Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'text'}) and 4 missing columns ({'num_embeddings', 'passage_offset', 'num_passages', 'embedding_offset'}).

This happened while the json dataset builder was generating data using

hf://datasets/XThomasBU/Colbert_Index/colbert/indexes/new_idx/collection.json (at revision 29f88be2d04b7d31dd63c8262c5115e3c106de89)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              text: string
              to
              {'passage_offset': Value(dtype='int64', id=None), 'num_passages': Value(dtype='int64', id=None), 'num_embeddings': Value(dtype='int64', id=None), 'embedding_offset': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1577, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1191, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'text'}) and 4 missing columns ({'num_embeddings', 'passage_offset', 'num_passages', 'embedding_offset'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/XThomasBU/Colbert_Index/colbert/indexes/new_idx/collection.json (at revision 29f88be2d04b7d31dd63c8262c5115e3c106de89)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

passage_offset
int64
num_passages
int64
num_embeddings
int64
embedding_offset
int64
text
string
0
6,133
892,641
0
null
null
null
null
null
Lecture 03 Shallow Networks DL4DS – Spring 2024 DS598 B1 Gardos – Understanding Deep Learning, Other Content Cited
null
null
null
null
• Univariate regression problem (one output, real value) • Fully connected network Recap: Regression 2
null
null
null
null
Recap: 1D Linear regression loss function <latexit sha1_base64="/hMh896NPSehdG/Bg07J5FjBuSo=">AW9HiclZhbc9Q2FI A3lLY0LTS07z0xdMHdpCJsvQywszkBAgJDQJuUKc7Mhe2Ssiy4vyQaP/0nfOn3t/+lLf0uPbO8Kn6M8dGfCivN9uh1JtdeIkWLy39M3Pto+sf/Lpjc9mP/i5q0v525/tZ/FR erzPT+WcXrosYxLofheLnLJD5OUs8iT/MA7XdH84JynmYjVb
null
null
null
null
/i5q0v525/tZ/FR erzPT+WcXrosYxLofheLnLJD5OUs8iT/MA7XdH84JynmYjVbn6Z8OIhUoEwmc5hAZz40j1wuSkTh2vn/kuFkRDUrxqF+dlGvVXTfy4nEZVEdjCFb3XC+Ww+wSgtLVNe5f6vAPJw9cd 9ZSGZRBuVT91BT6Vd3ItM5gbmFpcan+OLTQbwsLvfazNbj9zdAdxn4RcZX7kmXZUX8pyY9LlubCl7yadYuMJ8w/ZSE/gqJiEc+Oyz
null
null
null
null
sLvfazNbj9zdAdxn4RcZX7kmXZUX8pyY9LlubCl7yadYuMJ8w/ZSE/gqJiEc+OyzpFlXMHIkMniFP4U7lTRz+sUbIo01MDM2L5KMNM B23sqMiD345LoZIi58pvOgoK6eSxo/PtDEXK/VxeQoH5qYCxOv6IpczPYVmXcUv/DiKmBqW7vLqdlW6Hg+FKvlZUa9QVXWd1drhULzKWF7bnbYich6J95w0Uiu6kSsEHlZlyRfDRQw EByAWOQGx4hm0q
null
null
null
null
9QVXWd1drhULzKWF7bnbYich6J95w0Uiu6kSsEHlZlyRfDRQw EByAWOQGx4hm0qfPjBU4fUdiREnDZbCjYcM7rijStch5CTjraW6JBIZF83LFWiAVLGXWUHVAc546jAc9TWAUYKnxtAY7CVPVpF7Ox3kalZmO4R5SpkJedwFT9pnUM+oaqpASqvod63d svWbqtE1cnNRDTXUEWbtp18lTmhc17Dp1BFmwCcOuVUeQJeH6MWQRgy35QFMOHJ0xK
null
null
null
null
WbqtE1cnNRDTXUEWbtp18lTmhc17Dp1BFmwCcOuVUeQJeH6MWQRgy35QFMOHJ0xK4KhVBNuZWGnvdvhMdwXtznMB56XqrJUn/OUMZ0QE4fpbMOXzr4ST21nkpz2tcFPnZGsF jdKiwNm2lNOoFZtbGKmnWukEmzBaE0vuiaejQWlSeiO0EdwIeuSIUKPtDu1SXYsjrs3oOpoXkR/cXf+bj43JHxv9D8kmNJQVia0hHf4fDQ3hjoX3F0Tw4sUSLR4
null
null
null
null
SXYsjrs3oOpoXkR/cXf+bj43JHxv9D8kmNJQVia0hHf4fDQ3hjoX3F0Tw4sUSLR4E6sWLJVzf0dKxF G9sHanXDgpCMSnyS3T8Rai6deoIHmwcobFCQLcL30wotMhB0JV1QMvwDfdeywby0ST9Zo6+jLMi5eTih/YzRGpdXxZToW9W3Quq1EL3usHltBaU4eZwzq+o7qGMek0+vbhQ5aiZI71k o5P3CyHI2Y7/fWSN0WrFfKz9bY/GBesTuH7/G
null
null
null
null
Zwzq+o7qGMek0+vbhQ5aiZI71k o5P3CyHI2Y7/fWSN0WrFfKz9bY/GBesTuH7/GywjtcjJBZ1JGoLHnasbUliWfqDtqb9cORlesnP5KtHVpcuylJu+0o7bFvWIE/GzDMtoN4hGLOhK1Y6QesSy9Adt2fO4YZuFxbWb krQ7yaPVtrhTE23/YHfEc6Yfk8wTbRPCYk7F3CrGEQ+R2ISwGBVdC/6PlR0BN4+u1YSwuJWJrqYDWBpyiafQhLDYHOGu
null
null
null
null
bRPCYk7F3CrGEQ+R2ISwGBVdC/6PlR0BN4+u1YSwuJWJrqYDWBpyiafQhLDYHOGu2cawumFRN+wqk8kImU0Ii89ZhGfdhLAYUjG0iqcsSZDYhEg eRziPI5rHBEuJTcIrklhWhGwp24ZKR3FX0gEsjVFvY0tnMAIZK9RhG8RyRndeZt15Cu1iRXfxnq3jvSs6zhlqUAewtEnOmONuWg+Zh1Mj1m2JCcCWQlN4BZ2tqgzefrzgpI8yXnBpaG XlF4
null
null
null
null
6zhlqUAewtEnOmONuWg+Zh1Mj1m2JCcCWQlN4BZ2tqgzefrzgpI8yXnBpaG XlF4YekHpgaEHlKaGkl8EXvDaUPLrxAvODT2ndN/QfUoLQwtK9wzdozQwNKD0maHPKPUN9SldMXSF0txQ8kQKdwRDdykdGTqi9NDQ0rfGPqG0heGvqD0raFvKX1v6HtKnxj6hFJmK N01dBVSrmh5NWBFywbukypZyj57QdnzdAtShNDE0qfGvqU0qGh5Fcx3M8M
null
null
null
null
hFJmK N01dBVSrmh5NWBFywbukypZyj57QdnzdAtShNDE0qfGvqU0qGh5Fcx3M8MJY83cGM0VFK6ZugapcJQ8vNC14Z+orSyNCI0peGvqT0naHvKH1u6HNKQ0PJuwF4OjF0h1LzFqjMKN02d JvSM0P7O8F+HQZPdvG3DQNbFIaGxpTum4o+aUAjxKGnpLnyUC1V7XJ2yZyXQvUlFtYm/FJbZLzQE25hbVXp0ltcn0K1JSPyNBX96cvUiClcKUfz
null
null
null
null
UC1V7XJ2yZyXQvUlFtYm/FJbZLzQE25hbVXp0ltcn0K1JSPyNBX96cvUiClcKUfzC308VtYWth/sNj/ZfHh9sOFx8vtG 9obvW973/Xu9vq9X3uPey96W729nt/7d+b6zM2ZW/Pn83/M/zn/V6Nem2nrfN3rfOb/g9NB/xE</latexit> L[φ] = I X i=1 (f[xi, φ] − yi)2 = I X i=1 (φ0 + φ1xi − yi)2 Loss function: “Least squares loss function” 3
null
null
null
null
Recap: 1D Linear regression training This technique is known as gradient descent 4
null
null
null
null
Shallow neural networks • 1D regression model is obviously limited • Want to be able to describe input/output that are not lines • Want multiple inputs • Want multiple outputs • Shallow neural networks • Flexible enough to describe arbitrarily complex input/output mappings • Can have as many inputs as we want • Can have as many outputs as we want 5
null
null
null
null
This lecture we’ll cover… • Example network, 1 input, 1 output • Universal approximation theorem • More than one output • More than one input • General case • Number of regions • Terminology 6
null
null
null
null
1D Linear Regression <latexit sha1_base64=" NTIf4aNnvrpa8D wPTFP8Igh9dpg=" >AXIXiclZhb 9s2FICd7talu6Q blpe9CAtaDGsW2G l3wYCbdL0lnRJ msbpQYlUzIbil J0SZwK/jXDfszeh r0N+zM7lGQzOod 5mIHU7Pk+8XJIS rS8RIos73b/mbn2 3vsfPjR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sq
null
null
null
null
PjR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr5wRl PMxGr3fwi4cRC5 UIhM9yCPXn/ri4 fd9xIy8elcH4aL ToekEyFMeuO3v7v gulfte541SFXqO x8ZGbD3nO+mWvO 74zLfGo+OJu0z d5Uvucu1W6l2q3r 2k3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiS
null
null
null
null
k3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj2fdIuMJ8 09YyI+gqFjEs+Oy yufYuQWRgRPEKf yp3Kmil68oWZRl F5EHZsTyYaZDtr YUZEHPx+XQiVFz pVfNxQU0sljR0+ OMxAp93N5AQXmpw L6vhDljI/hymc dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4
null
null
null
null
mc dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h0nlVSKruQKgYfj suRL4RIGgMQS5 yAWPEM6tT58QKn hygsXwm4rNcFLEj n5ZhUrXIeQk5a2 muiQSGRfNSyVok FUxm1lB1QHOeWow HPU5gF6Cp8cTQH OwlT48l1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8j
null
null
null
null
l1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8jaTdtO ntK8qEHbqSLIgk UYtq0qgiwJN5sB ixhkuSn3YcCRoyN 2VSisCrIwt9LYa 7ed6Ahem6ME9kv bWytJ+s8YyogOwO 7T34Ipn7f1Xhq O5PknFW+LvCRM4 TJal/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEq
null
null
null
null
Jal/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqwZLVYXcRhp oWkh9v/QDHx2X Xb1t9D8km1BRVi S2inT4f1Q0gMcbX l8QwZMXSzR5EKg mL5Zwf0dTx1K8s HWkmjsoCMWkyC/Q 9hehal9TRXBn4w j1FQK6XvhmQqFJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v
null
null
null
null
qFJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v cNLqdXQRkeDmf8 is9lFGvzqcXF2 rAUpTMkZ7S0Rs3y 2GL2XZ/NeV10Wq F/HS9aQ/6BbNT+ D4/7a/j+QiJR2J 6oKTkbUuSxLe1 DXdLle7lm5/uY7 srRDi2s3Jam36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5
null
null
null
null
Jam36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5tNoW d2qi5R/s6qOoPi bFcqCPfbF06xAWc yrmVjGOeIjEOoT FqGhb8H+s7Ah4e LStOoTFrUy0NR3A 0oBLPIQ6hMV6C7 fNJobVDYu6YVeZ TIbIrENYfMIiPOo 6hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFo
null
null
null
null
6hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFobWRqDHshYoQ abIJYzuvIy68pT aBUruor3bA3vXdF wzlCFOoClTbLH HfTusk8nGI4Ztm SnAhkJTSBW9jZos 7k9OcFJTnJecGF oReUnht6TumBoQ eUpoaSXwRe8NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FBy
null
null
null
null
8NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByIo UngqG7lA4NHVJ6 aOghpa8MfUXpU0O fUvra0NeUvjP0H aUPDX1IKTOUbp m6Bql3FDy6sALVg xdodQzlPz2g71m 6BaliaEJpY8MfU TpwFDyqxieZ4aS4 w08GA2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATid
null
null
null
null
GA2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidGLpDqXkL VGaUbhu6Tempoaf 29wJ8Oo2ebWFum go2KY0NjSldN5T 8UoCjhKEn5DwZqO auNnbRO5rgZpy C2syPrma5DxQU2 5hzd1pcjW5PwVqy oek62v70xcpkFK 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t
null
null
null
null
FK 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t zl7Hn7kx05v5Zeb X+d/n/5z/a/7vW r0201zZaf1mf/ 3P5u9C70=</late xit>y = f[x, φ] = φ0 + φ1a[✓10 + ✓11x] + φ2a[✓20 + ✓21x] + φ3a[✓30 + ✓31x] <latexi t sha1_base64= "ktj2B8/mNFNy1 ioPnb0sW2wRwtY =">AWq3iclZj Zcts2FECZrqm7O e
null
null
null
null
e64= "ktj2B8/mNFNy1 ioPnb0sW2wRwtY =">AWq3iclZj Zcts2FECZrqm7O e3UL3h1JNOp0 1UqZMuL51J7Dib nVqOLdux5WhACq QgyDNxZbC0Wf0 a/rafkT/phckJY T3wg/VjCPknkMs FwAJ0UukyPJu9 98b7z73vsfHj zo5WP/n0s89Xb 31xmMVF6vOBH8s 4PfZYxqVQfJCLX PLjJOUs8iQ/8s4 3NT+65GkmYnWQ zxJ+Fr
null
null
null
null
1xmMVF6vOBH8s 4PfZYxqVQfJCLX PLjJOUs8iQ/8s4 3NT+65GkmYnWQ zxJ+FrFQiUD4LI fQaPXHmfvt7+4w 8uJpGcxPp3eGXp BMxNlwuKLjUByV 3fkPdaE3n45W17 udbvVxaHXFNa d5tMf3fpqPBzHf hFxlfuSZdlpr5v kZyVLc+FLPl8ZF hlPmH/OQn4KRcU inp2V1cjm7m2Ij N0gTuFP5W4Vf uKkVZNos8MCOW TzLMdNDG
null
null
null
null
lPmH/OQn4KRcU inp2V1cjm7m2Ij N0gTuFP5W4Vf uKkVZNos8MCOW TzLMdNDGTos8+O 2sFCopcq78uqGg kG4euzpN7lik3M /lDArMTwX01fUn LGV+DslcGSp+5 cdRxNS4HG5s7c3 LocdDoUp+UVSJn c/bzlblcCheZ2w 8PVjWInIeiTecV FIpupJrB7Oy5J 3wg4GgMQHU5A rHgGder8eIHbQx QWkgRc1sDVob7 Yk6qVjkPIS
null
null
null
null
pupJrB7Oy5J 3wg4GgMQHU5A rHgGder8eIHbQx QWkgRc1sDVob7 Yk6qVjkPISct7Y RoUEgkn7asTWLB VEYtZR8U173tas DzFGYBugpfHM3B fsLUfHFdzqd5G pWZjuEWUqZCXjU BQ/aZ1CNqG6qQE i71W9Yf2HrB1Hm TuDipuprqCLIO0 raTpzQvatx2qgi yYBGbauKIEvC th+ziEGWm/IBh y5OmJXhcKqIAuz n8Zeu+1ER/D
null
null
null
null
zQvatx2qgi yYBGbauKIEvC th+ziEGWm/IBh y5OmJXhcKqIAuz n8Zeu+1ER/DanC awX9reVknSf8lQ RnQAdp/+Fkz5vK 1vxkvbXSTnsvJ 1gU/dCUxW+xKWh vWwFo3AqJrYnJp VrpBJswWhNL5qm 7o3FpUnoj1AHcC brkiFCt7S7lQlW LI6PLwDQ0LyU /vdn7m07Oyq7eN /odkEyrKisRWkQ 7/j4rG8KDB6wsi ePJiSYPAtXk
null
null
null
null
wDQ0LyU /vdn7m07Oyq7eN /odkEyrKisRWkQ 7/j4rG8KDB6wsi ePJiSYPAtXkxR Lu72jqWIoXto5U cwcFoZgU+Qxtf xGq9jVBHc2jlB fIaDrhW8mFJrkI GjLOqBl+IZHpmU B+WiQfj1GX8Zk XJy80PrGSKVrm+ LqdAPq/YNVWqh fd/gcnkVlOHhcM mvudxDGfXqfHpx ocYsRcmc6imdvh pmOWwx2+6vprwu Wq2QX2w37UG/Y
null
null
null
null
OHhcM mvudxDGfXqfHpx ocYsRcmc6imdvh pmOWwx2+6vprwu Wq2QX2w37UG/YH YK3+cXo208HyG xqCNRXBGsdYli WVpD+paLte3e1Z uv/qeLO3Q4tpNS eptem3Le41PeA XO5be7hCPWNSRq K6mh9QjlqU9qM uex3bKCyu3ZSk 3kUerbFXZpo+Q cHE54zfUyK5Vgf +2I5rENYzKmYW8 U4iES6xAWo6Jt wf+xsi/g4dG26 hAW
null
null
null
null
+Q cHE54zfUyK5Vgf +2I5rENYzKmYW8 U4iES6xAWo6Jt wf+xsi/g4dG26 hAW+5loazqApTG XeAh1CIv1Fm6bT QyrOxZ1x64ymUy QWYew+JhFeNR1C IshFUOreM6SBIl 1iORxgvM4oXlM sJTYJDwjiWVGyJ KyLah0ErclHcDS FLU2tTQGPZCxQg 02QSxndOVl1pWn 0CpWdBUPbA0Prm k4Z6hCHcDSLtl j7nDXusk8nGI4Z tm
null
null
null
null
Qg 02QSxndOVl1pWn 0CpWdBUPbA0Prm k4Z6hCHcDSLtl j7nDXusk8nGI4Z tmSnAhkJTSBfez 0qbM4/XlBSU5yX jAzdEbplaFXlB4 ZekRpaij5ReAFL wlv0684NLQS0 oPDT2ktDC0oHRg 6IDSwNCA0keGPq LUN9SndNPQTUpz Q8mJFJ4Ih5QOj F0QumxoceUvjT0 JaVPDH1C6YmhJ 5S+MfQNpQ8MfUA pM5RumXoFqXcU PLqw
null
null
null
null
j F0QumxoceUvjT0 JaVPDH1C6YmhJ 5S+MfQNpQ8MfUA pM5RumXoFqXcU PLqwAs2DN2g1DO U/PaDvWZon9LE0 ITSh4Y+pHRsKPl VDM8zQ8nxBh6M hkpKnxr6lFJhKP n95gXPDX1OaWRo ROkzQ59R+trQ15 Q+NvQxpaGh5N0A nE4M3afUvAUqM0 r3DN2j9MLQC/t 7Ab6cRs+2MHdNB buUxobGlG4bSn4 pwFHC0HNyngxUc 1db
null
null
null
null
0 r3DN2j9MLQC/t 7Ab6cRs+2MHdNB buUxobGlG4bSn4 pwFHC0HNyngxUc 1dbvG0i97VALbm FNRlfXE1yHqglt 7Dm7rS4mtyfAr XkE9L1rcPlixRI KdzpR6vrPfwWlh YOf+r0func27u3 fn+jeUN70/na+c b5zuk5vzr3nSdO 3xk4vOn85fzt /P2t21/bWTtWG tvnOjueZLp/VZ4 /8B0OTgog=</l atexit>y = f[x,
null
null
null
null
vOn85fzt /P2t21/bWTtWG tvnOjueZLp/VZ4 /8B0OTgog=</l atexit>y = f[x, φ] = φ0 + φ1x Example shallow network 7
null
null
null
null
Example shallow network <latexit sha1_base64=" NTIf4aNnvrpa8D wPTFP8Igh9dpg=" >AXIXiclZhb 9s2FICd7talu6Q blpe9CAtaDGsW2G l3wYCbdL0lnRJ msbpQYlUzIbil J0SZwK/jXDfszeh r0N+zM7lGQzOod 5mIHU7Pk+8XJIS rS8RIos73b/mbn2 3vsfPjR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr
null
null
null
null
jR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr5wRl PMxGr3fwi4cRC5 UIhM9yCPXn/ri4 fd9xIy8elcH4aL ToekEyFMeuO3v7v gulfte541SFXqO x8ZGbD3nO+mWvO 74zLfGo+OJu0z d5Uvucu1W6l2q3r 2k3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj
null
null
null
null
3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj2fdIuMJ8 09YyI+gqFjEs+Oy yufYuQWRgRPEKf yp3Kmil68oWZRl F5EHZsTyYaZDtr YUZEHPx+XQiVFz pVfNxQU0sljR0+ OMxAp93N5AQXmpw L6vhDljI/hymc dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h
null
null
null
null
c dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h0nlVSKruQKgYfj suRL4RIGgMQS5 yAWPEM6tT58QKn hygsXwm4rNcFLEj n5ZhUrXIeQk5a2 muiQSGRfNSyVok FUxm1lB1QHOeWow HPU5gF6Cp8cTQH OwlT48l1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8ja
null
null
null
null
1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8jaTdtO ntK8qEHbqSLIgk UYtq0qgiwJN5sB ixhkuSn3YcCRoyN 2VSisCrIwt9LYa 7ed6Ahem6ME9kv bWytJ+s8YyogOwO 7T34Ipn7f1Xhq O5PknFW+LvCRM4 TJal/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqw
null
null
null
null
al/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqwZLVYXcRhp oWkh9v/QDHx2X Xb1t9D8km1BRVi S2inT4f1Q0gMcbX l8QwZMXSzR5EKg mL5Zwf0dTx1K8s HWkmjsoCMWkyC/Q 9hehal9TRXBn4w j1FQK6XvhmQqFJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v
null
null
null
null
FJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v cNLqdXQRkeDmf8 is9lFGvzqcXF2 rAUpTMkZ7S0Rs3y 2GL2XZ/NeV10Wq F/HS9aQ/6BbNT+ D4/7a/j+QiJR2J 6oKTkbUuSxLe1 DXdLle7lm5/uY7 srRDi2s3Jam36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5t
null
null
null
null
am36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5tNoW d2qi5R/s6qOoPi bFcqCPfbF06xAWc yrmVjGOeIjEOoT FqGhb8H+s7Ah4e LStOoTFrUy0NR3A 0oBLPIQ6hMV6C7 fNJobVDYu6YVeZ TIbIrENYfMIiPOo 6hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFob
null
null
null
null
hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFobWRqDHshYoQ abIJYzuvIy68pT aBUruor3bA3vXdF wzlCFOoClTbLH HfTusk8nGI4Ztm SnAhkJTSBW9jZos 7k9OcFJTnJecGF oReUnht6TumBoQ eUpoaSXwRe8NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByI
null
null
null
null
NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByIo UngqG7lA4NHVJ6 aOghpa8MfUXpU0O fUvra0NeUvjP0H aUPDX1IKTOUbp m6Bql3FDy6sALVg xdodQzlPz2g71m 6BaliaEJpY8MfU TpwFDyqxieZ4aS4 w08GA2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidG
null
null
null
null
A2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidGLpDqXkL VGaUbhu6Tempoaf 29wJ8Oo2ebWFum go2KY0NjSldN5T 8UoCjhKEn5DwZqO auNnbRO5rgZpy C2syPrma5DxQU2 5hzd1pcjW5PwVqy oek62v70xcpkFK 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t z
null
null
null
null
K 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t zl7Hn7kx05v5Zeb X+d/n/5z/a/7vW r0201zZaf1mf/ 3P5u9C70=</late xit>y = f[x, φ] = φ0 + φ1a[✓10 + ✓11x] + φ2a[✓20 + ✓21x] + φ3a[✓30 + ✓31x] 8
null
null
null
null
Example shallow network <latexit sha1_base64=" NTIf4aNnvrpa8D wPTFP8Igh9dpg=" >AXIXiclZhb 9s2FICd7talu6Q blpe9CAtaDGsW2G l3wYCbdL0lnRJ msbpQYlUzIbil J0SZwK/jXDfszeh r0N+zM7lGQzOod 5mIHU7Pk+8XJIS rS8RIos73b/mbn2 3vsfPjR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr
null
null
null
null
jR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr5wRl PMxGr3fwi4cRC5 UIhM9yCPXn/ri4 fd9xIy8elcH4aL ToekEyFMeuO3v7v gulfte541SFXqO x8ZGbD3nO+mWvO 74zLfGo+OJu0z d5Uvucu1W6l2q3r 2k3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj
null
null
null
null
3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj2fdIuMJ8 09YyI+gqFjEs+Oy yufYuQWRgRPEKf yp3Kmil68oWZRl F5EHZsTyYaZDtr YUZEHPx+XQiVFz pVfNxQU0sljR0+ OMxAp93N5AQXmpw L6vhDljI/hymc dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h
null
null
null
null
c dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h0nlVSKruQKgYfj suRL4RIGgMQS5 yAWPEM6tT58QKn hygsXwm4rNcFLEj n5ZhUrXIeQk5a2 muiQSGRfNSyVok FUxm1lB1QHOeWow HPU5gF6Cp8cTQH OwlT48l1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8ja
null
null
null
null
1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8jaTdtO ntK8qEHbqSLIgk UYtq0qgiwJN5sB ixhkuSn3YcCRoyN 2VSisCrIwt9LYa 7ed6Ahem6ME9kv bWytJ+s8YyogOwO 7T34Ipn7f1Xhq O5PknFW+LvCRM4 TJal/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqw
null
null
null
null
al/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqwZLVYXcRhp oWkh9v/QDHx2X Xb1t9D8km1BRVi S2inT4f1Q0gMcbX l8QwZMXSzR5EKg mL5Zwf0dTx1K8s HWkmjsoCMWkyC/Q 9hehal9TRXBn4w j1FQK6XvhmQqFJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v
null
null
null
null
FJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v cNLqdXQRkeDmf8 is9lFGvzqcXF2 rAUpTMkZ7S0Rs3y 2GL2XZ/NeV10Wq F/HS9aQ/6BbNT+ D4/7a/j+QiJR2J 6oKTkbUuSxLe1 DXdLle7lm5/uY7 srRDi2s3Jam36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5t
null
null
null
null
am36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5tNoW d2qi5R/s6qOoPi bFcqCPfbF06xAWc yrmVjGOeIjEOoT FqGhb8H+s7Ah4e LStOoTFrUy0NR3A 0oBLPIQ6hMV6C7 fNJobVDYu6YVeZ TIbIrENYfMIiPOo 6hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFob
null
null
null
null
hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFobWRqDHshYoQ abIJYzuvIy68pT aBUruor3bA3vXdF wzlCFOoClTbLH HfTusk8nGI4Ztm SnAhkJTSBW9jZos 7k9OcFJTnJecGF oReUnht6TumBoQ eUpoaSXwRe8NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByI
null
null
null
null
NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByIo UngqG7lA4NHVJ6 aOghpa8MfUXpU0O fUvra0NeUvjP0H aUPDX1IKTOUbp m6Bql3FDy6sALVg xdodQzlPz2g71m 6BaliaEJpY8MfU TpwFDyqxieZ4aS4 w08GA2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidG
null
null
null
null
A2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidGLpDqXkL VGaUbhu6Tempoaf 29wJ8Oo2ebWFum go2KY0NjSldN5T 8UoCjhKEn5DwZqO auNnbRO5rgZpy C2syPrma5DxQU2 5hzd1pcjW5PwVqy oek62v70xcpkFK 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t z
null
null
null
null
K 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t zl7Hn7kx05v5Zeb X+d/n/5z/a/7vW r0201zZaf1mf/ 3P5u9C70=</late xit>y = f[x, φ] = φ0 + φ1a[✓10 + ✓11x] + φ2a[✓20 + ✓21x] + φ3a[✓30 + ✓31x] Activation function 9
null
null
null
null
Example shallow network <latexit sha1_base64=" NTIf4aNnvrpa8D wPTFP8Igh9dpg=" >AXIXiclZhb 9s2FICd7talu6Q blpe9CAtaDGsW2G l3wYCbdL0lnRJ msbpQYlUzIbil J0SZwK/jXDfszeh r0N+zM7lGQzOod 5mIHU7Pk+8XJIS rS8RIos73b/mbn2 3vsfPjR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr
null
null
null
null
jR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr5wRl PMxGr3fwi4cRC5 UIhM9yCPXn/ri4 fd9xIy8elcH4aL ToekEyFMeuO3v7v gulfte541SFXqO x8ZGbD3nO+mWvO 74zLfGo+OJu0z d5Uvucu1W6l2q3r 2k3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj
null
null
null
null
3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj2fdIuMJ8 09YyI+gqFjEs+Oy yufYuQWRgRPEKf yp3Kmil68oWZRl F5EHZsTyYaZDtr YUZEHPx+XQiVFz pVfNxQU0sljR0+ OMxAp93N5AQXmpw L6vhDljI/hymc dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h
null
null
null
null
c dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h0nlVSKruQKgYfj suRL4RIGgMQS5 yAWPEM6tT58QKn hygsXwm4rNcFLEj n5ZhUrXIeQk5a2 muiQSGRfNSyVok FUxm1lB1QHOeWow HPU5gF6Cp8cTQH OwlT48l1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8ja
null
null
null
null
1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8jaTdtO ntK8qEHbqSLIgk UYtq0qgiwJN5sB ixhkuSn3YcCRoyN 2VSisCrIwt9LYa 7ed6Ahem6ME9kv bWytJ+s8YyogOwO 7T34Ipn7f1Xhq O5PknFW+LvCRM4 TJal/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqw
null
null
null
null
al/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqwZLVYXcRhp oWkh9v/QDHx2X Xb1t9D8km1BRVi S2inT4f1Q0gMcbX l8QwZMXSzR5EKg mL5Zwf0dTx1K8s HWkmjsoCMWkyC/Q 9hehal9TRXBn4w j1FQK6XvhmQqFJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v
null
null
null
null
FJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v cNLqdXQRkeDmf8 is9lFGvzqcXF2 rAUpTMkZ7S0Rs3y 2GL2XZ/NeV10Wq F/HS9aQ/6BbNT+ D4/7a/j+QiJR2J 6oKTkbUuSxLe1 DXdLle7lm5/uY7 srRDi2s3Jam36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5t
null
null
null
null
am36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5tNoW d2qi5R/s6qOoPi bFcqCPfbF06xAWc yrmVjGOeIjEOoT FqGhb8H+s7Ah4e LStOoTFrUy0NR3A 0oBLPIQ6hMV6C7 fNJobVDYu6YVeZ TIbIrENYfMIiPOo 6hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFob
null
null
null
null
hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFobWRqDHshYoQ abIJYzuvIy68pT aBUruor3bA3vXdF wzlCFOoClTbLH HfTusk8nGI4Ztm SnAhkJTSBW9jZos 7k9OcFJTnJecGF oReUnht6TumBoQ eUpoaSXwRe8NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByI
null
null
null
null
NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByIo UngqG7lA4NHVJ6 aOghpa8MfUXpU0O fUvra0NeUvjP0H aUPDX1IKTOUbp m6Bql3FDy6sALVg xdodQzlPz2g71m 6BaliaEJpY8MfU TpwFDyqxieZ4aS4 w08GA2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidG
null
null
null
null
A2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidGLpDqXkL VGaUbhu6Tempoaf 29wJ8Oo2ebWFum go2KY0NjSldN5T 8UoCjhKEn5DwZqO auNnbRO5rgZpy C2syPrma5DxQU2 5hzd1pcjW5PwVqy oek62v70xcpkFK 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t z
null
null
null
null
K 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t zl7Hn7kx05v5Zeb X+d/n/5z/a/7vW r0201zZaf1mf/ 3P5u9C70=</late xit>y = f[x, φ] = φ0 + φ1a[✓10 + ✓11x] + φ2a[✓20 + ✓21x] + φ3a[✓30 + ✓31x] <latexit s ha1_base64="y0cLbs hKv4qJCV4w9psY+07H Pg=">AW2niclZhJc 9xEFICVsAWzOVD4wkW
null
null
null
null
4="y0cLbs hKv4qJCV4w9psY+07H Pg=">AW2niclZhJc 9xEFICVsAWzOVD4wkWF KxRFwdSYCsBqhI7zm YHj5exnViOq6VpaTput WQt9tiquXCjuPKT+BP 8Ba7wA3gtaj9oHpi pR+32fendrc1PpciL fv+vGzfePOt9+59e7 Ce+9/8OFHi7c/3s+TM gv4MEhkh36LOdSKD4s RCH5YZpxFvuSH/ina5 ofnPMsF4naKy5TfhyzS IlQ
null
null
null
null
TM gv4MEhkh36LOdSKD4s RCH5YZpxFvuSH/ina5 ofnPMsF4naKy5TfhyzS IlQBKyA0MniSy/2k0n FpkdXx+7PbvPXDt8czg I+j4SqAmgin7p9wvXO yvZyL1yf+q7ngfHecS L+Jnb97gatXpvYeFkcb nf69c/lxZW2sKy0/4G J7c/HXmjJChjropAsjw /WumnxXHFskIEk8Xv DLnKQtOWcSPoKhYzPj qk7E1L0DkZEbJhn8U4 VbR
null
null
null
null
Asjw /WumnxXHFskIEk8Xv DLnKQtOWcSPoKhYzPj qk7E1L0DkZEbJhn8U4 VbR18/o2Jxnl/GPpgxK 8Y5ZjpoY0dlEf54XAm VlgVXQdNQWEq3SFydVX ckMh4U8hIKLMgE9NUN xixjQG5X/AUvwiSOGa QGm91fXtatWnlkDk9D 9Np1mvHZ3J64zVJ3vz WkTBY3HFSW1oiu5Ru DRtKp4L+phIDgA0eMEJ AqmtfJ0fvzQXUEU1p0 EXD
null
null
null
null
3vz WkTBY3HFSW1oiu5Ru DRtKp4L+phIDgA0eMEJ AqmtfJ0fvzQXUEU1p0 EXDWLyANjZ0qVgWPIC cd7QXRoJBKPulYa8SC qYw7yi4ornvH1YAXGcw CdBUOHM3BbsrUdHZew SdFle5juEWMqYiXjcB Qw6Y1CPqGqUEk4NOt Yv2Nph6rRNXJLWXc10B Fl7WdcpMpoXNeo6dQR ZsAijrlVHkCXhKjFiMY Mst+UTGHDs6ohdFQqr giz
null
null
null
null
0B Fl7WdcpMpoXNeo6dQR ZsAijrlVHkCXhKjFiMY Mst+UTGHDs6ohdFQqr gizMQZb43bZTHcFrc5L Cful6xVJ/zlDGdEB2 H36KJgKeFdfS+a2O0vO e3rAp+4Y5is7iksi5p hzRqBUbWxKTXrXCGTZ gtCWXLRNXVvLCpPRXeA OoA3XZkJFb6mfV2XYM nqsPc1DUrJT/6pvcdn xXfb1t9H8km1BRXqa 2inT4f1Q0gvsSXl8QwZ OXS
null
null
null
null
XYM nqsPc1DUrJT/6pvcdn xXfb1t9H8km1BRXqa 2inT4f1Q0gvsSXl8QwZ OXSDR5EKgnL5FwfUdT xzK8sHWknjsoCMWkKC7 R9heR6p5TR3Bnkxj1F QK6XjgyodAkh2FX1gEt wxHusJYFKBs0YA5 nkZcbJxQ+tZ4jUur4sZ kLfrLoXVKmF7nWDy/l ZUIabwzm/5nQfZdRv8u knpRqxDCVzoqd08tL C9hit1fT3lTtFpw9 o24N+we
null
null
null
null
l ZUIabwzm/5nQfZdRv8u knpRqxDCVzoqd08tL C9hit1fT3lTtFpw9 o24N+weyUQcDPTjbwf ETEo5EdcEjbUuSxL e1DXfLm+3rNq4+VXZG lHFtduSlJv20u7bXGv6 QE/27T0dpN4xKORHW 1PaQesSztQV32PG7aRm Fx7aYk9c7yaLUt7txE yz/cG/OC6cekRI70Y18 ivSaExYKhVMYh4hs QlhMS67FvyNlV0BN4+u 1YSwOMhFV9
null
null
null
null
cG/OC6cekRI70Y18 ivSaExYKhVMYh4hs QlhMS67FvyNlV0BN4+u 1YSwOMhFV9MBLI24xE NoQlhstnDXbGNY3bSom 3aVyXSMzCaExUcsxqN uQliMqBhZxVOWpkhsQi SPY5zHMc1jiqXUJuEZ S0zQpaUbUFl46Qr6QC WJqi1iaUx6IFMFGqwDW I5pysvt648hVaxoqt4 aGt4eE3DBUMV6gCWtsg ec70t6ybzcYr16oly alAVkoTOM
null
null
null
null
pysvt648hVaxoqt4 aGt4eE3DBUMV6gCWtsg ec70t6ybzcYr16oly alAVkoTOMDOgDqzpz8/ rMiTnB9eGnpJ6YWhF5 QeGHpAaWYoeSPwx1Dy duJH54bek7pvqH7lJa GlpQODR1SGhoaUvrQ0I eUBoYGlK4ZukZpYSh5 IoU7gqF7lI4NHVN6aOg hpc8NfU7pY0MfU/rC0 BeUXhl6Rel9Q+9Tygxl lK4buk4pN5R8OvDVU NXKfUNJe
null
null
null
null
pc8NfU7pY0MfU/rC0 BeUXhl6Rel9Q+9Tygxl lK4buk4pN5R8OvDVU NXKfUNJe9+sNcMHVCaG pS+sDQB5SODCVvxXA /M5Q83sCN0VBJ6RNDn1 AqDCXvb374zNBnlMaG xpQ+NfQpa8MfUXpI0M fURoZSr4NwNOJobuUm q9AVU7ptqHblJ4Zemb/ LsDn0+jbFuaWqWCL0s TQhNINQ8mbAjxKGHpKn idD1V7VZl+byHUtVHN uYW3GZ2
null
null
null
null
sDn0+jbFuaWqWCL0s TQhNINQ8mbAjxKGHpKn idD1V7VZl+byHUtVHN uYW3GZ2eTnIdqzi2svT rNzibXp1DN+Zh0fX1/ /iEFUgpX+pPF5RX8FZY W9r/trXzfu7t9d/nea vuF9pbzmfO586Wz4vzg 3HMeOwNn6ATOn87fzj /Ov0ve0q9Lvy393qg3b 7TnfOJ0fkt/Acq/Gu </latexit> a[z] = ReLU[z] = ( 0 z < 0 z z ≥ 0 .
null
null
null
null
y393qg3b 7TnfOJ0fkt/Acq/Gu </latexit> a[z] = ReLU[z] = ( 0 z < 0 z z ≥ 0 . Rectified Linear Unit (one type of activation function) Activation function 10
null
null
null
null
Example shallow network <latexit sha1_base64=" NTIf4aNnvrpa8D wPTFP8Igh9dpg=" >AXIXiclZhb 9s2FICd7talu6Q blpe9CAtaDGsW2G l3wYCbdL0lnRJ msbpQYlUzIbil J0SZwK/jXDfszeh r0N+zM7lGQzOod 5mIHU7Pk+8XJIS rS8RIos73b/mbn2 3vsfPjR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr
null
null
null
null
jR9Y9nb3 zy6Wefz938Yj+L i9Tne34s4/TQYxm XQvG9XOSHyYpZ 5En+YF3sqr5wRl PMxGr3fwi4cRC5 UIhM9yCPXn/ri4 fd9xIy8elcH4aL ToekEyFMeuO3v7v gulfte541SFXqO x8ZGbD3nO+mWvO 74zLfGo+OJu0z d5Uvucu1W6l2q3r 2k3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj
null
null
null
null
3tXqbH9uobvU rT4OLfSawkKn+W z1b341cAexX0Rc5 b5kWXbU6yb5cn SXPiSj2fdIuMJ8 09YyI+gqFjEs+Oy yufYuQWRgRPEKf yp3Kmil68oWZRl F5EHZsTyYaZDtr YUZEHPx+XQiVFz pVfNxQU0sljR0+ OMxAp93N5AQXmpw L6vhDljI/hymc dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h
null
null
null
null
c dRU/9+MoYmpQui tr2+PS9XgoVMlPi 2o6x+O2s1Y5HIp XGSvPdqe1iJxH4 h0nlVSKruQKgYfj suRL4RIGgMQS5 yAWPEM6tT58QKn hygsXwm4rNcFLEj n5ZhUrXIeQk5a2 muiQSGRfNSyVok FUxm1lB1QHOeWow HPU5gF6Cp8cTQH OwlT48l1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8ja
null
null
null
null
1OR/laV RmOoZbSJkKedUED NlnUo+obahCSrj Ub1m/YeslUydN4 uKk6mqI8jaTdtO ntK8qEHbqSLIgk UYtq0qgiwJN5sB ixhkuSn3YcCRoyN 2VSisCrIwt9LYa 7ed6Ahem6ME9kv bWytJ+s8YyogOwO 7T34Ipn7f1Xhq O5PknFW+LvCRM4 TJal/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqw
null
null
null
null
al/C0rAe1qQRG FUTG1OzyhUyabY glMbnbVP3xqLyR LQHqAN40xWpUME lbEqwZLVYXcRhp oWkh9v/QDHx2X Xb1t9D8km1BRVi S2inT4f1Q0gMcbX l8QwZMXSzR5EKg mL5Zwf0dTx1K8s HWkmjsoCMWkyC/Q 9hehal9TRXBn4w j1FQK6XvhmQqFJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v
null
null
null
null
FJ DoK2rANahm94UFs WkI8G6dj9GWcF SknNz+0niFS6fq 2mAr9sGrfUKUW2v cNLqdXQRkeDmf8 is9lFGvzqcXF2 rAUpTMkZ7S0Rs3y 2GL2XZ/NeV10Wq F/HS9aQ/6BbNT+ D4/7a/j+QiJR2J 6oKTkbUuSxLe1 DXdLle7lm5/uY7 srRDi2s3Jam36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5t
null
null
null
null
am36aX dtrhX9ICfblh6u 0E8YlFHorqaHlK PWJb2oC57Hjdso7 C4dlOSeid5tNoW d2qi5R/s6qOoPi bFcqCPfbF06xAWc yrmVjGOeIjEOoT FqGhb8H+s7Ah4e LStOoTFrUy0NR3A 0oBLPIQ6hMV6C7 fNJobVDYu6YVeZ TIbIrENYfMIiPOo 6hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFob
null
null
null
null
hMWQiqFVPGFJg sQ6RPI4xHkc0jw mWEpsEp6RxDIjZE nZFlQ6jNuSDmBp hFobWRqDHshYoQ abIJYzuvIy68pT aBUruor3bA3vXdF wzlCFOoClTbLH HfTusk8nGI4Ztm SnAhkJTSBW9jZos 7k9OcFJTnJecGF oReUnht6TumBoQ eUpoaSXwRe8NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByI
null
null
null
null
NJQ8 uvEC84MPaN039B 9SgtDC0r3DN2jN DA0oPSxoY8p9Q31 KV01dJXS3FByIo UngqG7lA4NHVJ6 aOghpa8MfUXpU0O fUvra0NeUvjP0H aUPDX1IKTOUbp m6Bql3FDy6sALVg xdodQzlPz2g71m 6BaliaEJpY8MfU TpwFDyqxieZ4aS4 w08GA2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidG
null
null
null
null
A2VlD4z9Bm lwlDy+80LXhj6g tLI0IjS54Y+p/St oW8pfWLoE0pDQ8 m7ATidGLpDqXkL VGaUbhu6Tempoaf 29wJ8Oo2ebWFum go2KY0NjSldN5T 8UoCjhKEn5DwZqO auNnbRO5rgZpy C2syPrma5DxQU2 5hzd1pcjW5PwVqy oek62v70xcpkFK 40/fnFnr4LSwt7 C8v9X5curd9b+HB SvOG9nrn6843nW 87vc5PnQedp52t z
End of preview.
README.md exists but content is empty.
Downloads last month
33

Spaces using XThomasBU/Colbert_Index 2