HeadCT-FM / src /agatston /inference.py
XiaomanZhang's picture
Upload folder using huggingface_hub
bba66ea verified
import os
import json
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
from sklearn.metrics import (
accuracy_score, confusion_matrix, cohen_kappa_score,
roc_auc_score, f1_score, precision_score, recall_score
)
from sklearn.preprocessing import label_binarize
from models.medqwen import MedQwen
def pad_or_clip_images(images, target_size=(32, 3, 224, 224)):
current_size = images.size()
if current_size[0] < target_size[0]:
pad_size = target_size[0] - current_size[0]
padded_images = F.pad(images, (0, 0, 0, 0, 0, 0, 0, pad_size))
elif current_size[0] > target_size[0]:
padded_images = images[:target_size[0]]
else:
padded_images = images
return padded_images
def prob_to_continuous(probs):
"""Convert probability distribution to continuous value using expected value"""
return sum(i * p for i, p in enumerate(probs))
def calculate_cindex(predictions, ground_truths):
"""Calculate concordance index (C-index) for ordinal predictions"""
n = len(predictions)
concordant = 0
total_pairs = 0
for i in range(n):
for j in range(i + 1, n):
if ground_truths[i] != ground_truths[j]: # Only compare if ground truths are different
total_pairs += 1
if (predictions[i] < predictions[j] and ground_truths[i] < ground_truths[j]) or \
(predictions[i] > predictions[j] and ground_truths[i] > ground_truths[j]):
concordant += 1
return float(concordant / total_pairs) if total_pairs > 0 else 0.0
def calculate_metrics(predictions,all_probabilities, ground_truths):
"""
Calculate comprehensive metrics for 4-class classification including:
- Overall accuracy
- Per-class accuracy
- QWK (Quadratic Weighted Kappa)
- AUC scores (per-class and macro)
- F1 scores (per-class and macro)
- Precision scores (per-class and macro)
- Recall scores (per-class and macro)
"""
# Convert inputs to numpy arrays if they aren't already
predictions = np.array(predictions)
ground_truths = np.array(ground_truths)
all_probabilities = np.array(all_probabilities)
# Calculate overall accuracy
overall_accuracy = accuracy_score(ground_truths, predictions)
# Calculate confusion matrix
conf_matrix = confusion_matrix(ground_truths, predictions)
# Calculate QWK
qwk = cohen_kappa_score(ground_truths, predictions, weights="quadratic")
# Calculate per-class accuracy
per_class_accuracy = {}
for class_idx in range(4):
true_positives = conf_matrix[class_idx, class_idx]
total_samples = sum(conf_matrix[class_idx, :])
if total_samples > 0:
class_accuracy = true_positives / total_samples
else:
class_accuracy = 0.0
per_class_accuracy[f'class_{class_idx}_accuracy'] = float(class_accuracy)
# Calculate AUC scores
# First, binarize the labels and predictions for AUC calculation
y_true_bin = label_binarize(ground_truths, classes=range(4))
# y_pred_bin = label_binarize(predictions, classes=range(4))
auc_scores = {}
for i in range(4):
try:
auc_scores[f'auc_class_{i}'] = float(roc_auc_score(y_true_bin[:, i], all_probabilities[:, i]))
except ValueError:
auc_scores[f'auc_class_{i}'] = 0.0
# Calculate macro-averaged AUC
auc_scores['auc_macro'] = float(sum(auc_scores[f'auc_class_{i}'] for i in range(4)) / 4)
# Calculate F1, Precision, and Recall for each class
f1_per_class = f1_score(ground_truths, predictions, average=None)
precision_per_class = precision_score(ground_truths, predictions, average=None)
recall_per_class = recall_score(ground_truths, predictions, average=None)
# Calculate macro averages
f1_macro = f1_score(ground_truths, predictions, average='macro')
precision_macro = precision_score(ground_truths, predictions, average='macro')
recall_macro = recall_score(ground_truths, predictions, average='macro')
# Compile all metrics
metrics = {
'overall_accuracy': float(overall_accuracy),
'qwk': float(qwk),
**per_class_accuracy,
**auc_scores,
**{f'f1_class_{i}': float(score) for i, score in enumerate(f1_per_class)},
**{f'precision_class_{i}': float(score) for i, score in enumerate(precision_per_class)},
**{f'recall_class_{i}': float(score) for i, score in enumerate(recall_per_class)},
'f1_macro': float(f1_macro),
'precision_macro': float(precision_macro),
'recall_macro': float(recall_macro),
'confusion_matrix': conf_matrix.tolist()
}
# Convert probabilities to continuous predictions
continuous_preds = [prob_to_continuous(probs) for probs in all_probabilities.tolist()]
# Calculate C-index using continuous predictions
metrics['cindex'] = calculate_cindex(continuous_preds, ground_truths)
mae = np.mean(np.abs(np.array(continuous_preds) - np.array(ground_truths)))
mse = np.mean((np.array(continuous_preds) - np.array(ground_truths)) ** 2)
metrics['continuous_mae'] = float(mae)
metrics['continuous_mse'] = float(mse)
return metrics
def headct_inference(input_jsonl_file, save_json_file, checkpoint_file, img_root_dir, model_id):
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
print('Load Model')
model = MedQwen(model_id)
state_dict = torch.load(checkpoint_file, map_location='cpu')['model']
print('Load Checkpoint')
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print('missing_keys', missing_keys)
print('unexpected_keys', unexpected_keys)
model = model.to("cuda")
model.eval()
save_data_dict = {}
# Lists to store predictions and ground truths for metric calculation
all_predictions = []
all_ground_truths = []
all_probabilities = []
with torch.no_grad():
with open(input_jsonl_file, 'r') as file:
for line in tqdm(file):
data = json.loads(line)
patient_id = data['patient_id']
study_id = data['study_id']
time_difference_days = data['time_difference_days']
calcium_score = data['calcium_score']
if patient_id not in save_data_dict:
save_data_dict[patient_id] = {}
if study_id in save_data_dict[patient_id]:
# If study already exists, get its predictions for metrics calculation
study_data = save_data_dict[patient_id][study_id]
all_predictions.append(study_data['prediction'])
all_ground_truths.append(study_data['ground_truth'])
all_probabilities.append(study_data['probabilities'])
continue
label = data['calcium_score_label']
image_path = img_root_dir + data['image_path_list'][0]
try:
pth_data = torch.load(image_path, weights_only=True)
pth_data = pad_or_clip_images(pth_data)
input_samples = {
'input_images': torch.tensor(pth_data).unsqueeze(0).to("cuda"),
'modal': 'head CT',
'labels': torch.tensor([label], dtype=torch.long).to("cuda"),
'task_type': 'agatston'
}
except Exception as e:
print(f"Error processing {image_path}: {e}")
continue
output = model(input_samples)
probabilities = F.softmax(output['logits'], dim=1)
model_prediction = torch.argmax(probabilities, dim=1).item()
continuous_pred = prob_to_continuous(probabilities[0].tolist())
# Store predictions and ground truth
all_predictions.append(model_prediction)
all_ground_truths.append(label)
all_probabilities.append(probabilities[0].tolist())
save_data_dict[patient_id][study_id] = {
'prediction': model_prediction,
'ground_truth': label,
'probabilities': probabilities[0].tolist(),
'continuous_prediction': continuous_pred,
'calcium_score': calcium_score,
'correct': model_prediction == label,
'time_difference_days': time_difference_days
}
# Save detailed results
with open(save_json_file, 'w') as f:
json.dump(save_data_dict, f, indent=2)
save_metric_data_dict = {}
# Calculate metrics after processing all samples
if all_predictions:
metrics = calculate_metrics(all_predictions, all_probabilities, all_ground_truths)
save_metric_data_dict['metrics'] = {
**metrics,
'total_samples': len(all_predictions)
}
# Print comprehensive metrics
print("\nEvaluation Results:")
print(f"Total samples: {len(all_predictions)}")
print(f"\nOverall Metrics:")
print(f"Accuracy: {metrics['overall_accuracy']:.4f}")
print(f"QWK Score: {metrics['qwk']:.4f}")
print(f"C-Index: {metrics['cindex']:.4f}")
print(f"Macro F1: {metrics['f1_macro']:.4f}")
print(f"Macro Precision: {metrics['precision_macro']:.4f}")
print(f"Macro Recall: {metrics['recall_macro']:.4f}")
print(f"Macro AUC: {metrics['auc_macro']:.4f}")
print(f"Continuous MAE: {metrics['continuous_mae']:.4f}")
print(f"Continuous MSE: {metrics['continuous_mse']:.4f}")
print("\nPer-class metrics:")
for i in range(4):
print(f"\nClass {i}:")
print(f"Accuracy: {metrics[f'class_{i}_accuracy']:.4f}")
print(f"F1: {metrics[f'f1_class_{i}']:.4f}")
print(f"Precision: {metrics[f'precision_class_{i}']:.4f}")
print(f"Recall: {metrics[f'recall_class_{i}']:.4f}")
print(f"AUC: {metrics[f'auc_class_{i}']:.4f}")
print("\nConfusion Matrix:")
print(np.array(metrics['confusion_matrix']))
# Save metrics
with open(save_json_file.replace(".json","_metric.json"), 'w') as f:
json.dump(save_metric_data_dict, f, indent=2)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='get_entities')
parser.add_argument('--input_json_file', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_HeadCT/agatston/src_agatston/data/5_fold/test.jsonl')
parser.add_argument('--save_json_file', type=str, default='./output/headct_swin/20241221070/result/epoch_0.json')
parser.add_argument('--checkpoint_file', type=str, default='./output/headct_swin/20241221070/checkpoint_0.pth')
parser.add_argument('--checkpoint_dir', type=str, default='./output/headct_swin/20241221070')
parser.add_argument('--img_root_dir', type=str, default='/home/xiz569/rajpurkarlab/home/xiz569/code/ongoing/2024_GMAI/data/headct/dataset/images_preprocessed')
parser.add_argument('--model_id', type=str, default="swin")
args = parser.parse_args()
for checkpoint_folder in os.listdir(args.checkpoint_dir):
args.checkpoint_file = os.path.join(args.checkpoint_dir, checkpoint_folder, 'checkpoint_best.pth')
args.save_json_file = os.path.join(args.checkpoint_dir,checkpoint_folder, "result", "best_epoch.json")
if os.path.exists(args.save_json_file):
continue
headct_inference(args.input_json_file, args.save_json_file, args.checkpoint_file, args.img_root_dir, args.model_id)