problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03282
u978167553
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
["s = input()\nk = input()\n\nans = '1'\nfor c in k:\n if c != '1':\n ans = c\n break\nprint(ans)\n", "s = input()\nk = input()\n\nans = '1'\nfor i in range(k):\n if k[i] != '1':\n ans = k[i]\n break\nprint(ans)\n", "s = input()\nk = int(input())\n\nans = '1'\nfor i in range(k):\n if s[i] != '1':\n ans = s[i]\n break\nprint(ans)\n"]
['Wrong Answer', 'Runtime Error', 'Accepted']
['s191187750', 's580190966', 's714802633']
[9068.0, 9092.0, 9156.0]
[30.0, 24.0, 30.0]
[105, 118, 123]
p03282
u978313283
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
['S=list(input())\nK=int(input())\nl=0\nfor i in range(len(S)):\n if S[i]==1:\n l+=1\n else:\n a=S[i]\n break\nif l>=K:\n print(1)\nelse:\n print(a)\n', "S=list(input())\nK=int(input())\nl=0\nfor i in range(len(S)):\n if S[i]=='1':\n l+=1\n else:\n a=S[i]\n break\nif l>=K:\n print(1)\nelse:\n print(a)\n"]
['Wrong Answer', 'Accepted']
['s330726202', 's628090355']
[2940.0, 2940.0]
[18.0, 17.0]
[168, 170]
p03282
u978494963
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
["def main():\n S = map(int,list(input()))\n K = int(input())\n for i,n in enumerate(S):\n if n == 1:\n K -= n\n if K>0:\n return n\n else:\n return 1\n return 1\n\nif __name__ == '__main__':\n print(main())\n", "def main():\n S = map(int,list(input()))\n K = int(input())\n for i,n in enumerate(S):\n if n == 1:\n K -= n\n continue\n if K>0:\n return n\n else:\n return 1\n return 1\n\nif __name__ == '__main__':\n print(main())\n"]
['Wrong Answer', 'Accepted']
['s439292908', 's099319302']
[2940.0, 2940.0]
[19.0, 17.0]
[222, 237]
p03282
u982945424
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
["S = input()\nK = int(input())\ns = len(str(S))\nl = [str(x) for x in S]\ni = 0\nwhile i <= s - 1:\n if l[i] == '1':\n i = i + 1\n else:\n break\n\nif i == 100:\n print(1)\nif K < 99:\n print(l[K-1])\nelse:\n print(l[i-1])", "S = input()\nK = int(input())\ns = len(str(S))\nl = [str(x) for x in S]\ni = 0\nwhile i <= s - 1:\n if l[i] == '1':\n i = i + 1\n else:\n break\n\nif i == 100:\n print(1)\nif K < 99:\n print(l[K-1])\nelse:\n print(l[i-1])\n", "S = input()\nK = input()\ns = len(str(S))\ni=0\n\nwhile i < s-1:\n if S[i] == '1':\n i = i + 1\n else:\n break\nif int(K) > i:\n print(S[k])\nelse:\n print(1)", "S = input()\nK = int(input())\ns = len(str(S))\nl = [str(x) for x in S]\ni = 0\nwhile i <= s - 1:\n if l[i] == '1':\n i = i + 1\n else:\n break\n\nif i == 100:\n print(1)\nif K < 99:\n print(l[K-1])\nelse:\n print(l[i-1])\n", "S = input()\nK = int(input())\ns = len(str(S))\nl = [str(x) for x in S]\ni = 0\nwhile i <= s - 1:\n if l[i] == '1':\n i = i + 1\n else:\n break\n\nif i == s:\n print(1)\nelse:\n print(l[K-1])", "S = input()\nK = input()\ns = len(str(S))\ni=0\n\nwhile i < s-1:\n if S[i] == '1':\n i = i + 1\n else:\n break\nif K > i:\n print(S[k])\nelse:\n print(1)", "S = input()\nK = input()\ns = len(str(S))\ni=0\n\nwhile i < s-1:\n if S[i] == '1':\n i = i + 1\n else:\n break\nif K > i:\n print(S[k])\nelse:\n print(1)", "S = input()\nK = int(input())\ns = len(str(S))\n\nl = [str(x) for x in S]\ni = 0\nwhile i <= s - 1:\n if l[i] == '1':\n i = i + 1\n else:\n break\nif i == s:\n print(1)\nelse:\n print(l[K])", "S = input()\nK = int(input())\ns = len(str(S))\ni=0\n\nwhile i < s-1:\n if S[i] == '1':\n i = i + 1\n else:\n break\n\nif K > i:\n print(S[i])\nelse:\n print(1)"]
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s019456930', 's241141520', 's322985036', 's431490925', 's515801932', 's575220082', 's585717827', 's906081960', 's185903869']
[3064.0, 3060.0, 2940.0, 3060.0, 3060.0, 2940.0, 3060.0, 3060.0, 2940.0]
[17.0, 18.0, 23.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0]
[216, 217, 155, 217, 187, 150, 150, 185, 156]
p03282
u983853152
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
["\ndef main():\n S = input()\n K = input()\n\n cnt = 0\n while S[cnt]=='1':\n cnt = cnt + 1\n \n if K<=cnt:\n print(S[0])\n else:\n print(S[cnt+1])\n\n\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n S = input()\n K = int(input())\n\n cnt = 0\n while cnt<len(S) and S[cnt]=='1':\n cnt = cnt + 1\n \n if K<=cnt:\n print(S[0])\n elif cnt==len(S):\n print(S[cnt-1])\n else:\n print(S[cnt])\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s056001730', 's374024046']
[2940.0, 3060.0]
[17.0, 18.0]
[221, 282]
p03282
u983918956
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
['S = list(input())\nK = int(input())\n# 5000000000000000 = 5 * 10**15\nS = [int(e) for e in set(S)]\nnumber = 0\ndays = 5 * 10**15\nfor e in S:\n result = 1\n if e == 1:\n number += 1\n continue\n for f in range(days):\n initial = number\n result *= e\n number = initial + result\n if number >= K:\n print(e)\n exit()\n number = initial', 'S = input()\nK = int(input())\n\nfor i in range(len(S)):\n if S[i] != "1":\n break\n\nif K-1 < i:\n print(1)\nelse:\n print(S[i])']
['Wrong Answer', 'Accepted']
['s178054644', 's067558795']
[3064.0, 2940.0]
[17.0, 17.0]
[397, 135]
p03282
u984465701
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
["S = input()\nk = int(input())\n\nif len(S) == 1:\n print(S)\nelse:\n for i in range(len(S)):\n if i + 1 == k:\n print(1)\n break\n if S[i] != '1':\n print(S[i])\n break\n print(1)\n", "S = input()\nk = int(input())\n\nif len(S) == 1:\n print(S)\nelif k == 1:\n print(S[0])\nelif S[0] == '1':\n print(1)\nelse:\n print(S[0])\n", "S = input()\nk = int(input())\n\n\ndef ans():\n if len(S) == 1:\n return S\n else:\n for i in range(len(S)):\n if i + 1 == k:\n return S[i]\n if S[i] != '1':\n return S[i]\n\n return 1\n\n\nprint(ans())\n"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s242570288', 's450805387', 's442293906']
[2940.0, 2940.0, 3064.0]
[17.0, 17.0, 17.0]
[234, 141, 261]
p03282
u989345508
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
['s=list(map(int,list(input())))\nk=int(input())\nfor i in range(len(s)):\n if s[i]!=1:\n if i*(5000000000000+1)>k:\n print(1)\n else:\n print(s[i])\n break\nelse:\n print(1)\n\n', 's=input()\nk=int(input())\nl=0\nfor i in s:\n if i=="1":\n l+=1\n else:\n break\nprint("1" if k<=l else s[l])\n']
['Wrong Answer', 'Accepted']
['s594949588', 's669939286']
[3060.0, 2940.0]
[18.0, 18.0]
[523, 122]
p03282
u993435350
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
['S = input()\nK = input()\n\nif S[0] == 1:\n print(int(S[1]))\nelse:print(int(S[0]))', 'S = input()\nK = int(input())\n\ncon = 0\n\nfor i in range(0,len(S)):\n if S[i] == "1":\n con += 1\n else:break\n\nif K <= con:\n print(1)\nelse:\n if S[0] == "1":\n S = S.replace("1","")\n print(int(S[0]))\n else:\n print(int(S[0]))']
['Wrong Answer', 'Accepted']
['s810211272', 's538993846']
[2940.0, 3060.0]
[17.0, 17.0]
[79, 233]
p03282
u993642190
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
['S = input()\nK = long(input())\n\nfor i in range(len(S)) :\n\tif (S[i] == "1") :\n\t\tcontinue\n\t\n\tprint(S[i])\n\tbreak', 'def main() :\n\tS = input()\n\tK = int(input())\n\n\tis_1 = True\n\tfor i in range(K) :\n\t\tif (len(S) < i) :\n\t\t\tbreak\n\n\t\t# print("S[i] : " + S[i])\n\t\tif (S[i] != "1") :\n\t\t\tis_1 = False\n\t\t\tbreak\n\n\tif (is_1) :\n\t\tprint("1")\n\t\treturn\n\n\tfor i in range(len(S)) :\n\t\tif (S[i] == "1") :\n\t\t\tcontinue\n\n\t\tprint(S[i])\n\t\tbreak\n\n\nmain()\n']
['Runtime Error', 'Accepted']
['s530594637', 's488948141']
[2940.0, 3060.0]
[17.0, 18.0]
[108, 311]
p03282
u999750647
2,000
1,024,000
Mr. Infinity has a string S consisting of digits from `1` to `9`. Each time the date changes, this string changes as follows: * Each occurrence of `2` in S is replaced with `22`. Similarly, each `3` becomes `333`, `4` becomes `4444`, `5` becomes `55555`, `6` becomes `666666`, `7` becomes `7777777`, `8` becomes `88888888` and `9` becomes `999999999`. `1` remains as `1`. For example, if S is `1324`, it becomes `1333224444` the next day, and it becomes `133333333322224444444444444444` the day after next. You are interested in what the string looks like after 5 \times 10^{15} days. What is the K-th character from the left in the string after 5 \times 10^{15} days?
['s = list(input())\nk = int(input())\nif s[0] == 1:\n print(s[1])\nelse:\n print(s[0])', "import sys\ns = input()\nk = int(input())\nfor i in range(k):\n if s[i] != '1':\n print(s[i])\n sys.exit()\n else:\n continue\nprint(1)"]
['Wrong Answer', 'Accepted']
['s006718296', 's617432477']
[2940.0, 2940.0]
[17.0, 17.0]
[86, 153]
p03283
u029000441
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['\n\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom collections import Counter, deque\nfrom collections import defaultdict\nfrom itertools import combinations, permutations, accumulate, groupby, product\nfrom bisect import bisect_left,bisect_right\nfrom heapq import heapify, heappop, heappush\nfrom math import floor, ceil,pi,factorial\nfrom operator import itemgetter\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\ndef LI2(): return [int(input()) for i in range(n)]\ndef MXI(): return [[LI()]for i in range(n)]\ndef SI(): return input().rstrip()\ndef printns(x): print(\'\\n\'.join(x))\ndef printni(x): print(\'\\n\'.join(list(map(str,x))))\ninf = 10**17\nmod = 10**9 + 7\n\nu=input().rstrip()\nn=int(u)\nu=list(u)\ns=int(u[-1])\nsm=0\nfor i in u:\n sm+=int(i)\n\nimport math\ndef judprime(x):\n y=math.sqrt(x)\n count=0\n for j in range(2,int(y)+1):\n if x%j==0:\n count+=1\n if count==0:\n return 1\n else:\n return 0\n\n\npri =[1,3,7,9]\nif judprime(n)==1:\n print("Prime")\nelse:\n if s in pri and sm%3!=0:\n print("Prime")\n \n else:\n print("Not Prime")\n \n\n\n \n \n\n\n\n \n \n\n\n \n ', "\n\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom collections import Counter, deque\nfrom collections import defaultdict\nfrom itertools import combinations, permutations, accumulate, groupby, product\nfrom bisect import bisect_left,bisect_right\nfrom heapq import heapify, heappop, heappush\nfrom math import floor, ceil,pi,factorial\nfrom operator import itemgetter\ndef I(): return int(input())\ndef MI(): return map(int, input().split())\ndef LI(): return list(map(int, input().split()))\ndef LI2(): return [int(input()) for i in range(n)]\ndef MXI(): return [[LI()]for i in range(n)]\ndef SI(): return input().rstrip()\ndef printns(x): print('\\n'.join(x))\ndef printni(x): print('\\n'.join(list(map(str,x))))\ninf = 10**17\nmod = 10**9 + 7\n\nn,m,que=MI()\nlis=[[0]*n for i in range(n)]\nfor i in range(m):\n l,r=MI()\n lis[l-1][r-1]+=1\nfor i in range(n):\n lis[i]=list(accumulate(lis[i]))\nfor i in range(n):\n for j in range(n-1):\n lis[j+1][i]+=lis[j][i]\n#print(lis)\n#print(lis)\nfor i in range(que):\n p,q=MI()\n if p==1:\n ans=lis[q-1][q-1]\n else:\n ans=lis[q-1][q-1]-lis[p-2][q-1]\n print(ans)"]
['Runtime Error', 'Accepted']
['s141878390', 's699254782']
[9496.0, 19368.0]
[25.0, 382.0]
[1305, 1179]
p03283
u029169777
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["N,M,Q=map(int,input().split())\n\n\n\nanswer=[[0]*N for i in range(N)]\nfor i in range(M):\n L,R=map(int,input().split())\n answer[N-L][R-1]+=1\n\nfor i in range(1,N):\n answer[0][i]+=answer[0][i-1]\n answer[i][0]+=answer[i-1][0]\n \nprint(answer[0])\nfor i in range(1,N):\n for j in range(1,N):\n answer[i][j]+=answer[i-1][j]\n answer[i][j]+=answer[i][j-1]\n answer[i][j]-=answer[i-1][j-1]\nfor i in range(Q):\n p,q=map(int,input().split())\n print(answer[N-p][q-1])\n\n\n\n'''\nfor i in range(Q):\n answer=0\n Query=list(map(int,input().split()))\n for j in range(M):\n if train[j][0]>=Query[0] and train[j][1]<=Query[1]:\n answer+=1\n print(answer)\n'''\n ", "N,M,Q=map(int,input().split())\n\n\nQuery=[]\nanswer=[[0]*N for i in range(N)]\nfor i in range(M):\n L,R=map(int,input().split())\n answer[N-L][R-1]+=1\n\nfor i in range(1,N):\n answer[0][i]+=answer[0][i-1]\n answer[i][0]+=answer[i-1][0]\n \nfor i in range(1,N):\n for j in range(1,N):\n answer[i][j]+=answer[i-1][j]\n answer[i][j]+=answer[i][j-1]\n answer[i][j]-=answer[i-1][j-1]\nfor i in range(Q):\n p,q=map(int,input().split())\n print(answer[N-p][q-1])\n'''\nfor i in range(Q):\n answer=0\n Query=list(map(int,input().split()))\n for j in range(M):\n if train[j][0]>=Query[0] and train[j][1]<=Query[1]:\n answer+=1\n print(answer)\n'''\n "]
['Wrong Answer', 'Accepted']
['s631955367', 's908053011']
[9348.0, 9348.0]
[1589.0, 1554.0]
[1373, 643]
p03283
u044459372
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['\ndef solve(s,e):\n\tres=0\n\tfor i in range(s,e+1):\n\t\tres+=train[i][e+1]-train[i][s]\n\treturn res\n\ncity,dnum,qnum=map(int,input().split())\n\ntrain=[[0 for i in range(city+1)] for i in range(city+1)]\n\nfor i in range(dnum):\n\tl,r=map(int,input().split())\n\ttrain[l][r]+=1\n\nfor i in train:\n\ttmp=0\n\tfor j in i:\n\t\ttmp+=j\n\t\tj=tmp\n\t\nquerry=[list(map(int,input().split())) for i in range(qnum)]\n\nfor q in querry:\n\tprint(solve(*q))', 'city,dnum,qnum=map(int,input().split())\n\ndata,querry=[],[]\ndapp=data.append()\nqapp=querry.append()\nfor i in range(dnum):\n\tdapp(list(map(int,input().split())))\n\nfor i in range(qnum):\n\tqapp(list(map(int,input().split())))\n\t\ndef solve(start,end):\n\tres=0\n\tfor j in range(dnum):\n\t\tif start<=data[j][0] and data[j][1]<=end:\n\t\t\tres+=1\n\treturn res\n\t\nfor i in range(qnum):\n\tprint(solve(querry[i][0],querry[i][1]))', "def main():\n n, m, Q = map(int, input().split())\n Train= [[0 for _ in range(n)] for _ in range(n)]\n \n for i in range(m):\n l, r = map(int, input().split())\n l, r = l - 1, r - 1\n Train[l][r] += 1\n \n P_Train = [[0 for _ in range(n)] for _ in range(n)]\n for i in range(n):\n tmp = 0\n for j in range(n):\n tmp += Train[i][j]\n P_Train[i][j] = tmp\n\n for i in range(Q):\n p, q = map(int, input().split())\n p, q = p - 1, q - 1\n ans = solve(P_Train, n, p, q)\n print(ans)\n\ndef solve(P_Train, n, p, q):\n ans = 0\n for i in range(p, q + 1):\n ans += P_Train[i][q] - P_Train[i][p]\n return ans\n\n\nif __name__ == '__main__':\n main()", "import sys\n\ninput = lambda :sys.stdin.readline().rstrip()\n\ndef main():\n n, m, Q = map(int, input().split())\n Train= [[0 for _ in range(n)] for _ in range(n)]\n \n for i in range(m):\n l, r = map(int, input().split())\n l, r = l - 1, r - 1\n Train[l][r] += 1\n \n P_Train = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n for i in range(n):\n for j in range(n):\n P_Train[i + 1][j + 1] = P_Train[i][j + 1] + P_Train[i + 1][j] + Train[i][j] - P_Train[i][j]\n \n #print(*P_Train, sep = '\\n')\n\n for i in range(Q):\n p, q = map(int, input().split())\n p, q = p - 1, q - 1\n ans = solve(P_Train, p, q)\n print(ans)\n\ndef solve(P_Train, p, q):\n ans = 0\n ans = P_Train[q + 1][q + 1] -P_Train[p][q + 1] - P_Train[q + 1][p] + P_Train[p][p]\n return ans\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s191171305', 's506600115', 's589910347', 's666068224']
[26376.0, 3064.0, 11252.0, 15784.0]
[964.0, 17.0, 3156.0, 751.0]
[414, 404, 738, 874]
p03283
u059210959
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
[' N, M, Q = map(int, input().split())\n rail = []\n for i in range(M):\n r = list(map(int, input().split()))\n rail.append(r)\n \n query = []\n for i in range(Q):\n q = list(map(int, input().split()))\n query.append(q)\n \n f = [[0 for i in range(N)] for j in range(N)]\n g = [[0 for i in range(N)] for j in range(N)]\n \n for i in range(M):\n f[rail[i][0]-1][rail[i][1]-1] += 1\n \n for i in range(N):\n j = 0\n while j + i < N:\n if i == 0:\n g[j][j+i] = f[j][j+i]\n else:\n g[j][j+i] = f[j][j+i] + g[j+1][j+i] + g[j][j+i-1] - g[j+1][j+i-1]\n j += 1\n \n for i in range(Q):\n print(g[query[i][0]-1][query[i][1]-1])', '#encoding utf-8\n\nimport numpy as np\n\nN, M, Q = map(int, input().split())\n\nL = []\nR = []\nfor i in range(M):\n l, r = map(int, input().split())\n L.append(l)\n R.append(r)\n\np = []\nq = []\n\nfor i in range(Q):\n pa, qa = map(int, input().split())\n p.append(pa)\n q.append(qa)\n\nMAP = np.zeros((N, N))\nfor i in range(M):\n MAP[L[i]-1][R[i]-1] += 1\n\nC = np.zeros((N, N))\nC[0][0] = MAP[0][0]\nfor i in range(N):\n count = 0\n for j in range(N):\n count += MAP[i][j]\n C[i][j] = count\n\nprint(MAP)\nprint(C)\n\nfor i in range(Q):\n count = 0\n for j in range(q[i]-p[i]+1):\n if j == 0:\n count += C[p[i]-1+j][q[i]-1]\n else:\n count += C[p[i]-1+j][q[i]-1]-C[p[i]-1+j][p[i]-1]\n print(int(count))\n', '#encoding utf-8\n\nimport numpy as np\n\nN, M, Q = map(int, input().split())\n\nL = []\nR = []\nfor i in range(M):\n l, r = map(int, input().split())\n L.append(l)\n R.append(r)\n\np = []\nq = []\n\nfor i in range(Q):\n pa, qa = map(int, input().split())\n p.append(pa)\n q.append(qa)\n\nMAP = np.zeros((N, N))\nfor i in range(M):\n MAP[L[i]-1][R[i]-1] += 1\n\nC = np.zeros((N, N))\nC[0][0] = MAP[0][0]\nfor i in range(N):\n count = 0\n for j in range(N):\n count += MAP[i][j]\n C[i][j] = count\n\n\nfor i in range(Q):\n count = 0\n for j in range(q[i]-p[i]+1):\n count += C[p[i]-1+j][q[i]-1]-C[p[i]-1+j][p[i]-1]\n print(int(count))\n', '\nN, M, Q = map(int, input().split())\nrail = []\nfor i in range(M):\n r = list(map(int, input().split()))\n rail.append(r)\n \nquery = []\nfor i in range(Q):\n q = list(map(int, input().split()))\n query.append(q)\n \nf = [[0 for i in range(N)] for j in range(N)]\ng = [[0 for i in range(N)] for j in range(N)]\n \nfor i in range(M):\n f[rail[i][0]-1][rail[i][1]-1] += 1\n \nfor i in range(N):\n j = 0\n while j + i < N:\n if i == 0:\n g[j][j+i] = f[j][j+i]\n else:\n g[j][j+i] = f[j][j+i] + g[j+1][j+i] + g[j][j+i-1] - g[j+1][j+i-1]\n j += 1\n \nfor i in range(Q):\n print(g[query[i][0]-1][query[i][1]-1])\n']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s043795670', 's609467936', 's948494384', 's101179435']
[2940.0, 30864.0, 30284.0, 75412.0]
[17.0, 3162.0, 3162.0, 1364.0]
[757, 750, 652, 647]
p03283
u075595666
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['class segment_():\n def __init__(self,A,n,ide_ele,segfunc):\n self.ide_ele = ide_ele\n self.num = 1 << n.bit_length()\n self.seg = [self.ide_ele] * 2 * self.num\n self.segfunc = segfunc\n\n def update1(self, k):\n k += self.num\n self.seg[k] += 1\n while k:\n k >>= 1\n self.seg[k] = self.segfunc(self.seg[k * 2], self.seg[k * 2 + 1])\n\n def query(self, p, q):\n if q < p:\n return self.ide_ele\n p += self.num;\n q += self.num\n res = self.ide_ele\n while p < q:\n if p & 1 == 1:\n res = self.segfunc(res, self.seg[p])\n p += 1\n if q & 1 == 1:\n q -= 1\n res = self.segfunc(res, self.seg[q])\n p >>= 1;\n q >>= 1\n return res\n \nimport sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nfrom operator import itemgetter\n\nN,M,Q = map(int,readline().split())\nS = segment_(N,0,lambda a, b: max(a,b))\nchk = []\nfor i in range(M):\n L,R = map(int,readline().split())\n chk.append((1,L,R,i))\nfor i in range(Q):\n l,r = map(int,readline().split())\n chk.append((2,l,r,i))\n \nchk.sort(key=itemgetter(2))\nans = [0]*Q\nfor a,l,r,i in chk:\n if a == 1:\n S.update1(l)\n else:\n ans[i] = S.query(l,r+1)\n \nfor i in ans:\n print(i)', "class segment_():\n def __init__(self,n,ide_ele,segfunc):\n self.ide_ele = ide_ele\n self.num = 1 << n.bit_length()\n self.seg = [self.ide_ele] * 2 * self.num\n self.segfunc = segfunc\n\n def update1(self, k):\n k += self.num\n self.seg[k] += 1\n while k:\n k >>= 1\n self.seg[k] = self.segfunc(self.seg[k * 2], self.seg[k * 2 + 1])\n\n def query(self, p, q):\n if q < p:\n return self.ide_ele\n p += self.num;\n q += self.num\n res = self.ide_ele\n while p < q:\n if p & 1 == 1:\n res = self.segfunc(res, self.seg[p])\n p += 1\n if q & 1 == 1:\n q -= 1\n res = self.segfunc(res, self.seg[q])\n p >>= 1;\n q >>= 1\n return res\n\ndef main():\n import sys\n read = sys.stdin.buffer.read\n readline = sys.stdin.buffer.readline\n readlines = sys.stdin.buffer.readlines\n from operator import itemgetter\n\n N,M,Q = map(int,readline().split())\n S = segment_(N,0,lambda a, b: a+b)\n chk = []\n for i in range(M):\n L,R = map(int,readline().split())\n chk.append((1,L,R,i))\n for i in range(Q):\n l,r = map(int,readline().split())\n chk.append((2,l,r,i))\n\n chk.sort(key=itemgetter(2))\n ans = [0]*Q\n for a,l,r,i in chk:\n if a == 1:\n S.update1(l)\n else:\n ans[i] = S.query(l,r+1)\n\n print(*ans,sep='\\n')\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s859354528', 's603382541']
[3188.0, 54736.0]
[20.0, 1959.0]
[1394, 1465]
p03283
u102902647
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["import numpy as np\ndef main():\n N, M, Q = map(int, input().split())\n LR = []\n for i in range(M):\n l, r = map(int, input().split())\n LR.append([l-1, r])\n PQ = []\n for i in range(Q):\n p, q = map(int, input().split())\n PQ.append([p-1, q-1])\n ar = np.zeros([M, N])\n for m in range(M):\n ar[m, LR[m][0]:LR[m][1]] = 1\n flags_start = [np.ones(M, dtype=np.bool)]\n flags_end = []\n for i in range(1, N):\n flags_start.append((ar[:, :i].max(axis=1)==0))# * (ar[:, i:].max(axis=1)==1))\n flags_end.append((ar[:, i:].max(axis=1)==0))# * (ar[:, :i].max(axis=1)==1))\n flags_end.append(np.ones(M, dtype=np.bool))\n for q in range(Q):\n left = PQ[q][0]\n right = PQ[q][1]\n print(sum(flags_start[left] * flags_end[right]))\n\nif __name__=='__main__':\n main()", 'N, M, Q = map(int, input().split())\nLR = []\nfor i in range(M):\n l, r = map(int, input().split())\n LR.append([l-1, r])\nPQ = []\nfor i in range(Q):\n p, q = map(int, input().split())\n PQ.append([p-1, q-1])\n\n\nimport numpy as np\nar = np.zeros([M, N])\nfor m in range(M):\n ar[m, LR[m][0]:LR[m][1]] = 1\n\nfor q in range(Q):\n left = PQ[q][0]\n right = PQ[q][1]\n if left != 0 and right!=9:\n flag = (ar[:, left-1] == 0)* (ar[:, right+1] == 0) * (ar[:, left:right+1].max(axis=1) > 0)\n print(sum(flag))\n elif left == 0 and right!=9:\n flag = (ar[:, right+1] == 0) * (ar[:, left:right+1].max(axis=1) > 0)\n print(sum(flag))\n elif left != 0 and right==9:\n flag = (ar[:, left-1] == 0) * (ar[:, left:right+1].max(axis=1) > 0)\n print(sum(flag))\n else:\n print(M)\n', 'N, M, Q = map(int, input().split())\nLR = []\nfor i in range(M):\n l, r = map(int, input().split())\n LR.append([l-1, r])\nPQ = []\nfor i in range(Q):\n p, q = map(int, input().split())\n PQ.append([p-1, q-1])\n \n\nimport numpy as np\nar = np.zeros([M, N])\nfor m in range(M):\n ar[m, LR[m][0]:LR[m][1]] = 1\nflags_start = [np.ones(M, dtype=np.bool)]\nflags_end = []\nfor i in range(1, N):\n flags_start.append((ar[:, :i].max(axis=1)==0))# * (ar[:, i:].max(axis=1)==1))\n flags_end.append((ar[:, i:].max(axis=1)==0))# * (ar[:, :i].max(axis=1)==1))\nflags_end.append(np.ones(M, dtype=np.bool))\nfor q in range(Q):\n left = PQ[q][0]\n right = PQ[q][1]\n print(sum(flags_start[left] * flags_end[right]))\n', 'import numpy as np\nN, M, Q = map(int, input().split())\nLR = []\nfor i in range(M):\n l, r = map(int, input().split())\n LR.append([l, r])\nPQ = []\nfor i in range(Q):\n p, q = map(int, input().split())\n PQ.append([p, q])\nar_sec = np.zeros([N, N])\nfor i in range(M):\n l, r = LR[i][0], LR[i][1]\n ar_sec[l-1][r-1] += 1\n\n\nar_sum = np.zeros([N+1, N+1])\nfor i in range(N):\n for j in range(N):\n ar_sum[i+1][j+1] = ar_sum[i][j+1]+ar_sum[i+1][j]-ar_sum[i][j]+ar_sec[i][j]\n\nfor i in range(Q):\n p, q = PQ[i][0], PQ[i][1]\n print(int(ar_sum[q][q]-ar_sum[p-1][q]))\n']
['Time Limit Exceeded', 'Runtime Error', 'Time Limit Exceeded', 'Accepted']
['s313830153', 's438477025', 's728178679', 's707767439']
[840272.0, 837804.0, 839532.0, 56964.0]
[3166.0, 3165.0, 3165.0, 2396.0]
[841, 821, 711, 579]
p03283
u118642796
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import sys\ns = sys.stdin.readlines()\nN,M,Q = map(int,s[0].split())\n\nSection = [[0]*N for _ in range(N)]\nfor L,R in (map(int, e.split()) for e in s[1:M+1):\n Section[L-1][R-1] += 1\n\nSum = [[0]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n for j in range(N):\n Sum[i+1][j+1] = Sum[i][j+1]+Sum[i+1][j]-Sum[i][j]+Section[i][j]\n\nAns = [[0]*N for _ in range(N)]\nfor i in range(N):\n for j in range(i,N):\n Ans[i][j] = Sum[j+1][j+1]-Sum[i][j+1]\n\nfor p,q in (map(int, e.split()) for e in s[M+1:]\n print(Ans[p-1][q-1])', 'import sys\ns = sys.stdin.readlines()\n\nN,M,Q = map(int,s[0].split())\n\nSection = [[0]*N for _ in [0]*N]\nfor L,R in (map(int, e.split()) for e in s[1:M+1]):\n Section[L-1][R-1] += 1\n\nSum = [[0]*(N+1) for _ in [0]*(N+1)]\nfor i in range(N):\n for j in range(N):\n Sum[i+1][j+1] = Sum[i][j+1]+Sum[i+1][j]-Sum[i][j]+Section[i][j]\n\nfor p,q in (map(int, e.split()) for e in s[M+1:]):\n print(Sum[q][q]-Sum[p-1][q])']
['Runtime Error', 'Accepted']
['s955312361', 's898301937']
[2940.0, 36872.0]
[17.0, 667.0]
[532, 417]
p03283
u124592621
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n, m, q = map(int, input().split())\ncum = [[0]\nfor i in range(m):\n li, ri = map(int, input().split())\n lis.append(li)\n ris.append(ri)\n\nfor i in range(q):\n pi, qi = map(int, input().split())\n total = 0\n for (li, ri) in zip(lis, ris):\n if pi <= li and ri <= qi:\n total += 1\n print(total)\n\n', 'n, m, qq = map(int, input().split())\nlr = [[0] * n for _ in range(n)]\nfor _ in range(m):\n l, r = map(int, input().split())\n lr[l - 1][r - 1] += 1\n\nfor i in range(n):\n for j in range(n - 1):\n lr[i][j + 1] += lr[i][j]\nfor j in range(n):\n for i in range(n-1, 0, -1):\n lr[i - 1][j] += lr[i][j]\n\nfor _ in range(qq):\n p, q = map(int, input().split())\n if q == n:\n print(lr[p - 1][q - 1])\n else:\n print(lr[p - 1][q - 1] - lr[q][q - 1])\n']
['Runtime Error', 'Accepted']
['s224152957', 's712975570']
[2940.0, 9332.0]
[17.0, 1599.0]
[326, 478]
p03283
u136090046
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n, m, q = map(int, input().split())\nlr_array = [[int(x) for x in input().split()] for y in range(m)]\npq_array = [[int(x) for x in input().split()] for y in range(q)]\n\n\ndef solve1():\n table = [[0 for x in range(n + 1)] for y in range(n + 1)]\n for l, r in lr_array:\n table[l][r] += 1\n # for row in table:\n # print(row)\n # print("---------")\n for i in range(1, n + 1):\n for j in range(1, n + 1):\n table[i][j] = table[i][j - 1] + table[i][j]\n # for row in table:\n # print(row)\n for p, q in pq_array:\n res = 0\n for i in range(p, q + 1):\n # print(i)\n res += table[i][q]\n print(res)\n\n return 0\n\n\n\n\n\ndef solve2():\n table = [[0 for x in range(n + 1)] for y in range(n + 1)]\n for l, r in lr_array:\n table[l][r] += 1\n # for row in table:\n # print(row)\n # print("---------")\n\n \n for i in range(1, n + 1):\n for j in range(1, n + 1):\n table[i][j] = table[i][j - 1] + table[i][j]\n\n \n for i in range(1, n + 1):\n for j in range(1, n + 1):\n table[i][j] = table[i - 1][j] + table[i][j]\n\n \n \n for p, q in pq_array:\n print(table[q][q] + table[p][p] - table[q][p-1] - table[p-1][q])\n\n\nif __name__ == \'__main__\':\n # solve1()\n solve2()\n', 'n, m, q = map(int, input().split())\nlr_array = [[int(x) for x in input().split()] for y in range(m)]\npq_array = [[int(x) for x in input().split()] for y in range(q)]\n\n\ndef solve1():\n table = [[0 for x in range(n + 1)] for y in range(n + 1)]\n for l, r in lr_array:\n table[l][r] += 1\n # for row in table:\n # print(row)\n # print("---------")\n for i in range(1, n + 1):\n for j in range(1, n + 1):\n table[i][j] = table[i][j - 1] + table[i][j]\n # for row in table:\n # print(row)\n for p, q in pq_array:\n res = 0\n for i in range(p, q + 1):\n # print(i)\n res += table[i][q]\n print(res)\n\n return 0\n\n\n\n\n\ndef solve2():\n table = [[0 for x in range(n + 1)] for y in range(n + 1)]\n for l, r in lr_array:\n table[l][r] += 1\n # for row in table:\n # print(row)\n # print("---------")\n\n \n for i in range(1, n + 1):\n for j in range(1, n + 1):\n table[i][j] = table[i][j - 1] + table[i][j]\n\n \n for i in range(1, n + 1):\n for j in range(1, n + 1):\n table[i][j] = table[i - 1][j] + table[i][j]\n\n # for row in table:\n # print(row)\n\n \n \n for p, q in pq_array:\n print(table[q][q] + table[p-1][p-1] - table[q][p-1] - table[p-1][q])\n\n\nif __name__ == \'__main__\':\n # solve1()\n solve2()\n']
['Wrong Answer', 'Accepted']
['s715853893', 's791883897']
[58480.0, 58480.0]
[1164.0, 1141.0]
[1559, 1609]
p03283
u140251125
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['# input\nN, M, Q = map(int, input().split())\ntrain_query = {} \nfor i in range(M + Q):\n train_query[i] = list(map(int, input().split()))\n\ntrain_query = sorted(train_query.items(), key=lambda x: x[1][1])\nprint(train_query)\n\n\na = [0 for _ in range(N)]\n\nfor j in range(M + Q):\n if train_query[j][0] < M: \n a[train_query[j][1][0] - 1] += 1\n else: \n ans = sum(a[(train_query[j][1][0] - 1):(train_query[j][1][1])])\n print(ans)', '# input\nN, M, Q = map(int, input().split())\ntrain_query = {} \nfor i in range(M + Q):\n train_query[i] = list(map(int, input().split()))\n\ntrain_query = sorted(train_query.items(), key=lambda x: x[1], reverse = True)\n\n\na = [0 for _ in range(N)]\n\nfor j in range(M + Q):\n if train_query[j][0] < M: \n a[train_query[j][1][0]] = 1\n else: \n ans = sum(a[train_query[j][1][0]:train_query[j][1][1]])\n print(ans)\n', '# input\nN, M, Q = map(int, input().split())\ntrain_query = {} \nfor i in range(M + Q):\n train_query[i] = list(map(int, input().split()))\n\ntrain_query = sorted(train_query.items(), key=lambda x: x[1][1])\n\n\nStartPoints = [0 for _ in range(N)] \nans = [0 for _ in range(Q)] \n\nfor j in range(M + Q):\n if train_query[j][0] < M: \n StartPoints[train_query[j][1][0] - 1] += 1\n else: \n ans[train_query[j][0] - M] = sum(StartPoints[(train_query[j][1][0] - 1):(train_query[j][1][1])])\n\nfor i in range(Q):\n print(ans[i])\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s218967455', 's272680774', 's716530856']
[114376.0, 111964.0, 111944.0]
[2561.0, 2423.0, 2293.0]
[591, 573, 736]
p03283
u148019779
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["#!/usr/bin/env python3\n\nimport sys\n\n\ndef main():\n n, m, q = [int(x) for x in sys.stdin.readline().rstrip().split(' ')]\n\n x = [[0 for j in range(n+1)] for i in range(n+1)]\n c = [[0 for j in range(n+1)] for i in range(n+1)]\n z = [[0 for j in range(n+1)] for i in range(n+1)]\n\n for i in range(m):\n l, r = [int(x) for x in sys.stdin.readline().rstrip().split(' ')]\n x[l][r] += 1\n \n for i in range(1, n+1):\n for j in range(1, n+1):\n c[i][j] = c[i][j-1] + x[i][j]\n\n for j in range(1, n+1):\n for i in range(1, n+1):\n z[i][j] = z[i-1][j] + c[i][j]\n \n for i in range(q):\n qp, qq = [int(x) for x in sys.stdin.readline().rstrip().split(' ')]\n print(z[qq][qq] - z[qq][qp-1] - z[qp-1][qq] + z[qp][qp])\n\n\nif __name__=='__main__':\n main()", "#!/usr/bin/env python3\n\nimport sys\n\n\ndef main():\n n, m, q = [int(x) for x in sys.stdin.readline().rstrip().split(' ')]\n\n x = [[0 for j in range(n+1)] for i in range(n+1)]\n c = [[0 for j in range(n+1)] for i in range(n+1)]\n z = [[0 for j in range(n+1)] for i in range(n+1)]\n\n for i in range(m):\n l, r = [int(x) for x in sys.stdin.readline().rstrip().split(' ')]\n x[l][r] += 1\n \n for i in range(1, n+1):\n for j in range(1, n+1):\n c[i][j] = c[i][j-1] + x[i][j]\n\n for j in range(1, n+1):\n for i in range(1, n+1):\n z[i][j] = z[i-1][j] + c[i][j]\n \n for i in range(q):\n qp, qq = [int(x) for x in sys.stdin.readline().rstrip().split(' ')]\n print(z[qq][qq] - z[qq][qp-1] - z[qp-1][qq] + z[qp-1][qp-1])\n\n\nif __name__=='__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s810635345', 's608603247']
[19764.0, 19764.0]
[765.0, 746.0]
[820, 824]
p03283
u170201762
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import bisect\nimport numpy as np\nN,M,Q = map(int,input().split())\nlr = [0]*M\nfor i in range(M):\n l,r = map(int,input().split())\n lr[i] = [l,r]\nlr = sorted(lr,key=lambda x:x[0])\nlr_t = list(np.array(lr).transpose())\nindex_dict={}\nr_dict={} \nd = {}\nfor i in range(N):\n index_dict[i+1]=bisect.bisect_left(lr_t[0],i+1)\n r_dict[i+1]=sorted(lr_t[1][index_dict[i+1]:])\nfor i in range(Q):\n p,q = map(int,input().split())\n if p not in d:\n d[p]={}\n else:\n if q not in d[p]:\n I = index_dict[p]\n r = r_dict[p]\n I = bisect.bisect(r,q)\n print(I)\n d[p][q]=I\n else:\n print(d[p][q])\n ', 'import numpy as np\nN,M,Q = map(int,input().split())\nS = [[0]*N for i in range(N)]\nfor i in range(M):\n L,R = map(int,input().split())\n S[L-1][R-1] += 1\n\nS = np.cumsum(np.cumsum(np.array(S),axis=0),axis=1)\n\nfor i in range(Q):\n p,q = map(int,input().split())\n p -= 1\n q -= 1\n ans = S[q][q]\n if p > 0:\n ans += S[p-1][p-1]-S[p-1][q]-S[q][p-1]\n print(ans)']
['Wrong Answer', 'Accepted']
['s220696734', 's829356241']
[255936.0, 18248.0]
[3175.0, 2643.0]
[678, 380]
p03283
u186967328
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N,M,Q = map(int,input().split())\n\ntrain = [[0 for i in range(N)] for j in range(N)]\nfor m in range(M):\n L,R = map(int,input().split())\n train[L-1][R-1] += 1\n\nc = [[0 for i in range(N)] for j in range(N)]\nfor i in range(N):\n cnt = 0\n for j in range(N):\n cnt += train[i][j]\n c[i][j] = cnt\n\n\n\nfor x in range(Q):\n p,q = map(int,input().split())\n p -= 1\n q -= 1\n cnt2 = 0\n for i in range(p,q+1):\n cnt2 += c[i][q] - c[i][p]\n print(cnt2)', 'N,M,Q = map(int,input().split())\n\ntrain = [[0 for i in range(N+1)] for j in range(N+1)]\nfor m in range(M):\n L,R = map(int,input().split())\n train[L][R] += 1\n\nc = [[0 for i in range(N+1)] for j in range(N+1)]\nfor i in range(1,N+1):\n cnt = 0\n for j in range(1,N+1):\n c[i][j] = train[i][j] + c[i-1][j] + c[i][j-1] - c[i-1][j-1]\n\nfor x in range(Q):\n p,q = map(int,input().split())\n print(c[q][q]-c[q][p-1]-c[p-1][q]+c[p-1][p-1])']
['Wrong Answer', 'Accepted']
['s926563157', 's349025375']
[11124.0, 15528.0]
[3156.0, 1600.0]
[481, 449]
p03283
u189479417
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int,input().split())\ngraph = [[0 for i in range(N+1)] for j in range(N+1)]\nfor _ in range(M):\n L, R = map(int,input().split())\n graph[L-1][R] += 1\n\nprint(graph)\n\nfor i in range(N-1,-1,-1):\n for j in range(1,N+1):\n graph[i][j] += graph[i+1][j] + graph[i][j-1]\n\nprint(graph)\n\nfor _ in range(Q):\n p, q = map(int,input().split())\n print(graph[p-1][q])', 'N, M, Q = map(int,input().split())\ngraph = [[0 for i in range(N+1)] for j in range(N+1)]\nfor _ in range(M):\n L, R = map(int,input().split())\n graph[L-1][R] += 1\n\nfor i in range(N-1,-1,-1):\n for j in range(1,N+1):\n graph[i][j] += graph[i+1][j] + graph[i][j-1] - graph[i+1][j-1]\n\nprint(graph)\n\nfor _ in range(Q):\n p, q = map(int,input().split())\n print(graph[p-1][q])', 'N, M, Q = map(int,input().split())\ngraph = [[0 for i in range(N+1)] for j in range(N+1)]\nfor _ in range(M):\n L, R = map(int,input().split())\n graph[L-1][R] += 1\n\nfor i in range(N-1,-1,-1):\n for j in range(1,N+1):\n graph[i][j] += graph[i+1][j] + graph[i][j-1] - graph[i+1][j-1]\n\nfor _ in range(Q):\n p, q = map(int,input().split())\n print(graph[p-1][q])']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s603717614', 's867758138', 's338143467']
[35336.0, 12424.0, 11144.0]
[1656.0, 1542.0, 1514.0]
[383, 387, 373]
p03283
u189487046
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['2 3 1\n1 1\n1 2\n2 2\n1 2', 'n, m, Q = map(int, input().split())\nM = [[0]*n for _ in range(n)]\nfor i in range(m):\n l, r = map(int, input().split())\n M[r-1][l-1] += 1\n\nfor q in range(n):\n for p in reversed(range(1, n)):\n M[q][p-1] += M[q][p]\nfor p in range(n):\n for q in range(n-1):\n M[q+1][p] += M[q][p]\n\nfor i in range(Q):\n p, q = map(int, input().split())\n print(M[q-1][p-1])\n']
['Runtime Error', 'Accepted']
['s009296734', 's418789429']
[2940.0, 10992.0]
[17.0, 1554.0]
[21, 381]
p03283
u191829404
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import math\nimport copy\nfrom operator import mul\nfrom functools import reduce\nfrom collections import defaultdict\nfrom collections import Counter\nfrom collections import deque\n\nfrom itertools import product\n\nfrom itertools import permutations\n\nfrom itertools import combinations\n\nfrom itertools import accumulate\nfrom bisect import bisect_left, bisect_right\n\nimport re\n# import numpy as np\n# from scipy.misc import comb\n\ndef inside(y, x, H, W):\n return 0 <= y < H and 0 <= x < W\n\n\ndy = [0, -1, 0, 1]\ndx = [1, 0, -1, 0]\n \ndef i_inpl(): return int(input())\ndef l_inpl(): return list(map(int, input().split()))\ndef line_inpl(x): return [i_inpl() for _ in range(x)]\n\nINF = int(1e18)\nMOD = int(1e9)+7 # 10^9 + 7\n\n\ndef create_grid(W, H, value = 0):\n return [[ value for _ in range(H)] for _ in range(W)]\n\n########\nN, H = l_inpl()\na, b = [], []\n\nfor _ in range(N):\n ai, bi = l_inpl()\n a.append(ai)\n b.append(bi)\n\na.sort()\nb.sort()\nmax_a = max(a)\n\nans = 0\nfor bi in b[bisect_right(b, max_a):]:\n H -= bi\n ans += 1\n if H <= 0:\n break\n\nif H > 0:\n ans += math.ceil(H / max_a)\n\nprint(ans)', 'import math\nimport copy\nfrom operator import mul\nfrom functools import reduce\nfrom collections import defaultdict\nfrom collections import Counter\nfrom collections import deque\n\nfrom itertools import product\n\nfrom itertools import permutations\n\nfrom itertools import combinations\n\nfrom itertools import accumulate\nfrom bisect import bisect_left, bisect_right\n\nimport re\n# import numpy as np\n# from scipy.misc import comb\n\ndef inside(y, x, H, W):\n return 0 <= y < H and 0 <= x < W\n\n\ndy = [0, -1, 0, 1]\ndx = [1, 0, -1, 0]\n \ndef i_inpl(): return int(input())\ndef l_inpl(): return list(map(int, input().split()))\ndef line_inpl(x): return [i_inpl() for _ in range(x)]\n\nINF = int(1e18)\nMOD = int(1e9)+7 # 10^9 + 7\n\n\ndef create_grid(W, H, value = 0):\n return [[ value for _ in range(H)] for _ in range(W)]\n\n########\nN, M, Q = l_inpl()\n\nl, r = [], []\nfor _ in range(M):\n li, ri = l_inpl()\n l.append(li)\n r.append(ri)\n\np, q = [], []\nfor _ in range(Q):\n pi, qi = l_inpl()\n p.append(pi)\n q.append(qi)\n\ns = create_grid(N+1, N+1)\n\nfor i in range(M):\n s[l[i]][r[i]] += 1\n\nfor hi in range(1, N+1):\n for wi in range(1, N+1):\n s[hi][wi] += s[hi-1][wi]\n s[hi][wi] += s[hi][wi-1]\n s[hi][wi] -= s[hi-1][wi-1]\n\nfor i in range(Q):\n pi, qi = p[i], q[i]\n print(s[qi][qi] - s[qi][pi-1] - s[pi-1][qi] + s[pi-1][pi-1])']
['Runtime Error', 'Accepted']
['s924016255', 's140300747']
[3824.0, 28572.0]
[26.0, 1454.0]
[1410, 1648]
p03283
u201234972
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map( int, input().split())\nNN = [ [0]*N for _ in range(N)]\nfor _ in range(M):\n L, R = map( int, input().split())\n NN[L-1][R-1] += 1\n\nfor i in range(1,N+1):\n for j in range(1,N+1):\n NN[i][j] += NN[i][j-1]+NN[i-1][j]+NN[i-1][j]-NN[i-1][j-1]\nfor _ in range(Q):\n p, q = map( int, input().split())\n print(NN[p-1][q-1])', 'N, M, Q = map( int, input().split())\nNN = [ [0 for _ in range(N+1)] for _ in range(N+1)]\nfor _ in range(M):\n L, R = map( int, input().split())\n NN[L][R] += 1\n\nfor i in range(1,N+1):\n for j in range(1,N+1):\n NN[i][j] += NN[i][j-1]+NN[i-1][j]+NN[i-1][j]-NN[i-1][j-1]\nfor _ in range(Q):\n p, q = map( int, input().split())\n print(NN[q][q]-NN[q][p-1]-NN[p-1][q]+NN[p-1][p-1])', 'N, M, Q = map( int, input().split())\nNN = [ [0]*(N+1) for _ in range(N+1)]\nfor _ in range(M):\n L, R = map( int, input().split())\n NN[L][R] += 1\n\nfor i in range(1,N+1):\n for j in range(1,N+1):\n NN[i][j] += NN[i][j-1]+NN[i-1][j]+NN[i-1][j]-NN[i-1][j-1]\nfor _ in range(Q):\n p, q = map( int, input().split())\n print(NN[p-1][q-1])', 'N, M, Q = map( int, input().split())\nNN = [ [ 0 for _ in range(N)] for _ in range(N)]\nfor _ in range(M):\n L, R = map( int, input().split())\n NN[L-1][R-1] += 1\n\nfor i in range(1,N):\n for j in range(1,N):\n NN[j][j+1] += NN[j][j+i-1] + NN[j+1][i+j] - NN[j+1][j+i-1]\nfor _ in range(Q):\n p, q = map( int, input().split())\n print(NN[p-1][q-1])', 'N, M, Q = map( int, input().split())\nNN = [ [0 for _ in range(N+1)] for _ in range(N+1)]\nfor _ in range(M):\n L, R = map( int, input().split())\n NN[L][R] += 1\n\nfor i in range(1,N+1):\n for j in range(1,N+1):\n NN[i][j] += NN[i][j-1]+NN[i-1][j]-NN[i-1][j-1]\nfor _ in range(Q):\n p, q = map( int, input().split())\n print(NN[q][q]-NN[q][p-1]-NN[p-1][q]+NN[p-1][p-1])']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s052307090', 's101724420', 's105136071', 's257895476', 's838665347']
[4980.0, 69692.0, 46980.0, 5108.0, 13416.0]
[590.0, 1997.0, 1692.0, 620.0, 1592.0]
[345, 392, 347, 359, 381]
p03283
u210827208
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n,m,Q=map(int,input().split())\nM=[[0]*n for _ in range(n)]\nfor i in range(m):\n l,r=map(int,input().split())\n M[r-1][l-1]+=1\n\nfor q in range(n):\n for p in reversed(range(1,n)):\n M[q][p-1]+=M[q][p]\nfor p in range(n):\n for q in range(n-1):\n M[q+1][p]+=M[q][p] \nprint(M)\nfor i in range(Q):\n p,q=map(int,input().split())\n print(M[q-1][p-1])', 'n,m,Q=map(int,input().split())\nM=[[0]*n for _ in range(n)]\nfor i in range(m):\n l,r=map(int,input().split())\n M[r-1][l-1]+=1\n\nfor q in range(n):\n for p in reversed(range(1,n)):\n M[q][p-1]+=M[q][p]\nfor p in range(n):\n for q in range(n-1):\n M[q+1][p]+=M[q][p] \n\nfor i in range(Q):\n p,q=map(int,input().split())\n print(M[q-1][p-1])']
['Wrong Answer', 'Accepted']
['s651392313', 's872323951']
[12568.0, 9332.0]
[1538.0, 1532.0]
[374, 366]
p03283
u215115622
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["import sys\nfrom itertools import accumulate\nN, M, Q = [int(i) for i in input().strip().split(' ')]\n \nflag = False\ncounter = M\n \nd = []\nd2 = []\nfor i in range(N):\n d.append([0] * N)\nfor i in range(N):\n d2.append([0] * N)\n \n \nfor line in sys.stdin:\n L, R = [int(i) for i in line.strip().split(' ')]\n if not flag:\n d[L-1][R-1] += 1\n\n# for j in range(N - R + 1):\n# d[i][R + j - 1] += 1\n counter -= 1\n if counter == 0:\n# print(d)\n for i in range(N):\n d[i] = d[i][::-1]\n# print(d)\n for i in range(N):\n if i == 0:\n d[N-1] = list(accumulate(d[N-1][::-1]))[::-1]\n else:\n for j in range(N):\n if j == 0:\n temp = d[N-1-i][N-1-j]\n else:\n temp += d[N-1-i][N-1-j]", 'import sys\ns = sys.stdin.readlines()\n \nN,M,Q = map(int,s[0].split())\n \nSection = [[0]*N for _ in [0]*N]\nfor L,R in (map(int, e.split()) for e in s[1:M+1]):\n Section[L-1][R-1] += 1\n \nSum = [[0]*(N+1) for _ in [0]*(N+1)]\nfor i in range(N):\n for j in range(N):\n Sum[i+1][j+1] = Sum[i][j+1]+Sum[i+1][j]-Sum[i][j]+Section[i][j]\n \nfor p,q in (map(int, e.split()) for e in s[M+1:]):\n print(Sum[q][q]-Sum[p-1][q])']
['Wrong Answer', 'Accepted']
['s812758343', 's446814906']
[7028.0, 36864.0]
[593.0, 677.0]
[962, 421]
p03283
u222668979
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['from copy import deepcopy\n\nn, m, q = map(int, input().split())\nlr = [list(map(int, input().split())) for _ in range(m)]\npq = [list(map(int, input().split())) for _ in range(q)]\n\ncnt = [[0] * (n + 1) for _ in range(n + 1)]\nfor l, r in lr:\n cnt[l][r] += 1\n\nacc = cnt.deepcopy()\nfor i in range(n):\n for j in range(n):\n tmp = acc[i][j + 1] + acc[i + 1][j] - acc[i][j]\n acc[i + 1][j + 1] += tmp\n\nfor p, q in pq:\n p -= 1\n ans = acc[q][q] - acc[p][q] - acc[q][p] + acc[p][p]\n print(ans)\n', 'from copy import deepcopy\n\nn, m, q = map(int, input().split())\nlr = [list(map(int, input().split())) for _ in range(m)]\npq = [list(map(int, input().split())) for _ in range(q)]\n\ncnt = [[0] * (n + 1) for _ in range(n + 1)]\nfor l, r in lr:\n cnt[l][r] += 1\n\nacc = deepcopy(cnt)\nfor i in range(n):\n for j in range(n):\n tmp = acc[i][j + 1] + acc[i + 1][j] - acc[i][j]\n acc[i + 1][j + 1] += tmp\n\nfor p, q in pq:\n p -= 1\n ans = acc[q][q] - acc[p][q] - acc[q][p] + acc[p][p]\n print(ans)\n']
['Runtime Error', 'Accepted']
['s983282211', 's577742281']
[56040.0, 65964.0]
[619.0, 928.0]
[509, 508]
p03283
u236127431
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N,M,Q=map(int,input().split())\nTown=[[int(i) for i in range(M)]]\nTown.sort(key=lambda x:x[0])\n\ndef BS_left(x,L):\n L_copy=L[:]\n l=len(L_copy)\n left=0\n if L[l-1]<x:\n return l-1\n else:\n while l>2:\n if L_copy[l//2]<x:\n L_copy=L_copy[l//2:l]\n left+=l//2\n else:\n L_copy=L_copy[0:l//2+1]\n l=len(L_copy)\n if L[left]>=x:\n return left-1\n else:\n return left\n\ndef BS_right(x,L):\n L_copy=L[:]\n l=len(L_copy)\n right=l-1\n if L[0]>x:\n return 0\n else:\n while l>2:\n if L_copy[l//2]<=x:\n L_copy=L_copy[l//2:l]\n else:\n L_copy=L_copy[0:l//2+1]\n right+=-l//2+1\n l=len(L_copy)\n if L[right]<=x:\n return right+1\n else:\n return right\n\nans=[0]*Q\nfor i in range(Q):\n p,q=map(int,input().split())\n TownL=list(zip(*Town))[0]\n newTown=Town[BS_left(p,TownL)+1:BS_right(q,TownL)]\n if len(newTown)==0:\n print(0)\n else:\n newTown.sort(key=lambda x:x[1])\n TownR=list(zip(*newTown))[1]\n if BS_right(q,TownR)==1 and TownR[0]>q:\n print(0)\n else:\n print(BS_right(q,TownR))', 'N,M,Q=map(int,input().split())\nTown=[[int(i) for i in input().split()] for i in range(M)]\nTown.sort(key=lambda x:x[0])\n\ndef BS_left(x,L,s):\n L_copy=L[:]\n left=0\n if L[s-1]<x:\n return s-1\n else:\n while s>2:\n if L_copy[s//2]<x:\n L_copy=L_copy[s//2:s]\n left+=s//2\n s=s-s//2\n else:\n L_copy=L_copy[0:s//2+1]\n s=s//2+1\n if L[left]>=x:\n return left-1\n else:\n return left\n\ndef BS_right(x,L,s):\n L_copy=L[:]\n right=s-1\n if L[0]>x:\n return 0\n else:\n while s>2:\n if L_copy[s//2]<=x:\n L_copy=L_copy[s//2:s]\n s=s-s//2\n else:\n L_copy=L_copy[0:s//2+1]\n right+=-s//2+1\n s=s//2+1\n if L[right]<=x:\n return right+1\n else:\n return right\n\nans=[0]*Q\nfor i in range(Q):\n p,q=map(int,input().split())\n TownL=list(zip(*Town))[0]\n a=BS_left(p,TownL,M)+1\n b=BS_right(q,TownL,M)\n newTown=Town[a:b]\n if b-a==0:\n print(0)\n else:\n newTown.sort(key=lambda x:x[1])\n TownR=list(zip(*newTown))[1]\n c=BS_right(q,TownR,b-a)\n if c==1 and TownR[0]>q:\n print(0)\n else:\n print(c-1)\n', 'N,M,Q=map(int,input().split())\nTown=[[int(i) for i in input().split()] for i in range(M)]\nTown.sort(key=lambda x:x[0])\n\ndef BS_left(x,L,s):\n L_copy=L[:]\n left=0\n if L[s-1]<x:\n return s-1\n else:\n while s>2:\n if L_copy[s//2]<x:\n L_copy=L_copy[s//2:s]\n left+=s//2\n s=s-s//2\n else:\n L_copy=L_copy[0:s//2+1]\n s=s//2+1\n if L[left]>=x:\n return left-1\n else:\n return left\n\ndef BS_right(x,L,s):\n L_copy=L[:]\n right=s-1\n if L[0]>x:\n return 0\n else:\n while s>2:\n if L_copy[s//2]<=x:\n L_copy=L_copy[s//2:s]\n s=s-s//2\n else:\n L_copy=L_copy[0:s//2+1]\n right+=-s//2+1\n s=s//2+1\n if L[right]<=x:\n return right+1\n else:\n return right\n\nans=[0]*Q\nfor i in range(Q):\n p,q=map(int,input().split())\n for i in zip(*Town):\n TownL=i\n break\n a=BS_left(p,TownL,M)+1\n newTown=Town[a:]\n if M-a==0:\n print(0)\n else:\n newTown.sort(key=lambda x:x[1])\n e=0\n for i in zip(*newTown):\n if e==0:\n e+=1\n else:\n TownR=i\n break\n b=BS_right(q,TownR,M-a)\n if b==1 and TownR[0]>q:\n print(0)\n else:\n print(b-1)\n', 'N,M,Q=map(int,input().split())\nTown=[[int(i) for i in input().split()] for i in range(M)]\nTown.sort(key=lambda x:x[0])\n\ndef BS_left(x,L,s):\n L_copy=L[:]\n left=0\n if L[s-1]<x:\n return s-1\n else:\n while s>2:\n if L_copy[s//2]<x:\n L_copy=L_copy[s//2:s]\n left+=s//2\n s=s-s//2\n else:\n L_copy=L_copy[0:s//2+1]\n s=s//2+1\n if L[left]>=x:\n return left-1\n else:\n return left\n\ndef BS_right(x,L,s):\n L_copy=L[:]\n right=s-1\n if L[0]>x:\n return 0\n else:\n while s>2:\n if L_copy[s//2]<=x:\n L_copy=L_copy[s//2:s]\n s=s-s//2\n else:\n L_copy=L_copy[0:s//2+1]\n right+=-s//2+1\n s=s//2+1\n if L[right]<=x:\n return right+1\n else:\n return right\n\nans=[0]*Q\nfor i in range(Q):\n p,q=map(int,input().split())\n for i in zip(*Town):\n TownL=i\n break\n a=BS_left(p,TownL,M)+1\n b=BS_right(q,TownL,M)\n newTown=Town[a:b]\n if b-a==0:\n print(0)\n else:\n newTown.sort(key=lambda x:x[1])\n e=0\n for i in zip(*newTown):\n if e==0:\n e+=1\n else:\n TownR=i\n break\n c=BS_right(q,TownR,b-a)\n if c==1 and TownR[0]>q:\n print(0)\n else:\n print(1+c)\n', 'N,M,Q=map(int,input().split())\nTown=[[0,0] for i in range(M)]\nfor i in range(M):\n Town[i][0],Town[i][1]=map(int,input().split())\nTown.sort(key=lambda x:x[0])\n\ndef BS_left(x,L):\n L_copy=L[:]\n l=len(L_copy)\n left=0\n if L[l-1]<x:\n return l-1\n else:\n while l>2:\n if L_copy[l//2]<x:\n L_copy=L_copy[l//2:l]\n left+=l//2\n else:\n L_copy=L_copy[0:l//2+1]\n l=len(L_copy)\n if L[left]>=x:\n return left-1\n else:\n return left\n\ndef BS_right(x,L):\n L_copy=L[:]\n l=len(L_copy)\n right=l-1\n if L[0]>x:\n return 0\n else:\n while l>2:\n if L_copy[l//2]<=x:\n L_copy=L_copy[l//2:l]\n else:\n L_copy=L_copy[0:l//2+1]\n right+=-l//2+1\n l=len(L_copy)\n if L[right]<=x:\n return right+1\n else:\n return right\n\nans=[0]*Q\nfor i in range(Q):\n p,q=map(int,input().split())\n TownL=list(zip(*Town))[0]\n newTown=Town[BS_left(p,TownL)+1:BS_right(q,TownL)]\n if len(newTown)==0:\n print(0)\n else:\n newTown.sort(key=lambda x:x[1])\n TownR=list(zip(*newTown))[1]\n if BS_right(q,TownR)==1 and TownR[0]>q:\n print(0)\n else:\n print(BS_right(q,TownR)-1)', 'N,M,Q=map(int,input().split())\nTrain=[[int(i) for i in input().split()] for i in range(M)]\nMap=[[0]*(N+1) for i in range(N+1)]\nfor i in Train:\n x,y=i[0],i[1]\n Map[y][x]+=1\nfor a in range(1,N+1):\n for b in range(1,N+1):\n if b<=N-1:\n Map[a][b+1]=Map[a][b]+Map[a][b+1]\n if a>=2:\n Map[a][b]=Map[a-1][b]+Map[a][b]\nfor i in range(Q):\n p,q=map(int,input().split())\n print(Map[q][q]-Map[q][p-1]-Map[p-1][q]+Map[p-1][p-1])\n\n \n\n\n ']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s075124979', 's310706319', 's326779037', 's605923831', 's963506480', 's223418500']
[24540.0, 58736.0, 58816.0, 58812.0, 54156.0, 43264.0]
[3157.0, 3159.0, 3159.0, 3158.0, 3158.0, 1717.0]
[1087, 1118, 1183, 1208, 1154, 445]
p03283
u239528020
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['#!/usr/bin/env python3\nfrom itertools import accumulate\nimport numpy as np\n\nn, m, q = list(map(int, input().split()))\nlr = [list(map(int, input().split())) for _ in range(m)]\npq = [list(map(int, input().split())) for _ in range(q)]\n\ndata = [[0]*500 for i in range(500)]\n\n\nfor l, r in lr:\n data[l-1][r-1] += 1\n\n\n\n\n\n# print(data)\n# for p, q in pq:\n# ans = 0\n# if p == 1:\n\n# ans += data[i][q-1]\n# else:\n\n# ans += data[i][q-1]-data[i][p-1-1]\n# print(ans)\n\ndata = np.array(data)\n\ndata = np.cumsum(data, axis=1)\ndata = np.cumsum(data, axis=0)\n\nprint(data[:10, :10])\nfor p, q in pq:\n ans = 0\n if p == 1:\n ans = data[q-1][q-1]\n else:\n ans = data[q-1][q-1]-data[p-1-1][p-1-1]\n print(ans)\n# for p, q in pq:\n# ans = 0\n# if p == 1:\n\n# ans += data[i][q-1]\n# else:\n\n# ans += data[i][q-1]-data[i][p-1-1]\n# print(ans)\n', '#!/usr/bin/env python3\nfrom itertools import accumulate\nimport numpy as np\n\nn, m, q = list(map(int, input().split()))\nlr = [list(map(int, input().split())) for _ in range(m)]\npq = [list(map(int, input().split())) for _ in range(q)]\n\ndata = [[0]*500 for i in range(500)]\n\n\nfor l, r in lr:\n data[l-1][r-1] += 1\n\n\n\n\n\n# print(data)\n# for p, q in pq:\n# ans = 0\n# if p == 1:\n\n# ans += data[i][q-1]\n# else:\n\n# ans += data[i][q-1]-data[i][p-1-1]\n# print(ans)\n\ndata = np.array(data)\n\ndata = np.cumsum(data, axis=1)\ndata = np.cumsum(data, axis=0)\n\n# print(data[:10, :10])\nfor p, q in pq:\n ans = 0\n if p == 1:\n ans = data[q-1][q-1]\n else:\n ans = data[q-1][q-1]-data[p-1-1][q-1]\n print(ans)\n# for p, q in pq:\n# ans = 0\n# if p == 1:\n\n# ans += data[i][q-1]\n# else:\n\n# ans += data[i][q-1]-data[i][p-1-1]\n# print(ans)\n']
['Wrong Answer', 'Accepted']
['s081386821', 's566080182']
[76364.0, 76164.0]
[886.0, 910.0]
[1161, 1161]
p03283
u263654061
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['for qi in range(Q):\n out = 0\n for i in range(m):\n if(l[i]>=p[qi] and r[i]<=q[qi]):\n out += 1\n print(out)', 'n,m,Q = list(map(int, input().split()))\n\nl=[]\nr=[]\nfor j in range(m):\n l_tmp, r_tmp = list(map(int, input().split()))\n l.append(l_tmp)\n r.append(r_tmp)\n\np=[]\nq=[]\nfor k in range(Q):\n p_tmp, q_tmp = list(map(int, input().split()))\n p.append(p_tmp)\n q.append(q_tmp)\n \nsu = [[0 for _ in range(n+1)] for __ in range(n+1)]\n\ndef sumTable(L, R):\n for i in range(m):\n su[L[i]][R[i]] += 1\n \n for i in range(1,n+1):\n for j in range(1, n+1):\n su[i][j] += su[i-1][j]\n su[i][j] += su[i][j-1]\n su[i][j] -= su[i-1][j-1]\n\ndef getSum(ll,rr):\n ans = su[rr][rr] - su[rr][ll-1] -su[ll-1][rr] + su[ll-1][ll-1]\n return ans\n \nsumTable(l,r)\n\nimport copy\nss = copy.copy(su)\n\nfor qi in range(Q):\n su = copy.copy(ss)\n print(getSum(p[qi], q[qi]))']
['Runtime Error', 'Accepted']
['s591732227', 's601391920']
[2940.0, 28292.0]
[17.0, 1591.0]
[131, 808]
p03283
u279493135
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom itertools import permutations, combinations, product\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom fractions import gcd\nfrom bisect import bisect\n\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\n\nN, M, Q = MAP()\nLR = [LIST() for _ in range(M)]\n\nx = [[0]*N for _ in range(N)]\nfor L, R in LR:\n\tx[L-1][R-1] += 1\n\npq = [LIST() for _ in range(Q)]\n\nC = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n\ttmp = 0\n\tfor j in range(N):\n\t\ttmp += x[i][j]\n\t\tC[i][j] = tmp\n\nfor p, q in pq:\n\tp = p-1\n\tq = q-1\n\tans = 0\n\tfor i in range(p, q+1):\n\t\tif p-1 <= -1:\n\t\t\tans += C[i][q]\n\t\telse:\n\t\t\tans += C[i][q]-C[i][p-1]\n\tprint(ans)\n\n", 'import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom itertools import permutations, combinations, product, accumulate\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom fractions import gcd\nfrom bisect import bisect\n\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nsys.setrecursionlimit(10 ** 9)\nINF = float(\'inf\')\nmod = 10 ** 9 + 7\n\n\ndef main():\n\tN, M, Q = MAP()\n\tLR = [LIST() for _ in range(M)]\n\n\tx = [[0]*N for _ in range(N)]\n\tfor L, R in LR:\n\t\tx[L-1][R-1] += 1\n\n\tpq = [LIST() for _ in range(Q)]\n\n\tC = [[0]*N for _ in range(N)]\n\n\tfor i in range(N):\n\t\ttmp = 0\n\t\tC[i] = list(accumulate(x[i]))\n\n\tfor p, q in pq:\n\t\tp = p-1\n\t\tq = q-1\n\t\tans = 0\n\t\tfor i in range(p, q+1):\n\t\t\tif p-1 <= -1:\n\t\t\t\tans += C[i][q]\n\t\t\telse:\n\t\t\t\tans += C[i][q]-C[i][p-1]\n\t\tprint(ans)\n\nif __name__ == "__main__":\n\tmain()\n', "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians, gcd\nfrom itertools import accumulate, permutations, combinations, product, groupby, combinations_with_replacement\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom bisect import bisect, bisect_left\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport numpy as np\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef ZIP(n): return zip(*(MAP() for _ in range(n)))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\n\nN, M, Q = MAP()\nLR = [LIST() for _ in range(M)]\npq = [LIST() for _ in range(Q)]\n\nx = np.zeros((N+1, N+1), dtype=np.int64)\nfor L, R in LR:\n x[L, R] += 1\nx = x.cumsum(axis=0).cumsum(axis=1)\n\nfor p, q in pq:\n print(x[q][q]-x[q][p-1]-x[p-1][q]+x[p-1][p-1])\n"]
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
['s113074488', 's263116591', 's137492996']
[76704.0, 75260.0, 77948.0]
[3161.0, 3161.0, 815.0]
[1025, 1083, 1051]
p03283
u284854859
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import sys\ninput = sys.stdin.readline\nn,m,q = map(int,input().split())\n\nres = [[0]*n for i in range(n)]\nfor i in range(m):\n L,r = map(int,input().split())\n L -= 1\n r -= 1\n res[r][0] += 1\n if L != n-1:\n res[r][L+1] -= 1\nprint(res)\nfor i in range(n):\n for j in range(1,n):\n res[i][j] += res[i][j-1]\nfor i in range(n):\n for j in range(1,n):\n res[j][i] += res[j-1][i]\nprint(res)\nfor i in range(q):\n p,q = map(int,input().split())\n print(res[q-1][p-1])\n', 'import sys\ninput = sys.stdin.readline\nn,m,q = map(int,input().split())\n\nres = [[0]*n for i in range(n)]\nfor i in range(m):\n L,r = map(int,input().split())\n L -= 1\n r -= 1\n res[r][0] += 1\n if L != n-1:\n res[r][L+1] -= 1\n\nfor i in range(n):\n for j in range(1,n):\n res[i][j] += res[i][j-1]\nfor i in range(n):\n for j in range(1,n):\n res[j][i] += res[j-1][i]\nfor i in range(q):\n p,q = map(int,input().split())\n print(res[q-1][p-1])\n']
['Wrong Answer', 'Accepted']
['s175574656', 's184595458']
[13884.0, 9660.0]
[770.0, 704.0]
[496, 475]
p03283
u323827773
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['num_city, num_train, num_question = [int(i) for i in input().split()]\n \n\nfor i in range(0, num_train):\n start, arrive = [int(j) for j in input().split()]\n\nfor i in range(0, num_question):\n start, arrive = [int(j) for j in input().split()]', 'num_city, num_train, num_question = [int(i) for i in input().split()]\n\n\ntrains = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor i in range(0, num_train):\n start, arrive = [int(j) for j in input().split()]\n trains[start][arrive] += 1\n\n\ntrains_cumulative_sum = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor start in range(0, num_city + 1):\n for arrive in range(0, num_city + 1):\n trains_cumulative_sum[start][arrive] = trains_cumulative_sum[start][arrive - 1] + trains[start][arrive]', 'num_city, num_train, num_question = [int(i) for i in input().split()]\n\n\ntrains = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor i in range(0, num_train):\n start, arrive = [int(j) for j in input().split()]\n\n\n\ncumlative_sum = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\n\nfor i in range(0, num_question):\n start, arrive = [int(j) for j in input().split()]', 'num_city, num_train, num_question = [int(i) for i in input().split()]\n\n\ntrains = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor i in range(0, num_train):\n start, arrive = [int(j) for j in input().split()]\n trains[start][arrive] += 1\n\n\ntrains_cumulative_sum = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor start in range(0, num_city + 1):\n for arrive in range(0, num_city + 1):\n trains_cumulative_sum[start][arrive] = trains_cumulative_sum[start][arrive - 1] + trains[start][arrive]\n\nfor i in range(0, num_question):\n start, arrive = [int(j) for j in input().split()]\n result = 0\n #for j in range(start, arrive + 1):\n \n print(result)\n', 'num_city, num_train, num_question = [int(i) for i in input().split()]\n\n\ntrains = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor i in range(0, num_train):\n start, arrive = [int(j) for j in input().split()]\n trains[start][arrive] += 1\n\n\ncumlative_sum = [[0] * (num_city + 1) for i in range(0, num_city + 1)]\nfor start in range(0, num_city + 1):\n for arrive in range(0, num_city + 1):\n cumlative_sum[start][arrive] = cumlative_sum[start][arrive - 1] + trains[start][arrive]\n\nfor start in range(0, num_city + 1):\n for arrive in range(0, num_city + 1):\n cumlative_sum[start][arrive] += cumlative_sum[start - 1][arrive]\n\nfor i in range(0, num_question):\n start, arrive = [int(j) for j in input().split()]\n result = cumlative_sum[arrive][arrive] - cumlative_sum[start - 1][arrive] - cumlative_sum[arrive][start - 1] + cumlative_sum[start - 1][start - 1]\n print(result)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s106935387', 's289511571', 's802349773', 's859348160', 's250590586']
[3060.0, 8820.0, 7028.0, 9076.0, 15320.0]
[776.0, 702.0, 780.0, 1437.0, 1691.0]
[257, 558, 558, 810, 945]
p03283
u334712262
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub\n\nsys.setrecursionlimit(10000)\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input().strip()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\nclass SegmentTree():\n # to par: (n-1) // 2\n # to chr: 2n+1, 2n+2\n def __init__(self, N):\n self.__N = 2**int(math.ceil(math.log2(N)))\n self.__table = [[] for _ in range(self.__N * 2 - 1)]\n\n def update(self, idx, x):\n i = self.__N - 1 + idx \n self.__table[i].append(x)\n while i != 0:\n pi = (i - 1) // 2 # parent\n self.__table[pi].append(x)\n # if self.__table[i] < self.__table[pi]:\n # self.__table[pi] = self.__table[i]\n # else:\n # break\n i = pi\n\n def __query(self, a, b, k, l, r):\n if r <= a or b <= l:\n return []\n if a <= l and r <= b:\n return self.__table[k]\n\n vl = self.__query(a, b, 2 * k + 1, l, (l + r) // 2)\n vr = self.__query(a, b, 2 * k + 2, (l + r) // 2, r)\n\n return vl + vr\n\n def query(self, a, b):\n return self.__query(a, b, 0, 0, self.__N)\n\n def print(self):\n print(self.__table)\n\n\n@mt\ndef slv(N, M, Q, LR, PQ):\n\n st = SegmentTree(N)\n for i, (l, r) in enumerate(LR):\n st.update(l, i)\n st.update(r, i)\n\n for p, q in PQ:\n l = st.query(p, q+1)\n n = len(l)\n m = len(set(l))\n print(n-m)\n\n\ndef main():\n N, M, Q = read_int_n()\n LR = [read_int_n() for _ in range(M)]\n PQ = [read_int_n() for _ in range(Q)]\n slv(N, M, Q, LR, PQ)\n\n\nif __name__ == '__main__':\n main()\n", "# -*- coding: utf-8 -*-\nimport bisect\nimport heapq\nimport math\nimport random\nimport sys\nfrom collections import Counter, defaultdict, deque\nfrom decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal\nfrom functools import lru_cache, reduce\nfrom itertools import combinations, combinations_with_replacement, product, permutations\nfrom operator import add, mul, sub\n\nsys.setrecursionlimit(10000)\n\n\ndef read_int():\n return int(input())\n\n\ndef read_int_n():\n return list(map(int, input().split()))\n\n\ndef read_float():\n return float(input())\n\n\ndef read_float_n():\n return list(map(float, input().split()))\n\n\ndef read_str():\n return input().strip()\n\n\ndef read_str_n():\n return list(map(str, input().split()))\n\n\ndef error_print(*args):\n print(*args, file=sys.stderr)\n\n\ndef mt(f):\n import time\n\n def wrap(*args, **kwargs):\n s = time.time()\n ret = f(*args, **kwargs)\n e = time.time()\n\n error_print(e - s, 'sec')\n return ret\n\n return wrap\n\n\nclass RectangleSum():\n def __init__(self, N, M):\n self.N = N\n self.M = M\n self.s = [[0] * (M+1) for _ in range(N+1)]\n\n def add(self, i, j, v):\n self.s[i+1][j+1] += v\n\n def build(self):\n for i in range(self.N+1):\n for j in range(self.M):\n self.s[i][j+1] += self.s[i][j]\n\n for i in range(self.N):\n for j in range(self.M+1):\n self.s[i+1][j] += self.s[i][j]\n\n def sum(self, i, j, h, w):\n ret = self.s[i][j]\n ret += self.s[i+h][j+w]\n ret -= self.s[i+h][j]\n ret -= self.s[i][j+w]\n\n return ret\n\n\n@mt\ndef slv(N, M, Q, LR, PQ):\n rs = RectangleSum(N+1, N+1)\n for l, r in LR:\n rs.add(l, r, 1)\n\n rs.build()\n\n for p, q in PQ:\n print(rs.sum(p, p, q-p+1, q-p+1))\n\n\ndef main():\n N, M, Q = read_int_n()\n LR = [read_int_n() for _ in range(M)]\n PQ = [read_int_n() for _ in range(Q)]\n slv(N, M, Q, LR, PQ)\n\n\nif __name__ == '__main__':\n main()\n"]
['Runtime Error', 'Accepted']
['s210048340', 's699439507']
[134668.0, 79512.0]
[3163.0, 1373.0]
[2455, 1998]
p03283
u335038698
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["N, M, Q = map(int, input().split())\nLR = [[0] * (N+1) for _ in range(N+1)]\nfor m in range(M):\n l, r = map(int, input().split())\n LR[l][r] += 1\n\n\nLR_sum = [[0] * (N+1) for _ in range(N+1)]\nLR_sum[1][1] = LR[1][1]\n\nfor i in range(1, N+1):\n LR_sum[1][i] = LR_sum[1][i-1] + LR[1][i]\n LR_sum[i][1] = LR_sum[i-1][1] + LR[i][1]\n\nfor i in range(2, N+1):\n for j in range(2, N+1):\n LR_sum[i][j] = LR_sum[i-1][j] + LR_sum[i][j-1] - LR_sum[i-1][j-1] + LR[i][j]\n\nfor tmp in LR:\n print(tmp)\nprint('sum')\nfor tmp in LR_sum:\n print(tmp)\n\nfor q in range(Q):\n l, r = map(int, input().split())\n print(LR_sum[r][r] - LR_sum[r][l-1] - LR_sum[l-1][r] + LR_sum[l-1][l-1])\n # print(LR_sum[r-1][l-1])\n", 'N, M, Q = map(int, input().split())\nLR = [[0] * (N+1) for _ in range(N+1)]\nfor m in range(M):\n l, r = map(int, input().split())\n LR[l][r] += 1\n\n\nLR_sum = [[0] * (N+1) for _ in range(N+1)]\nLR_sum[1][1] = LR[1][1]\n\nfor i in range(1, N+1):\n LR_sum[1][i] = LR_sum[1][i-1] + LR[1][i]\n LR_sum[i][1] = LR_sum[i-1][1] + LR[i][1]\n\nfor i in range(2, N+1):\n for j in range(2, N+1):\n LR_sum[i][j] = LR_sum[i-1][j] + LR_sum[i][j-1] - LR_sum[i-1][j-1] + LR[i][j]\n\nfor q in range(Q):\n l, r = map(int, input().split())\n print(LR_sum[r][r] - LR_sum[r][l-1] - LR_sum[l-1][r] + LR_sum[l-1][l-1])\n']
['Wrong Answer', 'Accepted']
['s724858253', 's233660688']
[19560.0, 15336.0]
[1621.0, 1596.0]
[775, 667]
p03283
u342563578
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int,input().split())\nMlist = [input().split() for l in range(M)]\nQlist = [input().split() for l in range(Q)]\nMlist.sort()\nfor i in range(len(Mlist)):\n for j in range(len(Mlist[i])):\n Mlist[i][j] = int(Mlist[i][j])\nfor i in range(len(Qlist)):\n for j in range(len(Qlist[i])):\n Qlist[i][j] = int(Qlist[i][j])\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(len(Qlist)):\n q = 0\n for j in range(Qlist[i][0],Qlist[i][1]+1):\n q = q + r[j-1][Qlist[i][1]-1]\n if j - 1> 0:\n q = q - r[j-1][j-2]\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = [input().split() for l in range(M)]\nQlist = [input().split() for l in range(Q)]\nMlist.sort()\nfor i in range(len(Mlist)):\n for j in range(len(Mlist[i])):\n Mlist[i][j] = int(Mlist[i][j])\nfor i in range(len(Qlist)):\n for j in range(len(Qlist[i])):\n Qlist[i][j] = int(Qlist[i][j])\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(N):\n for j in range(N):\n r[i][j] = r[i][j-1] + p[i][j]\nfor i in range(len(Qlist)):\n q = 0\n for j in range(Qlist[i][0],Qlist[i][1]+1):\n q = q + r[j-1][Qlist[i][1]-1]\n print(q)\nprint(p)\nprint(r)', 'N, M, Q = map(int,input().split())\nMlist = [input().split() for l in range(M)]\nQlist = [input().split() for l in range(Q)]\nMlist.sort()\nfor i in range(len(Mlist)):\n for j in range(len(Mlist[i])):\n Mlist[i][j] = int(Mlist[i][j])\nfor i in range(len(Qlist)):\n for j in range(len(Qlist[i])):\n Qlist[i][j] = int(Qlist[i][j])\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(N):\n for j in range(N):\n if j > 0:\n r[i][j] = r[i][j-1] + p[i][j]\n else:\n r[i][j] = p[i][j]\nfor i in range(len(Qlist)):\n q = 0\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = []\nfor i in range(M):\n array = list(map(int, input().strip().split()))\n Mlist.append(array)\nQlist = []\nfor i in range(Q):\n array = list(map(int, input().strip().split()))\n Qlist.append(array)\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(N):\n for j in range(N):\n if j > 0:\n r[i][j] = r[i][j-1] + p[i][j]\n else:\n r[i][j] = p[i][j]\nfor i in range(len(Qlist)):\n q = 0\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = []\nfor i in range(M):\n array = list(map(int, input().strip().split()))\n Mlist.append(array)\nQlist = []\nfor i in range(Q):\n array = list(map(int, input().strip().split()))\n Qlist.append(array)\nfor i in range(len(Qlist)):\n q = 0\n for j in range(Qlist[i][0],Qlist[i][1]+1):\n q = q + r[j-1][Qlist[i][1]-1]\n if j - 1> 0:\n q = q - r[j-1][j-2]\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = [input().split() for l in range(M)]\nQlist = [input().split() for l in range(Q)]\nMlist.sort()\nfor i in range(len(Mlist)):\n for j in range(len(Mlist[i])):\n Mlist[i][j] = int(Mlist[i][j])\nfor i in range(len(Qlist)):\n for j in range(len(Qlist[i])):\n Qlist[i][j] = int(Qlist[i][j])\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(10):\n for j in range(10):\n r[i][j] = r[i][j-1] + p[i][j]\nfor i in range(len(Qlist)):\n q = 0\n for j in range(Qlist[i][0],Qlist[i][1]+1):\n q = q + r[j-1][Qlist[i][1]-1]\n if j - 1> 0:\n q = q - r[j-1][j-2]\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = []\nfor i in range(M):\n array = list(map(int, input().strip().split()))\n Mlist.append(array)\nQlist = []\nfor i in range(Q):\n array = list(map(int, input().strip().split()))\n Qlist.append(array)\nr = [[0 for i in range(N)] for j in range(N)]\nfor i in range(len(Qlist)):\n q = 0\n for j in range(Qlist[i][0],Qlist[i][1]+1):\n q = q + r[j-1][Qlist[i][1]-1]\n if j - 1> 0:\n q = q - r[j-1][j-2]\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = []\nfor i in range(M):\n array = list(map(int, input().strip().split()))\n Mlist.append(array)\nQlist = []\nfor i in range(Q):\n array = list(map(int, input().strip().split()))\n Qlist.append(array)\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(len(Qlist)):\n q = 0\n for j in range(Qlist[i][0],Qlist[i][1]+1):\n q = q + r[j-1][Qlist[i][1]-1]\n if j - 1> 0:\n q = q - r[j-1][j-2]\n print(q)', 'N, M, Q = map(int,input().split())\nMlist = []\nfor i in range(M):\n array = list(map(int, input().strip().split()))\n Mlist.append(array)\nQlist = []\nfor i in range(Q):\n array = list(map(int, input().strip().split()))\n Qlist.append(array)\np = [[0 for i in range(N)] for j in range(N)]\nq = 0\nr = [[0 for i in range(N)] for j in range(N)]\ndef count(k,l):\n s = k\n j = l\n p[s-1][j-1] = p[s-1][j-1] + 1\nfor i in range(len(Mlist)):\n count(Mlist[i][0],Mlist[i][1])\nfor i in range(N):\n for j in range(N):\n if i == 0:\n r[i][j] = p[i][j] + r[i][j-1] \n elif j == 0:\n r[i][j] = p[i][j] +r[i-1][j]\n else:\n r[i][j] = r[i-1][j] + r[i][j-1] - r[i-1][j-1] + p[i][j]\nfor i in range(len(Qlist)):\n q = 0\n if Qlist[i][0] == 1:\n b = r[Qlist[i][1]-1][Qlist[i][1]-1]\n else:\n b = r[Qlist[i][1]-1][Qlist[i][1]-1] - r[Qlist[i][0]-2][Qlist[i][1]-1]\n print(b)\n\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s124525516', 's232482017', 's267585537', 's327228580', 's502870815', 's596478423', 's657860165', 's892226664', 's358357386']
[100680.0, 100312.0, 100808.0, 73476.0, 66604.0, 102600.0, 70716.0, 73408.0, 79340.0]
[3164.0, 3162.0, 1848.0, 1358.0, 1090.0, 3163.0, 3160.0, 3161.0, 1563.0]
[759, 804, 767, 674, 435, 841, 481, 666, 940]
p03283
u346308892
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['\nimport numpy as np\nimport sys\nsys.setrecursionlimit(100000)\n\n\n\ndef acinput():\n return list(map(int, input().split(" ")))\n\n\n\ndirections=np.array([[1,0],[0,1],[-1,0],[0,-1]])\ndirections = list(map(np.array, directions))\n\nmod = 10**9+7\n\n\ndef factorial(n):\n fact = 1\n for integer in range(1, n + 1):\n fact *= integer\n return fact\n\n\n\ndef serch(x, count):\n #print("top", x, count)\n \n\n for d in directions:\n nx = d+x\n #print(nx)\n if np.all(0 <= nx) and np.all(nx < (H, W)):\n if field[nx[0]][nx[1]] == "E":\n count += 1 \n field[nx[0]][nx[1]] = "V"\n count = serch(nx, count) \n continue\n if field[nx[0]][nx[1]] == "#":\n field[nx[0]][nx[1]] = "V"\n count = serch(nx, count) \n \n return count\n\nN,M,Q=acinput()\n\nA=np.zeros([N+1,N+1])\n\nfor i in range(M):\n tmp=acinput()\n A[tmp[0],tmp[1]]+=1\nAcs=np.cumsum(A,axis=1 )\nAcs=np.cumsum(Acs,axis=0)\n\nfor i in range(Q):\n tmp=acinput()\n print(Acs[tmp[1], tmp[1]]-Acs[tmp[1],tmp[0]-1]-Acs[tmp[0]-1,tmp[1]]+Acs[tmp[0]-1, tmp[0]-1])\n\n', '\nimport numpy as np\nimport sys\nsys.setrecursionlimit(100000)\n\n\n\ndef acinput():\n return list(map(int, input().split(" ")))\n\n\n\ndirections=np.array([[1,0],[0,1],[-1,0],[0,-1]])\ndirections = list(map(np.array, directions))\n\nmod = 10**9+7\n\n\ndef factorial(n):\n fact = 1\n for integer in range(1, n + 1):\n fact *= integer\n return fact\n\n\n\ndef serch(x, count):\n #print("top", x, count)\n \n\n for d in directions:\n nx = d+x\n #print(nx)\n if np.all(0 <= nx) and np.all(nx < (H, W)):\n if field[nx[0]][nx[1]] == "E":\n count += 1 \n field[nx[0]][nx[1]] = "V"\n count = serch(nx, count) \n continue\n if field[nx[0]][nx[1]] == "#":\n field[nx[0]][nx[1]] = "V"\n count = serch(nx, count) \n \n return count\n\nN,M,Q=acinput()\n\nA=np.zeros([N+1,N+1])\n\nfor i in range(M):\n tmp=acinput()\n A[tmp[0],tmp[1]]+=1\nAcs=np.cumsum(A,axis=1 )\nAcs=np.cumsum(Acs,axis=0)\n\nfor i in range(Q):\n tmp=acinput()\n print(int(Acs[tmp[1], tmp[1]]-Acs[tmp[1],tmp[0]-1]-Acs[tmp[0]-1,tmp[1]]+Acs[tmp[0]-1, tmp[0]-1]))\n']
['Wrong Answer', 'Accepted']
['s201992832', 's720898448']
[18376.0, 18968.0]
[2994.0, 2640.0]
[1160, 1164]
p03283
u350248178
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['l=[]\nr=[]\nfor i in range(m):\n a,b=map(int,input().split())\n l.append(a)\n r.append(b)\n\np=[]\nq=[] \nfor i in range(Q):\n c,d=map(int,input().split())\n p.append(c)\n q.append(d)\n \nfor i in range(Q):\n answer=0\n for j in range(m):\n if p[i]<=l[j] and r[j]<=q[i]:\n answer+=1\n print(answer)', 'n,m,q=map(int,input().split())\ndef ruiseki(a):\n l=[0]\n for i in range(len(a)):\n l.append(l[i]+a[i])\n del l[0]\n return l\nl=[]\ndef niruiseki(a):\n l.append(ruiseki(a[0]))\n for i in range(1,len(a)):\n p=[l[i-1][0]+a[i][0]]\n q=[a[i][0]]\n for j in range(1,len(a[i])):\n q.append(q[j-1]+a[i][j])\n p.append(q[j]+l[i-1][j])\n l.append(p)\nll=[[0]*(n+1) for i in range(n+1)]\nfor i in range(m):\n a,b=map(int,input().split())\n ll[a][b]+=1\nniruiseki(ll)\nfor i in range(q):\n a,b=map(int,input().split())\n print(l[b][b]+l[a-1][a-1]-l[a-1][b]-l[b][a-1])']
['Runtime Error', 'Accepted']
['s151851482', 's172074111']
[3064.0, 15444.0]
[17.0, 1555.0]
[330, 620]
p03283
u353797797
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\n\n\ndef f():\n nc, nt, nq = map(int, input().split())\n t = [list(map(int, input().split())) for _ in range(nt)]\n q = [list(map(int, input().split())) for _ in range(nq)]\n dp = np.zeros((nc + 1, nc + 1), dtype="i8")\n for l, r in t:\n dp[:l + 1, r:] += 1\n for l, r in q:\n print(dp[l][r])\n print(dp)\n\n\nf()\n', 'def f(nc, nt, nq):\n dp = [[0] * (nc + 1) for _ in range(nc + 1)]\n for _ in range(nt):\n l, r = map(int, input().split())\n dp[l][r] += 1\n for i in range(1, nc + 1):\n dpi = dp[i]\n s = dpi[0]\n for j in range(1, nc + 1):\n dpi[j] = s = dpi[j] + s\n for j in range(1, nc + 1):\n s = dp[0][j]\n for i in range(1, nc + 1):\n dp[i][j] = s = dp[i][j] + s\n for _ in range(nq):\n l, r = map(int, input().split())\n print(dp[r][r] - dp[l - 1][r] - dp[r][l - 1] + dp[l - 1][l - 1])\n\n\nnc, nt, nq = map(int, input().split())\nf(nc, nt, nq)\n']
['Wrong Answer', 'Accepted']
['s553840321', 's467363180']
[77556.0, 13300.0]
[3165.0, 1430.0]
[353, 616]
p03283
u357810840
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\n\nn, m, q = map(int, input().split())\n\nmat = np.zeros((n, n), dtype=np.uint32)\n\nfor i in range(m):\n l, r = map(int, input().split())\n mat[l-1, r-1] += 1\nmat = np.flipud(mat)\nmatmul = np.cumsum(mat, axis=0)\nmatmul = np.flipd[matmul]\nmatmul2 = np.cumsum(matmul, axis=1)\n\nfor i in range(q):\n p, q = map(int, input().split())\n ans = matmul2[p-1, q-1]\n print(ans)', 'import numpy as np\n\nn, m, q = map(int, input().split())\n\nmat = np.zeros((n, n), dtype=int)\n\nfor i in range(m):\n l, r = map(int, input().split())\n mat[l-1, r-1] += 1\nmat = np.flipud(mat)\nmatmul = np.cumsum(mat, axis=0)\nmatmul = np.flipud(matmul)\nmatmul2 = np.cumsum(matmul, axis=1)\n\nfor i in range(q):\n p, q = map(int, input().split())\n ans = matmul2[p-1, q-1]\n print(ans)']
['Runtime Error', 'Accepted']
['s090841469', 's600364265']
[18480.0, 18896.0]
[2587.0, 2777.0]
[391, 386]
p03283
u375616706
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\nN, M, Q = map(int, input().split())\n\nmat = [[0]*(N+1) for _ in range(N+1)]\n\nfor _ in range(M):\n a, b = map(int, input().split())\n mat[a][b] = 1\n\n\ndef solve():\n\n for i in range(N+1):\n for j in range(1, N+1):\n mat[i][j] += mat[i][j-1]\n\n ans = []\n\n for _ in range(Q):\n ql, qr = map(int, input().split())\n tmp = 0\n for i in range(ql, qr+1):\n tmp += mat[i][qr] - mat[i][ql-1]\n ans.append(tmp)\n\n for a in ans:\n print(a)\n\n\ndef solve2():\n\n for i in range(1, N+1):\n for j in range(1, N+1):\n mat[i][j] = mat[i][j] + mat[i-1][j] + \\\n mat[i][j-1] - mat[i-1][j-1]\n\n ans = [0]*Q\n for i in range(Q):\n ql, qr = map(int, input().split())\n t = mat[qr][qr] - mat[ql-1][qr] - mat[qr][ql-1] + mat[ql-1][ql-1]\n ans[i] = t\n\n for a in ans:\n print(a+1)\n\n\nsolve2()\n', '# python template for atcoder1\nimport sys\nsys.setrecursionlimit(10**9)\ninput = sys.stdin.readline\n\nN, M, Q = map(int, input().split())\nkukan = []\n\nfor i in range(M):\n l, r = map(int, input().split())\n kukan.append([r, -1, l])\n\nfor i in range(Q):\n p, q = map(int, input().split())\n kukan.append([q, i, p])\n\nkukan.sort()\n\nli = [0]*(N+1)\nans = [0]*Q\n\nfor t, flag, s in kukan:\n if flag == -1:\n li[s] += 1\n else:\n ans[flag] = sum(li[s:t+1])\n\nfor a in ans:\n print(a)\n']
['Wrong Answer', 'Accepted']
['s845027793', 's114026129']
[17336.0, 51336.0]
[633.0, 1459.0]
[962, 496]
p03283
u404676457
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['(n, m, q) = map(int, input().split(" "))\n\nns = [[0 for _ in range(n + 1)]for _ in range(n + 1)]\n\nfor i in range(m):\n (l, r) = map(int, input().split(" "))\n ns[l][r] += 1\n\nprint(ns)\n\nfor i in range(q):\n count = 0\n (ql, qr) = map(int, input().split(" "))\n for j in range(ql, qr + 1):\n for k in range(j, qr + 1):\n count += ns[j][k]\n print(count)\n', '(n, m, q) = map(int, input().split(" "))\n\nns = [[0 for _ in range(n + 1)]for _ in range(n + 1)]\n\nfor i in range(m):\n (l, r) = map(int, input().split(" "))\n ns[l][r] += 1\n\nfor i in range(1, n + 1):\n for j in range(i, n + 1):\n ns[i][j] += ns[i][j - 1]\nfor j in range(1, n + 1):\n for i in range(1, j + 1):\n ns[i][j] += ns[i - 1][j]\n\nfor i in range(q):\n count = 0\n (l, r) = map(int, input().split(" "))\n print(ns[r][r] - ns[l - 1][r])']
['Wrong Answer', 'Accepted']
['s972289908', 's617645483']
[7448.0, 9716.0]
[3156.0, 1483.0]
[379, 465]
p03283
u427344224
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, input().split())\n\nx = [[0 for i in range(N + 1)] for j in range(N + 1)]\n\nfor i in range(M):\n l, r = map(int, input().split())\n x[l][r] += 1\n\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n x[i][j] += x[i - 1][j] + x[i][j - 1] - x[i - 1][j - 1]\n\nfor i in range(Q):\n p, q = map(int, input().split())\n\n ans = x[p][q]\n print(ans)', 'N, M, Q = map(int, input().split())\n\nx = [[0 for i in range(N + 1)] for j in range(N + 1)]\n\nfor i in range(M):\n l, r = map(int, input().split())\n x[l][r] += 1\n\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n x[i][j] += x[i - 1][j] + x[i][j - 1] - x[i - 1][j - 1]\n\nfor i in range(Q):\n p, q = map(int, input().split())\n\n ans = x[N][q] - x[p - 1][q]\n print(ans)']
['Wrong Answer', 'Accepted']
['s513102465', 's551426030']
[13420.0, 13424.0]
[1501.0, 1545.0]
[375, 389]
p03283
u463655976
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, input().split())\n\nimport numpy as np\nmatrix = np.array([[0 for _ in range(N+1)] for _ in range(N+1)], dtype=np.int16)\n\npairs = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor L, R in (map(int, input().split()) for _ in range(M)):\n pairs[L][R] += 1\n\nfor i in range(1, N+1):\n for j in range(i, N+1):\n w = pairs[i][j]\n if w > 0:\n matrix[:i+1,j:] += w\n\npairs = [[matrix[i,j] for j in range(N+1)] for i in range(N+1)]\n', 'N, M, Q = map(int, input().split())\n\nimport numpy as np\nmatrix = np.array([[0 for _ in range(N+1)] for _ in range(N+1)], dtype=np.int16)\n\nfor L, R in (map(int, input().split()) for _ in range(M)):\n matrix[:L+1,R:] += 1\n', 'N, M, Q = map(int, input().split())\n\nclass Cell:\n def __init__(self):\n self.value = 0\n self.L = 0\n def __repr__(self):\n return str((self.value, self.L))\n\npairs = [[Cell() for _ in range(N+1)] for _ in range(N+1)]\nfor L, R in (map(int, input().split()) for _ in range(M)):\n cell = pairs[L][R]\n cell.value += 1\n cell.L = cell.value\n\nfor i in range(N-1, 0, -1):\n for j in range(i+1, N+1):\n cell = pairs[i][j]\n cell.L += pairs[i][j-1].L\n cell.value = cell.L + pairs[i+1][j].value\nfor p, q in (map(int, input().split()) for _ in range(Q)):\n print(pairs[p][q].value)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s506258709', 's845484208', 's634193095']
[24852.0, 14956.0, 53108.0]
[3160.0, 3160.0, 1794.0]
[465, 222, 624]
p03283
u475065881
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['10 10 10\n1 6\n2 9\n4 5\n4 7\n4 7\n5 8\n6 6\n6 7\n7 9\n10 10\n1 8\n1 9\n1 10\n2 8\n2 9\n2 10\n3 8\n3 9\n3 10\n1 10', 'N, M , Q = map(int, input().split())\n\nLR = [[0 for _ in range(N+2-i) for _ in range(N+2)]\nfor i in range(M):\n L, R = map(int, input().split())\n LR[L][R-L+1] += 1\n\n \nfor i in range(2,N+2):\n for j in range(1,N-i+2):\n LR[j][i] += LR[j][i-1] + LR[j+1][i-1] - LR[j+1][i-2]\n \nfor i in range(Q):\n p, q = map(int, input().split())\n print(LR[p][q-p+1]-LR[q+1][0])\n', 'import numpy as np\nN, M , Q = map(int, input().split())\n\nLR = np.array([np.zeros(N+2-i, dtype=np.int) for i in range(N+2)])\nfor i in range(M):\n L, R = map(int, input().split())\n LR[L][R-L+1] += 1\n\n \nfor i in range(2,N+2):\n for j in range(1,N-i+2):\n LR[j][i] += LR[j][i-1] + LR[j+1][i-1] - LR[j+1][i-2]\n \nfor i in range(Q):\n p, q = map(int, input().split())\n print(LR[p][q-p+1]-LR[q+1][0])\n', 'N, M , Q = map(int, input().split())\n\nLR = [[0 for _ in range(N+2-i)] for _ in range(N+2)]\nfor i in range(M):\n L, R = map(int, input().split())\n LR[L][R-L+1] += 1\n\n \nfor i in range(2,N+2):\n for j in range(1,N-i+2):\n LR[j][i] += LR[j][i-1] + LR[j+1][i-1] - LR[j+1][i-2]\n \nfor i in range(Q):\n p, q = map(int, input().split())\n print(LR[p][q-p+1]-LR[q+1][0])\n', 'import sys\nfrom itertools import accumulate\nN, M, Q = map(int, sys.stdin.readline().split())\n \nLR = [[0 for _ in range(N-i)] for i in range(N)]\nfor i in range(M):\n L, R = map(int, sys.stdin.readline().split())\n LR[L-1][R-L] += 1\n \nfor i in range(N-2,-1,-1):\n acc = accumulate(LR[i])\n next(acc)\n for j in range(1, N-i):\n LR[i][j] = next(acc) + LR[i+1][j-1]\n \nfor i in range(Q):\n p, q = map(int, sys.stdin.readline().split())\n sys.stdout.write(str(LR[p-1][q-p])+"\\n")\n']
['Runtime Error', 'Runtime Error', 'Time Limit Exceeded', 'Runtime Error', 'Accepted']
['s012798510', 's402435434', 's530350609', 's738028189', 's596454357']
[2940.0, 2940.0, 14444.0, 3064.0, 8668.0]
[17.0, 17.0, 3066.0, 17.0, 554.0]
[94, 367, 401, 368, 476]
p03283
u480138356
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\n\ndef main():\n N, M, Q = map(int, input().split())\n\n check = np.zeros((N+1, N+1))\n\n for i in range(M):\n l, r = map(int, input().split())\n check[r][l] += 1\n\n # print(check)\n for i in range(1, N+1):\n check[i] += check[i-1]\n for i in range(1, N+1):\n check[:,i] += check[:,i-1]\n # print(check)\n\n for i in range(Q):\n p, q = map(int, input().split())\n print(check[q][q] - check[q][p-1] - check[p-1][q] + check[p-1][p-1])\n\nif __name__ == "__main__":\n main()\n', 'import sys\nimport numpy as np\ninput = sys.stdin.readline\n\ndef main():\n N, M, Q = map(int, input().split())\n\n check = np.zeros((N+1, N+1))\n\n for i in range(M):\n l, r = map(int, input().split())\n check[r][l] += 1\n\n # print(check)\n for i in range(1, N+1):\n check[i] += check[i-1]\n for i in range(1, N+1):\n check[:,i] += check[:,i-1]\n # print(check)\n\n for i in range(Q):\n p, q = map(int, input().split())\n print(int(check[q][q] - check[q][p-1] - check[p-1][q] + check[p-1][p-1]))\n\nif __name__ == "__main__":\n main()\n']
['Wrong Answer', 'Accepted']
['s646184004', 's744859742']
[15188.0, 15256.0]
[2860.0, 1333.0]
[538, 581]
p03283
u480200603
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['# import sys\n# input = sys.stdin.readlines()\nn, m, q = map(int, input().split())\n\nd = [[0 for j in range(n + 1)] for i in range(n + 1)]\na = [[0 for j in range(n + 1)] for i in range(n + 1)]\n\nfor _ in range(m):\n l, r = map(int, input().split())\n a[l][r] += 1\n\nfor i in range(1, n + 1):\n for j in range(1, n + 1):\n d[i][j] = d[i - 1][j] + d[i][j - 1] + a[i][j] - d[i - 1][j - 1]\n\n\nfor i in range(n + 1):\n print(d[i])\nfor _ in range(q):\n l, r = map(int, input().split())\n print(d[r][r] - d[r][l - 1] - d[l - 1][r] + d[l - 1][l - 1])\n', '# import sys\n# input = sys.stdin.readlines()\nn, m, q = map(int, input().split())\n\nd = [[0 for j in range(n + 1)] for i in range(n + 1)]\na = [[0 for j in range(n + 1)] for i in range(n + 1)]\n\nfor _ in range(m):\n l, r = map(int, input().split())\n a[l][r] += 1\n\nfor i in range(1, n + 1):\n for j in range(1, n + 1):\n d[i][j] = d[i - 1][j] + d[i][j - 1] + a[i][j] - d[i - 1][j - 1]\n\nfor _ in range(q):\n l, r = map(int, input().split())\n print(d[r][r] - d[r][l - 1] - d[l - 1][r] + d[l - 1][l - 1])\n']
['Wrong Answer', 'Accepted']
['s444394689', 's010753371']
[17244.0, 17116.0]
[1666.0, 1602.0]
[555, 515]
p03283
u497046426
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, input().split())\ntable = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor _ in range(M):\n l, r = map(int, input().split())\n table[l][r] += 1\ncum_sum2 = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor i, j in product(range(1, N+1), repeat=2):\n cum_sum2[i][j] += table[i][j] + cum_sum2[i-1][j] + cum_sum2[i][j-1] - cum_sum2[i-1][j-1]\nfor _ in range(Q):\n p, q = map(int, input().split())\n ans = cum_sum2[q][q] - cum_sum2[p-1][q] - cum_sum2[q][p-1] + cum_sum2[p-1][p-1]\n print(ans)', 'from itertools import product\n\nN, M, Q = map(int, input().split())\ntable = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor _ in range(M):\n l, r = map(int, input().split())\n table[l][r] += 1\ncum_sum2 = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor i, j in product(range(1, N+1), repeat=2):\n cum_sum2[i][j] += table[i][j] + cum_sum2[i-1][j] + cum_sum2[i][j-1] - cum_sum2[i-1][j-1]\nfor _ in range(Q):\n p, q = map(int, input().split())\n ans = cum_sum2[q][q] - cum_sum2[p-1][q] - cum_sum2[q][p-1] + cum_sum2[p-1][p-1]\n print(ans)']
['Runtime Error', 'Accepted']
['s804598383', 's379888172']
[7156.0, 15552.0]
[628.0, 1633.0]
[517, 548]
p03283
u497625442
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int,input().split())\n\nC = [[0 for in range(N)] in range(N)]\nfor i in range(M):\n\tL,R = map(int,input().split())\n\tC[L][R] += 1\n\nfor j in range(Q):\n\tp,q = map(int,input().split())\n\ts = 0\n\tfor i in range(p,q+1):\n\t\tfor j in range(p,q+1):\n\t\t\ts += C[i][j]\n\tprint(s)\n', 'N, M, Q = map(int,input().split())\n\nC = [[0 for i in range(N+1)] for j in range(N+1)]\nfor i in range(M):\n\tL,R = map(int,input().split())\n\tC[L][R] += 1\n\n\nD = [[0 for i in range(N+4)] for j in range(N+4)]\nE = [0 for i in range(N+4)]\nF = [[0 for i in range(N+4)] for j in range(N+4)]\nfor i in range(N+1):\n\tfor j in range(N+1):\n\t\tD[i][j+1] = D[i][j] + C[i][j]\nfor i in range(N+1):\n\tE[i+1] = E[i] + D[i][i]\nfor i in range(N+2):\n\tfor j in range(N+2):\n\t\tF[i+1][j] = F[i][j] + D[i][j]\n\n# C[l][l] + ... + C[l][r] = D[l][r+1] - D[l][l]\n# C[i][i] + ... + C[i][r] = D[i][r+1] - D[i][i]\n# C[r][r] + ... + C[r][r] = D[r][r+1] - D[r][r]\n\nfor j in range(Q):\n\tp,q = map(int,input().split())\n\ts = F[q+1][q+1] - F[p][q+1] - (E[q+1] - E[p])\n\tprint(s)\n\n']
['Runtime Error', 'Accepted']
['s455775331', 's772868645']
[2940.0, 19484.0]
[17.0, 1638.0]
[273, 732]
p03283
u518378780
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = [int(_) for _ in input().split()]\ntrain = [[int(_) for _ in input().split()] for i in range(M)]\nquestion = [[int(_) for _ in input().split()] for i in range(Q)]\n\nnl = [[0 for i in range(N)] for j in range(N)]\nfor t in train:\n i = t[0] - 1\n j = t[1] - 1\n nl[i][j] += 1\n\nl = [[0 for i in range(N)] for j in range(N)]\nfor i in range(N):\n s = 0\n for j in range(N):\n l[i][j] = s + nl[i][j]\n s = l[i][j]\n\nprint(nl, l)\n\nfor k in range(Q):\n p = question[k][0]\n q = question[k][1]\n ans = 0\n for i in range(p-1, q):\n if p == 1:\n d = l[i][q-1]\n else:\n d = l[i][q-1] - l[i][p-2]\n ans += d\n print(ans)\n\n', 'N, M, Q = [int(_) for _ in input().split()]\n\nl = [[0 for i in range(N+1)] for j in range(N+2)]\nfor t in [input().split() for _ in range(M)]:\n i = int(t[0])\n j = int(t[1])\n l[i][j] += 1\n\nfor k in range(N):\n for i in range(1, N-k+1):\n j = i + k\n l[i][j] += l[i][j-1] + l[i+1][j] - l[i+1][j-1]\n\nfor k in [input().split() for _ in range(Q)]:\n p = int(k[0])\n q = int(k[1])\n print(l[p][q])\n']
['Wrong Answer', 'Accepted']
['s325771365', 's385603402']
[58284.0, 63100.0]
[3160.0, 925.0]
[687, 419]
p03283
u523764640
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\n\nn, m, q = map(int, input().split())\n\nmat = np.zeros((n, n), dtype=int)\n\nfor _ in range(m):\n l, r = map(int, input().split())\n mat[l-1][r-1] += 1\n\nans = np.cumsum(mat, axis=1)[::-1], axis=0)[::-1]\n\nfor _ in range(q):\n l, r = map(int, input().split())\n print(ans[l-1][r-1])\n', 'import numpy as np\n\nn, m, q = map(int, input().split())\n\nmat = np.zeros((n, n), dtype=int)\n\nfor _ in range(m):\n l, r = map(int, input().split())\n mat[l-1][r-1] += 1\n\nans = np.cumsum(np.cumsum(mat, axis=1)[::-1], axis=0)[::-1]\n\nfor _ in range(q):\n l, r = map(int, input().split())\n print(ans[l-1][r-1])\n']
['Runtime Error', 'Accepted']
['s682713387', 's610286475']
[2940.0, 18380.0]
[17.0, 2869.0]
[304, 314]
p03283
u540761833
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N,M,Q = map(int,input().split())\nnum = [[0 for i in range(N)] for j in range(N)]\nlr = [list(map(int,input().split())) for i in range(M)]\nfor l,r in lr:\n num[l-1][r-1] += 1\n\nfor j in range(N):\n for i in range(N-1,0,-1):\n num[i-1][j] += num[i][j]\nfor i in range(N):\n for j in range(N-1):\n num[i][j+1] += num[i][j]\npq = [list(map(int,input().split())) for i in range(M)]\nfor p,q in pq:\n print(num[p-1][q-1])\n', "import sys\ndef input(): return sys.stdin.readline().strip()\nN,M,Q = map(int,input().split())\nnum = [[0 for i in range(N)] for j in range(N)]\nlr = [list(map(int,input().split())) for i in range(M)]\nfor l,r in lr:\n num[l-1][r-1] += 1\n\nfor j in range(N):\n for i in range(N-1,0,-1):\n num[i-1][j] += num[i][j]\nfor i in range(N):\n for j in range(N-1):\n num[i][j+1] += num[i][j]\npq = [list(map(int,input().split())) for i in range(Q)]\nans = []\nfor p,q in pq:\n ans.append(num[p-1][q-1])\nprint(*ans,sep='\\n')"]
['Runtime Error', 'Accepted']
['s621950516', 's012153985']
[72296.0, 75604.0]
[1159.0, 904.0]
[431, 525]
p03283
u608569568
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n,m,q = map(int,input().split(" "))\nLR_2d = [[0 for i in range(n)] for i in range(n)]\nfor i in range(m):\n L,R = map(int,input().split(" "))\n LR_2d[L-1][R-1] += 1\nLR_2dsum = [[0 for i in range(n)] for i in range(n)]\nfor i in range(n):\n LR_2dsum[i][0] = LR_2d[i][0]\n for j in range(1,n):\n LR_2dsum[i][j] = LR_2dsum[i][j-1] + LR_2d[i][j]\nfor i in range(q):\n ans = 0\n p_i,q_i = map(int,input().split(" "))\n for j in range(p_i-1,q_i):\n ans_j = LR_2dsum[j][q_i-1] - LR_2dsum[j][max(0,p_i-2)]\n ans += ans_j\n print(ans)', 'n,m,q = map(int,input().split(" "))\nLR_2d = [[0 for i in range(n)] for i in range(n)]\nfor i in range(m):\n L,R = map(int,input().split(" "))\n LR_2d[L-1][R-1] += 1\nLR_2dsum = [[0 for i in range(n)] for i in range(n)]\nfor i in range(n):\n LR_2dsum[i][0] = LR_2d[i][0]\n for j in range(1,n):\n LR_2dsum[i][j] = LR_2dsum[i][j-1] + LR_2d[i][j]\nfor i in LR_2dsum:\n print(i)\nfor i in range(q):\n ans = 0\n p_i,q_i = map(int,input().split(" "))\n for j in range(p_i-1,q_i):\n ans_j = LR_2dsum[j][q_i-1] - LR_2dsum[j][max(0,p_i-2)]\n ans += ans_j\n print(ans)', 'n,m,q = map(int,input().split(" "))\nLR_2d = [[0 for i in range(n+1)] for i in range(n+1)]\nfor i in range(m):\n L,R = map(int,input().split(" "))\n LR_2d[L][R] += 1\n\nLR_2dsum = [[0 for i in range(n+1)] for i in range(n+1)]\nfor j in range(1,n):\n LR_2dsum[0][j] = LR_2dsum[0][j-1] + LR_2d[0][j]\nfor i in range(1,n+1):\n for j in range(1,n+1):\n LR_2dsum[i][j] = LR_2dsum[i-1][j] + LR_2dsum[i][j-1] - LR_2dsum[i-1][j-1] + LR_2d[i][j]\n\nfor i in range(q):\n p_i,q_i = map(int,input().split(" "))\n ans = LR_2dsum[p_i-1][p_i-1] - LR_2dsum[p_i-1][q_i] - LR_2dsum[q_i][p_i-1] + LR_2dsum[q_i][q_i]\n print(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s284619241', 's892385949', 's582109941']
[9204.0, 10228.0, 15472.0]
[3156.0, 3156.0, 1664.0]
[556, 588, 621]
p03283
u619819312
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\nn,m,q=map(int,input().split())\ns=np.zeros((n,n))\nfor i in range(m):\n l,r=map(int,input().split())\n s[n-l][r-1]+=1\ns=np.cumsum(np.cumsum(s,axis=0),axis=1)\nprint(s)\nfor i in range(q):\n d,t=map(int,input().split())\n print(int(s[n-d][t-1]))', 'import numpy as np\nn,m,q=map(int,input().split())\ns=np.zeros((n,n))\nfor i in range(m):\n l,r=map(int,input().split())\n s[n-l][r-1]+=1\ns=np.cumsum(np.cumsum(s,axis=0),axis=1)\nfor i in range(q):\n d,t=map(int,input().split())\n print(int(s[n-d][t-1]))']
['Wrong Answer', 'Accepted']
['s314830749', 's417808055']
[18140.0, 18268.0]
[2317.0, 2334.0]
[267, 258]
p03283
u623601489
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n,m,q= map(int,input().split())\ndataList = [[0 for xIndex in range(n+1)]for yIndex in range(n+1)]\n\nfor i in range(m):\n xTemp,yTemp = map(int,input().split())\n dataList[yTemp][xTemp]+=1\npqList=[list(map(lambda x:int(x),input().split()))for i in range(q)]\nprint(dataList)\nfor yIndex in range(1,n+1):\n for xIndex in range(1,n+1):\n dataList[yIndex][xIndex]+=dataList[yIndex][xIndex-1]\nfor yIndex in range(1,n+1):\n for xIndex in range(1,n+1):\n dataList[yIndex][xIndex]+=dataList[yIndex-1][xIndex]\nprint(dataList)\n\nfor pq in pqList:\n p = pq[0]-1\n q = pq[1]\n print(dataList[q][q]+dataList[p][p]-dataList[p][q]-dataList[q][p])', 'n,m,q= map(int,input().split())\nlrList=[list(map(int,input().split()))for i in range(m)]\npqList=[list(map(int,input().split()))for i in range(q)]\nfor pq in pqList:\n ans = 0\n for lr in lrList:\n ans +=(pq[0] <= lr[0] and pq[1] >= lr[1])\n print(1)', 'n,m,q= map(int,input().split())\ndataList = [[0 for xIndex in range(n+1)]for yIndex in range(n+1)]\n\nfor i in range(m):\n xTemp,yTemp = map(int,input().split())\n dataList[yTemp][xTemp]+=1\npqList=[list(map(lambda x:int(x),input().split()))for i in range(q)]\nfor yIndex in range(1,n+1):\n for xIndex in range(1,n+1):\n dataList[yIndex][xIndex]+=dataList[yIndex][xIndex-1]\nfor yIndex in range(1,n+1):\n for xIndex in range(1,n+1):\n dataList[yIndex][xIndex]+=dataList[yIndex-1][xIndex]\n\nfor pq in pqList:\n p = pq[0]-1\n q = pq[1]\n print(dataList[q][q]+dataList[p][p]-dataList[p][q]-dataList[q][p])']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s050500826', 's371099005', 's505135710']
[41076.0, 68468.0, 34856.0]
[1295.0, 3160.0, 1250.0]
[653, 260, 621]
p03283
u624475441
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N,M,Q=map(int,input().split())\ndp=[[0]*-~N for _ in[0]*-~N]\nfor _ in[0]*M:\n L,R=map(int,input().split())\n for i in range(1,L+1):\n for j in range(R,N+1):\n dp[i][j] += 1\n print(i,j)\nfor _ in[0]*Q:\n p,q=map(int,input().split())\n print(dp[p][q])', "import sys\nimport numpy as np\ndef main():\n s = sys.stdin.readlines()\n N, M, _ = map(int, s[0].split())\n X = np.zeros((N, N), dtype=int)\n for L, R in (map(int, e.split()) for e in s[1:M + 1]): X[L - 1][R - 1] += 1\n S = np.cumsum(np.cumsum(X, axis=1)[::-1], axis=0)[::-1]\n print('\\n'.join(map(str, (S[p - 1][q - 1] for p, q in (map(int, e.split()) for e in s[M + 1:])))))\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Accepted']
['s160450648', 's815333820']
[26720.0, 43600.0]
[3156.0, 1390.0]
[282, 425]
p03283
u631914718
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\n\n\ndef LI(): return list(map(int, input().split()))\ndef LI_(): return list(map(lambda x: int(x) - 1, input().split()))\n\n\ndef cumulative_sum_ref(d1_array):\n for i in range(1, len(d1_array)):\n d1_array[i] += d1_array[i-1]\n\n\ndef cumulative_sum_val(d1_array):\n tmp = d1_array.copy()\n for i in range(1, len(tmp)):\n tmp[i] += tmp[i-1]\n return tmp\n\n\n\nif __name__ != "__main__":\n N, M, Q = LI()\n LR = np.zeros((N+1, N+1), dtype=\'uint32\')\n for i in range(M):\n l, r = LI()\n LR[l][r] += 1\n\n \n for i in range(1, N+1):\n for j in range(2, N+1):\n LR[i][j] += LR[i][j-1]\n for i in range(1, N+1):\n for j in range(2, N+1):\n LR[j][i] += LR[j-1][i]\n\n for _ in range(Q):\n p, q = LI()\n p -= 1\n result = LR[q][q] - LR[p][q] - LR[q][p] + LR[p][p]\n print(result)\n\n\nif __name__ == "__main__":\n N, M, Q = LI()\n LR = np.zeros((N+1, N+1), dtype=\'uint32\')\n for i in range(M):\n l, r = LI()\n LR[l][r] += 1\n\n \n for i in range(1, N+1):\n for j in range(2, N+1):\n LR[i][j] += LR[i][j-1]\n LR[i][j] += LR[i-1][j]\n LR[i][j] += LR[i-1][j-1]\n\n for _ in range(Q):\n p, q = LI()\n p -= 1\n result = LR[q][q] - LR[p][q] - LR[q][p] + LR[p][p]\n print(result)\n', 'import numpy as np\n\n\ndef LI(): return list(map(int, input().split()))\ndef LI_(): return list(map(lambda x: int(x) - 1, input().split()))\n\n\ndef cumulative_sum_ref(d1_array):\n for i in range(1, len(d1_array)):\n d1_array[i] += d1_array[i-1]\n\n\ndef cumulative_sum_val(d1_array):\n tmp = d1_array.copy()\n for i in range(1, len(tmp)):\n tmp[i] += tmp[i-1]\n return tmp\n\n\n\nif __name__ != "__main__":\n N, M, Q = LI()\n LR = np.zeros((N+1, N+1), dtype=\'uint32\')\n for i in range(M):\n l, r = LI()\n LR[l][r] += 1\n\n \n for i in range(1, N+1):\n for j in range(2, N+1):\n LR[i][j] += LR[i][j-1]\n for i in range(1, N+1):\n for j in range(2, N+1):\n LR[j][i] += LR[j-1][i]\n\n for _ in range(Q):\n p, q = LI()\n p -= 1\n result = LR[q][q] - LR[p][q] - LR[q][p] + LR[p][p]\n print(result)\n\n\nif __name__ == "__main__":\n N, M, Q = LI()\n LR = np.zeros((N+1, N+1), dtype=\'uint32\')\n for i in range(M):\n l, r = LI()\n LR[l][r] += 1\n\n \n for i in range(1, N+1):\n for j in range(2, N+1):\n LR[i][j] += LR[i][j-1]\n LR[i][j] += LR[i-1][j]\n LR[i][j] -= LR[i-1][j-1]\n\n for _ in range(Q):\n p, q = LI()\n p -= 1\n result = LR[q][q] - LR[p][q] - LR[q][p] + LR[p][p]\n print(result)\n', 'from itertools import accumulate as acc\nimport sys\n\n\ndef main():\n s = sys.stdin.readlines()\n N, M, Q = map(int, s[0].split())\n LR = [[0]*N for _ in [0]*N]\n for l, r in (map(int, e.split()) for e in s[1:M + 1]):\n LR[l - 1][r - 1] += 1\n\n S = [tuple(acc(reversed(s))) for s in zip(*(acc(x) for x in LR))]\n print(\'\\n\'.join(map(str, (S[q - 1][N - p] for p, q in (map(int, e.split()) for e in s[M + 1:])))))\n\n\nif __name__ == "__main__":\n main()\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s560397958', 's866972811', 's316175455']
[13448.0, 13448.0, 38468.0]
[3160.0, 3160.0, 413.0]
[1446, 1446, 467]
p03283
u638456847
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['\nimport sys\nread = sys.stdin.read\nreadline = sys.stdin.readline\nreadlines = sys.stdin.readlines\n\ndef lunlun_num(N):\n N = str(N)\n L = len(N)\n\n dp = [[0]*10 for j in range(L)]\n for j in range(1,int(N[0])):\n dp[0][j] = 1\n\n flag = True\n for i in range(L-1):\n d = int(N[i+1])\n b = int(N[i])\n \n dp[i+1][0] += dp[i][0] + dp[i][1]\n dp[i+1][9] += dp[i][8] + dp[i][9]\n for j in range(1,9):\n dp[i+1][j] += dp[i][j-1] + dp[i][j] + dp[i][j+1]\n for j in range(1,10):\n dp[i+1][j] += 1\n\n if flag:\n if d < b - 1:\n flag = False\n elif d <= b + 1:\n for j in range(max(0, b-1),d):\n dp[i+1][j] += 1\n else:\n for j in range(max(0, b-1),b+2):\n dp[i+1][j] += 1\n flag = False\n\n return sum(dp[L-1]) + 1 if flag else sum(dp[L-1])\n\n\ndef main():\n K = int(readline())\n\n \n left = 0\n right = 10**10\n while left + 1 < right:\n x = (left + right) // 2\n\n if lunlun_num(x) >= K:\n right = x\n else:\n left = x\n \n print(right)\n\n\nif __name__ == "__main__":\n main()\n', '\nfrom itertools import accumulate\nimport sys\nread = sys.stdin.read\nreadline = sys.stdin.readline\nreadlines = sys.stdin.readlines\n\ndef main():\n N,M,Q,*lr = map(int, read().split())\n\n LR = [[0]*(N+1) for _ in range(N+1)]\n query = []\n for i, (l, r) in enumerate(zip(*[iter(lr)]*2)):\n if i < M:\n LR[l][r] += 1\n else:\n query.append((l, r))\n \n for i in range(1,N+1):\n LR[1][i] += LR[1][i-1]\n LR[i][1] += LR[i-1][1]\n \n for i in range(2, N+1):\n for j in range(2,N+1):\n LR[i][j] += LR[i-1][j] + LR[i][j-1] - LR[i-1][j-1]\n \n for p, q in query:\n ans = LR[q][q] - LR[p-1][q] - LR[q][p-1] + LR[p-1][p-1]\n print(ans)\n\n\nif __name__ == "__main__":\n main()\n']
['Runtime Error', 'Accepted']
['s650312424', 's029077094']
[3188.0, 56648.0]
[18.0, 443.0]
[1284, 793]
p03283
u655663334
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\n\nn,m,q = list(map(int, input().split()))\n\nlrs = [list(map(int, input().split())) for _ in range(m)]\npqs = [list(map(int, input().split())) for _ in range(q)]\n\ntrain_array = np.zeros((n,n),dtype=int)\n\nfor lr in lrs:\n train_array[lr[0]-1][lr[1]-1] +=1\n\n\n#print(train_array)\n\ntrain_array_ruisekiwa = np.zeros((n,n), dtype = int)\n\nfor index, train_vector in enumerate(train_array):\n train_array_ruisekiwa[index][0] = train_vector[0]\n\n for i in range(1, n):\n train_array_ruisekiwa[index][i] = train_array_ruisekiwa[index][i-1] + train_vector[i]\n\n#print(train_array_ruisekiwa)\n\nfor pq in pqs:\n ans = 0\n for i in range(pq[0]-1,pq[1]):\n ans += train_array_ruisekiwa[i][pq[1] - 1] - train_array_ruisekiwa[i][pq[0] - 1]\n\n print(ans)', 'import numpy as np\nimport sys\n\ninput=sys.stdin.readline\n\nn,m,q = list(map(int, input().split()))\n\nlrs = [list(map(int, input().split())) for _ in range(m)]\npqs = [list(map(int, input().split())) for _ in range(q)]\n\ntrain_array = np.zeros((n+1,n+1),dtype=int)\n\nfor lr in lrs:\n train_array[lr[0]][lr[1]] +=1\n\n\nprint(train_array)\n\ntrain_array_ruisekiwa = np.zeros((n+1,n+1), dtype = int)\n\nfor index, train_vector in enumerate(train_array):\n train_array_ruisekiwa[index][0] = train_vector[0]\n\n for i in range(1, n+1):\n train_array_ruisekiwa[index][i] = train_array_ruisekiwa[index][i-1] + train_vector[i]\n\nprint(train_array_ruisekiwa)\n\nfor pq in pqs:\n ans = 0\n for i in range(pq[0],pq[1]+1):\n ans += train_array_ruisekiwa[i][pq[1]] - train_array_ruisekiwa[i][pq[0] - 1]\n\n print(ans)', 'import numpy as np\nimport sys\n\ninput=sys.stdin.readline\n\nn,m,q = list(map(int, input().split()))\n\nlrs = [list(map(int, input().split())) for _ in range(m)]\npqs = [list(map(int, input().split())) for _ in range(q)]\n\ntrain_array = np.zeros((n+1,n+1),dtype=int)\n\nfor lr in lrs:\n train_array[lr[0]][lr[1]] +=1\n\n\n#print(train_array)\n\ntrain_array_ruisekiwa = np.zeros((n+1,n+1), dtype = int)\n\nfor i in range(1, n+1):\n for j in range(1, n+1):\n train_array_ruisekiwa[i][j] = train_array[i][j] + train_array_ruisekiwa[i][j-1] + train_array_ruisekiwa[i-1][j] - train_array_ruisekiwa[i-1][j-1]\n\n#print(train_array_ruisekiwa)\n\nfor pq in pqs:\n print(train_array_ruisekiwa[pq[1]][pq[1]] - train_array_ruisekiwa[pq[1]][pq[0]-1] - train_array_ruisekiwa[pq[0]-1][pq[1]] + train_array_ruisekiwa[pq[0]-1][pq[0]-1])\n\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s138218319', 's388407811', 's026395483']
[79656.0, 79708.0, 80312.0]
[3165.0, 3166.0, 2375.0]
[773, 810, 813]
p03283
u659712937
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["from itertools import accumulate\nfrom operator import add, mul\nn,m,q=map(int,input().split())\n\na=[]\nb=[]\nfor i in range(n):\n a.append([0]*(n))\n b.append([0]*(n))\n\n#import numpy as np\n#b=np.array(b)\n#print(a)\n'''\nfor i in range(m):\n l,r=map(int,input().split())\n #print(a[(r-1):n,0:l])\n #a[(r-1):n,0:l]+=1\n for j in range(r-1,n):\n for k in range(l):\n a[j][k]+=1\n'''\nfor i in range(m):\n l,r=map(int,input().split())\n #print(a[(r-1):n,0:l])\n a[l-1][r-1]+=1\n\n#print(a)\n\nfor i in range(n):\n a[i]=list(accumulate(a[i]))\n\n#print(a)\n\nfor i in range(n):\n for j in range(n-i):\n a[n-i-j-2][n-i-1]+=a[n-i-j-1][n-i-1]\n #print(a)\n\nprint(a)\n\n'''\nfor l in range(n):\n for r in range(l,n):\n temp=a[r][l]\n for i in range(r,n):\n for j in range(0,l+1):\n b[i][j]+=temp\n #b[r:n,0:l+1]+=temp\n'''\n#print(a)\n#print(b)\n\nfor i in range(q):\n P,Q=map(int,input().split())\n print(a[(P-1)][(Q-1)])\n", "from itertools import accumulate\nfrom operator import add, mul\nn,m,q=map(int,input().split())\n\na=[]\nb=[]\nfor i in range(n):\n a.append([0]*(n))\n b.append([0]*(n))\n\n#import numpy as np\n#b=np.array(b)\n#print(a)\n'''\nfor i in range(m):\n l,r=map(int,input().split())\n #print(a[(r-1):n,0:l])\n #a[(r-1):n,0:l]+=1\n for j in range(r-1,n):\n for k in range(l):\n a[j][k]+=1\n'''\nfor i in range(m):\n l,r=map(int,input().split())\n #print(a[(r-1):n,0:l])\n a[l-1][r-1]+=1\n\n#print(a)\n\nfor i in range(n):\n a[i]=list(accumulate(a[i]))\n\n#print(a)\n\nfor i in range(n):\n for j in range(n-i-1):\n a[n-i-j-2][n-i-1]+=a[n-i-j-1][n-i-1]\n #print(a)\n\n#print(a)\n\n'''\nfor l in range(n):\n for r in range(l,n):\n temp=a[r][l]\n for i in range(r,n):\n for j in range(0,l+1):\n b[i][j]+=temp\n #b[r:n,0:l+1]+=temp\n'''\n#print(a)\n#print(b)\n\nfor i in range(q):\n P,Q=map(int,input().split())\n print(a[(P-1)][(Q-1)])\n"]
['Wrong Answer', 'Accepted']
['s650131923', 's069467093']
[21304.0, 19076.0]
[870.0, 858.0]
[1132, 1135]
p03283
u659753499
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
["N,M,Q = map(int,input().split())\nT = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(M):\n L,R = map(int, input().split())\n T[L][R] += 1\npprint(T)\nfor l in range(1,N+1):\n for r in range(1,N+1):\n T[l][r] += T[l-1][r]+T[l][r-1]-T[l-1][r-1]\nans = []\npprint(T)\nfor i in range(Q):\n p,q = map(int, input().split())\n ans.append(T[p-1][p-1]+T[q][q]-T[p-1][q]-T[q][p-1])\nprint('\\n'.join(map(str,ans)))\nquit()\n", "N,M,Q = map(int,input().split())\nT = [[0 for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(M):\n L,R = map(int, input().split())\n T[L][R] += 1\nfor l in range(1,N+1):\n for r in range(1,N+1):\n T[l][r] += T[l-1][r]+T[l][r-1]-T[l-1][r-1]\nans = []\nfor i in range(Q):\n p,q = map(int, input().split())\n ans.append(T[p-1][p-1]+T[q][q]-T[p-1][q]-T[q][p-1])\nprint('\\n'.join(map(str,ans)))\n"]
['Runtime Error', 'Accepted']
['s490289040', 's853945100']
[5108.0, 23896.0]
[595.0, 1157.0]
[420, 393]
p03283
u672475305
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['\ndef f(h,w,a):\n da = [[0]*w for _ in range(h)]\n da[0][0] = a[0][0]\n for i in range(1, w):\n da[0][i] = da[0][i-1] + a[0][i]\n for i in range(1, h):\n cnt_w = 0\n for j in range(w):\n cnt_w += a[i][j]\n da[i][j] = da[i-1][j] + cnt_w\n return da\n\ndef Calc(p,q,x,y, da):\n if p>x or q>y:\n return 0\n if p==0 or q==0:\n return da[x][y]\n if p==0:\n return da[x][y] - da[x][q-1]\n if q==0:\n return da[x][y] - da[p-1][y]\n return da[x][y] - da[x][q-1] - da[p-1][y] + da[p-1][q-1]\n\nN,M,Q = map(int,input().split())\nt = [[0]*(N+1) for _ in range(N+1)]\nfor _ in range(M):\n l,r = map(int,input().split())\n t[l][r] += 1\n\nd = f(N,N,t)\nquery = []\nfor _ in range(Q):\n p,q = map(int,input().split())\n p -= 1\n q -= 1\n print(Calc(p,p,q,q,d))', 'def f(h,w,a):\n da = [[0]*(w+1)for _ in range(h+1)]\n da[0][0] = a[0][0]\n for i in range(1, w+1):\n da[0][i] = da[0][i-1] + a[0][i]\n for i in range(1, h+1):\n cnt_w = 0\n for j in range(w+1):\n cnt_w += a[i][j]\n da[i][j] = da[i-1][j] + cnt_w\n return da\n\ndef Calc(p,q,x,y, da):\n if p>x or q>y:\n return 0\n if p==0 or q==0:\n return da[x][y]\n if p==0:\n return da[x][y] - da[x][q-1]\n if q==0:\n return da[x][y] - da[p-1][y]\n return da[x][y] - da[x][q-1] - da[p-1][y] + da[p-1][q-1]\n\nN,M,Q = map(int,input().split())\nt = [[0]*(N+1) for _ in range(N+1)]\nfor _ in range(M):\n l,r = map(int,input().split())\n t[l][r] += 1\n\nd = f(N,N,t)\nfor _ in range(Q):\n p,q = map(int,input().split())\n print(Calc(p,p,q,q,d))']
['Wrong Answer', 'Accepted']
['s657931389', 's476080383']
[15320.0, 17108.0]
[1561.0, 1520.0]
[830, 807]
p03283
u685263709
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, input().split())\nLR = [list(map(int, input().split())) for i in range(M)]\nPQ = [list(map(int, input().split())) for i in range(Q)]\n\nacc = [[0 for i in range(N+1)] for i in range(N+1)] \ncoordinate = [[0 for i in range(N)] for i in range(N)]\nfor l, r in LR:\n l -= 1\n r -= 1\n coordinate[l][r] += 1\n\nfor i in range(N):\n for j in range(N):\n acc[i+1][j+1] = acc[i][j+1] + acc[i+1][j] - acc[i][j] + coordinate[i][j]\nprint(acc)\nfor p, q in PQ:\n p -= 1\n ans = acc[N][q] - acc[p][q]\n print(ans)', 'N, M, Q = map(int, input().split())\nLR = [list(map(int, input().split())) for i in range(M)]\nPQ = [list(map(int, input().split())) for i in range(Q)]\n\nacc = [[0 for i in range(N+1)] for i in range(N+1)] \ncoordinate = [[0 for i in range(N)] for i in range(N)]\nfor l, r in LR:\n l -= 1\n r -= 1\n coordinate[l][r] += 1\n\nfor i in range(N):\n for j in range(N):\n acc[i+1][j+1] = acc[i][j+1] + acc[i+1][j] - acc[i][j] + coordinate[i][j]\n\nfor p, q in PQ:\n p -= 1\n ans = acc[N][q] - acc[p][q]\n print(ans)']
['Wrong Answer', 'Accepted']
['s068518068', 's961046396']
[83496.0, 79476.0]
[1362.0, 1339.0]
[611, 601]
p03283
u686461495
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['# coding:utf-8\nn,m,q=map(int,input().split())\ndp = [[0 for i in range(n)] for j in range(n)]\nfor i in range(m):\n l,r=map(int,input().split())\n l-=1\n r-=1\n dp[l][r]+=1\nfor i in range(n):\n for j in range(n-1):\n dp[i][j+1]+=dp[i][j]\nfor j in range(n):\n for i in range(n-1,0,-1):\n dp[i-1][j]+=dp[i][j]\nprint(dp)\nfor i in range(n):\n p,q=map(int,input().split())\n p-=1\n q-=1\n if q==n-1:\n print(dp[p][q])\n else :\n print(dp[p][q]-dp[q][q])\n', '# coding:utf-8\nn,m,qq=map(int,input().split())\ndp = [[0 for i in range(n+5)] for j in range(n+5)]\nfor i in range(m):\n l,r=map(int,input().split())\n l-=1\n r-=1\n dp[l][r]+=1\nfor i in range(n):\n for j in range(n-1):\n dp[i][j+1]+=dp[i][j]\nfor j in range(n):\n for i in range(n-1,0,-1):\n dp[i-1][j]+=dp[i][j]\nfor i in range(qq):\n p,q=map(int,input().split())\n p-=1\n q-=1\n if q==n-1:\n print(dp[p][q])\n else :\n print(dp[p][q]-dp[q+1][q])\n']
['Runtime Error', 'Accepted']
['s478473880', 's740182112']
[12460.0, 9460.0]
[783.0, 1678.0]
[490, 488]
p03283
u745514010
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n,m,q=map(int,input().split())\nalist=[]\nfor i in range(m):\n l,r=map(int,input().split())\n alist.append([l,r])\nfor t in range(q):\n count=m\n p,q=map(int,input().split())\n for i in alist:\n if p>i[0] or p<i[1]:\n count-=1\n print(count)', 'n,m,q=map(int,input().split())\nalist=[]\nfor i in range(m):\n l,r=map(int,input().split())\n alist.append([l,r])\nalist.sort()\nfor t in range(q):\n count=0\n blist=[]\n p,q=map(int,input().split())\n print(alist)\n for j in range (len(alist)):\n if p<=alist[0][0]:\n alist.sort(key=lambda x:x[1])\n break\n blist.append(alist[0])\n alist.remove(alist[0])\n for j in range (len(alist)):\n if q>=alist[j][1]:\n count+=1\n else:\n break\n for k in blist:\n alist.append(k)\n print(count)\n alist.sort(key=lambda x:x[0])', 'n, m, Q = map(int, input().split())\nlr = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\nfor _ in range(m):\n l, r = map(int, input().split())\n lr[l][r] += 1\n\nrui = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\nfor i in range(1, n + 1):\n for j in range(1, n + 1):\n rui[i][j] = lr[i][j] + rui[i - 1][j] + rui[i][j - 1] - rui[i - 1][j - 1]\n \nfor _ in range(Q):\n p, q = map(int, input().split())\n p -= 1\n ans = rui[q][q] - rui[p][q] - rui[q][p] + rui[p][p]\n print(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s166070998', 's368606102', 's220945661']
[31708.0, 50048.0, 20744.0]
[3161.0, 3158.0, 963.0]
[266, 612, 501]
p03283
u767545760
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, input().split())\ntrains = [[0] * (N + 1) for _ in range(N + 1)]\nfor _ in range(M):\n L, R = map(int, input().split())\n trains[L][R] += 1\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n trains[i][j] += trains[i - 1][j]\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n trains[i][j] += trains[i][j - 1]\nprint(trains)\nans = [0] * Q\nfor k in range(Q):\n p, q = map(int, input().split())\n ans[k] = trains[q][q] - trains[p-1][q] - trains[q][p-1] + trains[p-1][p-1]\nfor A in ans:\n print(A)', 'N, M, Q = map(int, input().split())\ntrains = [[0] * (N + 1) for _ in range(N + 1)]\nfor _ in range(M):\n L, R = map(int, input().split())\n trains[L][R] += 1\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n trains[i][j] += trains[i - 1][j]\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n trains[i][j] += trains[i][j - 1]\nans = [0] * Q\nfor k in range(Q):\n p, q = map(int, input().split())\n ans[k] = trains[q][q] - trains[p-1][q] - trains[q][p-1] + trains[p-1][p-1]\nfor A in ans:\n print(A)']
['Wrong Answer', 'Accepted']
['s743455199', 's245686483']
[22776.0, 22352.0]
[765.0, 744.0]
[544, 530]
p03283
u769698512
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\nn, m, q = map(int, input().split())\nkukan = np.zeros((N+1, N+1))\nfor _ in range(m):\n l, r = map(int, input().split())\n kukan[r][l] += 1\n\n\n\nfor i in range(1, n+1):\n kukan[i] += kukan[i-1]\n\n\nfor i in range(1, n+1):\n kukan[:, i] += kukan[i-1]\n\nfor i in range(q):\n p, q = list(map(int, input().split()))\n print(int(kukan[q][q] - kukan[q][p-1] - kukan[p-1][q] + kukan[p-1][p-1]))\n', 'import numpy as np\nn, m, q = map(int, input().split())\nkukan = np.zeros((n+1, n+1))\nfor _ in range(m):\n l, r = map(int, input().split())\n kukan[r][l] += 1\n\n\n\nfor i in range(1, n+1):\n kukan[i] += kukan[i-1]\n\n\nfor i in range(1, n+1):\n kukan[:, i] += kukan[i-1]\n\nfor i in range(q):\n p, q = list(map(int, input().split()))\n print(int(kukan[q][q] - kukan[q][p-1] - kukan[p-1][q] + kukan[p-1][p-1]))\n', 'import numpy as np\nn, m, q = map(int, input().split())\nkukan = np.zeros((n+1, n+1))\nfor _ in range(m):\n l, r = map(int, input().split())\n kukan[r][l] += 1\n\n\n\nfor i in range(1, n+1):\n kukan[i] += kukan[i-1]\n\n\nfor i in range(1, n+1):\n kukan[:, i] += kukan[:, i-1]\n\nfor i in range(1, q+1):\n p, q = list(map(int, input().split()))\n print(int(kukan[q][q] - kukan[q][p-1] - kukan[p-1][q] + kukan[p-1][p-1]))\n']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s497475560', 's821176549', 's614082926']
[12488.0, 16472.0, 15196.0]
[150.0, 2661.0, 2625.0]
[593, 593, 615]
p03283
u798818115
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['# coding: utf-8\n# Your code here!\nN,M,Q=map(int,input().split())\n\nstart=[0]*N\nend=[0]*N\n\nfor _ in range(M):\n p,q=map(int,input().split())\n start[p-1]+=1\n end[q-1]+=1\n\nfor i in range(len(start)-1):\n start[i+1]+=start[i]\n end[i+1]+=end[i]\nprint(start)\nprint(end)\n\n\n\n', '# coding: utf-8\n# Your code here!\nN,M,Q=map(int,input().split())\n\ndia=[[0 for i in range(N)] for j in range(N)]\n\nfor _ in range(M):\n L,R=map(int,input().split())\n dia[L-1][R-1]+=1\n\nans=[[0 for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i,N):\n ans[i][j]=(ans[i][j-1] if j!=0 else 0) + dia[i][j]\n#print(ans)\n\nshin=[[0 for i in range(N)] for j in range(N)]\n\nfor j in range(N):\n temp=0\n for i in range(j+1)[::-1]:\n #print(i,j)\n temp+=ans[i][j]\n shin[i][j]=temp\n\nfor _ in range(Q):\n p,q=map(int,input().split())\n print(shin[p-1][q-1])\n#print(shin)\n"""\nfor _ in range(Q):\n p,q=map(int,input().split())\n temp=0\n for i in range(p,q+1):\n #print(i,q)\n temp+=ans[i-1][q-1]\n \n\n print(temp)\n"""']
['Wrong Answer', 'Accepted']
['s048053276', 's292165324']
[3060.0, 15476.0]
[665.0, 1505.0]
[292, 789]
p03283
u816116805
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['from collections import Counter\nfrom itertools import product\nimport numpy as np\n\nn,m,q = map(int,input().split())\nrails=[tuple(map(int,input().split())) for i in range(m)]\nqs=[tuple(map(int,input().split())) for i in range(q)]\n\nxlist = np.array([[0 for j in range(n)] for i in range(n)])\nfor (l,r),i in Counter(rails).items():\n xlist[l-1,r-1]=i\n\nsumsumlist = np.cumsum(np.cumsum(xlist,axis=1),axis=0)\n\nprint(xlist)\nprint(sumsumlist)\n\nfor (p,q) in qs:\n if p>1:\n ans = sumsumlist[q-1][q-1] - sumsumlist[q-1][p-2] - sumsumlist[p-2][q-1] + sumsumlist[p-2][p-2]\n elif p==1:\n ans = sumsumlist[q-1][q-1]\n\n print(ans)\n', 'import numpy as np\n\nn,m,q = map(int,input().split())\nrails=[tuple(map(int,input().split())) for i in range(m)]\nqs=[tuple(map(int,input().split())) for i in range(q)]\n\nxlist = np.array([[0 for j in range(n)] for i in range(n)],dtype=np.int32)\nfor (l,r) in rails:\n xlist[l-1,r-1]+=1\n\nsumsumlist = np.cumsum(np.cumsum(xlist,axis=1),axis=0)\n\n\nfor (p,q) in qs:\n if p>1:\n ans = sumsumlist[q-1][q-1] - sumsumlist[q-1][p-2] - sumsumlist[p-2][q-1] + sumsumlist[p-2][p-2]\n elif p==1:\n ans = sumsumlist[q-1][q-1]\n\n print(ans)\n']
['Wrong Answer', 'Accepted']
['s738724227', 's634874876']
[54064.0, 47916.0]
[1835.0, 2929.0]
[638, 542]
p03283
u824237520
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n, m, q = map(int, input().split())\n\ntemp = [ [0 for _ in range(n)] for _ in range(n)]\ntables = [ [0 for _ in range(n)] for _ in range(n)]\n\nfor _ in range(m):\n l, r = map(int, input().split())\n temp[l - 1][r - 1] += 1\n\npq = [tuple(int(x) - 1 for x in input().split()) for _ in range(q)]\n\nfor i in range(m):\n hoge = 0\n for j in range(m):\n hoge += temp[i][j]\n tables[i][j] = hoge\n\nfor p, q in pq:\n ans = 0\n if p > 0:\n for i in range(p, q + 1):\n ans += tables[i][q] - tables[i][p - 1]\n else:\n for i in range(q + 1):\n ans += tables[i][q]\n print(ans)', 'n, m, q = map(int, input().split())\n\ntemp = [ [0 for _ in range(n)] for _ in range(n)]\ntables = [ [0 for _ in range(n)] for _ in range(n)]\n\nfor _ in range(m):\n l, r = map(int, input().split())\n temp[l - 1][r - 1] += 1\n\npq = [tuple(int(x) - 1 for x in input().split()) for _ in range(q)]\n\nfor i in range(m):\n hoge = 0\n for j in range(m):\n hoge += temp[i][j]\n tables[i][j] = hoge\n\nfor p, q in pq:\n ans = 0\n if p > 0:\n for i in range(p, q + 1):\n ans += tables[i][q] - tables[i][p - 1]\n else:\n for i in range(q + 1):\n ans += tables[i][q]\n print(ans)', "n, m, q = map(int, input().split())\n\ntemp = [ [0 for _ in range(n)] for _ in range(n)]\ntables = [ [0 for _ in range(n)] for _ in range(n)]\n\nif n == 1:\n print('1')\n exit()\n\nfor _ in range(m):\n l, r = map(int, input().split())\n temp[l - 1][r - 1] += 1\n\npq = [tuple(int(x) - 1 for x in input().split()) for _ in range(q)]\n\nhoge = 0\nfor j in range(n):\n hoge += temp[0][j]\n tables[0][j] = hoge\n\nfor i in range(1, n):\n hoge = 0\n for j in range(n):\n hoge += temp[i][j]\n tables[i][j] = tables[i - 1][j] + hoge\n\nfor p, q in pq:\n if p == 0:\n print(tables[q][q])\n else:\n print(tables[q][q] - tables[p - 1][q] - tables[q][p - 1] + tables[p - 1][p - 1] )"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s653157596', 's912226112', 's707953825']
[17636.0, 17636.0, 26124.0]
[1000.0, 957.0, 1233.0]
[619, 619, 699]
p03283
u844789719
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = [int(_) for _ in input().split()]\nLR = [[int(_) for _ in input().split()] for _ in range(M)]\nPQ = [[int(_) for _ in input().split()] for _ in range(Q)]\n\ncumsum = [[0] * (N+2) for _ in range(N+1)]\nfor lr in LR:\n cumsum[lr[0]][lr[0]] += 1\n if lr[1] < N:\n cumsum[lr[0]][lr[1]+1] -= 1\nfor i in range(N+1):\n for j in range(i, N):\n cumsum[i][j+1] += cumsum[i][j]\n[print(_) for _ in cumsum]\nfor pq in PQ:\n print(sum([cumsum[i][i]-cumsum[i][pq[1]+1]\n for i in range(pq[0], pq[1]+1)]))', 'N, M, Q = [int(_) for _ in input().split()]\nLR = [[int(_) for _ in input().split()] for _ in range(M)]\npq = [[int(_) for _ in input().split()] for _ in range(Q)]\n\nmemo = [[0 for _ in range(N)] for _ in range(N)]\nfor l, r in LR:\n memo[l - 1][r - 1] += 1\n[print(_) for _ in memo]\nfor p, q in pq:\n print(sum([sum(memo[_][p - 1:q]) for _ in range(p - 1, q)]))', 'N, M, Q = [int(_) for _ in input().split()]\nQuery = []\nfor _ in range(M):\n Query += [[int(_) for _ in input().split()] + [0, _]]\nfor _ in range(Q):\n p, q = [int(_) for _ in input().split()]\n Query += [[p, q + 1, 1, _]]\nQuery.sort(key=lambda xs: 2 * xs[1] - xs[2])\nans = [0] * Q\n\n\nclass SegmentTree():\n def __init__(self, array, m, e, size):\n """\n Parameters\n ----------\n array : list\n to construct segment tree from\n m : func\n binary operation of the monoid\n e : \n identity element of the monoid\n size : int\n limit for array size\n """\n self.m = m\n self.e = e\n self.size = size\n self.n = n = len(array)\n self.dat = dat = [e] * n + array + [e] * (2 * size - 2 * n)\n self.build()\n\n def build(self):\n dat, n, m = self.dat, self.n, self.m\n for i in range(n - 1, 0, -1):\n dat[i] = m(dat[i << 1], dat[i << 1 | 1])\n\n def modify(self, p, v):\n """\n set value at position p (0-indexed)\n """\n m, n, dat = self.m, self.n, self.dat\n p += n\n dat[p] = v\n while p > 1:\n dat[p >> 1] = m(dat[p], dat[p ^ 1])\n p >>= 1\n\n def query(self, l, r):\n """\n result on interval [l, r) (0-indexed)\n """\n m, e, n, dat = self.m, self.e, self.n, self.dat\n res = e\n l += n\n r += n\n while l < r:\n if l & 1:\n res = m(res, dat[l])\n l += 1\n if r & 1:\n r -= 1\n res = m(res, dat[r])\n l >>= 1\n r >>= 1\n return res\n\n\ne = 0\nsize = N + 2\nST = SegmentTree([0] * (N + 2), m=lambda x, y: x + y, e=e, size=size)\nfor l, r, t, i in Query:\n if t:\n ans[i] = ST.query(l, r)\n else:\n ST.modify(l, ST.query(l, l + 1) + 1)\nprint(*ans, sep=\'\\n\')\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s262555522', 's366246406', 's246424055']
[54944.0, 51132.0, 71404.0]
[3159.0, 3159.0, 2674.0]
[526, 361, 1933]
p03283
u846150137
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\nn,m,q=map(int,input().split())\na=np.zeros((n+2,n+2))\nfor i in range(m):\n s,e=map(int,input().split())\n a[:s,e:]+=1\nprint(a)\nfor i in range(q):\n s,e=map(int,input().split())\n print(a[s,e])', 'from numpy import *\nI=lambda:map(int,input().split())\nF=lambda x:flipud(a.cumsum(x))\nn,m,q=I()\na=zeros((n+2,n+2))\nfor i in [0]*m:\n s,e=I()\n a[s,e]+=1\na=F(1)\na=F(0)\nfor i in [0]*q:\n s,e=I()\n print(int(a[s,e]))']
['Wrong Answer', 'Accepted']
['s838195851', 's265648968']
[16504.0, 17940.0]
[3160.0, 2302.0]
[210, 212]
p03283
u846694620
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n, m, q = map(int, input().split())\n\ng = [[0 for j in range(n)] for i in range(n)]\n\nfor _ in range(m):\n l, r = map(int, input().split())\n g[l - 1][r - 1] = 1\n\nfor _ in range(q):\n p, q = map(int, input().split())\n ans = 1\n for i in range(p, q + 1):\n for j in range(p, q + 1):\n ans += g[i - 1][j - 1]\n print(ans)\n', 'N, M, Q = map(int, input().split())\n\nx = [[0 for j in range(N + 1)] for i in range(N + 1)]\n\nfor _ in range(M):\n L, R = map(int, input().split())\n x[L][R] += 1\n\nfor i in range(1, N + 1):\n for j in range(1, N + 1):\n x[i][j] += x[i][j - 1]\n\nfor j in range(1, N + 1):\n for i in reversed(range(1, N + 1)):\n x[i - 1][j] += x[i][j]\n\nfor _ in range(Q):\n p, q = map(int, input().split())\n print(x[p][q])\n']
['Wrong Answer', 'Accepted']
['s539940093', 's290287096']
[7156.0, 9460.0]
[3156.0, 1518.0]
[347, 427]
p03283
u886747123
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['# D - AtCoder Express 2\n\nimport numpy as np\nimport sys\n\nN, M, Q = map(int, input().split())\nLRpq = np.array(sys.stdin.buffer.read().split(), np.int64)\nL = LRpq[:2*M:2]\nR = LRpq[1:2*M:2]\np = LRpq[2*M::2]\nq = LRpq[2*M+1::2]\n \ntrain = np.zeros((N+1, N+1))\nnp.add.at(train, (L,R), 1)\n\nnp.cumsum(train, axis = 0, out = train)\nnp.cumsum(train, axis = 1, out = train)\n \nans = train[q,q] - train[p-1,q] - train[q,p-1] + train[p-1,p-1]\nfor i in range(Q):\n print(int(ans[i]))', '# D - AtCoder Express 2\n\nimport numpy as np\nimport sys\n\nN, M, Q = map(int, input().split())\nL, R, = [], []\np, q = np.array([],np.int64), np.array([],np.int64)\nfor _ in range(M):\n l, r = map(int, sys.stdin.readline().split())\n L.append(l)\n R.append(r)', 'import numpy as np\n\nN, M, Q = map(int, input().split())\nL, R, = [], []\np, q = np.array([],np.int64), np.array([],np.int64)\nfor _ in range(M):\n l, r = map(int, input().split())\n L.append(l)\n R.append(r)', 'import numpy as np\n\nN, M, Q = map(int, input().split())\nL, R, = [], []\np, q = np.array([],np.int64), np.array([],np.int64)\nfor _ in range(M):\n l, r = map(int, input().split())\n L.append(l)\n R.append(r)\nfor _ in range(Q):\n tmp_p, tmp_q = map(int, input().split())\n p = np.append(p, [tmp_p])\n q = np.append(q, [tmp_q])', '# D - AtCoder Express 2\n\nimport numpy as np\nimport sys\n\nN, M, Q = map(int, input().split())\nLRpq = np.array(sys.stdin.read().split(), np.int64)\nL = LRpq[:2*M:2]\nR = LRpq[1:2*M:2]\np = LRpq[2*M::2]\nq = LRpq[2*M+1::2]', 'import numpy as np\nimport sys\nbuf = sys.stdin.buffer\n \nN, M, Q = map(int, buf.readline().split())\ncity = np.zeros((N + 1, N + 1), np.int32)\nLRpq = np.array(buf.read().split(), np.int32)\n \nL = LRpq[:2 * M:2]\nR = LRpq[1:2 * M:2]\np = LRpq[2 * M::2]\nq = LRpq[2 * M + 1::2]', '# D - AtCoder Express 2\n\nimport numpy as np\nimport sys\n\nN, M, Q = map(int, sys.stdin.buffer.readline().split())\nLRpq = np.array(sys.stdin.buffer.read().split(), np.int64)\nL = LRpq[:2*M:2]\nR = LRpq[1:2*M:2]\np = LRpq[2*M::2]\nq = LRpq[2*M+1::2]\n \ntrain = np.zeros((N+1, N+1))\nnp.add.at(train, (L,R), 1)\n\nnp.cumsum(train, axis = 0, out = train)\nnp.cumsum(train, axis = 1, out = train)\n \nans = train[q,q] - train[p-1,q] - train[q,p-1] + train[p-1,p-1]\nfor i in range(Q):\n print(int(ans[i]))']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s356314511', 's405870372', 's519093487', 's559109723', 's600744110', 's901269818', 's866293559']
[44968.0, 21648.0, 21648.0, 23452.0, 66884.0, 45728.0, 48248.0]
[416.0, 423.0, 701.0, 3161.0, 288.0, 254.0, 414.0]
[474, 259, 210, 334, 214, 268, 494]
p03283
u894258749
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import numpy as np\ndef inpl(): return list(map(int,input().split()))\n\nN, M , Q = inpl()\ntrains = np.zeros((N,N),dtype=np.int)\nans = np.zeros((N,N),dtype=np.int)\n\nfor i in range(M):\n L, R = inpl()\n trains[L-1,R-1] += 1\n\nfor l in range(N):\n for r in range(l,N):\n ans[l,r] = trains[l:r+1,l:r+1].sum()\n\nfor i in range(Q):\n p, q = inpl()\n print(ans[p-1,q-1])', 'import numpy as np\ndef inpl(): return list(map(int,input().split()))\n\nN, M , Q = inpl()\n\ncumsum = np.zeros((N+1,N+1),dtype=np.int)\nans = np.zeros((N+1,N+1),dtype=np.int)\n\nfor i in range(M):\n L, R = inpl()\n cumsum[L,R] += 1\n\nfor l in range(1,N+1):\n for r in range(1,N+1):\n cumsum[l,r] += cumsum[l-1,r] + cumsum[l,r-1] - cumsum[l-1,r-1]\n\nfor l in range(1,N+1):\n for r in range(l,N+1):\n ans[l,r] = cumsum[r,r] - cumsum[l-1,r] - cumsum[r,l-1] + cumsum[l-1,l-1]\n\nfor i in range(Q):\n p, q = inpl()\n print(ans[p,q])', 'def inpl(): return list(map(int,input().split()))\n\nN, M, Q = inpl()\ncumsum = [0]*((N+1)**2)\nans = [0]*((N+1)**2)\n\nfor i in range(M):\n L, R = inpl()\n cumsum[L*(N+1)+R] += 1\n\nfor l in range(1,N+1):\n for r in range(1,N+1):\n cumsum[l*(N+1)+r] += cumsum[(l-1)*(N+1)+r] + cumsum[l*(N+1)+r-1] - cumsum[(l-1)*(N+1)+r-1]\n\nfor l in range(1,N+1):\n for r in range(l,N+1):\n ans[l*(N+1)+r] = cumsum[r*(N+1)+r] - cumsum[(l-1)*(N+1)+r] - cumsum[r*(N+1)+l-1] + cumsum[(l-1)*(N+1)+l-1]\n\nfor i in range(Q):\n p, q = inpl()\n print(ans[p*(N+1)+q])']
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
['s355221981', 's807509626', 's300011330']
[14660.0, 16844.0, 19028.0]
[3161.0, 3161.0, 2067.0]
[375, 582, 557]
p03283
u911507660
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, raw_input().split())\nfor _ in range(M):\nLR = [map(int, raw_input().split()) for _ in range(M)]\npq = [map(int, raw_input().split()) for _ in range(Q)]\n\ntable = [[0 for _i in range(N+1)] for _j in range(N+1)]\nfor line in LR:\n table[LR[0]][LR[1]] += 1\nfor question in pq:\n p = question[0]\n q = question[1]\n ans = 0\n for j in range(p, q+1):\n ans += table[p][j]\n print(ans)', 'N, M, Q = map(int, input().split())\nLR = [list(map(int, input().split())) for _ in range(M)]\npq = [list(map(int, input().split())) for _ in range(Q)]\n\ntable = [[0 for _i in range(N+1)] for _j in range(N+1)]\naccum = [[0 for _i in range(N+1)] for _j in range(N+1)]\naccum2 = [[0 for _i in range(N+1)] for _j in range(N+1)]\n\nfor line in LR:\n table[line[0]][line[1]] += 1\n\nfor i in range(1, N+1):\n for j in range(1, N+1):\n accum[i][j] = accum[i][j-1] + table[i][j]\n\nfor i in range(1, N+1):\n for j in range(1, N+1):\n accum2[i][j] = accum2[i-1][j] + accum[i][j]\n\n\n# for j in range(i, N+1):\n# ans[i][j] = sum([accum[k][j] - accum[k][i-1] for k in range(i, j+1)])\n\nfor question in pq:\n p = question[0]\n q = question[1]\n print(accum2[q][q] - accum2[p-1][q] - accum2[q][p-1] + accum2[p-1][p-1])']
['Runtime Error', 'Accepted']
['s293958680', 's172093498']
[2940.0, 83336.0]
[17.0, 1348.0]
[412, 865]
p03283
u921773161
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['#%%\nimport numpy as np\n\nn, m, Q = map(int ,input().split())\nl, r, p, q = [0] * m, [0] * m, [0] * Q, [0] * Q\ncount = [[0] * n for _ in range(n)]\nfor i in range(m):\n l[i], r[i] = map(lambda x: int(x) - 1, input().split())\n count[l[i]][r[i]] += 1\nfor i in range(Q):\n p[i], q[i] = map(lambda x: int(x) - 1, input().split())\n\nprint(np.array(count))\n\nfor i in range(0, n):\n for j in range(1, n):\n count[i][j] += count[i][j-1]\n for j in range(1, n):\n if i != 0:\n count[i][j] += count[i-1][j]\n\nprint(np.array(count))\n\nfor i in range(Q):\n if 0 <= p[i]-1:\n tmp = count[q[i]][q[i]] - count[p[i]-1][q[i]]\n else:\n tmp = count[q[i]][q[i]]\n print(tmp)', '#%%\nimport numpy as np\n\nn, m, Q = map(int ,input().split())\nl, r, p, q = [0] * m, [0] * m, [0] * Q, [0] * Q\ncount = [[0] * n for _ in range(n)]\nfor i in range(m):\n l[i], r[i] = map(lambda x: int(x) - 1, input().split())\n count[l[i]][r[i]] += 1\nfor i in range(Q):\n p[i], q[i] = map(lambda x: int(x) - 1, input().split())\n\n#print(np.array(count))\n\nfor i in range(0, n):\n for j in range(1, n):\n count[i][j] += count[i][j-1]\n for j in range(0, n):\n if i != 0:\n count[i][j] += count[i-1][j]\n\n#print(np.array(count))\n\nfor i in range(Q):\n if 0 <= p[i]-1:\n tmp = count[n-1][q[i]] - count[p[i]-1][q[i]]\n else:\n tmp = count[n-1][q[i]]\n print(tmp)']
['Wrong Answer', 'Accepted']
['s364974767', 's759837703']
[38364.0, 36588.0]
[1527.0, 1472.0]
[699, 699]
p03283
u932868243
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n,m,q=map(int,input().split())\nans=[[0]*(n+1) for __ in range(n+1)]\nfor _ in range(m):\n l,r=map(int,input().split())\n ans[l][r]+=1\nfor i in range(n+1):\n for j in range(n):\n ans[i][j+1]+=ans[i][j]\nfor i in range(n):\n for j in range(n+1):\n ans[i+1][j]+=ans[i][j]\nfor qq in range(q):\n p,q=map(int,input().split())\n print(ans[q][q]-ans[p-1][q]-ans[p][q-1]+ans[p-1][p-1])', 'n,m,q=map(int,input().split())\nd=[[0]*(n+1) for _ in range(n+1)]\n\nfor mm in range(m):\n l,r=map(int,input().split())\n d[l][r]+=1\n\nfor i in range(n):\n for j in range(n+1):\n d[i+1][j]+=d[i][j]\n\nfor j in range(n+1):\n for i in range(n):\n d[j][i+1]=d[j][i]\n \nfor qq in range(q):\n x,y=map(int,input().split())\n print(d[y][y]-d[y][x-1]-d[x-1][y]+d[x-1][x-1])', 'n,m,q=map(int,input().split())\nans=[[0]*(n+1) for __ in range(n+1)]\nfor _ in range(m):\n l,r=map(int,input().split())\n ans[l][r]+=1\nfor i in range(n+1):\n for j in range(n):\n ans[i][j+1]+=ans[i][j]\nfor i in range(n):\n for j in range(n+1):\n ans[i+1][j]+=ans[i][j]\nfor qq in q:\n p,q=map(int,input().split())\n print(ans[q][q]-ans[p-1][q]-ans[p][q-1]+ans[p][p])', 'n,m,q=map(int,input().split())\nd=[[0]*(n+1) for _ in range(n+1)]\n \nfor mm in range(m):\n l,r=map(int,input().split())\n d[l][r]+=1\n\nfor i in range(n):\n for j in range(n+1):\n d[i+1][j]+=d[i][j]\n \nfor j in range(n+1):\n for i in range(n):\n d[j][i+1]+=d[j][i]\n\nfor qq in range(q):\n x,y=map(int,input().split())\n print(d[y][y]-d[y][x-1]-d[x-1][y]+d[x-1][x-1])']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s482614877', 's888846917', 's975150065', 's122442502']
[13392.0, 8684.0, 12632.0, 14828.0]
[1560.0, 1538.0, 729.0, 1604.0]
[378, 365, 367, 364]
p03283
u955251526
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n, m, q = map(int, input().split())\ntrain = [tuple(map(int, input().split())) for _ in range(m)]\nquest = [tuple(map(int, input().split())) for _ in range(q)]\ndp = [[0 for _ in range(n)] for _ in range(n)]\nd = {}\nfor l in range(n):\n for r in range(l,n):\n d[(l,r)] = 0\nfor p, q in train:\n d[(p,q)] += 1\nfor l in range(n):\n dp[l][l] = d[(l+1,l+1)]\nfor w in range(1,n):\n for l in range(n-w):\n dp[l][l+w] = dp[l][l+w-1] + d[(l,l+w)]\nfor l, r in quest:\n print(dp[l-1][r-1])\n', 'n, m, q = map(int, input().split())\ntrain = [tuple(map(int, input().split())) for _ in range(m)]\nquest = [tuple(map(int, input().split())) for _ in range(q)]\ndp = [[0 for _ in range(n)] for _ in range(n)]\nd = {}\nfor l in range(n):\n for r in range(l,n):\n d[(l,r)] = 0\nfor p, q in train:\n else:\n d[(p,q)] += 1\nfor l in range(n):\n dp[l][l] = d[(l+1,l+1)]\nfor w in range(1,n):\n for l in range(n-w):\n dp[l][l+w] = dp[l][l+w-1] + d[(l,l+w)]\nfor l, r in quest:\n print(dp[l-1][r-1])\n', 'n, m, q = map(int, input().split())\ntrain = [tuple(map(int, input().split())) for _ in range(m)]\nquest = [tuple(map(int, input().split())) for _ in range(q)]\ndp = [[0 for _ in range(n+1)] for _ in range(n+1)]\nd = {}\nfor l in range(n):\n for r in range(l,n):\n d[(l+1,r+1)] = 0\nfor p, q in train:\n d[(p,q)] += 1\nfor l in range(1,n+1):\n dp[l][l] = d[(l,l)]\nfor w in range(1,n):\n for l in range(n-w):\n dp[l+1][l+w+1] = dp[l+1][l+w] + dp[l+2][l+w+1] - dp[l+2][l+w] + d[(l+1,l+w+1)]\nfor l, r in quest:\n print(dp[l][r])\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s058119094', 's976281769', 's443214454']
[53044.0, 3060.0, 58484.0]
[926.0, 17.0, 1273.0]
[501, 511, 541]
p03283
u957084285
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n, m, q = map(int, input().split())\ncity = [[0]*(n+2) for _ in range(n+2)]\nsame = [0]*(n+1)\nfor _ in range(m):\n l, r = map(int, input().split())\n city[r][1] += 1\n city[r][l+1] -= 1\n\n city[1][r] += 1\n city[l+1][r] -= 1\n if l==r:\n same[l] += 1\n\n"""\nprint()\nfor c in city[1:n+1]:\n print(c[1:n+1])\n"""\n\nfor j in range(n+2):\n for i in range(1, n+2):\n city[j][i] += city[j][i-1]\n\nfor i in range(n+2):\n for j in range(1, n+2):\n city[j][i] += city[j-1][i]\n\n\nprint()\nfor c in city[1:n+1]:\n print(c[1:n+1])\n\n\nfor _ in range(q):\n x, y = map(int, input().split())\n if x==y:\n print(same[x])\n else:\n print(city[x][y])\n', 'n, m, q = map(int, input().split())\ncity = [[0]*(n+2) for _ in range(n+2)]\nsame = [0]*(n+1)\nfor _ in range(m):\n l, r = map(int, input().split())\n city[r][1] += 1\n city[r][l+1] -= 1\n\n city[1][r] += 1\n city[l+1][r] -= 1\n if l==r:\n same[l] += 1\n\n"""\nprint()\nfor c in city[1:n+1]:\n print(c[1:n+1])\n"""\n\nfor j in range(n+2):\n for i in range(1, n+2):\n city[j][i] += city[j][i-1]\n\nfor i in range(n+2):\n for j in range(1, n+2):\n city[j][i] += city[j-1][i]\n\n"""\nprint()\nfor c in city[1:n+1]:\n print(c[1:n+1])\n"""\n\nfor _ in range(q):\n x, y = map(int, input().split())\n if x==y:\n print(same[x])\n else:\n print(city[x][y])\n']
['Wrong Answer', 'Accepted']
['s900767716', 's112985275']
[14704.0, 13168.0]
[1666.0, 1978.0]
[678, 684]
p03283
u969190727
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['n,m,q=map(int,input().split())\nL=[[0 for i in range(n)] for i in range(n)]\nLL=[[0 for i in range(n)] for i in range(n)] \nfor i in range(m):\n l,r=map(int,input().split())\n L[l-1][r-1]+=1\nfor i in range(n):\n LL[i][0]=L[i][0]\n for j in range(1,n):\n LL[i][j]=LL[i][j-1]+L[i][j]\nfor i in range(q):\n p,q=map(int,input().split())\n ans=0\n for j in range(p-1,q):\n ans+=LL[j][q-1]-LL[j][p-1]\n print(ans)', 'import sys\ninput=lambda: sys.stdin.readline().rstrip()\nn,m,q=map(int,input().split())\nT=[[0]*(n+2) for _ in range(n+2)]\nfor _ in range(m):\n l,r=map(int,input().split())\n T[l][r]+=1\nfor i in range(1,n+1)[::-1]:\n for j in range(1,n+1):\n T[i][j+1]+=T[i][j]\nfor j in range(1,n+1):\n for i in range(1,n+1)[::-1]: \n T[i-1][j]+=T[i][j]\n\nfor _ in range(q):\n p,q=map(int,input().split())\n print(T[p][q])']
['Wrong Answer', 'Accepted']
['s123960947', 's518078862']
[9332.0, 9740.0]
[3160.0, 712.0]
[407, 405]
p03283
u970899068
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['import itertools\nimport numpy as np\nn,m,q=map(int, input().split()) \na=[list(map(int, input().split())) for i in range(m)]\nb=[list(map(int, input().split())) for i in range(q)]\n\nx=[[0]*(501) for i in range(501)]\nx=np.array\nfor i in range(m):\n x[a[i][0],a[i][1]]+=1\n\n\n\nfor i in range(501):\n x[i] = list(itertools.accumulate(x[i]))\n \nfor i in range(501):\n x[:,i] = list(itertools.accumulate(x[:,i]))\n\n\n\nfor i in range(q):\n print(x[b[i][1],b[i][1]]-x[b[i][1],b[i][0]-1]-x[b[i][0-1,b[i][1]]+x[b[i][0-1,b[i][0-1])\n\n\n\n \n\n\n\n\n\n', 'import sys\ninput = sys.stdin.readline\n\nn,m,q= map(int, input().split())\na= [list(map(int, input().split())) for i in range(m)]\nb= [list(map(int, input().split())) for i in range(q)]\n\n\n\nc=[[0]*(n+1) for i in range(n+1)]\nfor i,j in a:\n c[i][j]+=1\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n c[i][j] += c[i - 1][j]+c[i][j - 1]-c[i-1][j-1]\n\nfor i,j in b:\n ans=c[j][j]-c[i-1][j]-c[j][i-1]+c[i-1][i-1]\n print(ans)']
['Runtime Error', 'Accepted']
['s374633228', 's658521361']
[3064.0, 77056.0]
[17.0, 820.0]
[533, 451]
p03283
u979823197
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N,M,Q=map(int,input().split())\nL,R=[],[]\nfor i in range(M):\n l,r=map(int,input().split())\n L.append(l)\n R.append(r)\nPl,Ql=[],[]\nfor i in range(Q):\n pq=list(map(int,input().split()))\n Pl.append(pq[0])\n Ql.append(pq[1])\nc=[[0 for i in range(N+1)] for i in range(N+1)]\nfor i in range(M):\n c[L[i]][R[i]]+=1\nfor i in range(1,N+1):\n for j in range(1,N+1):\n c[i][j]+=c[i][j-1]\nfor i in range(1,N+1):\n for j in range(1,N+1):\n c[i][j]+=c[i-1][j]\nfor i in range(Q):\n ans=c[R[i]][R[i]]-c[L[i]-1][R[i]]-c[R[i]][L[i]-1]+c[L[i]-1][L[i]-1]\n print(ans)', 'N,M,Q=map(int,input().split())\nL,R=[],[]\nfor i in range(M):\n l,r=map(int,input().split())\n L.append(l)\n R.append(r)\nPl,Ql=[],[]\nfor i in range(Q):\n pq=list(map(int,input().split()))\n Pl.append(pq[0])\n Ql.append(pq[1])\nc=[[0 for i in range(N+1)] for i in range(N+1)]\nfor i in range(M):\n c[L[i]][R[i]]+=1\nfor i in range(1,N+1):\n for j in range(1,N+1):\n c[i][j]+=c[i][j-1]\nfor i in range(1,N+1):\n for j in range(1,N+1):\n c[i][j]+=c[i-1][j]\nfor i in range(Q):\n ans=c[Ql[i]][Ql[i]]-c[Pl[i]-1][Ql[i]]-c[Ql[i]][Pl[i]-1]+c[Pl[i]-1][Pl[i]-1]\n print(ans)']
['Wrong Answer', 'Accepted']
['s512537092', 's005389611']
[27744.0, 27768.0]
[1245.0, 1274.0]
[553, 561]
p03283
u995062424
3,000
1,024,000
In Takahashi Kingdom, there is a east-west railroad and N cities along it, numbered 1, 2, 3, ..., N from west to east. A company called _AtCoder Express_ possesses M trains, and the train i runs from City L_i to City R_i (it is possible that L_i = R_i). Takahashi the king is interested in the following Q matters: * The number of the trains that runs **strictly within** the section from City p_i to City q_i, that is, the number of trains j such that p_i \leq L_j and R_j \leq q_i. Although he is genius, this is too much data to process by himself. Find the answer for each of these Q queries to help him.
['N, M, Q = map(int, input().split())\ntrain = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\nfor i in range(M):\n l, r = map(int, input().split())\n train[l][r] +=1\n \nfor i in range(N+1):\n for j in range(N):\n train[i][j+1] += train[i][j]\n \nfor i in range(N):\n for j in range(N+1):\n train[i+1][j] += train[i][j]\n \nfor i in range(Q):\n p, q = map(int, input().split())\n print(train[q][q]+train[p-1][p-1]-train[p-1][q]-train[q-1][p])', 'N, M, Q = map(int, input().split())\ntrain = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\nfor i in range(M):\n l, r = map(int, input().split())\n train[l][r] +=1\n \nfor i in range(N+1):\n for j in range(N):\n train[i][j+1] += train[i][j]\n \nfor i in range(N):\n for j in range(N+1):\n train[i+1][j] += train[i][j]\n \nfor i in range(Q):\n p, q = map(int, input().split())\n print(train[q][q]+train[p-1][p-1]-train[p-1][q]-train[q][p-1])']
['Wrong Answer', 'Accepted']
['s858980540', 's992424336']
[13396.0, 13396.0]
[1615.0, 1612.0]
[474, 474]
p03284
u009219947
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
["import sys\n\nN = int(input())\n\nfor i in range(26):\n for j in range(16):\n if N == i * 4 + j * 7:\n print('Yes')\n sys.exit()\nprint('No')", "N, K = list(map(int, input().split(' ')))\nprint(0 if N % K == 0 else 1)"]
['Runtime Error', 'Accepted']
['s828461677', 's325942210']
[2940.0, 2940.0]
[20.0, 17.0]
[146, 71]
p03284
u015993380
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['n,k = map(int,input().split())\nprint(n%k != 0)', 'n,k = map(int,input().split())\nprint(0 if n%k == 0 else 1)']
['Wrong Answer', 'Accepted']
['s218121799', 's186074882']
[2940.0, 2940.0]
[17.0, 17.0]
[46, 58]
p03284
u016901717
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['n = int(input())\nprint(n if n%2==0 else n*2)', 'n,k = map(int,input().split())\nprint(0 if n%k==0 else 1)']
['Runtime Error', 'Accepted']
['s001668996', 's196961680']
[2940.0, 2940.0]
[17.0, 17.0]
[44, 56]
p03284
u021548497
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['n, k = map(int, input().split())\nprint(1 if n % k == 0 else 0)', 'n, k = map(int, input().split())\nprint(0 if n % k == 0 else 1)']
['Wrong Answer', 'Accepted']
['s819024670', 's012402969']
[3064.0, 2940.0]
[17.0, 17.0]
[62, 62]
p03284
u029234056
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['N,K=map(int,input().split())\nif(N%K==0):\n print(0)\n else:\n print(1)', 'N,K=map(int,input().split())\nif N%K==0:\n print(0)\nelse:\n print(1)']
['Runtime Error', 'Accepted']
['s041643350', 's518458591']
[2940.0, 2940.0]
[17.0, 17.0]
[69, 71]
p03284
u031157253
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['a,b=map(int,input().split())\nprint((int)a%b==0)', 'a,b=map(int,input().split())\nprint(int(a%b!=0))']
['Runtime Error', 'Accepted']
['s737717894', 's027536491']
[2940.0, 2940.0]
[17.0, 17.0]
[47, 47]
p03284
u031358594
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['N,K=(int(i) for i in input().split())\n\nres=list()\n\nfor i in range(0,K):\n res.append(0)\n\nprint(res)\nj=0\ni=0\n\nwhile N>0:\n j=0\n while j<len(res):\n if N<=0:\n break\n res[j]=res[j]+1\n N=N-1\n j+=1\n #print(str(N)+"::"+str(res))\n\n\nMinCount=min(res)\n\nMaxCount=max(res)\n\nprint(MaxCount-MinCount)\n', 'N,K=(int(i) for i in input().split())\n\nres=list()\n\nfor i in range(0,K):\n res.append(0)\n\nj=0\ni=0\n\nwhile N>0:\n j=0\n while j<len(res):\n if N<=0:\n break\n res[j]=res[j]+1\n N=N-1\n j+=1\n #print(str(N)+"::"+str(res))\n\n\nMinCount=min(res)\n\nMaxCount=max(res)\n\nprint(MaxCount-MinCount)\n\n \n']
['Wrong Answer', 'Accepted']
['s911462459', 's104593395']
[3060.0, 3064.0]
[17.0, 17.0]
[340, 339]
p03284
u034369223
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
["string = input()\nN, K = string.split(' ')\nif N % K == 0:\n print(0)\nelse:\n print(1)\n", "import sys\nN = int(input())\nfor i in range(int(N/4)):\n amount = (i + 1) * 4\n for j in range(int(N/7)):\n amount += 7\n if(amount == N):\n print('Yes')\n sys.exit()\nprint('No')\n", "string = input()\narray = string.split(' ')\nN = int(array[0])\nK = int(array[1])\nif N % K == 0:\n print(0)\nelse:\n print(1)\n"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s263256684', 's965345371', 's001258786']
[2940.0, 2940.0, 2940.0]
[17.0, 17.0, 17.0]
[89, 214, 126]
p03284
u036340997
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['n, k = map(int, input())\nif n % k == 0:\n print(0)\nelse:\n print(1)', 'n, k = map(int, input().split())\nif n % k == 0:\n print(0)\nelse:\n print(1)\n']
['Runtime Error', 'Accepted']
['s167292203', 's345875298']
[2940.0, 2940.0]
[17.0, 17.0]
[67, 76]
p03284
u041111386
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['N, K = map(int, input().split())\nif N % K == :\n print(0)\nelse:\n print(1)', 'N, K = map(int, input().split())\nif N % K == 0:\n print(0)\nelse:\n print(1)']
['Runtime Error', 'Accepted']
['s275766333', 's874152607']
[8944.0, 9004.0]
[22.0, 30.0]
[74, 75]
p03284
u043236471
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
['b, k = [int(i) for i in input().split()]\nprint(b%k != 0)', 'b, k = [int(i) for i in input().split()]\nprint(1) if b%k else print(0)']
['Wrong Answer', 'Accepted']
['s069708010', 's344999875']
[2940.0, 3064.0]
[17.0, 17.0]
[56, 70]
p03284
u050121913
2,000
1,048,576
Takahashi has decided to distribute N AtCoder Crackers to K users of as evenly as possible. When all the crackers are distributed, find the minimum possible (absolute) difference between the largest number of crackers received by a user and the smallest number received by a user.
["n,k = int(input().split(' '))\ns = 1\nif n%k==0:\n\ts-=1\nprint(s)", "n = list(map(int,input().split(' ')))\ns = 1\nif n[0]%n[1]==0:\n\ts-=1\nprint(s)"]
['Runtime Error', 'Accepted']
['s067367024', 's521909714']
[2940.0, 2940.0]
[17.0, 17.0]
[61, 75]