content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def get_seconds_from_duration(time_str: str) -> int: """ This function will convert the TM1 time to seconds :param time_str: P0DT00H01M43S :return: int """ pattern = re.compile('\w(\d+)\w\w(\d+)\w(\d+)\w(\d+)\w') matches = pattern.search(time_str) d, h, m, s = matches.groups() seconds = (int(d) * 86400) + (int(h) * 3600) + (int(m) * 60) + int(s) return seconds
a8614c0ed6e41c7216ae461ef1fd57319a5995e1
3,649,280
def get_protecteds(object: Object) -> Dictionary: """Gets the protected namespaces of an object.""" return object.__protecteds__
479f6ee0a9334107f67517fd6bb2ad55a915d0ac
3,649,281
def pah2area(_position, angle, height, shape): """Calculates area from position, angle, height depending on shape.""" if shape == "PseudoVoigt": fwhm = np.tan(angle) * height area = (height * (fwhm * np.sqrt(np.pi / ln2)) / (1 + np.sqrt(1 / (np.pi * ln2)))) return area elif shape == "DoniachSunjic": fwhm = np.tan(angle) * height area = height / pure_ds(0, amplitude=1, center=0, fwhm=fwhm, asym=0.5) return area elif shape == "Voigt": fwhm = np.tan(angle) * height area = height / voigt(0, amplitude=1, center=0, fwhm=fwhm, fwhm_l=0.5) return area raise NotImplementedError
79e239de4ee8b356152717f7a9a301f062cc6c71
3,649,282
def config(key, values, axis=None): """Class decorator to parameterize the Chainer configuration. This is a specialized form of `parameterize` decorator to parameterize the Chainer configuration. For all `time_*` functions and `setup` function in the class, this decorator wraps the function to be called inside the context where specified Chainer configuration set. This decorator adds parameter axis with the name of the configuration by default. You can change the axis name by passing axis parameter. You cannot apply `parameterize` decorator to the class already decorated by this decorator. If you want to use `parameterize` along with this decorator, make `parameterize` the most inner (i.e., the closest to the class declaration) decorator. Example of usage is as follows: >>> @config('autotune', [True, False]) ... class ConvolutionBenchmark(object): ... def time_benchmark(self): ... ... """ axis = key if axis is None else axis def _wrap_class(klass): assert isinstance(klass, type) if not hasattr(chainer.config, key): print( '''Notice: Configuration '{}' unknown to this version of ''' '''Chainer'''.format(key)) return _inject_config(klass, axis, key, values) return _wrap_class
a2ab11ca245647c6a5267b2f1c62a55b9aa1b96b
3,649,284
def dot2states(dot): """Translate a dot-bracket string in a sequence of numerical states""" dot = dot.replace(".", "0") # Unpaired dot = dot.replace("(", "1") # Paired dot = dot.replace(")", "1") # Paired return np.array(list(dot), dtype=int)
655b57749a39d04f62aae20ac16ffb1f31b0bc71
3,649,286
def mel_to_hz(mels, htk=False): """Convert mel bin numbers to frequencies Examples -------- >>> librosa.mel_to_hz(3) 200. >>> librosa.mel_to_hz([1,2,3,4,5]) array([ 66.667, 133.333, 200. , 266.667, 333.333]) Parameters ---------- mels : np.ndarray [shape=(n,)], float mel bins to convert htk : bool use HTK formula instead of Slaney Returns ------- frequencies : np.ndarray [shape=(n,)] input mels in Hz See Also -------- hz_to_mel """ mels = np.asanyarray(mels) if htk: return 700.0 * (10.0**(mels / 2595.0) - 1.0) # Fill in the linear scale f_min = 0.0 f_sp = 200.0 / 3 freqs = f_min + f_sp * mels # And now the nonlinear scale min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if mels.ndim: # If we have vector data, vectorize log_t = (mels >= min_log_mel) freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel)) elif mels >= min_log_mel: # If we have scalar data, check directly freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel)) return freqs
93e9d115d9ef0a58420c796737b96f4460f44ceb
3,649,287
import numpy as np def load_images(images): """ Decodes batch of image bytes and returns a 4-D numpy array. """ batch = [] for image in images: img_np = readImage(image) batch.append(img_np) batch_images = np.concatenate(batch) logger.info('batch_images.shape:%s'%(str(batch_images.shape))) return batch_images
ae4f18488cdfa4980f849f2f7110f9963381e6e7
3,649,288
def stats_hook(): """ decorator to register a stats hook. :raises InvalidStatsHookTypeError: invalid stats hook type error. :returns: stats hook class. :rtype: type """ def decorator(cls): """ decorates the given class and registers an instance of it into available stats hooks. :param type cls: stats hook class. :returns: stats hook class. :rtype: type """ instance = cls() stat_services.register_hook(instance) return cls return decorator
de386a9bff39c4060833f11100ec538b6d2b8d68
3,649,290
def safe_infer(node, context=None): """Return the inferred value for the given node. Return None if inference failed or if there is some ambiguity (more than one node has been inferred). """ try: inferit = node.infer(context=context) value = next(inferit) except exceptions.InferenceError: return None try: next(inferit) return None # None if there is ambiguity on the inferred node except exceptions.InferenceError: return None # there is some kind of ambiguity except StopIteration: return value
928c1d2e3c2813cc389085ea6bd3ccd50709effe
3,649,291
import functools def catch_exception(func): """ Returns: object: """ @functools.wraps(func) def wrapper(*args, **kwargs): worker = kwargs['error_catcher'] try: return func(*args, **kwargs) except Exception as e: print('stdout:', worker.stdout.read().decode("utf-8")) print('stderr:', worker.stderr.read().decode("utf-8")) raise return wrapper
be579d9b6723e5025b7b70f38c83bcedc30196a5
3,649,292
def RandomCrop(parent, new_shape, name=""): """\ Crop an image layer at a random location with size ``[height, width]``. :param parent: parent layer :param new_shape: [height, width] size :param name: name of the output layer :return: CropRandom layer """ return _eddl.RandomCrop(parent, new_shape, name)
6078cf9f6daf73876d3503a1e77523df079c41d1
3,649,293
import time def get_linear_sys(eqns, params): """Gets the linear system corresponding to the symbolic equations Note that this function only work for models where the left-hand side of the equations all contain only linear terms with respect to the given model parameters. For these linear cases, this function will return a matrix :math:`\\mathbf{A}` and a vector :math:`\\mathbf{v}` such that the given equations can be written as .. math:: \\mathbf{A} \\mathbf{x} = \\mathbf{v} with :math:`\\mathbf{x}` being the column vector of the values of the model symbols. Normally the matrix will have more rows than columns for over- determined fitting. :param eqns: A sequence of ``Eqn`` objects for the equations of the fitting. :param params: A sequence of the ``ModelParam`` objects for the parameters to be fitted. :returns: The matrix :math:`\\mathbf{A}` and the vector :math:`\\mathbf{v}`. :rtype: tuple :raises ValueError: if the system of equations are not linear. """ # We treat the equations one-by-one, write rows of the matrix and # the vector one-by-one. n_params = len(params) n_eqns = len(eqns) mat = np.zeros((n_eqns, n_params), dtype=np.float) vec = np.empty((n_eqns, ), dtype=np.float) # Extract the symbols for the parameters and assort the result into a # dictionary for fast loop up of the location of the symbols. symbs = { param.symb: idx for idx, param in enumerate(params) } print('\nForming the matrix and vectors for the linear model...') start_time = time.process_time() for idx, eqn in enumerate(eqns): # First get the vector to the reference value of the equation. vec[idx] = eqn.ref_val # Get the symbolic expression. expr = eqn.modelled_val.simplify().expand() # Get its terms. if isinstance(expr, Add): terms = expr.args else: terms = [expr, ] # Loop over the terms to get the coefficients ahead of the symbols. for term in terms: # Split the term into a symbol and a coefficient. symb, coeff = _get_symb_w_coeff(term) if symb is None: # When we are treating a pure number term, we can move it to # the left-hand side of the equation. vec[idx] -= coeff else: # When we are going a symbol, we need to locate the symbol. try: col_idx = symbs[symb] except KeyError: raise ValueError( 'Unrecognised symbol {!r}'.format(symb) ) else: mat[idx, col_idx] += coeff # Go on to the next term. continue # Go on to the next equation. continue print( 'Finished: {!s}sec.'.format(time.process_time() - start_time) ) # Return the matrix and the vector. return mat, vec
e3ef88c695bcbcd6e7ab1dfbe8ee45ad552e3be7
3,649,295
def slightly(membership: npt.ArrayLike) -> npt.ArrayLike: """ Applies the element-wise function fn(u) = u^(1/2). :param membership: Membership function to be modified. >>> from fuzzy_expert.operators import slightly >>> slightly([0, 0.25, 0.5, 0.75, 1]) array([0. , 0.16326531, 0.99696182, 1. , 0. ]) """ plus_membership: npt.ArrayLike = np.power(membership, 1.25) not_very_membership: npt.ArrayLike = 1 - np.power(membership, 2) membership: npt.ArrayLike = np.where( membership < not_very_membership, plus_membership, not_very_membership ) membership: npt.ArrayLike = membership / np.max(membership) return np.where(membership <= 0.5, membership ** 2, 1 - 2 * (1 - membership) ** 2)
eb0e71462c5e3959584970e9e9b84a3dff876d54
3,649,296
def int_max(int_a, int_b): """ max(a, b) """ if int_a > int_b: return int_a else: return int_b
5ae0df8ff7bdc5539d127fad4df03b6215d9380f
3,649,297
def extract_depth_map(frame): """ Extract front-view lidar camera projection for ground-truth depth maps """ (range_images, camera_projections, range_image_top_pose) = frame_utils.parse_range_image_and_camera_projection(frame) for c in frame.context.camera_calibrations: if dataset_pb2.CameraName.Name.Name(c.name) == 'FRONT': extrinsic = np.reshape( np.array(c.extrinsic.transform, np.float32), [4, 4]) range_images_cartesian = convert_range_image_to_cartesian(frame,range_images,range_image_top_pose) cam_projection = (np.array(camera_projections[1][0].data).reshape(64,2650,6))[np.newaxis,...] depth = range_image_utils.build_camera_depth_image(range_images_cartesian[1][np.newaxis,...],extrinsic[np.newaxis,...],cam_projection ,[1280,1920],1) p = np.where(depth[0]!= 0) v = np.extract(depth[0]!=0,depth[0]) grid_w,grid_h = np.mgrid[0:1280,0:1920] depth_map = griddata(p, v, (grid_w, grid_h), method='nearest') depth_map = depth_map return depth_map[0:1280:4,0:1920:4]
2568d8563e256bde6c5df5c3bb34038b57993a1b
3,649,298
from .functions import express def cross(vect1, vect2): """ Returns cross product of two vectors. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector.vector import cross >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> cross(v1, v2) (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k """ if isinstance(vect1, Add): return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args) if isinstance(vect2, Add): return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args) if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector): if vect1._sys == vect2._sys: n1 = vect1.args[0] n2 = vect2.args[0] if n1 == n2: return Vector.zero n3 = ({0,1,2}.difference({n1, n2})).pop() sign = 1 if ((n1 + 1) % 3 == n2) else -1 return sign*vect1._sys.base_vectors()[n3] try: v = express(vect1, vect2._sys) except ValueError: return Cross(vect1, vect2) else: return cross(v, vect2) if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero): return Vector.zero if isinstance(vect1, VectorMul): v1, m1 = next(iter(vect1.components.items())) return m1*cross(v1, vect2) if isinstance(vect2, VectorMul): v2, m2 = next(iter(vect2.components.items())) return m2*cross(vect1, v2) return Cross(vect1, vect2)
8857f53a3db4066b2be6cd0fc3443b89a9c97022
3,649,299
def get_cognates(wordlist, ref): """ Retrieve cognate sets from a wordlist. """ etd = wordlist.get_etymdict(ref=ref) cognates = {} if ref == "cogids": for cogid, idxs_ in etd.items(): idxs, count = {}, 0 for idx, language in zip(idxs_, wordlist.cols): if idx: tks = wordlist[idx[0], "tokens"] cogidx = wordlist[idx[0], ref].index(cogid) idxs[language] = " ".join([ x.split("/")[1] if "/" in x else x for x in tks.n[cogidx]]) count += 1 else: idxs[language] = "" if count >= 2: cognates[cogid] = idxs elif ref == "cogid": for cogid, idxs_ in etd.items(): idxs, count = {}, 0 for idx, language in zip(idxs_, wordlist.cols): if idx: tks = wordlist[idx[0], "tokens"] idxs[language] = " ".join([x.split("/")[1] if "/" in x else x for x in tks]) count += 1 else: idxs[language] = "" if count >= 2: cognates[cogid] = idxs return cognates
bf64ecb8f2182dba06f0b28b384c0e66ba78d49e
3,649,300
def get_actress_string(_movie, s): """Return the string of the actress names as per the naming convention specified Takes in the html contents to filter out the actress names""" a_list = get_actress_from_html(_movie, s) actress_string = '' # if javlibrary returns no actresses then we'll just say whatever we specified if len(a_list) == 0: return s['name-for-actress-if-blank'] for actress in a_list: actress_string += actress + s['delimiter-between-multiple-actresses'] # strip the last delimiter, we don't want it actress_string = actress_string[0:-1] return actress_string
bf9bd07bfc6c3e5bac87c52f4c6cba113a607b2d
3,649,301
def get_lessons_of_day(day): """ Returns the lessons as a string for the given day webelement :param day: day webelement :return: dictionary with day as key and list with lessons as value """ day_lessons = [] to_iterate = day.find_elements_by_class_name('event-content') to_iterate.reverse() for lesson in to_iterate: text = lesson.text day_lessons.append(text) return day_lessons
47b3ba18fd530ac8e724eb91e4b4d2886a008ac5
3,649,302
def ising_hamiltonian(n_qubits, g, h): """ Construct the hamiltonian matrix of Ising model. Args: n_qubits: int, Number of qubits g: float, Transverse magnetic field h: float, Longitudinal magnetic field """ ham_matrix = 0 # Nearest-neighbor interaction spin_coupling = jnp.kron(PauliBasis[3], PauliBasis[3]) for i in range(n_qubits - 1): ham_matrix -= jnp.kron(jnp.kron(jnp.eye(2 ** i), spin_coupling), jnp.eye(2 ** (n_qubits - 2 - i))) ham_matrix -= jnp.kron(jnp.kron(PauliBasis[3], jnp.eye(2 ** (n_qubits - 2))), PauliBasis[3]) # Periodic B.C # Transverse magnetic field for i in range(n_qubits): ham_matrix -= g * jnp.kron(jnp.kron(jnp.eye(2 ** i), PauliBasis[1]), jnp.eye(2 ** (n_qubits - 1 - i))) # Longitudinal magnetic field for i in range(n_qubits): ham_matrix -= h * jnp.kron(jnp.kron(jnp.eye(2 ** i), PauliBasis[3]), jnp.eye(2 ** (n_qubits - 1 - i))) return ham_matrix
f485ac686001c0d9790276f19f5ba79b6de8db9c
3,649,305
import shutil def test_main( mock_building_parser, mock_return_logger, config_dict, db_connection, monkeypatch, test_dir, ): """Test main()""" def mock_parser(*args, **kwargs): parser = Namespace( cache_dir=(test_dir / "test_outputs" / "test_outputs_uniprot"), nodelete_cache=False, config=None, classes=None, database="fake_database_path", ec=True, force=False, families=None, genbank_accessions=None, genera=None, get_pages=True, kingdoms=None, log=None, nodelete=False, output=None, retries=10, sequence=True, seq_update=True, subfamilies=True, species=None, strains=None, streamline=None, timeout=45, uniprot_accessions=None, uniprot_batch_size=150, uniprot_data=None, verbose=False, pdb=True, skip_uniprot_accessions=None, use_uniprot_cache=None, ) return parser def mock_return_none(*args, **kwargs): return def mock_connect_existing_db(*args, **kwards): return db_connection, None, "cache_dir" def mock_get_expansion_configuration(*args, **kwards): return config_dict, set(), set(), set(), dict(), set() def mock_get_genbank_accessions(*args, **kwards): return {1: 1, 2:2, 3:3} def mock_get_uniprot_data(*args, **kwards): return {1: {'ec': {1,2,3}, 'pdb': {1,2,3}}, 2: {'ec': {1,2,3}, 'pdb': {1,2,3}}, 3: {'ec': {1,2,3}, 'pdb': {1,2,3}}}, {1, 2, 3} monkeypatch.setattr(uniprot_parser, "build_parser", mock_building_parser) monkeypatch.setattr(ArgumentParser, "parse_args", mock_parser) monkeypatch.setattr(saint_logger, "config_logger", mock_return_logger) monkeypatch.setattr(get_uniprot_data, "connect_existing_db", mock_connect_existing_db) monkeypatch.setattr("cazy_webscraper.expand.uniprot.get_uniprot_data.make_output_directory", mock_return_none) monkeypatch.setattr(get_uniprot_data, "get_expansion_configuration", mock_get_expansion_configuration) monkeypatch.setattr(sql_interface, "log_scrape_in_db", mock_return_none) monkeypatch.setattr(get_selected_gbks, "get_genbank_accessions", mock_get_genbank_accessions) monkeypatch.setattr(get_uniprot_data, "get_uniprot_accessions", mock_get_genbank_accessions) monkeypatch.setattr(get_uniprot_data, "get_uniprot_data", mock_get_uniprot_data) monkeypatch.setattr(get_uniprot_data, "add_uniprot_accessions", mock_return_none) monkeypatch.setattr(get_uniprot_data, "add_ec_numbers", mock_return_none) monkeypatch.setattr(get_uniprot_data, "add_pdb_accessions", mock_return_none) monkeypatch.setattr(cazy_webscraper, "closing_message", mock_return_none) output = test_dir / "test_outputs" / "test_outputs_uniprot" output.mkdir(parents=True, exist_ok=True) get_uniprot_data.main() shutil.rmtree((test_dir / "test_outputs" / "test_outputs_uniprot")) output.mkdir(parents=True, exist_ok=True)
5155b914d1f0320abc7991b7cc86e30664e75b53
3,649,306
def _slots_from_params(func): """List out slot names based on the names of parameters of func Usage: __slots__ = _slots_from_signature(__init__) """ funcsig = signature(func) slots = list(funcsig.parameters) slots.remove('self') return slots
fc55665a2bfa0ee27545734699f8527af5d57e6d
3,649,307
import time import requests import re def gnd_to_wd_id(gnd_id): """ Searches for a Wikidata entry which contains the provided GND ID. Outputs the Wikidata ID (if found). --------- gnd_id : str GND ID of entity. Returns ----------- str. """ url = 'https://query.wikidata.org/bigdata/namespace/wdq/sparql' try: time.sleep(2.0) data = requests.get(url, params={'query': "SELECT ?Entity WHERE {?Entity wdt:P227 '%s'.}" % (gnd_id), 'format': 'json'}).json() result = [] for item in data['results']['bindings']: if result == []: result.append(item['Entity']['value']) wd_id= re.findall("[Q]\d*",str(result)) return wd_id[0] except: return "Exception"
acf482aa05eac7c5307529643f30b7ef6880c55b
3,649,308
from typing import Optional def get_instance_category(entry) -> Optional[str]: """Determines the instance category for which the entry was submitted. If it does not match the config of any instance category, returns None. """ instance_categories = RidehailEnv.DIMACS_CONFIGS.ALL_CONFIGS entry_config = entry["config"] keys_to_check = list(entry_config.keys()) try: keys_to_check.remove("nickname") except: return None for category_name, category_config in instance_categories.items(): if all((entry_config[key] == category_config[key] for key in keys_to_check)): return category_name return None
ad1208f1bbc93b3579eb1e82f0752671d856f501
3,649,309
def extendheader(table, fields): """ Extend header row in the given table. E.g.:: >>> import petl as etl >>> table1 = [['foo'], ... ['a', 1, True], ... ['b', 2, False]] >>> table2 = etl.extendheader(table1, ['bar', 'baz']) >>> table2 +-----+-----+-------+ | foo | bar | baz | +=====+=====+=======+ | 'a' | 1 | True | +-----+-----+-------+ | 'b' | 2 | False | +-----+-----+-------+ See also :func:`petl.transform.headers.setheader`, :func:`petl.transform.headers.pushheader`. """ return ExtendHeaderView(table, fields)
352fc187e5778f415221b73c179cff496da9b8a5
3,649,310
def get_teamcount(): """Get a count of teams.""" #FINISHED FOR SASO teamlist = get_list_of_teams() return len(teamlist)
512dd11ff27600d91a8e6ee461b3f1e761604734
3,649,311
def make_adjacencyW(I, D, sigma): """Create adjacency matrix with a Gaussian kernel. Args: I (numpy array): for each vertex the ids to its nnn linked vertices + first column of identity. D (numpy array): for each data the l2 distances to its nnn linked vertices + first column of zeros. sigma (float): Bandwith of the Gaussian kernel. Returns: csr_matrix: affinity matrix of the graph. """ V, k = I.shape k = k - 1 indices = np.reshape(np.delete(I, 0, 1), (1, -1)) indptr = np.multiply(k, np.arange(V + 1)) def exp_ker(d): return np.exp(-d / sigma ** 2) exp_ker = np.vectorize(exp_ker) res_D = exp_ker(D) data = np.reshape(np.delete(res_D, 0, 1), (1, -1)) adj_matrix = csr_matrix((data[0], indices[0], indptr), shape=(V, V)) return adj_matrix
4e310c5677d66b7fef66db5f96eda1c9bf8efdc7
3,649,312
def blackbody2d(wavelengths, temperature): """ Planck function evaluated for a vector of wavelengths in units of meters and temperature in units of Kelvin Parameters ---------- wavelengths : `~numpy.ndarray` Wavelength array in units of meters temperature : `~numpy.ndarray` Temperature in units of Kelvin Returns ------- pl : `~numpy.ndarray` Planck function evaluated at each wavelength """ return blackbody_lambda(wavelengths, temperature)
168c9e951350e3c93ef36cf95ec3e7a335d06102
3,649,313
def bookShop(): """ Este programa resuelve el siguiente ejercicio: Book Shop Link: https://cses.fi/problemset/task/1158 Este programa retorna el máximo número de páginas que se pueden conseguir comprando libros dados el precio y páginas de los libros disponibles y la cantidad de dinero disponible. """ inputLine = input() inputArray = inputLine.split() inputArray = [int(x) for x in inputArray] numBooks = inputArray[0] totalPrice = inputArray[1] inputLine = input() inputArray = inputLine.split() inputArray = [int(x) for x in inputArray] prices = inputArray inputLine = input() inputArray = inputLine.split() inputArray = [int(x) for x in inputArray] pages = inputArray bag = [[0 for y in range(totalPrice + 1)] for x in range(numBooks + 1)] for i in range(1, len(bag)): price = prices[i - 1] page = pages[i - 1] for j in range(1, len(bag[0])): if j - price < 0: bag[i][j] = bag[i - 1][j] elif bag[i - 1][j - price] + page > bag[i - 1][j]: bag[i][j] = bag[i - 1][j - price] + page else: bag[i][j] = bag[i - 1][j] return bag[-1][-1]
52f2b3ca84c7d6db529f51e2c05ad4767d4466c7
3,649,314
import mpmath def pdf(x, nu, sigma): """ PDF for the Rice distribution. """ if x <= 0: return mpmath.mp.zero with mpmath.extradps(5): x = mpmath.mpf(x) nu = mpmath.mpf(nu) sigma = mpmath.mpf(sigma) sigma2 = sigma**2 p = ((x / sigma2) * mpmath.exp(-(x**2 + nu**2)/(2*sigma2)) * mpmath.besseli(0, x*nu/sigma2)) return p
b2d96bc19fb61e5aaf542b916d06c11a0e3dea46
3,649,315
import typing def get_310_prob(score_prob_dct: dict) -> typing.Dict[str, float]: """get home win, draw, away win prob""" prob = {} result_dct = get_score_pairs(0) type_dict = ['home_win', 'draw', 'away_win'] for i in type_dict: prob[i] = get_one_prob(score_prob_dct, result_dct, i) sum_value = float(sum(prob.values())) if sum_value != 1: avg_value = round((1 - sum_value) / 3, 2) prob['home_win'] += avg_value prob['draw'] += avg_value prob['away_win'] += avg_value return prob
c003e75796b6f3e67d6558f59492a9db065c6a51
3,649,316
def load_project_data(storage): """Load project data using provided open_func and project directory.""" # Load items and extractors from project schemas = storage.open('items.json') extractors = storage.open('extractors.json') # Load spiders and templates spider_loader = SpiderLoader(storage) spiders = {} for spider_name in spider_loader.spider_names: spider = spider_loader[spider_name] crawler = IblSpider(spider_name, spider, schemas, extractors, Settings()) spiders[spider_name] = (crawler, spider) return schemas, extractors, spiders
c0f8e2b339a21bf4f73dcba098e992e550005098
3,649,317
import json def home(): """ Route to display home page and form to receive text from user for speech synthesis. """ form = TextToSpeechForm() # Instantiates a client client = texttospeech.TextToSpeechClient() # Get the language list voices = client.list_voices() voice_codes_list = list(dict.fromkeys([voice.language_codes[0] for voice in voices.voices])) language_list = [(ind + 1, voice) for ind, voice in enumerate(voice_codes_list)] if request.method == 'POST': lang = dict(language_list).get(int(form.language_options.data)) gender = dict([(1, texttospeech.SsmlVoiceGender.MALE), (2, texttospeech.SsmlVoiceGender.FEMALE)]).get(int(form.gender_options.data)) messages = json.dumps({'text': form.text_field.data, 'language': lang, 'gender': gender}) return redirect(url_for('.translate', messages=messages)) return render_template('main.html', form=form)
626dc2cde1dc326034772acb8b87cb35621c3e3f
3,649,318
def load_c6_file(filename, is_radar): """ Loads ice scattering LUTs from a file (based on Yang et al., JAS, 2013). Parameters ---------- filename: str The name of the file storing the Mie scattering parameters is_radar: bool If True, the first LUT column is treated as the frequency, otherwise, wavelength. Returns ------- my_df: xarray.Dataset The xarray Dataset storing the scattering data, including descriptive metadata. """ if is_radar is True: my_df = pd.read_csv(filename, names=["frequency", "p_diam", "p_diam_eq_A", "p_diam_eq_V", "V", "A", "beta_p", "scat_p", "alpha_p", "beta_p_cross"]) else: my_df = pd.read_csv(filename, names=["wavelength", "p_diam", "p_diam_eq_A", "p_diam_eq_V", "V", "A", "beta_p", "scat_p", "alpha_p", "beta_p_cross"]) my_df["alpha_p"] = my_df["alpha_p"] * 1e-12 my_df["beta_p"] = my_df["beta_p"] * 1e-12 my_df["beta_p_cross"] = my_df["beta_p_cross"] * 1e-12 my_df["scat_p"] = my_df["scat_p"] * 1e-12 my_df["p_diam"] = 1e-6 * my_df["p_diam"] my_df["p_diam_eq_A"] = 1e-6 * my_df["p_diam_eq_A"] my_df["p_diam_eq_V"] = 1e-6 * my_df["p_diam_eq_V"] my_df["A"] = my_df["A"] * 1e-12 my_df["V"] = my_df["V"] * 1e-18 my_df = my_df.to_xarray() if is_radar is True: my_df["frequency"].attrs["units"] = "GHz" my_df["frequency"].attrs["long_name"] = "Pulse frequency" my_df["frequency"].attrs["standard_name"] = "Frequency" else: my_df["wavelength"].attrs["units"] = "microns" my_df["wavelength"].attrs["long_name"] = "Wavelength of beam" my_df["wavelength"].attrs["standard_name"] = "Wavelength" my_df["p_diam"].attrs["units"] = "meters" my_df["p_diam"].attrs["long_name"] = "Maximum dimension of the particle" my_df['p_diam'].attrs["standard_name"] = "Maximum dimension" my_df["p_diam_eq_A"].attrs["units"] = "meters" my_df["p_diam_eq_A"].attrs["long_name"] = "Diameter of equivalent projected area sphere" my_df['p_diam_eq_A'].attrs["standard_name"] = "Diameter of equivalent A sphere" my_df["p_diam_eq_V"].attrs["units"] = "meters" my_df["p_diam_eq_V"].attrs["long_name"] = "Diameter of equivalent volume sphere" my_df['p_diam_eq_V'].attrs["standard_name"] = "Diameter of equivalent V sphere" my_df["A"].attrs["units"] = "meters^2" my_df["A"].attrs["long_name"] = "Projected area of particle" my_df['A'].attrs["standard_name"] = "Projected area" my_df["V"].attrs["units"] = "meters^3" my_df["V"].attrs["long_name"] = "Particle volume" my_df['V'].attrs["standard_name"] = "Volume" my_df["scat_p"].attrs["units"] = "microns^2" my_df["scat_p"].attrs["long_name"] = "Scattering cross section" my_df["scat_p"].attrs["standard_name"] = "Scat_cross_section" my_df["beta_p"].attrs["units"] = "meters^2" my_df["beta_p"].attrs["long_name"] = "Backscattering cross section" my_df["beta_p"].attrs["standard_name"] = "Scat_cross_section_back" my_df["alpha_p"].attrs["units"] = "meters^2" my_df["alpha_p"].attrs["long_name"] = "Extinction cross section" my_df["alpha_p"].attrs["standard_name"] = "Ext_cross_section" my_df["beta_p_cross"].attrs["units"] = "meters^2" my_df["beta_p_cross"].attrs["long_name"] = "Cross-polar backscattering cross section" my_df["beta_p_cross"].attrs["standard_name"] = "Scat_cross_section_back_crosspol" return my_df
c07256fde7ab5eac577caae2289a5d3d0dff583e
3,649,319
import typing import click import copy def gwrite(document: vp.Document, output: typing.TextIO, profile: str): """ Write gcode or other ascii files for the vpype pipeline. The output format can be customized by the user heavily to an extent that you can also output most known non-gcode ascii text files. """ gwrite_config = vp.CONFIG_MANAGER.config["gwrite"] # If no profile was provided, try to use a default if not profile: # Try to get the default profile from the config if "default_profile" in gwrite_config: profile = gwrite_config["default_profile"] else: raise click.BadParameter( "no gwrite profile provided on the commandline and no default gwrite " + "profile configured in the vpype configuration. This can be done using " + 'the "default_default" key in the "gwrite" section' ) # Check that the profile is actually there, we can be sure that the `gwrite` # part exists as there are several default profiles. if profile not in gwrite_config: profiles = [p for p in gwrite_config.keys() if p != "default_profile"] raise click.BadParameter( "gwrite profile " + profile + " not found in vpype configuration. Available gwrite profiles: " + ", ".join(profiles) ) # Read the config for the profile from the main vpype config = gwrite_config[profile] document_start = config.get("document_start", None) document_end = config.get("document_end", None) layer_start = config.get("layer_start", None) layer_end = config.get("layer_end", None) layer_join = config.get("layer_join", None) line_start = config.get("line_start", None) line_end = config.get("line_end", None) line_join = config.get("line_join", None) segment_first = config.get("segment_first", None) segment = config.get("segment", None) segment_last = config.get("segment_last", None) unit = config.get("unit", "mm") offset_x = config.get("offset_x", 0.0) offset_y = config.get("offset_y", 0.0) scale_x = config.get("scale_x", 1.0) scale_y = config.get("scale_y", 1.0) # transform the document according to the desired parameters orig_document = document document = copy.deepcopy(document) # do NOT affect the pipeline's document unit_scale = vp.convert_length(unit) document.scale(scale_x / unit_scale, scale_y / unit_scale) document.translate(offset_x, offset_y) invert_x = config.get("invert_x", False) invert_y = config.get("invert_y", False) # transform the document according to inversion parameters if invert_x or invert_y: document = invert_axis(document, invert_x, invert_y) # process file filename = output.name if document_start is not None: output.write(document_start.format(filename=filename)) last_x = 0 last_y = 0 xx = 0 yy = 0 lastlayer_index = len(document.layers.values()) - 1 for layer_index, layer_id in enumerate(document.layers): layer = document.layers[layer_id] if layer_start is not None: output.write( layer_start.format( x=last_x, y=last_y, ix=xx, iy=yy, index=layer_index, index1=layer_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) lastlines_index = len(layer) - 1 for lines_index, line in enumerate(layer): if line_start is not None: output.write( line_start.format( x=last_x, y=last_y, ix=xx, iy=yy, index=lines_index, index1=lines_index + 1, lines_index=lines_index, lines_index1=lines_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) segment_last_index = len(line) - 1 for segment_index, seg in enumerate(line): x = seg.real y = seg.imag dx = x - last_x dy = y - last_y idx = int(round(x - xx)) idy = int(round(y - yy)) xx += idx yy += idy if segment_first is not None and segment_index == 0: seg_write = segment_first elif segment_last is not None and segment_index == segment_last_index: seg_write = segment_last else: seg_write = segment if seg_write is not None: output.write( seg_write.format( x=x, y=y, dx=dx, dy=dy, _x=-x, _y=-y, _dx=-dx, _dy=-dy, ix=xx, iy=yy, idx=idx, idy=idy, index=segment_index, index1=segment_index + 1, segment_index=segment_index, segment_index1=segment_index + 1, lines_index=lines_index, lines_index1=lines_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) last_x = x last_y = y if line_end is not None: output.write( line_end.format( x=last_x, y=last_y, ix=xx, iy=yy, index=lines_index, index1=lines_index + 1, lines_index=lines_index, lines_index1=lines_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) if line_join is not None and lines_index != lastlines_index: output.write( line_join.format( x=last_x, y=last_y, ix=xx, iy=yy, index=lines_index, index1=lines_index + 1, lines_index=lines_index, lines_index1=lines_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) if layer_end is not None: output.write( layer_end.format( x=last_x, y=last_y, ix=xx, iy=yy, index=layer_index, index1=layer_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) if layer_join is not None and layer_index != lastlayer_index: output.write( layer_join.format( x=last_x, y=last_y, ix=xx, iy=yy, index=layer_index, index1=layer_index + 1, layer_index=layer_index, layer_index1=layer_index + 1, layer_id=layer_id, filename=filename, ) ) if document_end is not None: output.write(document_end.format(filename=filename)) output.flush() output.close() info = config.get("info", None) if info: print(info) return orig_document
d5a28fa7542db297d97c6252021bc4f103dea05d
3,649,320
def user_int(arg): """ Convert a :class:`~int` to a `USER` instruction. :param arg: Int that represents instruction arguments. :return: Fully-qualified `USER` instruction. """ return str(arg)
df3f72eac3de12b4c8cbb1ccee5305dc43837bc3
3,649,322
def timezoneAdjuster(context, dt): """Convinience: new datetime with given timezone.""" newtz = ITimezoneFactory(context) return dt.astimezone(newtz)
ba75bad6b8edfbc3198aad0adc0b1250626b9ce7
3,649,323
def make_adder(n): """Return a function that takes one argument k and returns k + n. >>> add_three = make_adder(3) >>> add_three(4) 7 """ def adder(k): return k + n return adder
64808cb857f7bd17c8c81bfd749ed96efcc88a9f
3,649,324
def IsWritable(Feature): """IsWritable(Feature) -> Writable Parameters: Feature: str Return value: Writable: ctypes.c_int""" if _at_camera_handle is not None: return _at_core_lib.AT_IsWritable(_at_camera_handle, Feature) != AT_FALSE else: raise AndorError('Andor library not initialized')
bfe4ff1b93595e8b8df11193e04e13b8bd6c39d9
3,649,325
import torch from typing import Union from typing import Tuple def groupby_apply( keys: torch.Tensor, values: torch.Tensor, bins: int = 95, reduction: str = "mean", return_histogram: bool = False ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Groupby apply for torch tensors Args: keys: tensor of groups (``0`` to ``bins``) values: values to aggregate - same size as keys bins: total number of groups reduction: either "mean" or "sum" return_histogram: if to return histogram on top Returns: tensor of size ``bins`` with aggregated values and optionally with counts of values """ if reduction == "mean": reduce = torch.mean elif reduction == "sum": reduce = torch.sum else: raise ValueError(f"Unknown reduction '{reduction}'") uniques, counts = keys.unique(return_counts=True) groups = torch.stack([reduce(item) for item in torch.split_with_sizes(values, tuple(counts))]) reduced = torch.zeros(bins, dtype=values.dtype, device=values.device).scatter(dim=0, index=uniques, src=groups) if return_histogram: hist = torch.zeros(bins, dtype=torch.long, device=values.device).scatter(dim=0, index=uniques, src=counts) return reduced, hist else: return reduced
711acc0cf2eb30e978f7f30686dbf67644d51fb0
3,649,326
def cube(x): """return x^3""" return x*x*x
df9aa4330b7cfb1946b3c403935c864a2e7fae7a
3,649,327
def get_candidados(vetor): """Retorna o dado dos candidatos""" lista_retorno = [] for i in vetor: lista_retorno.append(candidatos[int(i)]) return lista_retorno
259b921db5d3840ea220b9690f4eca1b84c2d98d
3,649,328
import copy def get_fmin_tree(f_df, tree): """ """ f = f_df[f_df['F4ratio']>=0].reset_index() t = copy.deepcopy(tree) i=0 for node in t.traverse(): if node.children: l = node.children[0] r = node.children[1] lleaves = l.get_leaf_names() rleaves = r.get_leaf_names() node_fl = f[f['h2'].isin(lleaves)&f['h1'].isin(rleaves)] node_fr = f[f['h2'].isin(rleaves)&f['h1'].isin(lleaves)] for side, node_f, sister_f in [(0,node_fl, node_fr),(1,node_fr, node_fl)]: if len(node_f) or len(sister_f): sister_f0 = sister_f.rename(columns={'h1':'h2','h2':'h1'}) sister_f0['F4ratio'] = 0 sister_f0['Z'] = 0 nf = pd.concat([node_f, sister_f0]) #node_f.sort_values('|f|', ascending=False) #only take h3 with maximum mean '|f|' on this branch #h3 = node_f.groupby('h3').mean().sort_values('|f|', ascending=False).iloc[0].name #node_f1 = node_f[node_f['h3']==h3] child = node.get_children()[side] #child.add_feature('rscore', summary(node_f1['|f|'])) #child.add_feature('h3', h3) child.add_feature('branch_f', nf.groupby(['h2','h3']).min().reset_index()) return t
78da92675edfa2d8b9fd75591d104fbdb6adb369
3,649,329
def primes(n): """ Returns a list of primes < n """ n = int(n) sieve = [True] * n for i in np.arange(3, n ** 0.5 + 1, 2, dtype=int): if sieve[i]: sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1) return [2] + [i for i in np.arange(3,n,2) if sieve[i]]
91af8e025c688e3b09638c8f00ca67a358e7137d
3,649,330
def H_TP(Z, T, P): """ Enthalpy defined by temperature and pressure (reference state at 300 K and 1 bar) Z - array of molar composition T, P - temperature and pressure Units are specified above """ H = RP.ABFLSHdll('TP', T, P*100, Z, 2).h - RP.ABFLSHdll('TP', 300, 100, Z, 2).h return H
36078f63478f7582e462f92d991a9941f07308c9
3,649,331
def test_fallback_round_with_input_n_not_int(): """ Feature: JIT Fallback Description: Test round() in graph mode with input x is not int. Expectation: TypeError. """ @ms_function def foo(): x = round(10.123, 1.0) return x with pytest.raises(TypeError) as ex: foo() assert "cannot be interpreted as an integer" in str(ex.value)
3acef5aeaf1fdc40b66e0eede3f6df9d76bb5b9b
3,649,333
def validate_netmask(s): """Validate that a dotted-quad ip address is a valid netmask. >>> validate_netmask('0.0.0.0') True >>> validate_netmask('128.0.0.0') True >>> validate_netmask('255.0.0.0') True >>> validate_netmask('255.255.255.255') True >>> validate_netmask(BROADCAST) True >>> validate_netmask('128.0.0.1') False :param s: String to validate as a dotted-quad notation netmask. :type s: str :returns: ``True`` if a valid netmask, ``False`` otherwise. :raises: TypeError """ if validate_ip(s): mask = bin(ip2network(s))[2:] # all left most bits must be 1, all right most must be 0 seen0 = False for c in mask: if '1' == c: if seen0: return False else: seen0 = True return True else: return False
9462f27dc53ad907c8b6ef99db7a09631ca7157b
3,649,334
def translate(): """ A handler for translating given english word which about digit to chinese character Return: - `JSON` .. code-block # message = isError ? reason : "OK" # output = isError ? '' : <TRANSLATION> { message: string, output: string, } """ ret = {'message': 'OK', 'output': ''} try: # Get request words from query string words = request.args.get('words') # Raise exception if there is no such query defined if words is None: raise MissingWordsQueryException() # Define our lookup table myMap = { 'zero': '零', 'one': '一', 'two': '二', 'three': '三', 'four': '四', 'five': '五', 'six': '六', 'seven': '七', 'eight': '八', 'nine': '九', 'ten': '十', } # Since there maybe more than one words, loop through those words for word in words.split(' '): # Translate word by look up values in our lookup table output = myMap[word] # Set word to be output if there are no records at first # Otherwise, append to the output string ret['output'] = output \ if (len(ret['output']) == 0) \ else '%s %s' % (ret['output'], output) except MissingWordsQueryException: # Setup error message ret['message'] = 'Missing "words" query string' ret['output'] = '' except KeyError: # Setup error message ret['message'] = 'Translation error for word |%s|' % word ret['output'] = '' # Encode ret in JSON format so that it prints a json string on the web return jsonify(**ret)
5e40a724e6d183151f155ec3e951ec6098a92016
3,649,335
def create_matrix_sars_overlap_between_networks(networks_summary_df, networks_dict): """ Creates matrix where element (i,j) quantifies the number of common SARS-Cov-2 partners in networks i and j divided by the total number of SARS-Cov-2 partners in both networks Args: networks_summary_df: dataframe, output of make_summary networks_dict: dictionary of networks Returns: A matrix where element (i,j) quantifies the number of common SARS-Cov-2 partners in networks i and j divided by the total number of SARS-Cov-2 partners in both networks """ N = len(networks_summary_df) mat_sars = np.zeros((N,N)) mat_sars = np.zeros((N,N)) for i in np.arange(N): for j in np.arange(0,N,1): # Select networks paramstring_a = networks_summary_df.loc[networks_summary_df['index']==i].index[0] paramstring_b = networks_summary_df.loc[networks_summary_df['index']==j].index[0] network_a = networks_dict[paramstring_a] network_b = networks_dict[paramstring_b] # Compute intersection/union df_a = oi.get_networkx_graph_as_dataframe_of_nodes(network_a) sars_in_a = set(df_a[df_a['interact_sars_bool']==True].index) df_b = oi.get_networkx_graph_as_dataframe_of_nodes(network_b) sars_in_b = set(df_b[df_b['interact_sars_bool']==True].index) difference = float(len(sars_in_a.difference(sars_in_b))) mat_sars[i,j] = difference/float(len(sars_in_a)) return(mat_sars)
4b1d7c36e0781e7875f99cb7ac366ca3063cb77f
3,649,336
from typing import Tuple def load_forcings_gauge_metadata(path: str) -> Tuple[float, float, float]: """ Loads gauge metadata from the header of a CAMELS-USE forcings file. Parameters ---------- path: str Path to the forcings file. Returns ------- tuple (gauge latitude, gauge elevation, basin area [m²]) """ with open(path, 'r') as file: latitude = float(file.readline()) elevation = float(file.readline()) area = float(file.readline()) return latitude, elevation, area
c91c3bafb83709967d6dd480afd8e53ac9f94445
3,649,337
def transition(measure, N, **measure_args): """ A, B transition matrices for different measures measure: the type of measure legt - Legendre (translated) legs - Legendre (scaled) glagt - generalized Laguerre (translated) lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization """ # Laguerre (translated) if measure == 'lagt': b = measure_args.get('beta', 1.0) A = np.eye(N) / 2 - np.tril(np.ones((N, N))) B = b * np.ones((N, 1)) elif measure == 'tlagt': # beta = 1 corresponds to no tilt b = measure_args.get('beta', 1.0) A = (1.-b)/2 * np.eye(N) - np.tril(np.ones((N, N))) B = b * np.ones((N, 1)) # Generalized Laguerre # alpha 0, beta small is most stable (limits to the 'lagt' measure) # alpha 0, beta 1 has transition matrix A = [lower triangular 1] elif measure == 'glagt': alpha = measure_args.get('alpha', 0.0) beta = measure_args.get('beta', 0.01) A = -np.eye(N) * (1 + beta) / 2 - np.tril(np.ones((N, N)), -1) B = ss.binom(alpha + np.arange(N), np.arange(N))[:, None] L = np.exp(.5 * (ss.gammaln(np.arange(N)+alpha+1) - ss.gammaln(np.arange(N)+1))) A = (1./L[:, None]) * A * L[None, :] B = (1./L[:, None]) * B * np.exp(-.5 * ss.gammaln(1-alpha)) * beta**((1-alpha)/2) # Legendre (translated) elif measure == 'legt': Q = np.arange(N, dtype=np.float64) R = (2*Q + 1) ** .5 j, i = np.meshgrid(Q, Q) A = R[:, None] * np.where(i < j, (-1.)**(i-j), 1) * R[None, :] B = R[:, None] A = -A # LMU: equivalent to LegT up to normalization elif measure == 'lmu': Q = np.arange(N, dtype=np.float64) R = (2*Q + 1)[:, None] # / theta j, i = np.meshgrid(Q, Q) A = np.where(i < j, -1, (-1.)**(i-j+1)) * R B = (-1.)**Q[:, None] * R # Legendre (scaled) elif measure == 'legs': q = np.arange(N, dtype=np.float64) col, row = np.meshgrid(q, q) r = 2 * q + 1 M = -(np.where(row >= col, r, 0) - np.diag(q)) T = np.sqrt(np.diag(2 * q + 1)) A = T @ M @ np.linalg.inv(T) B = np.diag(T)[:, None] B = B.copy() # Otherwise "UserWarning: given NumPY array is not writeable..." after torch.as_tensor(B) else: raise NotImplementedError return A, B
8a701ace9b0d73e8f27062084dbf78711b8b4185
3,649,338
import numpy import pandas def interpolate_coord(df, xcol, ycol, step, distcol='d'): """ Interpolates x/y coordinates along a line at a fixed distance. Parameters ---------- df : pandas.DataFrame xcol, ycol : str Labels of the columns in ``df`` containing the x- and y-coords, respectively. step : int The spacing between the interpolated points. distcol : string, optional (default = 'd') Label of the column where the distance along the line is stored. Returns ------- pandas.DataFrame """ dist = _linear_distance(df, xcol, ycol) d_ = numpy.arange(0, numpy.floor(dist.max()), step) x_interp = interpolate.interp1d(dist, df[xcol]) y_interp = interpolate.interp1d(dist, df[ycol]) return pandas.DataFrame({'d': d_, 'x': x_interp(d_), 'y': y_interp(d_)})
6ac736a4f82ffd7c0b3b45027bf7ab17b5d7d71c
3,649,339
def oven_cook_setting_to_str(cook_setting: OvenCookSetting, units: str) -> str: """Format OvenCookSetting values nicely.""" cook_mode = cook_setting.cook_mode cook_state = cook_mode.oven_state temperature = cook_setting.temperature modifiers = [] if cook_mode.timed: modifiers.append(STATE_OVEN_TIMED) if cook_mode.delayed: modifiers.append(STATE_OVEN_DELAY) if cook_mode.probe: modifiers.append(STATE_OVEN_PROBE) if cook_mode.sabbath: modifiers.append(STATE_OVEN_SABBATH) temp_str = f" ({temperature}{units})" if temperature > 0 else "" modifier_str = f" ({', '.join(modifiers)})" if modifiers else "" display_state = oven_display_state_to_str(cook_state) return f"{display_state}{temp_str}{modifier_str}"
02d339b82c8dbfb34f4bb6cc968fee83496df04e
3,649,340
def print_location(location: Location) -> str: """Render a helpful description of the location in the GraphQL Source document.""" return print_source_location( location.source, get_location(location.source, location.start) )
2c6f0f5e475fdbb14060b55f5698a2548720cc01
3,649,341
def run_metrics(ground_truth, simulation, measurement_name,users=None,repos=None): """ Run all of the assigned metrics for a given measurement. Inputs: ground_truth - DataFrame of ground truth data simulation - DataFrame of simulated data measurement_name - Name of measurement corresponding to keys of measurement_params users - list of user IDs for user-centric, node-level measurements repos - list of repo IDs for repo-centric, node-level measurements Outputs: measurement_on_gt - Output of the measurement for the ground truth data measurement_on_sim - Output of the measurement for the simulation data metrics_output - Dictionary containing metric results for each metric assigned to the measurement """ p = measurement_params[measurement_name] if p["node_type"] == "user": nodes = users else: nodes = repos if "filters" in p: ground_truth = prefilter(ground_truth, p['filters']) simulation = prefilter(simulation, p['filters']) #for node-level measurements default to the most active node if a #list of nodes is not provided if p["scale"] == "node" and nodes is None: nodes = ground_truth.groupby([p["node_type"],'event'])["time"].count().reset_index() nodes = nodes.groupby(p["node_type"])["time"].median().sort_values(ascending=False).reset_index() nodes = nodes.head(1)[p["node_type"]] elif p["scale"] != "node": nodes = [''] metrics_output = {} #for node level measurements iterate over nodes for node in nodes: if p["scale"] == "node": metrics_output[node] = {} #select data for individual node filter = {p["node_type"]:[node]} gt = prefilter(ground_truth, filter) sim = prefilter(simulation, filter) else: gt = ground_truth.copy() sim = simulation.copy() measurement_function = p['measurement'] empty_df = False if len(gt.index) > 0: print("Measuring {} for ground truth data".format(measurement_function.__name__)) measurement_on_gt = measurement_function(gt) else: print("Ground truth data frame is empty for {} measurement".format(measurement_function.__name__)) empty_df = True measurement_on_gt = [] if len(sim.index) > 0: print("Measuring {} for simulation data".format(measurement_function.__name__)) measurement_on_sim = measurement_function(sim) else: print("Simulation data frame is empty for {} measurement".format(measurement_function.__name__)) empty_df = True measurement_on_sim = [] metrics = p['metrics'] #iterate over the metrics assigned to the measurement for m, metric_function in metrics.items(): print("Calculating {} for {}".format(metric_function.__name__, measurement_function.__name__)) if not empty_df: metric = metric_function(measurement_on_gt, measurement_on_sim) else: metric = None if p["scale"] == "node": metrics_output[node][m] = metric else: metrics_output[m] = metric return measurement_on_gt, measurement_on_sim, metrics_output
733a04165853cb76f84bd15ff8f38585224ec039
3,649,342
def checkTrue(comment,res,update=True): """ This method is a pass-through for consistency and updating @ In, comment, string, a comment printed out if it fails @ In, res, bool, the tested value @ In, update, bool, optional, if False then don't update results counter @ Out, res, bool, True if test """ if update: if res: results["pass"] += 1 else: print("checking bool",comment,'|',res,'is not True!') results["fail"] += 1 return res
4f8c0cf99921477e7187178d5576f2df03881417
3,649,343
def compute_votes( candidates, voters, voter_id, node_degree_normalization, ): """Comptue neighbor voting for a given set of candidates and voters Arguments: candidates {np.ndarray} -- genes x cells normalized expression for candidates voters {np.ndarray} -- genes x cells normalized expression for voters voter_id {np.ndarray} -- design_matrix for voters for cell type identities node_degree_normalization {bool} -- Flag indicating whether to normalize votes by degree Returns: np.ndarray -- Votes for each candidate """ votes = np.dot(candidates, np.dot(voters, voter_id)) if node_degree_normalization: node_degree = np.sum(voter_id, axis=0) votes += node_degree norm = np.dot(candidates, np.sum(voters, axis=1)) + voters.shape[1] votes /= norm[:, None] return votes
a04e4030b01d1188830a1ad2f55419d732afa432
3,649,344
def _precompute_cache(x, y, num_classes): """Cache quantities to speed-up the computation of L2-regularized least-sq.""" # Whiten mean = jnp.mean(x, axis=0, keepdims=True) std = jnp.std(x, axis=0, keepdims=True) + 1e-5 x = (x - mean) / std # Add a constant feature for the bias, large so it's almost unregularized: x = jnp.pad(x, ((0, 0), (0, 1)), constant_values=BIAS_CONSTANT) # To one-hot representation rescaled into {-1, 1} y = 2.0 * jax.nn.one_hot(y, num_classes) - 1.0 num_points, dim = x.shape # Let N be the number of points, D the dimension and C the number of classes. # We have x of shape (N, D) and y of shape (N, C). # For least-squares, we can compute # # (A) when N >= D, (x^T x + l2 Id)^{-1} x^T y # (B) when D > N, x^T (x x^T + l2 Id)^{-1} y # # We pre-compute the eigen-decomposition of either x^T x or x x^T which # becomes q diag(eigs) q^T with q unitary matrix either (D, D) or (N, N) # and eigs a vector (D,) or (N,). # # For any l2 > 0, we can compute (x^T x + l2 Id)^{-1} or (x x^T + l2 Id)^{-1} # by simply computing q (diag(eigs) + l2 Id)^{-1} q^T. # (SVD would be more natural here, but it proved slower, so we use eigh) # # Both cases (A) and (B) can be viewed as lhs (diag(eigs) + l2 Id)^{-1} rhs, # where lhs/rhs are pre-computed left/right-hand sides to specify. # if num_points >= dim: eigs, q = jnp.linalg.eigh(x.T @ x) rhs = q.T @ (x.T @ y) lhs = q else: eigs, q = jnp.linalg.eigh(x @ x.T) rhs = q.T @ y lhs = x.T @ q cache = {'eigs': eigs, 'rhs': rhs, 'lhs': lhs, 'mean': mean, 'std': std} return cache
b357620b7f2883182a33f040b2f7d82e0205bcaa
3,649,346
def show_user(): """Return page showing details: walks, landmarks rated, scores.""" user = User.query.filter_by(user_id=session.get('user_id')).first() ratings = user.ratings # import pdb; pdb.set_trace() walks = user.walks # for walk in walks: # origin = Landmark.query.filter(Landmark.landmark_id == walk.origin).first() # origin = origin.landmark_name # destination = Landmark.query.filter(Landmark.landmark_id == walk.destination).first() # destination = destination.landmark_name # metaWalks = { # "walk_id": walk.walk_id, # "metadata": { # "origin": origin, # "destination": destination, # "datetime": walk.log_datetime, # "duration": walk.duration, # "distance": walk.distance # } # } saved = UserSaved.query.filter_by(user_id=session.get('user_id')).all() # import pdb; pdb.set_trace() return render_template('profile.html', user=user, ratings=ratings, walks=walks, # metaWalks=metaWalks, saved=saved)
ddcfed7ac98576cd6273bef5937f1ffbc4e3ecb9
3,649,347
def DesignCustomSineWave(family_list, how_many_gen, amp, per, shift_h, shift_v, show=False, print_phase_mse=False, return_phases=False): """ "Grid Search" Approach: Create sine waves with unknown amp, per, shift_h and shift_v in combinatorial manner and align families to minimize loss across the entire dataset - plot the best fit! :param family_list: (list) -> :param how_many_gen: (int) -> :param amp: (float) -> :param per: (float) -> :param shift_h: (float) -> :param shift_v: (float) -> :param show: (bool) -> :param print_phase_mse: (bool) -> :return: best_model_mse (float) -> the best possible phasing of families to reach lowest mse for given model """ # Specify how many generations do your families have: if int(how_many_gen) != 3 and int(how_many_gen) != 2: raise Exception("Warning, number of generations to consider is not specified: how_many_gen must be 2 or 3!") # Prepare the sine wave specified by the function parameters: repeats = int(72.0 / per) if repeats <= 1: repeats += 1 x_sine = np.linspace(0, repeats * per + 1, int(repeats * per * 5)) y_sine = sine_function(x=x_sine, amp=amp, per=per, shift_h=shift_h, shift_v=shift_v) if show is True: plt.plot(x_sine, y_sine, color="dodgerblue") # Create the return variable - list of all best MSE that could be fitted for each family which will be summed: mse_best_list = [] phase_best_list = [] for family in family_list: mse_list = [] mse_family = 100 phase_family = 0 # Increments of 0.1 for chosen period: for phase in np.linspace(0, per, int(per*10) + 1): # Create x & y axes: x_data = np.array([phase, phase + family[0]]) if how_many_gen == 3: x_data = np.array([phase, phase + family[0], phase + family[0] + family[1]]) y_data_true = np.array(family) y_data_sine = sine_function(x=x_data, amp=amp, per=per, shift_h=shift_h, shift_v=shift_v) # Calculate mean squared error: mse = (np.square(y_data_true - y_data_sine)).mean(axis=None) mse_list.append(mse) if print_phase_mse is True: print ("Mean Square Error = {}; for Phase {} for Family {} for Sine Wave: {} * sin(2*pi/{}*x + {}) + {}" .format(mse, phase, family, amp, per, shift_h, shift_v)) # Update the lowest mse & the phase when such number was reached: if mse < mse_family: mse_family = mse phase_family = phase if print_phase_mse is True: print ("Lowest MSE reached: {} for Phase: {}".format(mse_family, phase_family)) # Plot the best result for the family: x_best = np.array([phase_family, phase_family + family[0]]) if how_many_gen == 3: x_best = np.array([phase_family, phase_family + family[0], phase_family + family[0] + family[1]]) y_best = np.array(family) if show is True: plt.scatter(x=x_best, y=y_best) # Append the lowest MSE for this model: mse_best_list.append(mse_family) phase_best_list.append(phase_family) sum = float(np.sum(mse_best_list)) best_model_mse = round(sum, 2) # Annotate the plot: if show is True: plt.xticks(np.arange(0, repeats * per + 1, 6)) plt.xlabel("Oscillation Period / Time [hours]") plt.ylabel("Cell Cycle Duration [hours]") plt.title("Sine Wave Parameters: y(x) = {} * sin(2*pi/{}*x + {}) + {}\n" "Sum of Lowest MSE per each family = {}" .format(amp, per, shift_h, shift_v, best_model_mse)) plt.grid(axis="both") plt.savefig("/Users/kristinaulicna/Documents/Rotation_2/Top_Solution_Sine_Wave_{}_gen_families.png" .format(how_many_gen), bbox_inches="tight") plt.show() plt.close() return best_model_mse
5905a25b5be585303f5dbeaf42174a2a7be4879e
3,649,348
def get_environment_names(): """Return a list of defined environment names, with user preference first.""" envlist = [r[0] for r in _session.query(models.Environment.name).order_by(models.Environment.name).all()] # move user preference to top of list userenvname = _config.userconfig.get("environmentname", u"default") envlist.remove(userenvname) envlist.insert(0, userenvname) return envlist
0348738aa0bf3ea2df3783e2308b185e95292215
3,649,350
def plot(direction, speed, **kwargs): """Create a WindrosePlot, add bars and other standard things. Args: direction (pint.Quantity): wind direction from North. speed (pint.Quantity): wind speeds with units attached. **bins (pint.Quantity): wind speed bins to produce the histogram for. **nsector (int): The number of directional centers to divide the wind rose into. The first sector is centered on north. **rmax (float): Hard codes the max radius value for the polar plot. **cmap (colormap): Matplotlib colormap to use. Returns: WindrosePlot """ wp = WindrosePlot(**kwargs) bins = kwargs.get("bins") if bins is None: bins = np.array([2, 5, 10, 20]) * units("mph") nsector = kwargs.get("nsector", 8) wp.barplot(direction, speed, bins, nsector, cmap=kwargs.get("cmap")) wp.plot_calm() wp.draw_arrows() wp.draw_logo() return wp
f5020da6946b0242bea826d166bb32b83547bc40
3,649,351
def convert_floor(node, **kwargs): """Map MXNet's floor operator attributes to onnx's Floor operator and return the created node. """ return create_basic_op_node('Floor', node, kwargs)
476ff140cde55db2d489b745a08a7257576e3209
3,649,352
async def get_qrcode_login_info(): """获取二维码登录信息""" url = f"{BASE_URL}qrcode/auth_code" return await post(url, reqtype="app")
93f131cdfcf6cd7b18d126cd32c7836e10a67870
3,649,353
def get_global_free_state(self): """ Recurse get_global_free_state on all child parameters, and hstack them. Return: Stacked np-array for all Param except for LocalParam """ # check if the child has 'get_local_free_state' method for p in self.sorted_params: if isinstance(p, (param.Param,param.Parameterized)) and \ not hasattr(p, 'get_global_free_state'): self.set_local_methods(p) # Here, additional empty array allows hstacking of empty list return np.hstack([p.get_global_free_state() for p in self.sorted_params if isinstance(p, (param.Parameterized, param.Param))] + [np.empty(0, np_float_type)])
29c2a397261dddb92b718a57ba4ec3747d1ce661
3,649,354
def case_activity_update_type(): """ Case Activity Update Types: RESTful CRUD Controller """ return crud_controller()
4722001b25857bd56d1470334551c8bbe085f18e
3,649,355
def dftregistration(buf1ft,buf2ft,usfac=100): """ # function [output Greg] = dftregistration(buf1ft,buf2ft,usfac); # Efficient subpixel image registration by crosscorrelation. This code # gives the same precision as the FFT upsampled cross correlation in a # small fraction of the computation time and with reduced memory # requirements. It obtains an initial estimate of the crosscorrelation peak # by an FFT and then refines the shift estimation by upsampling the DFT # only in a small neighborhood of that estimate by means of a # matrix-multiply DFT. With this procedure all the image points are used to # compute the upsampled crosscorrelation. # Manuel Guizar - Dec 13, 2007 # Portions of this code were taken from code written by Ann M. Kowalczyk # and James R. Fienup. # J.R. Fienup and A.M. Kowalczyk, "Phase retrieval for a complex-valued # object by using a low-resolution image," J. Opt. Soc. Am. A 7, 450-458 # (1990). # Citation for this algorithm: # Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, # "Efficient subpixel image registration algorithms," Opt. Lett. 33, # 156-158 (2008). # Inputs # buf1ft Fourier transform of reference image, # DC in (1,1) [DO NOT FFTSHIFT] # buf2ft Fourier transform of image to register, # DC in (1,1) [DO NOT FFTSHIFT] # usfac Upsampling factor (integer). Images will be registered to # within 1/usfac of a pixel. For example usfac = 20 means the # images will be registered within 1/20 of a pixel. (default = 1) # Outputs # output = [error,diffphase,net_row_shift,net_col_shift] # error Translation invariant normalized RMS error between f and g # diffphase Global phase difference between the two images (should be # zero if images are non-negative). # net_row_shift net_col_shift Pixel shifts between images # Greg (Optional) Fourier transform of registered version of buf2ft, # the global phase difference is compensated for. """ # Compute error for no pixel shift if usfac == 0: CCmax = np.sum(buf1ft*np.conj(buf2ft)) rfzero = np.sum(abs(buf1ft)**2) rgzero = np.sum(abs(buf2ft)**2) error = 1.0 - CCmax*np.conj(CCmax)/(rgzero*rfzero) error = np.sqrt(np.abs(error)) diffphase = np.arctan2(np.imag(CCmax),np.real(CCmax)) return error, diffphase # Whole-pixel shift - Compute crosscorrelation by an IFFT and locate the # peak elif usfac == 1: ndim = np.shape(buf1ft) m = ndim[0] n = ndim[1] CC = sf.ifft2(buf1ft*np.conj(buf2ft)) max1,loc1 = idxmax(CC) rloc = loc1[0] cloc = loc1[1] CCmax=CC[rloc,cloc] rfzero = np.sum(np.abs(buf1ft)**2)/(m*n) rgzero = np.sum(np.abs(buf2ft)**2)/(m*n) error = 1.0 - CCmax*np.conj(CCmax)/(rgzero*rfzero) error = np.sqrt(np.abs(error)) diffphase=np.arctan2(np.imag(CCmax),np.real(CCmax)) md2 = np.fix(m/2) nd2 = np.fix(n/2) if rloc > md2: row_shift = rloc - m else: row_shift = rloc if cloc > nd2: col_shift = cloc - n else: col_shift = cloc ndim = np.shape(buf2ft) nr = int(round(ndim[0])) nc = int(round(ndim[1])) Nr = sf.ifftshift(np.arange(-np.fix(1.*nr/2),np.ceil(1.*nr/2))) Nc = sf.ifftshift(np.arange(-np.fix(1.*nc/2),np.ceil(1.*nc/2))) Nc,Nr = np.meshgrid(Nc,Nr) Greg = buf2ft*np.exp(1j*2*np.pi*(-1.*row_shift*Nr/nr-1.*col_shift*Nc/nc)) Greg = Greg*np.exp(1j*diffphase) image_reg = sf.ifft2(Greg) * np.sqrt(nr*nc) #return error,diffphase,row_shift,col_shift return error,diffphase,row_shift,col_shift, image_reg # Partial-pixel shift else: # First upsample by a factor of 2 to obtain initial estimate # Embed Fourier data in a 2x larger array ndim = np.shape(buf1ft) m = int(round(ndim[0])) n = int(round(ndim[1])) mlarge=m*2 nlarge=n*2 CC=np.zeros([mlarge,nlarge],dtype=np.complex128) CC[int(m-np.fix(m/2)):int(m+1+np.fix((m-1)/2)),int(n-np.fix(n/2)):int(n+1+np.fix((n-1)/2))] = (sf.fftshift(buf1ft)*np.conj(sf.fftshift(buf2ft)))[:,:] # Compute crosscorrelation and locate the peak CC = sf.ifft2(sf.ifftshift(CC)) # Calculate cross-correlation max1,loc1 = idxmax(np.abs(CC)) rloc = int(round(loc1[0])) cloc = int(round(loc1[1])) CCmax = CC[rloc,cloc] # Obtain shift in original pixel grid from the position of the # crosscorrelation peak ndim = np.shape(CC) m = ndim[0] n = ndim[1] md2 = np.fix(m/2) nd2 = np.fix(n/2) if rloc > md2: row_shift = rloc - m else: row_shift = rloc if cloc > nd2: col_shift = cloc - n else: col_shift = cloc row_shift=row_shift/2 col_shift=col_shift/2 # If upsampling > 2, then refine estimate with matrix multiply DFT if usfac > 2: ### DFT computation ### # Initial shift estimate in upsampled grid row_shift = 1.*np.round(row_shift*usfac)/usfac; col_shift = 1.*np.round(col_shift*usfac)/usfac; dftshift = np.fix(np.ceil(usfac*1.5)/2); ## Center of output array at dftshift+1 # Matrix multiply DFT around the current shift estimate CC = np.conj(dftups(buf2ft*np.conj(buf1ft),np.ceil(usfac*1.5),np.ceil(usfac*1.5),usfac,\ dftshift-row_shift*usfac,dftshift-col_shift*usfac))/(md2*nd2*usfac**2) # Locate maximum and map back to original pixel grid max1,loc1 = idxmax(np.abs(CC)) rloc = int(round(loc1[0])) cloc = int(round(loc1[1])) CCmax = CC[rloc,cloc] rg00 = dftups(buf1ft*np.conj(buf1ft),1,1,usfac)/(md2*nd2*usfac**2) rf00 = dftups(buf2ft*np.conj(buf2ft),1,1,usfac)/(md2*nd2*usfac**2) rloc = rloc - dftshift cloc = cloc - dftshift row_shift = 1.*row_shift + 1.*rloc/usfac col_shift = 1.*col_shift + 1.*cloc/usfac # If upsampling = 2, no additional pixel shift refinement else: rg00 = np.sum(buf1ft*np.conj(buf1ft))/m/n; rf00 = np.sum(buf2ft*np.conj(buf2ft))/m/n; error = 1.0 - CCmax*np.conj(CCmax)/(rg00*rf00); error = np.sqrt(np.abs(error)); diffphase = np.arctan2(np.imag(CCmax),np.real(CCmax)); # If its only one row or column the shift along that dimension has no # effect. We set to zero. if md2 == 1: row_shift = 0 if nd2 == 1: col_shift = 0; # Compute registered version of buf2ft if usfac > 0: ndim = np.shape(buf2ft) nr = ndim[0] nc = ndim[1] Nr = sf.ifftshift(np.arange(-np.fix(1.*nr/2),np.ceil(1.*nr/2))) Nc = sf.ifftshift(np.arange(-np.fix(1.*nc/2),np.ceil(1.*nc/2))) Nc,Nr = np.meshgrid(Nc,Nr) Greg = buf2ft*np.exp(1j*2*np.pi*(-1.*row_shift*Nr/nr-1.*col_shift*Nc/nc)) Greg = Greg*np.exp(1j*diffphase) elif (nargout > 1) and (usfac == 0): Greg = np.dot(buf2ft,np.exp(1j*diffphase)) #plt.figure(3) image_reg = sf.ifft2(Greg) * np.sqrt(nr*nc) #imgplot = plt.imshow(np.abs(image_reg)) #a_ini = np.zeros((100,100)) #a_ini[40:59,40:59] = 1. #a = a_ini * np.exp(1j*15.) #plt.figure(6) #imgplot = plt.imshow(np.abs(a)) #plt.figure(3) #imgplot = plt.imshow(np.abs(a)-np.abs(image_reg)) #plt.colorbar() # return error,diffphase,row_shift,col_shift,Greg return error,diffphase,row_shift,col_shift, image_reg
1cd8cd37efebea29da1086b998e98a334697e2d4
3,649,356
def parametrize_simulations(args): """Parametrize simulations""" if args.type == INSTANCE_COUNTS: return instance_count_sims(args) if args.type == FEATURE_COUNTS: return feature_count_sims(args) if args.type == NOISE_LEVELS: return noise_level_sims(args) if args.type == SHUFFLING_COUNTS: return shuffling_count_sims(args) raise NotImplementedError("Unknown simulation type")
ad592e64cbf7fa8ae79ccb753a1fd87db85e1f11
3,649,357
from typing import Union def connect(base_url: Union[str, URL], database_id: int = DJ_DATABASE_ID) -> Connection: """ Create a connection to the database. """ if not isinstance(base_url, URL): base_url = URL(base_url) return Connection(base_url, database_id)
aac724326f0f6e487caf8d614265c8028bae4e79
3,649,358
def micore_tf_deps(): """Dependencies for Tensorflow builds. Returns: list of dependencies which must be used by each cc_library which refers to Tensorflow. Enables the library to compile both for Android and for Linux. Use this macro instead of directly declaring dependencies on Tensorflow. """ return micore_if( android = [ # Link to library which does not contain any ops. "@org_tensorflow//tensorflow/core:portable_tensorflow_lib_lite", "@gemmlowp//:eight_bit_int_gemm", "@fft2d//:fft2d", ], ios = [ "@org_tensorflow//tensorflow/core:portable_tensorflow_lib", "@gemmlowp//:eight_bit_int_gemm", "@fft2d//:fft2d", ], default = [ # Standard references for Tensorflow when building for Linux. We use # an indirection via the alias targets below, to facilitate whitelisting # these deps in the mobile license presubmit checks. "@local_config_tf//:libtensorflow_framework", "@local_config_tf//:tf_header_lib", ], )
b4c8786df978a536f1adf1384209f0a0b663c100
3,649,359
def de_bruijn(k, n): """ de Bruijn sequence for alphabet k and subsequences of length n. """ try: # let's see if k can be cast to an integer; # if so, make our alphabet a list _ = int(k) alphabet = list(map(str, range(k))) except (ValueError, TypeError): alphabet = k k = len(k) a = [0] * k * n sequence = [] def db(t, p): if t > n: if n % p == 0: sequence.extend(a[1:p + 1]) else: a[t] = a[t - p] db(t + 1, p) for j in range(a[t - p] + 1, k): a[t] = j db(t + 1, t) db(1, 1) return "".join(alphabet[i] for i in sequence)
7e39d51bccbbb42bdda0594fa8c7077d4f2af1a1
3,649,360
def append_artist(songs, artist): """ When the songs gathered from the description just contains the titles of the songs usually means it's an artist's album. If an artist was provided appends the song title to the artist using a hyphen (artist - song) :param list songs: List of song titles (only song title) :param str artist: Artist to search for with the song names :return list: song titles along with the artist """ songs_complete = [] for song in songs: song_complete = f'{artist} - {song}' songs_complete.append(song_complete) return songs_complete
b3fbda311849f68ab01c2069f44ea0f694365270
3,649,361
def pose2pandas(pose: pyrosetta.Pose, scorefxn: pyrosetta.ScoreFunction) -> pd.DataFrame: """ Return a pandas dataframe from the scores of the pose :param pose: :return: """ pose.energies().clear_energies() scorefxn.weights() # neccessary? emopts = pyrosetta.rosetta.core.scoring.methods.EnergyMethodOptions(scorefxn.energy_method_options()) emopts.hbond_options().decompose_bb_hb_into_pair_energies(True) scorefxn.set_energy_method_options(emopts) scorefxn(pose) scores = pd.DataFrame(pose.energies().residue_total_energies_array()) pi = pose.pdb_info() scores['residue'] = scores.index.to_series() \ .apply(lambda r: pose.residue(r + 1) \ .name1() + pi.pose2pdb(r + 1) ) return scores
71c3342f86138f28411302da271ca0fb252727d2
3,649,362
def rantest(seed,N=100): """get some random numbers""" buff = np.zeros(N,dtype=np.double) ct_buff = buff.ctypes.data_as(ct.POINTER(ct.c_double)) sim.rantest(seed,N,ct_buff) return buff
4764968f8b0c46ab58b0b2710f4a0764a417f51c
3,649,363
def tf_efficientnet_b0_ap(pretrained=False, **kwargs): """ EfficientNet-B0 AdvProp. Tensorflow compatible variant """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_efficientnet( 'tf_efficientnet_b0_ap', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) return model
4cbd2d791301c4001f9bd07da0357550ea93f585
3,649,364
import torch def pi_del( shape, y_tgt_star, pad_symbol=0, plh_symbol=0, bos_symbol=0, eos_symbol=0, Kmax=100, device="cpu", ): """Operations and states to edit a partially deleted version of y_star back to y_star.""" # shape = B x N x M # y_tgt_star : B x M shape = list(shape) shape[-1] = y_tgt_star.size(-1) shape = tuple(shape) del_tgt = torch.ones(shape, dtype=torch.long, device=device) plh_tgt = -torch.ones( (shape[0], shape[1], shape[2] - 1), dtype=torch.long, device=device ) cmb_tgt = -torch.ones(shape[0], shape[2], shape[1], dtype=torch.long, device=device) y_plh = torch.full( (shape[0], shape[1], shape[2]), pad_symbol, dtype=torch.long, device=device ) y_cmb = torch.full(shape, pad_symbol, dtype=torch.long, device=device) y_tok = torch.full_like(y_tgt_star, pad_symbol, dtype=torch.long, device=device) y_star_n = y_tgt_star.view(shape[0], 1, shape[-1]).expand(shape) # tok_mask = torch.zeros_like(y_star_n, dtype=bool, device=device) mask = ( ((torch.rand(y_star_n.shape, device=device) > 0.2) & (y_star_n.ne(pad_symbol))) | (y_star_n == bos_symbol) | (y_star_n == eos_symbol) ) tok_mask = mask.any(1) sorted_ = mask.long().sort(-1, descending=True) sorted_mask = sorted_[0].bool() y_plh[sorted_mask] = y_star_n[mask] y_cmb[y_star_n.ne(pad_symbol)] = plh_symbol y_cmb[mask] = y_star_n[mask] y_tok[y_tgt_star.ne(pad_symbol)] = plh_symbol y_tok[tok_mask] = y_tgt_star[tok_mask] idx = sorted_[1] plh_tgt = idx[:, :, 1:] - idx[:, :, :-1] - 1 plh_tgt[~sorted_mask[:, :, 1:]] = 0 plh_tgt = plh_tgt.clamp(0, Kmax - 1) cmb_tgt = mask.long() plh_mask = y_plh.ne(pad_symbol)[:, :, 1:] del_mask = torch.zeros(shape, dtype=bool, device=device) cmb_mask = y_tgt_star.ne(pad_symbol).view(shape[0], 1, shape[-1]).expand_as(y_cmb) return { "del_tgt": del_tgt, "plh_tgt": plh_tgt, "cmb_tgt": cmb_tgt, "tok_tgt": y_tgt_star, "del_mask": del_mask, "plh_mask": plh_mask, "cmb_mask": cmb_mask, "tok_mask": tok_mask, "y_plh": y_plh, "y_cmb": y_cmb, "y_tok": y_tok, }
edbd9c40de5b8d5639bfa382d90071e7405aa062
3,649,365
from typing import Dict from typing import Any import logging def create_service_account(project_id: str, service_account_name: str, role_name: str, file_name: str) -> Dict[str, Any]: """Create a new service account. Args: project_id: GCP project id. service_account_name: The service account name. role_name: The role to be assigned to the service account. file_name: The file where service account key will be stored. Returns: service_account: The newly created service account. Raises: ValueError: If the service_account_name is empty. ValueError: If the file_name is empty. """ if not service_account_name: raise ValueError('Service account name cannot be empty.') if not file_name: raise ValueError('The file name cannot be empty.') service_account_details = get_service_account(project_id, service_account_name) if service_account_details: return service_account_details logging.info('Creating "%s" service account in "%s" project', service_account_name, project_id) request = _get_service_account_client().create( name='projects/' + project_id, body={ 'accountId': service_account_name, 'serviceAccount': { 'displayName': service_account_name.upper() }, }) service_account_details = utils.execute_request(request) set_service_account_role(project_id, service_account_name, role_name) create_service_account_key(project_id, service_account_name, file_name) return service_account_details
48bcd081cef0eb76be5412febb76e05266a12968
3,649,366
def test_ode_FE(): """Test that a linear u(t)=a*t+b is exactly reproduced.""" def exact_solution(t): return a*t + b def f(u, t): # ODE return a + (u - exact_solution(t))**m a = 4 b = -1 m = 6 dt = 0.5 T = 20.0 u, t = ode_FE(f, exact_solution(0), dt, T) diff = abs(exact_solution(t) - u).max() tol = 1E-15 # Tolerance for float comparison success = diff < tol assert success
992aaf22b89a235b7ab5505225a8f3ff4f34ae10
3,649,367
def file_finder(): """ This function allows to the user to select a file using the dialog with tkinter. :return path_name :rtype str the string of the path_name file. """ root = Tk() root.title("File Finder") root.geometry("500x400") root.attributes("-topmost", True) root.withdraw() path_name = filedialog.askopenfilename() root.withdraw() return path_name
2da5df55010e8edbd5975fe527ad4780ce6e69e9
3,649,368
def htm_search_cone(IndexFile_data,Long,Lat,Radius,Ind=None,Son_index=np.arange(2,6),PolesLong_index=np.arange(6,11,2),PolesLat_index=np.arange(7,12,2)): #print('I am running htm_search_cone') """Description: Search for all HTM leafs intersecting a small circles Input :-Either a table of HTM data or an open HDF5 object in which the HTM data is stored -Longitude (radians) to search -Latitutde (radians) to search -Radius of the small circle Output : a vector of indexes of the winner(s):the "adress" in the indexfile of the smallest leaf(s) intercepting the cone By : Maayane Soumagnac (original Matlab function by Eran Ofek) Feb 2018 """ if Ind is None: Sons=np.arange(8) else: Sons=Ind.astype(int) ID=[] Nsons=len(Sons) PolesLong=np.zeros((3,Nsons)) #3 lines, Nsons colomns, on veut mettre a chaque colomne les longitudes des poles du mesh PolesLat=np.zeros((3, Nsons)) #3 lignes, Nsons colomnes for i in range(Nsons):#OPTIMIZE PolesLong[:,i]=IndexFile_data[PolesLong_index[:],Sons[i]] # array where each colomn is the 3 poles longitudes of a son mesh HERE: THIS? OR INVERSE? PolesLat[:,i]=IndexFile_data[PolesLat_index[:],Sons[i]] # array where each colomn is the 3 poles latitude of a son mesh HERE: THIS? OR INVERSE? Flag=celestial.cone_in_polysphere(PolesLong,PolesLat,Long,Lat,Radius) #check if the cone intercept any of the sons meshes for i in range(Nsons): #OPTIMIZABLE? if Flag[i]==1: #i.e. if the cone overlap the son with index i if np.isnan(IndexFile_data[Son_index[:],Sons[i]]).all()==True:# there are nans in the index_file at the son's index, which means the data is where you are and you cannot go further in the tree ID.append(Sons[i]) else: Ind = IndexFile_data[Son_index[:], Sons[i]] - 1. #RECURION IS HERE ID.extend(htm_search_cone(IndexFile_data,Long,Lat,Radius,Ind=Ind)) return ID
2b202f943264cc979c4271c41fca2386a3b2b14f
3,649,369
def get_missing_columns(missing_data): """ Returns columns names as list that containes missing data :param missing_data : return of missing_data(df) :return list: list containing columns with missing data """ missing_data = missing_data[missing_data['percent'] > 0] missing_columns = missing_data.index.tolist() return missing_columns
80feccec6148a417b89fb84f4c412d9ea4d0dd37
3,649,372
def read(request): """Render the page for a group.""" pubid = request.matchdict["pubid"] slug = request.matchdict.get("slug") group = models.Group.get_by_pubid(pubid) if group is None: raise exc.HTTPNotFound() if slug is None or slug != group.slug: url = request.route_url('group_read', pubid=group.pubid, slug=group.slug) return exc.HTTPMovedPermanently(url) if not request.authenticated_userid: return _login_to_join(request, group) else: if group in request.authenticated_user.groups: return _read_group(request, group) else: return _join(request, group)
8376c94a4ffe6569cd7531d18427fbfd57629031
3,649,373
import time import copy import tqdm import torch from typing import OrderedDict def train_model( model, device, train_data_loader, valid_data_loader, criterion, optimizer, scheduler, num_epochs=5): """ training Parameters -------------- model : DogClassificationModel Network model to be trained. device : device cuda or cpu train_data_loader : dataloader dataloader for training valid_data_loader : dataloader dataloader for validation criterion : Loss function. optimizer : Optimizer. scheduler : Learning rate scheduler. num_epochs : int The number of epochs. Returns -------------- model : DogClassificationModel Trained model. """ since = time.time() model = model.to(device) best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): bar = tqdm(total = len(train_data_loader)) bar.set_description("Epoch: {}/{}".format(epoch+1, num_epochs)) """ Training Phase """ model.train() running_loss = 0.0 running_corrects = 0 for j, (inputs, labels) in enumerate(train_data_loader): optimizer.zero_grad() tmp_loss_item = 0.0 # training with torch.set_grad_enabled(True): outputs = model(inputs.to(device)) torch.cuda.empty_cache() _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels.to(device)) # backward + optimize only if in training phase loss.backward() optimizer.step() tmp_loss_item = loss.item() # statistics running_loss += tmp_loss_item * inputs.size(0) running_corrects += torch.sum(preds.to('cpu') == labels.data) # progress bar bar.update(1) tmp_loss = float(running_loss / (j+1)) / 32 # 32: mini-batch size tmp_acc = float(running_corrects // (j+1)) / 32 bar.set_postfix(OrderedDict(loss=tmp_loss, acc=tmp_acc)) # update learning rate scheduler scheduler.step() dataset_size = len(train_data_loader.dataset) epoch_loss = running_loss / dataset_size epoch_acc = running_corrects.double() / dataset_size """ Validation Phase """ model.eval() # Set model to validation mode val_running_loss = 0.0 val_running_corrects = 0 # Iterate over data. for inputs, labels in valid_data_loader: val_inputs = inputs.to(device) val_labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.no_grad(): val_outputs = model(val_inputs) _, preds = torch.max(val_outputs, 1) loss = criterion(val_outputs, val_labels) # statistics val_running_loss += loss.item() * val_inputs.size(0) val_running_corrects += torch.sum(preds == val_labels.data) dataset_size = len(valid_data_loader.dataset) val_epoch_loss = val_running_loss / dataset_size val_epoch_acc = val_running_corrects.double() / dataset_size print('VALIDATION Loss: {:.4f} Acc: {:.4f}'.format(val_epoch_loss, val_epoch_acc)) print("Elapsed time: {} [sec]".format(time.time() - since)) # deep copy the model if val_epoch_acc > best_acc: best_acc = val_epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model
c12929a8aec02031f8d293f5347beaeb5dc6d759
3,649,374
from src.dialogue_system.agent.agent_with_goal_3 import AgentWithGoal as AgentWithGoal3 import json import time import pickle def run(parameter): """ The entry function of this code. Args: parameter: the super-parameter """ print(json.dumps(parameter, indent=2)) time.sleep(2) slot_set = pickle.load(file=open(parameter["slot_set"], "rb")) action_set = pickle.load(file=open(parameter["action_set"], "rb")) disease_symptom = pickle.load(file=open(parameter["disease_symptom"], "rb")) steward = RunningSteward(parameter=parameter,checkpoint_path=parameter["checkpoint_path"]) print('action_set', action_set) warm_start = parameter.get("warm_start") warm_start_epoch_number = parameter.get("warm_start_epoch_number") train_mode = parameter.get("train_mode") agent_id = parameter.get("agent_id") simulate_epoch_number = parameter.get("simulate_epoch_number") # Warm start. if warm_start == True and train_mode == True: print("warm starting...") agent = AgentRule(action_set=action_set,slot_set=slot_set,disease_symptom=disease_symptom,parameter=parameter) steward.dialogue_manager.set_agent(agent=agent) steward.warm_start(epoch_number=warm_start_epoch_number) # exit() if agent_id.lower() == 'agentdqn': agent = AgentDQN(action_set=action_set,slot_set=slot_set,disease_symptom=disease_symptom,parameter=parameter) elif agent_id.lower() == 'agentrandom': agent = AgentRandom(action_set=action_set,slot_set=slot_set,disease_symptom=disease_symptom,parameter=parameter) elif agent_id.lower() == 'agentrule': agent = AgentRule(action_set=action_set,slot_set=slot_set,disease_symptom=disease_symptom,parameter=parameter) elif agent_id.lower() == 'agenthrl': agent = AgentHRL(action_set=action_set, slot_set=slot_set, disease_symptom=disease_symptom, parameter=parameter) elif agent_id.lower() == 'agentwithgoaljoint': agent = AgentWithGoalJoint(action_set=action_set, slot_set=slot_set, disease_symptom=disease_symptom, parameter=parameter) elif agent_id.lower() == 'agentwithgoal': agent = AgentWithGoal(action_set=action_set, slot_set=slot_set, disease_symptom=disease_symptom, parameter=parameter) elif agent_id.lower() == 'agentwithgoal2': agent = AgentWithGoal2(action_set=action_set, slot_set=slot_set, disease_symptom=disease_symptom, parameter=parameter) elif agent_id.lower() == 'agentwithgoal3': agent = AgentWithGoal3(action_set=action_set, slot_set=slot_set, disease_symptom=disease_symptom, parameter=parameter) else: raise ValueError('Agent id should be one of [AgentRule, AgentDQN, AgentRandom, AgentHRL, AgentWithGoal, AgentWithGoal2, AgentWithGoalJoint].') steward.dialogue_manager.set_agent(agent=agent) if train_mode is True: # Train steward.simulate(epoch_number=simulate_epoch_number, train_mode=train_mode) else: # test for index in range(simulate_epoch_number): res = steward.evaluate_model(dataset='test', index=index) return res
75e9fd2204e2e3e0aa7101e9656c23617fb56099
3,649,375
from typing import Iterable def convert( value: str, conversion_recipes: Iterable[ConversionRecipe[ConvertResultType]]) -> ConvertResultType: """ Given a string value and a series of conversion recipes, attempt to convert the value using the recipes. If none of the recipes declare themselves as applicable, then raise :py:class:`NoApplicableConversionRecipeError`. If none of the recipes that declare themselves as eligible run successfully, then raise :py:class:`NoSuccessfulConversionRecipeError`. Parameters ---------- value : str The string value we are attempting to convert. conversion_recipes : Iterable[ConversionRecipe[ConvertResultType]] A series of conversion recipes. Returns ------- The converted value. """ none_applied = True for conversion_recipe in conversion_recipes: if conversion_recipe.applicable(value): none_applied = False try: return conversion_recipe.load(value) except Exception: pass if none_applied: raise NoApplicableConversionRecipeError( f"Could not find applicable gonversion recipe for {value}") raise NoSuccessfulConversionRecipeError( f"All applicable conversion recipes failed to run successfully for {value}.")
a6f1162f4069a3846636ad95cecde0b3ba3601a8
3,649,376
def get_function_name(fcn): """Returns the fully-qualified function name for the given function. Args: fcn: a function Returns: the fully-qualified function name string, such as "eta.core.utils.function_name" """ return fcn.__module__ + "." + fcn.__name__
ae186415225bd5420de7f7b3aef98480d30d59f8
3,649,377
def clean_cases(text): """ Makes text all lowercase. :param text: the text to be converted to all lowercase. :type: str :return: lowercase text :type: str """ return text.lower()
9b0c931336dbf762e5e3a18d103706ddf1e7c14f
3,649,378
def root(): """Refreshes data in database""" db.drop_all() db.create_all() # Get data from api, make objects with it, and add to db for row in df.index: db_comment = Comment(user=df.User[row],text=df.Text[row]) # rating = df.Rating[row] db.session.add(db_comment) db.session.commit() return 'Data stored'
0731926301cd981cc9278964cb313a35bcfb4f43
3,649,379
def bond_value_to_description(value): """bond_value_to_description(value) -> string Convert from a bond type string into its text description, separated by "|"s. The result are compatible with OEGetFPBontType and are in canonical order. """ return _get_type_description("bond", _btype_flags, value)
2eeb333334740ed9cdad28b43742c7a2274885bc
3,649,381
def read_set_from_file(filename): """ Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. """ collection = set() with open(filename, 'r', encoding='utf-8') as file_: for line in file_: collection.add(line.rstrip()) return collection
ba71ed4fb6e85cf5156d35a85245058bb3711f9b
3,649,382
def filter_0_alleles(allele_df, allele_num=2): """Drop alleles that do not appear in any of the strains. """ drop_cols = [] for col in allele_df.columns: if allele_df[col].sum()<allele_num: drop_cols.append(col) allele_df.drop(drop_cols, inplace=True, axis=1) return allele_df
9b76152d6e6fc200c2d80d4721122d3958642286
3,649,383
def gradient_of_rmse(y_hat, y, Xn): """ Returns the gradient of the Root Mean Square error with respect to the parameters of the linear model that generated the prediction `y_hat'. Hence, y_hat should have been generated by a linear process of the form Xn.T.dot(theta) Args: y_hat (np.array of shape N,): The predictions of the linear model y (np.array of shape N,): The "ground-truth" values. Returns: The RMSE between y_hat and y """ N = y.shape[0] assert N > 0, ('At least one sample is required in order to compute the ' 'RMSE loss') losses = y - y_hat gradient = - 2 * Xn.T.dot(losses) / N return gradient
73a46197f90cf1b9c0a90a8ce2d2eae006c6d002
3,649,384
def is_commit_in_public_upstream(revision: str, public_upstream_branch: str, source_dir: str): """ Determine if the public upstream branch includes the specified commit. :param revision: Git commit hash or reference :param public_upstream_branch: Git branch of the public upstream source :param source_dir: Path to the local Git repository """ cmd = ["git", "merge-base", "--is-ancestor", "--", revision, "public_upstream/" + public_upstream_branch] # The command exits with status 0 if true, or with status 1 if not. Errors are signaled by a non-zero status that is not 1. # https://git-scm.com/docs/git-merge-base#Documentation/git-merge-base.txt---is-ancestor rc, out, err = exectools.cmd_gather(cmd) if rc == 0: return True if rc == 1: return False raise IOError( f"Couldn't determine if the commit {revision} is in the public upstream source repo. `git merge-base` exited with {rc}, stdout={out}, stderr={err}")
6f7259f8e3a1893a7fbd41914df37e42fed73c7b
3,649,385
def align_down(x: int, align: int) -> int: """ Align integer down. :return: ``y`` such that ``y % align == 0`` and ``y <= x`` and ``(x - y) < align`` """ return x - (x % align)
8144309badf601999f4c291ee3af5cfbd18397ea
3,649,386
def null(): """return an empty bit buffer""" return bits()
53b7e87648c33ab1072651ee6ef6bfb3fe92da8d
3,649,388
def find_coherent_patch(correlations, window=11): """Looks through 3d stack of correlation layers and finds strongest correlation patch Also accepts a 2D array of the pre-compute means of the 3D stack. Uses a window of size (window x window), finds the largest average patch Args: correlations (ndarray): 3D array of correlations: correlations = read_stack('path/to/correlations', '.cc') window (int): size of the patch to consider Returns: tuple[int, int]: the row, column of center of the max patch Example: >>> corrs = np.arange(25).reshape((5, 5)) >>> print(find_coherent_patch(corrs, window=3)) (3, 3) >>> corrs = np.stack((corrs, corrs), axis=0) >>> print(find_coherent_patch(corrs, window=3)) (3, 3) """ if correlations.ndim == 2: mean_stack = correlations elif correlations.ndim == 3: mean_stack = np.mean(correlations, axis=0) else: raise ValueError("correlations must be a 2D mean array, or 3D correlations") conv = uniform_filter(mean_stack, size=window, mode='constant') max_idx = conv.argmax() return np.unravel_index(max_idx, mean_stack.shape)
27bc06ec5e73d854c094f909fdf507fad38168f3
3,649,389
def test(): """HI :)""" return 'Hi!'
626b2ffcfc3f60dcd5456efa2d61a3ed18d428d8
3,649,390
def get_vdfdx(stuff_for_time_loop, vdfdx_implementation="exponential"): """ This function enables VlaPy to choose the implementation of the vdfdx stepper to use in the lower level sections of the simulation :param stuff_for_time_loop: (dictionary) contains the derived parameters for the simulation :param vdfdx_implementation: (string) the chosen v df/dx implementation for for this simulation :return: """ if vdfdx_implementation == "exponential": vdfdx = get_vdfdx_exponential( kx=stuff_for_time_loop["kx"], v=stuff_for_time_loop["v"] ) elif vdfdx_implementation == "sl": vdfdx = get_vdfdx_sl(x=stuff_for_time_loop["x"], v=stuff_for_time_loop["v"]) else: raise NotImplementedError( "v df/dx: <" + vdfdx_implementation + "> has not yet been implemented in NumPy/SciPy" ) return vdfdx
538548a2d2d39b83ad74ac052c3c1a51895357d2
3,649,392
def worker(args): """ 1. Create the envelope request object 2. Send the envelope """ envelope_args = args["envelope_args"] # 1. Create the envelope request object envelope_definition = make_envelope(envelope_args) # 2. call Envelopes::create API method # Exceptions will be caught by the calling function api_client = ApiClient() api_client.host = args["base_path"] api_client.set_default_header("Authorization", "Bearer " + args["ds_access_token"]) envelope_api = EnvelopesApi(api_client) results = envelope_api.create_envelope(args["account_id"], envelope_definition=envelope_definition) envelope_id = results.envelope_id # app.logger.info(f"Envelope was created. EnvelopeId {envelope_id}") return {"envelope_id": envelope_id}
79891142b34da8d9d5aacc4d55ab7f65198a4116
3,649,393
import glob import csv def write_colocated_data_time_avg(coloc_data, fname): """ Writes the time averaged data of gates colocated with two radars Parameters ---------- coloc_data : dict dictionary containing the colocated data parameters fname : str file name where to store the data Returns ------- fname : str the name of the file where data has written """ filelist = glob.glob(fname) if not filelist: with open(fname, 'w', newline='') as csvfile: csvfile.write('# Colocated radar gates data file\n') csvfile.write('# Comment lines are preceded by "#"\n') csvfile.write('#\n') fieldnames = [ 'rad1_time', 'rad1_ray_ind', 'rad1_rng_ind', 'rad1_ele', 'rad1_azi', 'rad1_rng', 'rad1_dBZavg', 'rad1_PhiDPavg', 'rad1_Flagavg', 'rad2_time', 'rad2_ray_ind', 'rad2_rng_ind', 'rad2_ele', 'rad2_azi', 'rad2_rng', 'rad2_dBZavg', 'rad2_PhiDPavg', 'rad2_Flagavg'] writer = csv.DictWriter(csvfile, fieldnames) writer.writeheader() for i, rad1_time in enumerate(coloc_data['rad1_time']): writer.writerow({ 'rad1_time': rad1_time.strftime('%Y%m%d%H%M%S'), 'rad1_ray_ind': coloc_data['rad1_ray_ind'][i], 'rad1_rng_ind': coloc_data['rad1_rng_ind'][i], 'rad1_ele': coloc_data['rad1_ele'][i], 'rad1_azi': coloc_data['rad1_azi'][i], 'rad1_rng': coloc_data['rad1_rng'][i], 'rad1_dBZavg': coloc_data['rad1_dBZavg'][i], 'rad1_PhiDPavg': coloc_data['rad1_PhiDPavg'][i], 'rad1_Flagavg': coloc_data['rad1_Flagavg'][i], 'rad2_time': ( coloc_data['rad2_time'][i].strftime('%Y%m%d%H%M%S')), 'rad2_ray_ind': coloc_data['rad2_ray_ind'][i], 'rad2_rng_ind': coloc_data['rad2_rng_ind'][i], 'rad2_ele': coloc_data['rad2_ele'][i], 'rad2_azi': coloc_data['rad2_azi'][i], 'rad2_rng': coloc_data['rad2_rng'][i], 'rad2_dBZavg': coloc_data['rad2_dBZavg'][i], 'rad2_PhiDPavg': coloc_data['rad2_PhiDPavg'][i], 'rad2_Flagavg': coloc_data['rad2_Flagavg'][i]}) csvfile.close() else: with open(fname, 'a', newline='') as csvfile: fieldnames = [ 'rad1_time', 'rad1_ray_ind', 'rad1_rng_ind', 'rad1_ele', 'rad1_azi', 'rad1_rng', 'rad1_dBZavg', 'rad1_PhiDPavg', 'rad1_Flagavg', 'rad2_time', 'rad2_ray_ind', 'rad2_rng_ind', 'rad2_ele', 'rad2_azi', 'rad2_rng', 'rad2_dBZavg', 'rad2_PhiDPavg', 'rad2_Flagavg'] writer = csv.DictWriter(csvfile, fieldnames) for i, rad1_time in enumerate(coloc_data['rad1_time']): writer.writerow({ 'rad1_time': rad1_time.strftime('%Y%m%d%H%M%S'), 'rad1_ray_ind': coloc_data['rad1_ray_ind'][i], 'rad1_rng_ind': coloc_data['rad1_rng_ind'][i], 'rad1_ele': coloc_data['rad1_ele'][i], 'rad1_azi': coloc_data['rad1_azi'][i], 'rad1_rng': coloc_data['rad1_rng'][i], 'rad1_dBZavg': coloc_data['rad1_dBZavg'][i], 'rad1_PhiDPavg': coloc_data['rad1_PhiDPavg'][i], 'rad1_Flagavg': coloc_data['rad1_Flagavg'][i], 'rad2_time': ( coloc_data['rad2_time'][i].strftime('%Y%m%d%H%M%S')), 'rad2_ray_ind': coloc_data['rad2_ray_ind'][i], 'rad2_rng_ind': coloc_data['rad2_rng_ind'][i], 'rad2_ele': coloc_data['rad2_ele'][i], 'rad2_azi': coloc_data['rad2_azi'][i], 'rad2_rng': coloc_data['rad2_rng'][i], 'rad2_dBZavg': coloc_data['rad2_dBZavg'][i], 'rad2_PhiDPavg': coloc_data['rad2_PhiDPavg'][i], 'rad2_Flagavg': coloc_data['rad2_Flagavg'][i]}) csvfile.close() return fname
2e786c6df8a617f187a7b50467111785342310c5
3,649,394