problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p03775
u736729525
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['from math import sqrt, ceil\n\ndef check(n):\n minf = len(str(n))\n square = ceil(sqrt(n)) # 10^5\n print(square)\n for a in range(1, square+1):\n b, r = divmod(n, a)\n if r == 0:\n f = max(len(str(a)), len(str(b)))\n minf = min(f, minf)\n return minf\n\n#print(check(10**10))\nN = int(input())\nprint(check(N))\n', 'from math import sqrt, ceil\n\ndef check(n):\n minf = len(str(n))\n square = ceil(sqrt(n)) # 10^5\n for a in range(1, square+1):\n b, r = divmod(n, a)\n if r == 0:\n f = max(len(str(a)), len(str(b)))\n minf = min(f, minf)\n return minf\n\n#print(check(10**10))\nN = int(input())\nprint(check(N))\n']
['Wrong Answer', 'Accepted']
['s766527621', 's072728436']
[3060.0, 3060.0]
[36.0, 35.0]
[348, 330]
p03775
u747515887
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
["def main():\n n = int(input())\n\n m = int(n ** 0.5)\n if n < 4:\n m += 1\n\n for i in reversed(range(1, m + 1)):\n if n % i == 0:\n b = n // i\n db = len(str(b))\n di = len(str(i))\n print(abs(db - di))\n break\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n n = int(input())\n\n m = int(n ** 0.5)\n if n < 4:\n m += 1\n\n min_f = len(str(n))\n\n for i in reversed(range(1, m + 1)):\n if n % i == 0:\n b = n // i\n db = len(str(b))\n di = len(str(i))\n f = max(db, di)\n if f < min_f:\n min_f = f\n\n print(min_f)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s596615825', 's990338567']
[3060.0, 3060.0]
[27.0, 27.0]
[320, 393]
p03775
u754022296
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n = int(input())\nif n < 10:\n print(1)\nelse:\n sqn = int(n**0.5)\n c = float("inf")\n for i in range(1, sqn):\n if n%i == 0:\n d = max(i//10, (n//i)//10)\n c = min(c, d)\n print(c)', 'n = int(input())\nif n < 10:\n print(1)\nelse:\n sqn = int(n**0.5)\n c = float("inf")\n for i in range(1, sqn+1):\n if n%i == 0:\n d = max(len(str(i)), len(str(n//i)))\n c = min(c, d)\n print(c)']
['Wrong Answer', 'Accepted']
['s365895269', 's770332783']
[3064.0, 3060.0]
[30.0, 31.0]
[190, 202]
p03775
u759412327
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['N = int(input())\nx = int(n**.5)\nwhile N%x:\n x-=1\n\nprint(len(str(N//x)))', 'N = int(input())\nK = int(n**(1/2))\na = len(str(N))\n\nfor i in range(1,k+1):\n if N%i==0:\n a=len(str(n//i))\n\nprint(a)', 'N = int(input())\nx = int(n**.5)\nwhile n%x:\n x-=1\n\nprint(len(str(n//x)))', 'N = int(input())\nn = int(N**0.5)\n\nwhile N%n:\n n-=1\n\nprint(len(str(N//n)))']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s104262098', 's208838530', 's386335562', 's956922634']
[2940.0, 3060.0, 2940.0, 9388.0]
[17.0, 19.0, 17.0, 39.0]
[72, 118, 72, 74]
p03775
u779455925
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['N=int(input())\nM=int((N**(1/2)))\n\nprint(min([max([len(str(i)),len(str(int(N/i)))]) for i in range(int(N/2)-M,int(N/2)+M) if N%i==0]))', 'N=int(input())\nM=int((N**(1/2)))\nprint(min([max([len(str(i)),len(str(int(N/i)))]) for i in range(1,M+1) if N%i==0]))\n']
['Runtime Error', 'Accepted']
['s276150167', 's095503538']
[3060.0, 2940.0]
[44.0, 28.0]
[133, 117]
p03775
u782654209
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nN=int(input())\nans=10**5\nfor i in range(1, int(math.sqrt(N))+1):\n if int(N/i) != N/i:\n continue\n else:\n j = int(N/i)\n ans = min(ans, len(str(i)), len(str(j)))\nprint(ans)', 'import math\nN=int(input())\nans=10**5\nfor i in range(1, int(math.sqrt(N))+1):\n if int(N/i) != N/i:\n continue\n else:\n j = int(N/i)\n ans = min(ans, max(len(str(i)), len(str(j))))\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s579167740', 's356787844']
[3060.0, 3060.0]
[55.0, 59.0]
[208, 214]
p03775
u785578220
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['b = input()\na =int(b)\nm = len(b)\nfor i in reversed(range(1,int(math.sqrt(a))+1)):\n if a/i == int(a/i):\n m = max(len(str(a//i)),len(str(i)))\n break\nprint(m)', 'n = int(input())\n\ndef cal(a):\n return len(str(a))\nm = 11\nfor j in range(1,10**5+1):\n if n%j==0:\n m = min(m,max(cal(j),cal(n//j)))\n # print(m)\nprint(m)']
['Runtime Error', 'Accepted']
['s739497645', 's994550419']
[3060.0, 9080.0]
[18.0, 42.0]
[172, 158]
p03775
u787449825
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['def f(x):\n count_x = 1\n while x/10>=1:\n x = x//10\n count_x += 1\n return count_x\n\npf = {}\nm = int(input())\nroot_m = int(m**0.5)\nfor i in range(2,root_m+1):\n while m%i == 0:\n pf[i] = pf.get(i,0) + 1\n m//=i\nif m>1:pf[m]=1\n\nif m == 1:\n print(f(1))\nelif root_m<max(pf.keys()):\n print(f(max(pf.keys())))\nelse:\n print(f(root_m))', 'def f(x,y):\n count_x, count_y = 1, 1\n while x/10>=1:\n x = x//10\n count_x += 1\n while y/10>=1:\n y = y//10\n count_y += 1\n return max(count_x, count_y)\n\npf = []\nm = int(input())\n\nfor i in range(1,int(m**0.5)+1):\n if m%i == 0:\n pf.append(i)\n\nprint(f(pf[-1], m/pf[-1]))']
['Wrong Answer', 'Accepted']
['s757431631', 's452019016']
[3064.0, 3060.0]
[31.0, 30.0]
[368, 314]
p03775
u796708718
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['N = int(input())\n\nmin = 10\n\nfor n in range(1,int(N**(1/2))+1):\n if min > max(len("{}".format(n)),len("{}".format(N/n))) and N%n == 0:\n \tmin = max(len("{}".format(n)),len("{}".format(int(N/n))))\n \nprint(min)\n ', 'N = int(input())\n\nF = 1\nF_min = 10**10\n\nfor A in range(1,int((N+1)**(1/2))+1):\n if N%A == 0:\n F = max(len(str(A)),len(str(int(N/A))))\n if F_min > F:\n F_min = F\n \nprint(F_min)\n']
['Wrong Answer', 'Accepted']
['s882959552', 's671768843']
[3060.0, 3060.0]
[217.0, 30.0]
[214, 198]
p03775
u798093965
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n = int(input())\n\ndef primefact(n):\n x = 0\n table = []\n for i in range(2, int(n ** 0.5) + 1):\n while n % i == 0:\n n //= i\n x += 1\n \n if x != 0:\n table.append([i, x])\n x = 0\n\n if n != 1:\n table.append([n, 1])\n \n return table\n"""\n if len(table) == 0:\n table.append([n, 1])\n"""\n \nbunkai = primefact(n)\n\na = 1\nb = 1\nbunkai = list(reversed(bunkai))\n\nfor i in range(len(bunkai)):\n while bunkai[i][1] != 0:\n if a < b:\n a *= bunkai[i][0]\n else:\n b *= bunkai[i][0]\n bunkai[i][1] -= 1\n \na = int(a)\nb = int(b)\nc = max(a, b)\nprint(len(str(c))-1)\n \n \n \n', 'n = int(input())\na = 1\nb = n\nfor i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n a = i\n b = n // i\n \n\nc = max(a, b)\nprint(len(str(c))) \n']
['Wrong Answer', 'Accepted']
['s322899159', 's412021170']
[3064.0, 3060.0]
[30.0, 29.0]
[721, 164]
p03775
u806855121
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['N = int(input())\nans = N\nfor i in range(1, N):\n if N*i > N:\n break\n d = 0\n if N % i == 0:\n d = max(len(str(i)), len(str(N//i)))\n ans = min(ans, d)\nprint(ans)', 'N = int(input())\nans = N\nfor i in range(1, N):\n if i**2 > N:\n break\n d = 0\n if N % i == 0:\n d = max(len(str(i)), len(str(N//i)))\n ans = min(ans, d)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s617412539', 's797116030']
[3060.0, 3060.0]
[18.0, 63.0]
[187, 188]
p03775
u807021746
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\n\nN = int(input())\nI = int(math.sqrt(N) // 1)\nprint(I)\n\na = []\nfor i in range(1, I):\n if N%i==0:\n j=N//i\n k = len(list(str(i)))\n l = len(list(str(j)))\n m = max(k, l)\n a.append(m)\nprint(min(a))', 'import math\n\nN = int(input())\nI = int(math.sqrt(N) // 1)\nprint(I)\n\na = []\nfor i in range(1, I):\n if N%i==0:\n j=N//i\n k = len(str(i))\n l = len(str(j))\n m = max(k, l)\n a.append(int(m))\nprint(min(a))', 'N = int(input())\nI = int(N**(0.5)//1)\na = []\nfor i in range(1, I+1):\n if N%i==0:\n j=N//i\n i = len(list(str(i)))\n j = len(list(str(j)))\n k = max(i, j)\n a.append(k)\nprint(min(a))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s421733979', 's954021266', 's537384652']
[9124.0, 9108.0, 9368.0]
[42.0, 42.0, 43.0]
[219, 212, 192]
p03775
u807028974
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\n\ndef F(A,B):\n if A > B:\n return len(str(A))\n else:\n return len(str(B))\n \n\nN = int(input())\nmin = F(1,N)\nrt = int(math.sqrt(N))\nfor i in range(2,rt+1):\n if N % i != 0:\n continue\n f = F(i,int(N/i))\n if f < min:\n min = f\n break\nprint(min)', 'import math\n\ndef F(A,B):\n if A > B:\n return len(str(A))\n else:\n return len(str(B))\n \n\nN = int(input())\nmin = F(1,N)\nrt = int(math.sqrt(N))\nfor i in range(2,rt):\n if N % i != 0:\n continue\n f = F(i,int(N/i))\n if f < min:\n min = f\n break\nprint(min)', 'import math\n\ndef F(A,B):\n if A > B:\n return len(str(A))\n else:\n return len(str(B))\n \n\nN = int(input())\nmin = F(1,N)\nrt = int(math.sqrt(N))\nfor i in range(2,rt+1):\n if N % i != 0:\n continue\n f = F(i,int(N/i))\n if f < min:\n min = f\nprint(min)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s121770414', 's915701445', 's694656993']
[3064.0, 3064.0, 3064.0]
[29.0, 30.0, 30.0]
[308, 306, 294]
p03775
u811000506
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\nN = int(input())\nlist = make_divisors(N)\nans = 10**9\nfor i in range(0,len(list),2):\n tmp1 = len(str(list[i]))\n tmp2 = len(str(list[i+1]))\n ans = min(ans,max(tmp1,tmp2))\nprint(ans)\n', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n \n return divisors\n\nN = int(input())\nlist = make_divisors(N)\nans = 10**9\nif len(list)%2==1:\n list.append(list[-1])\nfor i in range(0,len(list),2):\n tmp1 = len(str(list[i]))\n tmp2 = len(str(list[i+1]))\n ans = min(ans,max(tmp1,tmp2))\nprint(ans)']
['Runtime Error', 'Accepted']
['s828522803', 's450046088']
[3064.0, 3064.0]
[28.0, 27.0]
[425, 475]
p03775
u816645498
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['#include<bits/stdc++.h>\nusing namespace std;\nusing ll = long long;\n\nint main()\n{\n ll N;\n cin >> N;\n int res = 30;\n for(ll i = 1; i*i <= N; ++i) {\n if(N%i) continue;\n ll j = N/i;\n int cnt = 0;\n while(j > 0) ++cnt, j /= 10;\n res = min(res, cnt);\n }\n cout << res << endl;\n return 0;\n}', "import sys\ninput = sys.stdin.readline\n\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5) + 1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n return divisors\n\ndef main():\n N = int(input())\n a = make_divisors(N)\n a.sort()\n ans = 10\n for i in a:\n ans = min(ans, len(str(max(i, N/i))))\n \n print(ans)\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s074093360', 's787644694']
[2940.0, 3188.0]
[17.0, 27.0]
[337, 464]
p03775
u823585596
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nN=int(input())\nans=len(str(N))\nfor a in range(2,math.sqrt(N)+1):\n if N%a==0:\n b=N//a\n ans=min(ans,len(str(b)))\nprint(ans)', 'import math\nN=int(input())\nans=len(str(N))\nfor a in range(2,math.sqrt(N**0.5)+1):\n if N%a==0:\n b=N//a\n ans=min(ans,len(str(b)))\nprint(ans)', 'N=int(input())\nans=len(str(N))\nfor a in range(2,int(N**0.5)+1):\n if N%a==0:\n b=N//a\n ans=min(ans,len(str(b)))\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s473374398', 's747123595', 's767736690']
[9172.0, 9436.0, 9392.0]
[23.0, 25.0, 42.0]
[150, 155, 137]
p03775
u830054172
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n = int(input())\nhalf = min(n//10**(len(str(n))//2),n%10**(len(str(n))//2))\n\nans = []\nfor i in range(half, 0, -1):\n if n%i==0:\n ans.append(max(len(str(i)), len(str(n//i))))\nprint(half)', 'n = int(input())\nhalf = min(n//10**(len(str(n))//2),n%10**(len(str(n))//2))\n\nans = []\nfor i in range(half+10, 0, -1):\n if n%i==0:\n ans.append(max(len(str(i)), len(str(n//i))))\nprint(min(ans))', 'import fractions\nn = int(input())\nhalf = int(fractions.sqrt(n))\n\nans = []\nfor i in range(half, 0, -1):\n if n%i==0:\n ans.append(max(len(str(i)), len(str(n//i))))\nprint(min(ans))', 'n = int(input())\nhalf = min(n//10**(len(str(n))//2),n%10**(len(str(n))//2))\n\nans = []\nfor i in range(half, 0, -1):\n if n%i==0:\n ans.append(max(len(str(i)), len(str(n//i))))\nprint(min(ans))', 'n = int(input())\nhalf = min(n//10**(len(str(n))//2),n%10**(len(str(n))//2))\n\nans = []\nfor i in range(half, 0, -1):\n if n%i==0:\n ans.append(max(len(str(i)), len(str(n//i))))\nprint(min(ans))', 'import math\nn = int(input())\nhalf = int(math.sqrt(n))\n\nans = []\nfor i in range(half, 0, -1):\n if n%i==0:\n ans.append(max(len(str(i)), len(str(n//i))))\nprint(min(ans))']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s191486804', 's344633343', 's456013100', 's520611885', 's746922948', 's171593528']
[3060.0, 3064.0, 5048.0, 3060.0, 3060.0, 3060.0]
[30.0, 31.0, 36.0, 29.0, 30.0, 30.0]
[194, 201, 186, 198, 198, 176]
p03775
u841623074
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['N=int(input())\nn=len(str(N))\nm=(n//2)+1\ndef wari(x):\n array=[]\n if m==0:\n for j in range(9,0,-1):\n if N%j==0:\n c=max(len(str(N//j)),len(str(j)))\n array.append(c)\n break\n \n for i in range(m+1):\n if i==0:\n for j in range(9,0,-1):\n if N%j==0:\n c=max(len(str(N//j)),len(str(j)))\n array.append(c)\n break\n else:\n for j in range((10**(m+1))-1,(10**m)-1,-1):\n if N%j==0:\n c=max(len(str(N//j)),len(str(j)))\n array.append(c)\n break\n return min(array)\nprint(wari(N))\n ', 'N=int(input())\nn=len(str(N))\nm=(n//2)\ndef wari(x):\n array=[]\n if m==0:\n for j in range(9,0,-1):\n if N%j==0:\n c=max(len(str(N//j)),len(str(j)))\n array.append(c)\n break\n \n for i in range(m+1):\n if i==0:\n for j in range(9,0,-1):\n if N%j==0:\n c=max(len(str(N//j)),len(str(j)))\n array.append(c)\n break\n else:\n for j in range((10**(i+1))-1,(10**i)-1,-1):\n if N%j==0:\n c=max(len(str(N//j)),len(str(j)))\n array.append(c)\n break\n return min(array)\nprint(wari(N))']
['Wrong Answer', 'Accepted']
['s691085526', 's562336269']
[3064.0, 3064.0]
[2104.0, 122.0]
[726, 715]
p03775
u844005364
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['def divisible_length(n):\n min_length = len(str(n))\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n min_length = min(min_length, len(str(i)))\n if i != n // i:\n min_length = min(min_length, len(str(n // i)))\n return min_length\n\nn = int(input())\nprint(divisible_length(n))', 'def divisible_length(n):\n\tmin_length = len(str(n))\n \tfor i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n min_length = min(min_length, len(str(i)))\n if i != n // i:\n\t min_length = min(min_length, len(str(n // i)))\n return min_length\n\n\nn = int(input())\nprint(divisible_length(n))', 'def divisible_length(n):\n min_length = len(str(n))\n for i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n min_length = min(min_length, max(len(str(i)), len(str(n // i))))\n return min_length\n\nn = int(input())\nprint(divisible_length(n))']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s160818563', 's292532325', 's171208923']
[3060.0, 2940.0, 3188.0]
[27.0, 17.0, 29.0]
[330, 324, 262]
p03775
u845620905
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n = int(input())\na = 0\nt = 0\nfor i in range(1, n+1):\n a = n / i\n if(n % i == 0):\n t = i\n if(a <= i):\n break\n\nb = max(int(n / t), t)\nans = 0\nwhile(b > 1):\n ans += 1\n b /= 10\nprint(ans)\n\n', 'n = int(input())\na = 0\nt = 0\nfor i in range(1, n+1):\n a = n / i\n if(n % i == 0):\n t = i\n if(a <= i):\n break\n\nb = max(int(n / t), t)\nans = 0\nwhile(b >= 1):\n ans += 1\n b /= 10\nprint(ans)\n\n']
['Wrong Answer', 'Accepted']
['s628522897', 's142691562']
[3060.0, 3060.0]
[51.0, 52.0]
[214, 215]
p03775
u846150137
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nn=int(input())\nx=math.floor(n)\n\nwhile 1:\n if n % x ==0:\n break\n x-=1\n\nprint(max(len(str(int(n/x))),len(str(x))))', 'import math\nn=int(input())\nx=math.floor(n**0.5)\n\nwhile 1:\n if n % x ==0:\n break\n x-=1\n\nprint(max(len(str(int(n/x))),len(str(x))))']
['Wrong Answer', 'Accepted']
['s833931635', 's987177712']
[3060.0, 3060.0]
[17.0, 36.0]
[129, 134]
p03775
u855831834
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import itertools\n\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\n\nn = int(input())\n\nf = factorization(n)\n\nprint(f)\n\nif len(f) == 1:\n print(len(str(n)))\nelse:\n pf = []\n for r in f:\n pf += [r[0]]*r[1]\n ans = len(str(n))\n for i in range(1,len(pf)//2+2):\n for c in itertools.combinations(pf, i):\n tmp = 1\n for t in c:\n tmp *= t\n ans = min(ans, max(len(str(tmp)), len(str(n//tmp))))\n print(ans)', 'import itertools\n\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\n\nn = int(input())\n\nf = factorization(n)\n\n#print(f)\n\nif len(f) == 1 and f[0][1] == 1:\n print(len(str(n)))\nelse:\n pf = []\n for r in f:\n if r[0] == 1:\n continue\n pf += [r[0]]*r[1]\n ans = len(str(n))\n for i in range(1,len(pf)//2+1):\n for c in itertools.combinations(pf, i):\n #print(c)\n tmp = 1\n for t in c:\n tmp *= t\n ans = min(ans, max(len(str(tmp)), len(str(n//tmp))))\n print(ans)']
['Wrong Answer', 'Accepted']
['s891711425', 's171478210']
[9012.0, 9028.0]
[1183.0, 922.0]
[774, 857]
p03775
u857673087
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\n\nN = int(input())\nend = int(math.sqrt(N))+1\nans = len(str(N))\n\nfor a in range(1,end):\n if N%a == 0:\n b = N//a\n ans = min(ans, len(str(max(a,b)))\nprint(ans)\n', 'import math\n\nN = int(input())\nend = int(math.sqrt(N))+1\nans = len(str(N))\n\nfor a in range(1,end):\n if N%a == 0:\n b = N//i\n ans = min(ans, len(str(max(a,b)))\nprint(ans)\n', 'N = int(input())\n\nimport math\n\nend = int(math.sqrt(N))+1\nans = len(str(N))\n\nfor a in range(1,end):\n if N % a ==0:\n b = N//a\n ans = min(ans, len(str(max(a,b))))\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s430027388', 's870451394', 's076155507']
[2940.0, 2940.0, 3060.0]
[17.0, 17.0, 30.0]
[175, 175, 177]
p03775
u871303155
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['\n\n# O(root:N)\ndef factorization(n):\n arr = []\n temp = n\n for i in range(2, int(-(-n**0.5//1))+1):\n if temp%i==0:\n cnt=0\n while temp%i==0:\n cnt+=1\n temp //= i\n arr.append([i, cnt])\n\n if temp!=1:\n arr.append([temp, 1])\n\n if arr==[]:\n arr.append([n, 1])\n\n return arr\n\nimport math\nN=int(input())\n\n\nans = 0\npairs = factorization(N)\nketa = lambda x: len(str(x))\nfor a,b in pairs:\n ans = max(keta(a), keta(b))\n\nprint(ans)\n\n# root_n = int(math.sqrt(N))\n# up_n = root_n\n\n\n# while up_n <= N:\n# if N % up_n == 0:\n\n\n \n# break\n# else:\n# up_n+=1\n\n# print(up_ans)\n\n', 'import math\nN=int(input())\n\n\nroot_n = int(math.sqrt(N))\nup_n = root_n\nup_ans = 0\nketa = lambda x: len(str(x))\nwhile up_n <= N:\n if N % up_n == 0:\n pair = int(N/up_n)\n \n up_ans = max(keta(pair), keta(up_n))\n break\n else:\n up_n-=1\n\nprint(up_ans)\n\n']
['Wrong Answer', 'Accepted']
['s948868482', 's164902712']
[3188.0, 3060.0]
[28.0, 38.0]
[889, 344]
p03775
u888337853
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nimport copy\nfrom copy import deepcopy\nimport sys\nimport fractions\n# import numpy as np\nfrom functools import reduce\n# import statistics\nimport decimal\nimport heapq\nimport collections\nimport itertools\nfrom operator import mul\n\nsys.setrecursionlimit(100001)\n\n\n# input = sys.stdin.readline\n\n\n# ===FUNCTION===\n\ndef getInputInt():\n inputNum = int(input())\n return inputNum\n\n\ndef getInputListInt():\n outputData = []\n inputData = input().split()\n outputData = [int(n) for n in inputData]\n\n return outputData\n\n\ndef getSomeInputInt(n):\n outputDataList = []\n for i in range(n):\n inputData = int(input())\n outputDataList.append(inputData)\n\n return outputDataList\n\n\ndef getSomeInputListInt(n):\n inputDataList = []\n outputDataList = []\n for i in range(n):\n inputData = input().split()\n inputDataList = [int(n) for n in inputData]\n outputDataList.append(inputDataList)\n\n return outputDataList\n\n\n# ===CODE===\n\nn = int(input())\n\nans = sys.maxsize\nfor i in range(1, math.sqrt(n)+1, 1):\n if n % i == 0:\n b = n//i\n tmp_ans = max(len(str(i)), len(str(b)))\n ans = min(ans, tmp_ans)\n\nprint(ans)\n\n', 'import math\nimport copy\nfrom copy import deepcopy\nimport sys\nimport fractions\n# import numpy as np\nfrom functools import reduce\n# import statistics\nimport decimal\nimport heapq\nimport collections\nimport itertools\nfrom operator import mul\n\nsys.setrecursionlimit(100001)\n\n\n# input = sys.stdin.readline\n\n\n# ===FUNCTION===\n\ndef getInputInt():\n inputNum = int(input())\n return inputNum\n\n\ndef getInputListInt():\n outputData = []\n inputData = input().split()\n outputData = [int(n) for n in inputData]\n\n return outputData\n\n\ndef getSomeInputInt(n):\n outputDataList = []\n for i in range(n):\n inputData = int(input())\n outputDataList.append(inputData)\n\n return outputDataList\n\n\ndef getSomeInputListInt(n):\n inputDataList = []\n outputDataList = []\n for i in range(n):\n inputData = input().split()\n inputDataList = [int(n) for n in inputData]\n outputDataList.append(inputDataList)\n\n return outputDataList\n\n\n# ===CODE===\n\nn = int(input())\n\nans = sys.maxsize\nfor i in range(1, int(math.sqrt(n))+1, 1):\n if n % i == 0:\n b = n//i\n tmp_ans = max(len(str(i)), len(str(b)))\n ans = min(ans, tmp_ans)\n\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s266349342', 's507567240']
[5164.0, 5164.0]
[36.0, 49.0]
[1214, 1219]
p03775
u896741788
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n=int(input())\nm=n**(1/2)//1+1\nl=[]\nfor i in range(m+1)[:0:-1]:\n if n%i==0:\n l.append(max(len(str(i)),len(str(n//i))))\n if len(l)==3:\n break\nprint(min(l))', 'from math imoprt sqrt\nn=int(input())\nfor i in range(int(sqrt(n)),0,-1):\n if n%i==0:\n print(max(len(str(i)),len(str(n//i))))\n exit()', 'from math import sqrt\nn=int(input())\nfor i in range(int(sqrt(n)),0,-1):\n if n%i==0:\n print(max(len(str(i)),len(str(n//i))))\n exit()\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s033784587', 's344743803', 's800426202']
[3060.0, 2940.0, 2940.0]
[17.0, 17.0, 29.0]
[162, 138, 139]
p03775
u897329068
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\n\nN = int(input())\n\nanss = []\nfor n in range(1,math.ceil(N**0.5)):\n\tif N % n == 0:\n\t\tanss.append(max(len(str(n)),len(str(N//n))))\nelse:\n\tanss.append(1)\n\t\t\nprint(min(anss))', 'import math\n\nN = int(input())\n\nanss = []\nfor n in range(1,math.ceil(N**0.5)+1):\n\tif N % n == 0:\n\t\tanss.append(max(len(str(n)),len(str(N//n))))\n\nif len(anss) == 0:\n\tanss.append(1)\n\t\t\nprint(min(anss))']
['Wrong Answer', 'Accepted']
['s315470371', 's285928036']
[3060.0, 3060.0]
[31.0, 31.0]
[182, 198]
p03775
u898336293
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
[' divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n return divisors\n \nN=int(input()) \ndiv = make_divisors(N)\n\nA = div[-1]\nB = N//A\nprint(max(len(str(A)),len(str(B))))', 'def make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n return divisors\n \nN=int(input()) \ndiv = make_divisors(N)\n\nA = div[-1]\nB = N//A\nprint(max(len(str(A)),len(str(B))))']
['Runtime Error', 'Accepted']
['s064367989', 's558281207']
[2940.0, 3188.0]
[17.0, 27.0]
[228, 250]
p03775
u905582793
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n=int(input())\nans = []\nfor i in range(1,int(n**0.5+1)):\n if n%i==0:\n j=n//i\n ans.append(len(str(i))+len(str(j)))\nprint(max(ans))', 'n=int(input())\nans = []\nfor i in range(1,int(n**0.5+1)):\n if n%i==0:\n j=n//i\n ans.append(min(len(str(i)),len(str(j))))\nprint(min(ans))', 'n=int(input())\nans = []\nfor i in range(1,int(n**0.5+1)):\n if n%i==0:\n j=n//i\n ans.append(len(str(i))+len(str(j)))\nprint(min(ans))', 'n=int(input())\nans = []\nfor i in range(1,n**0.5+1):\n if n%i==0:\n j=n//i\n ans.append(len(str(i))+len(str(j)))\nprint(max(ans))', 'n=int(input())\nans = []\nfor i in range(1,int(n**0.5+1)):\n if n%i==0:\n j=n//i\n ans.append(max(len(str(i)),len(str(j))))\nprint(min(ans))']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s000023244', 's009977082', 's121590879', 's765953726', 's544342735']
[3060.0, 3060.0, 3060.0, 3060.0, 3060.0]
[30.0, 30.0, 30.0, 17.0, 30.0]
[136, 141, 136, 131, 141]
p03775
u919025034
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nN = int(input())\nc = math.sqrt(N) // 1\nwhile 1:\n if N % c == 0:\n A = int(c)\n B = int(N / c)\n break\n c -= 1\nprint(A,B)\nprint(max(len(str(A)),len(str(B)) ))\n', 'import math\nN = int(input())\nc = math.sqrt(N) // 1\nwhile 1:\n if N % c == 0:\n A = int(c)\n B = int(N / c)\n break\n c -= 1\nprint(max(len(str(A)),len(str(B)) ))\n']
['Wrong Answer', 'Accepted']
['s401484034', 's785098311']
[3060.0, 2940.0]
[49.0, 45.0]
[178, 167]
p03775
u925364229
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['from math import sqrt\nN = int(input())\n\ndiv = 1\nmax_v = int(sqrt(N))\nfor num in range(max_v,1,(-1)):\n\tif N % num == 0:\n\t\tdiv = num\n\t\tbreak\n\nprint(div)\nprint(max(len(str(div)),len(str(N//div))))', 'from math import sqrt\nN = int(input())\n\ndiv = 1\nmax_v = int(sqrt(N))\nfor num in range(max_v,1,(-1)):\n\tif N % num == 0:\n\t\tdiv = num\n\t\tbreak\n\n#print(div)\nprint(max(len(str(div)),len(str(N//div))))']
['Wrong Answer', 'Accepted']
['s489236390', 's703550380']
[3060.0, 3060.0]
[30.0, 30.0]
[193, 194]
p03775
u928385607
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n = int(input())\n\nab = []\nans = [1]\nfor i in range(1, int(n**(0.5))):\n\tab.clear()\n\tif n%i == 0:\n\t\tab.append(i)\n\t\tab.append(int(n/i))\n\t\tans.append(len(str(max(ab))))\n\t\t\t\nprint(min(ans))\n', 'n = int(input())\n\nab = []\nans = []\nfor i in range(1, int(n**(0.5))+1):\n\tab.clear()\n\tif n%i == 0:\n\t\tab.append(i)\n\t\tab.append(int(n/i))\n\t\tans.append(len(str(max(ab))))\n\t\t\t\nif len(ans) == 0:\n\tans.append(1)\n\nprint(min(ans))\n']
['Wrong Answer', 'Accepted']
['s859627543', 's825467962']
[2940.0, 3188.0]
[35.0, 35.0]
[185, 220]
p03775
u934052933
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['\n\ndef findBiggerDigits(n):\n digits = 0\n while n > 0:\n digits += 1\n n //= 10\n return digits \n\ndef main()->None:\n n = int(input())\n sqrt_n = int(n ** (1/2))\n print(sqrt_n)\n range_a = range(1, sqrt_n+1)\n\n min_value = 1000000\n for a in range_a:\n if n % a != 0: continue\n b = n / a\n a_digits = findBiggerDigits(a)\n b_digits = findBiggerDigits(b)\n max_dig = max(a_digits, b_digits)\n if max_dig < min_value:\n min_value = max_dig\n\n print(min_value)\n\n\nif __name__ == "__main__":\n main()', '\n\ndef findBiggerDigits(n):\n digits = 0\n while n > 0:\n digits += 1\n n //= 10\n return digits \n\ndef main()->None:\n n = int(input())\n sqrt_n = int(n ** (1/2))\n range_a = range(1, sqrt_n+1)\n\n min_value = 1000000\n for a in range_a:\n if n % a != 0: continue\n b = n / a\n a_digits = findBiggerDigits(a)\n b_digits = findBiggerDigits(b)\n max_dig = max(a_digits, b_digits)\n if max_dig < min_value:\n min_value = max_dig\n\n print(min_value)\n\n\nif __name__ == "__main__":\n main()']
['Wrong Answer', 'Accepted']
['s445980457', 's584843295']
[3188.0, 3064.0]
[28.0, 28.0]
[577, 559]
p03775
u937782958
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
["N = int(input())\n\ndef check(a, b):\n return max(len(str(a)), len(str(b)))\n\nn = int(N ** (1/2))\n#arr =[]\nres = check(1, N)\nprint('first-res',res,n)\ni = 1\nwhile i <= n:\n if N % i == 0:\n res = min(res, check(i,int(N / i)))\n# print(res, i, N/i)\n i += 1\n\nprint(res)", 'N = int(input()) \nn = int(N**.5)\nres = len(str(N))\nprint(n)\nfor i in range(2,n+1):\n if N % i == 0:\n #print(len(str(i)),len(str(N/i)))\n f = max(len(str(i)),len(str(N//i)))\n res = min(res, f)\n\nprint(res)\n', 'N = int(input()) \nn = int(N**.5)\nres = len(str(N))\nfor i in range(2,n+1):\n if N % i == 0:\n #print(len(str(i)),len(str(N/i)))\n f = max(len(str(i)),len(str(N//i)))\n res = min(res, f)\n\nprint(res)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s171259584', 's704180459', 's903178382']
[3188.0, 3060.0, 2940.0]
[42.0, 30.0, 30.0]
[270, 277, 268]
p03775
u940652437
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['n = int(input())\ntmp = n\nans = n\ny = tmp **0.5\no = int(y // 1)\nfor i in range(o+1):\n a=i+1\n print("a:"+str(a))\n b=n/(i+1)\n print("b:"+str(b))\n #print("a*b:"+str(a*b))\n if (b.is_integer()==True ):\n kari = max(len(str(a)),len(str(int(b))))\n print("kari:"+str(kari))\n ans = min(ans,kari)\nprint(ans)', 'n = int(input())\ntmp = n\nans = n\ny = tmp **0.5\no = int(y // 1)\nfor i in range(o+1):\n a=i+1\n #print("a:"+str(a))\n b=n/(i+1)\n #print("b:"+str(b))\n #print("a*b:"+str(a*b))\n if (b.is_integer()==True ):\n kari = max(len(str(a)),len(str(int(b))))\n #print("kari:"+str(kari))\n ans = min(ans,kari)\nprint(ans)\n ']
['Wrong Answer', 'Accepted']
['s706765825', 's147128746']
[9480.0, 9344.0]
[192.0, 51.0]
[334, 353]
p03775
u944731949
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import sympy\nN = int(input())\ndiv_arr = sympy.divisors(N)\n\nif len(div_arr) == 1:\n print(1)\nif len(div_arr) == 2:\n ans_num = max(div_arr)\nelse:\n memo = []\n if len(div_arr) % 2 == 0:\n last_idx = -1\n count = 0\n for i in range(len(div_arr)):\n print(div_arr)\n print(div_arr[i] * div_arr[last_idx])\n count += 1\n if N == div_arr[i] * div_arr[last_idx] and count != len(div_arr) // 2:\n last_idx -= 1\n memo.append(len(str(div_arr[last_idx])))\n else:\n break\n else:\n print(div_arr)\n target_index = len(div_arr) // 2\n memo.append(len(str(div_arr[target_index])))\n print(min(memo))', 'import sympy\nN = int(input())\ndiv_arr = sympy.divisors(N)\n\nif len(div_arr) == 1:\n print(1)\nif len(div_arr) == 2:\n ans_num = max(div_arr)\n print(len(str(ans_num)))\nelse:\n memo = []\n if len(div_arr) % 2 == 0:\n last_idx = -1\n count = 0\n for i in range(len(div_arr)):\n print(div_arr)\n print(div_arr[i] * div_arr[last_idx])\n count += 1\n if N == div_arr[i] * div_arr[last_idx] and count != len(div_arr) // 2:\n last_idx -= 1\n memo.append(len(str(div_arr[last_idx])))\n else:\n break\n else:\n print(div_arr)\n target_index = len(div_arr) // 2\n memo.append(len(str(div_arr[target_index])))\n print(min(memo))', 'N = int(input())\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort()\n return divisors\ndiv_arr = make_divisors(N)\n\nif len(div_arr) == 1:\n print(1)\nelif len(div_arr) == 2:\n ans_num = max(div_arr)\n print(len(str(ans_num)))\nelse:\n memo = []\n if len(div_arr) % 2 == 0:\n last_idx = -1\n count = 0\n for i in range(len(div_arr)):\n count += 1\n if N == div_arr[i] * div_arr[last_idx] and count != len(div_arr) // 2:\n last_idx -= 1\n memo.append(len(str(div_arr[last_idx])))\n else:\n break\n else:\n target_index = len(div_arr) // 2\n memo.append(len(str(div_arr[target_index])))\n print(min(memo))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s190504970', 's652785575', 's740213768']
[9116.0, 9180.0, 9356.0]
[28.0, 30.0, 39.0]
[728, 757, 884]
p03775
u974792613
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['def f(a,b):\n digit_a = digit_b=0\n \n while a:\n digit_a+=1\n a//=10\n \n while b:\n digit_b+=1\n b//=10\n \n return max(digit_a, digit_b)\n\nn = int(input())\n\nans = n\nfor i in range(1, int((n+1)**0.5)):\n for n%i==0:\n n = min(n, f(i, n//i))\n \nprint(ans)\n ', 'def f(a, b):\n digit_a = digit_b = 0\n\n while a:\n digit_a += 1\n a //= 10\n\n while b:\n digit_b += 1\n b //= 10\n\n return max(digit_a, digit_b)\n\n\nn = int(input())\n\nans = n\n\nfor i in range(1, int(n ** 0.5) + 1):\n if n % i == 0:\n ans = min(ans, f(i, n // i))\n\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s588937566', 's930706198']
[2940.0, 3188.0]
[17.0, 31.0]
[276, 313]
p03775
u989345508
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nn=int(input())\nl=math.floor(math.sqrt(n))\n\nfor i in range(l,1,-1):\n if n%i==0:\n a,b=i,n//i\n x=max(math.floor(math.log10(a))+1,math.floor(math.log10(b))+1)\n break\nprint(k)\n', 'from sys import exit\nimport math\nn=int(input())\nl=math.floor(math.sqrt(n))\n\nfor i in range(l+1,0,-1):\n if n%i==0:\n a,b=i,n//i\n h=max(a,b)\n k=math.floor(math.log10(h))+1\n print(k)\n exit()\n']
['Runtime Error', 'Accepted']
['s707430777', 's168655940']
[3060.0, 3060.0]
[30.0, 29.0]
[207, 225]
p03775
u989654188
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\n\nn = int(input())\n\ndef f(a,b):\n return len(str(a)) if len(str(a)) > len(str(b)) else len(str(b))\n\nmin = 10\n\nfor i in range(1,int(math.sqrt(n))):\n if n%i==0 and min > f(i,n//i):\n min = f(i,n//i)\n\nif len(str(n))<10:\n min=1\n\nprint(min)', 'import math\n\nn = int(input())\n\ndef f(a,b):\n return len(str(a)) if len(str(a)) > len(str(b)) else len(str(b))\n\nmin = 10\n\nfor i in range(1,int(math.sqrt(n))+1):\n if n%i==0 and min > f(i,n//i):\n min = f(i,n//i)\n\nif n<10:\n min=1\n\nprint(min)']
['Wrong Answer', 'Accepted']
['s651671374', 's330820210']
[3064.0, 3064.0]
[30.0, 30.0]
[260, 252]
p03775
u990896548
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
["import math\n\nif __name__ == '__main__':\n N = int(input())\n root_N_int = math.floor(math.sqrt(N))\n for A in range(root_N_int, 0, -1):\n if N % A == 0:\n B = int(N / A)\n print(B)\n break\n digit = len(str(B))\n print(digit)", "import math\n\nif __name__ == '__main__':\n N = int(input())\n root_N_int = math.floor(math.sqrt(N))\n for A in range(root_N_int, 0, -1):\n if N % A == 0:\n B = int(N / A)\n break\n digit = len(str(B))\n print(digit)"]
['Wrong Answer', 'Accepted']
['s778897861', 's241641037']
[3060.0, 3316.0]
[30.0, 30.0]
[271, 250]
p03775
u996996256
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
["n = int(input())\nans = float('inf')\ntemp = 0\nfor i in range(1,(n/2)+1):\n if n%i == 0:\n temp = max(len(str(i)), len(str(n//i)))\n ans = min(temp, ans)\nprint(ans)", "n = int(input())\nans = float('inf')\ntemp = 0\nfor i in range(1,n/2+1):\n if n%i == 0:\n temp = max(len(str(i)), len(str(n//i)))\n ans = min(temp, ans)\nprint(ans)", "n = int(input())\nans = float('inf')\ntemp = 0\nfor i in range(1,n**(1/2)):\n if n%i == 0:\n temp = max(i, n//i)\n ans = min(temp, ans)\nprint(len(str(ans)))", "n = int(input())\nans = float('inf')\ntemp = 0\nfor i in range(1,int(n**(1/2))+1):\n if n%i == 0:\n temp = max(i, n//i)\n ans = min(temp, ans)\nprint(len(str(ans)))"]
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s169573555', 's341681771', 's657209835', 's479480667']
[3060.0, 3060.0, 3060.0, 3060.0]
[18.0, 17.0, 17.0, 31.0]
[176, 174, 167, 174]
p03775
u998262711
2,000
262,144
You are given an integer N. For two positive integers A and B, we will define F(A,B) as the larger of the following: the number of digits in the decimal notation of A, and the number of digits in the decimal notation of B. For example, F(3,11) = 2 since 3 has one digit and 11 has two digits. Find the minimum value of F(A,B) as (A,B) ranges over all pairs of positive integers such that N = A \times B.
['import math\nN=int(input())\na=0\nfor i in range(1,1+math.ceil(math.sqrt(N))):\n if N%i==0 and i>a:\n a=i\nb=int(N/a)\nprint(max([len(str(a)),len(str(b))]))9876543210', 'import math\nN=int(input())\na=0\nfor i in range(1,1+math.ceil(math.sqrt(N))):\n if N%i==0 and i>a:\n a=i\nb=int(N/a)\nprint(max([len(str(a)),len(str(b))]))']
['Runtime Error', 'Accepted']
['s889561577', 's731599314']
[3060.0, 3060.0]
[17.0, 30.0]
[169, 159]
p03776
u057916330
2,000
262,144
You are given N items. The _value_ of the i-th item (1 \leq i \leq N) is v_i. Your have to select at least A and at most B of these items. Under this condition, find the maximum possible arithmetic mean of the values of selected items. Additionally, find the number of ways to select items so that the mean of the values of selected items is maximized.
["import operator\nimport functools\n\n\ndef main():\n N, A, B = map(int, input().split())\n v = list(map(int, input().split()))\n # use list.sort() or sorted(list)\n v.sort(reverse=True)\n # use slice to sum first A elements\n # use '{:f}'.format to format float\n print('{:.6f}'.format((sum(v[:A]) / A)))\n\n va = v[A - 1]\n # use list.count instead of (sum(list(map(lambda x: 1 if ... else 0, v))))\n pool = v.count(va)\n # ...and for comprehension and boolean sum\n head = sum(x > va for x in v)\n print(pool, head)\n # 5 4 3 3 3 2 1, A = 3, B = 5, pool = 3, pick = 1\n # 5 4 3 3 3 2 1, A = 4, B = 5, pool = 3, pick = 2\n # 3 3 3 3 3 2 1, A = 3, B = 6, pool = 5, pick = 3, 4, 5\n # 3 3 3 3 3 2 1, A = 3, B = 4, pool = 5, pick = 3, 4\n if head == 0:\n # for comprehension again, instead of a for loop that modifies variable\n ans = sum([_nCr(pool, pick) for pick in range(A, min(B, pool) + 1)])\n else:\n pick = A - head\n ans = _nCr(pool, pick)\n print(ans)\n\n\ndef _nCr(n, r):\n r = min(r, n-r)\n if r == 0:\n return 1\n # reduce and xrange are for python2\n numer = functools.reduce(operator.mul, range(n, n-r, -1))\n denom = functools.reduce(operator.mul, range(1, r+1))\n return numer//denom\n\n\nif __name__ == '__main__':\n main()\n", "import operator\nimport functools\n\n\ndef main():\n N, A, B = map(int, input().split())\n v = list(map(int, input().split()))\n # use list.sort() or sorted(list)\n v.sort(reverse=True)\n # use slice to sum first A elements\n # use '{:f}'.format to format float\n print('{:.6f}'.format((sum(v[:A]) / A)))\n\n va = v[A - 1]\n # use list.count instead of (sum(list(map(lambda x: 1 if ... else 0, v))))\n pool = v.count(va)\n # ...and for comprehension and boolean sum\n head = sum(x > va for x in v)\n # 5 4 3 3 3 2 1, A = 3, B = 5, pool = 3, pick = 1\n # 5 4 3 3 3 2 1, A = 4, B = 5, pool = 3, pick = 2\n # 3 3 3 3 3 2 1, A = 3, B = 6, pool = 5, pick = 3, 4, 5\n # 3 3 3 3 3 2 1, A = 3, B = 4, pool = 5, pick = 3, 4\n if head == 0:\n # for comprehension again, instead of a for loop that modifies variable\n ans = sum([_nCr(pool, pick) for pick in range(A, min(B, pool) + 1)])\n else:\n pick = A - head\n ans = _nCr(pool, pick)\n print(ans)\n\n\ndef _nCr(n, r):\n r = min(r, n-r)\n if r == 0:\n return 1\n # reduce and xrange are for python2\n numer = functools.reduce(operator.mul, range(n, n-r, -1))\n denom = functools.reduce(operator.mul, range(1, r+1))\n return numer//denom\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s451201211', 's356258564']
[3572.0, 3572.0]
[24.0, 23.0]
[1313, 1291]
p03776
u202619899
2,000
262,144
You are given N items. The _value_ of the i-th item (1 \leq i \leq N) is v_i. Your have to select at least A and at most B of these items. Under this condition, find the maximum possible arithmetic mean of the values of selected items. Additionally, find the number of ways to select items so that the mean of the values of selected items is maximized.
["from math import factorial\n\n\nclass Frac(object):\n def __init__(self, a, b):\n self.a = a\n self.b = b\n\n def eq(self, f):\n return self.a * f.b == f.a * self.b\n\n def lt(self, f):\n return self.a * f.b > f.a * self.b\n\n def __repr__(self):\n return '%.6f' % (self.a / self.b)\n\n\ndef nCr(n, r):\n return factorial(n) // factorial(r) // factorial(n - r)\n\n\nN, A, B = map(int, input().split())\nV = list(map(int, input().split()))\nV.sort(reverse=True)\n\nres = None\nfor i in range(A, B+1):\n now = Frac(sum(V[:i]), i)\n if res is None or now.lt(res[0]):\n res = [now]\n elif now.eq(res[0]):\n res.append(now)\n\ncnt = 0\nfor now in res:\n p = V[:now.b]\n n = len(list(filter(lambda x: x == p[-1], V)))\n r = len(list(filter(lambda x: x == p[-1], p)))\n cnt += nCr(n, r)\n\nprint(res[0])\nprint(cnt)\n~", "class Frac(object):\n def __init__(self, a, b):\n self.a = a\n self.b = b\n\n def eq(self, f):\n return self.a * f.b == f.a * self.b\n\n def lt(self, f):\n return self.a * f.b > f.a * self.b\n\n def __repr__(self):\n return '%.6f' % (self.a / self.b)\n\n\ndef factorial(n):\n res = 1\n for i in range(n):\n res *= i+1\n return res\n\n\ndef nCr(n, r):\n return factorial(n) // factorial(r) // factorial(n - r)\n\n\nN, A, B = map(int, input().split())\nV = list(map(int, input().split()))\nV.sort(reverse=True)\n\nres = None\nfor i in range(A, B+1):\n now = Frac(sum(V[:i]), i)\n if res is None or now.lt(res[0]):\n res = [now]\n elif now.eq(res[0]):\n res.append(now)\n\ncnt = 0\nfor now in res:\n p = V[:now.b]\n n = len(list(filter(lambda x: x == p[-1], V)))\n r = len(list(filter(lambda x: x == p[-1], p)))\n cnt += nCr(n, r)\n\nprint(res[0])\nprint(cnt)"]
['Runtime Error', 'Accepted']
['s320776698', 's684091937']
[3064.0, 3064.0]
[17.0, 18.0]
[853, 911]
p03776
u556160473
2,000
262,144
You are given N items. The _value_ of the i-th item (1 \leq i \leq N) is v_i. Your have to select at least A and at most B of these items. Under this condition, find the maximum possible arithmetic mean of the values of selected items. Additionally, find the number of ways to select items so that the mean of the values of selected items is maximized.
["import collections\nfrom scipy.misc import comb\n\nn,a,b = map(int, input().split(' '))\nv = map(int, input().split(' '))\n\nv = sorted(v, reverse=True)\nselect = v[:a]\nresult1 = sum(select)/len(select)\n\nresult2 = 0\nv_cnt = collections.Counter(v)\nfor i in range(a,b+1):\n select = v[:i]\n if result1 == sum(select)/len(select):\n select = collections.Counter(select)\n buf = 1\n for v_ in v_cnt:\n buf *= comb(v_cnt[v_],select[v_])\n result2 += buf\nprint('%.6f'%result1)\nprint(int(round(result2)))", "import collections\nfrom scipy.misc import comb\n\nn,a,b = map(int, input().split(' '))\nv = map(int, input().split(' '))\n\nv = sorted(v, reverse=True)\nselect = v[:a]\nresult1 = sum(select)/len(select)\n\nresult2 = 0\nv_cnt = collections.Counter(v)\nfor i in range(a,b+1):\n select = v[:i]\n if result1 == sum(select)/len(select):\n select = collections.Counter(select)\n buf = 1\n for v_ in v_cnt:\n buf *= comb(v_cnt[v_],select[v_])\n result2 += buf\nprint('%.6f'%result1)\nprint(int(result2))", 'import collections\n\n# Iterative Algorithm (xgcd)\ndef iterative_egcd(a, b):\n x,y, u,v = 0,1, 1,0\n while a != 0:\n q,r = b//a,b%a; m,n = x-u*q,y-v*q \n b,a, x,y, u,v = a,r, u,v, m,n\n return b, x, y\n \n# Recursive Algorithm\ndef recursive_egcd(a, b):\n """Returns a triple (g, x, y), such that ax + by = g = gcd(a,b).\n Assumes a, b >= 0, and that at least one of them is > 0.\n Bounds on output values: |x|, |y| <= max(a, b)."""\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = recursive_egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n \negcd = iterative_egcd # or recursive_egcd(a, m)\n \ndef modinv(a, m):\n g, x, y = egcd(a, m) \n if g != 1:\n return None\n else:\n return x % m\n \ndef conv(n,a):\n ret = 1\n for i in range(1,a+1):\n ret *= n-a+i\n ret //= i\n return ret\n \n#n,a,b = map(int, input().split(\' \'))\n#v = map(int, input().split(\' \'))\nn,a,b = 50,1,50\nv = [1]*50\n\nv = sorted(v, reverse=True)\nselect = v[:a]\nresult1 = sum(select)/len(select)\n\nresult2 = 0\nv_cnt = collections.Counter(v)\nfor i in range(a,b+1):\n select = v[:i]\n if result1 == sum(select)/len(select):\n select = collections.Counter(select)\n buf = 1\n for v_ in v_cnt:\n buf *= conv(v_cnt[v_],select[v_])\n result2 += buf\nprint(\'%.6f\'%result1)\nprint(result2)', "import collections\nfrom scipy.misc import comb\n\nn,a,b = map(int, input().split(' '))\nv = map(int, input().split(' '))\n\nv = sorted(v, reverse=True)\nselect = v[:a]\nresult1 = sum(select)/len(select)\n\nresult2 = 0\nv_cnt = collections.Counter(v)\nfor i in range(a,b+1):\n select = v[:i]\n if result1 == sum(select)/len(select):\n select = collections.Counter(select)\n buf = 1\n for v_ in v_cnt:\n buf *= comb(v_cnt[v_],select[v_])\n result2 += buf\nprint(result1)\nprint(int(result2))", 'import collections\n\n# Iterative Algorithm (xgcd)\ndef iterative_egcd(a, b):\n x,y, u,v = 0,1, 1,0\n while a != 0:\n q,r = b//a,b%a; m,n = x-u*q,y-v*q \n b,a, x,y, u,v = a,r, u,v, m,n\n return b, x, y\n \n# Recursive Algorithm\ndef recursive_egcd(a, b):\n """Returns a triple (g, x, y), such that ax + by = g = gcd(a,b).\n Assumes a, b >= 0, and that at least one of them is > 0.\n Bounds on output values: |x|, |y| <= max(a, b)."""\n if a == 0:\n return (b, 0, 1)\n else:\n g, y, x = recursive_egcd(b % a, a)\n return (g, x - (b // a) * y, y)\n \negcd = iterative_egcd # or recursive_egcd(a, m)\n \ndef modinv(a, m):\n g, x, y = egcd(a, m) \n if g != 1:\n return None\n else:\n return x % m\n \ndef conv(n,a):\n ret = 1\n for i in range(1,a+1):\n ret *= n-a+i\n ret //= i\n return ret\n \nn,a,b = map(int, input().split(\' \'))\nv = map(int, input().split(\' \'))\n\nv = sorted(v, reverse=True)\nselect = v[:a]\nresult1 = sum(select)/len(select)\n\nresult2 = 0\nv_cnt = collections.Counter(v)\nfor i in range(a,b+1):\n select = v[:i]\n if result1 == sum(select)/len(select):\n select = collections.Counter(select)\n buf = 1\n for v_ in v_cnt:\n buf *= conv(v_cnt[v_],select[v_])\n result2 += buf\nprint(\'%.6f\'%result1)\nprint(result2)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s180634866', 's311239368', 's713743484', 's791644596', 's707801054']
[16876.0, 27388.0, 3316.0, 16972.0, 3316.0]
[239.0, 454.0, 21.0, 226.0, 21.0]
[528, 521, 1407, 514, 1378]
p03776
u584355711
2,000
262,144
You are given N items. The _value_ of the i-th item (1 \leq i \leq N) is v_i. Your have to select at least A and at most B of these items. Under this condition, find the maximum possible arithmetic mean of the values of selected items. Additionally, find the number of ways to select items so that the mean of the values of selected items is maximized.
['# -*- coding: utf-8 -*-\nINF=10**10\nfrom collections import Counter\nimport scipy.misc as scm\n\ndef main():\n N,A,B=list(map(int,input().split()))\n v=list(map(int,input().split()))\n cnt=Counter(v)\n ary=[]\n first=True\n \n for num,count in sorted(cnt.items(),reverse=True):\n if count>A:\n if first:\n a2=0\n print(num)\n for k in range(A,min(B,count)+1):\n a2+=scm.comb(count,k)\n print(int(a2))\n return 0\n \n ary+=[num]*A\n print(sum(ary)/len(ary))\n print(int(scm.comb(count,A)))\n return 0\n elif A==0:\n print(sum(ary)/len(ary))\n print(1)\n else:\n ary+=[num]*count\n A-=count\n first=False\n \n \n \nif __name__=="__main__":\n main()\n ', '# -*- coding: utf-8 -*-\nINF=10**10\nfrom collections import Counter\nimport scipy.misc as scm\n\ndef main():\n N,A,B=list(map(int,input().split()))\n v=list(map(int,input().split()))\n cnt=Counter(v)\n ary=[]\n first=True\n \n for num,count in sorted(cnt.items(),reverse=True):\n if count>A:\n if first:\n a2=0\n print("{:.6f}".format(float(num)))\n for k in range(A,min(B,count)+1):\n a2+=scm.comb(count,k)\n print(int(a2))\n return 0\n \n ary+=[num]*A\n print("{:.6f}".format(sum(ary)/len(ary)))\n print(int(scm.comb(count,A)))\n return 0\n elif A==0:\n print("{:.6f}".format(sum(ary)/len(ary)))\n print(1)\n else:\n ary+=[num]*count\n A-=count\n first=False\n \n \n \nif __name__=="__main__":\n main()\n ', '# -*- coding: utf-8 -*-\nINF=10**10\nfrom collections import Counter\nimport scipy.misc as scm\n\ndef ncr(n, r):\n r = min(r, n - r)\n if r == 0: return 1;\n if r == 1: return n;\n numerator = [n - r + i + 1 for i in range(r)]\n denominator = [i + 1 for i in range(r)]\n for p in range(2, r + 1):\n pivot = denominator[p - 1]\n if pivot > 1:\n offset = (n - r) % p\n for k in range(p - 1, r, p):\n numerator[k - offset] //= pivot\n denominator[k] //= pivot\n result = 1\n for k in range(r):\n if numerator[k] > 1: \n result *= numerator[k]\n return result\n\ndef main():\n N,A,B=list(map(int,input().split()))\n v=list(map(int,input().split()))\n cnt=Counter(v)\n ary=[]\n first=True\n \n for num,count in sorted(cnt.items(),reverse=True):\n if count>A:\n if first:\n a2=0\n print("{:.6f}".format(float(num)))\n for k in range(A,min(B,count)+1):\n a2+=ncr(count,k)\n print(a2)\n return 0\n \n ary+=[num]*A\n print("{:.6f}".format(sum(ary)/len(ary)))\n print(ncr(count,A))\n return 0\n elif A==0:\n print("{:.6f}".format(sum(ary)/len(ary)))\n print(1)\n else:\n ary+=[num]*count\n A-=count\n first=False\n \n \n \nif __name__=="__main__":\n main()\n ']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s325498530', 's724945888', 's977328384']
[20656.0, 25128.0, 13276.0]
[306.0, 433.0, 165.0]
[886, 944, 1478]
p03776
u633450100
2,000
262,144
You are given N items. The _value_ of the i-th item (1 \leq i \leq N) is v_i. Your have to select at least A and at most B of these items. Under this condition, find the maximum possible arithmetic mean of the values of selected items. Additionally, find the number of ways to select items so that the mean of the values of selected items is maximized.
['if __name__ == \'__main__\':\n from collections import Counter\n from scipy.misc import comb\n\n N,A,B = [int(i) for i in input().split()]\n V = [int(i) for i in input().split()]\n\n V.sort(reverse = True)\n max_list = V[0:A]\n max = sum(V[0:A]) / A\n\n for i in range(A+1,B+1):\n a = sum(V[0:i]) / i\n if max < a:\n max_list = V[0:i]\n max = a\n print("{:.6f}".format(max))\n\n ans = 1\n max_list = Counter(max_list).most_common()\n for i in range(len(max_list)):\n ans *= comb(V.count(max_list[i][0]),max_list[i][1])\n print(int(ans))\n', 'if __name__ == \'__main__\':\n from collections import Counter\n from scipy.misc import comb\n\n N,A,B = [int(i) for i in input().split()]\n V = [int(i) for i in input().split()]\n\n V.sort(reverse = True)\n max_list = [V[0:A]]\n max = sum(V[0:A]) / A\n\n for i in range(A+1,B+1):\n a = sum(V[0:i]) / i\n if max <= a:\n max_list.append(V[0:i])\n max = a\n print("{:.6f}".format(max))\n \n ans = 0\n for x in max_list:\n ans_sub = 1\n try:\n x = Counter(x).most_common()\n except TypeError:\n ans += ans_sub\n continue\n for i in range(len(x)):\n ans_sub *= comb(V.count(x[i][0]),x[i][1])\n ans += ans_sub\n print(int(ans))\n', 'if __name__ == \'__main__\':\n from collections import Counter\n from scipy.mist import comb\n\n N,A,B = [int(i) for i in input().split()]\n V = [int(i) for i in input().split()]\n\n V.sort(reverse = True)\n max_list = [V[0:A]]\n max = sum(V[0:A]) / A\n\n for i in range(A+1,B+1):\n a = sum(V[0:i]) / i\n if max <= a:\n max_list.append(V[0:i])\n max = a\n print("{:.6f}".format(max))\n \n ans = 0\n for x in max_list:\n ans_sub = 1\n try:\n x = Counter(x).most_common()\n except TypeError:\n ans += ans_sub\n continue\n for i in range(len(x)):\n ans_sub *= comb(V.count(x[i][0]),x[i][1])\n ans += ans_sub\n print(int(ans))\n', 'if __name__ == \'__main__\':\n from collections import Counter\n from mist.special import comb\n\n N,A,B = [int(i) for i in input().split()]\n V = [int(i) for i in input().split()]\n\n V.sort(reverse = True)\n max_list = [V[0:A]]\n max = sum(V[0:A]) / A\n\n for i in range(A+1,B+1):\n a = sum(V[0:i]) / i\n if max <= a:\n max_list.append(V[0:i])\n max = a\n print("{:.6f}".format(max))\n \n ans = 0\n for x in max_list:\n ans_sub = 1\n try:\n x = Counter(x).most_common()\n except TypeError:\n ans += ans_sub\n continue\n for i in range(len(x)):\n ans_sub *= comb(V.count(x[i][0]),x[i][1])\n ans += ans_sub\n print(int(ans))\n', 'def comb(n, k):\n return factorial(n) // (factorial(k) * factorial(n-k))\n \nif __name__ == \'__main__\':\n from collections import Counter\n from math import factorial\n\n N,A,B = [int(i) for i in input().split()]\n V = [int(i) for i in input().split()]\n\n V.sort(reverse = True)\n max_list = [V[0:A]]\n max = sum(V[0:A]) / A\n\n for i in range(A+1,B+1):\n a = sum(V[0:i]) / i\n if max <= a:\n max_list.append(V[0:i])\n max = a\n print("{:.6f}".format(max))\n\n ans = 0\n for x in max_list:\n ans_sub = 1\n try:\n x = Counter(x).most_common()\n except TypeError:\n ans += ans_sub\n continue\n for i in range(len(x)):\n ans_sub *= comb(V.count(x[i][0]),x[i][1])\n ans += ans_sub\n print(int(ans))\n']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s106604624', 's161784100', 's636139620', 's853085645', 's532345128']
[13576.0, 15940.0, 13172.0, 3316.0, 3316.0]
[163.0, 207.0, 158.0, 20.0, 22.0]
[595, 746, 746, 748, 819]
p03776
u841623074
2,000
262,144
You are given N items. The _value_ of the i-th item (1 \leq i \leq N) is v_i. Your have to select at least A and at most B of these items. Under this condition, find the maximum possible arithmetic mean of the values of selected items. Additionally, find the number of ways to select items so that the mean of the values of selected items is maximized.
['N,A,B=map(int,input().split())\nv=[int(x)for x in input().split()]\nv.sort(reverse=True)\na=sum(v[:A])/A\nm=min(v[:A])\nk=v.count(m)\nl=v.index(m)\nans=0\nimport math\nfor i in range(A,B+1):\n if i==A:\n ans+=(math.factorial(k)/math.factorial(i-l))/math.factorial(k-i+l)\n else:\n if k-i+l>=0 and a==m:\n ans+=(math.factorial(k)//math.factorial(i-l))//math.factorial(k-i+l)\n else:\n break\n \n \nprint("{:.1f}".format(a))\nprint(int(ans)) ', 'N,A,B=map(int,input().split())\nv=[int(x)for x in input().split()]\nv.sort(reverse=True)\na=sum(v[:A])/A\nm=min(v[:A])\nk=v.count(m)\nl=v.index(m)\nans=0\nprint(m)\nprint(v)\nprint(k)\nprint(l)\nimport math\nfor i in range(A,B+1):\n if i==A:\n ans+=(math.factorial(k)/math.factorial(i-l))/math.factorial(k-i+l)\n else:\n if k-i+l>=0 and a==m:\n ans+=(math.factorial(k)//math.factorial(i-l))//math.factorial(k-i+l)\n else:\n break\n \n \nprint("{:.6f}".format(a))\nprint(int(ans)) ', 'N,A,B=map(int,input().split())\nv=[int(x)for x in input().split()]\nv.sort(reverse=True)\na=sum(v[:A])/A\nm=min(v[:A])\nk=v.count(m)\nl=v.index(m)\nans=0\nimport math\nfor i in range(A,B+1):\n if i==A:\n ans+=(math.factorial(k)//math.factorial(i-l))//math.factorial(k-i+l)\n else:\n if k-i+l>=0 and a==m:\n ans+=(math.factorial(k)//math.factorial(i-l))//math.factorial(k-i+l)\n else:\n break\n \n \nprint("{:.6f}".format(a))\nprint(int(ans)) ']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s090319550', 's785559356', 's707187628']
[3064.0, 3188.0, 3064.0]
[17.0, 18.0, 18.0]
[491, 528, 494]
p03781
u018679195
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['n=int(input())\nans=0\nfor i in range(n+1):\n if i*(i+1)/2>n:\n ans=i\n break\nprint(ans)\n', 'nest = int(input())\n\nmax = 0\ni = 0\n\nwhile max < nest:\n\ti += 1\n\tmax += i\n\nprint(i)']
['Wrong Answer', 'Accepted']
['s137102816', 's398261010']
[2940.0, 3060.0]
[30.0, 30.0]
[101, 81]
p03781
u131634965
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['x=int(input())\n\njump_count=0\nfor i in range(x+1):\n if x-i > i+1:\n x-=i\n jump_count+=1\n elif x-i == i+1:\n exit()\n jump_count+=1\nprint(jump_count)', 'x=int(input())\ndis_sum=0\nfor i in range(1,x+1):\n dis_sum+=i\n if dis_sum>=x:\n print(i)\n break']
['Wrong Answer', 'Accepted']
['s013757724', 's083418259']
[2940.0, 2940.0]
[2104.0, 25.0]
[178, 112]
p03781
u140806166
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['x = input()\nd = 0\nfor i in range(1, 10 ** 6):\n d += i\n if x <= d:\n print(i)\n break\n\n\n', 'x = int(input())\nd = 0\nfor i in range(1, 10 ** 6):\n d += i\n if x <= d:\n print(i)\n break\n']
['Runtime Error', 'Accepted']
['s940151159', 's732466781']
[2940.0, 2940.0]
[18.0, 25.0]
[93, 108]
p03781
u163320134
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['n=int(input())\ntmp=0\nfor i in range(100000):\n tmp+=i\n if tmp>=n:\n print(i)', 'n=int(input())\ntmp=0\nfor i in range(100000):\n tmp+=i\n if tmp>=n:\n print(i)\n break']
['Wrong Answer', 'Accepted']
['s904787398', 's636877532']
[3920.0, 2940.0]
[111.0, 25.0]
[79, 89]
p03781
u271456715
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['import sys\n[n, k] = [int(x) for x in input().strip().split()]\na = [int(x) for x in input().strip().split()]\n\na.sort()\n\nif sum(a) < k:\n print(n)\n sys.exit()\n\ns = 0\nfor i in range(len(a)):\n s += a[i]\n if s >= k:\n break\n\naa = [x for x in a if x < a[i]]\nbb = [x for x in a if x < k]\n\ncc = []\nfor i in range(len(aa)):\n c = bb[:i] + bb[i+1:]\n t = k - bb[i]\n c.reverse()\n #print(c)\n flg = 0\n j = 0\n s = 0\n f = [0 for x in range(len(c))]\n while True:\n f[j] = 1\n #print(c)\n #print(f)\n s += c[j]\n if s >= t and s < k:\n flg = 1\n #print(c)\n #print(f)\n break\n if s >= k:\n f[j] = 0\n s -= c[j]\n j += 1\n if j == len(c):\n ii = -1\n for jj in range(len(c) - 1):\n if f[jj] == 1:\n ii = jj\n if ii == -1:\n break\n else:\n for l in range(ii, len(c)):\n f[l] = 0\n j = ii + 1\n s = sum([c[l] * f[l] for l in range(len(c))])\n if flg== 0:\n cc.append(bb[i])\n#print(cc)\nprint(len(cc))\n', 'x = int(input().strip())\n\ny = 0\ni = 0\nwhile y<x:\n i += 1\n y += i\n\nprint(i)']
['Runtime Error', 'Accepted']
['s880964668', 's310817890']
[3064.0, 2940.0]
[18.0, 28.0]
[994, 76]
p03781
u273010357
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['import itertools\nimport numpy as np\n\nX = int(input())\nL = np.array(list(range(int(X**.5)+1)),dtype=np.float32)\nL = np.array(list(itertools.accumulate(L)),dtype=np.float32)\n\ndef getNearestValue(list, num):\n idx = np.abs(np.asarray(list) - num).argmin()\n return list[idx]\n\ntmp = getNearestValue(L, X)\ntmp1 = abs(X-tmp)\nprint(int((np.argwhere(L==tmp)+tmp1)[0]))', 'X=int(input())\nres=0\nfor i in range(X+1):\n if i*(i+1)//2>=X:\n res=i\n break\nprint(res)']
['Wrong Answer', 'Accepted']
['s942344380', 's517873872']
[21680.0, 2940.0]
[293.0, 28.0]
[364, 92]
p03781
u329865314
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['x=int(input())\nfor i in range(100000):\n if i * i+1 >= 2 * x:\n print(i)\n quit()', 'x=int(input())\nfor i in range(100000):\n if i * (i+1) >= 2 * x:\n print(i)\n quit()']
['Wrong Answer', 'Accepted']
['s313432466', 's857889672']
[3064.0, 2940.0]
[26.0, 25.0]
[85, 87]
p03781
u397531548
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['N=int(input())\na=0\ni=1\nwhile a<N:\n a+=i\n i+=1\nprint(i)\n ', 'N=int(input())\na=0\ni=0\nwhile a<N:\n i+=1\n a+=i\nprint(i)']
['Wrong Answer', 'Accepted']
['s092795756', 's220862859']
[3060.0, 2940.0]
[28.0, 28.0]
[59, 56]
p03781
u463655976
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['x = int(input())\n\nt = (-1 + math.sqrt(1 + 8 * x))\nif t % 2 == 0:\n print(t//2)\nelse:\n print(t//2+1)\n', 'import math\nx = int(input())\n\nt = (-1 + math.sqrt(1 + 8 * x))\nif t % 2 == 0:\n print(int(t)//2)\nelse:\n print(int(t)//2+1)\n']
['Runtime Error', 'Accepted']
['s600510772', 's555896833']
[2940.0, 2940.0]
[18.0, 17.0]
[101, 123]
p03781
u468972478
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['n = int(input())\ni = 1\nwhile n > 0:\n n -= i\n i += 1\nprint(i)', 'n = int(input())\ni = 1\nwhile n > 0:\n n -= i\n i += 1\nprint(i-1)']
['Wrong Answer', 'Accepted']
['s296106620', 's639054901']
[9028.0, 9116.0]
[37.0, 37.0]
[62, 64]
p03781
u488127128
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['import math\nx = int(input())\nprint(-(-((x*2+1/4)**0.5-1/2)//1))', 'import math\nx = int(input())\nprint(-int(-((x*2+1/4)**0.5-1/2)//1))']
['Wrong Answer', 'Accepted']
['s486469260', 's679553698']
[2940.0, 3060.0]
[18.0, 17.0]
[63, 66]
p03781
u813174766
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['n=int(input())\ni=int(sqrt(n))//2\nwhile(i*(i+1)//2<n):\n i+=1\nprint(i)', 'n=int(input())\ni=int(n**0.5)//2\nwhile(i*(i+1)//2<n):\n i+=1\nprint(i)']
['Runtime Error', 'Accepted']
['s802034625', 's220714568']
[2940.0, 2940.0]
[17.0, 25.0]
[69, 68]
p03781
u985443069
2,000
262,144
There is a kangaroo at coordinate 0 on an infinite number line that runs from left to right, at time 0. During the period between time i-1 and time i, the kangaroo can either stay at his position, or perform a jump of length exactly i to the left or to the right. That is, if his coordinate at time i-1 is x, he can be at coordinate x-i, x or x+i at time i. The kangaroo's nest is at coordinate X, and he wants to travel to coordinate X as fast as possible. Find the earliest possible time to reach coordinate X.
['# import sys\n\n\nn, k = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\n\nprefix = [set() for _ in range(n + 1)]\nsuffix = [set() for _2 in range(n + 1)]\n\nprefix[0] = {0}\nfor i in range(n):\n for v in prefix[i]:\n if v + a[i] <= k:\n prefix[i+1].add(v + a[i])\n\nsuffix[n] = {0}\nfor i in range(n - 1, -1, -1):\n suffix[i] = set(suffix[i + 1])\n for v in suffix[i + 1]:\n if v + a[i] <= k:\n suffix[i].add(v + a[i])\n\n\nc_suffix = [[0] * (k+1) for _3 in range(n + 1)]\nfor i in range(n + 1):\n for j in range(k):\n c_suffix[i][j + 1] = c_suffix[i][j] + (j in suffix[i])\n\n\ndef find(i):\n if k <= a[i]:\n return 0\n for s in prefix[i]:\n start = max(0, k - a[i] - s)\n stop = k - s\n if c_suffix[i + 1][stop] - c_suffix[i + 1][start] > 0:\n return 0\n return 1\n\n\nres = 0\nfor i in range(n):\n res += find(i)\nprint(res)\n', "import sys\nsys.stdin = open('d3.in')\n\nn, k = map(int, input().split())\na = list(map(int, input().split()))\na.sort()\n\nprefix = [set() for _ in range(n + 1)]\n# suffix = [set() for _2 in range(n + 1)]\n\nprefix[0] = {0}\nfor i in range(n):\n for v in prefix[i]:\n prefix[i+1].add(v)\n if v + a[i] <= k:\n prefix[i+1].add(v + a[i])\n\nsuffix_i = {0}\n\n\nc_suffix = [[0] * (k+1) for _3 in range(n + 1)]\n\nfor j in range(k):\n c_suffix[n][j + 1] = c_suffix[n][j] + (j in suffix_i)\n\nfor i in range(n - 1, -1, -1):\n to_add = set()\n for v in suffix_i:\n if v + a[i] <= k:\n to_add.add(v + a[i])\n suffix_i.update(to_add)\n for j in range(k):\n c_suffix[i][j + 1] = c_suffix[i][j] + (j in suffix_i)\n\n\ndef find(i):\n if k <= a[i]:\n return 0\n for s in prefix[i]:\n start = max(0, k - a[i] - s)\n stop = k - s\n if c_suffix[i + 1][stop] - c_suffix[i + 1][start] > 0:\n return 0\n return 1\n\n\nres = 0\nfor i in range(n):\n res += find(i)\nprint(res)\n", 'from math import sqrt\n\nx = int(input())\nn = int(sqrt(2 * x)) - 10\nwhile not (n - 1) * n // 2 < x <= n * (n + 1) // 2:\n n += 1\nprint(n)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s185730275', 's353755267', 's712755093']
[3316.0, 3064.0, 2940.0]
[19.0, 18.0, 17.0]
[961, 1044, 138]
p03783
u823871776
2,000
262,144
AtCoDeer the deer found N rectangle lying on the table, each with height 1. If we consider the surface of the desk as a two-dimensional plane, the i-th rectangle i(1≤i≤N) covers the vertical range of AtCoDeer will move these rectangles horizontally so that all the rectangles are connected. For each rectangle, the cost to move it horizontally by a distance of x, is x. Find the minimum cost to achieve connectivity. It can be proved that this value is always an integer under the constraints of the problem.
['n = int(input())\n\nl = [0]*n\nr = [0]*n\n\nfor i in range(n):\n l[i], r[i] = list(map(int, input().split()))\n\nN = 10**9+1\ndp = [[0 for i in range(N)] for j in range(n)]\n\n\nfor i in range(N):\n if r[0] < i: d = i-r[0]\n elif i < l[0]: d = l[0]-i\n else: d = 0\n dp[0][i] = d\n\n\nfor ni in range(1,n):\n for i in range(N):\n if r[ni] < i: d = i-r[ni]\n elif i < l[ni]: d = l[ni]-i\n else: d = 0\n dp[ni][i] = d + dp[ni-1][i]\nprint(min(dp[n-1]))', 'import math\nn = int(input())\nN = 400\nif n > N: exit()\n\nl = [0]*n\nr = [0]*n\nfor i in range(n): \n l[i], r[i] = list(map(int, input().split()))\ndp = [[1000 for i in range(N)] for j in range(n)]\n\nfor i in range(N): \n dp[0][i] = abs(l[ni]-i)\n if i < l[ni]: \n d = l[ni] - i\n elif r[ni] < i: \n d = i - r[ni]\n else: \n d = 0\n dp[0][i] = d\n \nfor ni in range(1,n): \n for xj in range(N): \n \n if xj < l[ni]: \n d = l[ni] - xj\n elif r[ni] < xj:\n d = xj - r[ni]\n else: \n d = 0 \n \n min_cost = 1000\n for xk in range(N):\n d2 = 0\n if xk < xj:\n if xj <= xk+r[ni-1]:\n min_cost = min(min_cost, dp[ni-1][xj] + d2 )\n elif xj < xk:\n if xk <= xj+r[ni]:\n min_cost = min(min_cost, dp[ni-1][xj] + d2 ) \n else:\n min_cost = min(min_cost, dp[ni-1][xj] + d2)\n dp[ni][xj] = min_cost+d\nprint(min(dp[n-1]))', 'n = int(input())\n\nif n>400: exit()\n\nl = [0]*n\nr = [0]*n\n\nfor i in range(n):\n l[i], r[i] = list(map(int, input().split()))\n\nN = 400+1\ndp = [[0 for i in range(N)] for j in range(n)]\n\n\nfor i in range(N):\n if r[0] < i: d = i-r[0]\n elif i < l[0]: d = l[0]-i\n else: d = 0\n dp[0][i] = d\n\n\nfor ni in range(1,n+1):\n for i in range(N):\n if r[ni] < i: d = i-r[ni]\n elif i < l[ni]: d = l[ni]-i\n else: d = 0\n dp[ni][i] = d + dp[ni-1][i]\nprint(min(dp[n-1]))', 'N = int(input())\nP = [list(map(int, input().split())) for i in range(N)]\n \nINF = 10**18\n \nfrom heapq import heappush, heappop\n \nl0, r0 = P[0]\n \nL = [-l0+1]\nR = [l0-1]\ns = t = 0\n \nres = 0\nfor i in range(N-1):\n l0, r0 = P[i]\n l1, r1 = P[i+1]\n s += (r1 - l1); t += (r0 - l0)\n if -s-L[0] <= l1-1 <= t+R[0]:\n heappush(L, -l1+1-s)\n heappush(R, l1-1-t)\n elif l1-1 < -s-L[0]:\n heappush(L, -l1+1-s)\n heappush(L, -l1+1-s)\n p = -heappop(L)-s\n heappush(R, p-t)\n res += (p - (l1-1))\n elif t+R[0] < l1-1:\n heappush(R, l1-1-t)\n heappush(R, l1-1-t)\n p = heappop(R) + t\n heappush(L, -p-s)\n res += (l1-1 - p)\nprint(res)']
['Time Limit Exceeded', 'Runtime Error', 'Runtime Error', 'Accepted']
['s116683642', 's144645404', 's911515682', 's109930251']
[530200.0, 4340.0, 9332.0, 36336.0]
[2145.0, 27.0, 113.0, 623.0]
[568, 1283, 586, 703]
p03785
u001024152
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = map(int, input().split())\nT = [int(input()) for _ in range(N)]\nT.sort()\ntmp = T[0]\nans = 0\ncnt = 1\nfor i in range(1, N):\n cnt += 1\n if T[i]-tmp>K:\n ans += 1\n cnt = 1\n tmp = T[i]\n elif cnt>C:\n ans += 1\n cnt = 1\n tmp = T[i]\nprint(ans)', 'N,C,K = map(int, input().split())\nans = 0\nt = [int(input()) for _ in range(N)]\nt.sort()\nfor i in range(N):\n if i==0:\n tmp = t[i]+K\n cnt = 1\n else:\n cnt += 1\n if t[i] > tmp or i==N-1 or cnt==C:\n ans += cnt//C if cnt%C==0 else cnt//C+1\n tmp = t[i]+K\n cnt = 1\n # print(i,cnt, ans)\nprint(ans)', 'N,C,K = map(int, input().split())\nT = [int(input()) for _ in range(N)]\nT.sort()\ntmp = T[0]\nans = 0\ncnt = 1\nfor i in range(1, N):\n cnt += 1\n if T[i]-tmp>K:\n ans += 1\n cnt = 1\n tmp = T[i]\n elif cnt>C:\n ans += 1\n cnt = 1\n tmp = T[i]\nprint(ans+1)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s199915055', 's841804456', 's321810192']
[7384.0, 7384.0, 7384.0]
[239.0, 271.0, 242.0]
[291, 358, 293]
p03785
u001687078
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n, c, k = map(int, input().split())\nt = []\nfor i in range(n):\n t.append(int(input()))\nt.sort()\nresult = 1\nj = 0\n\nfor i in range(n):\n if (t[j] - t[0]) > k or c == count:\n result += 1\n t = t[j:]\n j = 1\n else:\n j += 1\nprint(result)', 'n, c, k = map(int, input().split())\nt = [int(input()) for i in range(n)]\nt.sort()\n\nresult = 1\ncount = 0\nf = 0\n\nfor i in range(n):\n if (t[i] - t[f]) > k or c == count:\n result += 1\n count = 1\n f = i\n else:\n count += 1\nprint(result)']
['Runtime Error', 'Accepted']
['s705304685', 's084762238']
[7384.0, 7384.0]
[222.0, 242.0]
[243, 244]
p03785
u001769145
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['# AGC011 A Airport Bus\nimport bisect\nfrom collections import deque\n\nn, c, k = map(int, input().split())\nt_list = [int(input()) for _ in range(n)]\n\nt_list.sort()\nt_list = deque(t_list)\nans = 0\n\nwhile len(t_list) > 0:\n _tmp = t_list.popleft() + k\n _idx = bisect.bisect_right(t_list, _tmp)\n if c <= _idx + 1:\n for _ in range(c):\n t_list.popleft()\n else:\n for _ in range(_idx):\n t_list.popleft()\n ans += 1\n\nprint(ans)', '# AGC011 A Airport Bus\nimport bisect\nfrom collections import deque\n\nn, c, k = map(int, input().split())\nt_list = [int(input()) for _ in range(n)]\n\nt_list.sort()\nt_list = deque(t_list)\nans = 0\n\nwhile len(t_list) > 0:\n _tmp = t_list.popleft() + k\n _idx = bisect.bisect_right(t_list, _tmp)\n if c-1 <= _idx:\n for _ in range(c-1):\n t_list.popleft()\n else:\n for _ in range(_idx):\n t_list.popleft()\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s597581617', 's181685996']
[8120.0, 8116.0]
[611.0, 609.0]
[464, 464]
p03785
u004423772
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['T = [int(input()) for _ in range(N)]\nT.sort()\n\ndef init_bus():\n global bus, min_t, ans\n bus = []\n bus.append(t)\n min_t = t\n ans += 1\n\nmin_t = 0\nfor t in T:\n if len(bus) == 0:\n init_bus()\n continue\n if t - min_t < K and len(bus) < C:\n bus.append(t)\n else:\n init_bus()\nprint(ans)', "N, C, K = map(int, input().split(' '))\nbus = []\nans = 0\nT = [int(input()) for _ in range(N)]\nT.sort()\n\ndef init_bus():\n global bus, min_t, ans\n bus = []\n bus.append(t)\n min_t = t\n ans += 1\n\nmin_t = 0\nfor t in T:\n if len(bus) == 0:\n init_bus()\n continue\n if t - min_t < K and len(bus) < C:\n bus.append(t)", "N, C, K = map(int, input().split(' '))\nbus = []\nans = 0\nT = [int(input()) for _ in range(N)]\nT.sort()\n\nmin_t = 0\ni = 0\nwhile i < N:\n ans += 1\n start = i\n while i < N and T[i] - T[start] <= K and i - start < C:\n i += 1\nprint(ans)"]
['Runtime Error', 'Wrong Answer', 'Accepted']
['s010338295', 's919462118', 's748065433']
[3060.0, 7384.0, 7420.0]
[17.0, 229.0, 290.0]
[329, 345, 244]
p03785
u029169777
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K=map(int,input().split())\nT=[int(input()) for _ in range(N)]\nT.sort()\n\nans=0\nnexttime=0\npeople=0\nfor t in T:\n if t>nexttime:\n nexttime=t+K\n ans+=1\n people=0\n people+=1\n if people==C:\n nexttime=0', 'N,C,K=map(int,input().split())\nT=[int(input()) for _ in range(N)]\nT.sort()\n\nans=0\nnexttime=0\npeople=0\nfor t in T:\n if t>nexttime:\n nexttime=t+K\n ans+=1\n people=0\n people+=1\n if people==C:\n nexttime=0\nprint(ans)']
['Wrong Answer', 'Accepted']
['s523793023', 's199678274']
[7384.0, 7488.0]
[241.0, 233.0]
[214, 225]
p03785
u033606236
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['nums ,limit ,wait = map(int, input().split())\nnums_ary = [0 for i in range(nums)]\n\nfor i in range(nums):\n nums_ary[i] = int(input())\n\nnums_ary.sort()\nnums_ary.append(10000000000000)\ncount = 0\ni = 0\nwhile i < nums:\n time = nums_ary[i]\n for x in range(limit):\n print(i,count,nums_ary[i])\n if not time <= nums_ary[i] <= time + wait:\n count += 1\n break\n i += 1\n else:\n count += 1\nprint(count)', 'nums ,limit ,wait = map(int, input().split())\nnums_ary = [0 for i in range(nums)]\n\nfor i in range(nums):\n nums_ary[i] = int(input())\n\nnums_ary.sort()\nnums_ary.append(10000000000000)\ncount = 0\ni = 0\nwhile i < nums:\n time = nums_ary[i]\n for x in range(limit):\n if not time <= nums_ary[i] <= time + wait:\n count += 1\n break\n i += 1\n else:\n count += 1\nprint(count)']
['Wrong Answer', 'Accepted']
['s153719966', 's718718165']
[11464.0, 7392.0]
[632.0, 300.0]
[450, 415]
p03785
u062189367
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['import sys\nN, C, K = list(map(int, input().split()))\nlistT = [int(input()) for _ in range(N)]\n\nlistT.sort()\n\ndef func(listT,bus):\n if len(listT)<2:\n print(bus+1)\n sys.exit()\n\n elif len(listT)>=2:\n for i in range(1,max(C,len(listT))):\n\n if listT[i]-listT[0]>K:\n bus += 1\n return func(listT[i:],bus)\n\n bus += 1\n\n if len(listT)<C:\n print(bus)\n sys.exit()\n\n\n return func(listT[C:],bus)\n\nfunc(listT,0)\n', 'N, C, K = list(map(int,input().split()))\nlistT = [int(input()) for _ in range(N)]\n\nlistT.sort()\n\ncount=0\nwhile listT != []:\n bus = []\n time = listT[0]\n count += 1\n while len(bus) != C and time+K>=listT[0]:\n bus.append(listT.pop(0))\n if listT==[]:\n break\n\nprint(count) \n']
['Runtime Error', 'Accepted']
['s092329737', 's291078776']
[669648.0, 7384.0]
[2144.0, 1753.0]
[516, 317]
p03785
u064408584
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n,c,k=map(int, input().split())\nt=[int(input()) for i in range(n)]\nt.sort()\nans=0\ns=0\ng=10**9\nfor i in range(n):\n if s==0:\n g=t[i]+k\n s+=1\n elif g>t[i]:\n ans+=1\n g=t[i]+s\n s+=1\n else:\n s+=1\n if s==c:\n ans+=1\n g=10**8\n s=0\nprint(ans)', 'n,c,k=map(int,input().split())\nt=sorted(map(int,input().split()))\nans=0\nj=0\ne=0\nfor i in t:\n if j==0:\n j=1\n e=i+k\n elif e<=i:\n j=1\n e=i+k\n ans+=1\n else:\n j+=1\n if j==c:\n j=0\n ans+=1\n e=0\nif j>0:ans+=1\nprint(ans)\n', 'n,c,k=map(int,input().split())\nt=sorted([int(input()) for i in range(n)])\nans=0\nj=0\ne=0\nfor i in t:\n if j==0:\n j=1\n e=i+k\n ans+=1\n elif e<i:\n j=1\n e=i+k\n ans+=1\n else:\n j+=1\n if j==c:\n j=0\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s293042724', 's778409269', 's433055347']
[7488.0, 3064.0, 8280.0]
[253.0, 18.0, 234.0]
[307, 287, 268]
p03785
u070187104
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
["if __name__ == '__main__':\n [N, C, K] = [int(i) for i in input().split()]\n\n T = []\n for i in range(N):\n T.append(int(input()))\n T.sort()\n\n counter = 1\n\n num_people = 0\n\n flag = False\n\n for num in T:\n num_people += 1\n if flag:\n if num - first_time <= K and num_people <= C:\n continue\n else:\n counter += 1\n num_people = 1\n flag = False\n else:\n first_time = num\n flag = True\n\n\n print(counter)\n", "if __name__ == '__main__':\n [N, C, K] = [int(i) for i in input().split()]\n\n T = []\n for i in range(K):\n T.append(int(input()))\n T.sort()\n\n counter = 1\n\n num_people = 0\n\n flag = False\n\n for num in T:\n print(num)\n print(flag)\n num_people += 1\n if flag:\n if num - first_time <= K and num_people <= C:\n continue\n else:\n counter += 1\n num_people = 1\n flag = False\n print('inc')\n else:\n first_time = num\n flag = True\n \n\n print(counter)\n", "if __name__ == '__main__':\n [N, C, K] = [int(i) for i in input().split()]\n\n T = []\n for i in range(N):\n T.append(int(input()))\n T.sort()\n\n counter = 1\n\n num_people = 0\n\n flag = False\n\n for num in T:\n print(num)\n print(flag)\n num_people += 1\n if flag:\n if num - first_time <= K and num_people <= C:\n continue\n else:\n counter += 1\n num_people = 1\n flag = False\n print('inc')\n else:\n first_time = num\n flag = True\n\n\n print(counter)\n", "if __name__ == '__main__':\n [N, C, K] = [int(i) for i in input().split()]\n\n T = []\n for i in range(N):\n T.append(int(input()))\n T.sort()\n\n counter = 1\n\n num_people = 0\n\n flag = False\n\n for time in T:\n num_people += 1\n if flag:\n if time - first_time <= K and num_people <= C:\n continue\n else:\n counter += 1\n num_people = 1\n first_time = time\n\n else:\n first_time = time\n flag = True\n\n print(counter)\n"]
['Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s199238746', 's390548089', 's476723093', 's840083280']
[7384.0, 7068.0, 8908.0, 7444.0]
[240.0, 182.0, 405.0, 248.0]
[549, 625, 617, 557]
p03785
u075303794
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['import bisect\n\nN,C,K=map(int,input().split())\nT=[int(input()) for _ in range(N)]\nT.sort()\nans=0\ni=0\n\nif T[0]+K>=T[-1]:\n print(1)\nelse:\n while True:\n if i==N-1:\n ans+=1\n break\n i=bisect.bisect_right(T,T[i]+K)\n print(T,i)\n ans+=1\n print(ans)', 'import bisect\nimport sys\n\nN,C,K=map(int,input().split())\nT=[int(input()) for _ in range(N)]\nT.sort()\nans=0\ni=0\n\nif T[0]+K>=T[-1]:\n if N%C==0:\n print(N//C)\n else:\n print(N//C+1)\n sys.exit()\nelse:\n while True:\n t=bisect.bisect_right(T,T[i]+K)\n if t-i>C:\n i+=C\n else:\n i=t\n ans+=1\n if i==N-1:\n ans+=1\n break\n if i>N-1:\n i=N-1\n break\nprint(ans)']
['Runtime Error', 'Accepted']
['s710051888', 's200610760']
[143776.0, 13400.0]
[1498.0, 217.0]
[264, 398]
p03785
u102960641
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n = int(input())\na = input()\nb = input()\n\nfor i in range(n):\n if i == 1:\n if a == b:\n print(n)\n exit()\n if a[i:] == b[:-i]:\n print(n+i)\n exit()\nprint(n*2)', 'n,c,k = map(int, input().split())\nt = [int(input()) for i in range(n)]\nt.sort()\nnow = t[0]\npeople = 1\nans = 1\nfor i in t[1:]:\n if i - now > k or people >= c:\n now = i\n people = 1\n ans += 1\n else:\n people += 1\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s939013857', 's634162686']
[3060.0, 7888.0]
[18.0, 235.0]
[175, 234]
p03785
u105302073
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N, C, K = [int(i) for i in input().split()]\nT = list(sorted([int(i) for i in input().split()]))\nans = 1\nlimit = 0\nti = T[0]\nfor i in range(N - 1):\n limit += 1\n if ti + K < T[i + 1] or limit == C:\n ti = T[i + 1]\n ans += 1\n limit = 0\nprint(ans)\n', 'N, C, K = [int(i) for i in input().split()]\nT = sorted([int(input())] for i in range(N))\nans = 1\nlimit = 0\nti = T[0]\nfor i in range(N - 1):\n limit += 1\n if ti + K < T[i + 1] or limit == C:\n ti = T[i + 1]\n ans += 1\n limit = 0\nprint(ans)\n', 'N, C, K = [int(i) for i in input().split()]\nT = list(sorted([int(i) for i in input().split()]))\nans = 1\nlimit = 0\nti = T[0]\nfor i in range(N - 1):\n limit += 1\n if ti + K < T[i + 1] or limit == C:\n ti = T[i + 1]\n ans += 1\n limit = 0\nprint(ans)\n', 'N, C, K = [int(i) for i in input().split()]\nT = sorted([int(input()) for i in range(N)])\nans = 1\nlimit = 0\nti = T[0]\nfor i in range(N - 1):\n limit += 1\n if ti + K < T[i + 1] or limit == C:\n ti = T[i + 1]\n ans += 1\n limit = 0\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s345064087', 's415293443', 's430716279', 's915191863']
[3060.0, 16876.0, 3060.0, 8280.0]
[17.0, 335.0, 17.0, 247.0]
[270, 263, 270, 263]
p03785
u107915058
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N, C, K = map(int, input().split())\nT = list(int(input()) for i in range(N))\nT.sort()\nbus = 1\npassenger = 0\nlimit = T[0] + K\nfor i in range(N):\n if T[i] <= limit and passenger < c:\n passenger += 1\n else:\n bus += 1\n limit = T[i]+K\n passenger = 1\nprint(bus)', 'bus = 1\ntime = 0\nfor i in range(N):\n if T[i]-time > K:\n bus +=1\n time = T[i]\n else:\n time = time\nprint(bus)', 'N, C, K = map(int, input().split())\nT = list(int(input()) for i in range(N))\nT.sort()\nbus = 1\npassenger = 0\nlimit = T[0] + K\nfor i in range(N):\n if T[i] <= limit and passenger < C:\n passenger += 1\n else:\n bus += 1\n limit = T[i]+K\n passenger = 1\nprint(bus)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s777102471', 's870986915', 's667867837']
[13336.0, 8908.0, 13248.0]
[157.0, 24.0, 180.0]
[289, 134, 289]
p03785
u112007848
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['import bisect\nkyaku, teiin, jikan = map(int, input().split(" "))\na=sorted([(int)(input()) for i in range(kyaku)])\nprint(a)\ncount = 0\nwhile(True):\n print(a)\n if len(a) > teiin:\n if a[0] + jikan >= a[teiin]:\n a = a[teiin:]\n else:\n a = a[bisect.bisect_left(a, a[0] + jikan):]\n else:\n if a[0] + jikan >= a[-1]:\n count += 1\n break\n else:\n a = a[bisect.bisect_left(a, a[0] + jikan):]\n count += 1\nprint(count)', 'n,c,k = map(int ,input().split(" "))\nt = sorted([int(input()) for i in range(n)])\ntotal = 0\ncount = 0\nwhile(count != n):\n temp = 0\n \n for i in range(c):\n if count + i >= n:\n \n if t[-1] - t[count] <= k:\n \n count = n\n total += 1\n break\n else:\n temp = 0\n while(count != n):\n \n if t[count + temp] - t[count] <= k:\n temp += 1\n else:\n count += temp + 1\n total += 1\n break\n break\n if t[count + i] - t[count] > k:\n \n count += i\n total += 1\n break\n else:\n \n count += c\n total += 1\n if count == n:\n break\nprint(total)']
['Runtime Error', 'Accepted']
['s328308324', 's645627991']
[144504.0, 14060.0]
[1593.0, 224.0]
[443, 892]
p03785
u118642796
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = map(int,input().split())\nT = [int(input()) for _ in range(N)].sort()\n\ntime=T[0]\ncount = 1\nans = 0\n\nfor i in range(1,N):\n if T[i]-time>K or count==C:\n time = T[i]\n count = 1\n ans += 1\n else:\n count += 1\nif count>0:\n ans += 1\nprint(ans)\n \n', 'N,C,K = map(int,input().split())\nT = [int(input()) for _ in range(N)]\nT.sort()\n\ntime=T[0]\ncount = 1\nans = 0\n\nfor i in range(1,N):\n if T[i]-time>K or count==C:\n time = T[i]\n count = 1\n ans += 1\n else:\n count += 1\nif count>0:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s006973017', 's832351349']
[7444.0, 7384.0]
[210.0, 228.0]
[261, 259]
p03785
u124605948
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n, c, k = map(int, input().split())\nT = sorted([int(input()) for _ in range(n)])\n\nlimit = T[0] + k\nbus = [0]\nans = 0\nfor t in T:\n if t <= limit:\n if bus[-1] <= c:\n bus[-1] += 1\n else:\n bus.append(1)\n else:\n limit = t + k\n ans += len(bus)\n bus = [1]\n\nans += len(bus)\n\nprint(ans)', 'n, c, k = map(int, input().split())\nT = sorted([int(input()) for _ in range(n)])\n\nlimit = T[0] + k\nbus = [0]\nans = 0\nfor t in T:\n if t <= limit:\n if bus[-1] < c:\n bus[-1] += 1\n else:\n bus.append(1)\n limit = t + k\n\n else:\n limit = t + k\n ans += len(bus)\n bus = [1]\n\nans += len(bus)\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s393182877', 's500012192']
[14032.0, 13996.0]
[181.0, 182.0]
[340, 366]
p03785
u125205981
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['def main():\n N = int(input())\n A = list(map(int, input().split()))\n\n A.sort()\n i = 1\n j = N - 1\n x = sum(A)\n while j > 0:\n if (x - A[j]) * 2 >= A[j]:\n i += 1\n else:\n break\n x -= A[j]\n j -= 1\n print(str(i))\n\nmain()', 'def main():\n N, C, K = map(int, input().split())\n i = 0\n T = []\n while i < N:\n T.append(int(input()))\n i += 1\n T.sort()\n T.reverse()\n\n c = 1\n i = 1\n bus = 0\n time = T[0]\n while i < N:\n if time - T[i] <= K:\n c += 1\n if time - T[i] > K or c == C:\n bus += 1\n c = 1\n time = T[i]\n i += 1\n\n print(str(bus))\n\nmain()', 'def main():\n N, C, K = map(int, input().split())\n i = 0\n T = []\n while i < N:\n T.append(int(input()))\n i += 1\n T.sort()\n T.reverse()\n\n c = 1\n i = 1\n bus = 1\n time = T[0]\n while i < N:\n if time - T[i] > K or c == C:\n bus += 1\n c = 1\n time = T[i]\n elif time - T[i] <= K:\n c += 1\n i += 1\n\n print(str(bus))\n\nmain()']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s355109237', 's811920110', 's065479863']
[3060.0, 7384.0, 7384.0]
[17.0, 256.0, 245.0]
[287, 423, 425]
p03785
u127499732
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
["def main():\n n, c, k, *t = map(int, open(0).read().split())\n t = sorted(t)\n u = tuple(t)\n\n count = 1\n i = 0\n p = 1\n lim = u[i] + k\n while i < n:\n if u[i] <= lim or p < c:\n i += 1\n p += 1\n else:\n count += 1\n lim = u[i] + k\n p = 1\n print(count)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n n, c, k, *t = map(int, open(0).read().split())\n t.sort()\n u = tuple(t)\n\n cnt = 1\n p, l = 0, u[0] + k\n for v in t:\n if v <= l and p < c:\n p += 1\n else:\n cnt += 1\n p = 1\n l = v + k\n print(cnt)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s173919577', 's964579917']
[14052.0, 14052.0]
[108.0, 87.0]
[379, 323]
p03785
u151625340
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = map(int,input().split())\nT = [int(input()) for i in range(N)]\nT.sort()\ns = 0\ne = T[0]+K\np = 0\nans = 0\nflag = False\nfor i in range(N):\n if p == C or e < T[i]:\n ans += 1\n s = T[i]\n e = T[i]+K\n p = 0\n if i == N-1:\n flag = True\n s = max(s,T[i])\n e = min(e,T[i]+K)\n p += 1\nif not flag:\n ans += 1\nprint(ans)\n', 'N,C,K = map(int,input().split())\nT = [int(input()) for i in range(N)]\ns = 0\ne = 0\np = 0\nans = 0\nfor i in range(N):\n if p == C or e < T[i]:\n ans += 1\n s = T[i]\n e = T[i]+K\n p = 0\n s = max(s,T[i])\n e = min(e,T[i]+K)\n p += 1\nif p > 0:\n ans += 1\nprint(ans)\n', 'N,C,K = map(int,input().split())\nT = [int(input()) for i in range(N)]\nT.sort()\ns = 0\ne = T[0]+K\np = 0\nans = 0\nfor i in range(N):\n if p == C or e < T[i]:\n ans += 1\n s = T[i]\n e = T[i]+K\n p = 0\n s = max(s,T[i])\n e = min(e,T[i]+K)\n p += 1\nprint(ans+1)\n\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s279516381', 's654793391', 's345579064']
[7384.0, 7104.0, 7488.0]
[315.0, 282.0, 320.0]
[371, 296, 290]
p03785
u185424824
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = map(int,input().split())\n\nT = sorted([int(input()) for _ in range(N)])\nprint(T)\nans = 0\ncount = 0\ntime = 0\nfor i in range(N):\n if T[i] > time + K:\n ans += 1\n count = 0\n if count == 0:\n time = T[i]\n count += 1\n if count == C:\n ans += 1\n count = 0\nif count > 0:\n ans += 1\nprint(ans)', 'N,C,K = map(int,input().split())\n\nT = sorted([int(input()) for _ in range(N)])\nans = 1\ncount = 0\ntime = 0\nstart = -1\nfor i in range(N):\n if start == -1:\n start = i\n if i != N-1:\n if T[i] > T[start] + K or i+1 -start == C:\n ans += 1\n start = -1\n \nprint(ans)', 'N,C,K = map(int,input().split())\n\nT = sorted([int(input()) for _ in range(N)])\nans = 1\ncount = 0\ntime = 0\nstart = -1\nfor i in range(N):\n if start == -1:\n start = i\n if i != N-1:\n if T[i+1] > T[start] + K or i+1 -start == C:\n ans += 1\n start = -1\n \nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s643861439', 's966657437', 's759662182']
[15852.0, 14020.0, 14164.0]
[202.0, 188.0, 195.0]
[308, 275, 277]
p03785
u187109555
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N, C, K = map(int, input().split())\nsorted_Ts = sorted([int(x) for x in input().split()])\n\nbus_num = 1\nbus_i = [1]\nbus_t = sorted_Ts[0]\nfor t in sorted_Ts:\n if (t<=(bus_t+K)) & (len(bus_i) <= C):\n bus_i.append(1)\n else:\n print("add bus")\n bus_i = []\n bus_t = t\n bus_num +=1\nprint(bus_num)', 'N, C, K = map(int, input().split())\nsorted_Ts = sorted([int(x) for x in input().split()])\n\nbus_num = 1\nbus_i = [1]\nbus_t = sorted_Ts[0]\nfor t in sorted_Ts:\n if (t<=(bus_t+K)) & (len(bus_i) <= C):\n bus_i.append(1)\n else:\n# print("add bus")\n bus_i = []\n bus_t = t\n bus_num +=1\nprint(bus_num)', 'N, C, K = map(int, input().split())\nsorted_Ts = sorted([int(x) for x in input().split()])\n\nbus_num = 1\nbus_i = [1]\nbus_t = sorted_Ts[0]\nfor t in sorted_Ts:\n if (t<=(bus_t+K)) & (len(bus_i) <= C):\n bus_i.append(1)\n else:\n #print("add bus")\n bus_i = []\n bus_t = t\n bus_num +=1\nprint(bus_num)', 'N, C, K = map(int, input().split())\nTs = [0]*N\nfor i in range(N):\n Ts[i] = int(input())\n\nTs = sorted(Ts)\nbus_num = 1\nbus_i = [1]\nbus_t = Ts[0]\nfor t in Ts[1:]:\n if (t<=(bus_t+K)) & (len(bus_i) < C):\n bus_i.append(1)\n else:\n bus_i = [1]\n bus_t = t\n bus_num +=1\nprint(bus_num)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s044339038', 's412635407', 's507398537', 's738355906']
[3064.0, 3064.0, 3064.0, 8240.0]
[17.0, 17.0, 18.0, 251.0]
[329, 331, 330, 311]
p03785
u190866453
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n, c, k = map(int, input().split())\nl = list(int(input()) for i in range(n))\n\ncount = 1\ncount_m = 0\nl.sort()\n\nwhile len(l) > 0:\n for i in range(1, c):\n try:\n if l[i] > l[0] + k:\n l = l[count_m + 1:]\n count += 1\n\n else:\n count_m += 1\n if count_m == c - 1:\n l = l = l[count_m + 1:]\n count += 1\n \n except IndexError:\n print(count)\n exit()\n\nprint(count)', 'n, c, k = map(int, input().split())\nt = sorted([int(input()) for _ in range(n)])\nans = 1\npassenger = 0\nlimit = t[0] + k\n \nfor p in t:\n if passenger < c and p <= limit:\n passenger += 1\n else:\n ans += 1\n passenger = 1\n limit = p + k\nprint(ans)']
['Wrong Answer', 'Accepted']
['s196557473', 's241807964']
[13564.0, 13996.0]
[2206.0, 174.0]
[511, 275]
p03785
u191423660
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['def solve():\n\n N, C, K = map(int, input().split())\n T = [int(input()) for i in range(N)]\n\n T = sorted(T)\n i = 0\n k = 0\n\n ans = 0\n\n print(T)\n\n while i < N:\n n = 0\n while k < N and n < C and T[i] <= T[k] <= T[i]+K:\n n += 1\n k += 1\n if n == C:\n ans += 1\n break\n\n if n != C:\n ans += 1\n\n i = k\n\n\n\n print(ans) \n\n\nif __name__ == "__main__":\n solve()\n', 'def solve():\n\n N, C, K = map(int, input().split())\n T = [int(input()) for i in range(N)]\n\n T = sorted(T)\n i = 0\n k = 0\n\n ans = 0\n\n #print(T)\n\n while i < N:\n n = 0\n while k < N and n < C and T[i] <= T[k] <= T[i]+K:\n n += 1\n k += 1\n if n == C:\n ans += 1\n break\n\n if n != C:\n ans += 1\n\n i = k\n\n\n\n print(ans) \n\n\nif __name__ == "__main__":\n solve()\n']
['Wrong Answer', 'Accepted']
['s859989336', 's397240002']
[15984.0, 14092.0]
[205.0, 194.0]
[486, 487]
p03785
u193927973
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N, C, K=map(int, input().split())\nX=[]\nfor _ in range(N):\n X.append(int(input()))\nX.sort()\nX.append(10**19)\nans=0\ntamatta=0\nhayaihito=X[0]\nfor i in range(N):\n if tamatta<C and hayaihito+K>=X[i+1]:\n tamatta+=1\n else:\n tamatta=0\n hayaihito=X[i+1]\n ans+=1\nprint(ans)', 'N, C, K=map(int, input().split())\nX=[]\nfor _ in range(N):\n X.append(int(input()))\nX.sort()\nX.append(10**19)\nans=0\ntamatta=0\nhayaihito=X[0]\nfor i in range(N+1):\n if tamatta<C and hayaihito+K>=X[i]:\n tamatta+=1\n else:\n ans+=1\n tamatta=1\n hayaihito=X[i]\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s176020190', 's910548346']
[13216.0, 13272.0]
[196.0, 195.0]
[278, 281]
p03785
u202634017
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n,c,k = map(int,input().split())\nt = []\ncnt,ans = 0,0\nbt = 10**10\nbtl = []\nfor i in range(n):\n t.append(int(input()))\n\nt.sort()\n\nfor i in range(n):\n if (t[i] >= bt)&(cnt == c):\n ans += 1\n cnt,bt = 0,10**10\n if (bt == 10**10):\n bt = t[i]+k\n cnt += 1\n else:\n cnt += 1\n \nif (cnt != 0):\n ans += 1\n\nprint(ans)', 'n,c,k = map(int,input().split())\nt = []\ncnt,ans = 0,0\nbt = 10**10\nbtl = []\nfor i in range(n):\n t.append(int(input()))\n\nt.sort()\n\nfor i in range(n):\n if (t[i] >= bt):\n ans += 1\n btl.append(bt)\n cnt,bt = 0,10**10\n if (bt == 10**10):\n bt = t[i]+k\n cnt += 1\n else:\n cnt += 1\n if (cnt == c):\n btl.append(t[i])\n ans += 1\n cnt,bt = 0,10**9+1\n\nif (cnt != 0):\n ans += 1\n\nprint(ans)', 'n,c,k = map(int,input().split())\nt = []\ncnt,ans = 0,0\nbt = 10**10\nbtl = []\nfor i in range(n):\n t.append(int(input()))\n\nt.sort()\n\nfor i in range(n):\n if (t[i] > bt)|(cnt == c):\n ans += 1\n cnt,bt = 0,10**10\n if (bt == 10**10):\n bt = t[i]+k\n cnt += 1\n else:\n cnt += 1\n \nif (cnt != 0):\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s031180184', 's248076085', 's943578966']
[7384.0, 11212.0, 7388.0]
[249.0, 275.0, 272.0]
[361, 453, 360]
p03785
u210827208
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n,c,k=map(int,input().split())\n\nx=[]\nfor i in range(n):\n x.append(int(input()))\n \n \nx.sort()\n\ncount=1\n\nbus_count=0\n\nfor j in range(n-1):\n bus_count+=1\n if(x[j]+k<=x[j+1] or bus_count==c):\n count+=1\n bus_count=0\n ', 'n,c,k=map(int,input().split())\n\nx=[]\nfor i in range(n):\n x.append(int(input()))\n \n \nx.sort()\n\ncount=1\n\nbus_count=0\n\nfor j in range(n-1):\n bus_count+=1\n if(x[j]+k<x[j+1] or bus_count==c):\n count+=1\n bus_count=0\n ', 'n,c,k=map(int,input().split())\n\nx=[]\nfor i in range(n):\n x.append(int(input()))\n \n \nx.sort()\n\ncount=1\n\nbus_count=0\n\nfor j in range(n-1):\n bus_count+=1\n if(x[j+1-bus_count]+k<x[j+1] or bus_count==c):\n count+=1\n bus_count=0\n \nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s416061352', 's751290479', 's037518023']
[7384.0, 7444.0, 7384.0]
[258.0, 258.0, 267.0]
[252, 251, 276]
p03785
u213854484
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = map(int,input().split())\nT = []\nfor i in range(N):\n L.append(int(input()))\n \nans = 1\nT = sorted(T)\nind = 0\n\nfor i in range(T):\n if T[i] > T[ind]+K:\n ans += 1\n ind = i\n elif i >= ind + C:\n ans += 1\n ind = i\n \nprint(ans)', 'N,C,K = map(int,input().split())\nT = []\nfor i in range(N):\n T.append(int(input()))\n \nans = 1\nT = sorted(T)\nind = 0\n\nfor i in range(T):\n if T[i] > T[ind]+K:\n ans += 1\n ind = i\n elif i >= ind + C:\n ans += 1\n ind = i\n \nprint(ans)', 'N,C,K=map(int,input().split())\nT=[]\nfor i in range(N):\n p=int(input())\n T.append(p)\n \nans = 1\nT = sorted(T)\nind = 0\n \nfor i in range(len(T)):\n if T[i] > T[ind]+K:\n ans += 1\n ind = i\n elif i >= ind + C:\n ans += 1', 'N,C,K = map(int, input().split())\nT = [int(input()) for i in range(N)]\n\n \nans = 1\nT = sorted(T)\nind = 0\n\nfor i in range(T):\n if T[i] > T[ind]+K:\n ans += 1\n ind = i\n elif i >= ind + C:\n ans += 1\n ind = i\n \nprint(ans)', 'N,C,K=map(int,input().split())\nT=[]\nfor i in range(N):\n p=int(input())\n T.append(p)\n \nans = 1\nT = sorted(T)\nind = 0\n\nfor i in range(T):\n if T[i] > T[ind]+K:\n ans += 1\n ind = i\n elif i >= ind + C:\n ans += 1\n ind = i\n \nprint(ans)', 'N,C,K=map(int,input().split())\nT=[]\nfor i in range(N):\n p=int(input())\n T.append(p)\n \nans = 1\nT = sorted(T)\nind = 0\n \nfor i in range(len(T)):\n if T[i] > T[ind]+K:\n ans += 1\n ind = i\n elif i >= ind + C:\n ans += 1\n ind = i\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s229734386', 's656929293', 's738285414', 's910330106', 's948621944', 's663543525']
[3064.0, 8280.0, 8280.0, 8276.0, 8280.0, 8280.0]
[17.0, 222.0, 255.0, 208.0, 224.0, 248.0]
[265, 265, 245, 253, 271, 272]
p03785
u215315599
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = map(int,input().split())\nT = [int(input()) for _ in range(N)]\nT.sort()\ntime = T.pop(0)+K\npeople = 1\nans = 1\nfor t in T:\n if t <= time and people < C:\n people += 1\n else:\n if people == C:\n time += t\n else:\n time += K\n people = 0\n ans += 1\nprint(ans)', 'N,C,K = map(int,input().split())\nT = [int(input()) for _ in range(N)]\nT.sort()\ntime = T.pop(0)\npeople = 1\nans = 1\nfor t in T:\n if t <= time + K and people < C:\n people += 1\n else:\n time = t\n people = 1\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s350356796', 's558713890']
[7384.0, 7488.0]
[237.0, 232.0]
[319, 256]
p03785
u223646582
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K=map(int,input().split())\nT=sorted([int(input()) for _ in range(N)])\n\nans=0\nc=0\nt=0\n\nfor i in range(N):\n if c==C or T[i]>t+K:\n ans+=1\n c=0\n\n if c==0:\n t=T[i]\n\n c+=1\n\nif c>=2:\n print(ans+1)\nelse:\n print(ans)\n', 'N,C,K=map(int,input().split())\nT=sorted([int(input()) for _ in range(N)]) + [10000000]\n\nans=0\nc=0\nt=0\n\nfor i in range(N):\n if c==0:\n ans+=1\n t=T[i]\n\n c+=1\n\n if c==C or T[i+1]>t+K:\n c=0\n\nprint(ans)\n\n\n']
['Wrong Answer', 'Accepted']
['s747972721', 's368701497']
[8280.0, 8280.0]
[258.0, 258.0]
[248, 229]
p03785
u226108478
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
["# -*- coding: utf-8 -*-\n\n\ndef main():\n n, c, k = list(map(int, input().split()))\n t = [0] * n\n\n for i in range(n):\n ti = int(input())\n t[i] = (ti, ti + k)\n\n sorted_t = sorted(t, key=lambda x: x[1])\n current_pos = sorted_t[0][1]\n remain = c - 1\n bus_count = 1\n\n for i in range(1, n):\n if remain >= 1 and current_pos <= sorted_t[i][1]:\n remain -= 1\n else:\n bus_count += 1\n current_pos = sorted_t[i][1]\n remain = c - 1\n\n print(bus_count)\n\n\nif __name__ == '__main__':\n main()\n", "# -*- coding: utf-8 -*-\n\n\ndef main():\n n, c, k = list(map(int, input().split()))\n t = [0] * n\n\n for i in range(n):\n ti = int(input())\n t[i] = (ti, ti + k)\n\n sorted_t = sorted(t, key=lambda x: x[1])\n pos = sorted_t[0][1]\n remain = c - 1\n bus_count = 1\n\n for i in range(1, n):\n if remain >= 1 and sorted_t[i][0] <= pos:\n remain -= 1\n else:\n bus_count += 1\n pos = sorted_t[i][1]\n remain = c - 1\n\n print(bus_count)\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s507246973', 's677426115']
[19032.0, 19032.0]
[279.0, 282.0]
[574, 550]
p03785
u233437481
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N,C,K = [int(s) for s in input().split()]\nT = []\nfor i in range(N):\n T.append(int(input()))\nT.sort()\n\npas = 0\nleave = T[0]\nans = 1\n\nfor t in T:\n if pas == C and K < t - leave:\n pas += 1\n else:\n leave = t\n ans += 1\n pas = 0\nprint(ans)', 'N,C,K = [int(s) for s in input().split()]\nT = []\nfor i in range(N):\n T.append(int(input()))\nT.sort()\n \npas = 0\nleave = T[0]\nans = 1\n \nfor t in T:\n if pas == C or K < t - leave:\n leave = t\n ans += 1\n pas = 0\n pas += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s295072750', 's522958967']
[7384.0, 7488.0]
[238.0, 247.0]
[270, 257]
p03785
u255898796
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['a = [int(s) for s in input().split()]\nN = a[0]\nsi = a[1]\nti = a[2]\ns = [int(input()) for i in range(N)]\ns = sorted(s)\nX = int(0)\nans = int(0)\n\n\nwhile N != X:\n \n X += 1 \n ans += 1\n \n if N == X:\n break\n \n \n print(N-X)\n temp = X\n for i in range(min([si-1,N-X])):\n if s[temp + i] <= s[temp-1] + ti:\n X += 1\n else:\n break\n\nprint(ans)', 'a = [int(s) for s in input().split()]\nN = a[0]\nsi = a[1]\nti = a[2]\ns = [int(input()) for i in range(N)]\ns = sorted(s)\nX = int(0)\nans = int(0)\n\n\nwhile N != X:\n \n X += 1 \n ans += 1\n \n if N == X:\n break\n \n \n temp = X\n for i in range(min([si-1,N-X])):\n if s[temp + i] <= s[temp-1] + ti:\n X += 1\n else:\n break\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s541478282', 's620673609']
[14056.0, 14080.0]
[285.0, 241.0]
[654, 639]
p03785
u277429554
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n = int(input())\nl = list(map(int,input().split()))\nl.sort(reverse=True)\nans = 1\nnum = sum(l)\nfor i in range(0,n-1):\n num -= l[i]\n if num*2<l[i]:\n break\n ans += 1\nprint(ans)', 'n = int(input())\na = sorted(list(map(int, input().split())))\n \nans = -1\nfor i in range(n-1):\n if a[i]*2 < a[i+1]:\n ans = i\n a[i+1] += a[i]\nprint(n-ans-1)', 'n, c, k = map(int, input().split())\nT = [0] * n\nfor i in range(n):\n T[i] = int(input())\n \nT.sort()\nans, s, m = 0, 0, 0\n\nfor t in T:\n if m == 0:\n s = t\n m = 1\n ans += 1\n else:\n if t <= s + k:\n m += 1\n else:\n s = t\n m = 1\n ans += 1\n if m == c:\n m = 0\n \nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s443578483', 's837256506', 's737232870']
[9116.0, 9084.0, 13288.0]
[24.0, 27.0, 187.0]
[189, 166, 359]
p03785
u292810930
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N, C, K = map(int, input().split())\nT = [int(input()) for i in range(N)]\nT.sort()\nanswer = 0\nwhile len(T) >0:\n limit = T[0] + K\n counter = 0\n while counter < C:\n if len(T) == 0:\n break\n t = T.pop(0)\n if t > limit:\n break\n counter += 1\n answer += 1\nprint(answer)\n', 'N, C, K = map(int, input().split())\nT = [int(input()) for i in range(N)]\nT.sort()\nanswer = 0\nwhile len(T) >\u30000:\n limit = T[0] + K\n counter = 0\n while counter < C:\n if len(T) == 0:\n break\n if T[0] > limit:\n break\n del T[0]\n counter += 1\n answer += 1\nprint(answer)', 'N, C, K = map(int, input().split())\nT = [int(input()) for i in range(N)]\nT.sort()\nlimit = T[0]\nanswer = 1\ncounter = 1\nfor i in range(1,N):\n if T[i] - limit > K or counter == C:\n limit = T[i]\n counter = 1\n answer += 1\n else:\n counter += 1\nprint(answer)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s089920162', 's954110942', 's341685076']
[7420.0, 3188.0, 7384.0]
[1779.0, 19.0, 234.0]
[324, 325, 285]
p03785
u293579463
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['N, C, K = map(int, input().split())\nT = [int(input()) for _ in range(N)]\nfirst = 0\nsum_v = 0\ncount = 0\nd = {}\n\nfor t in T:\n print("t", t)\n if t in d:\n d[t] += 1\n else:\n d[t] = 1\nd = sorted(d.items())\n\nfor i in range(len(d)):\n\n if K <= d[i][0] - first and first != 0:\n \n first = 0\n sum_v = 0\n count += 1\n\n if first == 0:\n \n first = d[i][0]\n sum_v += d[i][1]\n else:\n \n sum_v += d[i][1]\n \n if sum_v >= C:\n \n count += sum_v // C\n sum_v = sum_v % C\n first = 0\n\nif sum_v != 0:\n \n count += 1\n\nprint(count)\n', 'N, C, K = map(int, input().split())\nT = [int(input()) for _ in range(N)]\ntime = 0\npassenger = 0\ncount = 0\n\nT.sort()\n\nfor t in T:\n\n if passenger == 0:\n \n time = t\n passenger = 1\n count += 1\n\n \n elif 1 <= passenger < C:\n if t - time <= K:\n \n passenger += 1\n else: \n \n count += 1\n passenger = 1\n time = t\n \n \n else:\n \n count += 1\n passenger = 1\n time = t\n \nprint(count)\n']
['Wrong Answer', 'Accepted']
['s863839183', 's380507962']
[21864.0, 7508.0]
[479.0, 243.0]
[894, 872]
p03785
u306950978
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['n , c , k = map(int,input().split())\nt = [int(input()) for i in range(n)]\nt.sort()\n\nans = 0\ncou = 0\nlim = 0\nprint(t)\nfor i in range(n):\n if lim == 0:\n lim = t[i] + k\n cou = 1\n if c == 1:\n lim = 0\n cou = 0\n ans += 1\n elif lim > t[i]:\n if cou == c - 1:\n ans += 1\n cou = 0\n lim = 0\n elif cou < c - 1:\n cou += 1\n elif lim == t[i]:\n ans += 1\n cou = 0\n lim = 0\n elif lim < t[i]:\n ans += 1\n cou = 1\n lim = t[i] + k\n\nif cou > 0:\n ans += 1\n\nprint(ans)', 'n , c , k = map(int,input().split())\nt = [int(input()) for i in range(n)]\nt.sort()\n\nans = 0\ncou = 0\nlim = 0\n\nfor i in range(n):\n if lim == 0:\n lim = t[i] + k\n cou = 1\n if c == 1:\n lim = 0\n cou = 0\n ans += 1\n elif lim > t[i]:\n if cou == c - 1:\n ans += 1\n cou = 0\n lim = 0\n elif cou < c - 1:\n cou += 1\n elif lim == t[i]:\n ans += 1\n cou = 0\n lim = 0\n elif lim < t[i]:\n ans += 1\n cou = 1\n lim = t[i] + k\n\nif cou > 0:\n ans += 1\n\nprint(ans)\n ']
['Wrong Answer', 'Accepted']
['s045952493', 's166150907']
[10444.0, 7512.0]
[261.0, 263.0]
[611, 612]
p03785
u314089899
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['from collections import deque\n\nN,C,K = map(int, input().split())\n\nT_list = list() \n\nfor i in range(N):\n T = int(input())\n T_list.append(T)\n\nT_list.sort(reverse=False)\n\nwaiting_deque = deque(T_list)\nans = 0\n\nwhile 1:\n if len(waiting_deque) != 0:\n ans += 1\n bus_passenger = list()\n bus_passenger.append(waiting_deque.popleft())\n while 1:\n if len(waiting_deque)!=0 and len(bus_passenger) < C and bus_passenger[0] + K => waiting_deque[0]:\n bus_passenger.append(waiting_deque.popleft())\n else:\n \n break\n else:\n break\n\nprint(ans)', 'from collections import deque\n\nN,C,K = map(int, input().split())\n\nT_list = list() \n\nfor i in range(N):\n T = int(input())\n T_list.append(T)\n\nT_list.sort(reverse=False)\n\nwaiting_deque = deque(T_list)\nans = 0\n\nwhile 1:\n if len(waiting_deque) != 0:\n ans += 1\n bus_passenger = list()\n bus_passenger.append(waiting_deque.popleft())\n while 1:\n if len(waiting_deque)!=0 and len(bus_passenger) < C and bus_passenger[0] + K > waiting_deque[0]:\n bus_passenger.append(waiting_deque.popleft())\n else:\n print(bus_passenger)\n break\n else:\n break\n\nprint(ans)', 'from collections import deque\n\nN,C,K = map(int, input().split())\n\nT_list = list() \n\nfor i in range(N):\n T = int(input())\n T_list.append(T)\n\nT_list.sort(reverse=False)\n\nwaiting_deque = deque(T_list)\nans = 0\n\nwhile 1:\n if len(waiting_deque) != 0:\n ans += 1\n bus_passenger = list()\n bus_passenger.append(waiting_deque.popleft())\n while 1:\n if len(waiting_deque)!=0 and len(bus_passenger) < C and bus_passenger[0] + K >= waiting_deque[0]:\n bus_passenger.append(waiting_deque.popleft())\n else:\n \n break\n else:\n break\n\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s543842657', 's644964550', 's745072168']
[2940.0, 9476.0, 8120.0]
[17.0, 411.0, 306.0]
[695, 693, 695]
p03785
u321035578
2,000
262,144
Every day, N passengers arrive at Takahashi Airport. The i-th passenger arrives at time T_i. Every passenger arrived at Takahashi airport travels to the city by bus. Each bus can accommodate up to C passengers. Naturally, a passenger cannot take a bus that departs earlier than the airplane arrives at the airport. Also, a passenger will get angry if he/she is still unable to take a bus K units of time after the arrival of the airplane. For that reason, it is necessary to arrange buses so that the i-th passenger can take a bus departing at time between T_i and T_i + K (inclusive). When setting the departure times for buses under this condition, find the minimum required number of buses. Here, the departure time for each bus does not need to be an integer, and there may be multiple buses that depart at the same time.
['from collections import deque\nn,c,k = map(int,input().split())\nt = []\nfor _ in range(n):\n tt = int(input())\n t.append(tt)\nt.sort()\nans = deque([])\ncnt = 0\nfor i, tt in enumerate(t):\n if i == 0:\n ans.append([tt+k,1])\n cnt += 1\n else:\n flg = False\n for i in range(len(ans)):\n tmp = ans.popleft()\n if tmp[0] < tt or tmp[1] == c:\n\n continue\n else:\n flg = True\n break\n if flg :\n tmp[1] += 1\n if tmp[1] != c:\n a.append(tmp)\n ans.appendleft(tmp)\n else:\n tmp = [tt+k,1]\n ans.append(tmp)\n cnt += 1\nprint(cnt)\n', 'from collections import deque\nn,c,k = map(int,input().split())\nt = []\nfor _ in range(n):\n tt = int(input())\n t.append(tt)\nt.sort()\nans = deque([])\ncnt = 0\nfor i, tt in enumerate(t):\n if i == 0:\n ans.append([tt+k,1])\n cnt += 1\n else:\n flg = False\n for i in range(len(ans)):\n tmp = ans.popleft()\n if tmp[0] < tt or tmp[1] == c:\n\n continue\n else:\n flg = True\n break\n if flg :\n tmp[1] += 1\n if tmp[1] != c:\n ans.appendleft(tmp)\n else:\n tmp = [tt+k,1]\n ans.append(tmp)\n cnt += 1\nprint(cnt)\n']
['Runtime Error', 'Accepted']
['s808761309', 's721877411']
[7744.0, 7744.0]
[313.0, 343.0]
[717, 687]