problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p03834 | u777394984 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = Input()\nr1 = s[0:4]\nr2 = s[6:12]\nr3 = s[14:]\nprint("{} {} {}".format(r1, r2, r3))', 'a,b,c = map(str,input().split(","))\nprint(a + " " + b + " " + c)'] | ['Runtime Error', 'Accepted'] | ['s400519945', 's578919193'] | [3064.0, 2940.0] | [17.0, 18.0] | [85, 64] |
p03834 | u779455925 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['print([" " if i=="," or i for i in input()])\n', 'print("".join([" " if i=="," else i for i in input()]))'] | ['Runtime Error', 'Accepted'] | ['s738103278', 's922680349'] | [2940.0, 2940.0] | [17.0, 17.0] | [45, 55] |
p03834 | u786020649 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s=input()\n\ns[5]=' '\ns[13]=' '\n\nprint(s)", "s=input()\n\nprint(s.replace(',',' '))"] | ['Runtime Error', 'Accepted'] | ['s292597715', 's070338583'] | [8868.0, 8972.0] | [22.0, 28.0] | [39, 36] |
p03834 | u787562674 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['input().replace(",", " ")', 'print(input().replace(",", " "))'] | ['Wrong Answer', 'Accepted'] | ['s515925241', 's380076977'] | [2940.0, 2940.0] | [17.0, 17.0] | [25, 32] |
p03834 | u798129018 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input()\ns[5] = " "\ns[13] = " "\nprint(s)\n\n', 's = list(input())\ns[5] = " "\ns[13] = " "\nans = map(str,s)\n\nprint("".join(ans))'] | ['Runtime Error', 'Accepted'] | ['s046587880', 's872574528'] | [2940.0, 2940.0] | [17.0, 18.0] | [45, 78] |
p03834 | u798316285 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a=input()\nprint(a[0:5],a[6:13],a[13:18])', 'a=input()\nprint(a[0:4],a[6:12],a[13:17])', 'a=input()\nprint(a[0:5],a[6:13],a[14:19])\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s296557856', 's312918714', 's416435080'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [40, 40, 41] |
p03834 | u808569469 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a = input()\nprint(a.split(","))', 's = input()\nprint(s.replace(","," "))'] | ['Wrong Answer', 'Accepted'] | ['s360014303', 's085842292'] | [8936.0, 9008.0] | [31.0, 27.0] | [31, 37] |
p03834 | u811000506 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['K, S = map(int,input().split())\ncount = 0\nfor x in range(0,K+1,1):\n for y in range(0,K+1,1):\n z = S - x - y\n print(x,y,z)\n if x+y+z == S and z <= K and z >= 0:\n count += 1\nprint(count)', 's = str(input())\ns=s.replace(","," ")\nprint(s)'] | ['Runtime Error', 'Accepted'] | ['s721173779', 's606134707'] | [3060.0, 2940.0] | [17.0, 18.0] | [199, 46] |
p03834 | u811967730 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['K, S = map(int, input().split())\ncount = 0\n\nfor x in range(K + 1):\n for y in range(K + 1):\n z = S - (x + y)\n if 0 <= z and z <= K:\n count += 1\n\nprint(count)\n', 's = input()\n\nprint(s.replace(",", " "))\n'] | ['Runtime Error', 'Accepted'] | ['s665224175', 's306907450'] | [2940.0, 2940.0] | [17.0, 17.0] | [185, 40] |
p03834 | u816631826 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["\nprint(s.replace(',', ' '))", 's=str(input("enter a statment))\nz=s.replace(","," ")\nprint(z)', 'word ="happy,newyear,enjoy "\ny = word.replace(\',\' , \' \')\nprint(y)\n', 'string = input("Enter a string separated by commas: ")\nnew_string = string.replace(",", " ",string.count(","))\nprint(new_string)', 's=\' \'\ns= input ()\nb=s.replace("," ," ")\nprint (b)\n '] | ['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s255503994', 's398796147', 's399595951', 's585089199', 's346477226'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0, 19.0, 18.0] | [92, 61, 66, 128, 52] |
p03834 | u821588465 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s= input().split(",")\nprint(*s, sep="")', 's = input().split(\',\')\nprint(*s, sep="")', 'print(*input().split(\',\'), sep = "")', 'print(*input().split(","))'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s143345750', 's220439374', 's944531650', 's719116611'] | [2940.0, 2940.0, 3064.0, 2940.0] | [17.0, 17.0, 18.0, 17.0] | [40, 40, 36, 26] |
p03834 | u821775079 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=list(input.split(","))\nprint(*s)', 's=input.split(",")\nprint(*s)', 's=input().split(",")\nprint(*s)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s171557804', 's230841907', 's846424574'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 18.0] | [34, 28, 30] |
p03834 | u822738981 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['# -*- coding: utf-8 -*-\n\nk, s = map(int, input().split())\n\nans = 0\n\nfor i in range(k+1):\n for j in range(k+1):\n k2 = s - j - i\n if 0 <= k2 <=k:\n ans += 1\n\n \n # if k2 > k or k2 < 0:\n # continue\n \n # ans += 1\n\nprint(ans)\n', "# -*- coding: utf-8 -*-\n\ns = input()\n\nprint(s.replace(',', ' '))"] | ['Runtime Error', 'Accepted'] | ['s066205951', 's944035340'] | [2940.0, 2940.0] | [17.0, 17.0] | [325, 64] |
p03834 | u835575472 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input();\ns.replace(",", " ")\nprint(s)', 's = input()\nprint(s.replace(",", " "))'] | ['Wrong Answer', 'Accepted'] | ['s393594815', 's212387228'] | [9052.0, 8976.0] | [24.0, 29.0] | [41, 38] |
p03834 | u842028864 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['print(*list[input().split(",")])', 'a,b.c = input().split(",")\nprint(a,b,c)', 'print(*list(input().split(",")))'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s259852955', 's595154243', 's398489300'] | [9076.0, 3064.0, 9012.0] | [24.0, 17.0, 31.0] | [32, 39, 32] |
p03834 | u842696304 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['happy,newyear,enjoy', "print(input().replace(',', ' '))"] | ['Runtime Error', 'Accepted'] | ['s875121191', 's755291496'] | [2940.0, 2940.0] | [17.0, 17.0] | [19, 32] |
p03834 | u845620905 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a = input().split(\',\')\nans = ""\nfor i in a:\n ans += a[i] + " "\nans -= " "\nprint(ans)', 'a = input().replace(",", " ")\nprint(a)'] | ['Runtime Error', 'Accepted'] | ['s805591811', 's840423538'] | [2940.0, 2940.0] | [18.0, 18.0] | [85, 38] |
p03834 | u857330600 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s=list(str(input()))\ns[5]=' '\ns[13]=' '\nprint('',join(s))", "s=list(str(input()))\ns[5]=' '\ns[13]=' '\nprint(''.join(s))"] | ['Runtime Error', 'Accepted'] | ['s229439470', 's269601060'] | [2940.0, 2940.0] | [17.0, 17.0] | [57, 57] |
p03834 | u862296914 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['print(input().replace(/,/g," "))', 'print(input().replace(","," "))'] | ['Runtime Error', 'Accepted'] | ['s455109765', 's669977528'] | [2940.0, 2940.0] | [18.0, 17.0] | [32, 31] |
p03834 | u863370423 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=str()\nz=s.replace(","," ")\nprint(z)\n"""my name is mohamed"""', 'n=str(input())\nfor i in n:\n if i==",":\n n=n.replace(","," ")\nprint(n)'] | ['Wrong Answer', 'Accepted'] | ['s537687485', 's132536619'] | [2940.0, 2940.0] | [17.0, 17.0] | [62, 79] |
p03834 | u863442865 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['k, s = list(map(int, input().split()))\ncnt = 0\nfor i in range(k+1):\n for j in range(k+1):\n for k in range(k+1):\n total = i+j+k\n if total==s:\n cnt += 1\nprint(cnt)', "s = input()\nprint(s.replace(',', ' '))"] | ['Runtime Error', 'Accepted'] | ['s030054381', 's038986042'] | [2940.0, 2940.0] | [17.0, 19.0] | [208, 38] |
p03834 | u864667985 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["print(input().replace(',',''))", "print(input().replace(',',' '))"] | ['Wrong Answer', 'Accepted'] | ['s873731034', 's784908722'] | [2940.0, 2940.0] | [18.0, 18.0] | [30, 31] |
p03834 | u869265610 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input().split()\nprint(a,b,c,="")', 'a,b,c=input().split(",")\nprint(a,b,c)'] | ['Runtime Error', 'Accepted'] | ['s230873216', 's381667586'] | [2940.0, 2940.0] | [18.0, 17.0] | [38, 37] |
p03834 | u869728296 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a=input().strip().split(",")\n\nprint(a)\n', 'a=input().strip().split(",")\n\nprint(a[0]+" "+a[1]+" "+a[2])\n'] | ['Wrong Answer', 'Accepted'] | ['s435170191', 's960953654'] | [2940.0, 3064.0] | [19.0, 18.0] | [39, 60] |
p03834 | u871596687 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = list(str(input()))\n\nprint(s[0]+s[1]+s[2]+s[3]+s[4])+" "+s[6]+s[7]+s[8]+s[9]+s[10]+s[11]+s[12]+" "+s[14]+s[15]+s[16]+s[17]+s[18])\n\n\n\n', 's = list(str(input()))\n\nprint(s[0]+s[1]+s[2]+s[3]+s[4]+" "+s[6]+s[7]+s[8]+s[9]+s[10]+s[11]+s[12]+" "+s[14]+s[15]+s[16]+s[17]+s[18])\n\n\n\n'] | ['Runtime Error', 'Accepted'] | ['s307632841', 's781285574'] | [3064.0, 2940.0] | [18.0, 17.0] | [136, 135] |
p03834 | u875600867 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['print(input().replace("," " "))', "print(input().replace(',', ' '))\n"] | ['Runtime Error', 'Accepted'] | ['s922696407', 's443457988'] | [2940.0, 2940.0] | [18.0, 17.0] | [31, 33] |
p03834 | u881100099 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input().split(",")\nprint("a","b","c")', 'a,b,c=input().split(",")\nprint(a,b,c)'] | ['Wrong Answer', 'Accepted'] | ['s544338476', 's613823410'] | [2940.0, 2940.0] | [17.0, 17.0] | [43, 37] |
p03834 | u884795391 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = input()\nprint(s.split(',')", 's = input()\nprint(*s.split(","))'] | ['Runtime Error', 'Accepted'] | ['s191556990', 's074820743'] | [2940.0, 2940.0] | [17.0, 17.0] | [30, 32] |
p03834 | u886902015 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\nprint(s.split(","))', 's=input()\nprint(s.split(,))', 's=input()\nprint(s.replace(","," "))'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s212226409', 's337437136', 's019112211'] | [9060.0, 9004.0, 8980.0] | [26.0, 23.0, 28.0] | [29, 27, 35] |
p03834 | u895040371 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['A,B,C =map(str, input().split(,))\nprint(A,B,C)', 'a, b, c = input().split(",")\nprint(a, b, c)'] | ['Runtime Error', 'Accepted'] | ['s618850184', 's270608043'] | [2940.0, 2940.0] | [17.0, 18.0] | [46, 43] |
p03834 | u896741788 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["a,s,d=input(),split(',')\nprint(a,s,d)", "a,s,d=input().split(',')\nprint(a,s,d)"] | ['Runtime Error', 'Accepted'] | ['s898038751', 's858929024'] | [2940.0, 2940.0] | [17.0, 17.0] | [37, 37] |
p03834 | u897436032 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['input_ = inpur().split(",")\nprint(" ".join(str for i in input))', 'inp = input().split(",")\n\nprint(" ".join(inp))'] | ['Runtime Error', 'Accepted'] | ['s647908422', 's798727682'] | [2940.0, 2940.0] | [17.0, 17.0] | [63, 46] |
p03834 | u901598613 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input().split()\nprint(a+" "+b+" "+c)', 'a=input()\nl=a.split(",")\nprint(l[0]+" "+l[1]+" "+l[2])'] | ['Runtime Error', 'Accepted'] | ['s165979525', 's932033904'] | [2940.0, 2940.0] | [17.0, 17.0] | [42, 54] |
p03834 | u902242214 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['x, y ,z = input().split(,)\nprint(x, y, z)', 'a, b, c = input().split(,)\nprint(a, b, c)', 'a, b, c = input().split(",")\nprint(a, b, c)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s046137213', 's099493705', 's503838911'] | [8824.0, 8816.0, 8856.0] | [25.0, 25.0, 29.0] | [41, 41, 43] |
p03834 | u904995051 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a = input()\nb = a.split(",")\nprint(b)', 's = input().split(",")\nprint(*s, sep=" ")'] | ['Wrong Answer', 'Accepted'] | ['s289638603', 's795515263'] | [2940.0, 8960.0] | [17.0, 29.0] | [37, 41] |
p03834 | u905582793 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['k,s=map(int,input().split())\nans = 0\nfor i in range(k+1):\n if k<=s-i<=2*k:\n ans+= s-i+1\n elif 0<=s-i<=k:\n ans+= k*2-s+1\nprint(ans)', 'k,s=map(int,input().split())\nans = 0\nfor i in range(k+1):\n if k <=s-i<=2*k:\n ans+= s-i+1\n elif 0<=s-i<=k:\n ans+= k*2-s+1\nprint(ans)', 'print(input().replace(","," "))'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s220144480', 's665082650', 's894522704'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [142, 139, 31] |
p03834 | u911153222 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = [input().split()]\nprint('{} {} {}'.format(s))\n", "print(*input().split(','))"] | ['Runtime Error', 'Accepted'] | ['s407288819', 's795184309'] | [3060.0, 2940.0] | [19.0, 17.0] | [50, 26] |
p03834 | u911575040 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["a,b,c=input().split(' ')\nif b=='+':\n print(int(a)+int(c))\nelse:\n print(int(a)-int(c))\n", "a,b,c=map(str,input().split(','))\nprint(a,b,c)\n"] | ['Runtime Error', 'Accepted'] | ['s323289958', 's672745022'] | [2940.0, 2940.0] | [17.0, 18.0] | [92, 47] |
p03834 | u919521780 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = input()\ns.replace(',', ' ')\nprint(s)", "s = input()\ns = s.replace(',', ' ')\nprint(s)"] | ['Wrong Answer', 'Accepted'] | ['s334611562', 's750121658'] | [2940.0, 2940.0] | [17.0, 17.0] | [40, 44] |
p03834 | u920299620 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\nprint(f"{} {} {}".format( s[0,5], s[6,13],s[14,19] ) )', 's=input()\nprint("{} {} {}".format( s[0,5], s[6,13],s[14,19] ) )', 's=list(input()\nprint("{} {} {}".format( s[0,5], s[6,13],s[14,19] ) )', 's=input()\nprint("{} {} {}".format( s[0:5], s[6:13],s[14:19] ) )'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s240987921', 's475149967', 's648508570', 's707836351'] | [2940.0, 3060.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0, 17.0] | [64, 63, 68, 63] |
p03834 | u920438243 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['k,s = map(int,input().split())\ncount = 0\nfor i in range(k+1):\n for j in range(k+1):\n if s-i-j <= k:\n count += 1\nprint(count)\n', 'k,s = map(int,input().split())\ncount = 0\nfor i in range(k+1):\n for j in range(k+1):\n if s-(i+j) <= k and s-(i+j) >= 0:\n count += 1\nprint(count)\n', 'line = input()\nprint(line.replace(","," "))\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s535704241', 's867557522', 's770333849'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 18.0] | [146, 165, 44] |
p03834 | u921632705 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['x, y, z = input().split\nprint(x, y, z)', "x,y,z = int().split(',')\nprint(x,y,z)", "x,y,z = input().split(',')\nprint(x,y,z)"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s267864881', 's712544202', 's183889486'] | [9012.0, 9004.0, 8980.0] | [24.0, 26.0, 26.0] | [38, 37, 39] |
p03834 | u921773161 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = input()\nfor i in range(len(s)):\n if s[i]==',':\n s[i]==' '\nprint(s)", "s = list(input())\nfor i in range(len(s)):\n if s[i]==',':\n s[i]=' '\nprint(''.join(s))"] | ['Wrong Answer', 'Accepted'] | ['s818406253', 's641035810'] | [2940.0, 2940.0] | [17.0, 17.0] | [74, 88] |
p03834 | u923659712 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a = str(input())\n\na.replace(","," ")\n\nprint(a)', 'a = str(input())\n\na=a.replace(","," ")\n\nprint(a)'] | ['Wrong Answer', 'Accepted'] | ['s174470983', 's761403337'] | [2940.0, 2940.0] | [17.0, 17.0] | [46, 48] |
p03834 | u932465688 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = input()\ns.replace(',',' ')", "s = input()\np = s.replace(',',' ')\nprint(p)"] | ['Wrong Answer', 'Accepted'] | ['s064116196', 's744319480'] | [2940.0, 2940.0] | [17.0, 17.0] | [30, 43] |
p03834 | u936985471 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input().split()\nprint(a,b,c)', 'print(input().split())', 'a,b,c=input().split(",")\nprint(a,b,c)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s818910217', 's955580158', 's478630667'] | [2940.0, 2940.0, 2940.0] | [17.0, 17.0, 17.0] | [34, 22, 37] |
p03834 | u945419374 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=input()\nprint(s.replace(",","/"))\n', 's=input()\nprint(s.replace(","," "))\n'] | ['Wrong Answer', 'Accepted'] | ['s762372904', 's970597018'] | [2940.0, 2940.0] | [17.0, 17.0] | [36, 36] |
p03834 | u953486781 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s = input()\ns_list = [s.strip() for x in s.split(',')]\nprint(' '.join(s_list))", "s = input()\ns_list = [x.strip() for x in s.split(',')]\nprint(' '.join(s_list))"] | ['Wrong Answer', 'Accepted'] | ['s902518940', 's331358395'] | [2940.0, 2940.0] | [17.0, 17.0] | [78, 78] |
p03834 | u957872856 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c = input().split(,)\nprint(a+" "+b+" "+c)', 'a,b,c = input().split(",")\nprint(a+" "+b+" "+c)'] | ['Runtime Error', 'Accepted'] | ['s576639775', 's584804062'] | [2940.0, 2940.0] | [17.0, 17.0] | [45, 47] |
p03834 | u959759457 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s,t,u=map(int,input().split(''))\nprint(s,t,u)", "s,t,u=map(int,input().split(','))\nprint(s,t,u)", "s,t,u=map(str,input().split(','))\nprint(s,t,u)"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s106238431', 's319677785', 's913372310'] | [2940.0, 2940.0, 2940.0] | [18.0, 17.0, 17.0] | [45, 46, 46] |
p03834 | u967835038 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['K, S = list(map(int, input().split()))\n\na = 0\nfor i in range(K + 1):\n r = S - i\n if i <= S and r <= K * 2:\n t = (r + 1) - max(0, r - K) * 2\n a += t\n\nprint(a)\n', "print(input().replace(',',' '))"] | ['Runtime Error', 'Accepted'] | ['s493327543', 's534499966'] | [2940.0, 2940.0] | [17.0, 17.0] | [178, 31] |
p03834 | u969190727 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a,b,c=input()split(",")\nprint(a,b,c)', 'a,b,c=input().split(",")\nprint(a,b,c)\n'] | ['Runtime Error', 'Accepted'] | ['s189715906', 's201688111'] | [2940.0, 2940.0] | [17.0, 17.0] | [36, 38] |
p03834 | u970082363 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['list = list(map(str,input()))\nlist[5] = " "\nlist[13] = " "\nprint(list)', 'list = list(map(str,input()))\nlist[5] = " "\nlist[13] = " "\nprint("".join(list))\n'] | ['Wrong Answer', 'Accepted'] | ['s023546062', 's608307526'] | [2940.0, 2940.0] | [17.0, 18.0] | [70, 80] |
p03834 | u970449052 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ["s=input()\nprint(s.replace(',',' ')", "s=input()\nprint(s.replace(',',' '))"] | ['Runtime Error', 'Accepted'] | ['s347964569', 's155848990'] | [2940.0, 3068.0] | [17.0, 17.0] | [34, 35] |
p03834 | u971091945 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input()\nprint(s[:5]+" "+s[7:14]+" "+s[16:])', "s = input()\nl = s.split(',')\nans = ' '.join(l)\nprint(ans)"] | ['Wrong Answer', 'Accepted'] | ['s242956658', 's906389969'] | [2940.0, 2940.0] | [19.0, 17.0] | [47, 57] |
p03834 | u972892985 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a, b, c = input().split(",")\nprint(a+b+c)', 'a, b, c = input().split(",")\nprint(a, b, c)'] | ['Wrong Answer', 'Accepted'] | ['s705503666', 's528891076'] | [2940.0, 2940.0] | [17.0, 18.0] | [41, 43] |
p03834 | u974935538 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s=str("haiku,atcoder,tasks")\nprint(s.replace(",", " "))', 't=str(s)\nprint(t.replace(",", " "))', "s = input()\nprint(s.replace(',', ' '))"] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s131363156', 's865795900', 's749801062'] | [2940.0, 2940.0, 2940.0] | [18.0, 19.0, 18.0] | [55, 35, 38] |
p03834 | u975016227 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['k, s = list(map(int, input().split()))\nnum = 0\n\nfor x in range(k+1):\n for y in range(k+1):\n if s-k <= x+y <= s:\n num += 1\n\nprint(num)\n', "s = input()\nprint(s.replace(',', ' '))\n"] | ['Runtime Error', 'Accepted'] | ['s737338807', 's614409300'] | [2940.0, 2940.0] | [18.0, 18.0] | [143, 39] |
p03834 | u975676823 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a, b, c = input().split(sep = ", ")\n\nprint(a + " " + b + " " + c)\n', 'a, b, c = input().split(sep = ",")\n\nprint(a + b + c)\n\n', 'a, b, c = input().split(sep = ",")\nprint(a + b + c)\n', 'a, b, c = input().split(sep = ", ")\nif(len(a) == 7):\n print(b.lower() + " " + a.lower() + " " + c.lower())\nelif(len(b) == 7):\n print(a.lower() + " " + b.lower() + " " + c.lower())\nelif(len(c) == 7):\n print(a.lower() + " " + c.lower() + " " + b.lower*(()\n', 'a, b, c = input().split(sep = ",")\n \nprint(a, b, c)\n'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s225018985', 's726825141', 's854347235', 's887148738', 's325309214'] | [2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 18.0, 17.0, 18.0, 17.0] | [66, 54, 52, 264, 52] |
p03834 | u975719989 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['s = input()\ns = s.replace(",", "")\n\nprint(s)', "s = input()\ns = s.replace(',', ' ')\nprint(s)"] | ['Wrong Answer', 'Accepted'] | ['s893868026', 's577110229'] | [2940.0, 2940.0] | [17.0, 17.0] | [44, 44] |
p03834 | u978494963 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['import re\nre.sub(","," ",str(input()))', 'import re\nprint(re.sub(","," ",str(input())))'] | ['Wrong Answer', 'Accepted'] | ['s783695712', 's213026028'] | [3188.0, 3188.0] | [19.0, 19.0] | [38, 45] |
p03834 | u979078704 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['a, b, c = input.split(",")\nprint(a,b,c)', "a = input()\nprint(a.replace(',' , ' ')", "a = input()\nprint(a.replace(',' , ' ')", 'a, b, c = input.split(",")\nprint(a, b, c)', 'print(*input.split(",")', "s = input()\nprint(s.replace(',', ' '))\na = input()\nprint(a.replace(',' , ' ')", "print(*input().split(',')", "a = input()\nprint(a.replace(',' , ' '))"] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s113579100', 's280795525', 's517390147', 's704453346', 's707837305', 's784544041', 's869248919', 's822823906'] | [2940.0, 3060.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0, 2940.0] | [17.0, 20.0, 17.0, 17.0, 17.0, 17.0, 17.0, 17.0] | [39, 38, 38, 41, 23, 77, 25, 39] |
p03834 | u998082063 | 2,000 | 262,144 | As a New Year's gift, Dolphin received a string s of length 19. The string s has the following format: `[five lowercase English letters],[seven lowercase English letters],[five lowercase English letters]`. Dolphin wants to convert the comma-separated string s into a space-separated string. Write a program to perform the conversion for him. | ['happy,newyear,enjoy', 'a = input()\n\nb = a.replace(",", " ")\n\nprint(b)'] | ['Runtime Error', 'Accepted'] | ['s918832565', 's008683005'] | [2940.0, 2940.0] | [17.0, 17.0] | [19, 46] |
p03837 | u021337285 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import sys\nfrom scipy.sparse.csgraph import dijkstra\n\ninput = sys.stdin.readline\nN, M = map(int, input().split())\n\ngraph = [[0 if i == j else float("inf") for i in range(N)] for j in range(N)]\nfor i in range(M):\n ai, bi, ci = map(int, input().split())\n graph[ai - 1][bi - 1] = ci\n graph[bi - 1][ai - 1] = ci\n\ndist1 = dijkstra(graph, directed=False)\nprint(graph)\nprint(dist1)\n\ncnt = 0\nfor i in range(N):\n for j in range(N):\n used = False\n if i > j:\n continue\n for k in range(N):\n if graph[i][j] + dist1[k][i] == dist1[i][j]:\n used = True\n break\n if not used and graph[i][j] == "inf":\n cnt += 1\nprint(cnt)\n', 'import sys\nfrom scipy.sparse.csgraph import dijkstra\n\ninput = sys.stdin.readline\nN, M = map(int, input().split())\n\ngraph = [[0 if i == j else float("inf") for i in range(N)] for j in range(N)]\nfor i in range(M):\n ai, bi, ci = map(int, input().split())\n graph[ai - 1][bi - 1] = ci\n graph[bi - 1][ai - 1] = ci\n\ndist1 = dijkstra(graph, directed=False)\nprint(graph)\nprint(dist1)\n\ncnt = 0\nfor i in range(N):\n for j in range(N):\n used = False\n if i > j:\n continue\n for k in range(N):\n if graph[i][j] + dist1[k][i] == dist1[i][j]:\n used = True\n break\n if not used and graph[i][j] != float("inf"):\n cnt += 1\nprint(cnt)\n', 'import sys\nfrom scipy.sparse.csgraph import dijkstra\n\ninput = sys.stdin.readline\nN, M = map(int, input().split())\n\ngraph = [[0 if i == j else float("inf") for i in range(N)] for j in range(N)]\nfor i in range(M):\n ai, bi, ci = map(int, input().split())\n graph[ai - 1][bi - 1] = ci\n graph[bi - 1][ai - 1] = ci\n\ndist = dijkstra(graph, directed=False)\n\ncnt = 0\nfor i in range(N):\n for j in range(N):\n used = False\n if i > j:\n continue\n for k in range(N):\n if graph[i][j] + dist[k][i] == dist[i][j]:\n used = True\n break\n if not used and graph[i][j] != float("inf"):\n cnt += 1\nprint(cnt)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s678129334', 's970392260', 's226409867'] | [17436.0, 18640.0, 18296.0] | [936.0, 901.0, 897.0] | [707, 714, 685] |
p03837 | u021548497 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import sys\ninput = sys.stdin.readline\n\ndef main():\n n, m = map(int, input().split())\n road = [[100000]*n for _ in range(n)]\n count = [[-1]*n for i in range(n)]\n for _ in range(m):\n a, b, c = map(int, input().split())\n road[a-1][b-1] = c\n road[b-1][a-1] = c\n count[a-1][b-1] = 0\n count[b-1][a-1] = 0\n for k in range(n):\n for i in range(n):\n for j in range(n):\n if road[i][k]+road[k][j] < road[i][j]:\n if count[i][j] == 0:\n count[i][j] = 1\n road[i][j] = road[i][k]+road[k][j]\n print(count)\n ans = 0\n for i in range(n):\n ans += count[i].count(1)\n print(ans//2)\nif __name__ == "__main__":\n main()', 'import sys\ninput = sys.stdin.readline\n\ndef main():\n n, m = map(int, input().split())\n road = [[100000]*n for _ in range(n)]\n count = [[-1]*n for i in range(n)]\n for _ in range(m):\n a, b, c = map(int, input().split())\n road[a-1][b-1] = c\n road[b-1][a-1] = c\n count[a-1][b-1] = 0\n count[b-1][a-1] = 0\n for k in range(n):\n for i in range(n):\n for j in range(n):\n if road[i][k]+road[k][j] < road[i][j]:\n if count[i][j] == 0:\n count[i][j] = 1\n road[i][j] = road[i][k]+road[k][j]\n ans = 0\n for i in range(n):\n ans += count[i].count(1)\n print(ans//2)\nif __name__ == "__main__":\n main()'] | ['Wrong Answer', 'Accepted'] | ['s205261691', 's233010164'] | [9092.0, 9420.0] | [166.0, 165.0] | [664, 649] |
p03837 | u075012704 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["N, M = map(int, input().split())\nG = [[float('inf')]*N for i in range(N)]\nG2 = [[float('inf')]*N for i in range(N)]\nfor i in range(M):\n a, b, c = map(int, input().split())\n G[a-1][b-1] = c\n G[b-1][a-1] = c\n G2[a-1][b-1] = c\n G2[b-1][a-1] = c\n\nfor i in range(N):\n for j in range(N):\n for k in range(N):\n if G[i][j] > G[i][k] + G[k][j]:\n G[i][j] = G[i][k] + G[k][j]\n\ncnt = 0\nfor i in range(N):\n for j in range(N):\n for k in range(N):\n if G[i][j] != G2[i][j]:\n cnt += 1\n\nprint(M - cnt//2)\n", "from copy import deepcopy\nN, M = map(int, input().split())\nG = [[float('inf')] * N for i in range(N)]\nfor i in range(M):\n a, b, c = map(int, input().split())\n a, b = a - 1, b - 1\n G[a][b] = c\n G[b][a] = c\n\n\nShortest = deepcopy(G)\nfor k in range(N):\n for i in range(N):\n for j in range(N):\n Shortest[i][j] = min(Shortest[i][j], Shortest[i][k] + Shortest[k][j])\n\n\nans = 0\nfor i in range(N):\n for j in range(N):\n if G[i][j] == float('inf'):\n continue\n if G[i][j] != Shortest[i][j]:\n ans += 1\n\nprint(ans // 2)\n"] | ['Wrong Answer', 'Accepted'] | ['s550913992', 's159784240'] | [3468.0, 3992.0] | [680.0, 673.0] | [573, 578] |
p03837 | u127499732 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import heapq\n\n\ndef dijkstra(n, s, g):\n h = [(0, s)]\n heapq.heapify(h)\n cost = [float("Inf")] * (n + 1) \n cost[s] = 0\n\n while h:\n c, v = heapq.heappop(h)\n if c > cost[v]:\n continue\n for d, u in g[v]:\n d_s_u = d + cost[v]\n if d_s_u < cost[u]:\n cost[u] = d_s_u\n heapq.heappush(h, (d_s_u, u))\n\n return cost\n\n\ndef main():\n n, m, *abc = map(int, open(0).read().split())\n g = [[] for _ in range(n + 1)]\n\n for a, b, c in zip(*[iter(abc)] * 3):\n g[a].append([c, b])\n g[b].append([c, a])\n\n ans = 0\n checkd = [[False] * (n + 1) for _ in range(n + 1)]\n for i in range(1, n + 1):\n cost = dijkstra(n, i, g)\n for j, k in g[i]:\n if checkd[i][j]:\n continue\n if j > cost[k]:\n ans += 1\n checkd[i][j] = True\n checkd[j][i] = True\n \n print(ans)\n\n\nif __name__ == \'__main__\':\n main()\n', 'import heapq\n\n\ndef dijkstra(n, s, g):\n h = [(0, s)]\n heapq.heapify(h)\n cost = [float("Inf")] * (n + 1) \n cost[s] = 0\n\n while h:\n c, v = heapq.heappop(h)\n if c > cost[v]:\n continue\n for d, u in g[v]:\n d_s_u = d + cost[v]\n if d_s_u < cost[u]:\n cost[u] = d_s_u\n heapq.heappush(h, (d_s_u, u))\n\n return cost\n\n\ndef main():\n n, m, *abc = map(int, open(0).read().split())\n g = [[] for _ in range(n + 1)]\n\n for a, b, c in zip(*[iter(abc)] * 3):\n g[a].append([c, b])\n g[b].append([c, a])\n\n ans = 0\n checked = [[False] * (n + 1) for _ in range(n + 1)]\n for i in range(1, n + 1):\n cost = dijkstra(n, i, g)\n for j, k in g[i]:\n if checked[i][k]:\n continue\n if j > cost[k]:\n ans += 1\n\n checked[i][k] = True\n checked[k][i] = True\n\n print(ans)\n\n\nif __name__ == \'__main__\':\n main()\n'] | ['Runtime Error', 'Accepted'] | ['s604703279', 's622514059'] | [9400.0, 9328.0] | [31.0, 64.0] | [1006, 1007] |
p03837 | u139112865 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['#051_D\nfrom heapq import heappop, heappush\ninf = 10 ** 10\nd = [[inf for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\nn, m = map(int, input().split())\nedges = []\nfor _ in range(m):\n a, b, c = map(int, input().split())\n d[a-1][b-1] = c\n d[b-1][a-1] = c\n edges.append((a-1, b-1))\n\ndef warshall_floyd(d):\n for k in range(n):\n for i in range(n):\n for j in range(n):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n \nwarshall_floyd(d)\n\nans = 0\nfor u, v in edges:\n for i in range(n):\n if i == u or i == v:\n continue\n if d[u][i] + d[i][v] == d[u][v]:\n ans += 1\n break\n\nprint(ans)', '#051_D\ninf = 10 ** 10\nn, m = map(int, input().split())\nd = [[inf for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\nedges = []\nfor _ in range(m):\n a, b, c = map(int, input().split())\n d[a-1][b-1] = c\n d[b-1][a-1] = c\n edges.append((a-1, b-1, c))\n\ndef warshall_floyd(d):\n for k in range(n):\n for i in range(n):\n for j in range(n):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n \nwarshall_floyd(d)\n\nans = m\nfor u, v, c in edges:\n flg = False\n for i in range(n):\n if d[i][v] + c == d[i][u]:\n flg = True\n \n if flg:\n ans -= 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s072272859', 's601148971'] | [3192.0, 3444.0] | [18.0, 485.0] | [703, 651] |
p03837 | u167751176 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["def main():\n\tN, M = map(int, input().split())\n\tpoints = [[] for _ in range(N+1)]\n\tfor i in range(1, M+1):\n\t\ta, b, c = map(int, input().split())\n\t\tpoints[a].append([b, c, i])\n\t\tpoints[b].append([a, c, i])\n\tuse = set()\n\tdef dijksta(start):\n\t\tis_visited = [False]*(N+1)\n\t\tis_visited[0] = True\n\t\tis_visited[start] = True\n\t\tstack = list(points[start])\n\t\tedge = 0\n\t\twhile stack:\n\t\t\tedge += 1\n\t\t\tstack.sort(key=lambda x: x[1])\n\t\t\tuse_edge = stack.pop()\n\t\t\tcur = use_edge[0]\n\t\t\tdist = use_edge[1]\n\t\t\tuse.add(use_edge[2])\n\t\t\tis_visited[cur] = True\n\t\t\tif all(is_visited):\n\t\t\t\treturn edge\n\t\t\tadd_stack = list(points[cur])\n\t\t\tremoves = []\n\t\t\tfor i, pair in enumerate(add_stack):\n\t\t\t\tif is_visited[pair[0]]:\n\t\t\t\t\tremoves.append(i)\n\t\t\t\t\tcontinue\n\t\t\t\tadd_stack[i][1] += dist\n\t\t\tremoves.reverse()\n\t\t\tfor i in removes:\n\t\t\t\tadd_stack.pop(i)\n\t\t\tstack.extend(add_stack)\n\tfor i in range(1, M+1):\n\t\tdijksta(i)\n\tans = M - len(use)\n\tprint(ans)\n\nif __name__ == '__main__':\n main()", "def main():\n\tN, M = map(int, input().split())\n\tpoints = [[] for _ in range(N+1)]\n\tfor i in range(1, M+1):\n\t\ta, b, c = map(int, input().split())\n\t\tpoints[a].append([b, c, i])\n\t\tpoints[b].append([a, c, i])\n\tuse = set()\n\tdef dijksta(start):\n\t\tis_visited = [False]*(N+1)\n\t\tis_visited[0] = True\n\t\tis_visited[start] = True\n\t\tstack = list(points[start])\n\t\twhile stack:\n\t\t\tstack.sort(key=lambda x: x[1])\n\t\t\tuse_edge = stack.pop()\n\t\t\tcur = use_edge[0]\n\t\t\tdist = use_edge[1]\n\t\t\tuse.add(use_edge[2])\n\t\t\tis_visited[cur] = True\n\t\t\tif all(is_visited):\n\t\t\t\tbreak\n\t\t\tadd_stack = list(points[cur])\n\t\t\tremoves = []\n\t\t\tfor i, pair in enumerate(add_stack):\n\t\t\t\tif is_visited[pair[0]]:\n\t\t\t\t\tremoves.append(i)\n\t\t\t\t\tcontinue\n\t\t\t\tadd_stack[i][1] += dist\n\t\t\tremoves.reverse()\n\t\t\tfor i in removes:\n\t\t\t\tadd_stack.pop(i)\n\t\t\tstack.extend(add_stack)\n\tfor i in range(1, M+1):\n\t\tdijksta(i)\n\tans = M - len(use)\n\tprint(ans)\n\nif __name__ == '__main__':\n main()", "def main():\n\tINF = 10**9+7\n\tN, M = map(int, input().split())\n\tdist = [[INF for _ in range(N+1)] for _ in range(N+1)]\n\tfor i in range(1, N+1):\n\t\tfor j in range(1, N+1):\n\t\t\tif i == j:\n\t\t\t\tdist[i][j] = 0\n\ta, b, c = [0]*M, [0]*M, [0]*M\n\tfor i in range(M):\n\t\ta[i], b[i], c[i] = map(int, input().split())\n\t\tdist[a[i]][b[i]] = min(dist[a[i]][b[i]], c[i])\n\t\tdist[b[i]][a[i]] = min(dist[b[i]][a[i]], c[i])\n\tfor k in range(1, N+1):\n\t\tfor i in range(1, N+1):\n\t\t\tfor j in range(1, N+1):\n\t\t\t\tdist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])\n\tans = M\n\tfor i in range(M):\n\t\tshrotest = False\n\t\tfor j in range(1, N+1):\n\t\t\tif dist[j][a[i]]+c[i] == dist[j][b[i]]:\n\t\t\t\tshrotest = True\n\t\tif shrotest:\n\t\t\tans -= 1\n\tprint(ans)\n\nif __name__ == '__main__':\n main()"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s241414194', 's543285252', 's331096398'] | [3828.0, 3828.0, 3428.0] | [1099.0, 1079.0, 427.0] | [958, 928, 745] |
p03837 | u169350228 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["import math\n#import numpy as np\nimport queue\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\nfrom scipy.sparse.csgraph import dijkstra\nfrom scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\ndef main():\n n,m = map(int,ipt().split())\n cos = []\n row = []\n col = []\n for _ in range(m):\n a,b,c = map(int,ipt().split())\n row.append(a-1)\n col.append(b-1)\n cos.append(c)\n cos.append(c)\n csr = csr_matrix((cos,(row,col)),shape=(n,n))\n d = dijkstra(csr,directed=False)\n ans = 0\n for i in range(m):\n csr = csr_matrix((cos[:i:]+cos[i+1::],(row[:i:]+row[i+1::],col[:i:]+col[i+1::])),shape=(n,n))\n di = dijkstra(csr)\n if (di == d).all():\n ans += 1\n print(ans)\n return\n\nif __name__ == '__main__':\n main()\n", "import math\n#import numpy as np\nimport queue\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\nfrom scipy.sparse.csgraph import dijkstra\nfrom scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\ndef main():\n n,m = map(int,ipt().split())\n cos = []\n row = []\n col = []\n for _ in range(m):\n a,b,c = map(int,ipt().split())\n row.append(a-1)\n col.append(b-1)\n cos.append(c)\n csr = csr_matrix((cos,(row,col)),shape=(n,n))\n d = dijkstra(csr,directed=False)\n ans = 0\n for i in range(m):\n rwi = row[i]\n cli = col[i]\n csi = cos[i]\n dri = d[rwi]\n dci = d[cli]\n for j in range(n):\n if dri[j] + csi == dci[j]:\n break\n if j == n-1:\n ans += 1\n print(ans)\n return\n\nif __name__ == '__main__':\n main()\n"] | ['Runtime Error', 'Accepted'] | ['s534380098', 's245683842'] | [17408.0, 15916.0] | [249.0, 301.0] | [875, 918] |
p03837 | u169650582 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['N,M=map(int,input().split())\nIslands=[[] for i in range(N)]\nEdge=[]\nS=0\nfor i in range(M):\n a,b,c=map(int,input().split())\n Islands[a-1].append([b-1,c])\n Islands[b-1].append([a-1,c])\n Edge.append([a-1,b-1])\nfor m in range(M):\n a=Edge[m][0]\n b=Edge[m][1]\n for i in Islands[a]:\n if i[0]==b:\n c_m=i[1]\n List=[[a,-1]]\n for l in List:\n print(List)\n c=(-1)*(l[-1]+1)\n if l[-2]==b:\n if c_m>c:\n S+=1\n break\n else: \n for n in Islands[l[-2]]:\n if n[0] in l:\n pass\n else:\n c+=n[1]\n List.append(l[0:-1]+[n[0],(-1)*(c+1)])\n \nprint(S) ', 'N,M=map(int,input().split())\nIslands=[[] for i in range(N)]\nEdge=[]\nS=0\nfor i in range(M):\n a,b,c=map(int,input().split())\n Islands[a-1].append([b-1,c])\n Islands[b-1].append([a-1,c])\n Edge.append([a-1,b-1])\nfor m in range(M):\n a=Edge[m][0]\n b=Edge[m][1]\n for i in Islands[a]:\n if i[0]==b:\n c_m=i[1]\n List=[[a,0]]\n for l in List:\n print(m,List)\n c_base=l[-1]\n c=c_base\n if l[-2]==b:\n if c_m>c:\n S+=1\n break\n else: \n for n in Islands[l[-2]]:\n if n[0] in l[0:-1]:\n pass\n else:\n c+=n[1]\n List.append(l[0:-1]+[n[0],c]) \n c=c_base\nprint(S-1) \n ', 'N,M=map(int,input().split())\nIslands=[[] for i in range(N)]\nEdge=[]\nS=0\nfor i in range(M):\n a,b,c=map(int,input().split())\n Islands[a-1].append([b-1,c])\n Islands[b-1].append([a-1,c])\n Edge.append([a-1,b-1,c])\nfor m in range(M):\n a=Edge[m][0]\n b=Edge[m][1]\n c_m=Edge[m][2]\n List=[[a,0]]\n for l in List:\n c_base=l[-1]\n c=c_base\n if l[-2]==b:\n if c_m>c:\n S+=1\n break\n else: \n for n in Islands[l[-2]]:\n if n[0] in l[0:-1]:\n pass\n else:\n c+=n[1]\n List.append(l[0:-1]+[n[0],c]) \n c=c_base\nprint(S-1) ', 'N,M=map(int,input().split())\nIslands=[[10**9]*N for i in range(N)]\nEdge=[]\nS=0\nfor i in range(M):\n a,b,c=map(int,input().split())\n Islands[a-1][b-1]=c\n Islands[b-1][a-1]=c\n Edge.append([a-1,b-1,c])\nfor k in range(N):\n for i in range(N):\n for j in range(N):\n Islands[i][j]=min(Islands[i][j],Islands[i][k]+Islands[k][j])\n\nans=0\nfor a,b,c in Edge:\n if Islands[a][b]!=c:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s442915266', 's455952485', 's756679465', 's870199855'] | [106996.0, 105780.0, 280220.0, 3444.0] | [2104.0, 2104.0, 2122.0, 554.0] | [636, 660, 602, 402] |
p03837 | u180058306 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['\nN, M = map(int, input().split())\n\n\ndic_edge_dist = {(i, j) : float("inf") for i in range(1, N + 1) for j in range(1, N + 1)}\nfor i in range(1, N + 1):\n dic_edge_dist[(i, i)] = 0\n\nlist_edge = []\n\ndef warshall_floyd(dic_edge_dist):\n dic_shortest_dist = dic_edge_dist.copy()\n for i in range(1, N + 1):\n for j in range(1, N + 1):\n for k in range(1, N + 1):\n dic_shortest_dist[(j, k)] = min(dic_shortest_dist[(j, k)], dic_shortest_dist[(j, i)] + dic_shortest_dist[(i, k)])\n return dic_shortest_dist\n\n\nfor _ in range(M):\n \n a, b, c = map(int, input().split())\n \n dic_edge_dist[(a, b)] = c\n dic_edge_dist[(b, a)] = c\n \n list_edge.append((min(a, b), max(a, b)))\n\ndic_shortest_dist = warshall_floyd(dic_edge_dist)\n \nedge_count = 0\nfor i, j in list_edge:\n for k in range(1, N + 1):\n if dic_shortest_dist[(k, i)] + dic_edge_dist[(i, j)] == dic_shortest_dist[(k, j)]:\n edge_count += 1\n print(i, j, k)\n break\n if dic_shortest_dist[(k, j)] + dic_edge_dist[(j, i)] == dic_shortest_dist[(k, i)]:\n edge_count += 1\n print(i, j, k)\n break\n\nprint(dic_edge_dist)\nprint(dic_shortest_dist)\nprint(len(list_edge) - edge_count)', '\nN, M = map(int, input().split())\n\n\ndic_edge_dist = {(i, j) : float("inf") for i in range(1, N + 1) for j in range(1, N + 1)}\nfor i in range(1, N + 1):\n dic_edge_dist[(i, i)] = 0\n\nlist_edge = []\n\ndef warshall_floyd(dic_edge_dist):\n dic_shortest_dist = dic_edge_dist.copy()\n for i in range(1, N + 1):\n for j in range(1, N + 1):\n for k in range(1, N + 1):\n dic_shortest_dist[(j, k)] = min(dic_shortest_dist[(j, k)], dic_shortest_dist[(j, i)] + dic_shortest_dist[(i, k)])\n return dic_shortest_dist\n\n\nfor _ in range(M):\n \n a, b, c = map(int, input().split())\n \n dic_edge_dist[(a, b)] = c\n dic_edge_dist[(b, a)] = c\n \n list_edge.append((min(a, b), max(a, b)))\n\ndic_shortest_dist = warshall_floyd(dic_edge_dist)\n \nedge_count = 0\nfor i, j in list_edge:\n for k in range(1, N + 1):\n if dic_shortest_dist[(k, i)] + dic_edge_dist[(i, j)] == dic_shortest_dist[(k, j)]:\n edge_count += 1\n break\n if dic_shortest_dist[(k, j)] + dic_edge_dist[(j, i)] == dic_shortest_dist[(k, i)]:\n edge_count += 1\n break\n\nprint(len(list_edge) - edge_count)'] | ['Wrong Answer', 'Accepted'] | ['s839684218', 's928232727'] | [6188.0, 5496.0] | [661.0, 638.0] | [1590, 1490] |
p03837 | u188745744 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['N,M=list(map(int,input().split()))\nimport numpy as np\nfrom scipy.sparse.csgraph import floyd_warshall\nfrom scipy.sparse import csr_matrix\nl=[np.array([0]*N) for i in range(N)]\nfor i in range(M):\n tmp=(list(map(int,input().split())))\n l[tmp[0]-1][tmp[1]-1]=tmp[2]\n l[tmp[1]-1][tmp[0]-1]=tmp[2]\nl2=csr_matrix(l)\nl2=floyd_warshall(l2)\nprint(l,l2)\nans=0\nfor i in range(N):\n for j in range(i):\n if l[i][j] != l2[i][j] and l[i][j] != 0:\n ans+=1\nprint(ans)', 'N,M=list(map(int,input().split()))\nimport numpy as np\nfrom scipy.sparse.csgraph import floyd_warshall\nfrom scipy.sparse import csr_matrix\nl=[np.array([0]*N) for i in range(N)]\nfor i in range(M):\n tmp=(list(map(int,input().split())))\n l[tmp[0]-1][tmp[1]-1]=tmp[2]\n l[tmp[1]-1][tmp[0]-1]=tmp[2]\nl2=csr_matrix(l)\nl2=floyd_warshall(l2)\nans=0\nfor i in range(N):\n for j in range(i):\n if l[i][j] != l2[i][j] and l[i][j] != 0:\n ans+=1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s231649857', 's399201625'] | [25328.0, 26236.0] | [375.0, 382.0] | [470, 458] |
p03837 | u200030766 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["\nV, E=map(int,input().strip().split(' '))\ninf=10**9\ncost=[[inf]*V for i in range(V)]\nedge=[]\nfor i in range(E):\n fr, to, co=map(int,input().strip().split(' '))\n cost[fr-1][to-1]=co\n cost[to-1][fr-1]=co\n edge.append([fr-1,to-1])\n \nd=[]\nfor i in range(V):\n d.append(dijkstra(i))\n\ncand=E\nfor i in range(E):\n fl=False\n for j in range(V):\n for k in range(V):\n if d[j][edge[i][0]]==cost[edge[i][0]][edge[i][1]]+d[k][edge[i][1]]:\n cand-=1\n fl=True\n break\n if fl:\n break\n\nprint(cand)\n\ndef dijkstra(s):\n d=[inf]*V\n used=[False]*V\n d[s]=0\n while True:\n v=-1\n for u in range(V):\n if used[u]==False and(v==-1 or d[u]<d[v]):\n v=u\n if v==-1:\n break\n used[v]=True\n for u in range(V):\n d[u]=min(d[u],d[v]+cost[v][u])\n return d\n\n\n", "def dijkstra(s):\n d=[inf]*V\n used=[False]*V\n d[s]=0\n while True:\n v=-1\n for u in range(V):\n if used[u]==False and(v==-1 or d[u]<d[v]):\n v=u\n if v==-1:\n break\n used[v]=True\n for u in range(V):\n d[u]=min(d[u],d[v]+cost[v][u])\n return d\n\n\n\nV, E=map(int,input().strip().split(' '))\ninf=10**9\ncost=[[inf]*V for i in range(V)]\nedge=[]\nfor i in range(E):\n fr, to, co=map(int,input().strip().split(' '))\n cost[fr-1][to-1]=co\n cost[to-1][fr-1]=co\n edge.append([fr-1,to-1])\n \nd=[]\nfor i in range(V):\n d.append(dijkstra(i))\n\ncand=E\nfor i in range(E):\n fl=False\n for s in range(V):\n if d[s][edge[i][0]]+cost[edge[i][0]][edge[i][1]]==d[s][edge[i][1]]:\n cand-=1\n fl=True\n break\n\nprint(cand)"] | ['Runtime Error', 'Accepted'] | ['s489056248', 's580118453'] | [3188.0, 3504.0] | [21.0, 452.0] | [938, 838] |
p03837 | u232852711 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n, m = list(map(int, input().split()))\nconnect = {}\ndist = {}\nfor _ in range(m):\n a, b, c = list(map(int, input().split()))\n if not a in connect.keys(): connect[a] = [b]\n else: connect[a].append(b)\n if not b in connect.keys(): connect[b] = [a]\n else: connect[b].append(a)\n \n dist[tuple(sorted([a, b]))] = c\n\nans = 0\nfor s in range(1, n):\n for t in range(s+1, n+1):\n if not (s, t) in dist.keys():\n continue\n \n dists = [1000]*(n+1)\n dists[s] = 0\n stack = [(s, sc) for sc in connect[s]]\n while len(stack) > 0:\n s0, s1 = stack[0]\n stack = stack[1:]\n if dists[s0]+dist[tuple(sorted((s0, s1)))] >= dists[s1]:\n continue\n else:\n dists[s1] = dists[s0]+dist[tuple(sorted((s0, s1)))]\n for s2 in connect[s1]:\n stack.append((s1, s2))\n print(dists)\n if dists[t] < dist[(s, t)]:\n ans += 1\n\nprint(ans)', 'n, m = list(map(int, input().split()))\ndist_given = {}\ndist = [[1000]*(n+1) for _ in range(n+1)]\nfor i in range(1, n+1): dist[i][i] = 0\nfor _ in range(m):\n a, b, c = list(map(int, input().split()))\n dist[a][b] = c\n dist[b][a] = c\n dist_given[tuple(sorted([a, b]))] = c\n\nfor k in range(1, n+1):\n for i in range(1, n+1):\n for j in range(1, n+1):\n dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])\n# print(dist)\nans = 0\nfor i in range(1, n):\n for j in range(i+1, n+1):\n if (i, j) in dist_given.keys() and dist[i][j] < dist_given[(i, j)]:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s954159591', 's369395663'] | [3700.0, 3568.0] | [2104.0, 572.0] | [995, 611] |
p03837 | u252805217 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['from itertools import product as prod\n\nn, m = [int(x) for x in input().split()]\n\ngr = [[] for _ in range(n)]\nfor _ in range(m):\n a, b, c = [int(x) for x in input().split()]\n a -= 1\n b -= 1\n gr[a].append((b, c))\n gr[b].append((a, c))\n\nnumset = set(range(n))\ndef dist(i, j, gr=gr):\n tmp_d = float("inf")\n if i == j:\n return 0\n for (node, d) in gr[i]:\n if node == j:\n tmp_d = d\n # gr_cp = [[(n, d) for (n, d) in g if n != i] for g in gr]\n numset.remove(i)\n routes = [d + dist(n, j, gr=gr) for (n, d) in gr[i] if n in numset]\n\n return min(routes + [tmp_d])\n\nans = 0\nfor i in range(n):\n for (j, d) in gr[i]:\n if dist(i, j) < d:\n ans += 1\n\nprint(ans // 2)\n', 'from itertools import product as prod\n\nn, m = [int(x) for x in input().split()]\n\ngr = [[] for _ in range(n)]\nfor _ in range(m):\n a, b, c = [int(x) for x in input().split()]\n a -= 1\n b -= 1\n gr[a].append((b, c))\n gr[b].append((a, c))\n\ndef dist(i, j, gr=gr):\n tmp_d = float("inf")\n if i == j:\n return 0\n if (j, _) in gr[i]:\n tmp_d = _\n nds = gr[i].copy()\n gr[i] = []\n routes = [d + dist(n, j) for (n, d) in nds]\n \n return min(routes + [tmp_d])\n\nans = 0\nfor i in range(n):\n for (j, d) in gr[i]:\n if dist(i, j) < d:\n ans += 1\n\nprint(ans // 2)', 'from itertools import product as prod\n\nn, m = [int(x) for x in input().split()]\n\ngr = [[] for _ in range(n)]\nfor _ in range(m):\n a, b, c = [int(x) for x in input().split()]\n a -= 1\n b -= 1\n gr[a].append((b, c))\n gr[b].append((a, c))\n\ndef dist(i, j, gr=gr):\n tmp_d = float("inf")\n if i == j:\n return 0\n for (n, d) in gr[i]:\n if n == j:\n tmp_d = d\n gr_cp = [[(n, d) for (n, d) in g if n != i] for g in gr]\n routes = [d + dist(n, j, gr=gr_cp) for (n, d) in gr[i]]\n\n return min(routes + [tmp_d])\n\nans = 0\nfor i, j in prod(range(1, m), range(1,m)):\n for (n, d) in gr[i]:\n if n == j and d > dist(i, j):\n ans += 1\nprint(ans / 2)\n', 'import copy\nfrom itertools import product as prod\n\nn, m = [int(x) for x in input().split()]\n\nwait = [[float("inf") for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n wait[i][i] = 0\nfor _ in range(m):\n a, b, c = map(int, input().split())\n wait[a-1][b-1] = c\n wait[b-1][a-1] = c\n\ndist = copy.deepcopy(wait)\nfor k, i, j in prod(range(n), range(n), range(n)):\n dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])\n dist[j][i] = min(dist[j][i], dist[j][k] + dist[k][i])\n\nans = 0\nfor i, j in prod(range(n), range(n)):\n if not wait[i][j] == float("inf") and dist[i][j] < wait[i][j]:\n ans += 1\n\nprint(ans // 2)\n'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s352817267', 's490352421', 's815158606', 's603094444'] | [3444.0, 3444.0, 11508.0, 4212.0] | [29.0, 31.0, 2103.0, 1231.0] | [732, 612, 701, 639] |
p03837 | u279493135 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom heapq import heappop, heappush, heapify, heappushpop\nfrom itertools import permutations, combinations, product\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\n\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\nN, M = MAP()\nabc = [LIST() for _ in range(M)]\n\ndef warshall_floyd(d):\n \n for k in range(N):\n for i in range(N):\n for j in range(N):\n d[i][j] = min(d[i][j],d[i][k] + d[k][j])\n return d\n\nd = [[INF for i in range(N)] for i in range(N)] \n\nfor x, y, z in abc:\n d[x-1][y-1] = z\n d[y-1][x-1] = z\nfor i in range(N):\n d[i][i] = 0 \n# print(warshall_floyd(d))\ncount = 0\nfor a, b, c in abc:\n\tfor i in range(N):\n\t\tif d[i][a-1] + c == d[a-1][b-1]:\n\t\t\tbreak\n\telse:\n\t\tcount += 1\nprint(count)", "import sys, re\nfrom collections import deque, defaultdict, Counter\nfrom math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom heapq import heappop, heappush, heapify, heappushpop\nfrom itertools import permutations, combinations, product\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\n\ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef LIST(): return list(map(int, input().split()))\nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nMOD = 10 ** 9 + 7\n\nN, M = MAP()\nabc = [LIST() for _ in range(M)]\n\ndef warshall_floyd(d):\n \n for k in range(N):\n for i in range(N):\n for j in range(N):\n d[i][j] = min(d[i][j],d[i][k] + d[k][j])\n return d\n\nd = [[INF for i in range(N)] for i in range(N)] \n\nfor x, y, z in abc:\n d[x-1][y-1] = z\n d[y-1][x-1] = z\nfor i in range(N):\n d[i][i] = 0 \nwarshall_floyd(d)\ncount = 0\nfor a, b, c in abc:\n\tfor i in range(N):\n\t\tif d[i][a-1] + c == d[a-1][b-1]:\n\t\t\tbreak\n\telse:\n\t\tcount += 1\nprint(count)"] | ['Wrong Answer', 'Accepted'] | ['s887235337', 's090045344'] | [3944.0, 4192.0] | [53.0, 444.0] | [1314, 1305] |
p03837 | u316386814 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n, m = list(map(int, input().split()))\n\nimport numpy as np\ndists = np.ones((n + 1, n + 1)) * (10 ** 6)\nedges = []\nfor _ in range(m):\n a, b, c = list(map(int, input().split()))\n dists[a, b] = dists[b, a] = c\n edges.append(a, b, c)\nfor i in range(1, n + 1):\n dists[i, i] = 0\nfor i in range(1, 1 + n):\n dists = np.minimum(dists, dists[i: i + 1] + dists[:, i: i + 1])\ncnt = 0\nfor a, b, c in edges:\n if dists[a, b] < c:\n cnt += 1\n\nprint(cnt)\n', 'n, m = list(map(int, input().split()))\n\nimport numpy as np\ndists = np.ones((n + 1, n + 1)) * (10 ** 6)\nedges = []\nfor _ in range(m):\n a, b, c = list(map(int, input().split()))\n dists[a, b] = dists[b, a] = c\n edges.append((a, b, c))\nfor i in range(1, n + 1):\n dists[i, i] = 0\nfor i in range(1, 1 + n):\n dists = np.minimum(dists, dists[i: i + 1] + dists[:, i: i + 1])\ncnt = 0\nfor a, b, c in edges:\n if dists[a, b] < c:\n cnt += 1\n\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s213294744', 's382913110'] | [12636.0, 22304.0] | [148.0, 312.0] | [462, 464] |
p03837 | u326552320 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#\n# FileName: \tD_fix\n# CreatedDate: 2020-02-21 01:20:19 +0900\n# LastModified: 2020-02-21 02:04:42 +0900\n#\n\n\nimport os\nimport sys\nimport numpy as np\nimport heapq\n\ndef make_matrix(matrix,a,b,c):\n matrix[a-1][b-1] = c\n matrix[b-1][a-1] = c\n\ndef initial_signal(i,matrix):\n d = [2000]*(matrix.shape[0])\n d[i] = 0\n Q = []\n heapq.heappush(Q,(0,i))\n return d,Q\n\ndef relax(matrix,u,v,d,Q):\n if d[v] > d[u]+matrix[u][v]:\n d[v] = d[u]+matrix[u][v]\n heapq.heappush(Q, (d[v],v))\n\n\ndef dijkstra(i,matrix):\n d,Q = initial_signal(i,matrix)\n while Q:\n cost,u = heapq.heappop(Q)\n if d[u]<cost:\n continue\n for v in range(matrix.shape[0]):\n if matrix[u][v]!=0:\n relax(matrix,u,v,d,Q)\n return d\n \n\ndef main():\n N,M = map(int, input().split())\n matrix = np.zeros((N,N),dtype=np.int32)\n for _ in range(M):\n a,b,c = map(int,input().split())\n make_matrix(matrix,a,b,c)\n shortest = []\n for i in range(matrix.shape[0]):\n short = dijkstra(i,matrix)\n shortest.append(short)\n ans=0\n for i in range(N):\n for j in range(N):\n if matrix[i][j]!=0 and matrix[i][j]>shortest[i][j]:\n ans+=1\n print(shortest)\n print(ans//2)\n\n\nif __name__ == "__main__":\n main()\n', '#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#\n# FileName: \tD_fix\n# CreatedDate: 2020-02-21 01:20:19 +0900\n# LastModified: 2020-02-21 02:04:42 +0900\n#\n\n\nimport os\nimport sys\nimport numpy as np\nimport heapq\n\ndef make_matrix(matrix,a,b,c):\n matrix[a-1][b-1] = c\n matrix[b-1][a-1] = c\n\ndef initial_signal(i,matrix):\n d = [9000]*(matrix.shape[0])\n d[i] = 0\n Q = []\n heapq.heappush(Q,(0,i))\n return d,Q\n\ndef relax(matrix,u,v,d,Q):\n if d[v] > d[u]+matrix[u][v]:\n d[v] = d[u]+matrix[u][v]\n heapq.heappush(Q, (d[v],v))\n\n\ndef dijkstra(i,matrix):\n d,Q = initial_signal(i,matrix)\n while Q:\n cost,u = heapq.heappop(Q)\n if d[u]<cost:\n continue\n for v in range(matrix.shape[0]):\n if matrix[u][v]!=0:\n relax(matrix,u,v,d,Q)\n return d\n \n\ndef main():\n N,M = map(int, input().split())\n matrix = np.zeros((N,N),dtype=np.int32)\n for _ in range(M):\n a,b,c = map(int,input().split())\n make_matrix(matrix,a,b,c)\n shortest = []\n for i in range(matrix.shape[0]):\n short = dijkstra(i,matrix)\n shortest.append(short)\n ans=0\n for i in range(N):\n for j in range(N):\n if matrix[i][j]!=0 and matrix[i][j]>shortest[i][j]:\n ans+=1\n print(shortest)\n print(ans//2)\n\n\nif __name__ == "__main__":\n main()\n', '#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#\n# FileName: \tD_fix_2\n# CreatedDate: 2020-02-21 20:39:32 +0900\n# LastModified: 2020-02-21 23:32:20 +0900\n#\n\n\nimport heapq\ndef initial_signal(i,adj,N):\n d = [float("inf") for _ in range(N)]\n d[i] = 0\n Q = [(0,i)]\n return d,Q\n\ndef relax(n_cost, u, v, adj,d,Q):\n if d[v] > d[u]+n_cost:\n d[v]=d[u]+n_cost\n heapq.heappush(Q,(d[v],v))\n\n\n\ndef dijkstra(i,adj,N):\n d,Q = initial_signal(i,adj,N)\n while Q:\n cost, u = heapq.heappop(Q)\n for n_cost, v in adj[u]:\n relax(n_cost, u, v, adj, d, Q)\n \n return d\n\n\n\ndef main():\n N, M = map(int, input().split())\n adj = [[] for _ in range(N)]\n for _ in range(M):\n a,b,c = map(int, input().split())\n adj[a-1].append((c,b-1))\n adj[b-1].append((c,a-1))\n shortest = []\n for i in range(N):\n shortest.append(dijkstra(i,adj,N))\n ans = 0\n for i in range(N):\n for cost, j in adj[i]:\n if cost>shortest[i][j]:\n ans+=1\n print(shortest)\n print(ans//2)\n\n\nif __name__ == "__main__":\n main()\n', '#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#\n# FileName: \tD_fix\n# CreatedDate: 2020-02-21 01:20:19 +0900\n# LastModified: 2020-02-21 02:04:42 +0900\n#\n\n\nimport os\nimport sys\nimport numpy as np\nimport heapq\n\ndef make_matrix(matrix,a,b,c):\n matrix[a-1][b-1] = c\n matrix[b-1][a-1] = c\n\ndef initial_signal(i,matrix):\n d = [float("inf")]*(matrix.shape[0])\n d[i] = 0\n Q = []\n heapq.heappush(Q,(0,i))\n return d,Q\n\ndef relax(matrix,u,v,d,Q):\n if d[v] > d[u]+matrix[u][v]:\n d[v] = d[u]+matrix[u][v]\n heapq.heappush(Q, (d[v],v))\n\n\ndef dijkstra(i,matrix):\n d,Q = initial_signal(i,matrix)\n while Q:\n cost,u = heapq.heappop(Q)\n if d[u]<cost:\n continue\n for v in range(matrix.shape[0]):\n if matrix[u][v]!=0:\n relax(matrix,u,v,d,Q)\n return d\n \n\ndef main():\n N,M = map(int, input().split())\n matrix = np.zeros((N,N),dtype=np.int32)\n for _ in range(M):\n a,b,c = map(int,input().split())\n make_matrix(matrix,a,b,c)\n shortest = []\n for i in range(matrix.shape[0]):\n short = dijkstra(i,matrix)\n shortest.append(short)\n ans=0\n for i in range(N):\n for j in range(N):\n if matrix[i][j]!=0 and matrix[i][j]>shortest[i][j]:\n ans+=1\n print(shortest)\n print(ans//2)\n\n\nif __name__ == "__main__":\n main()\n', '#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n#\n# FileName: \tD_fix_2\n# CreatedDate: 2020-02-21 20:39:32 +0900\n# LastModified: 2020-02-21 23:32:20 +0900\n#\n\n\nimport heapq\ndef initial_signal(i,adj,N):\n d = [float("inf") for _ in range(N)]\n d[i] = 0\n Q = [(0,i)]\n return d,Q\n\ndef relax(n_cost, u, v, adj,d,Q):\n if d[v] > d[u]+n_cost:\n d[v]=d[u]+n_cost\n heapq.heappush(Q,(d[v],v))\n\n\n\ndef dijkstra(i,adj,N):\n d,Q = initial_signal(i,adj,N)\n while Q:\n cost, u = heapq.heappop(Q)\n for n_cost, v in adj[u]:\n relax(n_cost, u, v, adj, d, Q)\n \n return d\n\n\n\ndef main():\n N, M = map(int, input().split())\n adj = [[] for _ in range(N)]\n for _ in range(M):\n a,b,c = map(int, input().split())\n adj[a-1].append((c,b-1))\n adj[b-1].append((c,a-1))\n shortest = []\n for i in range(N):\n shortest.append(dijkstra(i,adj,N))\n ans = 0\n for i in range(N):\n for cost, j in adj[i]:\n if cost>shortest[i][j]:\n ans+=1\n print(ans//2)\n\n\nif __name__ == "__main__":\n main()\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s050898426', 's552878960', 's610422429', 's908375046', 's567173462'] | [14252.0, 14252.0, 3804.0, 14624.0, 3572.0] | [2108.0, 2108.0, 157.0, 2108.0, 155.0] | [1388, 1388, 1115, 1396, 1095] |
p03837 | u368780724 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import heapq\n\nn, m = [int(i) for i in input().split()]\ninf = 10**10\npath = [[0] * n for _ in range(n)]\nQ = [[inf] * n for _ in range(n)]\nans = 0\npathnum = []\nctr = 0\n\nfor i in range(m):\n a, b, c = map(lambda x: int(x)-1 ,input().split()) \n path[a][b] = path[b][a] = c+1\n pathnum.append((a,b))\n\nfor i in range(n):\n decided = [False for _ in range(n)]\n H = []\n Q[i][i] = 0\n heapq.heappush(H,(0,i))\n while ctr != n:\n while True:\n k = heapq.heappop(H)\n k = k[1]\n if not decided[k]:\n decided[k] = True\n ctr += 1\n break\n for j in range(n):\n if path[k][j] == 0:\n continue\n if decided[j]:\n continue\n Q[i][j] = min(Q[i][k] + path[k][j], Q[i][j])\n heapq.heappush(H,(Q[i][j],j))\n\nfor i in pathnum:\n if Q[i[0]][i[1]] == inf:\n continue\n elif Q[i[0]][i[1]] != path[i[0]][i[1]]:\n ans += 1\nprint(ans)\n ', 'import heapq\n\nn, m = [int(i) for i in input().split()]\ninf = 10**10\npath = [[0] * n for _ in range(n)]\nQ = [[inf] * n for _ in range(n)]\nans = 0\npathnum = []\n\nfor i in range(m):\n a, b, c = map(lambda x: int(x)-1 ,input().split()) \n path[a][b] = path[b][a] = c+1\n pathnum.append((a,b))\n\nfor i in range(n):\n decided = [False for _ in range(n)]\n H = []\n Q[i][i] = 0\n heapq.heappush(H,(0,i))\n for _ in range(n):\n while True:\n k = heapq.heappop(H)\n k = k[1]\n if not decided[k]:\n decided[k] = True\n break\n for j in range(n):\n if path[k][j] == 0:\n continue\n if decided[j]:\n continue\n Q[i][j] = min(Q[i][k] + path[k][j], Q[i][j])\n heapq.heappush(H,(Q[i][j],j))\n\nfor i in pathnum:\n if Q[i[0]][i[1]] == inf:\n continue\n elif Q[i[0]][i[1]] != path[i[0]][i[1]]:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s788448694', 's407809011'] | [3444.0, 3572.0] | [26.0, 291.0] | [1002, 967] |
p03837 | u373958718 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n,m=map(int,input().split())\nl=[list(map(int,input().split()))for i in range(m)]\ndist=[[1<<29]*n for i in range(n)]\nfor i in range(n): dist[i][i]=0\nfor a in l:\n dist[a[0]-1][a[1]-1] = min(dist[a[0]-1][a[1]-1],a[2])\n dist[a[1]-1][a[0]-1] = min(dist[a[1]-1][a[0]-1],a[2])\nprint(dist)\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])\n\nans=m\nfor a in l:\n flag=False\n for j in range(n): \n if dist[j][a[0]-1]+a[2]==dist[j][a[1]-1]: flag=True\n if flag: ans-=1\nprint(ans)', 'n,m=map(int,input().split())\nl=[list(map(int,input().split()))for i in range(m)]\ndist=[[1<<29]*n for i in range(n)]\nfor i in range(n): dist[i][i]=0\nfor a in l:\n dist[a[0]-1][a[1]-1] = min(dist[a[0]-1][a[1]-1],a[2])\n dist[a[1]-1][a[0]-1] = min(dist[a[1]-1][a[0]-1],a[2])\n# print(dist)\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])\n\nans=m\nfor a in l:\n flag=False\n for j in range(n): \n if dist[j][a[0]-1]+a[2]==dist[j][a[1]-1]: flag=True\n if flag: ans-=1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s470798522', 's789671643'] | [3756.0, 3568.0] | [652.0, 621.0] | [559, 562] |
p03837 | u411858517 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['def warshall_floyd(d, V, M): \n for k in range(V):\n for i in range(V):\n for j in range(V):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n \n return d\n \nN, M = map(int, input().split())\nL = [list(map(int, input().split())) for _ in range(M)]\ndist = [[10 ** 5 for i in range(N)] for i in range(N)]\n\nfor l in L:\n l[0] -= 1\n l[1] -= 1\n \nfor i in range(M):\n dist[L[i][0]][L[i][1]] = L[i][2]\n dist[L[i][1]][L[i][0]] = L[i][2]\n\ndist = warshall_floyd(dist, N, M)\n\nres = M\nfor i in range(M):\n if dist[L[i][0]][L[i][1]] != L[i][2]:\n res -= 1\n \nprint(res)', 'def warshall_floyd(d, V, M): \n for k in range(V):\n for i in range(V):\n for j in range(V):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n \n return d\n \nN, M = map(int, input().split())\nL = [list(map(int, input().split())) for _ in range(M)]\ndist = [[10 ** 5 for i in range(N)] for i in range(N)]\n\nfor l in L:\n l[0] -= 1\n l[1] -= 1\n \nfor i in range(M):\n dist[L[i][0]][L[i][1]] = L[i][2]\n dist[L[i][1]][L[i][0]] = L[i][2]\n\ndist = warshall_floyd(dist, N, M)\n\nres = 0\n\nfor i in range(M):\n if dist[L[i][0]][L[i][1]] != L[i][2]:\n res += 1\n \nprint(res)'] | ['Wrong Answer', 'Accepted'] | ['s775442404', 's262132703'] | [3572.0, 3572.0] | [458.0, 416.0] | [708, 709] |
p03837 | u429843511 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['INF=100000000000\n\n\ndef floyd_warshall(dist):\n for i in range(n):\n for j in range(n):\n for k in range(n):\n if (dist[i][j] > dist[i][k]+dist[k][j]):\n dist[i][j] = dist[i][k]+dist[k][j]\n dist[j][i] = dist[i][k]+dist[k][j]\n\nn,m = map(int,input().split())\ndist=[[INF]*n for i in range(n)]\nedges=[]\n\nfor i in range(m):\n ai,bi,ci=map(int,input().split())\n edges.append(tuple([ai-1,bi-1,ci]))\n dist[ai-1][bi-1]=ci\n dist[bi-1][ai-1]=ci\n\nfor i in range(n):\n dist[i][i] = 0\n\nfloyd_warshall(dist)\n\n#print(dist)\ncount = 0\nfor edge in edges:\n ai,bi,ci=edge\n flag = 0\n for s in range(n):\n if dist[s][ai]+ci == dist[s][bi]:\n flag+=1\n\n if flag > 0:\n count+=1\n\nprint(count)\n\n \n \n \n ', 'INF=100000000000\n\n\ndef floyd_warshall(dist):\n for k in range(n):\n for i in range(n):\n for j in range(n):\n dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])\n\nn,m = map(int,input().split())\ndist=[[INF]*n for i in range(n)]\nedges=[]\n\nfor i in range(m):\n ai,bi,ci=map(int,input().split())\n edges.append(tuple([ai-1,bi-1,ci]))\n dist[ai-1][bi-1]=ci\n dist[bi-1][ai-1]=ci\n\nfor i in range(n):\n dist[i][i] = 0\n\nfloyd_warshall(dist)\n\n#print(dist)\nans = m\nfor edge in edges:\n ai,bi,ci=edge\n flag = 0\n for s in range(n):\n if dist[s][ai]+ci == dist[s][bi]:\n flag+=1\n\n if flag > 0:\n ans-=1\n\nprint(ans)\n\n '] | ['Wrong Answer', 'Accepted'] | ['s565564848', 's229652238'] | [3444.0, 3440.0] | [273.0, 427.0] | [805, 683] |
p03837 | u437727817 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n,m = map(int,input().split())\ndist = []\na = []\nb = []\nc = []\n\nfor i in range(m):\n\ta[i], b[i], c[i] = map(int,input().split())\n\tdist[a[i]-1][b[i]-1] = c[i]\n\tdist[b[i]-1][a[i]-1] = c[i]\n\n\n\n\n\n\nfor i in range(n):\n\tfor j in range(n):\n\t\tfor k in range(n):\n\t\t\tdist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])\n\nres = 0\nfor i in range(m):\n\tif c[i] > dist[a[i]-1][b[i]-1]:\n\t\tres += 1\n\nprint (res)\n', 'n,m = map(int,input().split())\n\ndist = [[10**10 for i in range(n)]for j in range(n)]\nfor i in range(n):\n\tdist[i][i] == 0\n\na = [0]*m\nb = [0]*m\nc = [0]*m\n\nfor i in range(m):\n\ta[i], b[i], c[i] = map(int,input().split())\n\tdist[a[i]-1][b[i]-1] = c[i]\n\tdist[b[i]-1][a[i]-1] = c[i]\n\n\n\n\n\nfor k in range(n):\n\tfor i in range(n):\n\t\tfor j in range(n):\n\t\t\tdist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])\n\n\nres = 0\nfor i in range(m):\n\tif c[i] > dist[a[i]-1][b[i]-1]:\n\t\tres += 1\n\nprint(res)\n'] | ['Runtime Error', 'Accepted'] | ['s675486617', 's566572085'] | [3064.0, 3392.0] | [18.0, 555.0] | [452, 541] |
p03837 | u477320129 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['#!/usr/bin/env python3\nimport sys\n\ndef solve(N: int, M: int, a: "List[int]", b: "List[int]", c: "List[int]"):\n import numpy as np \n from scipy.sparse import csr_matrix \n from scipy.sparse.csgraph import floyd_warshall\n omat = csr_matrix((c, (a, b)), shape=(N+1, N+1), dtype=np.int32, directed=False)\n smat = floyd_warshall(omat)\n return ((omat-smat) > 0).sum() // 2\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n M = int(next(tokens)) # type: int\n a = [int()] * (M) # type: "List[int]"\n b = [int()] * (M) # type: "List[int]"\n c = [int()] * (M) # type: "List[int]"\n for i in range(M):\n a[i] = int(next(tokens))\n b[i] = int(next(tokens))\n c[i] = int(next(tokens))\n print(solve(N, M, a, b, c))\n\ndef test():\n import doctest\n doctest.testmod()\n\nif __name__ == \'__main__\':\n #test()\n main()\n', '#!/usr/bin/env python3\nimport sys\n\ndef solve(N: int, M: int, a: "List[int]", b: "List[int]", c: "List[int]"):\n import numpy as np \n from scipy.sparse import csr_matrix \n from scipy.sparse.csgraph import floyd_warshall\n omat = csr_matrix((c, (a, b)), shape=(N+1, N+1), dtype=np.int32)\n smat = floyd_warshall(omat, directed=False)\n return ((smat-omat) < 0).sum()\n\n\n# Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n M = int(next(tokens)) # type: int\n a = [int()] * (M) # type: "List[int]"\n b = [int()] * (M) # type: "List[int]"\n c = [int()] * (M) # type: "List[int]"\n for i in range(M):\n a[i] = int(next(tokens))\n b[i] = int(next(tokens))\n c[i] = int(next(tokens))\n print(solve(N, M, a, b, c))\n\ndef test():\n import doctest\n doctest.testmod()\n\nif __name__ == \'__main__\':\n #test()\n main()\n'] | ['Runtime Error', 'Accepted'] | ['s977828810', 's006373485'] | [41456.0, 38188.0] | [390.0, 187.0] | [1092, 1087] |
p03837 | u489108157 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["n, m = map(lambda x: int(x), input().split())\na = [0] * m\nb = [0] * m\nc = [0] * m\nfor i in range(m):\n a[i], b[i], c[i] = map(lambda x: int(x), input().split())\n\ndef dijkstra(graph, start, end):\n print('start:{}, end:{}'.format(start, end))\n cost = [1000*100 for _ in range(n+1)]\n fixed = [False for _ in range(n+1)]\n cost[start] = 0\n fixed[start] = True\n tmp_sta = start\n while True:\n tmp_min = 1000*100\n for i in graph[tmp_sta]:\n cost[i[0]] = min(cost[i[0]], cost[tmp_sta]+i[1])\n for i in range(1, n+1):\n if tmp_min > cost[i] and fixed[i] == False:\n tmp_min = cost[i]\n tmp_sta = i\n if tmp_sta == end:\n return tmp_min\n else:\n fixed[tmp_sta] = True\n \ngraph = {}\nfor i in range(1, n+1):\n graph[i] = []\nfor i in range(m):\n graph[a[i]].append((b[i], c[i]))\n graph[b[i]].append((a[i], c[i]))\nprint(graph)\n \nans = 0\nfor i in range(m):\n if c[i] > dijkstra(graph, a[i], b[i]):\n ans += 1\nprint(ans)", 'n, m = map(lambda x: int(x), input().split())\na = [0] * m\nb = [0] * m\nc = [0] * m\nfor i in range(m):\n a[i], b[i], c[i] = map(lambda x: int(x), input().split())\n\ndef dijkstra(graph, start):\n cost = [1000*100 for _ in range(n+1)]\n fixed = [False for _ in range(n+1)]\n cost[start] = 0\n fixed[start] = True\n tmp_sta = start\n while True:\n tmp_min = 1000*100\n for i in graph[tmp_sta]:\n cost[i[0]] = min(cost[i[0]], cost[tmp_sta]+i[1])\n for i in range(1, n+1):\n if tmp_min > cost[i] and fixed[i] == False:\n tmp_min = cost[i]\n tmp_sta = i\n if tmp_min == 1000*100:\n return cost\n else:\n fixed[tmp_sta] = True\n \ngraph = {}\nfor i in range(1, n+1):\n graph[i] = []\nfor i in range(m):\n graph[a[i]].append((b[i], c[i]))\n graph[b[i]].append((a[i], c[i]))\n\ncost2d = [[]]\nfor i in range(1, n+1):\n cost2d.append(dijkstra(graph, i))\n\nans = 0\nfor i in range(m):\n if c[i] > cost2d[a[i]][b[i]]:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s432590639', 's213895071'] | [3316.0, 3444.0] | [783.0, 162.0] | [1047, 1046] |
p03837 | u505420467 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["from scipy.sparse.csgraph import floyd_warshall\nfrom scipy.sparse.csgraph import dijkstra\nn,m=map(int,input().split())\ndis=[[float('inf') for i in range(n)]for j in range(n)]\nfor i in range(n):\n dis[i][i]=0\nfor i in range(m):\n a,b,t=map(int,input().split())\n dis[a-1][b-1]=t\n dis[b-1][a-1]=t\ncost=dijkstra(dis,directed=False,unweighted=False)\ncnt=0\nfor i,j,k in dis:\n if k>costs[i-1][j-1]:\n cnt+=1\nprint(cnt)\n", "n, m = map(int, input().split())\nINF = float('inf')\ngraph = [[INF for i in range(n)] for j in range(n)]\ntmp = []\n\nfor i in range(m):\n a, b, c = map(int, input().split())\n graph[a - 1][b - 1] = c\n graph[b - 1][a - 1] = c\n tmp.append((a - 1, b - 1, c))\n\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n graph[i][j] = min(graph[i][j], graph[i][k] + graph[k][j])\n\nans = 0\nfor a, b, c in tmp:\n if c > graph[a][b]:\n ans += 1\n\nprint(ans)\n"] | ['Runtime Error', 'Accepted'] | ['s791274953', 's089600840'] | [17176.0, 3444.0] | [279.0, 583.0] | [431, 485] |
p03837 | u557494880 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ["\ndef warshall_floyd(d):\n \n for k in range(1,n+1):\n for i in range(1,n+1):\n for j in range(1,n+1):\n d[i][j] = min(d[i][j],d[i][k] + d[k][j])\n return d\n\n##############################\nn,w = map(int,input().split()) \nd = [[float('inf') for i in range(n+1)] for i in range(n+1)] \n\nW = []\nfor i in range(w):\n x,y,z = map(int,input().split())\n W.append((x,y,z))\n d[x][y] = z\n d[y][x] = z\nfor i in range(n):\n d[i][i] = 0 \na = 1\nfor i in range(w):\n x,y,z = W[i][0],W[i][1],W[i][2]\n if d[x][y] < z:\n a += 1\nans = w - a\nprint(ans)\n", "\ndef warshall_floyd(d):\n \n for k in range(1,n+1):\n for i in range(1,n+1):\n for j in range(1,n+1):\n d[i][j] = min(d[i][j],d[i][k] + d[k][j])\n return d\n\n##############################\nn,w = map(int,input().split()) \nd = [[float('inf') for i in range(n+1)] for i in range(n+1)] \n\nW = []\nfor i in range(w):\n x,y,z = map(int,input().split())\n W.append((x,y,z))\n d[x][y] = z\n d[y][x] = z\nfor i in range(n+1):\n d[i][i] = 0 \na = 0\nwarshall_floyd(d)\nfor i in range(w):\n x,y,z = W[i][0],W[i][1],W[i][2]\n if d[x][y] < z:\n a += 1\nprint(a)"] | ['Wrong Answer', 'Accepted'] | ['s837723528', 's992581635'] | [3444.0, 3700.0] | [23.0, 475.0] | [786, 791] |
p03837 | u594956556 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import sys\nfrom copy import deepcopy\ninput = sys.stdin.readline\nn,m=map(int,input().split())\nd=[[100000]*n for _ in range(n)]\na=[0]*m\nb=[0]*m\nc=[0]*m\nfor i in range(m):\n a0,b0,c0=map(int,input().split())\n a[i]=a0-1\n b[i]=b0-1\n c[i]=c0\n d[a0-1][b0-1]=c0\n d[b0-1][a0-1]=c0\nfor i in range(n):\n d[i][i]=0\nd2=deepcopy(d)\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n d[i][j]=min(d[i][j],d[i][k]+d[k][j])\ncount=0\nfor i in range(n):\n for j in range(i):\n if d[i][j]!=d[i][j]:\n count+=1\nprint(count)\n', 'N, M = map(int, input().split())\nd = [[1000000]*N for _ in range(N)]\nd_dict = {}\n\ninf = 0\nfor i in range(M):\n a, b, c = map(int, input().split())\n d[a-1][b-1] = c\n d[b-1][a-1] = c\n d_dict[(a-1, b-1)] = c\n \nfor k in range(N):\n for i in range(N):\n for j in range(N):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n \nans = 0\nfor key in d_dict:\n if d[key[0]][key[1]] < d_dict[key]:\n ans += 1\n \nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s905591441', 's033445348'] | [3964.0, 3444.0] | [544.0, 677.0] | [530, 419] |
p03837 | u631277801 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['\nfrom heapq import heappush, heappop\n\ndef dijkstra(graph:list, node:int, start:int) -> list:\n \n INF = float("inf")\n dist = [INF]*node\n \n \n dist[start] = 0\n heap = [(0,start)]\n \n \n while heap:\n cost, cur_node = heappop(heap)\n \n for nex_cost, nex_node in graph[cur_node]:\n dist_cand = dist[cur_node] + nex_cost\n if dist_cand < dist[nex_node]:\n dist[nex_node] = dist_cand\n heappush(heap, (dist[nex_node], nex_node))\n \n return dist\n\nclass MakeGraph:\n \n \n \n \n def __init__(self, node_num:int, isMat:bool) -> None:\n self.n = node_num\n self.isMat = isMat\n\n \n if self.isMat:\n INF = float("inf")\n self.graph = [[INF for _ in range(self.n)] for _ in range(self.n)]\n \n \n else:\n self.graph = [[] for _ in range(self.n)]\n\n \n \n \n def add_undr_edge_mat(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm][to] = dist\n self.graph[to][frm] = dist\n \n def add_drct_edge_mat(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm][to] = dist\n \n def add_undr_edge_lst(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm].append((dist, to))\n self.graph[to].append((dist, frm))\n \n def add_drct_edge_lst(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm].append((dist, to))\n\n \n \n def get_graph(self) -> list:\n return self.graph\n\n\nN,M = map(int, input().split())\nABC = []\nfor i in range(M):\n ABC.append(tuple(map(int, input().split())))\n \n \ngraphMaker = MakeGraph(N,False)\nadd_edge = graphMaker.add_undr_edge_lst\n\nfor a,b,c in ABC:\n add_edge(a-1, b-1, c)\n\ngraph = graphMaker.get_graph()\n\ndist = []\nfor i in range(N):\n dist_temp = dijkstra(graph, N, i)\n dist.append(dist_temp)\n \nans = 0\nfor i in range(N):\n for cost, node in graph[i]:\n if dist[i][node] != cost:\n ans += 1\n \n \nprint(ans)\n', 'class MakeGraph:\n \n \n \n \n def __init__(self, node_num:int, isMat:bool) -> None:\n self.n = node_num\n self.isMat = isMat\n\n \n if self.isMat:\n INF = float("inf")\n self.graph = [[INF for _ in range(self.n)] for _ in range(self.n)]\n \n \n else:\n self.graph = [[] for _ in range(self.n)]\n\n \n \n \n def add_undr_edge_mat(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm][to] = dist\n self.graph[to][frm] = dist\n \n def add_drct_edge_mat(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm][to] = dist\n \n def add_undr_edge_lst(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm].append((dist, to))\n self.graph[to].append((dist, frm))\n \n def add_drct_edge_lst(self, frm:int, to:int, dist:int) -> None:\n self.graph[frm].append((dist, to))\n\n \n \n def get_graph(self) -> list:\n return self.graph\n\n\nN,M = map(int, input().split())\nABC = []\nfor i in range(M):\n ABC.append(tuple(map(int, input().split())))\n \ngraphMaker = MakeGraph(N,True)\nadd_edge = graphMaker.add_undr_edge_mat\nfor a,b,c in ABC:\n add_edge(a-1, b-1, c)\n \ngraph = graphMaker.get_graph()\nfor i in range(N):\n graph[i][i] = 0\n\n# WF\nmin_root = [[[] for i in range(N)] for i in range(N)]\nfor i in range(N):\n for j in range(N):\n min_root[i][j].append(j)\n \nfor i in range(N):\n for j in range(N):\n for k in range(N):\n if graph[i][j] >= graph[i][k]+graph[k][j]:\n graph[i][j] = graph[i][k]+graph[k][j]\n min_root[i][j].append(k)\n \nfor i in range(N):\n for j in range(N):\n min_root[i][j].append(i)\n \n\nedge_list = []\nfor a,b,c in ABC:\n edge_list.append([a-1,b-1])\n \n\nfor i in range(N):\n for j in range(N):\n for k in range(len(min_root[i][j])-1):\n if i==j:\n continue\n \n if [min_root[i][j][k], min_root[i][j][k+1]] in edge_list:\n edge_list.remove([min_root[i][j][k], min_root[i][j][k+1]])\n \n \n elif [min_root[i][j][k+1], min_root[i][j][k]] in edge_list:\n edge_list.remove([min_root[i][j][k+1], min_root[i][j][k]])\n \n \nprint(len(edge_list))\n \n ', 'import sys\nstdin = sys.stdin\n \nsys.setrecursionlimit(10**5) \n \ndef li(): return map(int, stdin.readline().split())\ndef li_(): return map(lambda x: int(x)-1, stdin.readline().split())\ndef lf(): return map(float, stdin.readline().split())\ndef ls(): return stdin.readline().split()\ndef ns(): return stdin.readline().rstrip()\ndef lc(): return list(ns())\ndef ni(): return int(stdin.readline())\ndef nf(): return float(stdin.readline())\n\nfrom heapq import heappush, heappop\n\ndef dijkstra(graph:list, node:int, start:int) -> list:\n \n INF = float("inf")\n dist = [INF]*node\n \n \n dist[start] = 0\n heap = [(0,start)]\n \n \n while heap:\n cost, cur_node = heappop(heap)\n \n for nex_cost, nex_node in graph[cur_node]:\n dist_cand = dist[cur_node] + nex_cost\n if dist_cand < dist[nex_node]:\n dist[nex_node] = dist_cand\n heappush(heap, (dist[nex_node], nex_node))\n \n return dist\n\nn,m = li()\n\nedges = []\ngraph = [[] for _ in range(n)]\nadj_mat = [[0]*n for _ in range(n)]\n\nfor _ in range(m):\n a,b,c = li()\n a -= 1\n b -= 1\n graph[a].append((c,b))\n graph[b].append((c,a))\n edges.append((a,b,c))\n \n\nfor i in range(n):\n adj_mat[i] = dijkstra(graph, n, i)\n \n \n\nans = 0\nfor ai, bi, ci in edges:\n if adj_mat[ai][bi] < ci:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s312783516', 's330795742', 's242829454'] | [3692.0, 7640.0, 3660.0] | [97.0, 1240.0, 96.0] | [2556, 2730, 1586] |
p03837 | u638795007 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['def examD():\n N, M = LI()\n D = [[float("inf") for i in range(N)] for i in range(N)]\n \n XY = [[0,0]]*M\n for i in range(M):\n x, y, z = map(int, input().split())\n XY[i] = [x-1,y-1]\n D[x - 1][y - 1] = z\n D[y - 1][x - 1] = z\n for i in range(N):\n D[i][i] = 0 \n d = copy.deepcopy(D)\n# print(warshall_floyd(N, d))\n W = warshall_floyd(N, d)\n cur = int(0)\n for i in range(M):\n if D[XY[i][0]][XY[i][1]]>W[XY[i][0]][XY[i][1]]:\n cur += 1\n print(cur)\n\nimport sys\nimport copy\nfrom collections import Counter,defaultdict,deque\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\ndef LS(): return sys.stdin.readline().split()\ndef S(): return sys.stdin.readline().strip()\nmod = 10**9 + 7\ninf = float(\'inf\')\n\nexamD()\n', 'def warshall_floyd(n,d):\n \n for k in range(n):\n for i in range(n):\n for j in range(n):\n d[i][j] = min(d[i][j],d[i][k] + d[k][j])\n return d\n\ndef examD():\n N, M = LI()\n D = [[float("inf") for i in range(N)] for i in range(N)]\n \n XY = [[0,0]]*M\n for i in range(M):\n x, y, z = map(int, input().split())\n XY[i] = [x-1,y-1]\n D[x - 1][y - 1] = z\n D[y - 1][x - 1] = z\n for i in range(N):\n D[i][i] = 0 \n d = copy.deepcopy(D)\n# print(warshall_floyd(N, d))\n W = warshall_floyd(N, d)\n cur = int(0)\n for i in range(M):\n if D[XY[i][0]][XY[i][1]]>W[XY[i][0]][XY[i][1]]:\n cur += 1\n print(cur)\n\nimport sys\nimport copy\nfrom collections import Counter,defaultdict,deque\ndef I(): return int(sys.stdin.readline())\ndef LI(): return list(map(int,sys.stdin.readline().split()))\ndef LS(): return sys.stdin.readline().split()\ndef S(): return sys.stdin.readline().strip()\nmod = 10**9 + 7\ninf = float(\'inf\')\n\nexamD()\n'] | ['Runtime Error', 'Accepted'] | ['s997243731', 's359895396'] | [3956.0, 4292.0] | [35.0, 462.0] | [941, 1159] |
p03837 | u664373116 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['\nclass Graph():\n \n def __init__(self,vertex_num,node_num,naive_input):\n self.vertex_num=vertex_num\n self.node_num=node_num\n \n \n node=[[] for _ in range(vertex_num)]\n for i in range(node_num):\n u,v=naive_input[i][:2]\n w=naive_input[i][2]\n node[u].append([v,i,w])\n node[v].append([u,i,w])\n self.node=node\n \n self.node_num_arr=list(map(lambda x:len(x),node))\n \n def bfs(self,s=0):\n \n def cal_distance(now_edge,next_edge_info,distance_arr,before_vertex_arr,queue,l_ind):\n next_edge=next_edge_info[0]\n weight=next_edge_info[2]\n cal_distance_val=distance_arr[now_edge]+weight\n if before_vertex_arr[next_edge]==-1:\n queue[l_ind]=next_edge\n #print("queue is updated")\n l_ind+=1\n if cal_distance_val<distance_arr[next_edge]:\n \n distance_arr[next_edge]=cal_distance_val\n before_vertex_arr[next_edge]=now_edge\n \n \n #print(distance_arr)\n \n \n return l_ind\n\n \n q=[-1 for _ in range(self.vertex_num)]\n \n \n \n #cal_node_num_arr=self.node_num_arr.copy()\n now_ind=0\n q[now_ind]=s\n last_ind=1\n\n\n distance=[float("inf") for _ in range(self.vertex_num)]\n distance[s]=0\n before_vertex=[-1 for _ in range(self.vertex_num)]\n before_vertex[s]=s\n index_arr=[-1 for _ in range(self.node_num)]\n\n while last_ind<self.vertex_num:\n now_edge=q[now_ind]\n \n for next_edge_info in self.node[now_edge]:\n \n #cal_node_num_arr[now_edge]-=1\n #cal_node_num_arr[next_edge]-=1\n #q[last_ind]=next_edge\n \n \n\n \n\n last_ind=cal_distance(now_edge,next_edge_info,distance,before_vertex,q,last_ind)\n \n now_ind+=1\n \n return distance\n\nn,m=list(map(int,input().split()))\n"""\nmaze=[[i for i in input()] for _ in range(n)]\ngraph=[[] for _ in range(n*m)]\nq_num=0\nfor i in range(n):\n for j in range(m):\n if maze[i][j]=="#":\n continue\n ind=i*m+j\n q_num+=1\n #move[i][j]=ind\n if i!=0:\n if maze[i-1][j]!="#":\n graph[ind].append((i-1)*m+j)\n if i!=n-1:\n if maze[i+1][j]!="#":\n graph[ind].append((i+1)*m+j)\n if j!=0:\n if maze[i][j-1]!="#":\n graph[ind].append(i*m+j-1)\n \n if j!=m-1:\n if maze[i][j+1]!="#":\n graph[ind].append(i*m+j+1)\n\na=[]\nfor num,i in enumerate(graph):\n for j in i:\n a.append([num,j,1])\n#print(a)\ntmp=0\nfor i in maze:\n for j in i:\n if j==".":\n tmp+=1\nn=tmp\nm=len(a)\n"""\na=[list(map(int,input().split())) for _ in range(m)]\na=list(map(lambda x:[x[0]-1,x[1]-1,x[2]],a))\nG=Graph(n,m,a)\nans=0\nfor i in range(n):\n cal=G.bfs(i)', '#made in 2019/7/1\n#modified in 2020/2/14\nclass Node:\n def __init__(self):\n self.next={}\n def get_data(self,new_next,weight=1):\n self.next[new_next]=weight\n\n\n\ndef dijkstra():\n total=0\n node_cost=[float("inf") for i in range(0,N)]\n now=[E-1]\n node_cost[now[0]]=0\n check=[i for i in range(0,N)]\n check.remove(E-1)\n next_node=node[now[0]].next.keys()\n while len(check):\n total+=1\n tmp=[]\n #print("now", now)\n for each in now:\n next_node=node[each].next.keys()\n for i in next_node:\n val=node[each].next[i]+node_cost[each]\n if node_cost[i]>val:\n node_cost[i]=val\n if i in check:\n #check.remove(i)\n #tmp.extend(node[i].next.keys())\n tmp.append(i)\n now=tmp\n #print("next... ",tmp)\n #print("now...",node_cost)\n if len(now)==0:\n break\n \n print(node_cost)\n print("min_cost:",node_cost[S-1])\n \n\n\n\ndef BFS():\n total=0\n #print("start bfs")\n check_node=[i for i in range(0,N)]\n now=S-1\n tmp=[now]\n check_node.remove(now)\n new_tmp=[]\n while len(check_node)>0:\n #print("tmp:{}".format(tmp))\n total+=1\n for each in tmp:\n #print("each:{}".format(each))\n for i in node[each].next.keys():\n k=i\n #print(k)\n if k in check_node:\n #print("append :{}".format(k))\n new_tmp.append(k)\n check_node.remove(k)\n #print("new_tmp:{}".format(new_tmp))\n #print("check_node:{}".format(check_node))\n tmp=new_tmp\n new_tmp=[]\n print("end")\n print("loop time:{}".format(total))\n \n\n\n\n\n\n\n\n \n \n\n\n#??\nN,M=list(map(int,input().split()))\n#S,E=list(map(int,input().split()))\nnode=[Node() for _ in range(N)]\nans=[[100 for _ in range(N)]for _ in range(N)]\nfor i in range(M):\n tmp_p,tmp_n,tmp_w=list(map(int,input().split()))\n node[tmp_p-1].get_data(tmp_n-1,tmp_w)\n node[tmp_n-1].get_data(tmp_p-1,tmp_w)\n#BFS()\na_num=ord("a")\nfor i in range(N):\n \n S=i+1\n E=i+1\n dijkstra()\n print()\n\n', 'import heapq\nclass Graph():\n def __init__(self,vertex_num,node_num,naive_input,start_zero=True,direction=False):\n self.vertex_num=vertex_num\n self.node_num=node_num\n \n \n node=[{} for _ in range(vertex_num)]\n for i in range(node_num):\n u,v,w=naive_input[i]\n if not start_zero:\n u-=1\n v-=1\n node[u][v]={"weight":w,"index":i}\n #node[v][u]={"weight":w,"index":i}\n if not direction:\n node[v][u]={"weight":w,"index":i}\n #node[u][v]["reverse"]={"weight":w,"index":i}\n self.node=node\n \n self.node_num_arr=list(map(lambda x:len(x),node))\n\n def djikstra(self,s=0):\n distance=[float("inf") for _ in range(self.vertex_num)]\n distance[s]=0\n \n \n \n \n visited_vertex={s}\n before_vertex=[float("inf") for _ in range(self.vertex_num)]\n node_index_arr=[float("inf") for _ in range(self.vertex_num)]\n while len(visited_vertex)<self.vertex_num:\n \n will_visit_node=set()\n for now_node_num in visited_vertex:\n for next_node_num in self.node[now_node_num].keys():\n if next_node_num in visited_vertex:\n continue\n will_visit_node.add(next_node_num)\n next_node=self.node[now_node_num][next_node_num]\n cal_d=distance[now_node_num]+next_node["weight"]\n if cal_d<distance[next_node_num]:\n distance[next_node_num]=cal_d\n before_vertex[next_node_num]=now_node_num\n node_index_arr[next_node_num]=next_node["index"]\n \n #heapq.heappush(min_distance_heap,distance[next_node_num])\n \n add_vertex=[float("inf"),float("inf")]\n for i in will_visit_node:\n if distance[i]<add_vertex[1]:\n add_vertex[0]=i\n add_vertex[1]=distance[i]\n visited_vertex.add(add_vertex[0])\n return node_index_arr\n \n\n\n\n\n\nn,m=list(map(int,input().split()))\na=[list(map(int,input().split())) for _ in range(m)]\nG=Graph(n,m,a,start_zero=False) \nans=[True for _ in range(m)]\nfor i in range(n):\n tmp=G.djikstra(i)\n for j in tmp:\n if j!=float("inf"):\n ans[j]=False\n\nprint(sum(ans))\n\n \n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s353750703', 's869254138', 's636767328'] | [3444.0, 3444.0, 4084.0] | [45.0, 212.0, 1650.0] | [4236, 2300, 2974] |
p03837 | u677121387 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n,m = map(int,input().split())\nINF = 10**18\nd = [[INF]*n for _ in range(n)]\nused = [[True]*n for _ in range(n)]\nfor i in range(n): d[i][i] = 0\nfor _ in range(m):\n a,b,c = map(int,input().split())\n a -= 1\n b -= 1\n d[a][b] = c\n d[b][a] = c\n used[a][b] = False\n used[b][a] = False\n\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n if d[i][j] <= d[i][k] + d[k][j]:\n used[i][j] = True\n used[j][i] = True\n else:\n d[i][j] = d[i][k] + d[k][j]\n\ncnt = 0\nfor i in range(n):\n for j in range(n):\n if used[i][j]: continue\n cnt += 1\nprint(cnt//2)', 'n,m = map(int,input().split())\nINF = 10**18\nd = [[INF]*n for _ in range(n)]\nfor i in range(n): d[i][i] = 0\na = [0]*m\nb = [0]*m\nc = [0]*m\nfor i in range(m):\n a,b,c = map(int,input().split())\n a -= 1\n b -= 1\n a[i] = a\n b[i] = b\n c[i] = c\n d[a][b] = c\n d[b][a] = c\n\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n d[i][j] = min(d[i][j], d[i][k]+d[k][j])\n\nans = 0\nfor i in range(m):\n if d[a[i]][b[i]] < c[i]: ans += 1\nprint(ans)', 'n,m = map(int,input().split())\nINF = 10**18\nd = [[INF]*n for _ in range(n)]\nfor i in range(n): d[i][i] = 0\nA = [0]*m\nB = [0]*m\nC = [0]*m\nfor i in range(m):\n a,b,c = map(int,input().split())\n a -= 1\n b -= 1\n A[i] = a\n B[i] = b\n C[i] = c\n d[a][b] = c\n d[b][a] = c\n\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n d[i][j] = min(d[i][j], d[i][k]+d[k][j])\n\nans = 0\nfor i in range(m):\n if d[A[i]][B[i]] < C[i]: ans += 1\nprint(ans)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s595675770', 's863134321', 's375745077'] | [9496.0, 9352.0, 9308.0] | [384.0, 28.0, 455.0] | [692, 484, 484] |
p03837 | u731028462 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['g = Graph()\nN,M = list(map(int, input().split()))\nINF = 10**9+7\nA = [[INF if i!=j else 0 for i in range(N)] for j in range(N)]\nS=[]\nE=[]\nW=[]\n\nfor i in range(M):\n s,e,w=list(map(int,input().split()))\n g.add_edge(s-1, e-1, w)\n g.add_edge(e-1, s-1, w)\n S.append(s-1)\n E.append(e-1)\n W.append(w)\n\nfor i in range(N):\n d = Dijkstra(g, i)\n for j in range(i+1,N):\n dist = d.shortest_distance(j)\n A[i][j] = dist\n A[j][i] = dist\n \nans=M\nfor i in range(M):\n shortest = False\n for j in range(N):\n if A[j][S[i]] + W[i] == A[j][E[i]]:\n shortest = True\n if shortest:\n ans-=1\n\nprint(ans)', "from collections import defaultdict\nfrom heapq import heappop, heappush\n\nclass Graph(object):\n \n\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n return len(self.graph)\n\n def add_edge(self, src, dst, weight=1):\n self.graph[src].append((dst, weight))\n\n def get_nodes(self):\n return self.graph.keys()\n\n\nclass Dijkstra(object):\n \n\n def __init__(self, graph, start):\n self.g = graph.graph\n\n \n \n self.dist = defaultdict(lambda: float('inf'))\n self.dist[start] = 0\n\n \n self.prev = defaultdict(lambda: None)\n\n \n self.Q = []\n heappush(self.Q, (self.dist[start], start))\n\n while self.Q:\n \n dist_u, u = heappop(self.Q)\n if self.dist[u] < dist_u:\n continue\n for v, weight in self.g[u]:\n alt = dist_u + weight\n if self.dist[v] > alt:\n self.dist[v] = alt\n self.prev[v] = u\n heappush(self.Q, (alt, v))\n\n def shortest_distance(self, goal):\n \n return self.dist[goal]\n\n def shortest_path(self, goal):\n \n path = []\n node = goal\n while node is not None:\n path.append(node)\n node = self.prev[node]\n return path[::-1]\n\ng = Graph()\nN,M = list(map(int, input().split()))\nINF = 10**9+7\nA = [[INF if i!=j else 0 for i in range(N)] for j in range(N)]\nS=[]\nE=[]\nW=[]\n\nfor i in range(M):\n s,e,w=list(map(int,input().split()))\n g.add_edge(s-1, e-1, w)\n g.add_edge(e-1, s-1, w)\n S.append(s-1)\n E.append(e-1)\n W.append(w)\n\nfor i in range(N):\n d = Dijkstra(g, i)\n for j in range(i+1,N):\n dist = d.shortest_distance(j)\n A[i][j] = dist\n A[j][i] = dist\n \nans=M\nfor i in range(M):\n shortest = False\n for j in range(N):\n if A[j][S[i]] + W[i] == A[j][E[i]]:\n shortest = True\n if shortest:\n ans-=1\n\nprint(ans)"] | ['Runtime Error', 'Accepted'] | ['s179824173', 's025842716'] | [3064.0, 3824.0] | [18.0, 119.0] | [658, 2594] |
p03837 | u736729525 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['def dijkstra(m, s, t):\n INF = 1e10\n D = [INF] * N\n D[s] = 0\n Q = [v for v in range(N)]\n\n while Q:\n d = INF\n v = None\n for x in Q:\n if D[x] <= d:\n d = D[x]\n v = x\n Q.remove(v)\n\n for u, w in enumerate(m[v]):\n if D[u] > D[v] + w:\n D[u] = D[v] + w\n return D[t] \n\nN, M = map(int, input().split())\n\n# N < 100\nm = [[1e10]*N for i in range(N)]\nE = [0] * M\nfor i in range(M):\n a, b, w = map(int, input().split())\n E[i] = a-1, b-1, w\n m[a-1][b-1] = w\n\ncount = 0\nfor a, b, w in E:\n d = dijkstra(m, a, b)\n if d < w:\n count += 1\n\nprint(count)\n', 'import heapq\n\ndef dijkstra(m, s, t):\n INF = 1e10\n D = [INF] * N\n D[s] = 0\n Q = [(0 if s == v else INF, v) for v in range(N)]\n heapq.heapify(Q)\n\n while Q:\n c, u = heapq.heappop(Q)\n if D[u] < c:\n continue\n for v, w in m[u]:\n if D[v] > D[u] + w:\n D[v] = D[u] + w\n heapq.heappush(Q, (D[u]+w, v))\n return D[t] \n\nN, M = map(int, input().split())\n\n# N < 100\nm = [[] for i in range(N)]\nE = [0] * M\nfor i in range(M):\n a, b, w = map(int, input().split())\n E[i] = a-1, b-1, w\n m[a-1].append((b-1,w))\n m[b-1].append((a-1,w))\n\ncount = 0\nfor a, b, w in E:\n d = dijkstra(m, a, b)\n #print((a+1, b+1), d, "w=%d"%w)\n if d < w:\n count += 1\n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s002059420', 's524405937'] | [3188.0, 3316.0] | [2104.0, 644.0] | [672, 758] |
p03837 | u761989513 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import heapq\n\ndef dijkstra(adj, start, goal=None):\n n = len(adj)\n dist = [float("inf") for i in range(n)]\n prev = [float("inf") for i in range(n)]\n\n dist[start] = 0\n q = []\n heapq.heappush(q, (0, start))\n\n while len(q) != 0:\n prov_cost, src = heapq.heappop(q)\n\n if dist[src] < prov_cost:\n continue\n\n for dest in range(n):\n cost = adj[src][dest]\n if cost != float("inf") and dist[dest] > dist[src] + cost:\n dist[dest] = dist[src] + cost\n heapq.heappush(q, (dist[dest], dest))\n prev[dest] = src\n\n if goal is not None:\n return get_path(goal, prev)\n else:\n return dist\n\ndef get_path(goal, prev):\n path = [goal]\n dest = goal\n while prev[dest] != float("inf"):\n path.append(prev[dest])\n dest = prev[dest]\n return list(reversed(path))\n\nn, m = map(int, input().split())\nadj = [[float("inf") for i in range(n)] for i in range(n)]\npath = []\nfor i in range(m):\n a, b, c = map(int, input().split())\n adj[a - 1][b - 1] = c\n adj[b - 1][a - 1] = c\n path.append(set([a - 1, b - 1]))\nprint(adj)\nfor i in range(n):\n for j in range(n):\n if i != j:\n saitan = dijkstra(adj, i, j)\n for k in range(len(saitan) - 1):\n ss = set(saitan[k:k + 2])\n if ss in path:\n path.remove(ss)\nprint(len(path))', 'import heapq\n\ndef dijkstra(graph, node, start):\n dist = [float("inf") for _ in range(node)]\n\n dist[start] = 0\n q = []\n heapq.heappush(q, (0, start))\n\n while q:\n cost, cur_node = heapq.heappop(q)\n\n for nex_cost, nex_node in graph[cur_node]:\n dist_cand = dist[cur_node] + nex_cost\n if dist_cand < dist[nex_node]:\n dist[nex_node] = dist_cand\n heapq.heappush(q, (dist[nex_node], nex_node))\n\n return dist\n\nn, m = map(int, input().split())\nadj = [[] for _ in range(n)]\nfor i in range(m):\n a, b, c = map(int, input().split())\n a -= 1\n b -= 1\n adj[a].append((c, b))\n adj[b].append((c, a))\nshortest = []\nfor i in range(n):\n shortest.append(dijkstra(adj, n, i))\nans = 0\nfor i in range(n):\n for cost, j in adj[i]:\n if cost > shortest[i][j]:\n ans += 1\nprint(ans // 2)\n'] | ['Wrong Answer', 'Accepted'] | ['s925380395', 's428283750'] | [3828.0, 3572.0] | [2104.0, 102.0] | [1428, 880] |
p03837 | u780962115 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['# cadidates of no shortest paths\nn, m = map(int, input().split())\n\nd = [[float("inf") for i in range(n + 1)] for i in range(n + 1)]\nedge_data=[]\nconnect={i:[] for i in range(1,n+1)}\nfor i in range(m):\n x, y, z = map(int, input().split())\n \n d[x][y] = z\n d[y][x] = z\n connect[x].append(y)\n connect[y].append(x) \n edge_data.append((x,y,z))\nfor i in range(n + 1):\n d[i][i] = 0 \n\n\ndef warshall_floyd(d):\n \n for k in range(1, n + 1):\n for i in range(1, n + 1):\n for j in range(1, n + 1):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n return d\n\nwarshall_floyd(d)\n\n\ncnt=0\nfor some in edge_data:\n x,y,zsome[0],some[1],some[2]\n if d[x][y]<z:\n cnt+=1\nprint(cnt)\n', '# cadidates of no shortest paths\nn, m = map(int, input().split())\n\nd = [[float("inf") for i in range(n + 1)] for i in range(n + 1)]\nedge_data=[]\nconnect={i:[] for i in range(1,n+1)}\nfor i in range(m):\n x, y, z = map(int, input().split())\n \n d[x][y] = z\n d[y][x] = z\n connect[x].append(y)\n connect[y].append(x) \n edge_data.append((x,y,z))\nfor i in range(n + 1):\n d[i][i] = 0 \n\n\ndef warshall_floyd(d):\n \n for k in range(1, n + 1):\n for i in range(1, n + 1):\n for j in range(1, n + 1):\n d[i][j] = min(d[i][j], d[i][k] + d[k][j])\n return d\n\nwarshall_floyd(d)\n\n\ncnt=0\nfor some in edge_data:\n x,y,z=some[0],some[1],some[2]\n if d[x][y]<z:\n cnt+=1\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s844193191', 's077551613'] | [3700.0, 3700.0] | [434.0, 434.0] | [954, 955] |
p03837 | u784022244 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n,w = map(int,input().split()) \nfrom collections import defaultdict\nD=defaultdict(list)\ndef warshall_floyd(d):\n \n for k in range(n):\n for i in range(n):\n for j in range(n):\n if d[i][j]>d[i][k]+d[k][j]:\n d[i][j] = d[i][k] + d[k][j]\n D[(i,j)]=D[(i,k)]+D[(k,j)][1:]\n return d\ndone=[[-1]*n for _ in range(n)]\nd = [[float("inf")]*n for i in range(n)] \n\nfor i in range(w):\n x,y,z = map(int,input().split())\n d[x-1][y-1] = z\n d[y-1][x-1] = z\n D[(x-1,y-1)]=[x-1,y-1]\n D[(y-1,x-1)]=[y-1,x-1]\n done[x-1][y-1]=0\n done[y-1][x-1]=0\nfor i in range(n):\n d[i][i] = 0 \nwarshall_floyd(d)\nfor l in D.values():\n for i in range(1,len(l)):\n a=l[i-1]\n b=l[i]\n done[a][b]=1\n done[b][a]=1\nimport numpy as np\ndone=np.array(done)\nans=(done==0).sum()\n#print(D)\n#print(done)\nprint(ans)', 'n,w = map(int,input().split()) \nfrom collections import defaultdict\nD=defaultdict(list)\ndef warshall_floyd(d):\n \n for k in range(n):\n for i in range(n):\n for j in range(n):\n if d[i][j]>d[i][k]+d[k][j]:\n d[i][j] = d[i][k] + d[k][j]\n D[(i,j)]=D[(i,k)]+D[(k,j)][1:]\n return d\ndone=[[-1]*n for _ in range(n)]\nd = [[float("inf")]*n for i in range(n)] \n\nfor i in range(w):\n x,y,z = map(int,input().split())\n d[x-1][y-1] = z\n d[y-1][x-1] = z\n D[(x-1,y-1)]=[x-1,y-1]\n D[(y-1,x-1)]=[y-1,x-1]\n done[x-1][y-1]=0\n done[y-1][x-1]=0\nfor i in range(n):\n d[i][i] = 0 \nwarshall_floyd(d)\nfor l in D.values():\n for i in range(1,len(l)):\n a=l[i-1]\n b=l[i]\n done[a][b]=1\n done[b][a]=1\nimport numpy as np\ndone=np.array(done)\nans=(done==0).sum()\n#print(D)\n#print(done)\nprint(ans//2)'] | ['Wrong Answer', 'Accepted'] | ['s954813822', 's544712666'] | [16992.0, 16992.0] | [497.0, 492.0] | [1053, 1056] |
p03837 | u789339072 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['import sys\nimport numpy as np\ninput = sys.stdin.readline\n\nN, M = map(int, input().split())\na = [0]*N\nb = [0]*N\nc = [0]*N\nfor i in range(M):\n a[i], b[i], c[i] = map(int, input().split())\n a[i] -=1\n b[i] -=1\n\nMAX = 10**10\ndist = np.zeros((N,N))\ndist += MAX\n\nfor i in range(N):\n dist[i,i] = 0\n\nfor i in range(M):\n dist[a[i], b[i]] = c[i]\n dist[b[i], a[i]] = c[i]\n\nfor k in range(N):\n for i in range(N):\n for j in range(N):\n dist[i, j] = min(dist[i,j], dist[i,k] + dist[k,j])\n\nans = 0\nfor i in range(M):\n if dist[a[i], b[i]] < c[i]:\n ans += 1', 'import sys\ninput = sys.stdin.readline\n\nN, M = map(int, input().split())\na = [0]*M\nb = [0]*M\nc = [0]*M\nfor i in range(M):\n input_data = input().split()\n a[i], b[i], c[i] = map(int, input_data)\n a[i] -=1\n b[i] -=1\n\nMAX = 10**10\ndist = [[MAX for j in range(N)] for i in range(N)]\n#dist += MAX\n\nfor i in range(N):\n dist[i][i] = 0\n\nfor i in range(M):\n dist[a[i]][b[i]] = c[i]\n dist[b[i]][a[i]] = c[i]\n\nfor k in range(N):\n for i in range(N):\n for j in range(N):\n dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])\n\nans = 0\nfor i in range(M):\n if dist[a[i]][b[i]] < c[i]:\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s761234637', 's927815471'] | [14408.0, 3408.0] | [1377.0, 568.0] | [587, 641] |
p03837 | u808806124 | 2,000 | 262,144 | You are given an undirected connected weighted graph with N vertices and M edges that contains neither self-loops nor double edges. The i-th (1≤i≤M) edge connects vertex a_i and vertex b_i with a distance of c_i. Here, a _self-loop_ is an edge where a_i = b_i (1≤i≤M), and _double edges_ are two edges where (a_i,b_i)=(a_j,b_j) or (a_i,b_i)=(b_j,a_j) (1≤i<j≤M). A _connected graph_ is a graph where there is a path between every pair of different vertices. Find the number of the edges that are not contained in any shortest path between any pair of different vertices. | ['n, m = map(int, input().split())\n\nd = np.ones((n, n)) * 1001\n\nes = []\nfor i in range(m):\n es.append(list(map(int, input().split())))\n\nfor (i, j, w) in es:\n d[i - 1][j - 1] = w\n d[j - 1][i - 1] = w\n\n\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n l = d[i][k] + d[k][j]\n if d[i][j] > l:\n d[i][j] = l\n\nc = 0\nfor (i, j, w) in es:\n if d[i - 1][j - 1] < w:\n c += 1\n\nprint(c)\n', 'n, m = map(int, input().split())\n\nd = [[1001] * n for i in range(n)]\n\nes = []\nfor i in range(m):\n es.append(list(map(int, input().split())))\n\nfor (i, j, w) in es:\n d[i - 1][j - 1] = w\n d[j - 1][i - 1] = w\n\n\nfor k in range(n):\n for i in range(n):\n for j in range(n):\n l = d[i][k] + d[k][j]\n if d[i][j] > l:\n d[i][j] = l\n\nc = 0\nfor (i, j, w) in es:\n if d[i - 1][j - 1] < w:\n c += 1\n\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s240412850', 's793289076'] | [3064.0, 3556.0] | [17.0, 347.0] | [448, 455] |
Subsets and Splits