|
from functools import partial |
|
import itertools |
|
from multiprocessing import Pool |
|
from typing import Any, Callable, Dict, Iterable, Tuple, Union |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import tensorflow_datasets as tfds |
|
from tensorflow_datasets.core import ( |
|
dataset_builder, |
|
download, |
|
example_serializer, |
|
file_adapters, |
|
naming, |
|
) |
|
from tensorflow_datasets.core import split_builder as split_builder_lib |
|
from tensorflow_datasets.core import splits as splits_lib |
|
from tensorflow_datasets.core import utils |
|
from tensorflow_datasets.core import writer as writer_lib |
|
|
|
Key = Union[str, int] |
|
|
|
Example = Dict[str, Any] |
|
KeyExample = Tuple[Key, Example] |
|
|
|
|
|
class MultiThreadedAdhocDatasetBuilder(tfds.core.dataset_builders.AdhocBuilder): |
|
"""Multithreaded adhoc dataset builder.""" |
|
|
|
def __init__( |
|
self, *args, generator_fcn, n_workers, max_episodes_in_memory, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
self._generator_fcn = generator_fcn |
|
self._n_workers = n_workers |
|
self._max_episodes_in_memory = max_episodes_in_memory |
|
|
|
def _download_and_prepare( |
|
self, |
|
dl_manager: download.DownloadManager, |
|
download_config: download.DownloadConfig, |
|
) -> None: |
|
"""Generate all splits and returns the computed split infos.""" |
|
assert ( |
|
self._max_episodes_in_memory % self._n_workers == 0 |
|
) |
|
split_builder = ParallelSplitBuilder( |
|
split_dict=self._split_datasets, |
|
features=self.info.features, |
|
dataset_size=self.info.dataset_size, |
|
max_examples_per_split=download_config.max_examples_per_split, |
|
beam_options=download_config.beam_options, |
|
beam_runner=download_config.beam_runner, |
|
file_format=self.info.file_format, |
|
shard_config=download_config.get_shard_config(), |
|
generator_fcn=self._generator_fcn, |
|
n_workers=self._n_workers, |
|
max_episodes_in_memory=self._max_episodes_in_memory, |
|
) |
|
split_generators = self._split_generators(dl_manager) |
|
split_generators = split_builder.normalize_legacy_split_generators( |
|
split_generators=split_generators, |
|
generator_fn=self._generate_examples, |
|
is_beam=False, |
|
) |
|
dataset_builder._check_split_names(split_generators.keys()) |
|
|
|
|
|
path_suffix = file_adapters.ADAPTER_FOR_FORMAT[ |
|
self.info.file_format |
|
].FILE_SUFFIX |
|
|
|
split_info_futures = [] |
|
for split_name, generator in utils.tqdm( |
|
split_generators.items(), |
|
desc="Generating splits...", |
|
unit=" splits", |
|
leave=False, |
|
): |
|
filename_template = naming.ShardedFileTemplate( |
|
split=split_name, |
|
dataset_name=self.name, |
|
data_dir=self.data_path, |
|
filetype_suffix=path_suffix, |
|
) |
|
future = split_builder.submit_split_generation( |
|
split_name=split_name, |
|
generator=generator, |
|
filename_template=filename_template, |
|
disable_shuffling=self.info.disable_shuffling, |
|
) |
|
split_info_futures.append(future) |
|
|
|
|
|
split_infos = [future.result() for future in split_info_futures] |
|
|
|
|
|
split_dict = splits_lib.SplitDict(split_infos) |
|
self.info.set_splits(split_dict) |
|
|
|
def _split_generators(self, dl_manager: tfds.download.DownloadManager): |
|
"""Define dummy split generators.""" |
|
|
|
def dummy_generator(): |
|
yield None |
|
|
|
return {split: dummy_generator() for split in self._split_datasets} |
|
|
|
|
|
class _SplitInfoFuture: |
|
"""Future containing the `tfds.core.SplitInfo` result.""" |
|
|
|
def __init__(self, callback: Callable[[], splits_lib.SplitInfo]): |
|
self._callback = callback |
|
|
|
def result(self) -> splits_lib.SplitInfo: |
|
return self._callback() |
|
|
|
|
|
def parse_examples_from_generator( |
|
episodes, max_episodes, fcn, split_name, total_num_examples, features, serializer |
|
): |
|
upper = episodes[-1] + 1 |
|
upper_str = f'{upper}' if upper < max_episodes else '' |
|
generator = fcn(split=split_name + f"[{episodes[0]}:{upper_str}]") |
|
outputs = [] |
|
for key, sample in utils.tqdm( |
|
zip(episodes, generator), |
|
desc=f"Generating {split_name} examples...", |
|
unit=" examples", |
|
total=total_num_examples, |
|
leave=False, |
|
mininterval=1.0, |
|
): |
|
if sample is None: |
|
continue |
|
try: |
|
sample = features.encode_example(sample) |
|
except Exception as e: |
|
utils.reraise(e, prefix=f"Failed to encode example:\n{sample}\n") |
|
outputs.append((str(key), serializer.serialize_example(sample))) |
|
return outputs |
|
|
|
|
|
class ParallelSplitBuilder(split_builder_lib.SplitBuilder): |
|
def __init__( |
|
self, *args, generator_fcn, n_workers, max_episodes_in_memory, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
self._generator_fcn = generator_fcn |
|
self._n_workers = n_workers |
|
self._max_episodes_in_memory = max_episodes_in_memory |
|
|
|
def _build_from_generator( |
|
self, |
|
split_name: str, |
|
generator: Iterable[KeyExample], |
|
filename_template: naming.ShardedFileTemplate, |
|
disable_shuffling: bool, |
|
) -> _SplitInfoFuture: |
|
"""Split generator for example generators. |
|
|
|
Args: |
|
split_name: str, |
|
generator: Iterable[KeyExample], |
|
filename_template: Template to format the filename for a shard. |
|
disable_shuffling: Specifies whether to shuffle the examples, |
|
|
|
Returns: |
|
future: The future containing the `tfds.core.SplitInfo`. |
|
""" |
|
total_num_examples = None |
|
serialized_info = self._features.get_serialized_info() |
|
writer = writer_lib.Writer( |
|
serializer=example_serializer.ExampleSerializer(serialized_info), |
|
filename_template=filename_template, |
|
hash_salt=split_name, |
|
disable_shuffling=disable_shuffling, |
|
file_format=self._file_format, |
|
shard_config=self._shard_config, |
|
) |
|
|
|
del generator |
|
episode_lists = chunk_max( |
|
list(np.arange(self._split_dict[split_name].num_examples)), |
|
self._n_workers, |
|
self._max_episodes_in_memory, |
|
) |
|
print(f"Generating with {self._n_workers} workers!") |
|
pool = Pool(processes=self._n_workers) |
|
for i, episodes in enumerate(episode_lists): |
|
print(f"Processing chunk {i + 1} of {len(episode_lists)}.") |
|
results = pool.map( |
|
partial( |
|
parse_examples_from_generator, |
|
fcn=self._generator_fcn, |
|
split_name=split_name, |
|
total_num_examples=total_num_examples, |
|
serializer=writer._serializer, |
|
features=self._features, |
|
max_episodes=self._split_dict[split_name].num_examples, |
|
), |
|
episodes, |
|
) |
|
|
|
print("Writing conversion results...") |
|
for result in itertools.chain(*results): |
|
key, serialized_example = result |
|
writer._shuffler.add(key, serialized_example) |
|
writer._num_examples += 1 |
|
pool.close() |
|
|
|
print("Finishing split conversion...") |
|
shard_lengths, total_size = writer.finalize() |
|
|
|
split_info = splits_lib.SplitInfo( |
|
name=split_name, |
|
shard_lengths=shard_lengths, |
|
num_bytes=total_size, |
|
filename_template=filename_template, |
|
) |
|
return _SplitInfoFuture(lambda: split_info) |
|
|
|
|
|
def dictlist2listdict(DL): |
|
"Converts a dict of lists to a list of dicts" |
|
return [dict(zip(DL, t)) for t in zip(*DL.values())] |
|
|
|
|
|
def chunks(l, n): |
|
"""Yield n number of sequential chunks from l.""" |
|
d, r = divmod(len(l), n) |
|
for i in range(n): |
|
si = (d + 1) * (i if i < r else r) + d * (0 if i < r else i - r) |
|
yield l[si : si + (d + 1 if i < r else d)] |
|
|
|
|
|
def chunk_max(l, n, max_chunk_sum): |
|
out = [] |
|
for _ in range(int(np.ceil(len(l) / max_chunk_sum))): |
|
out.append([c for c in chunks(l[:max_chunk_sum], n) if c]) |
|
l = l[max_chunk_sum:] |
|
return out |
|
|