|
import os |
|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn.functional as F |
|
from sklearn.metrics import ( |
|
accuracy_score, confusion_matrix, cohen_kappa_score, |
|
roc_auc_score, f1_score, precision_score, recall_score |
|
) |
|
from sklearn.preprocessing import label_binarize |
|
from models.medqwen import MedQwen |
|
|
|
def pad_or_clip_images(images, target_size=(32, 3, 224, 224)): |
|
current_size = images.size() |
|
|
|
if current_size[0] < target_size[0]: |
|
pad_size = target_size[0] - current_size[0] |
|
padded_images = F.pad(images, (0, 0, 0, 0, 0, 0, 0, pad_size)) |
|
elif current_size[0] > target_size[0]: |
|
padded_images = images[:target_size[0]] |
|
else: |
|
padded_images = images |
|
|
|
return padded_images |
|
|
|
def prob_to_continuous(probs): |
|
"""Convert probability distribution to continuous value using expected value""" |
|
return sum(i * p for i, p in enumerate(probs)) |
|
|
|
def calculate_cindex(predictions, ground_truths): |
|
"""Calculate concordance index (C-index) for ordinal predictions""" |
|
n = len(predictions) |
|
concordant = 0 |
|
total_pairs = 0 |
|
|
|
for i in range(n): |
|
for j in range(i + 1, n): |
|
if ground_truths[i] != ground_truths[j]: |
|
total_pairs += 1 |
|
if (predictions[i] < predictions[j] and ground_truths[i] < ground_truths[j]) or \ |
|
(predictions[i] > predictions[j] and ground_truths[i] > ground_truths[j]): |
|
concordant += 1 |
|
|
|
return float(concordant / total_pairs) if total_pairs > 0 else 0.0 |
|
|
|
def calculate_metrics(predictions,all_probabilities, ground_truths): |
|
""" |
|
Calculate comprehensive metrics for 4-class classification including: |
|
- Overall accuracy |
|
- Per-class accuracy |
|
- QWK (Quadratic Weighted Kappa) |
|
- AUC scores (per-class and macro) |
|
- F1 scores (per-class and macro) |
|
- Precision scores (per-class and macro) |
|
- Recall scores (per-class and macro) |
|
""" |
|
|
|
predictions = np.array(predictions) |
|
ground_truths = np.array(ground_truths) |
|
all_probabilities = np.array(all_probabilities) |
|
|
|
|
|
overall_accuracy = accuracy_score(ground_truths, predictions) |
|
|
|
|
|
conf_matrix = confusion_matrix(ground_truths, predictions) |
|
|
|
|
|
qwk = cohen_kappa_score(ground_truths, predictions, weights="quadratic") |
|
|
|
|
|
per_class_accuracy = {} |
|
for class_idx in range(4): |
|
true_positives = conf_matrix[class_idx, class_idx] |
|
total_samples = sum(conf_matrix[class_idx, :]) |
|
if total_samples > 0: |
|
class_accuracy = true_positives / total_samples |
|
else: |
|
class_accuracy = 0.0 |
|
per_class_accuracy[f'class_{class_idx}_accuracy'] = float(class_accuracy) |
|
|
|
|
|
|
|
y_true_bin = label_binarize(ground_truths, classes=range(4)) |
|
|
|
|
|
auc_scores = {} |
|
for i in range(4): |
|
try: |
|
auc_scores[f'auc_class_{i}'] = float(roc_auc_score(y_true_bin[:, i], all_probabilities[:, i])) |
|
except ValueError: |
|
auc_scores[f'auc_class_{i}'] = 0.0 |
|
|
|
|
|
auc_scores['auc_macro'] = float(sum(auc_scores[f'auc_class_{i}'] for i in range(4)) / 4) |
|
|
|
|
|
f1_per_class = f1_score(ground_truths, predictions, average=None) |
|
precision_per_class = precision_score(ground_truths, predictions, average=None) |
|
recall_per_class = recall_score(ground_truths, predictions, average=None) |
|
|
|
|
|
f1_macro = f1_score(ground_truths, predictions, average='macro') |
|
precision_macro = precision_score(ground_truths, predictions, average='macro') |
|
recall_macro = recall_score(ground_truths, predictions, average='macro') |
|
|
|
|
|
metrics = { |
|
'overall_accuracy': float(overall_accuracy), |
|
'qwk': float(qwk), |
|
**per_class_accuracy, |
|
**auc_scores, |
|
**{f'f1_class_{i}': float(score) for i, score in enumerate(f1_per_class)}, |
|
**{f'precision_class_{i}': float(score) for i, score in enumerate(precision_per_class)}, |
|
**{f'recall_class_{i}': float(score) for i, score in enumerate(recall_per_class)}, |
|
'f1_macro': float(f1_macro), |
|
'precision_macro': float(precision_macro), |
|
'recall_macro': float(recall_macro), |
|
'confusion_matrix': conf_matrix.tolist() |
|
} |
|
|
|
|
|
continuous_preds = [prob_to_continuous(probs) for probs in all_probabilities.tolist()] |
|
|
|
|
|
|
|
metrics['cindex'] = calculate_cindex(continuous_preds, ground_truths) |
|
|
|
mae = np.mean(np.abs(np.array(continuous_preds) - np.array(ground_truths))) |
|
mse = np.mean((np.array(continuous_preds) - np.array(ground_truths)) ** 2) |
|
metrics['continuous_mae'] = float(mae) |
|
metrics['continuous_mse'] = float(mse) |
|
|
|
return metrics |
|
|
|
def headct_inference(input_jsonl_file, save_json_file, checkpoint_file, img_root_dir, model_id): |
|
torch.manual_seed(42) |
|
torch.cuda.manual_seed_all(42) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
print('Load Model') |
|
model = MedQwen(model_id) |
|
state_dict = torch.load(checkpoint_file, map_location='cpu')['model'] |
|
print('Load Checkpoint') |
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
|
print('missing_keys', missing_keys) |
|
print('unexpected_keys', unexpected_keys) |
|
|
|
model = model.to("cuda") |
|
model.eval() |
|
|
|
save_data_dict = {} |
|
|
|
|
|
all_predictions = [] |
|
all_ground_truths = [] |
|
all_probabilities = [] |
|
|
|
with torch.no_grad(): |
|
with open(input_jsonl_file, 'r') as file: |
|
for line in tqdm(file): |
|
data = json.loads(line) |
|
patient_id = data['patient_id'] |
|
study_id = data['study_id'] |
|
time_difference_days = data['time_difference_days'] |
|
calcium_score = data['calcium_score'] |
|
|
|
if patient_id not in save_data_dict: |
|
save_data_dict[patient_id] = {} |
|
|
|
if study_id in save_data_dict[patient_id]: |
|
|
|
study_data = save_data_dict[patient_id][study_id] |
|
all_predictions.append(study_data['prediction']) |
|
all_ground_truths.append(study_data['ground_truth']) |
|
all_probabilities.append(study_data['probabilities']) |
|
continue |
|
|
|
label = data['calcium_score_label'] |
|
|
|
image_path = img_root_dir + data['image_path_list'][0] |
|
try: |
|
pth_data = torch.load(image_path, weights_only=True) |
|
pth_data = pad_or_clip_images(pth_data) |
|
input_samples = { |
|
'input_images': torch.tensor(pth_data).unsqueeze(0).to("cuda"), |
|
'modal': 'head CT', |
|
'labels': torch.tensor([label], dtype=torch.long).to("cuda"), |
|
'task_type': 'agatston' |
|
} |
|
except Exception as e: |
|
print(f"Error processing {image_path}: {e}") |
|
continue |
|
|
|
output = model(input_samples) |
|
probabilities = F.softmax(output['logits'], dim=1) |
|
model_prediction = torch.argmax(probabilities, dim=1).item() |
|
continuous_pred = prob_to_continuous(probabilities[0].tolist()) |
|
|
|
|
|
all_predictions.append(model_prediction) |
|
all_ground_truths.append(label) |
|
all_probabilities.append(probabilities[0].tolist()) |
|
|
|
|
|
|
|
save_data_dict[patient_id][study_id] = { |
|
'prediction': model_prediction, |
|
'ground_truth': label, |
|
'probabilities': probabilities[0].tolist(), |
|
'continuous_prediction': continuous_pred, |
|
'calcium_score': calcium_score, |
|
'correct': model_prediction == label, |
|
'time_difference_days': time_difference_days |
|
} |
|
|
|
|
|
with open(save_json_file, 'w') as f: |
|
json.dump(save_data_dict, f, indent=2) |
|
|
|
save_metric_data_dict = {} |
|
|
|
if all_predictions: |
|
metrics = calculate_metrics(all_predictions, all_probabilities, all_ground_truths) |
|
save_metric_data_dict['metrics'] = { |
|
**metrics, |
|
'total_samples': len(all_predictions) |
|
} |
|
|
|
|
|
print("\nEvaluation Results:") |
|
print(f"Total samples: {len(all_predictions)}") |
|
print(f"\nOverall Metrics:") |
|
print(f"Accuracy: {metrics['overall_accuracy']:.4f}") |
|
print(f"QWK Score: {metrics['qwk']:.4f}") |
|
print(f"C-Index: {metrics['cindex']:.4f}") |
|
print(f"Macro F1: {metrics['f1_macro']:.4f}") |
|
print(f"Macro Precision: {metrics['precision_macro']:.4f}") |
|
print(f"Macro Recall: {metrics['recall_macro']:.4f}") |
|
print(f"Macro AUC: {metrics['auc_macro']:.4f}") |
|
print(f"Continuous MAE: {metrics['continuous_mae']:.4f}") |
|
print(f"Continuous MSE: {metrics['continuous_mse']:.4f}") |
|
|
|
print("\nPer-class metrics:") |
|
for i in range(4): |
|
print(f"\nClass {i}:") |
|
print(f"Accuracy: {metrics[f'class_{i}_accuracy']:.4f}") |
|
print(f"F1: {metrics[f'f1_class_{i}']:.4f}") |
|
print(f"Precision: {metrics[f'precision_class_{i}']:.4f}") |
|
print(f"Recall: {metrics[f'recall_class_{i}']:.4f}") |
|
print(f"AUC: {metrics[f'auc_class_{i}']:.4f}") |
|
|
|
print("\nConfusion Matrix:") |
|
print(np.array(metrics['confusion_matrix'])) |
|
|
|
|
|
with open(save_json_file.replace(".json","_metric.json"), 'w') as f: |
|
json.dump(save_metric_data_dict, f, indent=2) |
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
parser = argparse.ArgumentParser(description='get_entities') |
|
parser.add_argument('--input_json_file', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_HeadCT/agatston/src_agatston/data/5_fold/test.jsonl') |
|
parser.add_argument('--save_json_file', type=str, default='./output/headct_swin/20241221070/result/epoch_0.json') |
|
parser.add_argument('--checkpoint_file', type=str, default='./output/headct_swin/20241221070/checkpoint_0.pth') |
|
parser.add_argument('--checkpoint_dir', type=str, default='./output/headct_swin/20241221070') |
|
parser.add_argument('--img_root_dir', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_GMAI/data/headct/dataset/images_preprocessed') |
|
parser.add_argument('--model_id', type=str, default="swin") |
|
args = parser.parse_args() |
|
|
|
for checkpoint_folder in os.listdir(args.checkpoint_dir): |
|
args.checkpoint_file = os.path.join(args.checkpoint_dir, checkpoint_folder, 'checkpoint_best.pth') |
|
args.save_json_file = os.path.join(args.checkpoint_dir,checkpoint_folder, "result", "best_epoch.json") |
|
if os.path.exists(args.save_json_file): |
|
continue |
|
headct_inference(args.input_json_file, args.save_json_file, args.checkpoint_file, args.img_root_dir, args.model_id) |