Dataset Preview
Full Screen Viewer
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
|
000000
|
End of preview.
Structure
Each sample will have a structure as follows:
{
'id': Value(dtype='string', id=None),
'images': Value(dtype='binary', id=None),
'conversations': [{'from': Value(dtype='string', id=None), 'value': Value(dtype='string', id=None)}]
}
{
'id': '004309348',
'image': <image-bytes>,
'conversations': [{'from': 'human', 'value': 'Điều gì được minh họa trong hình ảnh này?\n<image>'}, {'from': 'gpt', 'value': 'bạn nghĩ có bao nhiêu sinh viên ở farbaut sử dụng sản phẩm thuốc lá'}]
}
How To Use
Convert binary objects
Because the returned video will be in bytes, here is a way to extract frames and fps:
import io
import numpy as np
from PIL import Image
from datasets import load_dataset
def extract_image(image_bytes):
img = Image.open(io.BytesIO(image_bytes))
arr = np.asarray(img)
return arr
dataset = load_dataset("Vividbot/instruct500k_vi", name="all", streaming=True)
image_bytes = next(iter(dataset["train"]))["image"]
image = extract_image(image_bytes)
print(f"Image shape: {image.shape}")
- Downloads last month
- 31