content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Union from typing import Tuple from typing import Dict from typing import Any import io def format_result(result: Union[Pose, PackedPose]) -> Tuple[str, Dict[Any, Any]]: """ :param: result: Pose or PackedPose object. :return: tuple of (pdb_string, metadata) Given a `Pose` or `PackedPose` object, return a tuple containing the pdb string and a scores dictionary. """ _pdbstring = io.to_pdbstring(result) _scores_dict = io.to_dict(result) _scores_dict.pop("pickled_pose", None) return (_pdbstring, _scores_dict)
15b3c6ce32a3a5ab860d045ba8679e0299f122f6
3,126
def str_array( listString): """ Becase the way tha Python prints an array is different from CPLEX, this function goes the proper CPLEX writing of Arrays :param listString: A list of values :type listString: List[] :returns: The String printing of the array, in CPLEX format :rtype: String """ ret = "{" for i in range(0, len(listString)-1): ret = ret + "\"" + listString[i] + "\"," ret = ret + "\"" + listString[i] + "\"}" return ret
46737bb05f310387d69be6516ebd90afd3d91b08
3,127
def read_gene_annos(phenoFile): """Read in gene-based metadata from an HDF5 file Args: phenoFile (str): filename for the relevant HDF5 file Returns: dictionary with feature annotations """ fpheno = h5py.File(phenoFile,'r') # Feature annotations: geneAnn = {} for key in fpheno['gene_info'].keys(): geneAnn[key] = fpheno['gene_info'][key][:] fpheno.close() return geneAnn
86e1b26a5600e1d52a3beb127ef8e7c3ac41721a
3,128
from typing import Optional import binascii def hex_xformat_decode(s: str) -> Optional[bytes]: """ Reverse :func:`hex_xformat_encode`. The parameter is a hex-encoded BLOB like .. code-block:: none "X'CDE7A24B1A9DBA3148BCB7A0B9DA5BB6A424486C'" Original purpose and notes: - SPECIAL HANDLING for BLOBs: a string like ``X'01FF'`` means a hex-encoded BLOB. Titanium is rubbish at BLOBs, so we encode them as special string literals. - SQLite uses this notation: https://sqlite.org/lang_expr.html - Strip off the start and end and convert it to a byte array: http://stackoverflow.com/questions/5649407 """ if len(s) < 3 or not s.startswith("X'") or not s.endswith("'"): return None return binascii.unhexlify(s[2:-1])
8f868d4bbd5b6843632f9d3420fe239f688ffe15
3,129
def threshold(data, direction): """ Find a suitable threshold value which maximizes explained variance of the data projected onto direction. NOTE: the chosen hyperplane would be described mathematically as $ x \dot direction = threshold $. """ projected_data = np.inner(data, direction) sorted_x = np.sort(projected_data) best_sep_index = explained_variance_list(sorted_x).argmax() return (sorted_x[best_sep_index] + sorted_x[best_sep_index + 1]) / 2
7fdab7f87c3c2e6d937da146ce5a27074ea92f52
3,130
def StrType_any(*x): """ Ignores all parameters to return a StrType """ return StrType()
d1faac14a91cd6149811a553113b25f34d5d4a54
3,131
def height(tree): """Return the height of tree.""" if tree.is_empty(): return 0 else: return 1+ max(height(tree.left_child()),\ height(tree.right_child()))
a469216fc13ed99acfb1bab8db7e031acc759f90
3,133
def applyTelluric(model, tell_alpha=1.0, airmass=1.5, pwv=0.5): """ Apply the telluric model on the science model. Parameters ---------- model : model object BT Settl model alpha : float telluric scaling factor (the power on the flux) Returns ------- model : model object BT Settl model times the corresponding model """ # read in a telluric model wavelow = model.wave[0] - 10 wavehigh = model.wave[-1] + 10 #telluric_model = smart.getTelluric(wavelow=wavelow, wavehigh=wavehigh, alpha=alpha, airmass=airmass) telluric_model = smart.Model() telluric_model.wave, telluric_model.flux = smart.InterpTelluricModel(wavelow=wavelow, wavehigh=wavehigh, airmass=airmass, pwv=pwv) # apply the telluric alpha parameter telluric_model.flux = telluric_model.flux**(tell_alpha) #if len(model.wave) > len(telluric_model.wave): # print("The model has a higher resolution ({}) than the telluric model ({})."\ # .format(len(model.wave),len(telluric_model.wave))) # model.flux = np.array(smart.integralResample(xh=model.wave, # yh=model.flux, xl=telluric_model.wave)) # model.wave = telluric_model.wave # model.flux *= telluric_model.flux #elif len(model.wave) < len(telluric_model.wave): ## This should be always true telluric_model.flux = np.array(smart.integralResample(xh=telluric_model.wave, yh=telluric_model.flux, xl=model.wave)) telluric_model.wave = model.wave model.flux *= telluric_model.flux #elif len(model.wave) == len(telluric_model.wave): # model.flux *= telluric_model.flux return model
7eaf7cafe1f8b5f4c273858f289d2c1c3865680b
3,134
def max_power_rule(mod, g, tmp): """ **Constraint Name**: DAC_Max_Power_Constraint **Enforced Over**: DAC_OPR_TMPS Power consumption cannot exceed capacity. """ return ( mod.DAC_Consume_Power_MW[g, tmp] <= mod.Capacity_MW[g, mod.period[tmp]] * mod.Availability_Derate[g, tmp] )
2c1845253524a8383f2256a7d67a8231c2a69485
3,135
def check_archs( copied_libs, # type: Mapping[Text, Mapping[Text, Text]] require_archs=(), # type: Union[Text, Iterable[Text]] stop_fast=False, # type: bool ): # type: (...) -> Set[Union[Tuple[Text, FrozenSet[Text]], Tuple[Text, Text, FrozenSet[Text]]]] # noqa: E501 """Check compatibility of archs in `copied_libs` dict Parameters ---------- copied_libs : dict dict containing the (key, value) pairs of (``copied_lib_path``, ``dependings_dict``), where ``copied_lib_path`` is a library real path that has been copied during delocation, and ``dependings_dict`` is a dictionary with key, value pairs where the key is a path in the target being delocated (a wheel or path) depending on ``copied_lib_path``, and the value is the ``install_name`` of ``copied_lib_path`` in the depending library. require_archs : str or sequence, optional Architectures we require to be present in all library files in wheel. If an empty sequence, just check that depended libraries do have the architectures of the depending libraries, with no constraints on what these architectures are. If a sequence, then a set of required architectures e.g. ``['i386', 'x86_64']`` to specify dual Intel architectures. If a string, then a standard architecture name as returned by ``lipo -info``, or the string "intel", corresponding to the sequence ``['i386', 'x86_64']``, or the string "universal2", corresponding to ``['x86_64', 'arm64']``. stop_fast : bool, optional Whether to give up collecting errors after the first Returns ------- bads : set set of length 2 or 3 tuples. A length 2 tuple is of form ``(depending_lib, missing_archs)`` meaning that an arch in `require_archs` was missing from ``depending_lib``. A length 3 tuple is of form ``(depended_lib, depending_lib, missing_archs)`` where ``depended_lib`` is the filename of the library depended on, ``depending_lib`` is the library depending on ``depending_lib`` and ``missing_archs`` is a set of missing architecture strings giving architectures present in ``depending_lib`` and missing in ``depended_lib``. An empty set means all architectures were present as required. """ if isinstance(require_archs, str): require_archs = _ARCH_LOOKUP.get(require_archs, [require_archs]) require_archs_set = frozenset(require_archs) bads = ( [] ) # type: List[Union[Tuple[Text, FrozenSet[Text]], Tuple[Text, Text, FrozenSet[Text]]]] # noqa: E501 for depended_lib, dep_dict in copied_libs.items(): depended_archs = get_archs(depended_lib) for depending_lib, install_name in dep_dict.items(): depending_archs = get_archs(depending_lib) all_required = depending_archs | require_archs_set all_missing = all_required.difference(depended_archs) if len(all_missing) == 0: continue required_missing = require_archs_set.difference(depended_archs) if len(required_missing): bads.append((depending_lib, required_missing)) else: bads.append((depended_lib, depending_lib, all_missing)) if stop_fast: return set(bads) return set(bads)
d500e0b89ca3edd4e76630a628d9e4d970fadbf1
3,137
def create_data_table(headers, columns, match_tol=20) -> pd.DataFrame: """Based on headers and column data, create the data table.""" # Store the bottom y values of all of the row headers header_tops = np.array([h.top for h in headers]) # Set up the grid: nrows by ncols nrows = len(headers) ncols = len(columns) + 1 # Initialize the grid grid = np.empty((nrows, ncols), dtype=object) grid[:, :] = "" # Default value # Add in the headers grid[:, 0] = [h.text for h in headers] # Loop over each column for col_num, xval in enumerate(columns): col = columns[xval] word_tops = np.array([w.top for w in col]) # Find closest row header for row_num, h in enumerate(headers): # Find closest word ot this row heasder word_diff = np.abs(word_tops - h.top) word_diff[word_diff > match_tol] = np.nan # Make sure the row header is vertically close enough if np.isnan(word_diff).sum() < len(word_diff): # Get the matching word for this row header notnull = ~np.isnan(word_diff) order = np.argsort(word_diff[notnull]) for word_index in np.where(notnull)[0][order]: word = col[word_index] # IMPORTANT: make sure this is the closest row header # Sometimes words will match to more than one header header_diff = np.abs(header_tops - word.top) header_index = np.argmin(header_diff) closest_header = headers[header_index] if closest_header == h: grid[row_num, col_num + 1] = col[word_index].text break return pd.DataFrame(grid)
56b1cb21afa7813138d03b56849b594e18664348
3,138
def interp2d_vis(model, model_lsts, model_freqs, data_lsts, data_freqs, flags=None, kind='cubic', flag_extrapolate=True, medfilt_flagged=True, medfilt_window=(3, 7), fill_value=None): """ Interpolate complex visibility model onto the time & frequency basis of a data visibility. See below for notes on flag propagation if flags is provided. Parameters: ----------- model : type=DataContainer, holds complex visibility for model keys are antenna-pair + pol tuples, values are 2d complex visibility with shape (Ntimes, Nfreqs). model_lsts : 1D array of the model time axis, dtype=float, shape=(Ntimes,) model_freqs : 1D array of the model freq axis, dtype=float, shape=(Nfreqs,) data_lsts : 1D array of the data time axis, dtype=float, shape=(Ntimes,) data_freqs : 1D array of the data freq axis, dtype=float, shape=(Nfreqs,) flags : type=DataContainer, dictionary containing model flags. Can also contain model wgts as floats and will convert to booleans appropriately. kind : type=str, kind of interpolation, options=['linear', 'cubic', 'quintic'] medfilt_flagged : type=bool, if True, before interpolation, replace flagged pixels with output from a median filter centered on each flagged pixel. medfilt_window : type=tuple, extent of window for median filter across the (time, freq) axes. Even numbers are rounded down to odd number. flag_extrapolate : type=bool, flag extrapolated data_lsts if True. fill_value : type=float, if fill_value is None, extrapolated points are extrapolated else they are filled with fill_value. Output: (new_model, new_flags) ------- new_model : interpolated model, type=DataContainer new_flags : flags associated with interpolated model, type=DataContainer Notes: ------ If the data has flagged pixels, it is recommended to turn medfilt_flagged to True. This runs a median filter on the flagged pixels and replaces their values with the results, but they remain flagged. This happens *before* interpolation. This means that interpolation near flagged pixels aren't significantly biased by their presence. In general, if flags are fed, flags are propagated if a flagged pixel is a nearest neighbor of an interpolated pixel. """ # make flags new_model = odict() new_flags = odict() # get nearest neighbor points freq_nn = np.array(list(map(lambda x: np.argmin(np.abs(model_freqs - x)), data_freqs))) time_nn = np.array(list(map(lambda x: np.argmin(np.abs(model_lsts - x)), data_lsts))) freq_nn, time_nn = np.meshgrid(freq_nn, time_nn) # get model indices meshgrid mod_F, mod_L = np.meshgrid(np.arange(len(model_freqs)), np.arange(len(model_lsts))) # raise warning on flags if flags is not None and medfilt_flagged is False: print("Warning: flags are fed, but medfilt_flagged=False. \n" "This may cause weird behavior of interpolated points near flagged data.") # ensure flags are booleans if flags is not None: if np.issubdtype(flags[list(flags.keys())[0]].dtype, np.floating): flags = DataContainer(odict(list(map(lambda k: (k, ~flags[k].astype(np.bool)), flags.keys())))) # loop over keys for i, k in enumerate(list(model.keys())): # get model array m = model[k] # get real and imag separately real = np.real(m) imag = np.imag(m) # median filter flagged data if desired if medfilt_flagged and flags is not None: # get extent of window along freq and time f_ext = int((medfilt_window[1] - 1) / 2.) t_ext = int((medfilt_window[0] - 1) / 2.) # set flagged data to nan real[flags[k]] *= np.nan imag[flags[k]] *= np.nan # get flagged indices f_indices = mod_F[flags[k]] l_indices = mod_L[flags[k]] # construct fill arrays real_fill = np.empty(len(f_indices), np.float) imag_fill = np.empty(len(f_indices), np.float) # iterate over flagged data and replace w/ medfilt for j, (find, tind) in enumerate(zip(f_indices, l_indices)): tlow, thi = tind - t_ext, tind + t_ext + 1 flow, fhi = find - f_ext, find + f_ext + 1 ll = 0 while True: # iterate until window has non-flagged data in it # with a max of 10 iterations if tlow < 0: tlow = 0 if flow < 0: flow = 0 r_med = np.nanmedian(real[tlow:thi, flow:fhi]) i_med = np.nanmedian(imag[tlow:thi, flow:fhi]) tlow -= 2 thi += 2 flow -= 2 fhi += 2 ll += 1 if not (np.isnan(r_med) or np.isnan(i_med)): break if ll > 10: break real_fill[j] = r_med imag_fill[j] = i_med # fill real and imag real[l_indices, f_indices] = real_fill imag[l_indices, f_indices] = imag_fill # flag residual nans resid_nans = np.isnan(real) + np.isnan(imag) flags[k] += resid_nans # replace residual nans real[resid_nans] = 0.0 imag[resid_nans] = 0.0 # propagate flags to nearest neighbor if flags is not None: f = flags[k][time_nn, freq_nn] # check f is boolean type if np.issubdtype(f.dtype, np.floating): f = ~(f.astype(np.bool)) else: f = np.zeros_like(real, bool) # interpolate interp_real = interpolate.interp2d(model_freqs, model_lsts, real, kind=kind, copy=False, bounds_error=False, fill_value=fill_value)(data_freqs, data_lsts) interp_imag = interpolate.interp2d(model_freqs, model_lsts, imag, kind=kind, copy=False, bounds_error=False, fill_value=fill_value)(data_freqs, data_lsts) # flag extrapolation if desired if flag_extrapolate: time_extrap = np.where((data_lsts > model_lsts.max() + 1e-6) | (data_lsts < model_lsts.min() - 1e-6)) freq_extrap = np.where((data_freqs > model_freqs.max() + 1e-6) | (data_freqs < model_freqs.min() - 1e-6)) f[time_extrap, :] = True f[:, freq_extrap] = True # rejoin new_model[k] = interp_real + 1j * interp_imag new_flags[k] = f return DataContainer(new_model), DataContainer(new_flags)
6ac4fad738691f470e36252fc7544e857c8fdca0
3,139
def eps_divide(n, d, eps=K.epsilon()): """ perform division using eps """ return (n + eps) / (d + eps)
2457e5fc4458521b4098cfb144b7ff07e163ba9c
3,140
import requests def get_mc_uuid(username): """Gets the Minecraft UUID for a username""" url = f"https://api.mojang.com/users/profiles/minecraft/{username}" res = requests.get(url) if res.status_code == 204: raise ValueError("Users must have a valid MC username") else: return res.json().get("id")
fceeb1d9eb096cd3e29f74d389c7c851422ec022
3,141
def api(default=None, api=None, **kwargs): """Returns the api instance in which this API function is being ran""" return api or default
3d636408914e2888f4dc512aff3f729512849ddf
3,143
def parse_json(data): """Parses the PupleAir JSON file, returning a Sensors protobuf.""" channel_a = [] channel_b = {} for result in data["results"]: if "ParentID" in result: channel_b[result["ParentID"]] = result else: channel_a.append(result) sensors = list(_parse_results(channel_a, channel_b)) return model_pb2.Sensors(sensors=sensors)
11ded094b71d6557cc7c1c7ed489cdcbfe881e0b
3,144
import logging import traceback def asynchronize_tornado_handler(handler_class): """ A helper function to turn a blocking handler into an async call :param handler_class: a tornado RequestHandler which should be made asynchronus :return: a class which does the same work on a threadpool """ class AsyncTornadoHelper(handler_class): """ A hollow wrapper class which runs requests asynchronously on a threadpool """ def _do_work_and_report_error(self, work): try: # call the "real" method from the handler_class work() except HTTPError as ex: # request handler threw uncaught error logging.error(traceback.format_exc()) # send http errors to client self.write(str(ex)) self.set_status(ex.status_code) except Exception: # request handler threw uncaught error logging.error(traceback.format_exc()) # send 500 error to client. Do not pass on error message self.write("500 Internal Server Error \n") self.set_status(500) finally: # finished needs to be reported from main tornado thread tornado.ioloop.IOLoop.instance().add_callback( # report finished to main tornado thread: lambda: self.finish() ) @asynchronous def get(self, path=None): # bind the "real" method from the handler_class to run in another thread blocking_method = lambda: self._do_work_and_report_error( lambda: handler_class.get(self, path)) # launch in another thread REQUEST_HANDLER_THREAD_POOL.run_as_asynch(blocking_method) @asynchronous def put(self, path=None): # bind the "real" method from the handler_class to run in another thread blocking_method = lambda: self._do_work_and_report_error( lambda: handler_class.put(self, path)) # launch in another thread REQUEST_HANDLER_THREAD_POOL.run_as_asynch(blocking_method) @asynchronous def post(self, path=None): # bind the "real" method from the handler_class to run in another thread blocking_method = lambda: self._do_work_and_report_error( lambda: handler_class.post(self, path)) # launch in another thread REQUEST_HANDLER_THREAD_POOL.run_as_asynch(blocking_method) # return the wrapped class instead of the original for Tornado to run asynchronously return AsyncTornadoHelper
0e7d3b46b199cdf1aa1a31a19ed3d54f0abbce16
3,145
def convert_single_example(ex_index, example: InputExample, tokenizer, label_map, dict_builder=None): """Converts a single `InputExample` into a single `InputFeatures`.""" # label_map = {"B": 0, "M": 1, "E": 2, "S": 3} # tokens_raw = tokenizer.tokenize(example.text) tokens_raw = list(example.text) labels_raw = example.labels # Account for [CLS] and [SEP] with "- 2" # The convention in BERT is: # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] label_ids = [] for token, label in zip(tokens_raw, labels_raw): tokens.append(token) label_ids.append(label_map[label]) input_ids = tokenizer.convert_tokens_to_ids(tokens) if dict_builder is None: input_dicts = np.zeros_like(tokens_raw, dtype=np.int64) else: input_dicts = dict_builder.extract(tokens) seq_length = len(tokens) assert seq_length == len(input_ids) assert seq_length == len(input_dicts) assert seq_length == len(label_ids) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. if ex_index < 1: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % example.guid) tf.logging.info("tokens: %s" % " ".join( [utils.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_dicts])) tf.logging.info("labels: %s" % " ".join([str(x) for x in example.labels])) tf.logging.info("labels_ids: %s" % " ".join([str(x) for x in label_ids])) feature = InputFeatures( input_ids=input_ids, input_dicts=input_dicts, label_ids=label_ids, seq_length=seq_length) return feature
3dca77aa191f821c9785c8431c4637e47582a588
3,146
async def converter_self_interaction_target(client, interaction_event): """ Internal converter for returning the received interaction event's target. Applicable for context application commands. This function is a coroutine. Parameters ---------- client : ``Client`` The client who received the respective ``InteractionEvent``. interaction_event : ``InteractionEvent`` The received application command interaction. Returns ------- target : `None` or ``DiscordEntity`` The resolved entity if any. """ if interaction_event.type is not INTERACTION_TYPE_APPLICATION_COMMAND: return None return interaction_event.interaction.target
66975897b9f8a7d0b224f80d1827af3ea07eb51d
3,148
from typing import List def publication_pages(publication_index_page) -> List[PublicationPage]: """Fixture providing 10 PublicationPage objects attached to publication_index_page""" rv = [] for _ in range(0, 10): p = _create_publication_page( f"Test Publication Page {_}", publication_index_page ) rv.append(p) return rv
5d9b75bcbdc5c9485cc83ddc2befeb946f447227
3,149
from typing import List def rp_completion( rp2_metnet, sink, rp2paths_compounds, rp2paths_pathways, cache: rrCache = None, upper_flux_bound: float = default_upper_flux_bound, lower_flux_bound: float = default_lower_flux_bound, max_subpaths_filter: int = default_max_subpaths_filter, logger: Logger = getLogger(__name__) ) -> List[rpPathway]: """Process to the completion of metabolic pathways generated by RetroPath2.0 and rp2paths. (1) rp2paths generates a sets of master pathways which each of them is a set of chemical transformations. (2) Each chemical transformation refers to one or multiple reaction rule. (3) Each reaction rule comes from one or multiple template (original) chemical reaction The completion consists in: 1. exploring all possible metabolic pathways through steps (2) and (3) 2. putting back chemical species removed during reaction rules building process The completion is done for all master pathways of step (1). Parameters ---------- rp2_metnet: str Path to the file containing the metabolic network sink: str Path to the file containing the list of species in the sink rp2paths_compounds: str Path to the file containing the chemical species involved in master metabolic pathways rp2paths_pathways: str Path to the file containing the master metabolic pathways cache: rrCache, optional Cache that contains reaction rules data upper_flux_bound: float, optional Upper flux bound for all new reactions created (default: default_upper_flux_bound from Args file), lower_flux_bound: float, optional Lower flux bound for all new reactions created (default: default_lower_flux_bound from Args file), max_subpaths_filter: int, optional Number of pathways (best) kept per master pathway (default: 10) logger: Logger, optional Returns ------- List of rpPathway objects """ if cache is None: cache = rrCache( attrs=[ 'rr_reactions', 'template_reactions', 'cid_strc', 'deprecatedCompID_compid', ] ) ## READ __rp2paths_compounds_in_cache( infile=rp2paths_compounds, cache=cache, logger=logger ) pathways, transfos = __read_pathways( infile=rp2paths_pathways, logger=logger ) ec_numbers = __read_rp2_metnet( infile=rp2_metnet, logger=logger ) sink_molecules = __read_sink( infile=sink, logger=logger ) # COMPLETE TRANSFORMATIONS full_transfos = __complete_transformations( transfos=transfos, ec_numbers=ec_numbers, cache=cache, logger=logger ) # GENERATE THE COMBINATORY OF SUB-PATHWAYS # Build pathways over: # - multiple reaction rules per transformation (TRS) and # - multiple template reactions per reaction rule pathway_combinatorics = __build_pathway_combinatorics( full_transfos, pathways, cache=cache, logger=logger ) # BUILD + RANK SUB-PATHWAYS all_pathways = __build_all_pathways( pathways=pathway_combinatorics, transfos=full_transfos, sink_molecules=sink_molecules, rr_reactions=cache.get('rr_reactions'), compounds_cache=cache.get('cid_strc'), max_subpaths_filter=max_subpaths_filter, # compartment_id=compartment_id, lower_flux_bound=lower_flux_bound, upper_flux_bound=upper_flux_bound, logger=logger ) # # Return flat list of overall topX pathways # return sum( # [ # pathways # for pathways in all_pathways.values() # ], [])[:max_subpaths_filter] return all_pathways # for sub_pathways in all_pathways.values(): # for sub_pathway in sub_pathways: # print(sub_pathway) # from chemlite import Pathway # print(all_pathways) # for sub_pathways in all_pathways.values(): # for i in range(len(sub_pathways)): # for j in range(i+1, len(sub_pathways)): # if sub_pathways[i] == sub_pathways[j]: # print(f'Equality between {sub_pathways[i].get_id()} and {sub_pathways[j].get_id()}') # print() # print(Pathway._to_dict(all_pathways[1][0]))
ac7539d1d8f0f9388c9d6bef570362d62ec90414
3,150
import torch def wrap(func, *args, unsqueeze=False): """ Wrap a torch function so it can be called with NumPy arrays. Input and return types are seamlessly converted. """ args = list(args) for i, arg in enumerate(args): if type(arg) == np.ndarray: args[i] = torch.from_numpy(arg) if unsqueeze: args[i] = args[i].unsqueeze(0) result = func(*args) if isinstance(result, tuple): result = list(result) for i, res in enumerate(result): if type(res) == torch.Tensor: if unsqueeze: res = res.squeeze(0) result[i] = res.numpy() return tuple(result) elif type(result) == torch.Tensor: if unsqueeze: result = result.squeeze(0) result = result.numpy() return result else: return result
5a5491e2b911235d7bf858b19d0d32a9e8da20e6
3,151
def STOCHF(data, fastk_period=5, fastd_period=3, fastd_ma_type=0): """ Stochastic %F :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int fastk_period: period used for K fast indicator calculation :param int fastd_period: period used for D fast indicator calculation :param int fastd_ma_type: fast D moving average type (0 simple, 1 exponential) :return pd.Series: with indicator data calculation results """ fn = Function('STOCHF') return fn(data, fastk_period=fastk_period, fastd_period=fastd_period, fastd_matype=fastd_ma_type)
3412a6832f54b2dfbaff7eb25de0f6644d914934
3,152
def playerid_reverse_lookup(player_ids, key_type=None): """Retrieve a table of player information given a list of player ids :param player_ids: list of player ids :type player_ids: list :param key_type: name of the key type being looked up (one of "mlbam", "retro", "bbref", or "fangraphs") :type key_type: str :rtype: :class:`pandas.core.frame.DataFrame` """ key_types = ('mlbam', 'retro', 'bbref', 'fangraphs', ) if not key_type: key_type = key_types[0] # default is "mlbam" if key_type not provided elif key_type not in key_types: raise ValueError( '[Key Type: {}] Invalid; Key Type must be one of "{}"'.format(key_type, '", "'.join(key_types)) ) table = get_lookup_table() key = 'key_{}'.format(key_type) results = table[table[key].isin(player_ids)] results = results.reset_index().drop('index', 1) return results
e5bbe46567d1c8e517020d9cb9f551249ea8f515
3,153
def get_delta_z(z, rest_ghz, ghz=None): """ Take a measured GHz value, and calculates the restframe GHz value based on the given z of the matched galaxy :param z: :param ghz: :return: """ # First step is to convert to nm rom rest frame GHz set_zs = [] for key, values in transitions.items(): if values[0] - 0.3 <= z <= values[1] + 0.3: sghz = values[2] * u.GHz # Gets the GHz of the CO line rest_ghz /= (z+1) set_z = np.round((sghz - rest_ghz)/ rest_ghz, 3) # (Freq_emitted - Freq_obs)/ Freq_obs = z set_z = z - set_z rest_ghz *= (z+1) print("Z: {} Set Z: {}".format(z, set_z)) set_zs.append((key, set_z)) set_z = np.min([np.abs(i[1]) for i in set_zs]) print(set_zs) print(set_z) for element in set_zs: if np.isclose(np.abs(element[1]),set_z): return element[1], element[0]
acb0069c56fb34aeaba302368131400f3c35d643
3,154
def hist_orientation(qval, dt): """ provided with quats, and time spent* in the direction defined by quat produces grouped by ra, dec and roll quaternions and corresponding time, spent in quats params: qval a set of quats stored in scipy.spatial.transfrom.Rotation class params: dt corresponding to the set of quaternions, set of time intervals duration (which sc spent in the dirrection defined by quaternion) return: exptime, qval - histogramed set of quaterninons with corresponding times """ oruniq, uidx, invidx = hist_quat(qval) exptime = np.zeros(uidx.size, np.double) np.add.at(exptime, invidx, dt) return exptime, qval[uidx]
bbdecc58a9a3dc248d68b73018cd5f1d803ddbfd
3,155
def proclamadelcaucacom_story(soup): """ Function to pull the information we want from Proclamadelcauca.com stories :param soup: BeautifulSoup object, ready to parse """ hold_dict = {} #text try: article_body = soup.find('div', attrs={"class": "single-entradaContent"}) maintext = [para.text.strip() for para in article_body.find_all('p')] hold_dict['maintext'] = '\n '.join(maintext).strip() except: article_body = None return hold_dict
e8bcf0faaa7731b71e7b9db33e454b422b3285bc
3,157
def asarray_fft(x, inverse): """Recursive implementation of the 1D Cooley-Tukey FFT using np asarray to prevent copying. Parameters: x (array): the discrete amplitudes to transform. inverse (bool): perform the inverse fft if true. Returns: x (array): the amplitudes of the original signal. OR X (complex number array): the phase and amplitude of the transformation. """ coef = 1 if inverse else -1 N = x.shape[0] # validating input array if np.log2(N) % 1 > 0: raise ValueError('array size must be a power of 2') # 32 was arbitrarily chosen as "good enough" elif N <= 32: return dft(x, inverse) # perform DFT on all N <= 32 sub-arrays else: even_terms = asarray_fft(x[::2], inverse) odd_terms = asarray_fft(x[1::2], inverse) exp_array = np.exp(coef * 2j * np.pi * np.arange(N) / N) return np.concatenate([even_terms + exp_array[:(N >> 1)] * odd_terms, even_terms + exp_array[(N >> 1):] * odd_terms])
87f86f8529f5c54535d9a188c454f762f96a7a58
3,158
import jinja2 def wrap_locale_context(func): """Wraps the func with the current locale.""" @jinja2.contextfilter def _locale_filter(ctx, value, *args, **kwargs): doc = ctx['doc'] if not kwargs.get('locale', None): kwargs['locale'] = str(doc.locale) return func(value, *args, **kwargs) return _locale_filter
a2f720e9ed38eb2bf0f546ab392f295d969f7ab7
3,160
from numpy import loadtxt from scipy.interpolate import UnivariateSpline def mu_Xe(keV=12): """Returns inverse 1/e penetration depth [mm-1 atm-1] of Xe given the x-ray energy in keV. The transmission through a 3-mm thick slab of Xe at 6.17 atm (76 psi) was calculated every 100 eV over an energy range spanning 5-17 keV using: http://henke.lbl.gov/optical_constants/filter2.html This result was then converted to mu and saved as a tab-delimited text file. The returned result is calculated using a univariate spline and should be valid over the range 5-17 keV.""" E_mu = loadtxt('mu_Xe.txt',dtype=float,delimiter='\t') us_mu = UnivariateSpline(E_mu[:,0],E_mu[:,1],s=0) return us_mu(1000*keV)
5f106871e7517ef910739b74a13d2139e03ed480
3,161
import hashlib def file_md5(input_file): """ :param input_file: Path to input file. :type input_file: str :return: Returns the encoded data in the inputted file in hexadecimal format. """ with open(input_file, 'rb') as f: data = f.read() return hashlib.md5(data).hexdigest()
4a7ea12e3b5e0429787eb65e651852e49b40ecf7
3,162
from typing import Dict def message_args() -> Dict[str, str]: """A formatted message.""" return {"subject": "Test message", "message": "This is a test message"}
4d25d5c9f54aa0997f2e619f90eb6632717cf0d3
3,164
def to_drive_type(value): """Convert value to DriveType enum.""" if isinstance(value, DriveType): return value.value sanitized = str(value).upper().strip().replace(" ", "_") try: return DriveType[sanitized].value except KeyError as err: raise ValueError(f"Unknown drive type: {value}") from err
10183ac3ad15c2e01d9abf262f097dc6b366e7ab
3,165
def upload_authorized_key(host, port, filepath): """UPLOAD (key) upload_authorized_key""" params = {'method': 'upload_authorized_key'} files = [('key', filepath, file_get_contents(filepath))] return _check(https.client.https_post(host, port, '/', params, files=files))
68ada5d834ff77c4ee1b09815a6b094c30a42c1b
3,166
def thermalize_cutoff(localEnergies, smoothing_window, tol): """Return position where system is thermalized according to some tolerance tol, based on the derivative of the smoothed local energies """ mean = np.mean(localEnergies) smoothLocalEnergies = smoothing(localEnergies, smoothing_window) check_slope = derivative(smoothLocalEnergies) < tol cutoff = np.where(check_slope)[0][0] return cutoff
d72904596ab88298232e9c2ed0fac151e3e66a71
3,167
def annualize_metric(metric: float, holding_periods: int = 1) -> float: """ Annualize metric of arbitrary periodicity :param metric: Metric to analyze :param holding_periods: :return: Annualized metric """ days_per_year = 365 trans_ratio = days_per_year / holding_periods return (1 + metric) ** trans_ratio - 1
0c84816f29255d49e0f2420b17abba66e2387c99
3,168
def get_latest_tag(): """ Find the value of the latest tag for the Adafruit CircuitPython library bundle. :return: The most recent tag value for the project. """ global LATEST_BUNDLE_VERSION # pylint: disable=global-statement if LATEST_BUNDLE_VERSION == "": LATEST_BUNDLE_VERSION = get_latest_release_from_url( "https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest" ) return LATEST_BUNDLE_VERSION
2195d2cde7e2ff67a110b1a1af2aa8cebad52294
3,170
def read_gold_conll2003(gold_file): """ Reads in the gold annotation from a file in CoNLL 2003 format. Returns: - gold: a String list containing one sequence tag per token. E.g. [B-Kochschritt, L-Kochschritt, U-Zutat, O] - lines: a list list containing the original line split at "\t" """ gold = [] lines = [] with open(gold_file, encoding="utf-8") as f: for line in f: if line == "\n": continue line = line.strip().split("\t") gold.append(line[3]) lines.append(line) return gold, lines
1e11513c85428d20e83d54cc2fa2d42ddd903341
3,172
import functools def translate_nova_exception(method): """Transforms a cinder exception but keeps its traceback intact.""" @functools.wraps(method) def wrapper(self, ctx, *args, **kwargs): try: res = method(self, ctx, *args, **kwargs) except (nova_exceptions.ConnectionRefused, keystone_exceptions.ConnectionError) as exc: err_msg = encodeutils.exception_to_unicode(exc) _reraise(exception.NovaConnectionFailed(reason=err_msg)) except (keystone_exceptions.BadRequest, nova_exceptions.BadRequest)as exc: err_msg = encodeutils.exception_to_unicode(exc) _reraise(exception.BadRequest(reason=err_msg)) except (keystone_exceptions.Forbidden, nova_exceptions.Forbidden): _reraise(exception.NotAuthorized()) except (keystone_exceptions.NotFound, nova_exceptions.NotFound) as exc: err_msg = encodeutils.exception_to_unicode(exc) _reraise(exception.InstanceNotFound(reason=err_msg)) return res return wrapper
186b7f944b03073c758b4af5f4ccfcaa80e8f5e8
3,173
def _update_form(form): """ """ if not form.text(): return form.setStyleSheet(error_css) return form.setStyleSheet(success_css)
94e241a98aa6c8305965d4149f4d60e28843aea7
3,174
import torch from torch_adapter import TorchAdapter from openvino.inference_engine import IEPlugin from openvino_adapter import OpenvinoAdapter from torch_adapter import TorchAdapter import importlib def create_adapter(openvino, cpu_only, force_torch, use_myriad): """Create the best adapter based on constraints passed as CLI arguments.""" if use_myriad: openvino = True if cpu_only: raise Exception("Cannot run with both cpu-only and Myriad options") if force_torch and openvino: raise Exception("Cannot run with both Torch and OpenVINO") if not openvino: if importlib.util.find_spec("torch") is None: logger.info("Could not find Torch") openvino = True elif not cpu_only: if torch.cuda.is_available(): logger.info("Detected GPU / CUDA support") return TorchAdapter(False, DEFAULT_STYLE) else: logger.info("Failed to detect GPU / CUDA support") if not force_torch: if importlib.util.find_spec("openvino") is None: logger.info("Could not find Openvino") if openvino: raise Exception("No suitable engine") else: if not cpu_only and not use_myriad: try: IEPlugin("GPU") logger.info("Detected iGPU / clDNN support") except RuntimeError: logger.info("Failed to detect iGPU / clDNN support") cpu_only = True logger.info("Using OpenVINO") logger.info("CPU Only: %s", cpu_only) logger.info("Use Myriad: %s", use_myriad) adapter = OpenvinoAdapter(cpu_only, DEFAULT_STYLE, use_myriad=use_myriad) return adapter logger.info("Using Torch with CPU") return TorchAdapter(True, DEFAULT_STYLE)
4fd0fc51c7758d32a1eac4d86d1b5dc6b90d20b7
3,175
def _make_ecg(inst, start, stop, reject_by_annotation=False, verbose=None): """Create ECG signal from cross channel average.""" if not any(c in inst for c in ['mag', 'grad']): raise ValueError('Unable to generate artificial ECG channel') for ch in ['mag', 'grad']: if ch in inst: break logger.info('Reconstructing ECG signal from {}' .format({'mag': 'Magnetometers', 'grad': 'Gradiometers'}[ch])) picks = pick_types(inst.info, meg=ch, eeg=False, ref_meg=False) if isinstance(inst, BaseRaw): reject_by_annotation = 'omit' if reject_by_annotation else None ecg, times = inst.get_data(picks, start, stop, reject_by_annotation, True) elif isinstance(inst, BaseEpochs): ecg = np.hstack(inst.copy().crop(start, stop).get_data()) times = inst.times elif isinstance(inst, Evoked): ecg = inst.data times = inst.times return ecg.mean(0, keepdims=True), times
27d1ef6da9c9d491de4b9806c85528f1226b2c3d
3,176
def lorentzian(freq, freq0, area, hwhm, phase, offset, drift): """ Lorentzian line-shape function Parameters ---------- freq : float or float array The frequencies for which the function is evaluated freq0 : float The center frequency of the function area : float hwhm: float Half-width at half-max """ oo2pi = 1/(2*np.pi) df = freq - freq0 absorptive = oo2pi * area * np.ones(freq.shape[0])*(hwhm / (df**2 + hwhm**2)) dispersive = oo2pi * area * df/(df**2 + hwhm**2) return (absorptive * np.cos(phase) + dispersive * np.sin(phase) + offset + drift * freq)
2f9b2ede75773c2100941e16fd14210b1a85a453
3,177
def findTilt(root): """ :type root: TreeNode :rtype: int """ if root is None: return 0 return findTilt_helper(root)[1]
1338a704f754678f88dedaf5a968aa3bfe4ff17f
3,178
def generate_report(): """ Get pylint analization report and write it to file """ files = get_files_to_check() dir_path = create_report_dir() file_path = create_report_file(dir_path) config_opts = get_config_opts() pylint_opts = '--load-plugins pylint_flask' + config_opts pylint_stdout, pylint_stderr = epylint.py_run(files + ' ' + pylint_opts, return_std=True) with open(file_path, 'w+') as report: report.write(pylint_stdout.getvalue()) report.write(pylint_stderr.getvalue()) return True
655345a128847285712f683274637201ee264010
3,179
def make_trampoline(func_name): """ Create a main function that calls another function """ mod = ir.Module('main') main = ir.Procedure('main') mod.add_function(main) entry = ir.Block('entry') main.add_block(entry) main.entry = entry entry.add_instruction(ir.ProcedureCall(func_name, [])) entry.add_instruction(ir.Exit()) return mod
1dcaf61cbadde4fdd8e94958658ce8b1b69612f1
3,181
def model_fields(dbo, baseuri=None): """Extract known fields from a BQ object, while removing any known from C{excluded_fields} @rtype: dict @return fields to be rendered in XML """ attrs = {} try: dbo_fields = dbo.xmlfields except AttributeError: # This occurs when the object is a fake DB objects # The dictionary is sufficient dbo_fields= dbo.__dict__ for fn in dbo_fields: fn = mapping_fields.get(fn, fn) # Skip when map is None if fn is None: continue # Map is callable, then call if callable(fn): fn, attr_val = fn(dbo, fn, baseuri) else: attr_val = getattr(dbo, fn, None) # Put value in attribute dictionary if attr_val is not None and attr_val!='': if isinstance(attr_val, basestring): attrs[fn] = attr_val else: attrs[fn] = str(attr_val) #unicode(attr_val,'utf-8') return attrs
59a07057dccb116cc4753a4973a3128ccc79c558
3,183
def get_bsj(seq, bsj): """Return transformed sequence of given BSJ""" return seq[bsj:] + seq[:bsj]
d1320e5e3257ae22ca982ae4dcafbd4c6def9777
3,184
from typing import Dict import warnings import math def sample(problem: Dict, N: int, calc_second_order: bool = True, skip_values: int = 0): """Generates model inputs using Saltelli's extension of the Sobol' sequence. Returns a NumPy matrix containing the model inputs using Saltelli's sampling scheme. Saltelli's scheme extends the Sobol' sequence in a way to reduce the error rates in the resulting sensitivity index calculations. If `calc_second_order` is False, the resulting matrix has ``N * (D + 2)`` rows, where ``D`` is the number of parameters. If `calc_second_order` is True, the resulting matrix has ``N * (2D + 2)`` rows. These model inputs are intended to be used with :func:`SALib.analyze.sobol.analyze`. If `skip_values` is > 0, raises a UserWarning in cases where sample sizes may be sub-optimal. The convergence properties of the Sobol' sequence requires ``N < skip_values`` and that both `N` and `skip_values` are base 2 (e.g., ``N = 2^n``). See discussion in [4] for context and information. If skipping values, one recommendation is that the largest possible `n` such that ``(2^n)-1 <= N`` is skipped (see [5]). Parameters ---------- problem : dict The problem definition N : int The number of samples to generate. Must be an exponent of 2 and < `skip_values`. calc_second_order : bool Calculate second-order sensitivities (default True) skip_values : int Number of points in Sobol' sequence to skip, ideally a value of base 2 (default 0, see Owen [3] and Discussion [4]) References ---------- .. [1] Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications 145, 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1 .. [2] Sobol', I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, The Second IMACS Seminar on Monte Carlo Methods 55, 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6 .. [3] Owen, A. B., 2020. On dropping the first Sobol' point. arXiv:2008.08051 [cs, math, stat]. Available at: http://arxiv.org/abs/2008.08051 (Accessed: 20 April 2021). .. [4] Discussion: https://github.com/scipy/scipy/pull/10844 https://github.com/scipy/scipy/pull/10844#issuecomment-673029539 .. [5] Johnson, S. G. Sobol.jl: The Sobol module for Julia https://github.com/stevengj/Sobol.jl """ # bit-shift test to check if `N` == 2**n if not ((N & (N-1) == 0) and (N != 0 and N-1 != 0)): msg = f""" Convergence properties of the Sobol' sequence is only valid if `N` ({N}) is equal to `2^n`. """ warnings.warn(msg) if skip_values > 0: M = skip_values if not ((M & (M-1) == 0) and (M != 0 and M-1 != 0)): msg = f""" Convergence properties of the Sobol' sequence is only valid if `skip_values` ({M}) is equal to `2^m`. """ warnings.warn(msg) n_exp = int(math.log(N, 2)) m_exp = int(math.log(M, 2)) if n_exp >= m_exp: msg = f"Convergence may not be valid as 2^{n_exp} ({N}) is >= 2^{m_exp} ({M})." warnings.warn(msg) D = problem['num_vars'] groups = _check_groups(problem) if not groups: Dg = problem['num_vars'] else: G, group_names = compute_groups_matrix(groups) Dg = len(set(group_names)) # Create base sequence - could be any type of sampling base_sequence = sobol_sequence.sample(N + skip_values, 2 * D) if calc_second_order: saltelli_sequence = np.zeros([(2 * Dg + 2) * N, D]) else: saltelli_sequence = np.zeros([(Dg + 2) * N, D]) index = 0 for i in range(skip_values, N + skip_values): # Copy matrix "A" for j in range(D): saltelli_sequence[index, j] = base_sequence[i, j] index += 1 # Cross-sample elements of "B" into "A" for k in range(Dg): for j in range(D): if (not groups and j == k) or (groups and group_names[k] == groups[j]): saltelli_sequence[index, j] = base_sequence[i, j + D] else: saltelli_sequence[index, j] = base_sequence[i, j] index += 1 # Cross-sample elements of "A" into "B" # Only needed if you're doing second-order indices (true by default) if calc_second_order: for k in range(Dg): for j in range(D): if (not groups and j == k) or (groups and group_names[k] == groups[j]): saltelli_sequence[index, j] = base_sequence[i, j] else: saltelli_sequence[index, j] = base_sequence[i, j + D] index += 1 # Copy matrix "B" for j in range(D): saltelli_sequence[index, j] = base_sequence[i, j + D] index += 1 saltelli_sequence = scale_samples(saltelli_sequence, problem) return saltelli_sequence
a3a356fd037b879c71cb6dc2e4751350857302e8
3,185
def standardize(table, option): """ standardize Z = (X - mean) / (standard deviation) """ if option == 'table': mean = np.mean(table) std = np.std(table) t = [] for row in table: t_row = [] if option != 'table': mean = np.mean(row) std = np.std(row) for i in row: if std == 0: t_row.append(0) else: t_row.append((i - mean)/std) t.append(t_row) return t
337ec0d22340ca74e54236e1cb39829eab8ad89b
3,186
def raw_input_nonblock(): """ return result of raw_input if has keyboard input, otherwise return None """ if _IS_OS_WIN32: return _raw_input_nonblock_win32() else: raise NotImplementedError('Unsupported os.')
90cc9febcaa4866334b69b19809565795a07de49
3,187
def get_batch_hard(draw_batch_size,hard_batchs_size,semihard_batchs_size,easy_batchs_size,norm_batchs_size,network,dataset,nb_classes, margin): """ Create batch of APN "hard" triplets Arguments: draw_batch_size -- integer : number of initial randomly taken samples hard_batchs_size -- interger : select the number of hardest samples to keep norm_batchs_size -- interger : number of random samples to add Returns: triplets -- list containing 3 tensors A,P,N of shape (hard_batchs_size+norm_batchs_size,w,h,c) """ X = dataset m, w, h = X[0].shape # c removed #Step 1 : pick a random batch to study studybatch = get_batch_random(draw_batch_size,dataset, nb_classes) #Step 2 : compute the loss with current network : d(A,P)-d(A,N). The alpha parameter here is omited here since we want only to order them studybatchloss = np.zeros((draw_batch_size)) #Compute embeddings for anchors, positive and negatives #print('*',studybatch[0][:,:,:].shape) A = network.predict(studybatch[0][:,:,:]) P = network.predict(studybatch[1][:,:,:]) N = network.predict(studybatch[2][:,:,:]) #Compute d(A,P)-d(A,N) # HARD studybatchloss = np.sqrt(np.sum(np.square(A-P),axis=1)) - np.sqrt(np.sum(np.square(A-N),axis=1)) #Sort by distance (high distance first) and take the hardest selection = np.argsort(studybatchloss)[::-1][:hard_batchs_size] #Compute d(A,N)-d(A,P) # EASY studybatchloss = -np.sqrt(np.sum(np.square(A-P),axis=1)) + np.sqrt(np.sum(np.square(A-N),axis=1)) #Sort by distance (high distance first) and take the EASIEST selection1 = np.argsort(studybatchloss)[::-1][:easy_batchs_size] # #Compute d(A,N)-d(A,P) SEMI-HARD semihard_index1 = np.squeeze(np.where(np.sqrt(np.sum(np.square(A-P),axis=1)) + margin > np.sqrt(np.sum(np.square(A-N),axis=1)))) semihard_index2 = np.squeeze(np.where(np.sqrt(np.sum(np.square(A-P),axis=1)) < np.sqrt(np.sum(np.square(A-N),axis=1)))) semihard_index = np.intersect1d(semihard_index1,semihard_index2) selection2 = semihard_index[:semihard_batchs_size] # selection = np.append(selection,selection1) #Hard & Easy selection = np.append(selection,selection2) #Hard & Easy & SemiHard #Draw other random samples from the batch selection2 = np.random.choice(np.delete(np.arange(draw_batch_size),selection),norm_batchs_size,replace=False) selection = np.append(selection,selection2) #Hard & Easy & SemiHard & Random triplets = [studybatch[0][selection,:,:], studybatch[1][selection,:,:], studybatch[2][selection,:,:]] return triplets
da6dc7f69354b0b74b59717140c6c46826925050
3,188
import math def sine( start, end, freq, amp: Numeric = 1, n_periods: Numeric = 1 ) -> TimeSerie: """ Generate a sine TimeSerie. """ index = pd.date_range(start=start, end=end, freq=freq) return TimeSerie( index=index, y_values=np.sin( np.linspace(0, 2 * math.pi * n_periods, num=len(index)) ) * amp, )
df4254f9fafcb61f0bcf492edf1847d89f4debb0
3,189
def get_from_address(sending_profile, template_from_address): """Get campaign from address.""" # Get template display name if "<" in template_from_address: template_display = template_from_address.split("<")[0].strip() else: template_display = None # Get template sender template_sender = template_from_address.split("@")[0].split("<")[-1] # Get sending profile domain if type(sending_profile) is dict: sp_from = sending_profile["from_address"] else: sp_from = sending_profile.from_address sp_domain = sp_from.split("<")[-1].split("@")[1].replace(">", "") # Generate from address if template_display: from_address = f"{template_display} <{template_sender}@{sp_domain}>" else: from_address = f"{template_sender}@{sp_domain}" return from_address
8617d2b793b76456cb7d1a17168f27fd1d548e6d
3,190
import ctypes def is_dwm_compositing_enabled(): """Is Desktop Window Manager compositing (Aero) enabled. """ enabled = ctypes.c_bool() try: DwmIsCompositionEnabled = ctypes.windll.dwmapi.DwmIsCompositionEnabled except (AttributeError, WindowsError): # dwmapi or DwmIsCompositionEnabled is not present return False rval = DwmIsCompositionEnabled(ctypes.byref(enabled)) return rval == 0 and enabled.value
9b31b3ef62d626008d2b6c6ef59446be79da89f6
3,191
def fgsm(x, y_true, y_hat, epsilon=0.075): """Calculates the fast gradient sign method adversarial attack Following the FGSM algorithm, determines the gradient of the cost function wrt the input, then perturbs all the input in the direction that will cause the greatest error, with small magnitude. """ loss = tf.nn.softmax_cross_entropy_with_logits( labels=y_true, logits=y_hat) grad, = tf.gradients(loss, x) scaled_grad = epsilon * tf.sign(grad) return tf.stop_gradient(x + scaled_grad)
a71d2042ea1f5efa0a3f6409836da52bf323aa5c
3,192
def tour_delete(request,id): """ delete tour depending on id """ success_message, error_message = None, None form = TourForm() tour = get_object_or_404(Tour, id=id) tours = Tour.objects.all() if request.method=="POST": tour.delete() success_message = "deleted tour" else: error_message = "to delete tour" context = { 'form': form, 'tours': tours, 'success_message': success_message, 'error_message': error_message, 'user_info': Employee.objects.get(employee_id=request.user.username), 'cart': Cart.objects.filter(created_by__employee_id=request.user.username).count, } return render(request, 'employee/tour_add.html', context)
c42e355734444d858555ad627f202f73161cbedf
3,193
import random def d3(): """Simulate the roll of a 3 sided die""" return random.randint(1, 3)
c2eac44bb36b7e35c66894bce3467f568a735ca1
3,194
def _search_qr(model, identifier, session): """Search the database using a Query/Retrieve *Identifier* query. Parameters ---------- model : pydicom.uid.UID Either *Patient Root Query Retrieve Information Model* or *Study Root Query Retrieve Information Model* for C-FIND, C-GET or C-MOVE. identifier : pydicom.dataset.Dataset The request's *Identifier* dataset. session : sqlalchemy.orm.session.Session The session we are using to query the database. Returns ------- list of db.Instance The Instances that match the query. """ # Will raise InvalidIdentifier if check failed _check_identifier(identifier, model) if model in _PATIENT_ROOT: attr = _PATIENT_ROOT[model] else: attr = _STUDY_ROOT[model] # Hierarchical search method: C.4.1.3.1.1 query = None for level, keywords in attr.items(): # Keywords at current level that are in the identifier keywords = [kw for kw in keywords if kw in identifier] # Create query dataset for only the current level and run it ds = Dataset() [setattr(ds, kw, getattr(identifier, kw)) for kw in keywords] query = build_query(ds, session, query) if level == identifier.QueryRetrieveLevel: break return query.all()
29fe8831b1e44a381202b48212ff7c40c4c8d7fd
3,197
def find_max_value(binary_tree): """This function takes a binary tree and returns the largest value of all the nodes in that tree with O(N) space and O(1) time using breadth first traversal while keeping track of the largest value thus far in the traversal """ root_node = [] rootnode.push(binary_tree.root) output = [] # helper function def is_Null(current_value): """this is a helper function to check if the value of all nodes in breadth first traversal have null values which means we have gone off the bottom depth of the tree and returns a boolean""" return current_value == null def _walk(input_list): """This is the recursive function in our breadth first traversal which implements a queue without the queue class this function returns the value of each node until all node values are returned; the base case is when all values of the nodes are null, which means we have gone off the bottom depth of the tree """ counter = 0 largest_value = 0 newNodes = [] while counter < len(input_list): if input_list[counter]: if input_list[counter].value > largest_value: largest_value = input_list[counter] print('new value: ', input_list[counter]) output.push(input_list[counter]) newNodes.push(input_list[counter].left) newNodes.push(input_list[counter].right) print('newNodes: ', len(newNodes), '\n', newNodes) if not all is_Null(newNodes): _walk(newNodes) _walk(root_node) return 'largest value ' + largest_value
a797ea1598195cfcfe1abf00d73562c59617ad9b
3,199
def failed_jobs(username, root_wf_id, wf_id): """ Get a list of all failed jobs of the latest instance for a given workflow. """ dashboard = Dashboard(g.master_db_url, root_wf_id, wf_id) args = __get_datatables_args() total_count, filtered_count, failed_jobs_list = dashboard.get_failed_jobs( wf_id, **args ) for job in failed_jobs_list: job.exec_job_id = '<a href="' + url_for( '.job', root_wf_id=root_wf_id, wf_id=wf_id, job_id=job.job_id, job_instance_id=job.job_instance_id ) + '">' + job.exec_job_id + '</a>' job.stdout = '<a target="_blank" href="' + url_for( '.stdout', root_wf_id=root_wf_id, wf_id=wf_id, job_id=job.job_id, job_instance_id=job.job_instance_id ) + '">Application Stdout/Stderr</a>' job.stderr = '<a target="_blank" href="' + url_for( '.stderr', root_wf_id=root_wf_id, wf_id=wf_id, job_id=job.job_id, job_instance_id=job.job_instance_id ) + '">Condor Stderr/Pegasus Lite Log</a>' return render_template( 'workflow/jobs_failed.xhr.json', count=total_count, filtered=filtered_count, jobs=failed_jobs_list, table_args=args )
5d755f6e84f7c406174fb1a7bdb8de64a6e0c049
3,200
def get_vm_types(resources): """ Get all vm_types for a list of heat resources, do note that some of the values retrieved may be invalid """ vm_types = [] for v in resources.values(): vm_types.extend(list(get_vm_types_for_resource(v))) return set(vm_types)
f13e8860d5b25cd03360e859527d61a06d103f53
3,201
def interface_names(obj): """ Return: a list of interface names to which `obj' is conformant. The list begins with `obj' itself if it is an interface. Names are returned in depth-first order, left to right. """ return [o.__name__ for o in interfaces(obj)]
99aad05e14daeb13ed7f19599684acc8b324df84
3,203
import six def add_basic(token): """For use with Authorization headers, add "Basic ".""" if token: return (u"Basic " if isinstance(token, six.text_type) else b"Basic ") + token else: return token
cd579e77e243fdfba0853a87087e45cf58bcc6f2
3,204
import json import requests def updateUser(token, leaderboard=None, showUsername=None, username=None): """ Update user account information. Parameters- token: Authentication token. leaderboard: True to show user's profit on leaderboard. showUsername: True to show the username on LN Marktes public data. username: username to display. """ headers = { 'content-type': "application/json", 'accept': "application/json", 'authorization': f"Bearer {token}", } payloadDict = dict() if showUsername is not None: payloadDict['show_username'] = showUsername if leaderboard is not None: payloadDict['show_leaderboard'] = leaderboard if username is not None: payloadDict['username'] = username payload = json.dumps(payloadDict) userInfo = requests.put( APIUrls.lnapi+APIUrls.userUrl, data=payload, headers=headers, ) if userInfo.status_code == 200: return userInfo.json() else: raise RuntimeError( 'Unable to update user information:\n' f'{userInfo.text}' )
9b953256b85327411445729b574cf9b79750e735
3,205
def init_validator(required, cls, *additional_validators): """ Create an attrs validator based on the cls provided and required setting. :param bool required: whether the field is required in a given model. :param cls: the expected class type of object value. :return: attrs validator chained correctly (e.g. optional(instance_of)) """ validator = validators.instance_of(cls) if additional_validators: additional_validators = list(additional_validators) additional_validators.append(validator) validator = composite(*additional_validators) return validator if required else validators.optional(validator)
924b5ff6e77d38c989eef187498f774a2322ed48
3,206
def ShiftRight(x, **unused_kwargs): """Layer to shift the tensor to the right by padding on axis 1.""" if not isinstance(x, (list, tuple)): # non-chunked inputs pad_widths = [(0, 0)] * len(x.shape) pad_widths[1] = (1, 0) # Padding on axis=1 padded = np.pad(x, pad_widths, mode='constant') return padded[:, :-1] # Handling chunked inputs. Recall that the list of chunks represents a big # sequence (the concatenation of the chunks). We want to shift that sequence, # so we put a 0 in the beginning of the first chunk and the last element of # that chunk is used as the new first element of the next chunk, and so on. padded = [] last_value = np.zeros_like(x[0][:, -1]) for chunk in x: padded_chunk = np.concatenate([last_value[:, np.newaxis], chunk], axis=1) last_value = chunk[:, -1] padded.append(padded_chunk[:, :-1]) return padded
ec5265b5937e3e90e2c3267b6501b008ac7090e5
3,208
def empty_record(): """Create an empty record.""" record = dump_empty(Marc21RecordSchema) record["metadata"] = "<record> <leader>00000nam a2200000zca4500</leader></record>" record["is_published"] = False record["files"] = {"enabled": True} return record
7797e1bf0ade98a2400daff1f7937b7af2da280d
3,210
def illuminanceToPhotonPixelRate(illuminance, objective_numerical_aperture=1.0, illumination_wavelength=0.55e-6, camera_pixel_size=6.5e-6, objective_magnification=1, system_magnification=1, sample_quantum_yield=1., **kwargs): """ Function which converts source illuminance and microscope parameters to photons / px / s. Based heavily on the publication: "When Does Computational Imaging Improve Performance?," O. Cossairt, M. Gupta and S.K. Nayar, IEEE Transactions on Image Processing, Vol. 22, No. 2, pp. 447–458, Aug. 2012. However, this function implements the same result for microscopy, replacing f/# with NA, removing reflectance, and including magnification. Args: exposure_time: Integration time, s source_illuminance: Photometric source illuminance, lux numerical_aperture: System numerical aperture pixel_size: Pixel size of detector, um magnification: Magnification of imaging system Returns: Photon counts at the camera. """ # Conversion factor from radiometric to photometric cordinates # https://www.thorlabs.de/catalogPages/506.pdf K = 1 / 680 # Planck's constant # h_bar = 6.626176e-34 h_bar = 1.054572e-34 # Speed of light c = 2.9979e8 # Constant term const = K * illumination_wavelength / h_bar / c # Calculate photon_pixel_rate photon_pixel_rate = sample_quantum_yield * const * (objective_numerical_aperture ** 2) * illuminance * (camera_pixel_size / (system_magnification * objective_magnification)) ** 2 # Return return photon_pixel_rate
cbbb2f6bdce7592f997b7ab3784c15beb2b846b1
3,211
def stop_tuning(step): """ stop tuning the current step method """ if hasattr(step, 'tune'): step.tune = False elif hasattr(step, 'methods'): step.methods = [stop_tuning(s) for s in step.methods] return step
45e02b8d3ec86ceda97de69bbc730aa62affb06d
3,212
import json def assemble_english(): """Assemble each statement into """ if request.method == 'OPTIONS': return {} response = request.body.read().decode('utf-8') body = json.loads(response) stmts_json = body.get('statements') stmts = stmts_from_json(stmts_json) sentences = {} for st in stmts: enga = EnglishAssembler() enga.add_statements([st]) model_str = enga.make_model() sentences[st.uuid] = model_str res = {'sentences': sentences} return res
24c267e2763198056e275feda1e81ef1bf280bdb
3,213
def schema_class(classname, schema, schemarepr=None, basename='SchemaBase'): """Generate code for a schema class Parameters ---------- classname : string The name of the class to generate schema : dict The dictionary defining the schema class basename : string (default: "SchemaBase") The name of the base class to use in the class definition schemarepr : CodeSnippet or object, optional An object whose repr will be used in the place of the explicit schema. This can be useful, for example, when the generated code should reference a predefined schema object. The user must ensure that the schema within the evaluated code is identical to the schema used to generate the code. """ return SCHEMA_CLASS_TEMPLATE.format( classname=classname, basename=basename, schema=schema if schemarepr is None else schemarepr, docstring=docstring(classname, schema, indent=4), init_code=init_code(classname, schema, indent=4) )
2f497de54205e5c180805d77638c9ffe342f76c8
3,214
import requests def orthology_events(ids='R-HSA-6799198,R-HSA-168256,R-HSA-168249', species='49633'): """ Reactome uses the set of manually curated human reactions to computationally infer reactions in twenty evolutionarily divergent eukaryotic species for which high-quality whole-genome sequence data are available, and hence a comprehensive and high-quality set of protein predictions exists. Thus, this method retrieves the orthologies for any given set of events or entities in the specified species. :param ids: The events identifiers for which the orthology is requested :param species: The species id for which the orthology is requested :return: Json dictionary object of the orthologies of a given set of events or entities """ headers = { 'accept': 'application/json', 'content-type': 'text/plain', } data = ids url = 'https://reactome.org/ContentService/data/orthologies/ids/species/%s' % species try: response = requests.post(url=url, headers=headers, data=data) except ConnectionError as e: print(e) if response.status_code == 200: return response.json() else: print('Status code returned a value of %s' % response.status_code)
8a75e2bc9af34358164492d1d2b2d8154d4e696e
3,215
def judge(name): """ Return some sort of score for automatically ranking names based on all the features we can extract so far. I guess we'll just add the scores * weights up for now. """ score = 0 for scoreID, scorer, weight in weights: subscore = scorer(name) score += subscore * weight name.scores[scoreID] = subscore name.score = score return score
34811f49fc8fe6c88ef31978702cacddbacd5314
3,216
import re def parse_year(inp, option='raise'): """ Attempt to parse a year out of a string. Parameters ---------- inp : str String from which year is to be parsed option : str Return option: - "bool" will return True if year is found, else False. - Return year int / raise a RuntimeError otherwise Returns ------- out : int | bool Year int parsed from inp, or boolean T/F (if found and option is bool). Examples -------- >>> year_str = "NSRDB_2018.h5" >>> parse_year(year_str) 2018 >>> year_str = "NSRDB_2018.h5" >>> parse_year(year_str, option='bool') True >>> year_str = "NSRDB_TMY.h5" >>> parse_year(year_str) RuntimeError: Cannot parse year from NSRDB_TMY.h5 >>> year_str = "NSRDB_TMY.h5" >>> parse_year(year_str, option='bool') False """ # char leading year cannot be 0-9 # char trailing year can be end of str or not 0-9 regex = r".*[^0-9]([1-2][0-9]{3})($|[^0-9])" match = re.match(regex, inp) if match: out = int(match.group(1)) if 'bool' in option: out = True else: if 'bool' in option: out = False else: raise RuntimeError('Cannot parse year from {}'.format(inp)) return out
a91efb0614e7d0ad6753118f9b4efe8c3b40b4e2
3,217
def retry_import(e, **kwargs): """ When an exception occurs during channel/content import, if * there is an Internet connection error or timeout error, or HTTPError where the error code is one of the RETRY_STATUS_CODE, return return True to retry the file transfer * the file does not exist on the server or disk, skip the file and return False. This only applies to content import not channel import. * otherwise, raise the exception. return value: * True - needs retry. * False - file is skipped. Does not need retry. """ skip_404 = kwargs.pop("skip_404") if ( isinstance(e, ConnectionError) or isinstance(e, Timeout) or isinstance(e, ChunkedEncodingError) or (isinstance(e, HTTPError) and e.response.status_code in RETRY_STATUS_CODE) or (isinstance(e, SSLERROR) and "decryption failed or bad record mac" in str(e)) ): return True elif skip_404 and ( (isinstance(e, HTTPError) and e.response.status_code == 404) or (isinstance(e, OSError) and e.errno == 2) ): return False else: raise e
b125841dff7154352b2031013ffa7058242e4974
3,218
def cvCloneMat(*args): """cvCloneMat(CvMat mat) -> CvMat""" return _cv.cvCloneMat(*args)
84dc4f59d29580477b7ded41f26d95011b2804b3
3,219
from typing import Callable import time def run_episode(kwargs) -> [Trajectory]: """ Runs a single episode and collects the trajectories of each agent """ total_controller_time = 0 env_dict: Callable = kwargs.get("env_dict") obs_builder = kwargs.get("obs_builder") controller_creator: Callable = kwargs.get("controller_creator") episode_id: int = kwargs.get("episode_id") max_episode_length: int = kwargs.get("max_episode_length", 1000) render: bool = kwargs.get("render", False) # Create and Start Environment _env = load_env(env_dict, obs_builder_object=obs_builder) obs, info = _env.reset(regenerate_rail=False, regenerate_schedule=True, ) score = 0 _trajectories = [Trajectory() for _ in _env.get_agent_handles()] # Create and Start Controller controller: AbstractController = controller_creator() start = time.time() controller.start_of_round(obs=obs, env=_env) total_controller_time += time.time() - start if render: env_renderer = RenderTool(_env) env_renderer.reset() for step in range(max_episode_length): start = time.time() action_dict, processed_obs = controller.act(observation=obs) total_controller_time += time.time() - start next_obs, all_rewards, done, info = _env.step(action_dict) if render: env_renderer.render_env(show=True, show_observations=True, show_predictions=False) # Save actions and rewards for each agent [_trajectories[agent_handle].add_row( state=processed_obs[agent_handle], action=action_dict[agent_handle], reward=all_rewards[agent_handle], done=done[agent_handle]) for agent_handle in _env.get_agent_handles()] score += sum(all_rewards) obs = next_obs.copy() if done['__all__']: break if render: env_renderer.close_window() # print(f"\nController took a total time of: {total_controller_time} seconds", flush=True) return _trajectories
91b64a8df57e1fc47ffecc184b0473d633b545c4
3,220
def get_data(request: Request): """ Get the data page. Parameters ---------- request : Request The request object. Returns ------- HTMLResponse The data page. """ return templates.TemplateResponse("data.html", {"request": request})
4a44df5122f9db9009a769d4d9bec99d924fb0f7
3,222
def remove_last_measurements(dag_circuit, perform_remove=True): """Removes all measurements that occur as the last operation on a given qubit for a DAG circuit. Measurements that are followed by additional gates are untouched. This operation is done in-place on the input DAG circuit if perform_pop=True. Parameters: dag_circuit (qiskit.dagcircuit._dagcircuit.DAGCircuit): DAG circuit. perform_remove (bool): Whether to perform removal, or just return node list. Returns: list: List of all measurements that were removed. """ removed_meas = [] try: meas_nodes = dag_circuit.get_named_nodes('measure') except DAGCircuitError: return removed_meas for idx in meas_nodes: _, succ_map = dag_circuit._make_pred_succ_maps(idx) if len(succ_map) == 2: # All succesors of the measurement are outputs, one for qubit and one for cbit # (As opposed to more gates being applied), and it is safe to remove the # measurement node and add it back after the swap mapper is done. removed_meas.append(dag_circuit.multi_graph.node[idx]) if perform_remove: dag_circuit._remove_op_node(idx) return removed_meas
858a16c33de67f835cf32535f2e69f9c144d6e25
3,223
def J(*args, **kwargs): """Wrapper around jsonify that sets the Content-Type of the response to application/vnd.api+json. """ response = jsonify(*args, **kwargs) response.mimetype = "application/vnd.api+json" return response
714537b180cab60b7ad614018fa551020aeee292
3,225
def is_gzipped(filename): """ Returns True if the target filename looks like a GZIP'd file. """ with open(filename, 'rb') as fh: return fh.read(2) == b'\x1f\x8b'
b1afb5b9cddc91fbc304392171f04f4b018fa929
3,227
def tag_helper(tag, items, locked=True, remove=False): """ Simple tag helper for editing a object. """ if not isinstance(items, list): items = [items] data = {} if not remove: for i, item in enumerate(items): tagname = '%s[%s].tag.tag' % (tag, i) data[tagname] = item if remove: tagname = '%s[].tag.tag-' % tag data[tagname] = ','.join(items) data['%s.locked' % tag] = 1 if locked else 0 return data
27500df099824fff1d93afbe7649d42141ffa9c1
3,229
def get_keys_from_file(csv): """Extract the credentials from a csv file.""" lines = tuple(open(csv, 'r')) creds = lines[1] access = creds.split(',')[2] secret = creds.split(',')[3] return access, secret
eccf56c52dd82656bf85fef618133f86fd9276e6
3,230
import pkg_resources import json def fix_model(project, models, invert=False): """Fix model name where file attribute is different from values accepted by facets >>> fix_model('CMIP5', ['CESM1(BGC)', 'CESM1-BGC']) ['CESM1(BGC)', 'CESM1(BGC)'] >>> fix_model('CMIP5', ['CESM1(BGC)', 'CESM1-BGC'], invert=True) ['CESM1-BGC', 'CESM1-BGC'] Args: project (str): data project models (list) models to convert invert (bool): Invert the conversion (so go from ``CESM1(BGC)`` to ``CESM1-BGC``) """ project = project.upper().split('-')[0] if project in ['CMIP5', 'CORDEX']: mfile = pkg_resources.resource_filename(__name__, 'data/'+project+'_model_fix.json') with open(mfile, 'r') as f: mdict = json.loads(f.read()) if invert: mfix = {v: k for k, v in mdict.items()} else: mfix = mdict return [mfix[m] if m in mfix.keys() else m for m in models]
b1e91ba7305a75ed376948d92607b1ab97bc93f2
3,231
from typing import Union from typing import List from typing import Tuple def _get_choices(choices: Union[str, List]) -> List[Tuple[str, str]]: """Returns list of choices, used for the ChoiceFields""" result = [('', '')] if isinstance(choices, str): result.append((choices, choices)) else: for choice in choices: result.append((choice, choice)) return result
249a068571b0ddca858cd8dcc4f2f7af25689b9d
3,235
def invalid_file(): """Create an invalid filename string.""" return "/tmp/INVALID.FILE"
9a249f3ef9445cb78bc962e46ef524360bb44bdb
3,236
def get_model(app_label, model_name): """ Fetches a Django model using the app registery. All other methods to acces models might raise an exception about registery not being ready yet. This doesn't require that an app with the given app label exists, which makes it safe to call when the registery is being populated. Raises LookupError if model isn't found """ try: return apps.get_model(app_label, model_name) except AppRegistryNotReady: if apps.apps_ready and not apps.models_ready: # if this function is called while `apps.populate()` is # loading models, ensure that the module thar defines # the target model has been imorted and try looking the # model up in the app registery. This effectiveness emulates # `from path.to.app.models import Model` where we use # `Model = get_model('app', 'Model')` instead app_config = apps.get_app_config(app_label) # `app_config.import_models()` cannot be used here because # it would interfere with `app.populate()` import_module("%s.%s" % (app_config.name, MODELS_MODULE_NAME)) # In order to account for case-insensitivity of model_name, # look up the model through a private API of the app registry. return apps.get_registered_model(app_label, model_name) else: # This must be a different case (e.g. the model really doesn't # exist). We just re-raise the exception. raise
dd3ba70f2220ba09d256ae58b418cd3401f129e6
3,237
def affaires_view(request): """ Return all affaires """ # Check connected if not check_connected(request): raise exc.HTTPForbidden() query = request.dbsession.query(VAffaire).order_by(VAffaire.id.desc()).all() return Utils.serialize_many(query)
c44e703680034230121c426e7496746355b8ee4b
3,238
from typing import Union def metric_try_to_float(s: str) -> Union[float, str]: """ Try to convert input string to float value. Return float value on success or input value on failure. """ v = s try: if "%" in v: v = v[:-1] return float(v) except ValueError: return str(s)
6b0121469d35bc6af04d4808721c3ee06955d02e
3,239
def _table_difference(left: TableExpr, right: TableExpr): """ Form the table set difference of two table expressions having identical schemas. A set difference returns only the rows present in the left table that are not present in the right table Parameters ---------- left : TableExpr right : TableExpr Returns ------- difference : TableExpr """ return ops.Difference(left, right).to_expr()
aae66ddb29d30a0bc95750d62ce87c16773d3d63
3,241
def parse_args(): """ It parses the command-line arguments. Parameters ---------- args : list[str] List of command-line arguments to parse Returns ------- parsed_args : argparse.Namespace It contains the command-line arguments that are supplied by the user """ parser = ap.ArgumentParser(description="Encoding algorithm.") parser.add_argument("docking_program", type=str, help="Path to folder containing the PDB files.") parser.add_argument("output", type=str, help="Path to the output file.") parser.add_argument("-c","--n_proc", type=int, help='Number of processor.', default = 1) parser.add_argument("--chain", type=str, help='Chain ID from the ligand protein.', default = 'B') parser.add_argument("--score", type=str, help='Path to normalized scoring file to add in the ' + 'encoding.') parsed_args = parser.parse_args() return parsed_args
7849b9a1422e959be9e5b2504dc7d42c2475572d
3,243
def parse_row(row, entity_dict, span_capture_list, previous_entity): """ updates the entity dict and span capture list based on row contents """ bio_tag, entity = parse_tag(row.tag) if bio_tag == 'B': # update with previous entity, if applicable entity_dict, span_capture_list, previous_entity = update_entity_dict(entity_dict, span_capture_list, previous_entity) # start collecting new entity span_capture_list = [row.word] previous_entity = entity elif bio_tag == 'I': # continue collecting entity span_capture_list.append(row.word) else: # update with previous entity, if applicable entity_dict, span_capture_list, previous_entity = update_entity_dict(entity_dict, span_capture_list, previous_entity) previous_entity = None return entity_dict, span_capture_list, previous_entity
a7d49b6e4dbe747c65688c01652f1d413314b407
3,244
def _is_fn_init( tokens: list[Token] | Token, errors_handler: ErrorsHandler, path: str, namehandler: NameHandler, i: int = 0 ): """ "fn" <fn-name> "("<arg>*")" (":" <returned-type>)? <code-body>""" tokens = extract_tokens_with_code_body(tokens, i) if tokens is None or not is_kw(tokens[0], 'fn'): return False has_type_annotation = len(tokens) >= 4 and is_op(tokens[3], '->') if len(tokens) < 4 or not is_base_name(tokens[1]) or tokens[2].type != TokenTypes.PARENTHESIS \ or not _is_code_body(tokens[-1]) or ( has_type_annotation and not _is_type_expression(tokens[:-1], errors_handler, path, namehandler, 4) ) or (not has_type_annotation and len(tokens) != 4): errors_handler.final_push_segment( path, 'SyntaxError: invalid syntax', tokens[-1], fill=True ) return False args_tokens = tokens[2].value if args_tokens: if args_tokens[0].type == TokenTypes.TUPLE: has_default_argument = False for arg_tokens in args_tokens[0].value: if not arg_tokens: break if not _is_setvalue_expression(arg_tokens, errors_handler, path, namehandler, init_type='let'): errors_handler.final_push_segment( path, 'SyntaxError: invalid syntax', arg_tokens[0], fill=True ) return False if DummyToken(TokenTypes.OP, '=') in arg_tokens: has_default_argument = True elif has_default_argument: errors_handler.final_push_segment( path, 'SyntaxError: non-default argument follows default argument', arg_tokens[0], fill=True ) return False elif not _is_setvalue_expression(args_tokens, errors_handler, path, namehandler, init_type='let'): return False return True
2e65dbe9e7976f7e13215fbf04bd40f08da7e16e
3,245
import asyncio from typing import cast async def http_connect(address: str, port: int) -> HttpConnection: """Open connection to a remote host.""" loop = asyncio.get_event_loop() _, connection = await loop.create_connection(HttpConnection, address, port) return cast(HttpConnection, connection)
2d98815b17f6d0e03763b643a052737f6931a33f
3,246
def make_parallel_transformer_config() -> t5_architecture.EncoderDecoder: """Returns an EncoderDecoder with parallel=True.""" dtype = jnp.bfloat16 num_attn_heads = 8 make_dropout = lambda: nn.Dropout(rate=0.1, broadcast_dims=(-2,)) make_layer_norm = layer_norm.T5LayerNorm def _make_encoder_layer(shared_relative_position_bias): assert shared_relative_position_bias is None return t5_architecture.EncoderLayer( attention=make_attention1(num_attn_heads, dtype), mlp=make_mlp1(dtype), dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, relative_position_bias_factory=( lambda: _make_relative_position_bias(num_attn_heads, dtype)), parallel=True, ) def _make_decoder_layer(shared_relative_position_bias): assert shared_relative_position_bias is None return t5_architecture.DecoderLayer( self_attention=make_attention1(num_attn_heads, dtype), encoder_decoder_attention=make_attention1(num_attn_heads, dtype), mlp=make_mlp1(dtype), dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, relative_position_bias_factory=( lambda: _make_relative_position_bias(num_attn_heads, dtype)), parallel=True, ) def _make_encoder(shared_token_embedder): assert shared_token_embedder is None return t5_architecture.Encoder( num_layers=3, token_embedder_factory=lambda: make_token_emb1(2_000, dtype), layer_factory=_make_encoder_layer, input_dropout_factory=make_dropout, output_dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, dtype=dtype, ) def _make_decoder(shared_token_embedder): assert shared_token_embedder is None return t5_architecture.Decoder( num_layers=2, token_embedder_factory=lambda: make_token_emb1(2_000, dtype), layer_factory=_make_decoder_layer, dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, output_logits_factory=None, dtype=dtype, ) return t5_architecture.EncoderDecoder( shared_token_embedder_factory=lambda: None, encoder_factory=_make_encoder, decoder_factory=_make_decoder, )
f61c02d66075fb71fbecd58e8c369a6ba406c15f
3,247
def get_device_mapping(embedding_sizes, num_gpus, data_parallel_bottom_mlp, experimental_columnwise_split, num_numerical_features): """Get device mappings for hybrid parallelism Bottom MLP running on device 0. Embeddings will be distributed across among all the devices. Optimal solution for partitioning set of N embedding tables into K devices to minimize maximal subset sum is an NP-hard problem. Additionally, embedding tables distribution should be nearly uniform due to the performance constraints. Therefore, suboptimal greedy approach with max bucket size is used. Args: embedding_sizes (Sequence[int]): embedding tables sizes num_gpus (int): Default 8. Returns: device_mapping (dict): """ if num_numerical_features == 0: bottom_mlp_ranks = [] elif data_parallel_bottom_mlp: bottom_mlp_ranks = list(range(num_gpus)) else: bottom_mlp_ranks = [0] if experimental_columnwise_split: gpu_buckets = num_gpus * [list(range(len(embedding_sizes)))] vectors_per_gpu = [len(bucket) for bucket in gpu_buckets] if num_numerical_features > 0: vectors_per_gpu[0] += 1 # count bottom mlp return MultiGpuMetadata(bottom_mlp_ranks=bottom_mlp_ranks, rank_to_categorical_ids=gpu_buckets, rank_to_feature_count=vectors_per_gpu) if num_gpus > 4 and not data_parallel_bottom_mlp and num_numerical_features > 0: # for higher no. of GPUs, make sure the one with bottom mlp has no embeddings gpu_buckets = distribute_to_buckets(embedding_sizes, num_gpus - 1) # leave one device out for the bottom MLP gpu_buckets.insert(0, []) else: gpu_buckets = distribute_to_buckets(embedding_sizes, num_gpus) vectors_per_gpu = [len(bucket) for bucket in gpu_buckets] if not data_parallel_bottom_mlp: for rank in bottom_mlp_ranks: vectors_per_gpu[rank] += 1 # count bottom mlp return MultiGpuMetadata(bottom_mlp_ranks=bottom_mlp_ranks, rank_to_categorical_ids=gpu_buckets, rank_to_feature_count=vectors_per_gpu)
2265831d87d8f48c4b87ca020c7f56293cb62647
3,248
def _generate_relative_positions_embeddings(length, depth, max_relative_position, name): """Generates tensor of size [length, length, depth].""" with tf.variable_scope(name): relative_positions_matrix = _generate_relative_positions_matrix( length, max_relative_position) vocab_size = max_relative_position * 2 + 1 # Generates embedding for each relative position of dimension depth. embeddings_table = tf.get_variable("embeddings", [vocab_size, depth]) embeddings = tf.gather(embeddings_table, relative_positions_matrix) return embeddings
7c69705cf5cc161144181b09a377f66d863b12ae
3,249
def continTapDetector( fs: int, x=[], y=[], z=[], side='right', ): """ Detect the moments of finger-raising and -lowering during a fingertapping task. Function detects the axis with most variation and then first detects several large/small pos/neg peaks, then the function determines sample-wise in which part of a movement or tap the acc-timeseries is, and defines the exact moments of finger-raising, finger-lowering, and the in between stopping moments. Input: - x, y, z (arr): all three one-dimensional data- arrays containing one acc-axis each. Exact labeling x/y/z is not important. Should have equal lengths. Typically timeseries from one run. - fs (int): corresponding sample frequency - side (string): side where acc-data origin from Return: - tapTimes (list of lists): each list contains 4 timestamps (in seconds from array-start) indicating moments of: [finger-raise start, finger raise end, finger-lowering start, finger-lowering end] - moveTimes, restTimes: idem but then for 'other movements' and rest periods (of > 1 sec), each list contains the first and last timestamp of move/rest period. """ # input sanity checks if x != [] and y != []: assert len(x) == len(y), f'Arrays X and Y should' ' have equal lengths' if x != [] and z != []: assert len(x) == len(z), f'Arrays X and Z should' ' have equal lengths' if z != [] and y != []: assert len(y) == len(z), f'Arrays X and Z should' ' have equal lengths' assert side in ['left', 'right'], f'Side should be ' 'left or right' ax_arrs = [] for ax in [x, y, z]: if ax != []: ax_arrs.append(ax) # Find axis with most variation maxVar = np.argmax([variation(arr) for arr in ax_arrs]) # maxRMS = np.argmax([sum(arr) for arr in ax_arrays]) sig = ax_arrs[maxVar] # acc-signal to use # check data for pos/neg and order of magn sig = check_PosNeg_and_Order(sig, fs) # add differential of signal sigdf = np.diff(sig) # timestamps from start (in sec) timeStamps = np.arange(0, len(sig), 1 / fs) # Thresholds for movement detection posThr = np.mean(sig) negThr = -np.mean(sig) # Find peaks to help movement detection peaksettings = { 'peak_dist': 0.1, 'cutoff_time': .25, } # find relevant positive peaks posPeaks = find_peaks( sig, height=(posThr, np.max(sig)), distance=fs * .05, # settings[task]['peak_dist'] )[0] # select Pos-peaks with surrounding >> Pos and Neg Diff endPeaks = [np.logical_or( any(sigdf[i -3:i + 3] < np.percentile(sig, 10)), any(sigdf[i -3:i + 3] > np.percentile(sig, 90)) ) for i in posPeaks] endPeaks = posPeaks[endPeaks] # delete endPeaks from posPeaks for i in endPeaks: idel = np.where(posPeaks == i) posPeaks = np.delete(posPeaks, idel) # delete endPeaks which are too close after each other # by starting with std False before np.diff, the diff- # scores represent the distance to the previous peak tooclose = endPeaks[np.append( np.array(False), np.diff(endPeaks) < (fs / 6))] for p in tooclose: i = np.where(endPeaks == p) endPeaks = np.delete(endPeaks, i) posPeaks = np.append(posPeaks, p) # double check endPeaks with np.diff hop = 3 endP2 = [] for n in np.arange(hop, sig.shape[0]): if np.logical_and( any(np.diff(sig)[n - hop:n] > np.percentile(sig, 90)), any(np.diff(sig)[n- hop:n] < np.percentile(sig, 10)) ): # if diff is above extremes within hop-distance endP2.append(n) endP2 = list(compress(endP2, np.diff(endP2) > hop)) for p2 in endP2: # add to endPeaks if not containing if min(abs(p2 - endPeaks)) > 5: endPeaks = np.append(endPeaks, p2) smallNeg = find_peaks( -1 * sig, # convert pos/neg for negative peaks height=(-.5e-7, abs(np.min(sig)) * .5), distance=fs * peaksettings['peak_dist'] * .5, prominence=abs(np.min(sig)) * .05, # wlen=40, )[0] # largeNeg = find_peaks( # -1 * sig, # height=abs(np.min(sig)) * .4, # # first value is min, second is max # distance=fs * peaksettings['peak_dist'], # # prominence=np.min(yEpoch) * .1, # # wlen=40, # )[0] # Lists to store collected indices and timestamps tapi = [] # list to store indices of tap movei = [] # list to store indices of other move resti = [] # list to store indices of rest resttemp = [] # temp-list to collect rest-indices [1st, Last] starttemp = [np.nan] * 6 # for during detection process # [startUP, fastestUp, stopUP, # startDown, fastestDown, stopDown] tempi = starttemp.copy() # to start process state = 'lowRest' # Sample-wise movement detection for n, y in enumerate(sig[:-1]): if state == 'otherMov': # PM LEAVE OUT OTHER-MOV-STATE if n in endPeaks: # during other Move: end Tap tempi[-1] = n # finish and store index list if (tempi[-1] - tempi[0]) > fs * .1: movei.append(tempi) # save if long enough state='lowRest' tempi = starttemp.copy() # after end: start lowRest continue try: next10 = sum([negThr < Y < posThr for Y in sig[range(n, n + int(fs * .2) )]]) if next10 > (fs * .2) * .8: # End 'other move' if 8 / 10 next samples are inactive tempi[-1] = n # END of OTHER MOVE if (tempi[-1] - tempi[0]) > fs * .1: movei.append(tempi) tempi = starttemp.copy() # after end: start lowRest state = 'lowRest' except IndexError: # prevent indexerror out of range for next10 # print('end of timeseries') continue elif state == 'lowRest': if np.logical_and( y > posThr, # if value is over pos-threshold sigdf[n] > np.percentile(sigdf, 75) # AND diff is over Thr # any([Y in posPeaks for Y in range(n, n + int(fs * .2))]) # USED IN PAUSED ): if resttemp: # close and store active rest period resttemp.append(n) # Add second and last rest-ind if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec resti.append(resttemp) # add finished rest-indices resttemp = [] # reset resttemp list state='upAcc1' tempi[0] = n # START TIME Tap-UP # print('save start UP', n) # elif np.logical_or( # np.logical_or(n in posPeaks, n in smallNeg[0]), # ~ (negThr < y < posThr) # ): # if resttemp: # close and store active rest period # resttemp.append(n) # Add second and last rest-ind # if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec # resti.append(resttemp) # add finished rest-indices # resttemp = [] # reset resttemp list # state = 'otherMov' # tempi.append(n) # START TIME Othermovement elif n in endPeaks: # during lowRest, endPeak found resttemp.append(n) # Add second and last rest-ind if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec resti.append(resttemp) # add finished rest-indices resttemp = [] # reset resttemp list state='lowRest' tempi = starttemp.copy() # after end: start lowRest continue else: # lowRest stays lowRest if not resttemp: # if rest-temp list is empty resttemp.append(n) # start of rest period elif state == 'upAcc1': if n in posPeaks: state='upAcc2' # acc getting less, veloc still increasing # print('acc-peakUP detected', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'upAcc2': if y < 0: # crossing zero-line, start of decelleration tempi[1] = n # save n as FASTEST MOMENT UP state='upDec1' # print('fastest point UP', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state=='upDec1': if n in smallNeg: state='upDec2' elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'upDec2': if np.logical_or(y > 0, sigdf[n] < 0): # if acc is pos, or goes into acceleration # phase of down movement state='highRest' # end of UP-decell tempi[2]= n # END OF UP !!! elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'highRest': if np.logical_and( y < negThr, sigdf[n] < 0 #np.percentile(sigdf, 25) # from highRest: LOWERING starts when acc # gets below negative-threshold AND when # differential is negative ): state='downAcc1' tempi[3] = n # START OF LOWERING # print('LOWERING START', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found # elif state == 'downAcc1': # if n in largeNeg[0]: # state='downAcc2' # elif n - tempi[2] > (fs * peaksettings[task]['cutoff_time']): # # if down-move takes > defined cutoff time # state = 'otherMov' # reset to start-state # movei.append(tempi) # newly added # tempi = [] # newly added # elif state == 'downAcc2': elif state == 'downAcc1': if np.logical_and( y > 0, sigdf[n] > 0 ): # if acceleration gets positive again and keeps # one increasing (sigdf) downwards acceleration # is finished -> ADD FASTEST DOWNW MOMENT state='downDec1' tempi[4] = n # print('fastest DOWN @', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found # elif n - tempi[2] > (fs * peaksettings[task]['cutoff_time']): # # if down-move takes > defined cutoff time # state = 'otherMov' # reset to start-state # movei.append(tempi) # newly added # tempi = [] # newly added elif state == 'downDec1': if n in endPeaks: state = 'downDec2' elif state=='downDec2': if np.logical_or( y < 0, sigdf[n] < 0 ): # after large pos-peak, before around impact # artefectual peaks state='lowRest' tempi[5] = n # store current indices tapi.append(tempi) tempi = starttemp.copy() # restart w/ 6*nan # drop first tap due to starting time tapi = tapi[1:] # convert detected indices-lists into timestamps tapTimes = [] # list to store timeStamps of tap # moveTimes = [] # alternative list for movements # restTimes = [] # list to sore rest-timestamps for tap in tapi: tapTimes.append( [timeStamps[I] for I in tap if I is not np.nan] ) # for tap in movei: moveTimes.append(timeStamps[tap]) # for tap in resti: restTimes.append(timeStamps[tap]) return tapi, tapTimes, endPeaks
742a7f5590e8ad76e521efe5d1c293c43d71de0b
3,250
def parallelize(df, func): """ Split data into max core partitions and execute func in parallel. https://www.machinelearningplus.com/python/parallel-processing-python/ Parameters ---------- df : pandas Dataframe func : any functions Returns ------- data : pandas Dataframe Returned dataframe of func. """ cores = cpu_count() data_split = np.array_split(df, cores) pool = Pool(cores) data = pd.concat(pool.map(func, data_split), ignore_index=1) pool.close() pool.join() return data
dc9c085ada6ffa26675bd9c4a218cc06807f9511
3,251