Datasets:

Languages:
English
ArXiv:
License:
Gabi00 commited on
Commit
185783c
1 Parent(s): 4bd48fe

Delete sesge.py

Browse files
Files changed (1) hide show
  1. sesge.py +0 -120
sesge.py DELETED
@@ -1,120 +0,0 @@
1
- import csv
2
- import os
3
- import json
4
-
5
- import datasets
6
- from datasets.utils.py_utils import size_str
7
- from tqdm import tqdm
8
-
9
- from scipy.io.wavfile import read, write
10
- import io
11
-
12
- #from .release_stats import STATS
13
-
14
- _CITATION = """\
15
- @inproceedings{demint2024,
16
- author = {Pérez-Ortiz, Juan Antonio and
17
- Esplà-Gomis, Miquel and
18
- Sánchez-Cartagena, Víctor M. and
19
- Sánchez-Martínez, Felipe and
20
- Chernysh, Roman and
21
- Mora-Rodríguez, Gabriel and
22
- Berezhnoy, Lev},
23
- title = {{DeMINT}: Automated Language Debriefing for English Learners via {AI}
24
- Chatbot Analysis of Meeting Transcripts},
25
- booktitle = {Proceedings of the 13th Workshop on NLP for Computer Assisted Language Learning},
26
- month = october,
27
- year = {2024},
28
- url = {https://aclanthology.org/volumes/2024.nlp4call-1/},
29
- }
30
- """
31
-
32
- class SesgeConfig(datasets.BuilderConfig):
33
- def __init__(self, name, version, **kwargs):
34
- self.language = kwargs.pop("language", None)
35
- self.release_date = kwargs.pop("release_date", None)
36
- """
37
- description = (
38
- f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
39
- f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
40
- f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
41
- f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
42
- )
43
- """
44
-
45
- super(SesgeConfig, self).__init__(
46
- name=name,
47
- **kwargs,
48
- )
49
-
50
- class Sesge():
51
-
52
- BUILDER_CONFIGS = [
53
- SesgeConfig(
54
- name="sesge",
55
- version=1.0,
56
- language='eng',
57
- release_date="2024-10-8",
58
- )
59
- ]
60
-
61
- def _info(self):
62
- total_languages = 1
63
- total_valid_hours = 1
64
- description = (
65
- "Common Voice is Mozilla's initiative to help teach machines how real people speak. "
66
- f"The dataset currently consists of {total_valid_hours} validated hours of speech "
67
- f" in {total_languages} languages, but more voices and languages are always added."
68
- )
69
- features = datasets.Features(
70
- {
71
- "audio": datasets.features.Audio(sampling_rate=48_000),
72
- "sentence": datasets.Value("string"),
73
- }
74
- )
75
-
76
- def _generate_examples(self, local_extracted_archive_paths, archives, meta_path, split):
77
- archives = os.listdir(archives)
78
- print(archives)
79
- metadata = {}
80
- with open(meta_path, encoding="utf-8") as f:
81
- reader = csv.DictReader(f, delimiter=";", quoting=csv.QUOTE_NONE)
82
- for row in tqdm(reader):
83
- metadata[row["file_name"]] = row
84
- #print(metadata)
85
- for i, path in enumerate(archives):
86
- #for path, file in audio_archive:
87
- _, filename = os.path.split(path)
88
- file = os.path.join("data", split, filename)
89
- #print(filename)
90
- if file in metadata:
91
- result = dict(metadata[file])
92
- print("Result: ", result)
93
- with open(os.path.join(local_extracted_archive_paths, filename), 'rb') as wavfile:
94
- input_wav = wavfile.read()
95
-
96
- rate, data = read(io.BytesIO(input_wav))
97
-
98
- # data is a numpy ND array representing the audio data. Let's do some stuff with it
99
- reversed_data = data[::-1] #reversing it
100
-
101
- #then, let's save it to a BytesIO object, which is a buffer for bytes object
102
- bytes_wav = bytes()
103
- byte_io = io.BytesIO(bytes_wav)
104
- write(byte_io, rate, reversed_data)
105
-
106
- output_wav = byte_io.read()
107
- # set the audio feature and the path to the extracted file
108
- path = os.path.join(local_extracted_archive_paths[i], path)
109
- result["audio"] = {"path": path, "bytes": data}
110
- result["path"] = path
111
- yield path, result
112
- else:
113
- print("No file found")
114
- yield None, None
115
-
116
- if __name__ == '__main__':
117
- data = Sesge()
118
- gen = data._generate_examples("/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/metadata.csv", "train")
119
-
120
- print(next(gen))