Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:

Convert dataset to Parquet

#4
by albertvillanova HF staff - opened
README.md CHANGED
@@ -20,22 +20,6 @@ task_ids:
20
  - open-domain-qa
21
  paperswithcode_id: adversarialqa
22
  pretty_name: adversarialQA
23
- train-eval-index:
24
- - config: adversarialQA
25
- task: question-answering
26
- task_id: extractive_question_answering
27
- splits:
28
- train_split: train
29
- eval_split: validation
30
- col_mapping:
31
- question: question
32
- context: context
33
- answers:
34
- text: text
35
- answer_start: answer_start
36
- metrics:
37
- - type: squad
38
- name: SQuAD
39
  dataset_info:
40
  - config_name: adversarialQA
41
  features:
@@ -61,17 +45,17 @@ dataset_info:
61
  dtype: string
62
  splits:
63
  - name: train
64
- num_bytes: 27858794
65
  num_examples: 30000
66
  - name: validation
67
- num_bytes: 2757128
68
  num_examples: 3000
69
  - name: test
70
- num_bytes: 2919643
71
  num_examples: 3000
72
- download_size: 9018914
73
- dataset_size: 33535565
74
- - config_name: dbidaf
75
  features:
76
  - name: id
77
  dtype: string
@@ -95,17 +79,17 @@ dataset_info:
95
  dtype: string
96
  splits:
97
  - name: train
98
- num_bytes: 9282518
99
  num_examples: 10000
100
  - name: validation
101
- num_bytes: 917943
102
  num_examples: 1000
103
  - name: test
104
- num_bytes: 947111
105
  num_examples: 1000
106
- download_size: 9018914
107
- dataset_size: 11147572
108
- - config_name: dbert
109
  features:
110
  - name: id
111
  dtype: string
@@ -129,16 +113,16 @@ dataset_info:
129
  dtype: string
130
  splits:
131
  - name: train
132
- num_bytes: 9345557
133
  num_examples: 10000
134
  - name: validation
135
- num_bytes: 918192
136
  num_examples: 1000
137
  - name: test
138
- num_bytes: 971454
139
  num_examples: 1000
140
- download_size: 9018914
141
- dataset_size: 11235203
142
  - config_name: droberta
143
  features:
144
  - name: id
@@ -163,16 +147,65 @@ dataset_info:
163
  dtype: string
164
  splits:
165
  - name: train
166
- num_bytes: 9270719
167
  num_examples: 10000
168
  - name: validation
169
- num_bytes: 925065
170
  num_examples: 1000
171
  - name: test
172
- num_bytes: 1005406
173
  num_examples: 1000
174
- download_size: 9018914
175
- dataset_size: 11201190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  ---
177
 
178
  # Dataset Card for adversarialQA
 
20
  - open-domain-qa
21
  paperswithcode_id: adversarialqa
22
  pretty_name: adversarialQA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  dataset_info:
24
  - config_name: adversarialQA
25
  features:
 
45
  dtype: string
46
  splits:
47
  - name: train
48
+ num_bytes: 27858686
49
  num_examples: 30000
50
  - name: validation
51
+ num_bytes: 2757092
52
  num_examples: 3000
53
  - name: test
54
+ num_bytes: 2919479
55
  num_examples: 3000
56
+ download_size: 5301049
57
+ dataset_size: 33535257
58
+ - config_name: dbert
59
  features:
60
  - name: id
61
  dtype: string
 
79
  dtype: string
80
  splits:
81
  - name: train
82
+ num_bytes: 9345521
83
  num_examples: 10000
84
  - name: validation
85
+ num_bytes: 918156
86
  num_examples: 1000
87
  - name: test
88
+ num_bytes: 971290
89
  num_examples: 1000
90
+ download_size: 2689032
91
+ dataset_size: 11234967
92
+ - config_name: dbidaf
93
  features:
94
  - name: id
95
  dtype: string
 
113
  dtype: string
114
  splits:
115
  - name: train
116
+ num_bytes: 9282482
117
  num_examples: 10000
118
  - name: validation
119
+ num_bytes: 917907
120
  num_examples: 1000
121
  - name: test
122
+ num_bytes: 946947
123
  num_examples: 1000
124
+ download_size: 2721341
125
+ dataset_size: 11147336
126
  - config_name: droberta
127
  features:
128
  - name: id
 
147
  dtype: string
148
  splits:
149
  - name: train
150
+ num_bytes: 9270683
151
  num_examples: 10000
152
  - name: validation
153
+ num_bytes: 925029
154
  num_examples: 1000
155
  - name: test
156
+ num_bytes: 1005242
157
  num_examples: 1000
158
+ download_size: 2815452
159
+ dataset_size: 11200954
160
+ configs:
161
+ - config_name: adversarialQA
162
+ data_files:
163
+ - split: train
164
+ path: adversarialQA/train-*
165
+ - split: validation
166
+ path: adversarialQA/validation-*
167
+ - split: test
168
+ path: adversarialQA/test-*
169
+ - config_name: dbert
170
+ data_files:
171
+ - split: train
172
+ path: dbert/train-*
173
+ - split: validation
174
+ path: dbert/validation-*
175
+ - split: test
176
+ path: dbert/test-*
177
+ - config_name: dbidaf
178
+ data_files:
179
+ - split: train
180
+ path: dbidaf/train-*
181
+ - split: validation
182
+ path: dbidaf/validation-*
183
+ - split: test
184
+ path: dbidaf/test-*
185
+ - config_name: droberta
186
+ data_files:
187
+ - split: train
188
+ path: droberta/train-*
189
+ - split: validation
190
+ path: droberta/validation-*
191
+ - split: test
192
+ path: droberta/test-*
193
+ train-eval-index:
194
+ - config: adversarialQA
195
+ task: question-answering
196
+ task_id: extractive_question_answering
197
+ splits:
198
+ train_split: train
199
+ eval_split: validation
200
+ col_mapping:
201
+ question: question
202
+ context: context
203
+ answers:
204
+ text: text
205
+ answer_start: answer_start
206
+ metrics:
207
+ - type: squad
208
+ name: SQuAD
209
  ---
210
 
211
  # Dataset Card for adversarialQA
adversarialQA/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a84cab6ed591ed6024c9eab388131fb40cfcd01b0a76d84735b85115b4bde76
3
+ size 457062
adversarialQA/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0010a888ffe67a4da4afb7a9cbb7e0e77daaf02aaf055ee1697c88519afb94d8
3
+ size 4348721
adversarialQA/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed5569eb1dedc73ad7a1dc34d9064ca8693216b1b47e5c2773a9b2a81668f1f
3
+ size 495266
adversarial_qa.py DELETED
@@ -1,200 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """AdversarialQA"""
18
-
19
-
20
- import json
21
- import os
22
-
23
- import datasets
24
-
25
-
26
- logger = datasets.logging.get_logger(__name__)
27
-
28
-
29
- _CITATION = """\
30
- @article{bartolo2020beat,
31
- author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},
32
- title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},
33
- journal = {Transactions of the Association for Computational Linguistics},
34
- volume = {8},
35
- number = {},
36
- pages = {662-678},
37
- year = {2020},
38
- doi = {10.1162/tacl_a_00338},
39
- URL = { https://doi.org/10.1162/tacl_a_00338 },
40
- eprint = { https://doi.org/10.1162/tacl_a_00338 },
41
- abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD—only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }
42
- }
43
- """
44
-
45
- _DESCRIPTION = """\
46
- AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.
47
- We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.
48
- The adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.
49
- """
50
-
51
- _HOMEPAGE = "https://adversarialqa.github.io/"
52
- _LICENSE = "CC BY-SA 3.0"
53
- _URL = "https://adversarialqa.github.io/data/aqa_v1.0.zip"
54
-
55
- _CONFIG_NAME_MAP = {
56
- "adversarialQA": {
57
- "dir": "combined",
58
- "model": "Combined",
59
- },
60
- "dbidaf": {
61
- "dir": "1_dbidaf",
62
- "model": "BiDAF",
63
- },
64
- "dbert": {
65
- "dir": "2_dbert",
66
- "model": "BERT-Large",
67
- },
68
- "droberta": {
69
- "dir": "3_droberta",
70
- "model": "RoBERTa-Large",
71
- },
72
- }
73
-
74
-
75
- class AdversarialQA(datasets.GeneratorBasedBuilder):
76
- """AdversarialQA. Version 1.0.0."""
77
-
78
- VERSION = datasets.Version("1.0.0")
79
- BUILDER_CONFIGS = [
80
- datasets.BuilderConfig(
81
- name="adversarialQA",
82
- version=VERSION,
83
- description="This is the combined AdversarialQA data. " + _DESCRIPTION,
84
- ),
85
- datasets.BuilderConfig(
86
- name="dbidaf",
87
- version=VERSION,
88
- description="This is the subset of the data collected using BiDAF (Seo et al., 2016) as a model in the loop. "
89
- + _DESCRIPTION,
90
- ),
91
- datasets.BuilderConfig(
92
- name="dbert",
93
- version=VERSION,
94
- description="This is the subset of the data collected using BERT-Large (Devlin et al., 2018) as a model in the loop. "
95
- + _DESCRIPTION,
96
- ),
97
- datasets.BuilderConfig(
98
- name="droberta",
99
- version=VERSION,
100
- description="This is the subset of the data collected using RoBERTa-Large (Liu et al., 2019) as a model in the loop. "
101
- + _DESCRIPTION,
102
- ),
103
- ]
104
-
105
- def _info(self):
106
- return datasets.DatasetInfo(
107
- description=_DESCRIPTION,
108
- features=datasets.Features(
109
- {
110
- "id": datasets.Value("string"),
111
- "title": datasets.Value("string"),
112
- "context": datasets.Value("string"),
113
- "question": datasets.Value("string"),
114
- "answers": datasets.features.Sequence(
115
- {
116
- "text": datasets.Value("string"),
117
- "answer_start": datasets.Value("int32"),
118
- }
119
- ),
120
- "metadata": {
121
- "split": datasets.Value("string"),
122
- "model_in_the_loop": datasets.Value("string"),
123
- },
124
- }
125
- ),
126
- # No default supervised_keys (as we have to pass both question
127
- # and context as input).
128
- supervised_keys=None,
129
- homepage=_HOMEPAGE,
130
- citation=_CITATION,
131
- )
132
-
133
- @staticmethod
134
- def _get_filepath(dl_dir, config_name, split):
135
- return os.path.join(dl_dir, _CONFIG_NAME_MAP[config_name]["dir"], split + ".json")
136
-
137
- def _split_generators(self, dl_manager):
138
- dl_dir = dl_manager.download_and_extract(_URL)
139
-
140
- return [
141
- datasets.SplitGenerator(
142
- name=datasets.Split.TRAIN,
143
- gen_kwargs={
144
- "filepath": self._get_filepath(dl_dir, self.config.name, "train"),
145
- "split": "train",
146
- "model_in_the_loop": _CONFIG_NAME_MAP[self.config.name]["model"],
147
- },
148
- ),
149
- datasets.SplitGenerator(
150
- name=datasets.Split.VALIDATION,
151
- gen_kwargs={
152
- "filepath": self._get_filepath(dl_dir, self.config.name, "dev"),
153
- "split": "validation",
154
- "model_in_the_loop": _CONFIG_NAME_MAP[self.config.name]["model"],
155
- },
156
- ),
157
- datasets.SplitGenerator(
158
- name=datasets.Split.TEST,
159
- gen_kwargs={
160
- "filepath": self._get_filepath(dl_dir, self.config.name, "test"),
161
- "split": "test",
162
- "model_in_the_loop": _CONFIG_NAME_MAP[self.config.name]["model"],
163
- },
164
- ),
165
- ]
166
-
167
- def _generate_examples(self, filepath, split, model_in_the_loop):
168
- """This function returns the examples in the raw (text) form."""
169
- logger.info("generating examples from = %s", filepath)
170
- with open(filepath, encoding="utf-8") as f:
171
- squad = json.load(f)
172
- id_ = 0
173
- for article in squad["data"]:
174
- title = article.get("title", "").strip()
175
- for paragraph in article["paragraphs"]:
176
- context = paragraph["context"].strip()
177
- for qa in paragraph["qas"]:
178
- question = qa["question"].strip()
179
- qid = qa["id"]
180
-
181
- answer_starts = [answer["answer_start"] for answer in qa["answers"]]
182
- answers = [answer["text"].strip() for answer in qa["answers"]]
183
-
184
- # raise BaseException(split, model_in_the_loop)
185
-
186
- # Features currently used are "context", "question", and "answers".
187
- # Others are extracted here for the ease of future expansions.
188
- yield id_, {
189
- "title": title,
190
- "context": context,
191
- "question": question,
192
- "id": qid,
193
- "answers": {
194
- "answer_start": answer_starts,
195
- "text": answers,
196
- },
197
- "metadata": {"split": split, "model_in_the_loop": model_in_the_loop},
198
- }
199
-
200
- id_ += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1,394 +0,0 @@
1
- {
2
- "adversarialQA": {
3
- "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
4
- "citation": "@article{bartolo2020beat,\n author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {8},\n number = {},\n pages = {662-678},\n year = {2020},\n doi = {10.1162/tacl\\_a\\_00338},\n URL = { https://doi.org/10.1162/tacl_a_00338 },\n eprint = { https://doi.org/10.1162/tacl_a_00338 },\n abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
5
- "homepage": "https://adversarialqa.github.io/",
6
- "license": "",
7
- "features": {
8
- "id": {
9
- "dtype": "string",
10
- "id": null,
11
- "_type": "Value"
12
- },
13
- "title": {
14
- "dtype": "string",
15
- "id": null,
16
- "_type": "Value"
17
- },
18
- "context": {
19
- "dtype": "string",
20
- "id": null,
21
- "_type": "Value"
22
- },
23
- "question": {
24
- "dtype": "string",
25
- "id": null,
26
- "_type": "Value"
27
- },
28
- "answers": {
29
- "feature": {
30
- "text": {
31
- "dtype": "string",
32
- "id": null,
33
- "_type": "Value"
34
- },
35
- "answer_start": {
36
- "dtype": "int32",
37
- "id": null,
38
- "_type": "Value"
39
- }
40
- },
41
- "length": -1,
42
- "id": null,
43
- "_type": "Sequence"
44
- },
45
- "metadata": {
46
- "split": {
47
- "dtype": "string",
48
- "id": null,
49
- "_type": "Value"
50
- },
51
- "model_in_the_loop": {
52
- "dtype": "string",
53
- "id": null,
54
- "_type": "Value"
55
- }
56
- }
57
- },
58
- "post_processed": null,
59
- "supervised_keys": null,
60
- "builder_name": "adversarial_qa",
61
- "config_name": "adversarialQA",
62
- "version": {
63
- "version_str": "1.0.0",
64
- "description": null,
65
- "major": 1,
66
- "minor": 0,
67
- "patch": 0
68
- },
69
- "splits": {
70
- "train": {
71
- "name": "train",
72
- "num_bytes": 27858794,
73
- "num_examples": 30000,
74
- "dataset_name": "adversarial_qa"
75
- },
76
- "validation": {
77
- "name": "validation",
78
- "num_bytes": 2757128,
79
- "num_examples": 3000,
80
- "dataset_name": "adversarial_qa"
81
- },
82
- "test": {
83
- "name": "test",
84
- "num_bytes": 2919643,
85
- "num_examples": 3000,
86
- "dataset_name": "adversarial_qa"
87
- }
88
- },
89
- "download_checksums": {
90
- "https://adversarialqa.github.io/data/aqa_v1.0.zip": {
91
- "num_bytes": 9018914,
92
- "checksum": "f4f3c23224a5060b28c35e35581bd5cf46256dda3665418fb83d036d0e0c93cf"
93
- }
94
- },
95
- "download_size": 9018914,
96
- "post_processing_size": null,
97
- "dataset_size": 33535565,
98
- "size_in_bytes": 42554479
99
- },
100
- "dbidaf": {
101
- "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
102
- "citation": "@article{bartolo2020beat,\n author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {8},\n number = {},\n pages = {662-678},\n year = {2020},\n doi = {10.1162/tacl\\_a\\_00338},\n URL = { https://doi.org/10.1162/tacl_a_00338 },\n eprint = { https://doi.org/10.1162/tacl_a_00338 },\n abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
103
- "homepage": "https://adversarialqa.github.io/",
104
- "license": "",
105
- "features": {
106
- "id": {
107
- "dtype": "string",
108
- "id": null,
109
- "_type": "Value"
110
- },
111
- "title": {
112
- "dtype": "string",
113
- "id": null,
114
- "_type": "Value"
115
- },
116
- "context": {
117
- "dtype": "string",
118
- "id": null,
119
- "_type": "Value"
120
- },
121
- "question": {
122
- "dtype": "string",
123
- "id": null,
124
- "_type": "Value"
125
- },
126
- "answers": {
127
- "feature": {
128
- "text": {
129
- "dtype": "string",
130
- "id": null,
131
- "_type": "Value"
132
- },
133
- "answer_start": {
134
- "dtype": "int32",
135
- "id": null,
136
- "_type": "Value"
137
- }
138
- },
139
- "length": -1,
140
- "id": null,
141
- "_type": "Sequence"
142
- },
143
- "metadata": {
144
- "split": {
145
- "dtype": "string",
146
- "id": null,
147
- "_type": "Value"
148
- },
149
- "model_in_the_loop": {
150
- "dtype": "string",
151
- "id": null,
152
- "_type": "Value"
153
- }
154
- }
155
- },
156
- "post_processed": null,
157
- "supervised_keys": null,
158
- "builder_name": "adversarial_qa",
159
- "config_name": "dbidaf",
160
- "version": {
161
- "version_str": "1.0.0",
162
- "description": null,
163
- "major": 1,
164
- "minor": 0,
165
- "patch": 0
166
- },
167
- "splits": {
168
- "train": {
169
- "name": "train",
170
- "num_bytes": 9282518,
171
- "num_examples": 10000,
172
- "dataset_name": "adversarial_qa"
173
- },
174
- "validation": {
175
- "name": "validation",
176
- "num_bytes": 917943,
177
- "num_examples": 1000,
178
- "dataset_name": "adversarial_qa"
179
- },
180
- "test": {
181
- "name": "test",
182
- "num_bytes": 947111,
183
- "num_examples": 1000,
184
- "dataset_name": "adversarial_qa"
185
- }
186
- },
187
- "download_checksums": {
188
- "https://adversarialqa.github.io/data/aqa_v1.0.zip": {
189
- "num_bytes": 9018914,
190
- "checksum": "f4f3c23224a5060b28c35e35581bd5cf46256dda3665418fb83d036d0e0c93cf"
191
- }
192
- },
193
- "download_size": 9018914,
194
- "post_processing_size": null,
195
- "dataset_size": 11147572,
196
- "size_in_bytes": 20166486
197
- },
198
- "dbert": {
199
- "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
200
- "citation": "@article{bartolo2020beat,\n author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {8},\n number = {},\n pages = {662-678},\n year = {2020},\n doi = {10.1162/tacl\\_a\\_00338},\n URL = { https://doi.org/10.1162/tacl_a_00338 },\n eprint = { https://doi.org/10.1162/tacl_a_00338 },\n abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
201
- "homepage": "https://adversarialqa.github.io/",
202
- "license": "",
203
- "features": {
204
- "id": {
205
- "dtype": "string",
206
- "id": null,
207
- "_type": "Value"
208
- },
209
- "title": {
210
- "dtype": "string",
211
- "id": null,
212
- "_type": "Value"
213
- },
214
- "context": {
215
- "dtype": "string",
216
- "id": null,
217
- "_type": "Value"
218
- },
219
- "question": {
220
- "dtype": "string",
221
- "id": null,
222
- "_type": "Value"
223
- },
224
- "answers": {
225
- "feature": {
226
- "text": {
227
- "dtype": "string",
228
- "id": null,
229
- "_type": "Value"
230
- },
231
- "answer_start": {
232
- "dtype": "int32",
233
- "id": null,
234
- "_type": "Value"
235
- }
236
- },
237
- "length": -1,
238
- "id": null,
239
- "_type": "Sequence"
240
- },
241
- "metadata": {
242
- "split": {
243
- "dtype": "string",
244
- "id": null,
245
- "_type": "Value"
246
- },
247
- "model_in_the_loop": {
248
- "dtype": "string",
249
- "id": null,
250
- "_type": "Value"
251
- }
252
- }
253
- },
254
- "post_processed": null,
255
- "supervised_keys": null,
256
- "builder_name": "adversarial_qa",
257
- "config_name": "dbert",
258
- "version": {
259
- "version_str": "1.0.0",
260
- "description": null,
261
- "major": 1,
262
- "minor": 0,
263
- "patch": 0
264
- },
265
- "splits": {
266
- "train": {
267
- "name": "train",
268
- "num_bytes": 9345557,
269
- "num_examples": 10000,
270
- "dataset_name": "adversarial_qa"
271
- },
272
- "validation": {
273
- "name": "validation",
274
- "num_bytes": 918192,
275
- "num_examples": 1000,
276
- "dataset_name": "adversarial_qa"
277
- },
278
- "test": {
279
- "name": "test",
280
- "num_bytes": 971454,
281
- "num_examples": 1000,
282
- "dataset_name": "adversarial_qa"
283
- }
284
- },
285
- "download_checksums": {
286
- "https://adversarialqa.github.io/data/aqa_v1.0.zip": {
287
- "num_bytes": 9018914,
288
- "checksum": "f4f3c23224a5060b28c35e35581bd5cf46256dda3665418fb83d036d0e0c93cf"
289
- }
290
- },
291
- "download_size": 9018914,
292
- "post_processing_size": null,
293
- "dataset_size": 11235203,
294
- "size_in_bytes": 20254117
295
- },
296
- "droberta": {
297
- "description": "AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop.\nWe use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets; D(BiDAF), D(BERT), and D(RoBERTa), each with 10,000 training examples, 1,000 validation, and 1,000 test examples.\nThe adversarial human annotation paradigm ensures that these datasets consist of questions that current state-of-the-art models (at least the ones used as adversaries in the annotation loop) find challenging.\n",
298
- "citation": "@article{bartolo2020beat,\n author = {Bartolo, Max and Roberts, Alastair and Welbl, Johannes and Riedel, Sebastian and Stenetorp, Pontus},\n title = {Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {8},\n number = {},\n pages = {662-678},\n year = {2020},\n doi = {10.1162/tacl\\_a\\_00338},\n URL = { https://doi.org/10.1162/tacl_a_00338 },\n eprint = { https://doi.org/10.1162/tacl_a_00338 },\n abstract = { Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: Humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalization to data collected without a model. We find that training on adversarially collected samples leads to strong generalization to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD\u2014only marginally lower than when trained on data collected using RoBERTa itself (41.0F1). }\n}\n",
299
- "homepage": "https://adversarialqa.github.io/",
300
- "license": "",
301
- "features": {
302
- "id": {
303
- "dtype": "string",
304
- "id": null,
305
- "_type": "Value"
306
- },
307
- "title": {
308
- "dtype": "string",
309
- "id": null,
310
- "_type": "Value"
311
- },
312
- "context": {
313
- "dtype": "string",
314
- "id": null,
315
- "_type": "Value"
316
- },
317
- "question": {
318
- "dtype": "string",
319
- "id": null,
320
- "_type": "Value"
321
- },
322
- "answers": {
323
- "feature": {
324
- "text": {
325
- "dtype": "string",
326
- "id": null,
327
- "_type": "Value"
328
- },
329
- "answer_start": {
330
- "dtype": "int32",
331
- "id": null,
332
- "_type": "Value"
333
- }
334
- },
335
- "length": -1,
336
- "id": null,
337
- "_type": "Sequence"
338
- },
339
- "metadata": {
340
- "split": {
341
- "dtype": "string",
342
- "id": null,
343
- "_type": "Value"
344
- },
345
- "model_in_the_loop": {
346
- "dtype": "string",
347
- "id": null,
348
- "_type": "Value"
349
- }
350
- }
351
- },
352
- "post_processed": null,
353
- "supervised_keys": null,
354
- "builder_name": "adversarial_qa",
355
- "config_name": "droberta",
356
- "version": {
357
- "version_str": "1.0.0",
358
- "description": null,
359
- "major": 1,
360
- "minor": 0,
361
- "patch": 0
362
- },
363
- "splits": {
364
- "train": {
365
- "name": "train",
366
- "num_bytes": 9270719,
367
- "num_examples": 10000,
368
- "dataset_name": "adversarial_qa"
369
- },
370
- "validation": {
371
- "name": "validation",
372
- "num_bytes": 925065,
373
- "num_examples": 1000,
374
- "dataset_name": "adversarial_qa"
375
- },
376
- "test": {
377
- "name": "test",
378
- "num_bytes": 1005406,
379
- "num_examples": 1000,
380
- "dataset_name": "adversarial_qa"
381
- }
382
- },
383
- "download_checksums": {
384
- "https://adversarialqa.github.io/data/aqa_v1.0.zip": {
385
- "num_bytes": 9018914,
386
- "checksum": "f4f3c23224a5060b28c35e35581bd5cf46256dda3665418fb83d036d0e0c93cf"
387
- }
388
- },
389
- "download_size": 9018914,
390
- "post_processing_size": null,
391
- "dataset_size": 11201190,
392
- "size_in_bytes": 20220104
393
- }
394
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbert/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e850dff3f247acf8cd02e96025a5ad8858498e4aa5b3f36b6b3a7a0e278b1f55
3
+ size 234029
dbert/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06b1bab8ce6a8a9e34d64a4048559b3370b2187c6db71d4830a927f5216c5950
3
+ size 2218850
dbert/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d91a3d9c2c184cfbf84706434a96d5371e28a78a26b50fcf02c918eed5bf6f7
3
+ size 236153
dbidaf/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e15a1cd567d22adde6409d6507ecfc6c9aba04005d514ea9d58c95f9543b90
3
+ size 221193
dbidaf/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:164745ce3ef4098f71767eacf2cb3d120fd25b4f8593eb556a6f5db7224fcfbd
3
+ size 2266212
dbidaf/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ee96cb95025f2c94c450b20de2b3540593823252f40d54a7cb1b33d24e75002
3
+ size 233936
droberta/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c39f63f0489f143f6f49bafd3762f4e53e5eaa98a4d65bd9c29307b81bdfc4e0
3
+ size 255806
droberta/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0cd24723fab48c4ad1651be52690246af91962a93c506436ecf7939d47c476b
3
+ size 2298073
droberta/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af61198b7ef9b8881b6da922110fa70a64cc1e8a5644da39e7156de424a69a54
3
+ size 261573