]-ps[1]]\nres = []\nres.append(ps[2]-v1[1])\nres.append(ps[3]+v1[0])\nres.append(res[0]-v1[0])\nres.append(res[1]-v1[1])\nprint("{} {} {} {}".format(res[0],\n res[1],\n res[2],\n res[3]))']
['Wrong Answer', 'Accepted']
['s765009796', 's908494360']
[12380.0, 13316.0]
[149.0, 167.0]
[205, 335]
p03265
u192908410
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['def next(x1, y1, x2, y2):\n xd = x2 - x1\n yd = y2 - y1\n nyd = xd\n if xd > 0:\n nxd = -1*yd if yd > 0 else yd \n else:\n nxd = -1*yd\n print(xd,yd,nxd,nyd)\n x3 = x2 + nxd\n y3 = y2 + nyd\n return [x3,y3]\n\nx1, y1, x2, y2 = list(map(int,input().split()))\np3 = next(x1,y1,x2,y2)\np4 = next(x2,y2,p3[0],p3[1])\nprint(p3[0],p3[1],p4[0],p4[1])', 'def next(x1,y1,x2,y2):\n xd = x2 - x1\n yd = y2 - y1\n nyd = xd\n nxd = -yd\n return [x2+nxd,y2+nyd]\n\nx1,y1,x2,y2 = list(map(int,input().split()))\nx3,y3 = next(x1,y1,x2,y2)\nx4,y4 = next(x2,y2,x3,y3)\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s112414231', 's429175641']
[3064.0, 3060.0]
[17.0, 17.0]
[342, 217]
p03265
u193264896
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["import sys\nreadline = sys.stdin.buffer.readline\ndef main():\n x1, y1, x2, y2 = map(int, readline().split())\n A = complex(x1, y1)\n B = complex(x2, y2)\n routate = 1j\n C = (B-A) * routate + B\n D = (B-A) * routate + A\n print(C.real, C.imag, D.real, D.imag)\nif __name__ == '__main__':\n main()", "import sys\nreadline = sys.stdin.buffer.readline\ndef main():\n x1, y1, x2, y2 = map(int, readline().split())\n A = complex(x1, y1)\n B = complex(x2, y2)\n routate = 1j\n C = (B-A) * routate + B\n D = (B-A) * routate + A\n print(int(C.real), int(C.imag), int(D.real), int(D.imag))\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s480302225', 's060070402']
[3064.0, 3064.0]
[18.0, 18.0]
[310, 330]
p03265
u197273335
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['l = list(map(int, input().split()))\nprint(l)\na = l[2] - l[0] \nb = l[3] - l[1] \n\nif l[2]>=l[0]:\n if l[3]>l[1]:\n a1 = - b\n b1 = a\n a2 = -a\n b2 = -b\n\n if l[3]<l[1]:\n a1 = b\n b1 = a\n a2 = -a\n b2 = b\n\n x1 = l[2] + a1\n y1 = l[3] + b1\n x2 = x1 + a2\n y2 = y1 + b2\n print(x1, y1, x2, y2)\n exit()\n\nelif l[2]<l[0]:\n if l[3]<=l[1]:\n a1 = b\n b1 = - a\n a2 = a\n b2 = b\n\n if l[3]>l[1]:\n a1 = - b\n b1 = - a\n a2 = a\n b2 = - b\n print("yes")\n\n x1 = l[2] + a1\n y1 = l[3] - b1\n x2 = x1 - a2\n y2 = y1 + b2\n print(x1, y1, x2, y2)\n\n', 'x1, y1, x2, y2 = map(int, input().split())\n\na = x2 - x1\nb = y2 - y1\n\nx3 = x2 - b\ny3 = y2 + a\nx4 = x2 - b - a\ny4 = y2 + a - b\n\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s138132614', 's832285127']
[9208.0, 9172.0]
[26.0, 24.0]
[699, 144]
p03265
u209619667
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\nk = abs(y2-y1)\nm = x2-x1\nprint(k,m)\nprint(x2-k,y2-m,x1-k,y1-m)', 'x1,y1,x2,y2 = map(int,input().split())\nk = y2-y1\nm = x2-x1\nprint(x2-k,y2+m,x1-k,y1+m)']
['Wrong Answer', 'Accepted']
['s460852597', 's874609606']
[2940.0, 2940.0]
[17.0, 17.0]
[101, 85]
p03265
u217627525
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\ndx=x2-x1\ndy=y2-y1\nx3=x2-dy\ny3=x2+dx\nx4=x3-dx\ny4=y3-dy\nprint(x3,y3,x4,y4)', 'x1,y1,x2,y2=map(int,input().split())\ndx=x2-x1\ndy=y2-y1\nx3=x2-dy\ny3=y2+dx\nx4=x3-dx\ny4=y3-dy\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s071450812', 's407820013']
[2940.0, 3060.0]
[17.0, 17.0]
[109, 109]
p03265
u223904637
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["a,b,c,d=map(int,input().split())\nl=[0]*4\nl[0]=c+b-d\nl[1]=d-(a-c)\nl[2]=l[0]+a-c\nl[3]=l[1]-(b-d) \nfor i in range(3):\n print(l[i],end=' ')\nprint(l[3])", "a,b,c,d=map(int,input().split())\nl=[0]*4\nl[0]=c+b-d\nl[1]=d-(a-c)\nl[2]=l[0]+a-c\nl[3]=l[1]+(b-d) \nfor i in range(3):\n print(l[i],end=' ')\nprint(l[3])\n"]
['Wrong Answer', 'Accepted']
['s588065836', 's228768219']
[3064.0, 3060.0]
[17.0, 17.0]
[150, 151]
p03265
u227082700
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split());x3,y3,x4,y4=x2-(y2-y1),y2+(x2-x1),x3-(x2-x1),y3-(y2-y1);print(x3,y3,x4,y4)', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2-(y2-y1)\ny3=y2+(x2-x1)\nx4=x3-(x2-x1)\ny4=y3-(y2-y1)\nprint(x3,y3,x4,y4)']
['Runtime Error', 'Accepted']
['s686014884', 's316330737']
[2940.0, 2940.0]
[17.0, 17.0]
[111, 111]
p03265
u233288243
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['l = input().split()\np = [int(l[0]),int(l[1])]\nq = [int(l[2]),int(l[3])]\nr = [r1,r2]\ns = [s1,s2]\n\nif p[0]==q[0]:\n m = q[1]-p[1]\n r[0]=q[0]-m\n r[1]=q[1]\n s[0]=p[0]-m\n s[1]=p[1]\nelse:\n m = q[0]-p[0]\n r[0] = q[0] \n r[1] = q[1]+m\n s[0] = p[0] \n s[1] = p[1]+m\nprint(str(r1)+" "+str(r2)+" "+str(s1)+" "+str(s2))', 'l = input().split(" ")\np = [int(l[0]),int(l[1])]\nq = [int(l[2]),int(l[3])]\nr = [0,0]\ns = [0,0]\nif p[0]==q[0]:\n m = q[1]-p[1]\n r[0] = q[0]-m\n r[1] = q[1]\n s[0] = p[0]-m\n s[1] = p[1]\nelse:\n v = [q[1]-p[1],q[0]-p[0]]\n r[0]= q[0]-v[0]\n r[1]=q[1]+v[1]\n s[0]=p[0]-v[0]\n s[1]=p[1]+v[1]\nprint(str(r[0])+" "+str(r[1])+" "+str(s[0])+" "+str(s[1]))']
['Runtime Error', 'Accepted']
['s553763334', 's807769814']
[3064.0, 3064.0]
[17.0, 17.0]
[334, 367]
p03265
u252964975
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int, input().split())\nprint(x2+y1-y2,y2-x1+x2,x1-x2+x3,y1-y2+y3)', 'x1,y1,x2,y2=map(int, input().split())\nprint(x2+y1-y2,y2-x1+x2,x1-x2+x2+y1-y2,y1-y2+y2-x1+x2)']
['Runtime Error', 'Accepted']
['s426521364', 's734404941']
[2940.0, 2940.0]
[17.0, 17.0]
[80, 92]
p03265
u253952966
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["x1, y1, x2, y2 = map(int, input().split())\nx3 = x2 - y1 + y2\ny3 = y2 - x1 + x2\nx4 = x3 + y2 - y3\nx4 = y3 - x2 + x3\nprint(' '.join( list(map(str, [x3, y3, x4, y4])) ))", "x1, y1, x2, y2 = map(int, input().split())\nx3 = x2 + y1 - y2\ny3 = y2 - x1 + x2\nx4 = x3 + y2 - y3\ny4 = y3 - x2 + x3\nprint(' '.join( map(str, [x3, y3, x4, y4]) ))"]
['Runtime Error', 'Accepted']
['s213904374', 's107190406']
[2940.0, 2940.0]
[17.0, 17.0]
[166, 160]
p03265
u259707265
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['xy=input().split()\nx1=int(hw[0])\ny1=int(hw[1])\nx2=int(hw[2])\ny2=int(hw[3])\na=x2-x1\nb=y2-y1\nprint(x2-b,y2+a,x1-b,y1+a)', 'xy=input().split()\nx1=int(xy[0])\ny1=int(xy[1])\nx2=int(xy[2])\ny2=int(xy[3])\na=x2-x1\nb=y2-y1\nprint(x2-b,y2+a,x1-b,y1+a)']
['Runtime Error', 'Accepted']
['s824335851', 's609981889']
[3060.0, 3060.0]
[17.0, 17.0]
[117, 117]
p03265
u267300160
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['zahyou=input().rstrip().split(" ")\nx1 = int(zahyou[0])\ny1 = int(zahyou[1])\nx2 = int(zahyou[2])\ny2 = int(zahyou[3])\nif(x1==x2):\n ippen=abs(y1-y2)\n kotae=[x1-ippen,y2,x1-ippen,y1]\n print(kotae)\nelse:\n ippen=abs(x1-x2)\n kotae=[x2,y2-ippen,x1,y2-ippen]\n print(kotae)', 'zahyou=input().rstrip().split(" ")\nx1 = int(zahyou[0])\ny1 = int(zahyou[1])\nx2 = int(zahyou[2])\ny2 = int(zahyou[3])\nif(x1==x2 and y2>y1):\n ippen=y2-y1\n kotae=[x1-ippen,y2,x1-ippen,y1]\nelif(y1==y2 and x2<x1):\n ippen=x1-x2\n kotae=[x2,y2-ippen,x1,y2-ippen]\nelif(x1==x2 and y1>y2):\n ippen=y1-y2\n kotae=[x2+ippen,y2,x1+ippen,y1]\nelse:\n ippen=x2-x1\n kotae=[x2,y2+ippen,x1,y1+ippen]\n \nprint(kotae)', 'x1,y1,x2,y2 = map(int,input().split())\na = x2 - x1\nb = y2 - y1\nprint(x2-b,y2+a,x1-b,y1+a)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s061590378', 's610898787', 's661992742']
[3064.0, 3064.0, 2940.0]
[17.0, 17.0, 17.0]
[280, 416, 90]
p03265
u280552586
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['k = int(input())\nprint((k//2)*((k+1)//2)\n', 'x1, y1, x2, y2 = map(int, input().split())\n\n\nx3 = x2-(y2-y1)\ny3 = y2+(x2-x1)\nx4 = x1-(y2-y1)\ny4 = y1+(x2-x1)\n\nprint(x3, y3, x4, y4)\n']
['Runtime Error', 'Accepted']
['s971616572', 's182884848']
[2940.0, 2940.0]
[18.0, 17.0]
[41, 164]
p03265
u282228874
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\nx4 = x1+y1-y2\ny4 = x2-x1+y1\nx3 = x2+y1-y2\ny3 = x2-x1+y1\nprint(x3,y3,x4,y4)', 'a,b,c,d = map(int,input().split())\nprint(b+c-d,c-a+d,a+b-d,b+c-a)']
['Wrong Answer', 'Accepted']
['s580824418', 's455393418']
[2940.0, 2940.0]
[17.0, 17.0]
[113, 65]
p03265
u309141201
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import numpy as np\nx1, y1, x2, y2 = map(int, input().split())\n# r = int(np.sqrt((x1 - x2)**2 + (y1 - y2)**2))\ndx = abs(x1 - x2)\ndy = abs(y1 - y2)\n# print(dx, dy)\nif x1 > x2:\n y3 = y2 - dx \n if y1 > y2:\n x3 = x2 - dy\n # y3 = y2 \n x4 = x3 + dx\n y4 = y3 - dy\n else:\n x3 = x2 - dy\n # y3 = y2 + dx\n x4 = x3 + dx\n y4 = y3 - dy\nelse:\n y3 = y2 + dx\n if y1 > y2:\n x3 = x2 + dy\n x4 = x3 - dx\n y4 = y3 - dy\n else:\n x3 = x2 + dy\n x4 = x3 - dx\n y4 = y3 - dy\n\nprint(x3, y3, x4, y4)', 'import numpy as np\nx1, y1, x2, y2 = map(int, input().split())\n# r = int(np.sqrt((x1 - x2)**2 + (y1 - y2)**2))\ndx = abs(x1 - x2)\ndy = abs(y1 - y2)\nprint(dx, dy)\nif x1 > x2:\n y3 = y2 - dx \n if y1 > y2:\n x3 = x2 - dy\n # y3 = y2 \n x4 = x3 + dx\n y4 = y3 - dy\n else:\n x3 = x2 - dy\n # y3 = y2 + dx\n x4 = x3 + dx\n y4 = y3 - dy\nelse:\n y3 = y2 + dx\n if y1 > y2:\n x3 = x2 + dy\n x4 = x3 - dx\n y4 = y3 - dy\n else:\n x3 = x2 - dy\n x4 = x3 - dx\n y4 = y3 - dy\n\nprint(x3, y3, x4, y4)', 'x1, y1, x2, y2 = map(int, input().split())\n \nx4 = x1 - (y2 - y1)\ny4 = y1 + (x2 - x1)\n \nx3 = x4 - (y1 - y4)\ny3 = y4 + (x1 - x4)\n \nprint(x3, y3, x4, y4)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s326186063', 's623271264', 's618916605']
[12508.0, 12508.0, 3060.0]
[149.0, 153.0, 17.0]
[583, 581, 150]
p03265
u325119213
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['def actual(x1, y1, x2, y2):\n a = x2 - x1\n b = y2 - y1\n\n x3, y3 = x2 - b, y2 + a\n x4, y4 = x3 - a, y3 - b\n\n return x3, y3, x4, y4\n\nx1, y1, x2, y2 = map(int, input().split())\nprint(actual(x1, y1, x2, y2))', "def actual(x1, y1, x2, y2):\n a = x2 - x1\n b = y2 - y1\n\n x3, y3 = x2 - b, y2 + a\n x4, y4 = x3 - a, y3 - b\n\n # return f'{x3} {y3} {x4} {y4}'\n return '{} {} {} {}'.format(x3, y3, x4, y4)\n\nx1, y1, x2, y2 = map(int, input().split())\nprint(actual(x1, y1, x2, y2))\n"]
['Wrong Answer', 'Accepted']
['s485328439', 's297074212']
[2940.0, 2940.0]
[17.0, 17.0]
[217, 276]
p03265
u325956328
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["import numpy as np\n\nx1, y1, x2, y2 = map(int, input().split())\n\na = np.array([[x1], [y1]])\nb = np.array([[x2], [y2]])\n\nrot = np.array([[0, -1], [1, 0]])\nab = b - a\nbc = np.dot(rot, ab)\n\nc = b + bc\nd = a + bc\n\n# print(a, b)\n# print(c, d)\n\nprint(*c.flatten()+' '+*d.flatten())", 'import numpy as np\n\nx1, y1, x2, y2 = map(int, input().split())\n\na = np.array([[x1], [y1]])\nb = np.array([[x2], [y2]])\n\nrot = np.array([[0, -1], [1, 0]])\nab = b - a\nbc = np.dot(rot, ab)\n\nc = b + bc\nd = a + bc\n\n# print(a, b)\n# print(c, d)\n\nprint(*c.flatten(), end=" ")\nprint(*d.flatten())\n']
['Runtime Error', 'Accepted']
['s773678177', 's668550345']
[3064.0, 12500.0]
[17.0, 150.0]
[274, 287]
p03265
u328131364
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\n\ndiff_x = x2 - x1\ndiff_y = y2 - y1\n\nx3 = x1 - diff_y\ny3 = y1 + diff_x\n\nx4 = x2 - diff_y\ny4 = y2 + diff_x\n\nprint("{} {} {} {}".format(x3, y3, x4, y4))', 'x1, y1, x2, y2 = map(int, input().split())\n\ndiff_x = x2 - x1\ndiff_y = y2 - x2\n\nx3 = x1 - diff_y\ny3 = y1 + diff_x\n\nx4 = x2 - diff_y\ny4 = y2 + diff_x\n\nprint("{} {} {} {}".format(x3, y3, x4, y4))', 'x1, y1, x2, y2 = map(int, input().split())\n\ndiff_x = x2 - x1\ndiff_y = y2 - y1\n\nx4 = x1 - diff_y\ny4 = y1 + diff_x\n\nx3 = x2 - diff_y\ny3 = y2 + diff_x\n\nprint("{} {} {} {}".format(x3, y3, x4, y4))']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s464453715', 's783708115', 's370140720']
[3060.0, 3060.0, 3060.0]
[18.0, 18.0, 18.0]
[192, 192, 192]
p03265
u329058683
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nh=x1-x2\nv=y1-y2\nprint(str(x2-v)+" "+str(y2+h)+" "+str(x1-v)+" "+str(y1+h))', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2-(y2-y1)\ny3=y2+(x2-x1)\nx4=x3-(y3-y2)\ny4=y3+(x3-x2)\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s703001831', 's141631827']
[2940.0, 2940.0]
[17.0, 17.0]
[111, 111]
p03265
u339199690
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\n\nx = x2 - x1\ny = y2 - y1\nprint(y2 - y, y2 + x, x1 - y, y1 + x)\n', 'x1, y1, x2, y2 = map(int, input().split())\n\nx = x2 - x1\ny = y2 - y1\nprint(x2 - y, y2 + x, x1 - y, y1 + x)\n']
['Wrong Answer', 'Accepted']
['s893983876', 's329853873']
[2940.0, 2940.0]
[18.0, 18.0]
[106, 106]
p03265
u344888046
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\n\na, b = abs(x2 - x1), abs(y1 - y2)\n\nprint(a, b)\n\nif (x1 <= x2)and(y1 <= y2):\n x3, y3 = x2 - b, y2 + a\n x4, y4 = x3 - a, y3 - b\nelif (x1 > x2)and(y1 < y2):\n x3, y3 = x2 - b, y2 - a\n x4, y4 = x3 + a, y3 - b\nelif (x1 > x2)and(y1 > y2):\n x3, y3 = x2 + b, y2 - a\n x4, y4 = x3 + a, y3 + b\nelif (x1 < x2)and(y1 > y2):\n x3, y3 = x2 + b, y2 + a\n x4, y4 = x3 - a, y3 + b\n\n\nprint("{} {} {} {}".format(x3, y3, x4, y4))', 'x1, y1, x2, y2 = map(int, input().split())\n\na, b = abs(x2 - x1), abs(y1 - y2)\n\nif (x1 <= x2)and(y1 <= y2):\n x3, y3 = x2 - b, y2 + a\n x4, y4 = x3 - a, y3 - b\nelif (x1 >= x2)and(y1 <= y2):\n x3, y3 = x2 - b, y2 - a\n x4, y4 = x3 + a, y3 - b\nelif (x1 >= x2)and(y1 >= y2):\n x3, y3 = x2 + b, y2 - a\n x4, y4 = x3 + a, y3 + b\nelif (x1 <= x2)and(y1 >= y2):\n x3, y3 = x2 + b, y2 + a\n x4, y4 = x3 - a, y3 + b\n\nprint(x3, y3, x4, y4)']
['Runtime Error', 'Accepted']
['s360123139', 's848123179']
[9192.0, 9028.0]
[29.0, 29.0]
[473, 443]
p03265
u346194435
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x, y, xx, yy = input().split()\nx = int(x)\ny = int(y)\nxx = int(xx)\nyy = int(yy)\n\nxdiff = (xx-x)\nydiff = (yy-y)\n\nif xdiff < 0 and ydiff < 0:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx+ydiff),str(yy-xdiff),str(x+ydiff),str(y-xdiff))\nelif 0 < xdiff and 0 < ydiff:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx-ydiff),str(yy+xdiff),str(x-ydiff),str(y+xdiff))\nelif xdiff < 0 and 0 < ydiff:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx-ydiff),str(yy-xdiff),str(x-ydiff),str(y-xdiff))\nelse:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx+ydiff),str(yy+xdiff),str(x+ydiff),str(y+xdiff))', 'x, y, xx, yy = input().split()\nx = int(x)\ny = int(y)\nxx = int(xx)\nyy = int(yy)\n\nxdiff = (xx-x)\nydiff = (yy-y)\n\nif xdiff <= 0 and ydiff <= 0:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx+ydiff),str(yy-xdiff),str(x+ydiff),str(y-xdiff))\nelif 0 <= xdiff and 0 <= ydiff:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx-ydiff),str(yy+xdiff),str(x-ydiff),str(y+xdiff))\nelif xdiff <= 0 and 0 <= ydiff:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx-ydiff),str(yy-xdiff),str(x-ydiff),str(y-xdiff))\nelse:\n xdiff = abs(xx-x)\n ydiff = abs(yy-y)\n print(str(xx+ydiff),str(yy+xdiff),str(x+ydiff),str(y+xdiff))']
['Wrong Answer', 'Accepted']
['s500659233', 's336651343']
[3064.0, 3064.0]
[17.0, 18.0]
[640, 646]
p03265
u360842608
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['def answer(in0, in1, in2, in3):\n x1 = int(in0)\n y1 = int(in1)\n x2 = int(in2)\n y2 = int(in3)\n\n width = (x2 - x1)\n height = (y2 - y1)\n\n x3 = x2 - height\n y3 = y2 + width\n x4 = x1 - height\n y4 = y1 + width\n\n print(x3, y3, x4, y4)\n\nanswer(input(), input(), input(), input())\n', 'def answer(in0):\n nums = [int(n) for n in in0.split(" ")]\n x1 = int(nums[0])\n y1 = int(nums[1])\n x2 = int(nums[2])\n y2 = int(nums[3])\n\n width = (x2 - x1)\n height = (y2 - y1)\n\n x3 = x2 - height\n y3 = y2 + width\n x4 = x1 - height\n y4 = y1 + width\n\n print(x3, y3, x4, y4)\n\nanswer(input())']
['Runtime Error', 'Accepted']
['s850279594', 's294699763']
[2940.0, 3064.0]
[17.0, 17.0]
[304, 321]
p03265
u368796742
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a,b,c,d = map(int,input().split())\nprint(c+(d-b),d-(c-a),c+d-b-c+a,d-c+a-d+b)', 'a,b,c,d = map(int,input().split())\nprint(c-(d-b),d+(c-a),c-d+b-c+a,d+c-a-d+b)\n']
['Wrong Answer', 'Accepted']
['s412873388', 's970980723']
[2940.0, 2940.0]
[17.0, 18.0]
[77, 78]
p03265
u371467115
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nx=x1-x2;y=y1-y2\nprint(x2+y,y2-x,x1-y,y1+x)', 'x1,y1,x2,y2=map(int,input().split())\nx=x1-x2;y=y1-y2\nprint(x2+y,y2-x,x1+y,y1-x)\n']
['Wrong Answer', 'Accepted']
['s064003053', 's605758237']
[2940.0, 2940.0]
[18.0, 18.0]
[79, 80]
p03265
u382431597
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import sys\nx1,y1,x2,y2 = list(map(int, input().split()))\n\nx3 = x2 - (y1 - y2)\ny3 = y2 + (x1 - x2)\nx4 = x3 - (y2 - y3)\ny4 = y3 + (x2 - x3)\n\nprint(x3,y3,x4,y4)', 'import sys\nx1,y1,x2,y2 = list(map(int, input().split()))\n\nx3 = x2 + (y1 - y2)\ny3 = y2 - (x1 - x2)\nx4 = x3 + (y2 - y3)\ny4 = y3 - (x2 - x3)\n\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s077876126', 's328849540']
[3060.0, 3060.0]
[17.0, 17.0]
[157, 157]
p03265
u384679440
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nx = x1 - x2\ny = y1 - y2\nprint(c - y, d + x, a - y, b + x)', 'a, b, c, d = map(int, input().split())\nx = x1 - x2\ny = y1 - y2\nprint(c - y, d + x, a - y, b + x)', 'a, b, c, d = map(int, input().split())\nx = a - c\ny = b - d\nprint(c - y, d + x, a - y, b + x)', 'a, b, c, d = map(int, input().split())\nx = c - a\ny = d - b\nprint(c - y, d + x, a - y, b + x)']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s089905100', 's191834373', 's225520156', 's693043509']
[2940.0, 2940.0, 2940.0, 2940.0]
[23.0, 17.0, 17.0, 17.0]
[100, 96, 92, 92]
p03265
u410118019
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nx3=x2+y2-y1\ny3=y2-x2+x1\nx4=x1+y2-y1\ny4=y1-x2+x1\nprint(x3,y3,x4,y4)', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2-y2+y1\ny3=y2+x2-x1\nx4=x1-y2+y1\ny4=y1+x2-x1\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s731769135', 's102750964']
[2940.0, 2940.0]
[17.0, 17.0]
[103, 103]
p03265
u416223629
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['o', "a=list(map(int,input().split()))\nx1=a[0]\ny1=a[1]\nx2=a[2]\ny2=a[3]\nx=x2-x1\ny=y2-y1\nprint(str(x2-y)+' '+str(x1-y)+' '+str(x1-y)+' '+str(y1+x))\n", 'X1, Y1, X2, Y2 = map(int, input().split())\nX3, Y3 = X2-(Y2-Y1), Y2+(X2-X1)\nX4, Y4 = X3-(Y3-Y2), Y3+(X3-X2)\nprint(X3, Y3, X4, Y4)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s216838122', 's252654782', 's148522153']
[2940.0, 3064.0, 3064.0]
[17.0, 17.0, 17.0]
[1, 140, 128]
p03265
u421815567
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a = list(map(int, input().split(" ")))\nprint(a)\n\np1 = (a[0], a[1])\np2 = (a[2], a[3])\n\ndif = (p2[0]-p1[0], p2[1]-p1[1])\n\np3 = (p2[0]-dif[1], p2[1]+dif[0])\np4 = (p3[0]-dif[0], p3[1]-dif[1])\n\nprint(p3[0], p3[1], p4[0], p4[1])', 'a = list(map(int, input().split(" ")))\n \np1 = (a[0], a[1])\np2 = (a[2], a[3])\n \ndif = (p2[0]-p1[0], p2[1]-p1[1])\n \np3 = (p2[0]-dif[1], p2[1]+dif[0])\np4 = (p3[0]-dif[0], p3[1]-dif[1])\n \nprint(p3[0], p3[1], p4[0], p4[1])']
['Wrong Answer', 'Accepted']
['s147254613', 's787776098']
[3064.0, 3064.0]
[17.0, 17.0]
[222, 217]
p03265
u426108351
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nx = x2 - x1\ny = y2 - y1\nx3 = x2 + y\ny3 = y2 - x\nx4 = y1 - y\ny4 = y1 + x\nprint(x3, y3, x4, y4)', 'x1, y1, x2, y2 = map(int, input().split())\nx = x2 - x1\ny = y2 - y1\nx3 = x2 + y\ny3 = y2 - x\nx4 = x1 - y\ny4 = y1 + x\nprint(x3, y3, x4, y4)\n', 'x1, y1, x2, y2 = map(int, input().split())\nx = x2 - x1\ny = y2 - y1\nx3 = x2 + y\ny3 = y2 - x\nx4 = x1 + y\ny4 = y1 - x\nprint(x3, y3, x4, y4)', 'x1, y1, x2, y2 = map(int, input().split())\nx = x2 - x1\ny = y2 - y1\nx3 = x2 - y\ny3 = y2 + x\nx4 = x1 - y\ny4 = y1 + x\nprint(x3, y3, x4, y4)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s015948872', 's789241818', 's938699189', 's903461489']
[3060.0, 2940.0, 3060.0, 2940.0]
[18.0, 18.0, 19.0, 17.0]
[136, 137, 136, 137]
p03265
u430771494
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['b = list(map(int, input().split()))\nx1=b[0]\ny1=b[1]\nx2=b[2]\ny2=b[3]\nkyori=x1-x2\nx3=x2\ny3=y2-kyori\nx4=x1\ny4=y1-kyori\nprint(x3,y3,x4,y4)', 'b = list(map(int, input().split()))\nx1=b[0]\ny1=b[1]\nx2=b[2]\ny2=b[3]\nxkyori=abs(x1-x2)\nykyori=abs(y1-y2)\nif x1>=x2:\n if y1>=y2:\n print(x2+ykyori,y2-xkyori,x1+ykyori,y1-xkyori)\n else:\n print(x2-ykyori,y2-xkyori,x1-ykyori,y1-xkyori)\nelse:\n if y1>=y2:\n print(x2 + ykyori, y2 + xkyori, x1 + ykyori, y1 + xkyori)\n else:\n print(x2-ykyori,y2+xkyori,x1-ykyori,y1+xkyori)']
['Wrong Answer', 'Accepted']
['s923570893', 's135891610']
[3060.0, 3064.0]
[18.0, 17.0]
[134, 401]
p03265
u430928274
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nnx = x2\nny = y2\nl = []\nfor i in range(2) :\n dx, dy = -dy, dx\n nx += dx\n ny += dy\n l.append(nx)\n l.append(ny)\nprint(l[0], l[1], l[2], l[3])\n', 'x1, y1, x2, y2 = map(int, input().split())\ndx = x2 - x1\ndy = y2 - y1\nnx = x2\nny = y2\nl = []\nfor i in range(2) :\n dx, dy = -dy, dx\n nx += dx\n ny += dy\n l.append(nx)\n l.append(ny)\nprint(l[0], l[1], l[2], l[3])\n']
['Runtime Error', 'Accepted']
['s753853570', 's833791053']
[9132.0, 9144.0]
[25.0, 25.0]
[197, 223]
p03265
u432333240
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import numpy as np\nx1_, y_1, x_2, y_2 = map(int, input().split())\n\nx_4 = x_1 - (y_2 - y_1)\ny_4 = y_1 + (x_2 - x_1)\nx_3 = x_4 - (y_1 - y_4)\ny_3 = y_4 + (x_1 - x_4)\n \nprint(x_3, y_3, x_4, y_4)', 'x_1, y_1, x_2, y_2 = map(int, input().split())\n\nx_4 = x_1 - (y_2 - y_1)\ny_4 = y_1 + (x_2 - x_1)\nx_3 = x_4 - (y_1 - y_4)\ny_3 = y_4 + (x_1 - x_4)\n \nprint(x_3, y_3, x_4, y_4)']
['Runtime Error', 'Accepted']
['s785685632', 's783685366']
[13072.0, 3060.0]
[160.0, 17.0]
[190, 171]
p03265
u445628522
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x_1,y_1,x_2,y_2=map(int,input().split())\nx_3=-(y_2-y_1)+x_1\ny_3=(x_1-x_2)+y_1\nx_4=(x_3-x_1)+(x_2-x_1)+x_1\ny_4=(y_3-y_1)+(y_2-y_1)+y_1\nprint(x_3 y_3 x_4 y_4)', 'x_1, y_1, x_2, y_2 = map(int, input().split())\nx_3 = x_2 - y_2 + y_1\ny_3 = y_2 + x_2 - x_1\nx_4 = x_3 - x_2 + x_1\ny_4 = y_3 - y_2 + y_1\nprint(x_3, y_3, x_4, y_4)\n']
['Runtime Error', 'Accepted']
['s440251107', 's216770394']
[2940.0, 2940.0]
[17.0, 17.0]
[156, 161]
p03265
u452015170
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int,input().split())\ndeltax = x2 - x1\ndeltay = y2 - y1\nx3 = x2 - deltay\ny3 = y2 + deltax\nx4 = x1 - deltay\ny4 = y1 + deltax\nprint(x3, y3, x2, y2)', 'x1, y1, x2, y2 = map(int,input().split())\ndeltax = x2 - x1\ndeltay = y2 - y1\nx3 = x2 - deltay\ny3 = y2 + deltax\nx4 = x1 - deltay\ny4 = y1 + deltax\nprint(x3, y3, x4, y4)']
['Wrong Answer', 'Accepted']
['s236431426', 's417377993']
[3060.0, 2940.0]
[17.0, 17.0]
[165, 165]
p03265
u455696302
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=[int(i) for i in input().split()]\n\ndx = x2 - x1\ndy = y2 - y1\n\nprint(x2-dy,y2+dy,x1-dy,y1+dx)', 'x1,y1,x2,y2=[int(i) for i in input().split()]\n\ndx = x2 - x1\ndy = y2 - y1\n\nprint(x2-dy,y2+dx,x1-dy,y1+dx)']
['Wrong Answer', 'Accepted']
['s907928752', 's468140823']
[2940.0, 2940.0]
[17.0, 17.0]
[104, 104]
p03265
u455957070
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\na = x2 - x1\nb = y2 - y1\nx3 = x2 - a\ny3 = y2 + b\nx4 = x1 - a\ny4 = y1 + b\nprint(x3,y3,x4,y4)', 'x1,y1,x2,y2 = map(int,input().split())\na = x2 - x1\nb = y2 - y1\nx3 = x2 - b\ny3 = y2 + a\nx4 = x1 - b\ny4 = y1 + a\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s977628809', 's553971306']
[9124.0, 9052.0]
[28.0, 31.0]
[129, 129]
p03265
u463655976
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import numpy as np\np = map(int, input().split())\nps = list(map(lambda x, y: np.array([x, y]), p[::2], p[1::2]))+ [None, None]\n\nans = ""\nfor s, d, i in zip(ps[0:-1], ps[1:], range(2,4)):\n v = d - s\n s = d\n d = s + v.dot([[0,1], [-1,0]])\n ans += " ".join(map(str, d))\n ps[i] = d\nprint(ans[1:])\n', 'p = list(map(int, input().split()))\ns, d = list(map(lambda x, y: x + y * 1j, p[::2], p[1::2]))\n\nans = ""\nfor _ in range(2):\n v = d - s\n s = d\n d = s + v * 1j\n ans += " {:.0f} {:.0f}".format(d.real, d.imag)\nprint(ans[1:])\n']
['Runtime Error', 'Accepted']
['s046720245', 's961380002']
[12500.0, 3060.0]
[151.0, 17.0]
[297, 225]
p03265
u464205401
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=list(map(int,input().split()))\n\nif x2>x1 and y2>y1:\n x3=x2-abs(y2-y1);y3=y2+abs(x2-x1);x4=x3-abs(y3-y2);y4=y3-abs(x3-x2)\n\nelif x2<x1 and y2>y1:\n x3=x2-abs(y2-y1);y3=y2-abs(x2-x1);x4=x3+abs(y3-y2);y4=y3-abs(x3-x2)\n\nelif x2<x1 and y2<y1:\n x3=x2+abs(y2-y1);y3=y2-abs(x2-x1);x4=x3+abs(y3-y2);y4=y3+abs(x3-x2)\n\nelif x2>x1 and y2<y1:\n x3=x2+abs(y2-y1);y3=y2+abs(x2-x1);x4=x3-abs(y3-y2);y4=y3+abs(x3-x2)\n\n \nprint(x3,y3,x4,y4)\n', 'x1,y1,x2,y2=list(map(int,input().split()))\nx=y2-y1\ny=x2-x1 \nprint(x2-x,y2+y,x1-x,y1+y)\n']
['Runtime Error', 'Accepted']
['s088047588', 's494281706']
[3064.0, 2940.0]
[18.0, 17.0]
[436, 88]
p03265
u466335531
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nprint(x2+y2-y1,y2+x2-x1,x1+y2-y1,y1+x2-x1)', 'x1,y1,x2,y2=map(int,input().split())\nprint(x2-y2+y1,y2+x2-x1,x1-y2+y1,y1+x2-x1)']
['Wrong Answer', 'Accepted']
['s368163411', 's858040246']
[2940.0, 2940.0]
[17.0, 17.0]
[79, 79]
p03265
u473633103
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['# coding: utf-8\n# Your code here!\nx1,y1,x2,y2 = map(int,input().split())\n\nprint(x1,y1,x2,y2)\ntx = y1-y2\nty = x2-x1\n\nprint(x2+tx,y2+ty,x1+tx,y1+ty)', '# coding: utf-8\n# Your code here!\nx1,y1,x2,y2 = map(int,input().split())\n\ntx = y1-y2\nty = x2-x1\n\nprint(x2+tx,y2+ty,x1+tx,y1+ty)']
['Wrong Answer', 'Accepted']
['s320859436', 's630378818']
[2940.0, 2940.0]
[18.0, 18.0]
[146, 127]
p03265
u514894322
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1,x2,y2 = map(int,input().split())\nx3 = x2 - (y2-y1)\ny3 = y2 + (x2-x1)\nx4 = x3 - (y3-y2)\ny4 = y4 + (x3-x3)\nprint(x3,y3,x4,y4)', 'x1, y1,x2,y2 = map(int,input().split())\nx3 = x2 - (y2-y1)\ny3 = y2 + (x2-x1)\nx4 = x3 - (y3-y2)\ny4 = y3 + (x3-x2)\nprint(x3,y3,x4,y4)']
['Runtime Error', 'Accepted']
['s944436366', 's302265230']
[2940.0, 2940.0]
[17.0, 18.0]
[130, 130]
p03265
u518556834
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\nd1 = abs(x2-x1)\nd2 = abs(y2-y1)\nx3 = x2 + d2\ny3 = y2 + d1\nx4 = x1 + d1\ny4 = y1 + d2\nprint(x3 y3 x4 y4)\n', 'x1,y1,x2,y2 = map(int,input().split())\nd1 = abs(x2-x1)\nd2 = abs(y2-y1)\nx3 = x2 + d2\ny3 = y2 + d1\nx4 = x1 + d1\ny4 = y1 + d2\nprint(str("x3 y3 x4 y4"))\n', 'x1,y1,x2,y2 = map(int,input().split())\nd1 = x2-x1\nd2 = y2-y1\nx3 = x2 - d2\ny3 = y2 + d1\nx4 = x1 - d2\ny4 = y1 + d1\nprint(x3,y3,x4,y4)\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s276099170', 's982868092', 's214040806']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[142, 149, 132]
p03265
u527925554
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a, b, c, d = map(int, input().split())\n\nx ,y = c - a, d - b\nprint(a - y, b + x, c - y , c + x)', 'a, b, c, d = map(int, input().split())\n\nx ,y = c - a, d - b\nprint(c - y, d + x, a - y , b + x)']
['Wrong Answer', 'Accepted']
['s235319618', 's281194111']
[2940.0, 2940.0]
[17.0, 17.0]
[94, 94]
p03265
u534953209
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\n\nx3 = x2 + (y1 - y2)\ny3 = y2 - (x1 - x2)\nx4 = x3 + (x1 - x2)\ny4 = y3 - (y1 - y2)\n\nprint(x3, y3, x4, y4)\n', 'x1, y1, x2, y2 = map(int, input().split())\n\nx3 = x2 + (y1 - y2)\ny3 = y2 - (x1 - x2)\nx4 = x3 + (x1 - x2)\ny4 = y3 + (y1 - y2)\n\nprint(x3, y3, x4, y4)\n']
['Wrong Answer', 'Accepted']
['s479317688', 's089148474']
[3064.0, 2940.0]
[17.0, 17.0]
[147, 147]
p03265
u536685012
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['n = list(map(int,input().split()))\n\np1 = (int(n[0]) + int(n[1]) * 1j)\np2 = (int(n[2]) + int(n[3]) * 1j)\n\np3 = (p2 - p1) * 1j + p2\np4 = p3 + (p1 - p2)\n\nprint(p3.real, p3.imag, p4.real, p4.imag)\n', 'n = list(map(int,input().split()))\n\np1 = (n[0] + n[1]j)\np2 = (n[2] + n[3]j)\n\np3 = (p1 - p2) * j + p2\np4 = p3 + (p1 - p2)\n\nprint(real(p3),img(p3),real(p4)img(p4))', 'n = list(map(int,input().split()))\n\np1 = (int(n[0]) + int(n[1]) * 1j)\np2 = (int(n[2]) + int(n[3]) * 1j)\n\np3 = (p1 - p2) * 1j + p2\np4 = p3 + (p1 - p2)\n\nprint(p3.real, p3.imag, p4.real, p4.imag)', 'n = list(map(int,input().split()))\n\np1 = (int(n[0]) + int(n[1]) * 1j)\np2 = (int(n[2]) + int(n[3]) * 1j)\n\np3 = (p2 - p1) * 1j + p2\np4 = p3 + (p1 - p2)\n\nprint(int(p3.real9), int(p3.imag), int(p4.real), int(p4.imag))', 'n = list(map(int,input().split()))\n\np1 = (int(n[0]) + int(n[1]) * 1j)\np2 = (int(n[2]) + int(n[3]) * 1j)\n\np3 = (p2 - p1) * 1j + p2\np4 = p3 + (p1 - p2)\n\nprint(int(p3.real), int(p3.imag), int(p4.real), int(p4.imag))']
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s429160364', 's491151757', 's529509879', 's837661975', 's623561291']
[3060.0, 2940.0, 3060.0, 3060.0, 3060.0]
[17.0, 17.0, 17.0, 17.0, 17.0]
[193, 161, 192, 213, 212]
p03265
u540761833
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = list(map(int,input().split()))\nxdis = x2-x1\nydis = y2-y1\nprint(x2-ydis,y2+xdis,x1-xdis,y1+ydis)', 'x1,y1,x2,y2 = list(map(int,input().split()))\nxdis = x2-x1\nydis = y2-y1\nprint(x2-ydis,y2+xdis,x1-ydis,y1+xdis)']
['Wrong Answer', 'Accepted']
['s146312882', 's551846009']
[2940.0, 2940.0]
[17.0, 17.0]
[109, 109]
p03265
u545850453
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['1,y1,x2,y2=[int(s) for s in input().split()]\n(dx,dy)=(x2-x1,y2-y1)\nprint(x2-dy,y2+dx,x1-dy,y1+dx)', 'x1,y1,x2,y2=[int(s) for s in input().split()]\n(dx,dy)=(x2-x1,y2-y1)\nprint(x2-dy,y2+dx,x1-dy,y1+dx)']
['Runtime Error', 'Accepted']
['s437151009', 's034210753']
[2940.0, 2940.0]
[17.0, 17.0]
[97, 98]
p03265
u546853743
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nif y2>y1:\n y3=y1-abs(x2-x1)\nelse:\n y3=y1+abs(x2-x1)\n\nif x2>x1:\n x3=x1+abs(y2-y1)\nelse:\n x3=x1-abs(y2-y1)\n\nx4=x1+x3-x2\ny4=y1+y3-y2\n\nprint(x3,y3,x4,y4)', 'x1,y1,x2,y2=map(int,input().split())\nif y2>=y1 and x2>=x1:\n y3=y2+abs(x2-x1)\n x3=x2-abs(y2-y1)\nelif y2>=y1 and x1>x2:\n x3=x2-abs(y2-y1)\n y3=y2-abs(x2-x1)\nelif y1>y2 and x2>=x1:\n x3=x2+abs(y2-y1)\n y3=y2+abs(x2-x1)\nelif y1>y2 and x1>x2:\n x3=x2+abs(y2-y1)\n y3=y2-abs(x2-x1)\n\nx4=x1+x3-x2\ny4=y1+y3-y2\n\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s691347194', 's997056609']
[9196.0, 9172.0]
[28.0, 32.0]
[198, 339]
p03265
u548624367
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a,b,c,d=map(int,input().split())\ny,x=c-a,d-b\nprint("{} {} {} {}".format(c+x,d+y,a-x,b-y))', 'a,b,c,d=map(int,input().split())\ny,x=c-a,d-b\nprint("{} {} {} {}".format(c-x,d+y,a-x,b+y))']
['Wrong Answer', 'Accepted']
['s303889300', 's279693156']
[2940.0, 2940.0]
[17.0, 17.0]
[89, 89]
p03265
u555688810
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import bisect,collections,copy,heapq,itertools,math,numpy,string\nimport sys\ndef S(): return sys.stdin.readline().rstrip()\ndef I(): return int(sys.stdin.readline().rstrip())\ndef SS(): return map(str,sys.stdin.readline().rstrip().split())\ndef II(): return map(int,sys.stdin.readline().rstrip().split())\ndef LI(): return list(map(int,sys.stdin.readline().rstrip().split()))\ndef LS(): return list(sys.stdin.readline().rstrip().split())\n\nx1,y1,x2,y2 = II()\nnorm = ((x1-x2)**2 + (y1-y2)**2) ** (0.5)\nradian = math.atan2(y1-y2,x1-x2)\n\nif radian >= 0:\n x3 = x2 + norm * math.sin(radian)\n y3 = y2 + norm * math.cos(radian)\n\n x4 = x1 + norm * math.sin(radian)\n y4 = y1 + norm * math.cos(radian)\nelse:\n x3 = x2 + norm * math.sin(radian)\n y3 = y2 - norm * math.cos(radian)\n\n x4 = x1 + norm * math.sin(radian)\n y4 = y1 - norm * math.cos(radian)\n\nprint(int(x3),int(y3),int(x4),int(y4))', 'import bisect,collections,copy,heapq,itertools,math,numpy,string\nimport sys\ndef S(): return sys.stdin.readline().rstrip()\ndef I(): return int(sys.stdin.readline().rstrip())\ndef SS(): return map(str,sys.stdin.readline().rstrip().split())\ndef II(): return map(int,sys.stdin.readline().rstrip().split())\ndef LI(): return list(map(int,sys.stdin.readline().rstrip().split()))\ndef LS(): return list(sys.stdin.readline().rstrip().split())\n\nx1,y1,x2,y2 = II()\n\n\nx3=x2+(y1-y2)\ny3=y2-(x1-x2)\nx4=x1+(y1-y2)\ny4=y1-(x1-x2)\n\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s344323306', 's775091349']
[21384.0, 12504.0]
[314.0, 147.0]
[879, 529]
p03265
u559823804
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nprint((y2-y1)+x2,-1*(x2-x1)+y2,-1*(y1-y2)+x1,(x1-x2)+y1)', 'x1,y1,x2,y2=map(int,input().split())\nprint(-1*(y2-y1)+x2,(x2-x1)+y2,(y1-y2)+x1,-1*(x1-x2)+y1)']
['Wrong Answer', 'Accepted']
['s092417299', 's637203187']
[2940.0, 2940.0]
[17.0, 18.0]
[93, 93]
p03265
u564902833
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["%%test_input https://abc108.contest.atcoder.jp/tasks/abc108_b\nx1, y1, x2, y2 = map(int, input().split())\ndx = x2 - x1\ndy = y2 - y1\nx3, y3 = x2 - dy, y2 + dx\nx4, y4 = x3 - dx, y3 - dy\nprint('{} {} {} {}'.format(x3, y3, x4, y4))", "x1, y1, x2, y2 = map(int, input().split())\ndx = x2 - x1\ndy = y2 - y1\nx3, y3 = x2 - dy, y2 + dx\nx4, y4 = x3 - dx, y3 - dy\nprint('{} {} {} {}'.format(x3, y3, x4, y4))"]
['Runtime Error', 'Accepted']
['s865675867', 's387112035']
[2940.0, 3060.0]
[17.0, 17.0]
[226, 164]
p03265
u581337384
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['length = int(input())\ns = input()\n\nif s[:length // 2] == s[length // 2:]:\n print("Yes")\nelse:\n print("No")\n', 'length = int(input())\ns = input()\n\nif s[:length // 2] == s[length // 2:]:\n print("Yes")\nelse:\n print("No")\n', 'Ax, Ay, Bx, By = map(int, input().split())\nx = Ax - Bx\ny = Ay - By\n\nprint(Bx + y, By - x, Ax + y, Ay - x)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s884472773', 's894436774', 's551681526']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[113, 113, 106]
p03265
u584083761
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['n = list(map(int, input().split()))\n\na,b = (n[2] - n[0]), (n[3] - n[1])\n\no1,o2 = (n[2] - b), (n[3] + a)\no3,o4 = (o1 - a),(o2 - b)\n\nprint(" ".join([o1,o2,o3,o4]))', 'n = list(map(int, input().split()))\n\na,b = (n[2] - n[0]), (n[3] - n[1])\n\no1,o2 = (n[2] - b), (n[3] + a)\no3,o4 = (o1 - a),(o2 - b)\n\nprint(" ".join(list(map(str, [o1,o2,o3,o4]))))']
['Runtime Error', 'Accepted']
['s931576078', 's052497605']
[3188.0, 3060.0]
[19.0, 18.0]
[161, 177]
p03265
u589381719
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nx=x2-x1\ny=y2-y1\nprint(x2-y, y2+x, x1-y1, y1+x)', 'x1,y1,x2,y2=map(int,input().split())\nx=x2-x1\ny=y2-y1\nprint(x2-y, y2+x, x1-y, y1+x)']
['Wrong Answer', 'Accepted']
['s450835755', 's285868472']
[2940.0, 2940.0]
[17.0, 17.0]
[83, 82]
p03265
u589432040
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nprint(x2+y2-y1, y2+x2-x1, x1+y1-y2, y1-x1+x2)\n', 'x1, y1, x2, y2 = map(int, input().split())\nprint(x2+y2-y1, y2+x2-x1, x1+y1-y2, y1+x1-x2)', 'x1, y1, x2, y2 = map(int, input().split())\nprint(x2-y2+y1, y2+x2-x1, x1+y1-y2, y1-x1+x2)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s098525067', 's765562609', 's196343880']
[2940.0, 2940.0, 2940.0]
[18.0, 17.0, 17.0]
[89, 88, 89]
p03265
u589726284
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nx = x2 - x1\ny = y2 - y1\nprint(x, y)\nz = int((x**2 + y**2) ** (1/2))\nx3 = x2 - y\ny3 = y2 + x\nx4 = x1 - y\ny4 = y1 + x\nprint(x3, y3, x4, y4)\n', 'x1, y1, x2, y2 = map(int, input().split())\nx = x2 - x1\ny = y2 - y1\nz = int((x**2 + y**2) ** (1/2))\nx3 = x2 - y\ny3 = y2 + x\nx4 = x1 - y\ny4 = y1 + x\nprint(x3, y3, x4, y4)\n']
['Wrong Answer', 'Accepted']
['s330854136', 's888496211']
[3188.0, 3060.0]
[17.0, 18.0]
[181, 169]
p03265
u593567568
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\n\ndx = x1 - x2 #-4\ndy = y1 - y2 #-3\n\nx3,y3 = y2 - dy,x2 - dx\nx4,y4 = x3 + dx,y3 + dy\n\nprint(x3,y3,x4,y4)\n', 'x1,y1,x2,y2 = map(int,input().split())\n\ndx = x1 - x2 #-4\ndy = y1 - y2 #-3\n\nx3,y3 = x2 - dy,y2 - dx\nx4,y4 = x3 + dx,y3 + dy\n\nprint(x3,y3,x4,y4)', 'x1,y1,x2,y2 = map(int,input().split())\n\ndx = x1 - x2 #-4\ndy = y1 - y2 #-3\n\nx3,y3 = x2 + dy,y2 - dx\nx4,y4 = x3 + dx,y3 + dy\n\nprint(x3,y3,x4,y4)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s598557932', 's859620460', 's308491921']
[9092.0, 9132.0, 9156.0]
[28.0, 26.0, 29.0]
[143, 142, 143]
p03265
u600261652
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['def resolve():\n x1, y1, x2, y2 = map(int, input().split())\n x3 = [x2-abs(y2-y1), x2+abs(y2-y1)]\n y3 = [y2-abs(x2-x1), y2+abs(x2-x1)]\n x4 = [x1-abs(y2-y1), x1+abs(y2-y1)]\n y4 = [y1-abs(x2-x1), y1+abs(x2-x1)]\n k = (x2-x1)**2+(y2-y1)**2\n s = 4*k**2\n for i in x3:\n for j in y3:\n for p in x4:\n for q in y4:\n if (i-x2)**2+(j-y2)**2 == k and (p-x1)**2+(q-y1)**2 == k and (i-p)**2+(j-q)**2 == k and (i-x1)**2+(j-y1)**2 == s and (p-x2)**2+(q-y2)**2 == s:\n print(i, j, p, q)\n exit()\nresolve()', 'def resolve():\n x1, y1, x2, y2 = map(int, input().split())\n x3 = [x2-abs(y2-y1), x2+abs(y2-y1)]\n y3 = [y2-abs(x2-x1), y2+abs(x2-x1)]\n x4 = [x1-abs(y2-y1), x1+abs(y2-y1)]\n y4 = [y1-abs(x2-x1), y1+abs(x2-x1)]\n k = (x2-x1)**2+(y2-y1)**2\n s = 4*k**2\n for i in x3:\n for j in y3:\n for p in x4:\n for q in y4:\n if (i-x2)**2+(j-y2)**2 == k and (p-x1)**2+(q-y1)**2 == k and (i-p)**2+(j-q)**2 == k and (i-x1)**2+(j-y1)**2 == s and (p-x2)**2+(q-y2)**2 == s:\n print(i, j, p, q)\nresolve()\n', 'def resolve():\n x1, y1, x2, y2 = map(int, input().split())\n x3 = [x2-abs(y2-y1), x2+abs(y2-y1)]\n y3 = [y2-abs(x2-x1), y2+abs(x2-x1)]\n x4 = [x1-abs(y2-y1), x1+abs(y2-y1)]\n y4 = [y1-abs(x2-x1), y1+abs(x2-x1)]\n k = (x2-x1)**2+(y2-y1)**2\n for i in x3:\n for j in y3:\n for p in x4:\n for q in y4:\n if (i-x2)**2+(j-y2)**2 == k and (p-x1)**2+(q-y1)**2 == k and (i-p)**2+(j-q)**2 == k and (i-x1)**2+(j-y1)**2 == k and (p-x2)**2+(q-y2)**2 == k:\n print(i, j, p, q)\n exit()\nresolve()', 'x1, y1, x2, y2 = map(int, input().split())\nk = (x2-x1)**2+(y2-y1)**2\nfor i in range(-100, 101):\n for j in range(-100, 101):\n for p in range(-100, 101):\n for q in range(-100, 101):\n if (i-x2)**2+(j-y2)**2 == k and (p-x1)**2+(q-y1)**2 == k and (i-p)**2+(j-q)**2 == k:\n print(i, j, p, q)\n exit()', 'def resolve():\n x1, y1, x2, y2 = map(int, input().split())\n print(x2-y2+y1, y2+x2-x1, x1-y2+y1, y1+x2-x1)\nresolve()']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Time Limit Exceeded', 'Accepted']
['s009835953', 's009981739', 's451309972', 's970956942', 's773376815']
[3064.0, 3064.0, 3064.0, 3064.0, 2940.0]
[17.0, 17.0, 17.0, 2104.0, 17.0]
[604, 574, 589, 366, 121]
p03265
u607075479
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1 = int(input())\ny1 = int(input())\nx2 = int(input())\ny2 = int(input())\nv1x = x2 - x1\nv1y = y2 - y1\n\nv2x = -v1y\nv2y = v1x\nv3x = -v2y\nv3y = v2x\nx3 = x2 + v2x\ny3 = y2 + v2y\nx4 = x3 + v3x\ny4 = y3 + v3y\nprint(x3, " ", y3, " ", x4, " ", y4)', 'x1, y1, x2, y2 = map(int, input().split())\nv1x = x2 - x1\nv1y = y2 - y1\n\nv2x = -v1y\nv2y = v1x\nv3x = -v2y\nv3y = v2x\nx3 = x2 + v2x\ny3 = y2 + v2y\nx4 = x3 + v3x\ny4 = y3 + v3y\nprint(x3, y3, x4, y4)']
['Runtime Error', 'Accepted']
['s814560558', 's672444644']
[3064.0, 3060.0]
[17.0, 17.0]
[235, 191]
p03265
u609814378
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a', 'x1, y1, x2, y2 = map(int, input().split())\n\nX = x2 - x1\nY = y2 - y1\n\nprint((x2-Y),(y2 + X),(x1-Y),(y1 + X))']
['Runtime Error', 'Accepted']
['s897185047', 's332697210']
[2940.0, 2940.0]
[17.0, 17.0]
[1, 107]
p03265
u615370347
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['val = input().split()\nval = [int(i) for i in val]\n\na, b, c, d = val\n\nx1 = val[2] - val[0]\ny1 = val[3] - val[1]\n\nimport numpy as np\n\nprint(x1, y1)\n\nif x1 * y1 > 0:\n x2 = -1 * np.sign(x1) * abs(y1)\n y2 = np.sign(y1) * abs(x1)\n x3 = np.sign(x2) * abs(x1)\n y3 = -1 * np.sign(y2) * abs(y1)\nelif x1 == 0:\n x2 = -1 * y1\n y2 = 0\n x3 = 0\n y3 = x2\nelse:\n x2 = np.sign(x1) * abs(y1)\n y2 = -1 * np.sign(y1) * abs(x1)\n x3 = -1 * np.sign(x2) * abs(x1)\n y3 = np.sign(y2) * abs(y1)\n\nprint(x2, y2, x3, y3)\n \ne = c + x2\nf = d + y2\ng = e + x3\nh = f + y3\n\nprint(e, f, g, h)', 'val = input().split()\nval = [int(i) for i in val]\n\na, b, c, d = val\n\nx1 = val[2] - val[0]\ny1 = val[3] - val[1]\n\nimport numpy as np\n\nif x1 * y1 >= 0:\n x2 = -1 * np.sign(x1) * abs(y1)\n y2 = np.sign(y1) * abs(x1)\n x3 = np.sign(x2) * abs(x1)\n y3 = -1 * np.sign(y2) * abs(y1)\nelse:\n x2 = np.sign(x1) * abs(y1)\n y2 = -1 * np.sign(y1) * abs(x1)\n x3 = -1 * np.sign(x2) * abs(x1)\n y3 = np.sign(y2) * abs(y1)\n\ne = c + x2\nf = d + y2\ng = e + x3\nh = f + y3\n\nprint(e, f, g, h)', 'val = input().split()\nval = [int(i) for i in val]\n\na, b, c, d = val\n\nx1 = val[2] - val[0]\ny1 = val[3] - val[1]\n\nimport numpy as np\n\nif x1 * y1 > 0:\n x2 = -1 * np.sign(x1) * abs(y1)\n y2 = np.sign(y1) * abs(x1)\n x3 = np.sign(x2) * abs(x1)\n y3 = -1 * np.sign(y2) * abs(y1)\nelif x1 == 0:\n x2 = -1 * y1\n y2 = 0\n x3 = 0\n y3 = x2\nelif y1 == 0:\n x2 = 0\n y2 = x1\n x3 = -1 * x1\n y3 = 0\nelse:\n x2 = np.sign(x1) * abs(y1)\n y2 = -1 * np.sign(y1) * abs(x1)\n x3 = -1 * np.sign(x2) * abs(x1)\n y3 = np.sign(y2) * abs(y1)\n\ne = c + x2\nf = d + y2\ng = e + x3\nh = f + y3\n\nprint(e, f, g, h)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s244355669', 's587951180', 's142075376']
[21444.0, 21600.0, 21372.0]
[494.0, 1007.0, 469.0]
[591, 486, 615]
p03265
u619458041
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["import sys\n\ndef main():\n input = sys.stdin.readline\n x1, y1, x2, y2 = map(int, input().split())\n\n x4 = -(y2 - y1) + x1\n y4 = (x2 - x1) + y1\n x3 = x2 + x4 - x1\n y3 = y2 + y4 - y1\n print('{} {} {} {}'.format(x3, y3, x4, y4)\n\n\nif __name__ == '__main__':\n main()", "import sys\n\ndef main():\n input = sys.stdin.readline\n x1, y1, x2, y2 = map(int, input().split())\n\n x4 = -(y2 - y1) + x1\n y4 = (x2 - x1) + y1\n x3 = x2 + x4 - x1\n y3 = y2 + y4 - y1\n print('{} {} {} {}'.format(x3, y3, x4, y4))\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s274789347', 's361699131']
[2940.0, 3060.0]
[18.0, 17.0]
[266, 267]
p03265
u620480037
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['A=input()\nA=A.rstrip().split(" ")\nx1=int(A[0])\ny1=int(A[1])\nx2=int(A[2])\ny2=int(A[3])\n#print(x1,y1,x2,y2)\nx3=x2+(y1-y2)\ny3=y2+(x2-x1)\nx4=x1+(y2-y3)\ny4=y1+(x2-x1)\nprint(x3,y3,x4,y4)', 'A=input()\nA=A.rstrip().split(" ")\nx1=int(A[0])\ny1=int(A[1])\nx2=int(A[2])\ny2=int(A[3])\n#print(x1,y1,x2,y2)\nx3=x2+(y1-y2)\ny3=y2+(x2-x1)\nx4=x1-(y2-y1)\ny4=y1+(x2-x1)\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s295226483', 's108627591']
[3064.0, 3064.0]
[27.0, 18.0]
[180, 180]
p03265
u629350026
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nx3=x2+y2-y1\ny3=y2-x2+x1\nx4=x1+y2-y1\ny4=y1-x2+x1\nprint(x3,y3,x4,y4)', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2-y2+y1\ny3=y2+x2-x1\nx4=x1-y2+y1\ny4=y1+x2-x1\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s534111564', 's419284562']
[2940.0, 2940.0]
[17.0, 17.0]
[103, 103]
p03265
u634079249
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import sys, os, math, bisect, itertools, collections, heapq, queue\n# from scipy.sparse.csgraph import csgraph_from_dense, floyd_warshall\nfrom decimal import Decimal\nfrom collections import defaultdict, deque\n\nsys.setrecursionlimit(10000000)\n\nii = lambda: int(sys.stdin.buffer.readline().rstrip())\nil = lambda: list(map(int, sys.stdin.buffer.readline().split()))\nfl = lambda: list(map(float, sys.stdin.buffer.readline().split()))\niln = lambda n: [int(sys.stdin.buffer.readline().rstrip()) for _ in range(n)]\n\niss = lambda: sys.stdin.buffer.readline().decode().rstrip()\nsl = lambda: list(map(str, sys.stdin.buffer.readline().decode().split()))\nisn = lambda n: [sys.stdin.buffer.readline().decode().rstrip() for _ in range(n)]\n\nlcm = lambda x, y: (x * y) // math.gcd(x, y)\n\nMOD = 10 ** 9 + 7\nMAX = float(\'inf\')\n\n\ndef main():\n if os.getenv("LOCAL"):\n sys.stdin = open("input.txt", "r")\n\n x1, y1, x2, y2 = il()\n dx = x2 - x1\n dy = y2 - y1\n print(dx, dy)\n x3 = x2 - dy\n y3 = y2 + dx\n x4 = x3 - dx\n y4 = y3 - dy\n print(x3, y3, x4, y4)\n\n\nif __name__ == \'__main__\':\n main()\n', 'import sys, os, math, bisect, itertools, collections, heapq, queue\n# from scipy.sparse.csgraph import csgraph_from_dense, floyd_warshall\nfrom decimal import Decimal\nfrom collections import defaultdict, deque\n\nsys.setrecursionlimit(10000000)\n\nii = lambda: int(sys.stdin.buffer.readline().rstrip())\nil = lambda: list(map(int, sys.stdin.buffer.readline().split()))\nfl = lambda: list(map(float, sys.stdin.buffer.readline().split()))\niln = lambda n: [int(sys.stdin.buffer.readline().rstrip()) for _ in range(n)]\n\niss = lambda: sys.stdin.buffer.readline().decode().rstrip()\nsl = lambda: list(map(str, sys.stdin.buffer.readline().decode().split()))\nisn = lambda n: [sys.stdin.buffer.readline().decode().rstrip() for _ in range(n)]\n\nlcm = lambda x, y: (x * y) // math.gcd(x, y)\n\nMOD = 10 ** 9 + 7\nMAX = float(\'inf\')\n\n\ndef main():\n if os.getenv("LOCAL"):\n sys.stdin = open("input.txt", "r")\n\n x1, y1, x2, y2 = il()\n dx = x2 - x1\n dy = y2 - y1\n x3 = x2 - dy\n y3 = y2 + dx\n x4 = x3 - dx\n y4 = y3 - dy\n print(x3, y3, x4, y4)\n\n\nif __name__ == \'__main__\':\n main()\n']
['Wrong Answer', 'Accepted']
['s619943256', 's423925987']
[10220.0, 10140.0]
[35.0, 37.0]
[1105, 1087]
p03265
u637742907
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["l = raw_input().split()\n\nx1 = int(l[0])\ny1 = int(l[1])\nx2 = int(l[2])\ny2 = int(l[3])\n\na = max(abs(x1-x2), abs(y1-y2))\n\nif x1 < x2:\n x3 = x2\n y3 = y1 + a\n x4 = x1\n y4 = y1 + a\nelif x1 == x2:\n if y1 > y2:\n x3 = x2 + a\n y3 = y2\n x4 = x2 + a\n y4 = y1\n else:\n x3 = x2 - a\n y3 = y2\n x4 = x2 - a\n y4 = y1\nelif x1 > x2:\n x3 = x2\n y3 = y1 - a\n x4 = x1\n y4 = y1 - a\n \nprint(str(x3)+' '+str(y3)+' '+str(x4)+' '+str(y4))", "import math\nl = input().split()\n\nx1 = int(l[0])\ny1 = int(l[1])\nx2 = int(l[2])\ny2 = int(l[3])\n\nyoko = x2-x1\ntate = y2-y1\n\nx3 = x2 - tate\ny3 = y2 + yoko\nx4 = x1 - tate\ny4 = y1 + yoko\n\n \nprint(str(x3)+' '+str(y3)+' '+str(x4)+' '+str(y4))\n"]
['Runtime Error', 'Accepted']
['s750949649', 's505656679']
[3064.0, 3060.0]
[17.0, 17.0]
[443, 236]
p03265
u652656291
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\nl = abs(y2 - y1)\nx3 = x1 - l\ny3 = y2\nx4 = x3\ny4 = y1\nprint(x3,y3.x4.y4)', 'x1,y1,x2,y2 = map(int,input().split())\nx3 = y1+x2-y2\ny3 =-x1+x2+y2\nx4 = x1+y1-y2\ny4 =-x1+y1+x2\nprint(x3,y3,x4,y4) ']
['Runtime Error', 'Accepted']
['s292755969', 's602413979']
[3060.0, 3060.0]
[17.0, 17.0]
[110, 114]
p03265
u654470292
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\nx3=x2-(y2-y1)\ny3=y2-(x2-x1)\nx4=x3-(y3-y2)\ny4=y3-(x3-x2)\nlst=[x3,y3,x4,y4]\nprint(*lst)', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2-(y2-y1)\ny3=y2-(x2-x1)\nx4=x3-(y1-y2)\ny4=y3-(x1-x2)\nlst=[x3,y3,x4,y4]\nprint(*lst)', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2-(y2-y1)\ny3=y2+(x2-x1)\nx4=x1+(y1-y2)\ny4=y1-(x1-x2)\nlst=[x3,y3,x4,y4]\nprint(*lst)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s189343317', 's445071963', 's920262907']
[3060.0, 3060.0, 3060.0]
[17.0, 17.0, 17.0]
[122, 122, 122]
p03265
u662449766
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n x1, y1, x2, y2 = map(int, input().split())\n x, y = x2 - x1, y2 - y1\n print(x2 - y, y2 + x, x1 + y, y1 - x)\n # print(" ".join([x1 - x, y1, x2, y2]))\n\n\nif __name__ == "__main__":\n main()\n', 'import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n x1, y1, x2, y2 = map(int, input().split())\n x, y = x2 - x1, y2 - y1\n print(x2 - y, y2 + x, x1 + y, y2 - x)\n # print(" ".join([x1 - x, y1, x2, y2]))\n\n\nif __name__ == "__main__":\n main()\n', 'import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n x1, y1, x2, y2 = map(int, input().split())\n x, y = x2 - x1, y2 - y1\n print(x2 - y, y2 + x, x1 - y, y2 - x)\n # print(" ".join([x1 - x, y1, x2, y2]))\n\n\nif __name__ == "__main__":\n main()\n', 'import sys\n\ninput = sys.stdin.readline\n\n\ndef main():\n x1, y1, x2, y2 = map(int, input().split())\n x, y = x1 - x2, y1 - y2\n print(x2 + y, y2 - x, x1 + y, y1 - x)\n # print(" ".join([x1 - x, y1, x2, y2]))\n\n\nif __name__ == "__main__":\n main()\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s003870895', 's322627273', 's607980721', 's926310766']
[2940.0, 2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0, 18.0]
[254, 254, 254, 254]
p03265
u673217098
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['def rotleft(dx,dy):\n return -dy, dx\n\ns = input().split()\nx1 = int(s[0])\ny1 = int(s[1])\nx2 = int(s[2])\ny2 = int(s[3])\n\ndx = x2 - x1\ndy = y2 - y1\n\ndx,dy = rotleft(dx,dy)\n\nx3 = x2 + dx\ny3 = y2 + dy\n\ndx,dy = rotleft(dx,dy)\n\nx4 = x3 + dx\ny4 = y3 + dy\n\nprint("%d,%d,%d,%d" % (x3,y3,x4,y4))\n ', 'def rotleft(dx,dy):\n return -dy, dx\n\ns = input().split()\nx1 = int(s[0])\ny1 = int(s[1])\nx2 = int(s[2])\ny2 = int(s[3])\n\ndx = x2 - x1\ndy = y2 - y1\n\ndx,dy = rotleft(dx,dy)\n\nx3 = x2 + dx\ny3 = y2 + dy\n\ndx,dy = rotleft(dx,dy)\n\nx4 = x3 + dx\ny4 = y3 + dy\n\nprint("%d %d %d %d" % (x3,y3,x4,y4))\n ']
['Wrong Answer', 'Accepted']
['s210928503', 's177497969']
[3064.0, 3064.0]
[17.0, 17.0]
[288, 288]
p03265
u673338219
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\nx3 = x2 + y1 - y2\ny3 = y2 + x2 - x1\nx4 = x1 + y1 - y2\ny4 = y1 + x2 - x1\nprint("x3","","y3","","x4","","y4")', 'x1,y1,x2,y2 = map(int,input().split())\nx3 = x2 + y1 - y2\ny3 = y2 + x2 - x1\nx4 = x1 + y1 - y2\ny4 = y1 + x2 - x1\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s717218730', 's474724590']
[2940.0, 2940.0]
[17.0, 17.0]
[146, 129]
p03265
u679089074
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['\nimport math\nx1,x2,y1,y2 = map(int,input().split())\nx = x1-x2\ny = y1-y2\n\nprint(x1+x,y1+y,x2+x,y2+y)\n', '\nimport math\nx1,y1,x2,y2 = map(int,input().split())\nx = x2-x1\ny = y2-y1\n\nprint(x2-y,y2+x,x1-y,y1+x)\n']
['Wrong Answer', 'Accepted']
['s074002723', 's860729086']
[8996.0, 9008.0]
[30.0, 28.0]
[139, 139]
p03265
u690442716
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["A = list(map(int, input().split()))\nL = len(A)\nans = [0, 0, 0, 0]\ndx = A[2] - A[0]\ndy = A[3] - A[1]\nif(dx>0 and dy>=0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] + dx\n x4 = x3 - dx\n y4 = y3 - dy\nelif(dx>=0 and dy<0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] + dx\n x4 = x3 - dx\n y4 = y3 + dy\nelif(dx<=0 and dy<0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] - dx\n x4 = x3 + dx\n y4 = y3 + dy\nelif(dx<0 and dy>=0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] - dx\n x4 = x3 + dx\n y4 = y3 - dy\n\nans[0] = str(x3)\nans[1] = str(y3)\nans[2] = str(x4)\nans[3] = str(y4)\nans = ' '.join(ans)\nprint(ans)", "A = list(map(int, input().split()))\nL = len(A)\nans = [0, 0, 0, 0]\ndx = A[2] - A[0]\ndy = A[3] - A[1]\nif(dx>0 and dy>0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] + dx\n x4 = x3 - dx\n y4 = y3 - dy\nelif(dx>0 and dy<0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] - dx\n x4 = x3 - dx\n y4 = y3 + dy\nelif(dx<0 and dy>0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] + dx\n x4 = x3 + dx\n y4 = y3 - dy\nelse:\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] - dx\n x4 = x3 + dx\n y4 = y3 + dy\n\nans[0] = str(x3)\nans[1] = str(y3)\nans[2] = str(x4)\nans[3] = str(y4)\nans = ' '.join(ans)\nprint(ans)", 'A = list(map(int, input().split()))\nL = len(A)\nans = [0, 0, 0, 0]\ndx = A[2] - A[0]\ndy = A[3] - A[1]\nif(dx>0 and dy>0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] + dx\n x4 = x3 - dx\n y4 = y3 - dy\nelif(dx>0 and dy<0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] - dx\n x4 = x3 - dx\n y4 = y3 + dy\nelif(dx<0 and dy>0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] + dx\n x4 = x3 + dx\n y4 = y3 - dy\nelse:\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] - dx\n x4 = x3 + dx\n y4 = y3 + dy\n\nans[0] = x3\nans[1] = y3\nans[2] = x4\nans[3] = y4\nprint(ans)', "A = list(map(int, input().split()))\nL = len(A)\nans = [0, 0, 0, 0]\ndx = A[2] - A[0]\ndy = A[3] - A[1]\nif(dx>=0 and dy>=0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] + dx\n x4 = x3 - dx\n y4 = y3 - dy\nelif(dx>0 and dy<0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] + dx\n x4 = x3 - dx\n y4 = y3 + dy\nelif(dx<=0 and dy<=0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] + dy\n y3 = A[3] - dx\n x4 = x3 + dx\n y4 = y3 + dy\nelif(dx<0 and dy>0):\n dx = abs(dx)\n dy = abs(dy)\n x3 = A[2] - dy\n y3 = A[3] - dx\n x4 = x3 + dx\n y4 = y3 - dy\n\nans[0] = str(x3)\nans[1] = str(y3)\nans[2] = str(x4)\nans[3] = str(y4)\nans = ' '.join(ans)\nprint(ans)"]
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s114707456', 's578874135', 's607737289', 's121331624']
[3064.0, 3064.0, 3064.0, 3064.0]
[17.0, 17.0, 18.0, 17.0]
[709, 690, 650, 709]
p03265
u706181322
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x_1,y_1,x_2,y_2=tuple(map(int,input().split()))\n\nbe=[x_2-x_1,y_2-y_1]\nza3=[x_2+(-1)*be[1],y_2+be[0]]\nza4=[x_1+(-1)*be[1],y_1+be[0]]\n\nprint(za3[0],za3[1],za4[0],za4[', 'x_1,y_1,x_2,y_2=tuple(map(int,input().split()))\n\nbe=[x_2-x_1,y_2-y_1]\nza3=[x_2+(-1)*be[1],y_2+be[0]]\nza4=[x_1+(-1)*be[1],y_1+be[0]]\n\nprint(za3[0],za3[1],za4[0],za4[1])']
['Runtime Error', 'Accepted']
['s493582116', 's268977273']
[3060.0, 3060.0]
[17.0, 17.0]
[164, 167]
p03265
u713914478
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input().split())\n\na1 = x2 - x1\na2 = y2 - y1\n\nx3 = x2 + (-a2)\ny3 = x2 + (a1)\n\nx4 = x3 + (-a1)\ny4 = y3 + (-a2)\n\nprint(x3,y3,x4,y4)\n', 'x1, y1, x2, y2 = list(map(int, input().split()))\nx3 = x2 - (y2 - y1)\ny3 = y2 + (x2 - x1)\nx4 = x3 - (x2 - x1)\ny4 = y3 - (y2 - y1)\nprint("{} {} {} {}".format(x3, y3, x4, y4))']
['Wrong Answer', 'Accepted']
['s590646438', 's903339598']
[2940.0, 3060.0]
[17.0, 17.0]
[151, 172]
p03265
u722189950
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['#ABC108B\nx1, y1, x2, y2 = map(int, input().split())\ndx = x2 - x1\ndy = y2 - y1\n\nx3 = x2 - dy\ny3 = y2 + dx\n \nx4 = x3 - dx\ny4 = y3 - dy', '#ABC108B\nx1, y1, x2, y2 = map(int, input().split())\ndx = x2 - x1\ndy = y2 - y1\n\nx3 = x2 - dy\ny3 = y2 + dx\n \nx4 = x3 - dx\ny4 = y3 - dy\n\nprint(x3, y3, x4, y4)']
['Wrong Answer', 'Accepted']
['s219161206', 's927621042']
[2940.0, 2940.0]
[18.0, 17.0]
[132, 155]
p03265
u724742135
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['from sys import stdin\nx1, y1, x2, y2 = [int(x) for x in stdin.readline.rstrip().split()]\nprint(x2-(y2-y1), y2+(x2-x1), x1-(y2-y1), y1+(x2-x1))', 'from sys import stdin\nx1, y1, x2, y2 = [int(x) for x in stdin.readline().rstrip().split()]\nprint(x2-(y2-y1), y2+(x2-x1), x1-(y2-y1), y1+(x2-x1))']
['Runtime Error', 'Accepted']
['s943951749', 's577692480']
[2940.0, 2940.0]
[17.0, 17.0]
[142, 144]
p03265
u729938879
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nif (y2-y1) >=0 and (x2-x1) >=0:\n print(1)\n x3 = x2 - abs(y2-y1)\n y3 = y2 + abs(x2-x1)\nelif (y2-y1) >=0 and (x2-x1) <0:\n print(2)\n x3 = x2 - abs(y2-y1)\n y3 = y2 - abs(x2-x1)\nelif (y2-y1) <0 and (x2-x1) >=0:\n print(3)\n x3 = x2 + abs(y2-y1)\n y3 = y2 + abs(x2-x1)\nelse:\n print(4)\n x3 = x2 + abs(y2-y1)\n y3 = y2 - abs(x2-x1)\nx4 = x3 - (x2-x1)\ny4 = y3 - (y2-y1)\nprint(x3, y3, x4, y4)', 'x1, y1, x2, y2 = map(int, input().split())\nif (y2-y1) >=0 and (x2-x1) >=0:\n x3 = x2 - abs(y2-y1)\n y3 = y2 + abs(x2-x1)\nelif (y2-y1) >=0 and (x2-x1) <0:\n x3 = x2 - abs(y2-y1)\n y3 = y2 - abs(x2-x1)\nelif (y2-y1) <0 and (x2-x1) >=0:\n x3 = x2 + abs(y2-y1)\n y3 = y2 + abs(x2-x1)\nelse:\n x3 = x2 + abs(y2-y1)\n y3 = y2 - abs(x2-x1)\nx4 = x3 - (x2-x1)\ny4 = y3 - (y2-y1)\nprint(x3, y3, x4, y4)']
['Wrong Answer', 'Accepted']
['s547583362', 's118687222']
[3064.0, 3064.0]
[17.0, 17.0]
[456, 404]
p03265
u736729525
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x0, y0, x1, y1 = [int(x) for x in input().split()]\ndx = x1 - x0\ndy = y1 - y0\nprint(x1 + dy, y1 - dx)\nprint(x0 + dy, y0 - dx)\n', 'x0, y0, x1, y1 = [int(x) for x in input().split()]\ndx = x1 - x0\ndy = y1 - y0\nprint(x1 - dy, y1 + dx, x0 - dy, y0 + dx)\n']
['Wrong Answer', 'Accepted']
['s198828857', 's224094101']
[2940.0, 2940.0]
[17.0, 17.0]
[125, 119]
p03265
u745087332
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["# coding:utf-8\n\nINF = float('inf')\n\n\ndef inpl(): return list(map(int, input().split()))\n\n\nx1, y1, x2, y2 = inpl()\n\ndiff_y = y2 - y1\ndiff_x = x2 - x1\nans1 = [x2 - diff_y, y2 + diff_x]\nans2 = [ans1[0] - diff_x, ans1[1] - diff_y]\nans = ans1 + ans2\nprint(' '.join(map(str, ans))", "# coding:utf-8\n\nINF = float('inf')\n\n\ndef inpl(): return list(map(int, input().split()))\n\n\nx1, y1, x2, y2 = inpl()\n\ndiff_y = y2 - y1\ndiff_x = x2 - x1\nans1 = [x2 - diff_y, y2 + diff_x]\nans2 = [ans1[0] - diff_x, ans1[1] - diff_y]\nans = ans1 + ans2\nans = ' '.join(map(str, ans))\nprint(ans)"]
['Runtime Error', 'Accepted']
['s359790046', 's329331579']
[3064.0, 3064.0]
[17.0, 17.0]
[274, 285]
p03265
u778814286
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2 = map(int,input())\n\nx = x2-x1\ny = y2-y1\n\nx3 = x2 - y\ny3 = y2 + x\nx4 = x3 - x\ny4 = y3 - y\n\nprint(x3,y3,x4,y4)\n\n\n', 'x1,y1,x2,y2 = map(int,input().split())\n\nx = x2-x1\ny = y2-y1\n\nx3 = x2 - y\ny3 = y2 + x\nx4 = x3 - x\ny4 = y3 - y\n\nprint(x3,y3,x4,y4)']
['Runtime Error', 'Accepted']
['s536674025', 's886494930']
[2940.0, 2940.0]
[18.0, 17.0]
[123, 128]
p03265
u779293207
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a,b,c,d=map(int,input(),split())\ne=(d-b)\nf=(c-a)\nprint(c-e,d+f,a-e,b+f)', 'a,b,c,d=map(int,input().split())\ne=(d-b)\nf=(c-a)\nprint(c-e,d+f,a-e,b+f)\n']
['Runtime Error', 'Accepted']
['s008059580', 's792828582']
[2940.0, 2940.0]
[17.0, 17.0]
[71, 72]
p03265
u779728630
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1, y1, x2, y2 = map(int, input().split())\nif x1 == x2:\n y3 = y2\n y4 = y1\n x3 = x2 + y2 - y1\n x4 = x1 + y2 - y1\nelse:# y1 == y2\n x3 = x2\n x4 = x1\n y3 = y2 + x2 - x1\n y4 = y1 + x2 - x1\n \nprint(x3, x4, y3, y4)', 'x1, y1, x2, y2 = map( int, input().split() )\n\n#print( x2 - x1, y2 - y1)\n\nx3 = x2 - y2 + y1\ny3 = y2 + x2 - x1\nx4 = x1 - y2 + y1\ny4 = y1 + x2 - x1\n\nprint(x3, y3, x4, y4)\n']
['Wrong Answer', 'Accepted']
['s074803077', 's636634238']
[9184.0, 9052.0]
[30.0, 30.0]
[216, 168]
p03265
u785066634
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['n=list(map(int,input().split()))\nans_l=[n[2]+n[1]-n[3],n[3]-n[0]+n[2],n[0]+n[1]-n[3],n[1]-n[0]+n[2]]\nprint(ans_l)\n', 'n=list(map(int,input().split()))\nprint(n[2]+n[1]-n[3],n[3]-n[0]+n[2],n[0]+n[1]-n[3],n[1]-n[0]+n[2])\n\n']
['Wrong Answer', 'Accepted']
['s020464225', 's442113791']
[2940.0, 2940.0]
[17.0, 17.0]
[114, 101]
p03265
u790877102
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a,b,c,d = map(int,input().split())\n\nx = a-(d-b)\ny = b+(c-a)\nz = x+(c-a)\nw = y+(d-b)\n\nprint(x,y,z,w)\n', 'a,b,c,d = map(int,input().split())\n\nx = a-(d-b)\ny = b+(c-a)\nz = x+(c-a)\nw = y+(d-b)\n\nprint(z,w,x,y)\n']
['Wrong Answer', 'Accepted']
['s543045765', 's950678064']
[2940.0, 2940.0]
[17.0, 17.0]
[100, 100]
p03265
u804085889
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['nums = list(map(int, input().split()))\nx = abs(nums[0] - nums[2])\ny = abs(nums[1] - nums[3])\n\nn1 = nums[2] - y\nn2 = nums[3] + x\nprint(n1, end="")\nprint(" ", end="")\nprint(n2, end="")\nprint(" ", end="")\nprint(n1 - x, end="")\nprint(" ", end="")\nprint(n2 - y, end="")\nprint(" ", end="")', 'nums = list(map(int, input().split()))\nx = (nums[2] - nums[0])\ny = (nums[3] - nums[1])\n\nn1 = nums[2] - y\nn2 = nums[3] + x\nprint(n1, end="")\nprint(" ", end="")\nprint(n2, end="")\nprint(" ", end="")\nprint(n1 - x, end="")\nprint(" ", end="")\nprint(n2 - y)']
['Wrong Answer', 'Accepted']
['s548295205', 's207986098']
[3064.0, 3064.0]
[17.0, 17.0]
[312, 279]
p03265
u809819902
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['a,b,c,d=map(int,input().split())\nw=c-a\nh=b-d\nans=[c-h,d+w,a-h,b+w]\nprint(*ans)\nres=[c+h,d-w,a+h,b-w]\nprint(*res)', 'x1,y1,x2,y2=map(int,input().split())\nh=y2-y1;w=x2-x1\nx3=x2-h\ny3=y2+w\nx4=x3-w\ny4=y3-h\nprint(x3,y3,x4,y4)']
['Wrong Answer', 'Accepted']
['s490071911', 's465251567']
[9124.0, 9004.0]
[25.0, 24.0]
[112, 103]
p03265
u812867074
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x(1),y(1),x(2),y(2)=map(int,input().split())\nfor i in range(3,5):\n x(i)=x(i-1)+y(i-2)-y(i-1)\n y(i)=y(i-1)+x(i-1)-x(i-2)\nprint(x(3) y(3) x(4) y(4))\n', 'x1,y1,x2,y2=map(int,input().split())\nx3=x2+y1-y2\ny3=y2+x2-x1\nx4=x3+y2-y3\ny4=y3+x3-x2\nprint(x3,y3,x4,y4)']
['Runtime Error', 'Accepted']
['s887312872', 's888801884']
[2940.0, 2940.0]
[17.0, 17.0]
[149, 103]
p03265
u814986259
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['x1,y1,x2,y2=map(int,input().split())\ndx=x1-x2\ndy=y1-y2\n\nx3=x2+dy\ny3=y2-dx\n\nx4=x1+dy\ny4=y1-dx\nans=[x3,y3,x4,y4]\nprint("".join(list(map(str,ans)))', 'x1,y1,x2,y2=map(int,input().split())\ndx=x1-x2\ndy=y1-y2\n\nx3=x2+dy\ny3=y2-dx\n\nx4=x1+dy\ny4=y1-dx\nans=[x3,y3,x4,y4]\nprint(" ".join(list(map(str,ans))))']
['Runtime Error', 'Accepted']
['s074174588', 's756103684']
[2940.0, 3060.0]
[18.0, 17.0]
[144, 146]
p03265
u823044869
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
['xyList = list(map(int,input().split()))\nprint(xyList)\nx = xyList[2]-xyList[0]\ny = xyList[3]-xyList[1]\nprint(xyList[2]-y,xyList[3]+x,xyList[0]-y,xyList[1]+x)\n', 'xyList = list(map(int,input().split()))\nprint(xyList)\nx = xyList[2]-xyList[0]\ny = xyList[3]-xyList[1]\nprint(xyList[2]-y,xyList[3]+x,xyList[0]-y,xyList[1]+x)\n', 'xyList = list(map(int,input().split()))\nx = xyList[2]-xyList[0]\ny = xyList[3]-xyList[1]\nprint(xyList[2]-y,xyList[3]+x,xyList[0]-y,xyList[1]+x)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s017118835', 's709561887', 's875509338']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[157, 157, 143]
p03265
u823885866
2,000
1,048,576
There is a square in the xy-plane. The coordinates of its four vertices are (x_1,y_1),(x_2,y_2),(x_3,y_3) and (x_4,y_4) in counter-clockwise order. (Assume that the positive x-axis points right, and the positive y-axis points up.) Takahashi remembers (x_1,y_1) and (x_2,y_2), but he has forgot (x_3,y_3) and (x_4,y_4). Given x_1,x_2,y_1,y_2, restore x_3,y_3,x_4,y_4. It can be shown that x_3,y_3,x_4 and y_4 uniquely exist and have integer values.
["import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.readline().rstrip()\nrs = lambda: sys.stdin.readline().split()\nri = lambda: int(sys.stdin.readline())\nrm = lambda: map(int, sys.stdin.readline().split())\nrl = lambda: list(map(int, sys.stdin.readline().split()))\ninf = float('inf')\nmod = 10**9 + 7\n\nx1, y1, x2, y2 = rm()\nc1, c2 = x1+y1*1j, x2+y2*1j\nc3, c4 = -1j*(c2-c1), 1j*(c1-c2)\nprint(int(c3.real), int(c3.imag), int(c4.real), int(c4.imag))\n\n\n", "import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.readline().rstrip()\nrs = lambda: sys.stdin.readline().split()\nri = lambda: int(sys.stdin.readline())\nrm = lambda: map(int, sys.stdin.readline().split())\nrl = lambda: list(map(int, sys.stdin.readline().split()))\ninf = float('inf')\nmod = 10**9 + 7\n\nx1, y1, x2, y2 = rm()\nc1, c2 = x1+y1*1j, x2+y2*1j\nc3, c4 = -1j*(c1-c2), 1j*(c2-c1)\nprint(int(c3.real), int(c3.imag), int(c4.real), int(c4.imag))\n\n\n", "import sys\nimport math\nimport itertools\nimport collections\nimport heapq\nimport re\nimport numpy as np\n\nrr = lambda: sys.stdin.readline().rstrip()\nrs = lambda: sys.stdin.readline().split()\nri = lambda: int(sys.stdin.readline())\nrm = lambda: map(int, sys.stdin.readline().split())\nrl = lambda: list(map(int, sys.stdin.readline().split()))\ninf = float('inf')\nmod = 10**9 + 7\n\nx1, y1, x2, y2 = rm()\nc1, c2 = x1+y1*1j, x2+y2*1j\nc3, c4 = -1j*(c1-c2) + c2, 1j*(c2-c1) + c1\nprint(int(c3.real), int(c3.imag), int(c4.real), int(c4.imag))\n\n\n"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s022907120', 's384709479', 's992164947']
[26940.0, 27008.0, 27064.0]
[119.0, 117.0, 118.0]
[519, 519, 529]