|
import csv |
|
import os |
|
import json |
|
|
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
from tqdm import tqdm |
|
|
|
from scipy.io.wavfile import read, write |
|
import io |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{demint2024, |
|
author = {Pérez-Ortiz, Juan Antonio and |
|
Esplà-Gomis, Miquel and |
|
Sánchez-Cartagena, Víctor M. and |
|
Sánchez-Martínez, Felipe and |
|
Chernysh, Roman and |
|
Mora-Rodríguez, Gabriel and |
|
Berezhnoy, Lev}, |
|
title = {{DeMINT}: Automated Language Debriefing for English Learners via {AI} |
|
Chatbot Analysis of Meeting Transcripts}, |
|
booktitle = {Proceedings of the 13th Workshop on NLP for Computer Assisted Language Learning}, |
|
month = october, |
|
year = {2024}, |
|
url = {https://aclanthology.org/volumes/2024.nlp4call-1/}, |
|
} |
|
""" |
|
|
|
class SesgeConfig(datasets.BuilderConfig): |
|
def __init__(self, name, version, **kwargs): |
|
self.language = kwargs.pop("language", None) |
|
self.release_date = kwargs.pop("release_date", None) |
|
""" |
|
description = ( |
|
f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. " |
|
f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data " |
|
f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. " |
|
f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}." |
|
) |
|
""" |
|
|
|
super(SesgeConfig, self).__init__( |
|
name=name, |
|
**kwargs, |
|
) |
|
|
|
class Sesge(): |
|
|
|
BUILDER_CONFIGS = [ |
|
SesgeConfig( |
|
name="sesge", |
|
version=1.0, |
|
language='eng', |
|
release_date="2024-10-8", |
|
) |
|
] |
|
|
|
def _info(self): |
|
total_languages = 1 |
|
total_valid_hours = 1 |
|
description = ( |
|
"Common Voice is Mozilla's initiative to help teach machines how real people speak. " |
|
f"The dataset currently consists of {total_valid_hours} validated hours of speech " |
|
f" in {total_languages} languages, but more voices and languages are always added." |
|
) |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.features.Audio(sampling_rate=48_000), |
|
"sentence": datasets.Value("string"), |
|
} |
|
) |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path, split): |
|
archives = os.listdir(archives) |
|
print(archives) |
|
metadata = {} |
|
with open(meta_path, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter=";", quoting=csv.QUOTE_NONE) |
|
for row in tqdm(reader): |
|
metadata[row["file_name"]] = row |
|
|
|
for i, path in enumerate(archives): |
|
|
|
_, filename = os.path.split(path) |
|
file = os.path.join("data", split, filename) |
|
|
|
if file in metadata: |
|
result = dict(metadata[file]) |
|
print("Result: ", result) |
|
with open(os.path.join(local_extracted_archive_paths, filename), 'rb') as wavfile: |
|
input_wav = wavfile.read() |
|
|
|
rate, data = read(io.BytesIO(input_wav)) |
|
|
|
|
|
reversed_data = data[::-1] |
|
|
|
|
|
bytes_wav = bytes() |
|
byte_io = io.BytesIO(bytes_wav) |
|
write(byte_io, rate, reversed_data) |
|
|
|
output_wav = byte_io.read() |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], path) |
|
result["audio"] = {"path": path, "bytes": data} |
|
result["path"] = path |
|
yield path, result |
|
else: |
|
print("No file found") |
|
yield None, None |
|
|
|
if __name__ == '__main__': |
|
data = Sesge() |
|
gen = data._generate_examples("/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/metadata.csv", "train") |
|
|
|
print(next(gen)) |