Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Libraries:
Datasets
pandas
License:
m2qa / README.md
lenglaender's picture
Update README.md
dbc3e3b verified
|
raw
history blame
9.8 kB
---
license: cc-by-nd-4.0
language:
- de
- zh
- tr
size_categories:
- 10K<n<100K
multilinguality:
- multilingual
pretty_name: M2QA
task_categories:
- question-answering
task_ids:
- extractive-qa
dataset_info:
- config_name: m2qa.german.creative_writing
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 2083548
num_examples: 1500
download_size: 2047695
dataset_size: 2083548
- config_name: m2qa.german.news
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 2192833
num_examples: 1500
- name: train
num_bytes: 1527473
num_examples: 1500
download_size: 2438496
dataset_size: 3720306
- config_name: m2qa.german.product_reviews
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 1652573
num_examples: 1500
- name: train
num_bytes: 1158154
num_examples: 1500
download_size: 1830972
dataset_size: 2810727
- config_name: m2qa.chinese.creative_writing
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 1600001
num_examples: 1500
download_size: 1559229
dataset_size: 1600001
- config_name: m2qa.chinese.news
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 1847465
num_examples: 1500
- name: train
num_bytes: 1135914
num_examples: 1500
download_size: 2029530
dataset_size: 2983379
- config_name: m2qa.chinese.product_reviews
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 1390223
num_examples: 1500
- name: train
num_bytes: 1358895
num_examples: 1500
download_size: 1597724
dataset_size: 2749118
- config_name: m2qa.turkish.creative_writing
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 1845140
num_examples: 1500
download_size: 1808676
dataset_size: 1845140
- config_name: m2qa.turkish.news
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 2071770
num_examples: 1500
- name: train
num_bytes: 1362485
num_examples: 1500
download_size: 2287668
dataset_size: 3434255
- config_name: m2qa.turkish.product_reviews
features:
- name: id
dtype: string
- name: question
dtype: string
- name: context
dtype: string
- name: answers
struct:
- name: text
sequence: string
- name: answer_start
sequence: int64
splits:
- name: validation
num_bytes: 1996826
num_examples: 1500
download_size: 1958662
dataset_size: 1996826
configs:
- config_name: m2qa.chinese.creative_writing
data_files:
- split: validation
path: m2qa.chinese.creative_writing/validation-*
- config_name: m2qa.chinese.news
data_files:
- split: validation
path: m2qa.chinese.news/validation-*
- split: train
path: m2qa.chinese.news/train-*
- config_name: m2qa.chinese.product_reviews
data_files:
- split: validation
path: m2qa.chinese.product_reviews/validation-*
- split: train
path: m2qa.chinese.product_reviews/train-*
- config_name: m2qa.german.creative_writing
data_files:
- split: validation
path: m2qa.german.creative_writing/validation-*
- config_name: m2qa.german.news
data_files:
- split: validation
path: m2qa.german.news/validation-*
- split: train
path: m2qa.german.news/train-*
- config_name: m2qa.german.product_reviews
data_files:
- split: validation
path: m2qa.german.product_reviews/validation-*
- split: train
path: m2qa.german.product_reviews/train-*
- config_name: m2qa.turkish.creative_writing
data_files:
- split: validation
path: m2qa.turkish.creative_writing/validation-*
- config_name: m2qa.turkish.news
data_files:
- split: validation
path: m2qa.turkish.news/validation-*
- split: train
path: m2qa.turkish.news/train-*
- config_name: m2qa.turkish.product_reviews
data_files:
- split: validation
path: m2qa.turkish.product_reviews/validation-*
---
M2QA: Multi-domain Multilingual Question Answering
=====================================================
M2QA (Multi-domain Multilingual Question Answering) is an extractive question answering benchmark for evaluating joint language and domain transfer. M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing.
This Hugging Face datasets repo accompanies our paper "[M2QA: Multi-domain Multilingual Question Answering](https://arxiv.org/abs/2407.01091)". If you want an explanation and code to reproduce all our results or want to use our custom-built annotation platform, have a look at our GitHub repository: [https://github.com/UKPLab/m2qa](https://github.com/UKPLab/m2qa)
Loading & Decrypting the Dataset
-----------------
Following [Jacovi et al. (2023)](https://aclanthology.org/2023.emnlp-main.308/), we encrypt the validation data to prevent leakage of the dataset into LLM training datasets. But loading the dataset is still easy:
To load the dataset, you can use the following code:
```python
from datasets import load_dataset
from cryptography.fernet import Fernet
# Load the dataset
subset = "m2qa.german.news" # Change to the subset that you want to use
dataset = load_dataset("UKPLab/m2qa", subset)
# Decrypt it
fernet = Fernet(b"aRY0LZZb_rPnXWDSiSJn9krCYezQMOBbGII2eGkN5jo=")
def decrypt(example):
example["question"] = fernet.decrypt(example["question"].encode()).decode()
example["context"] = fernet.decrypt(example["context"].encode()).decode()
example["answers"]["text"] = [fernet.decrypt(answer.encode()).decode() for answer in example["answers"]["text"]]
return example
dataset["validation"] = dataset["validation"].map(decrypt)
```
The M2QA dataset is licensed under a "no derivative" agreement. To prevent contamination of LLM training datasets and thus preserve the dataset's usefulness to our research community, please upload the dataset only in encrypted form. Additionally, please use only APIs that do not utilize the data for training.
Overview / Data Splits
----------
All used text passages stem from sources with open licenses. We list the licenses here: [https://github.com/UKPLab/m2qa/tree/main/m2qa_dataset](https://github.com/UKPLab/m2qa/tree/main/m2qa_dataset)
We have validation data for the following domains and languages:
| Subset Name | Domain | Language | #Question-Answer instances |
| --- | --- | --- | --- |
| `m2qa.german.product_reviews` | product_reviews | German | 1500 |
| `m2qa.german.creative_writing` | creative_writing | German | 1500 |
| `m2qa.german.news` | news | German | 1500 |
| `m2qa.chinese.product_reviews` | product_reviews | Chinese | 1500 |
| `m2qa.chinese.creative_writing` | creative_writing | Chinese | 1500 |
| `m2qa.chinese.news` | news | Chinese | 1500 |
| `m2qa.turkish.product_reviews` | product_reviews | Turkish | 1500 |
| `m2qa.turkish.creative_writing` | creative_writing | Turkish | 1500 |
| `m2qa.turkish.news` | news | Turkish | 1500 |
### Additional Training Data
We also provide training data for five domain-language pairs, consisting of 1500 question-answer instances each, totalling 7500 training examples. These are the subsets that contain training data:
- `m2qa.chinese.news`
- `m2qa.chinese.product_reviews`
- `m2qa.german.news`
- `m2qa.german.product_reviews`
- `m2qa.turkish.news`
The training data is not encrypted.
Citation
----------
If you use this dataset, please cite our paper:
```
@article{englaender-etal-2024-m2qa,
title="M2QA: Multi-domain Multilingual Question Answering",
author={Engl{\"a}nder, Leon and
Sterz, Hannah and
Poth, Clifton and
Pfeiffer, Jonas and
Kuznetsov, Ilia and
Gurevych, Iryna},
journal={arXiv preprint},
url="https://arxiv.org/abs/2407.01091",
month = jul,
year="2024"
}
```
License
-------
This dataset is distributed under the [CC-BY-ND 4.0 license](https://creativecommons.org/licenses/by-nd/4.0/legalcode).
Following [Jacovi et al. (2023)](https://aclanthology.org/2023.emnlp-main.308/), we decided to publish with a "No Derivatives" license to mitigate the risk of data contamination of crawled training datasets.