Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
dapr / README.md
kwang2049's picture
Update README.md
67ae3da verified
---
configs:
- config_name: ConditionalQA-corpus
data_files:
- split: test
path: ConditionalQA/corpus/*
- config_name: ConditionalQA-corpus_coref
data_files:
- split: test
path: ConditionalQA/corpus_coref/*
- config_name: ConditionalQA-docs
data_files:
- split: test
path: ConditionalQA/docs/*
- config_name: ConditionalQA-keyphrases
data_files:
- split: test
path: ConditionalQA/keyphrases/*
- config_name: ConditionalQA-qrels
data_files:
- split: train
path: ConditionalQA/qrels/train.parquet
- split: dev
path: ConditionalQA/qrels/dev.parquet
- split: test
path: ConditionalQA/qrels/test.parquet
- config_name: ConditionalQA-queries
data_files:
- split: train
path: ConditionalQA/queries/train.parquet
- split: dev
path: ConditionalQA/queries/dev.parquet
- split: test
path: ConditionalQA/queries/test.parquet
- config_name: Genomics-corpus
data_files:
- split: test
path: Genomics/corpus/*
- config_name: Genomics-corpus_coref
data_files:
- split: test
path: Genomics/corpus_coref/*
- config_name: Genomics-docs
data_files:
- split: test
path: Genomics/docs/*
- config_name: Genomics-keyphrases
data_files:
- split: test
path: Genomics/keyphrases/*
- config_name: Genomics-qrels
data_files:
- split: test
path: Genomics/qrels/test.parquet
- config_name: Genomics-queries
data_files:
- split: test
path: Genomics/queries/test.parquet
- config_name: MIRACL-corpus
data_files:
- split: test
path: MIRACL/corpus/*
- config_name: MIRACL-corpus_coref
data_files:
- split: test
path: MIRACL/corpus_coref/*
- config_name: MIRACL-docs
data_files:
- split: test
path: MIRACL/docs/*
- config_name: MIRACL-keyphrases
data_files:
- split: test
path: MIRACL/keyphrases/*
- config_name: MIRACL-qrels
data_files:
- split: train
path: MIRACL/qrels/train.parquet
- split: dev
path: MIRACL/qrels/dev.parquet
- split: test
path: MIRACL/qrels/test.parquet
- config_name: MIRACL-queries
data_files:
- split: train
path: MIRACL/queries/train.parquet
- split: dev
path: MIRACL/queries/dev.parquet
- split: test
path: MIRACL/queries/test.parquet
- config_name: MSMARCO-corpus
data_files:
- split: test
path: MSMARCO/corpus/*
- config_name: MSMARCO-corpus_coref
data_files:
- split: test
path: MSMARCO/corpus_coref/*
- config_name: MSMARCO-docs
data_files:
- split: test
path: MSMARCO/docs/*
- config_name: MSMARCO-keyphrases
data_files:
- split: test
path: MSMARCO/keyphrases/*
- config_name: MSMARCO-qrels
data_files:
- split: train
path: MSMARCO/qrels/train.parquet
- split: dev
path: MSMARCO/qrels/dev.parquet
- split: test
path: MSMARCO/qrels/test.parquet
- config_name: MSMARCO-queries
data_files:
- split: train
path: MSMARCO/queries/train.parquet
- split: dev
path: MSMARCO/queries/dev.parquet
- split: test
path: MSMARCO/queries/test.parquet
- config_name: NaturalQuestions-corpus
data_files:
- split: test
path: NaturalQuestions/corpus/*
- config_name: NaturalQuestions-corpus_coref
data_files:
- split: test
path: NaturalQuestions/corpus_coref/*
- config_name: NaturalQuestions-docs
data_files:
- split: test
path: NaturalQuestions/docs/*
- config_name: NaturalQuestions-keyphrases
data_files:
- split: test
path: NaturalQuestions/keyphrases/*
- config_name: NaturalQuestions-qrels
data_files:
- split: dev
path: NaturalQuestions/qrels/dev.parquet
- split: test
path: NaturalQuestions/qrels/test.parquet
- config_name: NaturalQuestions-queries
data_files:
- split: dev
path: NaturalQuestions/queries/dev.parquet
- split: test
path: NaturalQuestions/queries/test.parquet
- config_name: nq-hard
data_files:
- split: test
path: NaturalQuestions/nq-hard/*
dataset_info:
features:
- name: doc_id
dtype: string
- name: title
dtype: string
- name: passage_ids
sequence: string
- name: passages
sequence: string
- name: is_candidate
sequence: bool
splits:
- name: test
num_bytes: 13421074669
num_examples: 5758285
download_size: 7956252663
dataset_size: 13421074669
---
# DAPR: Document-Aware Passage Retrieval
This datasets repo contains the queries, passages/documents and judgements for the data used in the [DAPR](https://arxiv.org/abs/2305.13915) paper.
DAPR is a benchmark for document-aware passage retrieval: given a (large) collection of documents, relevant passages within these documents for a given query are required to be returned.
A key focus of DAPR is forcing/encouraging retrieval systems to utilize the document-level context which surrounds the relevant passages. An example is shown below:
<img src='https://raw.githubusercontent.com/UKPLab/acl2024-dapr/main/imgs/motivative-example.png' width='300'>
> In this example, the query asks for a musician or a group who has ever played at a certain venue. However, the gold relevant passage mentions only the reference noun, "the venue" but its actual name, "the Half Moon, Putney". The model thus needs to explore the context from the belonging document of the passage, which in this case means coreference resolution.
## Overview
For the DAPR benchmark, it contains 5 datasets:
| Dataset | #Queries (test) | #Documents | #Passages
| --- | --- | --- | --- |
| [MS MARCO](https://microsoft.github.io/msmarco/) | 2,722 | 1,359,163 | 2,383,023* |
| [Natural Questions](https://ai.google.com/research/NaturalQuestions) | 3,610 | 108,626 | 2,682,017|
| [MIRACL](https://project-miracl.github.io/) | 799 | 5,758,285 |32,893,221|
| [Genomics](https://dmice.ohsu.edu/trec-gen/) | 62 | 162,259 |12,641,127|
| [ConditionalQA](https://haitian-sun.github.io/conditionalqa/) | 271 | 652 |69,199|
And additionally, NQ-hard, the hard subset of queries from Natural Questions is also included (516 in total). These queries are hard because understanding the document context (e.g. coreference, main topic, multi-hop reasoning, and acronym) is necessary for retrieving the relevant passages.
> Notes: for MS MARCO, its documents do not provide the gold paragraph segmentation and we only segment the document by keeping the judged passages (from the MS MARCO Passage Ranking task) standing out while leaving the rest parts surrounding these passages. These passages are marked by `is_candidate==true`.
> For Natural Questions, the training split is not provided because the duplidate timestamps cannot be compatible with the queries/qrels/corpus format. Please refer to https://public.ukp.informatik.tu-darmstadt.de/kwang/dapr/data/NaturalQuestions/ for the training split.
## Load the dataset
### Loading the passages
One can load the passages like this:
```python
from datasets import load_dataset
dataset_name = "ConditionalQA"
passages = load_dataset("UKPLab/dapr", f"{dataset_name}-corpus", split="test")
for passage in passages:
passage["_id"] # passage id
passage["text"] # passage text
passage["title"] # doc title
passage["doc_id"]
passage["paragraph_no"] # the paragraph number within the document
passage["total_paragraphs"] # how many paragraphs/passages in total in the document
passage["is_candidate"] # is this passage a candidate for retrieval
```
Or strem the dataset without downloading it beforehand:
```python
from datasets import load_dataset
dataset_name = "ConditionalQA"
passages = load_dataset(
"UKPLab/dapr", f"{dataset_name}-corpus", split="test", streaming=True
)
for passage in passages:
passage["_id"] # passage id
passage["text"] # passage text
passage["title"] # doc title
passage["doc_id"]
passage["paragraph_no"] # the paragraph number within the document
passage["total_paragraphs"] # how many paragraphs/passages in total in the document
passage["is_candidate"] # is this passage a candidate for retrieval
```
### Loading the qrels
The qrels split contains the query relevance annotation, i.e., it contains the relevance score for (query, passage) pairs.
```python
from datasets import load_dataset
dataset_name = "ConditionalQA"
qrels = load_dataset("UKPLab/dapr", f"{dataset_name}-qrels", split="test")
for qrel in qrels:
qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
qrel["corpus_id"] # passage id
qrel["score"] # gold judgement
```
We present the NQ-hard dataset in an extended format of the normal qrels with additional columns:
```python
from datasets import load_dataset
qrels = load_dataset("UKPLab/dapr", "nq-hard", split="test")
for qrel in qrels:
qrel["query_id"] # query id (the text is available in ConditionalQA-queries)
qrel["corpus_id"] # passage id
qrel["score"] # gold judgement
# Additional columns:
qrel["query"] # query text
qrel["text"] # passage text
qrel["title"] # doc title
qrel["doc_id"]
qrel["categories"] # list of categories about this query-passage pair
qrel["url"] # url to the document in Wikipedia
```
## Retrieval and Evaluation
The following shows an example, how the dataset can be used to build a semantic search application.
> This example is based on [clddp](https://github.com/kwang2049/clddp/tree/main) (`pip install -U cldpp`). One can further explore this [example](https://github.com/kwang2049/clddp/blob/main/examples/search_fiqa.sh) for convenient multi-GPU exact search.
```python
# Please install cldpp with `pip install -U cldpp`
from clddp.retriever import Retriever, RetrieverConfig, Pooling, SimilarityFunction
from clddp.dm import Separator
from typing import Dict
from clddp.dm import Query, Passage
import torch
import pytrec_eval
import numpy as np
from datasets import load_dataset
# Define the retriever (DRAGON+ from https://arxiv.org/abs/2302.07452)
class DRAGONPlus(Retriever):
def __init__(self) -> None:
config = RetrieverConfig(
query_model_name_or_path="facebook/dragon-plus-query-encoder",
passage_model_name_or_path="facebook/dragon-plus-context-encoder",
shared_encoder=False,
sep=Separator.blank,
pooling=Pooling.cls,
similarity_function=SimilarityFunction.dot_product,
query_max_length=512,
passage_max_length=512,
)
super().__init__(config)
# Load data:
passages = load_dataset("UKPLab/dapr", "ConditionalQA-corpus", split="test")
queries = load_dataset("UKPLab/dapr", "ConditionalQA-queries", split="test")
qrels_rows = load_dataset("UKPLab/dapr", "ConditionalQA-qrels", split="test")
qrels: Dict[str, Dict[str, float]] = {}
for qrel_row in qrels_rows:
qid = qrel_row["query_id"]
pid = qrel_row["corpus_id"]
rel = qrel_row["score"]
qrels.setdefault(qid, {})
qrels[qid][pid] = rel
# Encode queries and passages: (refer to https://github.com/kwang2049/clddp/blob/main/examples/search_fiqa.sh for multi-GPU exact search)
retriever = DRAGONPlus()
retriever.eval()
queries = [Query(query_id=query["_id"], text=query["text"]) for query in queries]
passages = [
Passage(passage_id=passage["_id"], text=passage["text"]) for passage in passages
]
query_embeddings = retriever.encode_queries(queries)
with torch.no_grad(): # Takes around a minute on a V100 GPU
passage_embeddings, passage_mask = retriever.encode_passages(passages)
# Calculate the similarities and keep top-K:
similarity_scores = torch.matmul(
query_embeddings, passage_embeddings.t()
) # (query_num, passage_num)
topk = torch.topk(similarity_scores, k=10)
topk_values: torch.Tensor = topk[0]
topk_indices: torch.LongTensor = topk[1]
topk_value_lists = topk_values.tolist()
topk_index_lists = topk_indices.tolist()
# Run evaluation with pytrec_eval:
retrieval_scores: Dict[str, Dict[str, float]] = {}
for query_i, (values, indices) in enumerate(zip(topk_value_lists, topk_index_lists)):
query_id = queries[query_i].query_id
retrieval_scores.setdefault(query_id, {})
for value, passage_i in zip(values, indices):
passage_id = passages[passage_i].passage_id
retrieval_scores[query_id][passage_id] = value
evaluator = pytrec_eval.RelevanceEvaluator(
query_relevance=qrels, measures=["ndcg_cut_10"]
)
query_performances: Dict[str, Dict[str, float]] = evaluator.evaluate(retrieval_scores)
ndcg = np.mean([score["ndcg_cut_10"] for score in query_performances.values()])
print(ndcg) # 0.21796083196880855
```
## Note
This dataset was created with `datasets==2.15.0`. Make sure to use this or a newer version of the datasets library.
## Citation
If you use the code/data, feel free to cite our publication [DAPR: A Benchmark on Document-Aware Passage Retrieval](https://arxiv.org/abs/2305.13915):
```bibtex
@article{wang2023dapr,
title = "DAPR: A Benchmark on Document-Aware Passage Retrieval",
author = "Kexin Wang and Nils Reimers and Iryna Gurevych",
journal= "arXiv preprint arXiv:2305.13915",
year = "2023",
url = "https://arxiv.org/abs/2305.13915",
}
```