VLATrainingDataset / code /rlds_dataset_mod /multithreaded_adhoc_tfds_builder.py
WeiChow's picture
upload code
e5c7128 verified
raw
history blame
8.93 kB
from functools import partial
import itertools
from multiprocessing import Pool
from typing import Any, Callable, Dict, Iterable, Tuple, Union
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow_datasets.core import (
dataset_builder,
download,
example_serializer,
file_adapters,
naming,
)
from tensorflow_datasets.core import split_builder as split_builder_lib
from tensorflow_datasets.core import splits as splits_lib
from tensorflow_datasets.core import utils
from tensorflow_datasets.core import writer as writer_lib
Key = Union[str, int]
# The nested example dict passed to `features.encode_example`
Example = Dict[str, Any]
KeyExample = Tuple[Key, Example]
class MultiThreadedAdhocDatasetBuilder(tfds.core.dataset_builders.AdhocBuilder):
"""Multithreaded adhoc dataset builder."""
def __init__(
self, *args, generator_fcn, n_workers, max_episodes_in_memory, **kwargs
):
super().__init__(*args, **kwargs)
self._generator_fcn = generator_fcn
self._n_workers = n_workers
self._max_episodes_in_memory = max_episodes_in_memory
def _download_and_prepare( # pytype: disable=signature-mismatch # overriding-parameter-type-checks
self,
dl_manager: download.DownloadManager,
download_config: download.DownloadConfig,
) -> None:
"""Generate all splits and returns the computed split infos."""
assert (
self._max_episodes_in_memory % self._n_workers == 0
) # need to divide max_episodes by workers
split_builder = ParallelSplitBuilder(
split_dict=self._split_datasets,
features=self.info.features,
dataset_size=self.info.dataset_size,
max_examples_per_split=download_config.max_examples_per_split,
beam_options=download_config.beam_options,
beam_runner=download_config.beam_runner,
file_format=self.info.file_format,
shard_config=download_config.get_shard_config(),
generator_fcn=self._generator_fcn,
n_workers=self._n_workers,
max_episodes_in_memory=self._max_episodes_in_memory,
)
split_generators = self._split_generators(dl_manager)
split_generators = split_builder.normalize_legacy_split_generators(
split_generators=split_generators,
generator_fn=self._generate_examples,
is_beam=False,
)
dataset_builder._check_split_names(split_generators.keys())
# Start generating data for all splits
path_suffix = file_adapters.ADAPTER_FOR_FORMAT[
self.info.file_format
].FILE_SUFFIX
split_info_futures = []
for split_name, generator in utils.tqdm(
split_generators.items(),
desc="Generating splits...",
unit=" splits",
leave=False,
):
filename_template = naming.ShardedFileTemplate(
split=split_name,
dataset_name=self.name,
data_dir=self.data_path,
filetype_suffix=path_suffix,
)
future = split_builder.submit_split_generation(
split_name=split_name,
generator=generator,
filename_template=filename_template,
disable_shuffling=self.info.disable_shuffling,
)
split_info_futures.append(future)
# Finalize the splits (after apache beam completed, if it was used)
split_infos = [future.result() for future in split_info_futures]
# Update the info object with the splits.
split_dict = splits_lib.SplitDict(split_infos)
self.info.set_splits(split_dict)
def _split_generators(self, dl_manager: tfds.download.DownloadManager):
"""Define dummy split generators."""
def dummy_generator():
yield None
return {split: dummy_generator() for split in self._split_datasets}
class _SplitInfoFuture:
"""Future containing the `tfds.core.SplitInfo` result."""
def __init__(self, callback: Callable[[], splits_lib.SplitInfo]):
self._callback = callback
def result(self) -> splits_lib.SplitInfo:
return self._callback()
def parse_examples_from_generator(
episodes, max_episodes, fcn, split_name, total_num_examples, features, serializer
):
upper = episodes[-1] + 1
upper_str = f'{upper}' if upper < max_episodes else ''
generator = fcn(split=split_name + f"[{episodes[0]}:{upper_str}]")
outputs = []
for key, sample in utils.tqdm(
zip(episodes, generator),
desc=f"Generating {split_name} examples...",
unit=" examples",
total=total_num_examples,
leave=False,
mininterval=1.0,
):
if sample is None:
continue
try:
sample = features.encode_example(sample)
except Exception as e: # pylint: disable=broad-except
utils.reraise(e, prefix=f"Failed to encode example:\n{sample}\n")
outputs.append((str(key), serializer.serialize_example(sample)))
return outputs
class ParallelSplitBuilder(split_builder_lib.SplitBuilder):
def __init__(
self, *args, generator_fcn, n_workers, max_episodes_in_memory, **kwargs
):
super().__init__(*args, **kwargs)
self._generator_fcn = generator_fcn
self._n_workers = n_workers
self._max_episodes_in_memory = max_episodes_in_memory
def _build_from_generator(
self,
split_name: str,
generator: Iterable[KeyExample],
filename_template: naming.ShardedFileTemplate,
disable_shuffling: bool,
) -> _SplitInfoFuture:
"""Split generator for example generators.
Args:
split_name: str,
generator: Iterable[KeyExample],
filename_template: Template to format the filename for a shard.
disable_shuffling: Specifies whether to shuffle the examples,
Returns:
future: The future containing the `tfds.core.SplitInfo`.
"""
total_num_examples = None
serialized_info = self._features.get_serialized_info()
writer = writer_lib.Writer(
serializer=example_serializer.ExampleSerializer(serialized_info),
filename_template=filename_template,
hash_salt=split_name,
disable_shuffling=disable_shuffling,
file_format=self._file_format,
shard_config=self._shard_config,
)
del generator # use parallel generators instead
episode_lists = chunk_max(
list(np.arange(self._split_dict[split_name].num_examples)),
self._n_workers,
self._max_episodes_in_memory,
) # generate N episode lists
print(f"Generating with {self._n_workers} workers!")
pool = Pool(processes=self._n_workers)
for i, episodes in enumerate(episode_lists):
print(f"Processing chunk {i + 1} of {len(episode_lists)}.")
results = pool.map(
partial(
parse_examples_from_generator,
fcn=self._generator_fcn,
split_name=split_name,
total_num_examples=total_num_examples,
serializer=writer._serializer,
features=self._features,
max_episodes=self._split_dict[split_name].num_examples,
),
episodes,
)
# write results to shuffler --> this will automatically offload to disk if necessary
print("Writing conversion results...")
for result in itertools.chain(*results):
key, serialized_example = result
writer._shuffler.add(key, serialized_example)
writer._num_examples += 1
pool.close()
print("Finishing split conversion...")
shard_lengths, total_size = writer.finalize()
split_info = splits_lib.SplitInfo(
name=split_name,
shard_lengths=shard_lengths,
num_bytes=total_size,
filename_template=filename_template,
)
return _SplitInfoFuture(lambda: split_info)
def dictlist2listdict(DL):
"Converts a dict of lists to a list of dicts"
return [dict(zip(DL, t)) for t in zip(*DL.values())]
def chunks(l, n):
"""Yield n number of sequential chunks from l."""
d, r = divmod(len(l), n)
for i in range(n):
si = (d + 1) * (i if i < r else r) + d * (0 if i < r else i - r)
yield l[si : si + (d + 1 if i < r else d)]
def chunk_max(l, n, max_chunk_sum):
out = []
for _ in range(int(np.ceil(len(l) / max_chunk_sum))):
out.append([c for c in chunks(l[:max_chunk_sum], n) if c])
l = l[max_chunk_sum:]
return out