File size: 5,771 Bytes
e5c7128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from abc import ABC, abstractmethod

import dlimp as dl
import tensorflow as tf
import tensorflow_datasets as tfds


class TfdsModFunction(ABC):
    @classmethod
    @abstractmethod
    def mod_features(
        cls,
        features: tfds.features.FeaturesDict,
    ) -> tfds.features.FeaturesDict:
        """
        Modifies the data builder feature dict to reflect feature changes of ModFunction.
        """
        ...

    @classmethod
    @abstractmethod
    def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
        """
        Perform arbitrary modifications on the dataset that comply with the modified feature definition.
        """
        ...


def mod_obs_features(features, obs_feature_mod_function):
    """Utility function to only modify keys in observation dict."""
    return tfds.features.FeaturesDict(
        {
            "steps": tfds.features.Dataset(
                {
                    "observation": tfds.features.FeaturesDict(
                        {
                            key: obs_feature_mod_function(
                                key, features["steps"]["observation"][key]
                            )
                            for key in features["steps"]["observation"].keys()
                        }
                    ),
                    **{
                        key: features["steps"][key]
                        for key in features["steps"].keys()
                        if key not in ("observation",)
                    },
                }
            ),
            **{key: features[key] for key in features.keys() if key not in ("steps",)},
        }
    )


class ResizeAndJpegEncode(TfdsModFunction):
    MAX_RES: int = 256

    @classmethod
    def mod_features(
        cls,
        features: tfds.features.FeaturesDict,
    ) -> tfds.features.FeaturesDict:
        def downsize_and_jpeg(key, feat):
            """Downsizes image features, encodes as jpeg."""
            if len(feat.shape) >= 2 and feat.shape[0] >= 64 and feat.shape[1] >= 64:  # is image / depth feature
                should_jpeg_encode = (
                    isinstance(feat, tfds.features.Image) and "depth" not in key
                )
                if len(feat.shape) > 2:
                    new_shape = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES, feat.shape[2])
                else:
                    new_shape = (ResizeAndJpegEncode.MAX_RES, ResizeAndJpegEncode.MAX_RES)

                if isinstance(feat, tfds.features.Image):
                    return tfds.features.Image(
                        shape=new_shape,
                        dtype=feat.dtype,
                        encoding_format="jpeg" if should_jpeg_encode else "png",
                        doc=feat.doc,
                    )
                else:
                    return tfds.features.Tensor(
                        shape=new_shape,
                        dtype=feat.dtype,
                        doc=feat.doc,
                    )

            return feat

        return mod_obs_features(features, downsize_and_jpeg)

    @classmethod
    def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
        def resize_image_fn(step):
            # resize images
            for key in step["observation"]:
                if len(step["observation"][key].shape) >= 2 and (
                    step["observation"][key].shape[0] >= 64
                    or step["observation"][key].shape[1] >= 64
                ):
                    size = (ResizeAndJpegEncode.MAX_RES,
                            ResizeAndJpegEncode.MAX_RES)
                    if "depth" in key:
                        step["observation"][key] = tf.cast(
                            dl.utils.resize_depth_image(
                                tf.cast(step["observation"][key], tf.float32), size
                            ),
                            step["observation"][key].dtype,
                        )
                    else:
                        step["observation"][key] = tf.cast(
                            dl.utils.resize_image(step["observation"][key], size),
                            tf.uint8,
                        )
            return step

        def episode_map_fn(episode):
            episode["steps"] = episode["steps"].map(resize_image_fn)
            return episode

        return ds.map(episode_map_fn)


class FilterSuccess(TfdsModFunction):
    @classmethod
    def mod_features(
        cls,
        features: tfds.features.FeaturesDict,
    ) -> tfds.features.FeaturesDict:
        return features  # no feature changes

    @classmethod
    def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
        return ds.filter(lambda e: e["success"])


class FlipImgChannels(TfdsModFunction):
    FLIP_KEYS = ["image"]

    @classmethod
    def mod_features(
        cls,
        features: tfds.features.FeaturesDict,
    ) -> tfds.features.FeaturesDict:
        return features  # no feature changes

    @classmethod
    def mod_dataset(cls, ds: tf.data.Dataset) -> tf.data.Dataset:
        def flip(step):
            for key in cls.FLIP_KEYS:
                if key in step["observation"]:
                    step["observation"][key] = step["observation"][key][..., ::-1]
            return step

        def episode_map_fn(episode):
            episode["steps"] = episode["steps"].map(flip)
            return episode

        return ds.map(episode_map_fn)
    

class FlipWristImgChannels(FlipImgChannels):
    FLIP_KEYS = ["wrist_image", "hand_image"]


TFDS_MOD_FUNCTIONS = {
    "resize_and_jpeg_encode": ResizeAndJpegEncode,
    "filter_success": FilterSuccess,
    "flip_image_channels": FlipImgChannels,
    "flip_wrist_image_channels": FlipWristImgChannels,
}