Datasets:

Languages:
English
ArXiv:
License:
Gabi00 commited on
Commit
41c8b52
1 Parent(s): 185783c

Upload sesge.py

Browse files
Files changed (1) hide show
  1. sesge.py +97 -0
sesge.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import os
3
+ import json
4
+
5
+ import datasets
6
+ from datasets.utils.py_utils import size_str
7
+ from tqdm import tqdm
8
+
9
+ from scipy.io.wavfile import read, write
10
+ import io
11
+
12
+ #from .release_stats import STATS
13
+
14
+ _CITATION = """\
15
+ @inproceedings{demint2024,
16
+ author = {Pérez-Ortiz, Juan Antonio and
17
+ Esplà-Gomis, Miquel and
18
+ Sánchez-Cartagena, Víctor M. and
19
+ Sánchez-Martínez, Felipe and
20
+ Chernysh, Roman and
21
+ Mora-Rodríguez, Gabriel and
22
+ Berezhnoy, Lev},
23
+ title = {{DeMINT}: Automated Language Debriefing for English Learners via {AI}
24
+ Chatbot Analysis of Meeting Transcripts},
25
+ booktitle = {Proceedings of the 13th Workshop on NLP for Computer Assisted Language Learning},
26
+ month = october,
27
+ year = {2024},
28
+ url = {https://aclanthology.org/volumes/2024.nlp4call-1/},
29
+ }
30
+ """
31
+
32
+ class SesgeConfig(datasets.BuilderConfig):
33
+ def __init__(self, name, version, **kwargs):
34
+ self.language = kwargs.pop("language", None)
35
+ self.release_date = kwargs.pop("release_date", None)
36
+ description = (
37
+ "A dataset containing English speech with grammatical errors, along with the corresponding transcriptions."
38
+ "Utterances are synthesized using a text-to-speech model, whereas the grammatically incorrect texts come from the C4_200M synthetic dataset."
39
+ )
40
+
41
+ super(SesgeConfig, self).__init__(
42
+ name=name,
43
+ **kwargs,
44
+ )
45
+
46
+ class Sesge():
47
+
48
+ BUILDER_CONFIGS = [
49
+ SesgeConfig(
50
+ name="sesge",
51
+ version=1.0,
52
+ language='eng',
53
+ release_date="2024-10-8",
54
+ )
55
+ ]
56
+
57
+ def _info(self):
58
+ total_languages = 1
59
+ total_valid_hours = 1
60
+ description = (
61
+ "A dataset containing English speech with grammatical errors, along with the corresponding transcriptions."
62
+ "Utterances are synthesized using a text-to-speech model, whereas the grammatically incorrect texts come from the C4_200M synthetic dataset."
63
+ )
64
+ features = datasets.Features(
65
+ {
66
+ "audio": datasets.features.Audio(sampling_rate=48_000),
67
+ "sentence": datasets.Value("string"),
68
+ }
69
+ )
70
+
71
+ def _generate_examples(self, local_extracted_archive_paths, archives, meta_path, split):
72
+ archives = os.listdir(archives)
73
+ metadata = {}
74
+ with open(meta_path, encoding="utf-8") as f:
75
+ reader = csv.DictReader(f, delimiter=";", quoting=csv.QUOTE_NONE)
76
+ for row in tqdm(reader):
77
+ metadata[row["file_name"]] = row
78
+
79
+ for i, path in enumerate(archives):
80
+ #for path, file in audio_archive:
81
+ _, filename = os.path.split(path)
82
+ file = os.path.join("data", split, filename)
83
+ if file in metadata:
84
+ result = dict(metadata[file])
85
+ print("Result: ", result)
86
+ with open(os.path.join(local_extracted_archive_paths, filename), 'rb') as wavfile:
87
+ input_wav = wavfile.read()
88
+
89
+ rate, data = read(io.BytesIO(input_wav))
90
+
91
+ path = os.path.join(local_extracted_archive_paths[i], path)
92
+ result["audio"] = {"path": path, "bytes": data}
93
+ result["path"] = path
94
+ yield path, result
95
+ else:
96
+ print("No file found")
97
+ yield None, None