content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Tuple from typing import List from typing import Type from typing import _Final def build_type(tp) -> Tuple[str, List[Type]]: """ Build typescript type from python type. """ tokens = tokenize_python_type(tp) dependencies = [ token for token in tokens if token not in TYPE_MAPPING_WITH_GENERIC_FALLBACK and not type(token) in TRIVIAL_TYPE_MAPPING and not isinstance(token, _Final) ] return _build_type(tokens), dependencies
475362488b7fe07db035ce70ddb3ac40580412dd
3,651,043
def laplacian_radial_kernel(distance, bandwidth=1.0): """Laplacian radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. Returns ------- http://crsouza.com/2010/03/17/ kernel-functions-for-machine-learning-applications/ https://data-flair.training/blogs/svm-kernel-functions/ """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.exp(- scaled_distance) return weight
fd5f777b0d21e3a7673a6589a76dd50f48384029
3,651,044
def build_eslog_config_param( group_id, task_name, rt_id, tasks, topic, table_name, hosts, http_port, transport, es_cluster_name, es_version, enable_auth, user, password, ): """ es参数构建 :param group_id: 集群名 :param task_name: 任务名 :param rt_id: rt_id :param tasks: 任务数 :param topic: 来源topic :param table_name: 表名 :param hosts: es的host :param http_port: es的port :param transport: es transport的port :param es_cluster_name: es集群名称 :param es_version es集群版本 :param enable_auth 是否启用验证 :param user: 用户名 :param password: 密码, 加密过的 :return: 参数 """ return { "group.id": group_id, "rt.id": rt_id, "topics": topic, "type.name": table_name, "tasks.max": "%s" % tasks, "es.index.prefix": table_name.lower(), "es.cluster.name": es_cluster_name, "es.cluster.version": es_version, "es.hosts": hosts, "es.transport.port": transport, "es.host": hosts, "es.http.port": http_port, "connector.class": "com.tencent.bk.base.datahub.databus.connect.sink.es.EsSinkConnector", "flush.timeout.ms": "10000", "batch.size": "10000", "max.in.flight.requests": "5", "retry.backoff.ms": "5000", "max.retry": "5", "es.cluster.enable.auth": enable_auth, "es.cluster.enable.PlaintextPwd": False, # 当前都是加密后的密码 "es.cluster.username": user, "es.cluster.password": password, }
826b8d97ef14792845b4ced98ab5dcb3f36e57f3
3,651,045
def disclosure(input_df, cur_period): """ Reading in a csv, converting to a data frame and converting some cols to int. :param input_df: The csv file that is converted into a data frame. :param cur_period: The current period for the results process. :return: None. """ input_df = pd.read_csv(input_df, dtype={"Q601_asphalting_sand": int, 'Q602_building_soft_sand': int, 'Q603_concreting_sand': int, 'Q604_bituminous_gravel': int, 'Q605_concreting_gravel': int, 'Q606_other_gravel': int, 'Q607_constructional_fill': int, 'Q608_total': int, 'enterprise_ref': int, 'period': int, 'region': int}) input_df["disclosive"] = None input_df["publish"] = None input_df["reason"] = None def run_disclosure(row): if row['Q608_total'] == 0: row['disclosive'] = 'N' row['publish'] = 'Publish' row['reason'] = ' Total is zero' else: row['disclosive'] = 'Y' row['publish'] = 'N/A' return row disaggregated_data = input_df[input_df.period == cur_period] region_agg = disaggregated_data.groupby('region') region_agg = region_agg.agg({'Q608_total': 'sum', 'Q607_constructional_fill': 'sum', 'Q606_other_gravel': 'sum', 'Q605_concreting_gravel': 'sum', 'Q604_bituminous_gravel': 'sum', 'Q603_concreting_sand': 'sum', 'Q602_building_soft_sand': 'sum', 'Q601_asphalting_sand': 'sum', 'enterprise_ref': 'nunique'}) region_agg = region_agg.apply(run_disclosure, axis=1) # regionlorm = disaggregated_data.groupby(['region']) region_agg_lorm = disaggregated_data.groupby(['region', 'land_or_marine']) return region_agg_lorm
65702fa309884206f284b35c48e2e8c8a34aef2b
3,651,046
def kitchen_sink(): """Combines all of the test data.""" return word_frequencies.load(_KITCHEN_SINK_DATA)
4e0b0d38465fb02cd4f8aeb5e54c2f6bcbdf2cda
3,651,048
import torch def sim_matrix(a, b, eps=1e-8): """ added eps for numerical stability """ a = normalize_embeddings(a, eps) b = normalize_embeddings(b, eps) sim_mt = torch.mm(a, b.transpose(0, 1)) return sim_mt
d0caa5ce6e9f86b861910221321b80752b4f24e4
3,651,049
def read_addon_xml(path): """Parse the addon.xml and return an info dictionary""" info = dict( path='./', # '/storage/.kodi/addons/plugin.video.vrt.nu', profile='special://userdata', # 'special://profile/addon_data/plugin.video.vrt.nu/', type='xbmc.python.pluginsource', ) tree = ET.parse(path) root = tree.getroot() info.update(root.attrib) # Add 'id', 'name' and 'version' info['author'] = info.pop('provider-name') for child in root: if child.attrib.get('point') != 'xbmc.addon.metadata': continue for grandchild in child: # Handle assets differently if grandchild.tag == 'assets': for asset in grandchild: info[asset.tag] = asset.text continue # Not in English ? Drop it if grandchild.attrib.get('lang', 'en_GB') != 'en_GB': continue # Add metadata info[grandchild.tag] = grandchild.text return {info['name']: info}
6ead602b97c12bfd78ddc7194102a84793aa631b
3,651,050
import requests def get_submission_list(start_timestamp, end_timestamp, args=None): """ Scrapes a subreddit for submissions between to given dates. Due to limitations of the underlying service, it may not return all the possible submissions, so it will be necessary to call this method again. The method requests the results in descending orders, so in subsequent calls, you should only update end_timestamp. :param start_timestamp: request results after this date/time. :param end_timestamp: request results before this date/time. :param args: the args to pass to the endpoint :return: the JSON object returned by the service. """ # Generic parameters: for each submission we want its ID and timestamp, # 500 is the maximum limit, sorted temporally by the most recent params = "fields=id,created_utc,subreddit&limit=500&sort=desc&sort_type=created_utc" if args: for key, value in args.items(): params += "&{0}={1}".format(key, value) url = "{0}?before={1}&after={2}&{3}".format( PUSHSHIFT_ENDPOINT, end_timestamp, start_timestamp, params ) resp = requests.get(url) return resp.json()
7fa053c27787136420a9004721c1954318deeedb
3,651,051
def loadDataSet(): """ load data from data set Args: Returns: dataSet: train input of x labelSet: train input of y """ # initialize x-trainInput,y-trainInput dataSet = [] labelSet = [] # open file reader fr = open('testSet.txt') for line in fr.readlines(): # strip() -- get rid of the space on both side # split() -- division as tab lineArr = line.strip().split() # padding data in list # x0 = 1.0 , x1 = column1 , x2 = column2 dataSet.append([1.0, float(lineArr[0]), float(lineArr[1])]) # label = column3 labelSet.append(float(lineArr[2])) return dataSet,labelSet
38f42a8a7c6b12e3d46d757d98565222e931149f
3,651,052
def xds_read_xparm_new_style(xparm_file): """Parse the XPARM file to a dictionary.""" data = map(float, " ".join(open(xparm_file, "r").readlines()[1:]).split()) starting_frame = int(data[0]) phi_start, phi_width = data[1:3] axis = data[3:6] wavelength = data[6] beam = data[7:10] spacegroup = int(data[10]) cell = data[11:17] a, b, c = data[17:20], data[20:23], data[23:26] assert int(data[26]) == 1 nx, ny = map(int, data[27:29]) px, py = data[29:31] ox, oy = data[31:33] distance = data[33] x, y = data[34:37], data[37:40] normal = data[40:43] results = { "starting_frame": starting_frame, "phi_start": phi_start, "phi_width": phi_width, "axis": axis, "wavelength": wavelength, "beam": beam, "nx": nx, "ny": ny, "px": px, "py": py, "distance": distance, "ox": ox, "oy": oy, "x": x, "y": y, "normal": normal, "spacegroup": spacegroup, "cell": cell, "a": a, "b": b, "c": c, } return results
ba5a851c68c54aa0c9f82df1dc2334f427c8cea8
3,651,053
def clear_bit(val, offs): """Clear bit at offset 'offs' in value.""" return val & ~(1 << offs)
e50e5f8ccc3fe08d9b19248e290c2117b78379ee
3,651,054
def get_org_details(orgs): """Get node and site details, store in Org object""" org_details = [] for org in orgs: org_id = org['id'] org_name = org['name'] org_longname = org['longname'] Org = namedtuple('Org', ['org_id', 'org_name', 'org_longname']) org_details.extend([Org(org_id, org_name, org_longname)]) return org_details
94bec33c2fbee35210ca61f6b8d3694d198c80ee
3,651,055
import logging def flush_after(handler, delay): """Add 'handler' to the queue so that it is flushed after 'delay' seconds by the flush thread. Return the scheduled event which may be used for later cancellation (see cancel()). """ if not isinstance(handler, logging.Handler): raise TypeError("handler must be a logging.Handler instance") return _FLUSH_THREAD.submit(handler.flush, delay)
a8cb8197643dbd092f709bed0726d076997e4715
3,651,056
def _ExtractCLPath(output_of_where): """Gets the path to cl.exe based on the output of calling the environment setup batch file, followed by the equivalent of `where`.""" # Take the first line, as that's the first found in the PATH. for line in output_of_where.strip().splitlines(): if line.startswith('LOC:'): return line[len('LOC:'):].strip()
6a0c0d4aa74b4e84de69de023e2721edd95c36bd
3,651,057
import math def logGamma(x): """The natural logarithm of the gamma function. Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz<BR> Applied Mathematics Division<BR> Argonne National Laboratory<BR> Argonne, IL 60439<BR> <P> References: <OL> <LI>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203. <LI>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969. <LI>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968. </OL></P><P> From the original documentation: </P><P> This routine calculates the LOG(GAMMA) function for a positive real argument X. Computation is based on an algorithm outlined in references 1 and 2. The program uses rational functions that theoretically approximate LOG(GAMMA) to at least 18 significant decimal digits. The approximation for X > 12 is from reference 3, while approximations for X < 12.0 are similar to those in reference 1, but are unpublished. The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions, and proper selection of the machine-dependent constants. </P><P> Error returns:<BR> The program returns the value XINF for X .LE. 0.0 or when overflow would occur. The computation is believed to be free of underflow and overflow.""" y = x if y < 0.0 or y > LOG_GAMMA_X_MAX_VALUE: # Bad arguments return float("inf") if y <= EPS: return -math.log(y) if y <= 1.5: if (y < pnt68): corr = -math.log(y) xm1 = y else: corr = 0.0; xm1 = y - 1.0; if y <= 0.5 or y >= pnt68: xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm1 + lg_p1[i]; xden = xden * xm1 + lg_q1[i]; return corr + xm1 * (lg_d1 + xm1 * (xnum / xden)); else: xm2 = y - 1.0; xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm2 + lg_p2[i]; xden = xden * xm2 + lg_q2[i]; return corr + xm2 * (lg_d2 + xm2 * (xnum / xden)); if (y <= 4.0): xm2 = y - 2.0; xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm2 + lg_p2[i]; xden = xden * xm2 + lg_q2[i]; return xm2 * (lg_d2 + xm2 * (xnum / xden)); if y <= 12.0: xm4 = y - 4.0; xden = -1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm4 + lg_p4[i]; xden = xden * xm4 + lg_q4[i]; return lg_d4 + xm4 * (xnum / xden); assert y <= lg_frtbig res = lg_c[6]; ysq = y * y; for i in xrange(6): res = res / ysq + lg_c[i]; res /= y; corr = math.log(y); res = res + LOGSQRT2PI - 0.5 * corr; res += y * (corr - 1.0); return res
36128e9a4b765dcc85ef42866fdbe7d16140ea1d
3,651,058
def regional_validity(query_point, regional_inclusion, regional_exclusions): """ regional_validity Returns whether a coordinate point is inside a polygon and outside of excluded regions. Input: A Point object, a Polygon Object of the inclusion region; a list of Polygon Objects of excluded regions. Output: True if the query point is both inside the regional polygon and outside all exlusions; False otherwise. """ if query_point.within(regional_inclusion): # Check if the point co-occurs with city areas... for city in regional_exclusions: if query_point.within(city): return False return True return False
68e06b3d89e4783130f123d6c91dc5c43a9788ba
3,651,059
def get_word_vector_list(doc, w2v): """Get all the vectors for a text""" vectors = [] for word in doc: try: vectors.append(w2v.wv[word]) except KeyError: continue return vectors
f228c2100b6a622fdb677954257e2d1590dcc0ff
3,651,060
def solve(lines, n): """Apply the rules specified in the input lines to the starting pattern for n iterations. The number of lit pixels in the final pattern is returned. """ rules = load_rulebook(lines) pattern = START for _ in range(n): pattern = enhance(pattern, rules) return sum([row.count('#') for row in pattern])
781c349bfa186ac04daea60fe7e954431787ea15
3,651,061
def _to_plotly_color(scl, transparence=None): """ converts a rgb color in format (0-1,0-1,0-1) to a plotly color 'rgb(0-255,0-255,0-255)' """ plotly_col = [255 * _c for _c in mplc.to_rgba(scl)] if len(scl) == 3 else [255 * _c for _c in mplc.to_rgb(scl)] if transparence is not None: assert 0. <= transparence <= 1.0 plotly_col[3] = transparence return "rgba({:.0f}, {:.0f}, {:.0f}, {:.4f})".format(*plotly_col) else: return "rgb({:.0f}, {:.0f}, {:.0f})".format(*plotly_col[:3])
95b7686f913c69792e18f127176db68a3f72622f
3,651,062
def dense_attention_block(seqs_repr, is_training, num_layers, decay_variable, decay_constant, units, dropout, query_dropout, l2_scale, name=''): """ """ for i in range(num_layers): with tf.variable_scope('dense_attention{}'.format(i), reuse=tf.AUTO_REUSE): #seqs_repr = tf.Print(seqs_repr, [tf.shape(seqs_repr)], "{}".format(i)) seqs_repr = attention_block(seqs_repr, is_training, decay_variable, decay_constant, dropout, query_dropout, l2_scale) layer_reprs.append(seqs_repr) return seqs_repr
db50dd5e4d8d61622a9f989ec0ae9c02c5a4cfe1
3,651,063
def generate_schema_type(app_name: str, model: object) -> DjangoObjectType: """ Take a Django model and generate a Graphene Type class definition. Args: app_name (str): name of the application or plugin the Model is part of. model (object): Django Model Example: For a model with a name of "Device", the following class definition is generated: Class DeviceType(DjangoObjectType): Meta: model = Device fields = ["__all__"] if a FilterSet exist for this model at '<app_name>.filters.<ModelName>FilterSet' The filterset will be store in filterset_class as follow Class DeviceType(DjangoObjectType): Meta: model = Device fields = ["__all__"] filterset_class = DeviceFilterSet """ main_attrs = {} meta_attrs = {"model": model, "fields": "__all__"} # We'll attempt to find a FilterSet corresponding to the model # Not all models have a FilterSet defined so the function return none if it can't find a filterset meta_attrs["filterset_class"] = get_filterset_for_model(model) main_attrs["Meta"] = type("Meta", (object,), meta_attrs) schema_type = type(f"{model.__name__}Type", (DjangoObjectType,), main_attrs) return schema_type
b57cd78cce59dacf1fdb1d14c667405b6cfdcc90
3,651,064
def do_authorize(): """ Send a token request to the OP. """ oauth2.client_do_authorize() try: redirect = flask.session.pop("redirect") return flask.redirect(redirect) except KeyError: return flask.jsonify({"success": "connected with fence"})
1e19f501ac6da94058619e8dd5905d6cd2ab1a69
3,651,065
import re def get_windows(): """ Return all windows found by WM with CPU, fullscreen, process name, and class information. """ # Basic window information result = check_output('nice -n 19 wmctrl -l -p', shell=True) lines = [a for a in result.decode('utf8').split('\n') if a != ''] windows = [re.split(r'\s+', a, maxsplit=4) for a in lines] # Window properties window_index = {} for window in windows: window_id = window[0] r = check_output('nice -n 19 xprop -id {}'.format(window_id), shell=True) wm_classes = [] r_class = re.search(br'WM_CLASS\(STRING\) = (.*)\n', r) if r_class: wm_classes = re.findall('\"(.*?)\"', r_class.group(1).decode('ascii')) fullscreen = b'WM_STATE_FULLSCREEN' in r window_index[window_id] = (fullscreen, wm_classes) # Basic process information usable_lines = [] result = check_output('nice -n 19 top -b -n 2', shell=True) lines = [a for a in result.decode('utf8').split('\n') if a != ''] first_found = False for i, line in enumerate(lines): r = re.search(r'PID\s+USER\s+PR\s+NI', line) if r: if first_found: usable_lines = lines[i + 1:] break else: first_found = True processes = [re.split(r'\s+', a.strip()) for a in usable_lines] process_index = {a[0]: (a[8], a[11]) for a in processes} result = [] for window in windows: cpu, name = process_index.get(window[2], (None, None)) fullscreen, wm_classes = window_index.get(window[0], None) result.append(Window(*window, cpu=cpu, fullscreen=fullscreen, name=name, wm_classes=wm_classes)) return result
dd0f6f702592cf7f2fdd8541959682890dcc271e
3,651,066
import google def get_google_open_id_connect_token(service_account_credentials): """Get an OpenID Connect token issued by Google for the service account. This function: 1. Generates a JWT signed with the service account's private key containing a special "target_audience" claim. 2. Sends it to the OAUTH_TOKEN_URI endpoint. Because the JWT in #1 has a target_audience claim, that endpoint will respond with an OpenID Connect token for the service account -- in other words, a JWT signed by *Google*. The aud claim in this JWT will be set to the value from the target_audience claim in #1. For more information, see https://developers.google.com/identity/protocols/OAuth2ServiceAccount . The HTTP/REST example on that page describes the JWT structure and demonstrates how to call the token endpoint. (The example on that page shows how to get an OAuth2 access token; this code is using a modified version of it to get an OpenID Connect token.) """ service_account_jwt = ( service_account_credentials._make_authorization_grant_assertion()) request = google.auth.transport.requests.Request() body = { 'assertion': service_account_jwt, 'grant_type': google.oauth2._client._JWT_GRANT_TYPE, } token_response = google.oauth2._client._token_endpoint_request( request, OAUTH_TOKEN_URI, body) return token_response['id_token']
08e483865d26772112ffaf9837692f001598ced5
3,651,067
def term_to_atoms(terms): """Visitor to list atoms in term.""" if not isinstance(terms, list): terms = [terms] new_terms = [] for term in terms: if isinstance(term, And): new_terms += term_to_atoms(term.to_list()) elif isinstance(term, Or): new_terms += term_to_atoms(term.to_list()) elif isinstance(term, Not): new_terms.append(term.child) else: new_terms.append(term) return new_terms
6262ea7b1df124a4717d1452a23c33175b5da7a8
3,651,068
def expr_max(argv): """ Max aggregator function for :class:`Expression` objects Returns ------- exp : :class:`Expression` Max of given arguments Examples -------- >>> x = so.VariableGroup(10, name='x') >>> y = so.expr_max(2*x[i] for i in range(10)) """ return expr_nested(argv, 'max')
182157a627b12db6c41c79a99f135a7a493d4410
3,651,069
def handle_size(bytes_in=False, bytes_out=False): """ a function that converts bytes to human readable form. returns a string like: 42.31 TB. example: your_variable_name = make_readable(value_in_bytes) """ tib = 1024 ** 4 gib = 1024 ** 3 mib = 1024 ** 2 kib = 1024 if bytes_in: data = float(bytes_in) if data >= tib: symbol = 'TB' new_data = data / tib elif data >= gib: symbol = 'GB' new_data = data / gib elif data >= mib: symbol = 'MB' new_data = data / mib elif data >= kib: symbol = 'KB' new_data = data / kib elif data >= 0: symbol = ' B' new_data = data formated_data = "{0:.2f}".format(new_data) converted_data = str(formated_data) + symbol return converted_data elif bytes_out: symbol = bytes_out[-1].lower() data = bytes_out[0:-1] try: bytes = int(data) except Exception as e: print("couldnt convert " + data + " to int!") print(e) exit() if symbol == 't': converted_data = bytes * tib elif symbol == 'g': converted_data = bytes * gib elif symbol == 'm': converted_data = bytes * mib elif symbol == 'k': converted_data = bytes * kib else: print("unsupported size type! expected t, g, m, or k!") exit() return converted_data
6e2b3b758e1afc1cea43bbe7ac0c6179b1d32c5f
3,651,070
def return_elapsed(gs): """Returns a description of the elapsed time of recent operations. Args: gs: global state. Returns: A dictionary containing the count, minimum elapsed time, maximum elapsed time, average elapsed time, and list of elapsed time records. """ assert isinstance(gs, global_state.GlobalState) elapsed_list = [] elapsed_sum = 0.0 elapsed_min = None elapsed_max = None for elapsed_record in gs.get_elapsed(): duration = elapsed_record.elapsed_seconds elapsed_list.append( {'start_time': utilities.seconds_to_timestamp( elapsed_record.start_time), 'what': elapsed_record.what, 'threadIdentifier': elapsed_record.thread_identifier, 'elapsed_seconds': duration}) elapsed_sum += duration if (elapsed_min is None) or (elapsed_max is None): elapsed_min = duration elapsed_max = duration else: elapsed_min = min(elapsed_min, duration) elapsed_max = max(elapsed_max, duration) return {'count': len(elapsed_list), 'min': elapsed_min, 'max': elapsed_max, 'average': elapsed_sum / len(elapsed_list) if elapsed_list else None, 'items': elapsed_list}
af832a3bac239e24f610e39c5dee8fde6a1a25c8
3,651,071
def calculate_per_class_lwlrap(truth, scores): """Calculate label-weighted label-ranking average precision. Arguments: truth: np.array of (num_samples, num_classes) giving boolean ground-truth of presence of that class in that sample. scores: np.array of (num_samples, num_classes) giving the classifier-under- test's real-valued score for each class for each sample. Returns: per_class_lwlrap: np.array of (num_classes,) giving the lwlrap for each class. weight_per_class: np.array of (num_classes,) giving the prior of each class within the truth labels. Then the overall unbalanced lwlrap is simply np.sum(per_class_lwlrap * weight_per_class) """ assert truth.shape == scores.shape num_samples, num_classes = scores.shape # Space to store a distinct precision value for each class on each sample. # Only the classes that are true for each sample will be filled in. precisions_for_samples_by_classes = np.zeros((num_samples, num_classes)) for sample_num in range(num_samples): pos_class_indices, precision_at_hits = ( _one_sample_positive_class_precisions(scores[sample_num, :], truth[sample_num, :])) precisions_for_samples_by_classes[sample_num, pos_class_indices] = ( precision_at_hits) labels_per_class = np.sum(truth > 0, axis=0) weight_per_class = labels_per_class / float(np.sum(labels_per_class)) # Form average of each column, i.e. all the precisions assigned to labels in # a particular class. per_class_lwlrap = (np.sum(precisions_for_samples_by_classes, axis=0) / np.maximum(1, labels_per_class)) # overall_lwlrap = simple average of all the actual per-class, per-sample precisions # = np.sum(precisions_for_samples_by_classes) / np.sum(precisions_for_samples_by_classes > 0) # also = weighted mean of per-class lwlraps, weighted by class label prior across samples # = np.sum(per_class_lwlrap * weight_per_class) return per_class_lwlrap, weight_per_class
7cc9187f96d0899d0ce554164df553cc9b5f79a0
3,651,072
import hashlib import zipfile from datetime import datetime def generate_manifest(name, p, h=None): """ generate_manifest(name, p, h) -> mapping Generates a mapping used as the manifest file. :param name: a dotted package name, as in setup.py :param p: the zip file with package content. :param h: optional hash function to use. :returns: the path to the created manifest file. """ if h is None: h = hashlib.sha256 m = {} fh = m["files"] = {} order = [] with zipfile.ZipFile(p) as zf: for fi in zf.filelist: order.append(fi.filename) hash_all = h() for fn in sorted(order): contents = zf.read(fn) hash_all.update(contents) fh[fn] = h(contents).hexdigest() m["name"] = name m["sum"] = hash_all.hexdigest() m["date"] = datetime.datetime.now().isoformat() return m
13c10ae405dbc6fe5acf92180e7981d07fdb9c60
3,651,074
def benchrun(methods, model, case_args, filename, cpus=1,): """ Parameters ---------- methods : list of str Voter systems to be assessed by the election model. model : func Election model running function as >>> e = func(**kwargs) Where - `e` is an Election object - `kwargs` is a dict of arguments generated by `case_args` case_args : generator Generator that creates the parametric arguments to input into the model. Must accept argument `methods` -- >>> generator = case_args(methods) >>> args = next(generator) filename : str Naming prefix for output files cpus : int Number of processes or CPU's to use Returns ------- df : Dataframe Results for every election iteration assessed """ b = _BenchRunner(model=model, case_args=case_args, filename=filename) if cpus > 1: return b.runmult(methods, cpus=cpus) else: return b.run(methods)
414c96deb9a8d2f64b6808323465f8647aa5e48a
3,651,075
def retry( exceptions,times=3,sleep_second=0): """ Retry Decorator Retries the wrapped function/method `times` times if the exceptions listed in ``exceptions`` are thrown :param times: The number of times to repeat the wrapped function/method :type times: Int :param Exceptions: Lists of exceptions that trigger a retry attempt :type Exceptions: Tuple of Exceptions """ if not py.iterable(exceptions):exceptions=[exceptions] def decorator(func): def newfn(*args, **kwargs): attempt = 0 while attempt < times: try: return func(*args, **kwargs) except Exception as e: for i in exceptions: if isinstance(e,i): log( 'Exception thrown when attempting to run %s, attempt ' '%d of %d' % (func, attempt, times), exc_info=True ) attempt += 1 if sleep_second:sleep(sleep_second) break else:#when no break raise e return func(*args, **kwargs) return newfn return decorator
de715a0f903386358265c3fe4a13f1d91bcb177e
3,651,076
def positiveId(obj): """Return id(obj) as a non-negative integer.""" result = id(obj) if result < 0: result += _address_mask assert result > 0 return result
5d3f987c621cf3d43ac31e9300a4d54ba208a7a0
3,651,077
def compute_annualized_total_return_over_months(df, column_price, months): """ Computed the annualized total return over the specified number of months. This is equivalent to Compound Annual Growth Rate (CAGR). Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :param months: time period in months (e.g. 1 = 1 month, 2 = 2 months, 2.5 = 1 month and ~15 days, etc.) :return: annualized total return over months """ # calculate cumulative total return total_return = compute_cumulative_total_return(df, column_price) # calculate annualized total returns over months annualized_total_return = ((1 + total_return)**(12/months)) - 1 return annualized_total_return
a75886ae85ab5bb146d93bd159a0a2a32f950678
3,651,079
from functools import reduce def build_sparse_ts_from_distributions(start_date, end_date, seasonalities, time_interval, dist_dict, **kwargs): """constructs a time series with given distributions and seasonalities in a given frequency time_interval""" ts_list = [] for (name, dist), seasonality in zip(dist_dict.items(), seasonalities): ts_list.append(build_sparse_ts_by_seasonality(dist, start_date, end_date, seasonality, time_interval, **kwargs.get(name, {}))) ts = reduce(lambda x, y: add_ts_with_different_dates(x, y), ts_list) # add time series together return ts
81d2ebc32a2b62ed967377faf90b3b58e7c753ff
3,651,080
def preprocess_label(labels, scored_classes, equivalent_classes): """ convert string labels to binary labels """ y = np.zeros((len(scored_classes)), np.float32) for label in labels: if label in equivalent_classes: label = equivalent_classes[label] if label in scored_classes: y[scored_classes.index(label)] = 1 return y
3e2465bb0db04afaaca0576f6c97847bd0fd2b2e
3,651,081
import math def vec_abs(field: SampledField): """ See `phi.math.vec_abs()` """ if isinstance(field, StaggeredGrid): field = field.at_centers() return field.with_values(math.vec_abs(field.values))
91395513b7e457bdfdded484db1069e8c3b95805
3,651,084
def spoofRequest(app): """ Make REQUEST variable to be available on the Zope application server. This allows acquisition to work properly """ _policy=PermissiveSecurityPolicy() _oldpolicy=setSecurityPolicy(_policy) newSecurityManager(None, OmnipotentUser().__of__(app.acl_users)) info = {'SERVER_NAME': 'isaw4.atlantides.org', 'SERVER_PORT': '8083', 'REQUEST_METHOD': 'GET'} return makerequest(app, environ=info)
d1b3bd1a37d69f6500d23e55b5318b6519ed04be
3,651,085
def data_to_percentage(data_list: pd.DataFrame) -> pd.DataFrame: """ Takes a dataframe with one or more columns filled with digits and returns a dataframe with the percentages corresponding to the number of times the numbers 1-9 appear in each column. Args: data_list: a dataframe of integers representing all of the leading digits from a dataset (in this case, the number of vote counts). Each columns is a category and is a Series with digits. threshold: (int) minimum number of integers in column for percentage to be found in it and for it to be returned. Returns: returns a dataframe of Series with the percentages of each column that are each unique number in that column. Any numbers outside of [1, 9] are not included and any column with fewer unique digits than another column is dropped. """ def per_column_percentage(column: pd.Series) -> pd.Series: number_of_occurrences = column.value_counts() number_of_occurrences = number_of_occurrences[ (number_of_occurrences.index > 0) & (number_of_occurrences.index < 10) ] return number_of_occurrences.multiply( 100 / sum(number_of_occurrences) ).sort_index() return data_list.apply(per_column_percentage).dropna(axis=1)
18316ddf999419290d572e77d2934241359e45a3
3,651,086
from .models.models import EncoderClassifier import torch def create_classifier_from_encoder(data:DataBunch, encoder_path:str=None, path=None, dropout1=0.5, device: torch.device = torch.device('cuda', 0), **kwargs): """Factory function to create classifier from encoder to allow transfer learning.""" path = data.path if path is None else path if encoder_path is None: logger.info("WARNING: `encoder_path` is None, not using pretrained feature extractor") encoder = None else: encoder = torch.load(encoder_path, map_location='cpu') model = EncoderClassifier(data.train_ds.shape, encoder, len(data.classes),dropout1=dropout1) learn = Learner(data, model, path, model_type="classifier", device=device, **kwargs) learn.freeze_encoder() return learn
736cfec768b6d659ab6fa1f087474a482409b66e
3,651,087
from typing import Hashable def filter_string( df: pd.DataFrame, column_name: Hashable, search_string: str, complement: bool = False, case: bool = True, flags: int = 0, na=None, regex: bool = True, ) -> pd.DataFrame: """Filter a string-based column according to whether it contains a substring. This is super sugary syntax that builds on top of `pandas.Series.str.contains`. It is meant to be the method-chaining equivalent of the following: ```python df = df[df[column_name].str.contains(search_string)]] ``` This method does not mutate the original DataFrame. Example: Retain rows whose column values contain a particular substring. >>> import pandas as pd >>> import janitor >>> df = pd.DataFrame({"a": range(3, 6), "b": ["bear", "peeL", "sail"]}) >>> df a b 0 3 bear 1 4 peeL 2 5 sail >>> df.filter_string(column_name="b", search_string="ee") a b 1 4 peeL >>> df.filter_string(column_name="b", search_string="L", case=False) a b 1 4 peeL 2 5 sail Example: Filter names does not contain `'.'` (disable regex mode). >>> import pandas as pd >>> import janitor >>> df = pd.Series(["JoseChen", "Brian.Salvi"], name="Name").to_frame() >>> df Name 0 JoseChen 1 Brian.Salvi >>> df.filter_string(column_name="Name", search_string=".", regex=False, complement=True) Name 0 JoseChen :param df: A pandas DataFrame. :param column_name: The column to filter. The column should contain strings. :param search_string: A regex pattern or a (sub-)string to search. :param complement: Whether to return the complement of the filter or not. If set to True, then the rows for which the string search fails are retained instead. :param case: If True, case sensitive. :param flags: Flags to pass through to the re module, e.g. re.IGNORECASE. :param na: Fill value for missing values. The default depends on dtype of the array. For object-dtype, `numpy.nan` is used. For `StringDtype`, `pandas.NA` is used. :param regex: If True, assumes `search_string` is a regular expression. If False, treats the `search_string` as a literal string. :returns: A filtered pandas DataFrame. """ # noqa: E501 criteria = df[column_name].str.contains( pat=search_string, case=case, flags=flags, na=na, regex=regex, ) if complement: return df[~criteria] return df[criteria]
9e5598a4afcff41ec5dc67c38b68efbacf3f09ec
3,651,088
from typing import List from typing import Dict from typing import Union import functools def on_demand_feature_view( features: List[Feature], inputs: Dict[str, Union[FeatureView, RequestDataSource]] ): """ Declare an on-demand feature view :param features: Output schema with feature names :param inputs: The inputs passed into the transform. :return: An On Demand Feature View. """ def decorator(user_function): on_demand_feature_view_obj = OnDemandFeatureView( name=user_function.__name__, inputs=inputs, features=features, udf=user_function, ) functools.update_wrapper( wrapper=on_demand_feature_view_obj, wrapped=user_function ) return on_demand_feature_view_obj return decorator
0ea45df22cb167ad2aa919a0be40f2a11574a69a
3,651,089
from typing import cast def get_error_string(ftdi): """ get_error_string(context ftdi) -> char * Get string representation for last error code Parameters: ----------- ftdi: pointer to ftdi_context Returns: -------- Pointer: to error string """ errstr = ftdi_get_error_string(ftdi) return cast(errstr, c_char_p).value.decode('ascii')
e0d3eaa19014fff9840e7a8e629651107ae25495
3,651,090
def DenseNet52k12(growth_rate = 12, reduction = 0.5): """ Parameters: ---------- Returns ------- """ return DenseNet(reduction = reduction, growth_rate = growth_rate, layers=52)
a295bcae685ae36bcbe356099d404403f7b8c0b6
3,651,091
def construct_fid_mask(catalog): """ Constructs the fidelity mask based off my results, not Robertos :param catalog: :return: """ line_widths = [i for i in range(3, 21, 2)] fid_catalog = load_table("fidelity_snr.out", start=0) fid_limit = 0.4 six_fids = [] for width in line_widths: f = interp1d(fid_catalog["fbin"], fid_catalog["pure{}".format(width)], kind='slinear') xdata = np.linspace(5.85, 7.85, 10000) six_fids.append(xdata[np.argmax(f(xdata) >= fid_limit)]) masks = [] line_widths = [i for i in range(3, 21, 2)] #six_fids = [6.3, 6.2, 6.1, 6.15, 6.1, 6.20, 6.1, 6.20, 6.05] # six_fids = [6.35, 6.25, 6.15, 6.15, 6.15, 6.25, 6.15, 6.25, 6.05] # six_fids = [6.25, 6.2, 6.1, 6.1, 6.1, 6.15, 6.1, 6.15, 6.05] for index, width in enumerate(line_widths): print(six_fids[index]) masks.append(catalog[((catalog['width'] == width) & (catalog['rsnrrbin'] >= six_fids[index]))]) total = masks[0] t_sum = 0 for mask in masks[1:]: t_sum += len(mask) total = vstack((total, mask)) print("Total One: {}".format(len(total))) return total
81f50ae4dd092482eb406bef331075245989d2f3
3,651,092
def _run_job(tgt, fun, arg, kwarg, tgt_type, timeout, retry): """ Helper function to send execution module command using ``client.run_job`` method and collect results using ``client.get_event_iter_returns``. Implements basic retry mechanism. If ``client.get_event_iter_returns`` return no results, ``_run_job`` will retry the command until minions return results or ``retry`` threshold reached, in latter case ``CommandExecutionError`` raised with job details """ ret = {} attempt = 1 while attempt <= retry: # publish job command pub_data = client.run_job( tgt=tgt, fun=fun, arg=arg, kwarg=kwarg, tgt_type=tgt_type, timeout=timeout ) # collect job results job_results = client.get_event_iter_returns(timeout=timeout, **pub_data) for item in job_results: ret.update(item) if not set(pub_data["minions"]) == set(ret.keys()): minions_no_return = set(pub_data["minions"]) - set(ret.keys()) log.warning( "Nornir-runner:_run_job - {}s timeout; no results from {}; returned {}; jid {}; attempt: {}".format( timeout, list(minions_no_return), list(ret.keys()), pub_data["jid"], attempt, ) ) if ret: break attempt += 1 else: raise CommandExecutionError( "Nornir-runner:_run_job - no results from minions; tgt: {}; fun: {}; tgt_type: {}; timeout: {}; retry: {}; kwarg: {}".format( tgt, fun, tgt_type, timeout, retry, kwarg ) ) return ret
e23c189063e5d7df542d8e774acf655f4af61289
3,651,094
def _set_rank_colorbar(ax, img, norm): """ Set color bar for rankshow on the right of the ax """ divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(img, cax=cax) y_tick_values = cax.get_yticks() boundary_means = [np.mean((y_tick_values[ii],y_tick_values[ii-1])) for ii in range(1, len(y_tick_values))] print(norm.boundaries) category_names = [(str(norm.boundaries[ii-1])+'~'+ str(norm.boundaries[ii])) for ii in range(1, len(norm.boundaries))] # category_names[0] = '<='+str(norm.boundaries[1]) category_names[-1] = '>'+str(norm.boundaries[-2]) cax.yaxis.set_ticks(boundary_means) cax.yaxis.set_ticklabels(category_names,rotation=0) return cax
f21f59ac69c79cf9449d28710abdeeb730004077
3,651,095
from typing import Optional from pathlib import Path import importlib def destination(stub: str) -> Optional[Path]: """Determine stub path Only handle micropython stubs, ignoring any cPython stdlib equivalents. """ prefix, _, suffix = stub.partition(".") if importlib.util.find_spec(prefix): # type: ignore return # in cPython stdlib, skip prefix = Path(prefix) if suffix in ("py", "pyi"): # module return prefix / f"__init__.{suffix}" return prefix / suffix
8b2552513dbeaa9dc09cb85703b736e17c4788b5
3,651,096
def train_IPCA(X,n_dims,batch_size,model='ipca'): """ name: train_IPCA Linear dimensionality reduction using Singular Value Decomposition of centered data, keeping only the most significant singular vectors to project the data to a lower dimensional space. returns: the transformer model """ estimator=transformer[model].set_params(pca__n_components=n_dims,pca__batch_size=batch_size) estimator.fit(X) return estimator
282c885a562b5b3dbe356050ef5f270f49d7014d
3,651,098
def _str_cell(cell: Cell) -> str: """Строковое представление клетки. Данной строкой клетка будет выводится на экран. """ if cell.is_open: if cell.is_empty: return " " elif cell.value: return f" {cell.value} " elif cell.is_flagged: return "[F]" else: return "[ ]"
2e4428196601a726b488e3ec4d966072033c5bfe
3,651,099
def mvw_ledoit_wolf(prices, weight_bounds=(0.,1.), rf = 0., options = None): """ Calculates the mean-variance weights given a DataFrame of returns. Wraps mean_var_weights with ledoit_wolf covariance calculation method Args: * prices (DataFrame): Prices for multiple securities. * weight_bounds ((low, high)): Weigh limits for optimization. * rf (float): `Risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ used in utility calculation * options (dict): options for minimizing, e.g. {'maxiter': 10000 } Returns: Series {col_name: weight} """ r = prices.to_returns().dropna() covar = ledoit_wolf(r)[0] return covar
086f6430d189fd12509d56ce4a96a351a178979b
3,651,100
def _PadLabels3d(logits, labels): """Pads or slices 3-d labels to match logits. Covers the case of 2-d softmax output, when labels is [batch, height, width] and logits is [batch, height, width, onehot] Args: logits: 4-d Pre-softmax fully-connected output. labels: 3-d, but not necessarily matching in size. Returns: labels: Resized by padding or clipping to match logits. """ logits_shape = shapes.tensor_shape(logits) labels_shape = shapes.tensor_shape(labels) labels = tf.reshape(labels, [-1, labels_shape[2]]) labels = _PadLabels2d(logits_shape[2], labels) labels = tf.reshape(labels, [labels_shape[0], -1]) labels = _PadLabels2d(logits_shape[1] * logits_shape[2], labels) return tf.reshape(labels, [labels_shape[0], logits_shape[1], logits_shape[2]])
223f7dfea9ebc970e62dbe71e2f27dfb5c9f161d
3,651,101
def intx(): """Returns the default int type, as a string. (e.g. 'int16', 'int32', 'int64'). # Returns String, the current default int type. """ return _INTX
57661ef00953e07228ff81abc93ec22c216797ff
3,651,102
import json def dev_end_hardware_script() -> Response: """Designate the end of a hardware script in flask log. Can be invoked by: curl http://localhost:4567/development/end_hardware_script """ return Response(json.dumps({}), mimetype="application/json")
714b448642180753e639992f2d101841074aeefd
3,651,103
def _init_train(opt): """Common initilization stuff for all training process.""" ArgumentParser.validate_prepare_opts(opt) if opt.train_from: # Load checkpoint if we resume from a previous training. checkpoint = load_checkpoint(ckpt_path=opt.train_from) fields = load_fields(opt.save_data, checkpoint) transforms_cls = get_transforms_cls(opt._all_transform) if (hasattr(checkpoint["opt"], '_all_transform') and len(opt._all_transform.symmetric_difference( checkpoint["opt"]._all_transform)) != 0): _msg = "configured transforms is different from checkpoint:" new_transf = opt._all_transform.difference( checkpoint["opt"]._all_transform) old_transf = checkpoint["opt"]._all_transform.difference( opt._all_transform) if len(new_transf) != 0: _msg += f" +{new_transf}" if len(old_transf) != 0: _msg += f" -{old_transf}." logger.warning(_msg) if opt.update_vocab: logger.info("Updating checkpoint vocabulary with new vocabulary") fields, transforms_cls = prepare_fields_transforms(opt) else: checkpoint = None #数据预处理准备阶段,目的是将数据处理成torchtext.field格式 fields, transforms_cls = prepare_fields_transforms(opt) # Report src and tgt vocab sizes for side in ['src', 'tgt']: f = fields[side] try: f_iter = iter(f) except TypeError: f_iter = [(side, f)] for sn, sf in f_iter: if sf.use_vocab: logger.info(' * %s vocab size = %d' % (sn, len(sf.vocab))) return checkpoint, fields, transforms_cls
bb2a043d1a59f996b303aabf9db724ced3505dbf
3,651,104
def compare(isamAppliance1, isamAppliance2): """ Compare Update Servers between two appliances """ ret_obj1 = get_all(isamAppliance1) ret_obj2 = get_all(isamAppliance2) for obj in ret_obj1['data']: del obj['uuid'] for obj in ret_obj2['data']: del obj['uuid'] return ibmsecurity.utilities.tools.json_compare(ret_obj1, ret_obj2, deleted_keys=['uuid'])
e29025ca0af897f10b3b8498f8def86841b76c97
3,651,106
import random def get_random(): """ Retrieves the current issue of XKCD, chooses an issue 1 - current issue #, and returns a json object. Returns null if an requests error occurs. """ return get_issue(random.randint(1, int(get_current()["num"])))
10fbf75681901722510b0b9fbb2de298eb80b45e
3,651,108
def get_fasta_readlengths(fasta_file): """ Get a sorted list of contig lengths :return: (tuple) """ lens = [] with open_fasta_reader(fasta_file) as f: for record in f: lens.append(len(record.sequence)) lens.sort() return lens
769cf5af50ba684c107a1312d2aeaab2721a29c6
3,651,109
def postprocess(p, gt, width_and_height, p_binary, false_positives=False, false_negatives=False): """ This function does matching and then postprocessing of p's and gt's :param p: the objects given from rcnn :param gt: the objects we get from the ground truth :param width_and_height: the width and height of the image :return: info_image: a list which contains the postprocessed p, rectangels for p, postprocessed gt, rectangles for gt, width and height """ len_p = len(p) len_gt = len(gt) elements_in_p = [i for i in xrange(len_p)] elements_in_gt = [i for i in xrange(len_gt)] matching_table = create_matching_table(p, gt) max_number_of_matches = min(matching_table.shape[0], matching_table.shape[1]) new_p = [] new_gt = [] new_rects_p = [] new_rects_gt = [] new_p_binary = [] new_gt_binary = [] threshold = 0.5 # on this part we create the real matches between p and gt for _ in xrange(max_number_of_matches): best_match = unravel_index(matching_table.argmax(), matching_table.shape) if matching_table[best_match[0], best_match[1]] > threshold: # check if it is a different value from 0 matching_table[best_match[0], :] = 0. matching_table[:, best_match[1]] = 0. new_p.append(p[best_match[0], :21]) new_p_binary.append(p_binary[best_match[0]]) new_gt_binary.append(np.array([1., 0.])) new_rects_p.append(p[best_match[0], 21:]) new_gt.append(gt[best_match[1], :21]) new_rects_gt.append(gt[best_match[1], 21:]) elements_in_p.remove(best_match[0]) elements_in_gt.remove(best_match[1]) # here we add the matches of false positives by inserting background class on the given rectangles on the ground # truth if false_positives: for element in elements_in_p: new_p.append(p[element, :21]) new_p_binary.append(p_binary[element]) new_rects_p.append(p[element, 21:]) new_gt.append(create_background_peak_array()) new_gt_binary.append(np.array([0., 1.])) # 0 - not background; 1 - background new_rects_gt.append(p[element, 21:]) # here we deal with false negatives, by adding them as r-cnn outputs equal to the ground truth if false_negatives: for element in elements_in_gt: new_p.append(gt[element, :21]) new_p_binary.append(np.array([1., 0.])) new_rects_p.append(gt[element, 21:]) new_gt.append(gt[element, :21]) new_gt_binary.append((np.array([1., 0.]))) new_rects_gt.append(gt[element, 21:]) # convert all the lists to numpy arrays new_p = np.asarray(new_p) new_rects_p = np.asarray(new_rects_p) new_gt = np.asarray(new_gt) new_rects_gt = np.asarray(new_rects_gt) # add all the postprocessed information to a list info_image = [new_p, new_gt, new_rects_p, new_rects_gt, width_and_height, new_p_binary, new_gt_binary] return info_image
dd83de4547f7c1461b64fcd2dfa4c3df54aefd10
3,651,110
from csb.bio.structure import TorsionAngles import numpy def deg(x): """ Convert an array of torsion angles in radians to torsion degrees ranging from -180 to 180. @param x: array of angles @type x: numpy array @rtype: numpy array """ func = numpy.vectorize(TorsionAngles.deg) return func(x)
95e37a0c644df1562e417c1ad61e4788bd46c279
3,651,111
import timeit def run_median_trial(): """Generate table for Median Trial.""" tbl = DataTable([10,15,15],['N', 'median_time', 'sort_median']) trials = [2**k+1 for k in range(8,20)] for n in trials: t_med = 1000*min(timeit.repeat(stmt='assert(linear_median(a) == {}//2)'.format(n), setup=''' import random from ch01.challenge import linear_median a = list(range({})) random.shuffle(a) '''.format(n), repeat=10, number=5))/5 t_sort = 1000*min(timeit.repeat(stmt='assert(median_from_sorted_list(a) == {0}//2)'.format(n), setup=''' import random from ch01.challenge import median_from_sorted_list a = list(range({})) random.shuffle(a) '''.format(n), repeat=10, number=5))/5 tbl.row([n, t_med, t_sort]) return tbl
ed4c5ebe8bd6259c4adc45c4b023cc5bb96a1055
3,651,112
def regroup(X, N): """ Regroups the rows and columns of X such that rows/cols that are N apart in X, are adjeacent in Y. If N is a 2 element vector, N[0] is used for rows and N[1] is used for columns. Parameters: X: m by n matrix to be regrouped. N: Integer or two element vector. Returns: Y: Regrouped matrix. """ m, n = X.shape if isinstance(N, int): N = [N, N] if m % N[0] != 0 or n % N[1] != 0: raise ValueError('X dimensions need to be multiple\ of elements in N') row_ind = np.ravel( [[i + k for i in np.arange(0, n, N[0])] for k in range(N[0])]) col_ind = np.ravel( [[i + k for i in np.arange(0, n, N[1])] for k in range(N[1])]) Y = X[row_ind, :] Y = Y[:, col_ind] return Y
7ad92b878cb6a55820ef9ad92c68e934184d725d
3,651,113
def return_estimators(n_components): """Returns all of the estimators that can be used to generate models. A larger selection of possible estimators have been commented out, but could be uncommented.""" estimators = [ ('PCArandom', decomposition.PCA(n_components=n_components, svd_solver='randomized', whiten=True)) ] # estimators = [ # ('PCArandom', # decomposition.PCA(n_components=n_components, # svd_solver='randomized', # whiten=True)), # ('PCAfull', # decomposition.PCA(n_components=n_components, # svd_solver='full', # whiten=True)), # ('PCAarpack', # decomposition.PCA(n_components=n_components, # svd_solver='arpack', # whiten=True)), # ('PCAauto', # decomposition.PCA(n_components=n_components, # svd_solver='auto', # whiten=True)) # ] return estimators
680aa1d50c4e2db0e4d3df9e60749350df437bb8
3,651,114
def _check_type_picks(picks): """helper to guarantee type integrity of picks""" err_msg = 'picks must be None, a list or an array of integers' if picks is None: pass elif isinstance(picks, list): if not all(isinstance(i, int) for i in picks): raise ValueError(err_msg) picks = np.array(picks) elif isinstance(picks, np.ndarray): if not picks.dtype.kind == 'i': raise ValueError(err_msg) else: raise ValueError(err_msg) return picks
79493f75db8e57f32a6369ad18900e0632d2bc18
3,651,115
def get_test_standard_scaler_str(): """ Get a pandas projection code str """ test_code = cleandoc(""" standard_scaler = StandardScaler() encoded_data = standard_scaler.fit_transform(df) """) return test_code
fd6e1daa7e0dddb603437e5b35c283a11e68ec00
3,651,116
from typing import List from typing import Tuple import re def add_command( command_list: List[Tuple[re.Pattern, callable]], func: callable, command_str: str ) -> List[Tuple[re.Pattern, callable]]: """Add a function and the command pattern to the command list. Args: func: Function it will be called command_str: command string that specifies the pattern """ command_pattern = build_command_pattern(command_str) command_list.append((command_pattern, func)) return command_list
f8076e4a6b37722591eae04a67feb1c25e606b84
3,651,117
def get_clusters_and_critical_nodes(G, k, rho_star, phi_in): """ The implementation of the main body of the partitioning Algorithm. The main while-loop of the algorithm is executed as long as a refinement is still possible. :param phi_in: An algorithm parameter used to lower bound the inner conductance of each cluster :param rho_star: A technical parameter of the algorithm :param G: A networkx graph :param k: The (supposed) number of clusters :return: a list containing an l-wise partitioning of the nodes of G, for some l <= k """ # A list of vertices in the graph G vertices = list(G.nodes()) # Initially the graph contains one cluster P_1 = V with core set core_1 = P_1. P_1 = vertices[:] core_1 = P_1[:] # num_clusters is the variable denoting the current number of clusters num_clusters = 1 # clusters is a list storing the current cluster structure of G (i.e. P_1, ..., P_l) clusters = [P_1] # core_sets is a list containing the current core_subsets of each cluster. # (i.e. core_1, ..., core_(num_clusters) with core_i being a subset of P_i) core_sets = [core_1] # A list of lists, where each element grouped_critical_nodes[i] is a list of critical nodes from the tree T_i of # cluster clusters[i] grouped_critical_nodes = [] # The main loop of the algorithm. We continue as long as an update is possible overall_update_is_found = True while overall_update_is_found: # At the beginning of the loop there is no update found overall_update_is_found = False # The main loop of the Partition Algorithm. We continue as long as a GT_update is possible GT_update_is_found = True while GT_update_is_found: # First we check if a GT_update is possible GT_update_is_found, index_cluster_to_update = check_if_GT_update_is_possible(G, clusters, core_sets, phi_in) if GT_update_is_found: GT_update_is_done = False # Notation of the corresponding sets of vertices P_i = clusters[index_cluster_to_update] core_i = core_sets[index_cluster_to_update] S = cheeger_cut.cheeger_cut(G.subgraph(P_i)) S_complement = diff(vertices, S) S_plus = intersect(S, core_i) S_plus_bar = intersect(S_complement, core_i) S_minus = intersect(diff(P_i, core_i), S) S_minus_bar = intersect(diff(P_i, core_i), S_complement) # Without loss of generality we assume vol(S_plus) < vol(core_i) / 2 if vol(G, S_plus) > vol(G, S_plus_bar): S_plus, S_plus_bar = S_plus_bar, S_plus S_minus, S_minus_bar = S_minus_bar, S_minus # First "if" in the algorithm if is_first_if_condition_satisfied(G, S_plus, S_plus_bar, k, num_clusters, rho_star): make_new_cluster_with_subset_T_bar_of_core_i( S_plus, S_plus_bar, clusters, core_sets, index_cluster_to_update) num_clusters += 1 # A sanity check update num_clusters = min(num_clusters, k) GT_update_is_done = True # Second "if" in the algorithm if not GT_update_is_done and is_second_if_condition_satisfied(G, S_plus, S_plus_bar, core_i, k): update_core_to_subset_T_or_T_bar(G, S_plus, S_plus_bar, core_sets, index_cluster_to_update) GT_update_is_done = True # Third "if" in the algorithm if not GT_update_is_done and is_third_if_condition_satisfied(G, S_minus, k, num_clusters, rho_star): make_new_cluster_with_subset_T_of_P_i(S_minus, clusters, core_sets, index_cluster_to_update) num_clusters += 1 # A sanity check update num_clusters = min(num_clusters, k) GT_update_is_done = True # At this point only a refinement of the partition is possible if not GT_update_is_done: # If there is a cluster P_j s.t. w(P_i - core_i -> P_i) < w(P_i - core_i -> P_j), # then merge (P_i - core_i) with argmax_(P_j){w(P_i - core_i -> P_j)} P_i_minus_core_i = diff(P_i, core_i) # Find the index j of argmax_(P_j){w(P_i - core_i -> P_j)}. best_cluster_index = find_cluster_P_j_that_maximises_weight_from_T_to_P_j(G, P_i_minus_core_i, clusters) # Forth "if" in the algorithm. if best_cluster_index != index_cluster_to_update: move_subset_T_from_P_i_to_P_j(P_i_minus_core_i, clusters, index_cluster_to_update, best_cluster_index) GT_update_is_done = True if not GT_update_is_done: # If there is a cluster P_j s.t. w(S_minus -> P_i) < w(S_minus -> P_j), # then merge S_minus with argmax_(P_j){w(S_minus -> P_j)} # Find the index j of argmax_(P_j){w(S_minus -> P_j)}. best_cluster_index = find_cluster_P_j_that_maximises_weight_from_T_to_P_j(G, S_minus, clusters) # Fifth "if" in the algorithm if best_cluster_index != index_cluster_to_update: move_subset_T_from_P_i_to_P_j(S_minus, clusters, index_cluster_to_update, best_cluster_index) GT_update_is_done = True if not GT_update_is_done: raise Exception('No GT_update performed in iteration') grouped_critical_nodes = [] # Check if critical nodes need refinements for i in range(len(clusters)): # Get the list of critical nodes in the degree based construction of the graph G_i = G[P_i] P_i = clusters[i] core_i = core_sets[i] G_i = G.subgraph(P_i) T_i = tree.Tree() T_i.make_tree(G_i, "degree") critical_nodes_of_T_i = T_i.get_critical_nodes() grouped_critical_nodes = grouped_critical_nodes + [critical_nodes_of_T_i] for node in critical_nodes_of_T_i: # Notation N = node.vertices N_complement = diff(vertices, N) N_plus = intersect(N, core_i) N_plus_bar = intersect(N_complement, core_i) N_minus = intersect(diff(P_i, core_i), N) N_minus_bar = intersect(diff(P_i, core_i), N_complement) # Sixth "if" of the algorithm, first "if" of the refinement of the nodes, if is_sixth_if_condition_satisfied(G, N_plus, N_plus_bar, k, num_clusters, rho_star): make_new_cluster_with_subset_T_bar_of_core_i( N_plus, N_plus_bar, clusters, core_sets, i) num_clusters += 1 # A sanity check update num_clusters = min(num_clusters, k) overall_update_is_found = True break # Seventh "if" of the algorithm, second if of the refinement of the nodes if not overall_update_is_found and is_seventh_if_condition_satisfied(G, N_plus, core_i, k): update_core_to_subset_T_or_T_bar(G, N_plus, N_plus_bar, core_sets, i) overall_update_is_found = True break # We attempt to move N_minus to the cluster P_j that maximises w(N_minus -> P_j) if not overall_update_is_found and vol(G, N_minus) <= vol(G, P_i) / 2: # Find the index j of argmax_(P_j){w(N_minus -> P_j)}. # If best_cluster_index = i, then the eighth "if" is not satisfied best_cluster_index = find_cluster_P_j_that_maximises_weight_from_T_to_P_j(G, N_minus, clusters) # Eighth "if" of the algorithm, third if of the refinement of the nodes. if weight(G, N_minus, P_i) < weight(G, N_minus, clusters[best_cluster_index]): move_subset_T_from_P_i_to_P_j(N_minus, clusters, i, best_cluster_index) overall_update_is_found = True break if overall_update_is_found: break return clusters, grouped_critical_nodes
e7374c9cad30a87477ee5b9ce4d0a0e9cb7de041
3,651,118
def get_edges_out_for_vertex(edges: list, vertex: int) -> list: """Get a sublist of edges that have the specified vertex as first element :param edges: edges of the graph :param vertex: vertex of which we want to find the corresponding edges :return: selected edges """ return [e for e in edges if e[0] == vertex]
21485073df1c754e7c8e2b7dd9cafef284e601e7
3,651,119
def pellet_plot_multi_unaligned(FEDs, shade_dark, lights_on, lights_off,**kwargs): """ FED3 Viz: Plot cumulaive pellet retrieval for multiple FEDs, keeping the x-axis to show absolute time. Parameters ---------- FEDs : list of FED3_File objects FED3 files (loaded by load.FED3_File) shade_dark : bool Whether to shade lights-off periods lights_on : int Integer between 0 and 23 denoting the start of the light cycle. lights_off : int Integer between 0 and 23 denoting the end of the light cycle. **kwargs : ax : matplotlib.axes.Axes Axes to plot on, a new Figure and Axes are created if not passed date_filter : array A two-element array of datetimes (start, end) used to filter the data **kwargs also allows FED3 Viz to pass all settings to all functions. Returns ------- fig : matplotlib.figure.Figure """ if not isinstance(FEDs, list): FEDs = [FEDs] for file in FEDs: assert isinstance(file, FED3_File),'Non FED3_File passed to pellet_plot_multi()' if 'ax' not in kwargs: fig, ax = plt.subplots(figsize=(7,3.5), dpi=150) else: ax = kwargs['ax'] min_date = np.datetime64('2100') max_date = np.datetime64('1970') for file in FEDs: df = file.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() x = df.index y = df['Pellet_Count'] ax.plot(x, y, label=file.filename, alpha=.6, lw=1) if max(x) > max_date: max_date = max(x) if min(x) < min_date: min_date = min(x) ax.set_xlabel('Time (h)') date_format_x(ax, min_date, max_date) ax.set_ylabel('Cumulative Pellets') title = ('Pellets Retrieved for Multiple FEDs') ax.set_title(title) if shade_dark: shade_darkness(ax, min_date, max_date, lights_on=lights_on, lights_off=lights_off) if len(FEDs) < 10: ax.legend(bbox_to_anchor=(1,1), loc='upper left') plt.tight_layout() return fig if 'ax' not in kwargs else None
3601e8ecff20a3d7978f7261ebaa5236d662a25e
3,651,120
import time def sync_via_mrmsdtw(f_chroma1: np.ndarray, f_chroma2: np.ndarray, f_DLNCO1: np.ndarray = None, f_DLNCO2: np.ndarray = None, input_feature_rate: float = 50, step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int32), step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64), threshold_rec: int = 10000, win_len_smooth: np.ndarray = np.array([201, 101, 21, 1]), downsamp_smooth: np.ndarray = np.array([50, 25, 5, 1]), verbose: bool = False, dtw_implementation: str = 'synctoolbox', normalize_chroma: bool = True, chroma_norm_ord: int = 2, chroma_norm_threshold: float = 0.001): """Compute memory-restricted multi-scale DTW (MrMsDTW) using chroma and (optionally) DLNCO features. MrMsDTW is performed on multiple levels that get progressively finer, with rectangular constraint regions defined by the alignment found on the previous, coarser level. If DLNCO features are provided, these are used on the finest level in addition to chroma to provide higher synchronization accuracy. Parameters ---------- f_chroma1 : np.ndarray [shape=(12, N)] Chroma feature matrix of the first sequence f_chroma2 : np.ndarray [shape=(12, M)] Chroma feature matrix of the second sequence f_DLNCO1 : np.ndarray [shape=(12, N)] DLNCO feature matrix of the first sequence (optional, default: None) f_DLNCO2 : np.ndarray [shape=(12, M)] DLNCO feature matrix of the second sequence (optional, default: None) input_feature_rate: float Input feature rate of the chroma features (default: 50) step_sizes: np.ndarray DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]])) step_weights: np.ndarray DTW step weights (np.array([1.0, 1.0, 1.0])) threshold_rec: int Defines the maximum area that is spanned by the rectangle of two consecutive elements in the alignment (default: 10000) win_len_smooth : np.ndarray Window lengths for chroma feature smoothing (default: np.array([201, 101, 21, 1])) downsamp_smooth : np.ndarray Downsampling factors (default: np.array([50, 25, 5, 1])) verbose : bool Set `True` for visualization (default: False) dtw_implementation : str DTW implementation, librosa or synctoolbox (default: synctoolbox) normalize_chroma : bool Set `True` to normalize input chroma features after each downsampling and smoothing operation. chroma_norm_ord: int Order of chroma normalization, relevant if ``normalize_chroma`` is True. (default: 2) chroma_norm_threshold: float If the norm falls below threshold for a feature vector, then the normalized feature vector is set to be the unit vector. Relevant, if ``normalize_chroma`` is True (default: 0.001) Returns ------- alignment : np.ndarray [shape=(2, T)] Resulting warping path """ # If DLNCO features are given as input, high resolution MrMsDTW is activated. high_res = False if f_DLNCO1 is not None and f_DLNCO2 is not None: high_res = True if high_res and (f_chroma1.shape[1] != f_DLNCO1.shape[1] or f_chroma2.shape[1] != f_DLNCO2.shape[1]): raise ValueError('Chroma and DLNCO features must be of the same length.') if downsamp_smooth[-1] != 1 or win_len_smooth[-1] != 1: raise ValueError('The downsampling factor of the last iteration must be equal to 1, i.e.' 'at the last iteration, it is computed at the input feature rate!') num_iterations = win_len_smooth.shape[0] cost_matrix_size_old = tuple() feature_rate_old = input_feature_rate / downsamp_smooth[0] alignment = None total_computation_time = 0.0 for it in range(num_iterations): tic1 = time.perf_counter() # Smooth and downsample given raw features f_chroma1_cur, _ = smooth_downsample_feature(f_chroma1, input_feature_rate=input_feature_rate, win_len_smooth=win_len_smooth[it], downsamp_smooth=downsamp_smooth[it]) f_chroma2_cur, feature_rate_new = smooth_downsample_feature(f_chroma2, input_feature_rate=input_feature_rate, win_len_smooth=win_len_smooth[it], downsamp_smooth=downsamp_smooth[it]) if normalize_chroma: f_chroma1_cur = normalize_feature(f_chroma1_cur, norm_ord=chroma_norm_ord, threshold=chroma_norm_threshold) f_chroma2_cur = normalize_feature(f_chroma2_cur, norm_ord=chroma_norm_ord, threshold=chroma_norm_threshold) # Project path onto new resolution cost_matrix_size_new = (f_chroma1_cur.shape[1], f_chroma2_cur.shape[1]) if alignment is None: # Initialize the alignment with the start and end frames of the feature sequence anchors = np.array([[0, f_chroma1_cur.shape[1] - 1], [0, f_chroma2_cur.shape[1] - 1]]) else: projected_alignment = project_alignment_on_a_new_feature_rate(alignment=alignment, feature_rate_old=feature_rate_old, feature_rate_new=feature_rate_new, cost_matrix_size_old=cost_matrix_size_old, cost_matrix_size_new=cost_matrix_size_new) anchors = derive_anchors_from_projected_alignment(projected_alignment=projected_alignment, threshold=threshold_rec) # Cost matrix and warping path computation if high_res and it == num_iterations - 1: # Compute cost considering chroma and pitch onset features and alignment only in the last iteration, # where the features are at the finest level. cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, f_DLNCO1=f_DLNCO1, f_DLNCO2=f_DLNCO2, anchors=anchors) else: cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, anchors=anchors) wp_list = compute_warping_paths_from_cost_matrices(cost_matrices_step1, step_sizes=step_sizes, step_weights=step_weights, implementation=dtw_implementation) # Concatenate warping paths wp = build_path_from_warping_paths(warping_paths=wp_list, anchors=anchors) anchors_step1 = None wp_step1 = None num_rows_step1 = 0 num_cols_step1 = 0 ax = None toc1 = time.perf_counter() if verbose and cost_matrices_step1 is not None: anchors_step1 = np.array(anchors, copy=True) wp_step1 = np.array(wp, copy=True) num_rows_step1, num_cols_step1 = np.sum(np.array([dtw_mat.shape for dtw_mat in cost_matrices_step1], int), axis=0) fig, ax = sync_visualize_step1(cost_matrices_step1, num_rows_step1, num_cols_step1, anchors, wp) tic2 = time.perf_counter() # Compute neighboring anchors and refine alignment using local path between neighboring anchors anchor_indices_in_warping_path = find_anchor_indices_in_warping_path(wp, anchors=anchors) # Compute neighboring anchors for refinement neighboring_anchors, neighboring_anchor_indices = \ derive_neighboring_anchors(wp, anchor_indices=anchor_indices_in_warping_path) if neighboring_anchor_indices.shape[0] > 1 \ and it == num_iterations - 1 and high_res: cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, f_DLNCO1=f_DLNCO1, f_DLNCO2=f_DLNCO2, anchors=neighboring_anchors) else: cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, anchors=neighboring_anchors) wp_list_refine = compute_warping_paths_from_cost_matrices(cost_matrices=cost_matrices_step2, step_sizes=step_sizes, step_weights=step_weights, implementation=dtw_implementation) wp = __refine_wp(wp, anchors, wp_list_refine, neighboring_anchors, neighboring_anchor_indices) toc2 = time.perf_counter() computation_time_it = toc2 - tic2 + toc1 - tic1 total_computation_time += computation_time_it alignment = wp feature_rate_old = feature_rate_new cost_matrix_size_old = cost_matrix_size_new if verbose and cost_matrices_step2 is not None: sync_visualize_step2(ax, cost_matrices_step2, wp, wp_step1, num_rows_step1, num_cols_step1, anchors_step1, neighboring_anchors) print('Level {} computation time: {:.2f} seconds'.format(it, computation_time_it)) if verbose: print('Computation time of MrMsDTW: {:.2f} seconds'.format(total_computation_time)) return alignment
00dac7bdde14597e0daece958e65761ec01d1494
3,651,121
def simulate_beta_binomial( K, D, sigma2, theta, mu=0, invlink=logistic, seed=None): """Simulates from binomial Gaussian process with Beta latent noise. Args: K: Cell-state kernel, for example as generated by create_linear_kernel or create_rbf_kernel. D: Array of total counts. sigma2: Kernel variance component. theta: Dispersion parameter. If zero, sample from a regular Binomial distribution instead. mu: Optional fixed effects on a logit scale. Defaults to zero, which corresponds to a binomial mean of 0.5. invlink: Inverse link function. Defaults to invlogit. seed: Random seed. Returns: List with alternative counts, latent rates as well as sampled binomial means. """ D = atleast_2d_column(D) n, p = D.shape rng = np.random.default_rng(seed) if sigma2 == 0: latent = mu * np.ones((n, p)) else: mu = mu * np.ones((n, 1)) latent = _sample_normal(p, mu, sigma2*K, rng) beta_mean = invlink(latent) if theta > 0: binomial_mean = rng.beta(a=beta_mean / theta, b=(1-beta_mean) / theta) else: binomial_mean = beta_mean a = rng.binomial(n=D, p=binomial_mean) return {'A': a, 'beta_mean': beta_mean, 'binomial_mean': binomial_mean}
de4648af70a6b35c7b7f5edc2c151a98db6d7603
3,651,122
def convert_to_floats(tsi): """ A helper function that tax all of the fields of a TaxSaveInputs model and converts them to floats, or list of floats """ def numberfy_one(x): if isinstance(x, float): return x else: return float(x) def numberfy(x): if isinstance(x, list): return [numberfy_one(i) for i in x] else: return numberfy_one(x) attrs = vars(tsi) return {k: numberfy(v) for k, v in list(attrs.items()) if v}
a6f93f402c547435fa9fe611481084215f52f13b
3,651,123
def properties_filter(mol): """ Calculates the properties that contain logP, MW, HBA, HBD, TPSA, NRB """ #frag = Chem.rdmolops.GetMolFrags(mol) # remove '.' #if len(frag) > 1: #return False MW_s = Descriptors.MolWt(mol) # MW if MW_s < 250 or MW_s > 750: return False ALOGP_s = Descriptors.MolLogP(mol) # ALOGP if ALOGP_s < -2 or ALOGP_s > 7: return False HBA_s = 0 for hba in Acceptors: # HBA if mol.HasSubstructMatch(hba): matches = mol.GetSubstructMatches(hba) HBA_s += len(matches) HBD_s = Descriptors.NumHDonors(mol) # HBD if HBA_s + HBD_s >= 10: return False TPSA_s = Descriptors.TPSA(mol) # TPSA if TPSA_s >= 150: return False NRB_s = Descriptors.NumRotatableBonds(mol) # NRB if NRB_s >= 10: return False return True
bc124620baddb828b4c5cb82e0b0374bdb51bad7
3,651,124
def _create_certificate_chain(): """ Construct and return a chain of certificates. 1. A new self-signed certificate authority certificate (cacert) 2. A new intermediate certificate signed by cacert (icert) 3. A new server certificate signed by icert (scert) """ caext = X509Extension(b('basicConstraints'), False, b('CA:true')) # Step 1 cakey = PKey() cakey.generate_key(TYPE_RSA, 512) cacert = X509() cacert.get_subject().commonName = "Authority Certificate" cacert.set_issuer(cacert.get_subject()) cacert.set_pubkey(cakey) cacert.set_notBefore(b("20000101000000Z")) cacert.set_notAfter(b("20200101000000Z")) cacert.add_extensions([caext]) cacert.set_serial_number(0) cacert.sign(cakey, "sha1") # Step 2 ikey = PKey() ikey.generate_key(TYPE_RSA, 512) icert = X509() icert.get_subject().commonName = "Intermediate Certificate" icert.set_issuer(cacert.get_subject()) icert.set_pubkey(ikey) icert.set_notBefore(b("20000101000000Z")) icert.set_notAfter(b("20200101000000Z")) icert.add_extensions([caext]) icert.set_serial_number(0) icert.sign(cakey, "sha1") # Step 3 skey = PKey() skey.generate_key(TYPE_RSA, 512) scert = X509() scert.get_subject().commonName = "Server Certificate" scert.set_issuer(icert.get_subject()) scert.set_pubkey(skey) scert.set_notBefore(b("20000101000000Z")) scert.set_notAfter(b("20200101000000Z")) scert.add_extensions([ X509Extension(b('basicConstraints'), True, b('CA:false'))]) scert.set_serial_number(0) scert.sign(ikey, "sha1") return [(cakey, cacert), (ikey, icert), (skey, scert)]
156a61e8159b1826def8fa33d5c5965add2c7f2e
3,651,125
def build_job_spec_name(file_name, version="develop"): """ :param file_name: :param version: :return: str, ex. job-hello_world:develop """ name = file_name.split('.')[-1] job_name = 'job-%s:%s' % (name, version) return job_name
55a45052852e6b24cb4370f7efe5c213da83e423
3,651,126
import torch def draw_mask(im: torch.Tensor, mask: torch.Tensor, t=0.2, color=(255, 255, 255), visualize_instances=True): """ Visualize mask where mask = 0. Supports multiple instances. mask shape: [N, C, H, W], where C is different instances in same image. """ assert len(mask.shape) in (3, 4), mask.shape mask = mask.view(-1, *mask.shape[-3:]) im = im.view(-1, *im.shape[-3:]) assert im.dtype == torch.uint8, im.dtype assert 0 <= t <= 1 if not visualize_instances: mask = mask.any(dim=1, keepdim=True) mask = mask.float() kernel = torch.ones((3, 3), dtype=mask.dtype, device=mask.device) outer_border = dilation(mask, kernel).logical_xor(mask) outer_border = outer_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0 inner_border = erosion(mask, kernel).logical_xor(mask) inner_border = inner_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0 mask = (mask == 0).any(dim=1, keepdim=True).repeat(1, 3, 1, 1) color = torch.tensor(color).to(im.device).byte().view(1, 3, 1, 1)#.repeat(1, *im.shape[1:]) color = color.repeat(im.shape[0], 1, *im.shape[-2:]) im[mask] = (im[mask] * (1-t) + t * color[mask]).byte() im[outer_border] = 255 im[inner_border] = 0 return im
45d12dbc695755f0231ca2a8d0f8d1cdf2f423ff
3,651,127
def view_about(): """ shows the about page :return: :rtype: """ return render_template('about.html', title="About Flask AWS Template")
a364842c165864aba34605f3ffdd8c1d412015e8
3,651,128
import numpy def viterbi(observed_values, transition_probabilities, emission_probabilities, initial_distribution, file_name, log=True): """Calculates the viterbi-path for a given hidden-markov-model, heavily inspired by Abhisek Janas Blogpost "Implement Viterbi Algorithm in Hidden Markov Model using Python and R" at February 21, 2019. The Blog as well as the original source-code can be found under http://www.adeveloperdiary.com/data-science/machine-learning/implement-viterbi-algorithm-in-hidden-markov-model-using-python-and-r/ #noqa Args: observed_values (np.array): visible part of the hidden-markov-model transition_probabilities (np.array): transition probabilities for the hidden part of the hidden-markov-model emission_probabilities (np.array): transition probabilities for the visible part of the hidden-markov-model initial_distribution (np.array): probabilities for the initial status log (bool) = True: The results are calculated using the logarithmic projection Returns: (np.array): the viterbi-path for the given hidden-markov-model """ # Amount of steps epochs = observed_values.shape[0] # Amount of states states = transition_probabilities.shape[0] # Hightest probability to end in specific state omega = numpy.zeros((epochs, states), dtype=numpy.longdouble) prev = numpy.zeros((epochs - 1, states), dtype=numpy.longdouble) # Two Dimensional Array, which holds all forward probability for every # state and epoch forward_probs = numpy.zeros((epochs, states), dtype=numpy.longdouble) # Two Dimensional Array, which holds all backword probability for every # state and epoch backward_probs = numpy.zeros((epochs, states), dtype=numpy.longdouble) # Since we start at the pack of the list we need to init it with a one, # instead of a zero backward_probs[epochs - 1] = numpy.ones((states)) # Two Dimensional Array, which holds all posteriori probability for every # state and epoch posteriori_probs = numpy.zeros((epochs, states), dtype=numpy.longdouble) # Calculation of the probability for the observed initial state if log: omega[0, :] = numpy.log(initial_distribution * emission_probabilities[:, observed_values[0]-1]) #noqa else: omega[0, :] = initial_distribution * emission_probabilities[:, observed_values[0]-1] #noqa forward_probs[0, :] = initial_distribution * emission_probabilities[:, observed_values[0]-1] #noqa for epoch in range(1, epochs): for state in range(1, -1, -1): # Calculate the probability of obtaining the observed value for # each possible transition. if log: probability = omega[epoch - 1] + \ numpy.log(transition_probabilities[:, state]) + \ numpy.log(emission_probabilities[state, observed_values[epoch]-1]) #noqa else: probability = omega[epoch - 1] * \ transition_probabilities[:, state] * \ emission_probabilities[state, observed_values[epoch]-1] # This is our most probable state given previous state at epoch prev[epoch - 1, state] = numpy.argmax(probability) # save probability of the most probable state omega[epoch, state] = numpy.max(probability) # Calculate forward probability's for Posteriori-Decoding # The sum of the equations is calculated with matrix # multiplication(.dot), since that way a generice implementation # is provided! if not log: forward_probs[epoch, state] = emission_probabilities[state, observed_values[epoch]-1] * forward_probs[epoch - 1].dot(transition_probabilities[:, state]) #noqa # Path Array path = numpy.zeros(epochs) # Find the most probable last hidden state last_state = numpy.argmax(omega[epochs - 1, :]).astype(int) # Start building the path path[0] = last_state # Start backtracking backtrack_index = 1 for i in range(epochs - 2, -1, -1): # Calculate the next hidden state based on its successor next_hidden = prev[i, last_state] # Add state to the path path[backtrack_index] = next_hidden # Save state for the next backtracking step last_state = next_hidden.astype(int) backtrack_index += 1 # Posteriori-Decoding, calculate backward probability's. # The sum of the equations is calculated with matrix # multiplication(.dot), since that way a generice implementation is # provided! # The results are at this point in the reversed order, since we started # do calculate them from the end! if not log: for state in range(states): backward_probs[i, state] = (backward_probs[i+1]*emission_probabilities[:, observed_values[i]-1]).dot(transition_probabilities[state, :]) #noqa # Flip the path array since we were backtracking path = numpy.flip(path, axis=0) # Convert numeric values to actual hidden states result = "" for element in path: if element == 0: result = result + "F" else: result = result + "L" # Posteriori-Decoding, calculate posteriori probability's. if not log: # Flip the backward probability's to provide the probability's in # the correct order backward_probs = numpy.flip(backward_probs, axis=0) increase = 1 for i in range(epochs): # A counter to manage the constant multiplication used if(i % 20 == 0): # increase the multiplication factor increase *= numpy.longdouble(10**5) # Calculate the posteriori probability based on the given algorithm posteriori_probs[i, :] = ((forward_probs[i, :]*increase) * (backward_probs[i, :]*increase)) / (numpy.max(omega[epochs-1, :])*increase) #noqa # Remove the constant factor and override the current posteriori # probability, to give a correct value posteriori_probs[i, :] = posteriori_probs[i, :] / increase numpy.savetxt("results\\posteriori-decoding"+file_name, posteriori_probs) #noqa dirName = "results\\viterbi-Path"+file_name text_file = open(dirName, "w") text_file.write(result) text_file.close() return result
b063e5c5bbf566afb0f16175d9d229bef7a953f1
3,651,129
def extract_psf_fitting_names(psf): """ Determine the names of the x coordinate, y coordinate, and flux from a model. Returns (xname, yname, fluxname) """ if hasattr(psf, 'xname'): xname = psf.xname elif 'x_0' in psf.param_names: xname = 'x_0' else: raise ValueError('Could not determine x coordinate name for ' 'psf_photometry.') if hasattr(psf, 'yname'): yname = psf.yname elif 'y_0' in psf.param_names: yname = 'y_0' else: raise ValueError('Could not determine y coordinate name for ' 'psf_photometry.') if hasattr(psf, 'fluxname'): fluxname = psf.fluxname elif 'flux' in psf.param_names: fluxname = 'flux' else: raise ValueError('Could not determine flux name for psf_photometry.') return xname, yname, fluxname
cee108dd1f97e506b60ba621c7f08efa7b5c33d7
3,651,130
def config_check_conformance(cookie, dn): """ Auto-generated UCS XML API Method. """ method = ExternalMethod("ConfigCheckConformance") method.cookie = cookie method.dn = dn xml_request = method.to_xml(option=WriteXmlOption.DIRTY) return xml_request
598fbd665dcf18a35104400bf7debfc64347c3b5
3,651,132
def get_dist_to_port(geotiff): """ Extract "truth" dist_to_port from geotiff """ with Geotiff(geotiff) as tif: dist_to_port = tif.values return dist_to_port
1a77c2ac905eea2d1796529297168dac394b4bdb
3,651,133
import inspect def build_dataset_exporter( dataset_type, strip_none=True, warn_unused=True, **kwargs ): """Builds the :class:`DatasetExporter` instance for the given parameters. Args: dataset_type: the :class:`fiftyone.types.dataset_types.Dataset` type strip_none (True): whether to exclude None-valued items from ``kwargs`` warn_unused (True): whether to issue warnings for any non-None unused parameters encountered **kwargs: keyword arguments to pass to the dataset exporter's constructor via ``DatasetExporter(**kwargs)`` Returns: a tuple of: - the :class:`DatasetExporter` instance - a dict of unused keyword arguments """ if dataset_type is None: raise ValueError( "You must provide a `dataset_type` in order to build a dataset " "exporter" ) if inspect.isclass(dataset_type): dataset_type = dataset_type() dataset_exporter_cls = dataset_type.get_dataset_exporter_cls() if strip_none: kwargs = {k: v for k, v in kwargs.items() if v is not None} kwargs, unused_kwargs = fou.extract_kwargs_for_class( dataset_exporter_cls, kwargs ) try: dataset_exporter = dataset_exporter_cls(**kwargs) except Exception as e: raise ValueError( "Failed to construct exporter of type %s using the provided " "parameters. See above for the error. You may need to supply " "additional mandatory arguments. Please consult the documentation " "of %s to learn more" % (dataset_exporter_cls, dataset_exporter_cls) ) from e if warn_unused: for key, value in unused_kwargs.items(): if value is not None: logger.warning( "Ignoring unsupported parameter '%s' for exporter type %s", key, dataset_exporter_cls, ) return dataset_exporter, unused_kwargs
6a21c90ee2a9c297ad86515f5078221459b1fb01
3,651,134
def conditions(x): """ This function will check whether the constraints that apply to our optimization are met or not. """ if ( (10/x[0]) > 66.0 ): return False elif ( (10/x[0] + 12/x[1]) > 88.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2]) > 107.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3]) > 128.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4]) > 157.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5]) > 192.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6]) > 222.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6] + 10/x[7]) > 242.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6] + 10/x[7] + 16/x[8]) > 268.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6] + 10/x[7] + 16/x[8] + 8/x[9]) > 292.0 ): return False return True
263fdc3fd07aa656982401f71071fcd684b8625f
3,651,135
def get_commit_ancestors_graph(refenv, starting_commit): """returns a DAG of all commits starting at some hash pointing to the repo root. Parameters ---------- refenv : lmdb.Environment lmdb environment where the commit refs are stored starting_commit : string commit hash to start creating the DAG from Returns ------- dict a dictionary where each key is a commit hash encountered along the way, and it's value is a list containing either one or two elements which identify the child commits of that parent hash. """ parent_commit = starting_commit commit_graph = {} seen = set(starting_commit) more_work = [] end_commit = False if parent_commit == '': end_commit = True while end_commit is not True: childCommit = get_commit_ancestors(refenv, parent_commit) if ((childCommit.master_ancestor == '') or (childCommit.master_ancestor in seen)): end_commit = True commit_graph[parent_commit] = [childCommit.master_ancestor] if len(more_work) != 0: master_commit = more_work.pop(0) end_commit = False else: continue elif childCommit.is_merge_commit is True: master_commit = childCommit.master_ancestor dev_commit = childCommit.dev_ancestor more_work.append(dev_commit) commit_graph[parent_commit] = [master_commit, dev_commit] seen.add(master_commit) seen.add(dev_commit) else: master_commit = childCommit.master_ancestor commit_graph[parent_commit] = [master_commit] seen.add(master_commit) parent_commit = master_commit return commit_graph
078819cf0291a5e4e1e8ad4ea409f475c0df93fd
3,651,137
def is_verification_handshake(rjson): """ Determines if the request is the Slack application APIs verification handshake :rtype: bool """ # Check body contains the right keys for x in ['token', 'challenge', 'type']: if x not in rjson: return False # Check type is correct if rjson['type'] != "url_verification": return False # Note: no need to check the token, we check the request is signed # before this code is ever run. # It's a verification request log.info("Received URL verification handshake request") return True
1ceccd9ca578bd09e9629cd59e565bc523502030
3,651,138
def template_node(scope_key): """ Create and return a new template node. Parameters ---------- scope_key : object The key for the local scope in the local storage maps. Returns ------- result : TemplateNode A new compiler template node. """ node = TemplateNode() node.scope_key = scope_key return node
4cd9721dd9f9f91cb84326391630274b8f5764a7
3,651,139
def GetAutoResult(chroot_path, buildbucket_id): """Returns the conversion of the result of 'cros buildresult'.""" # Calls 'cros buildresult' to get the status of the tryjob. build_result = GetStatusFromCrosBuildResult(chroot_path, buildbucket_id) # The string returned by 'cros buildresult' might not be in the mapping. if build_result not in builder_status_mapping: raise ValueError( '"cros buildresult" return value is invalid: %s' % build_result) return builder_status_mapping[build_result]
705fbc011c11fa67d0b61f130a3b6f024a6dcd44
3,651,140
def rft(x): """ Real Fourier Transform """ # XXX figure out what exactly this is doing... s = x.shape[-1] xp = np.zeros(x.shape,dtype="complex64") xp[...,1:s/2] = x[...,1:-1:2]+x[...,2::2]*1.j xp[...,0] = x[...,0]/2. xp[...,s/2] = x[...,-1]/2. return np.array(nmr_reorder(np.fft.fft(2*xp,axis=-1).real),dtype="float32")
3a65f0a0059df4c74b223f3284e996b82d7ebf02
3,651,141
def yam_path(manifestsdir): """Bundletracker manifest.""" return join(manifestsdir, 'yam.json')
5d1b5162bd8285d8e33c822a3b5edcc996452719
3,651,142
def single_from(iterable): """Check that an iterable contains one unique value, and return it.""" unique_vals = set(iterable) if len(unique_vals) != 1: raise ValueError('multiple unique values found') return unique_vals.pop()
c8fb8864083195ad913ff1ddf0114b5a50068902
3,651,143
import requests def vthash(filehash: str): """Returns the analysis data class for a file in VirusTotal's database""" endpoint_path = f'/files/{filehash}' endpoint = f"{api_base_url}{endpoint_path}" r = requests.get(endpoint, headers=header) if r.status_code == 404 and r.json()['error']['code'] == 'NotFoundError': return None elif r.status_code == 200: return analysisdata(r)
bf4f334ad7a35e1141f9e00a44544fdd0709b411
3,651,144
def prod(x, axis=None, keepdims=False): """ product of all element in the array Parameters ---------- x : tensor_like input array axis : int, tuple of ints axis or axes along which a product is performed keepdims : bool keep dimensionality or not Returns ------- product : tensor_like product of all element """ return Product(axis=axis, keepdims=keepdims).forward(x)
8962e7b6abd16c9354f076c0c6d718b82fe44223
3,651,145
from typing import List import difflib def menu(queue: List[str] = None): """Fred Menu""" fred_controller = FredController(queue) an_input = "HELP_ME" while True: # There is a command in the queue if fred_controller.queue and len(fred_controller.queue) > 0: # If the command is quitting the menu we want to return in here if fred_controller.queue[0] in ("q", "..", "quit"): print("") if len(fred_controller.queue) > 1: return fred_controller.queue[1:] return [] # Consume 1 element from the queue an_input = fred_controller.queue[0] fred_controller.queue = fred_controller.queue[1:] # Print the current location because this was an instruction and we want user to know what was the action if an_input and an_input.split(" ")[0] in fred_controller.CHOICES_COMMANDS: print(f"{get_flair()} /economy/fred/ $ {an_input}") # Get input command from user else: # Display help menu when entering on this menu from a level above if an_input == "HELP_ME": fred_controller.print_help() # Get input from user using auto-completion if session and gtff.USE_PROMPT_TOOLKIT and fred_controller.completer: an_input = session.prompt( f"{get_flair()} /economy/fred/ $ ", completer=fred_controller.completer, search_ignore_case=True, ) # Get input from user without auto-completion else: an_input = input(f"{get_flair()} /economy/fred/ $ ") try: # Process the input command fred_controller.queue = fred_controller.switch(an_input) except SystemExit: print( f"\nThe command '{an_input}' doesn't exist on the /economy/fred menu.", end="", ) similar_cmd = difflib.get_close_matches( an_input.split(" ")[0] if " " in an_input else an_input, fred_controller.CHOICES, n=1, cutoff=0.7, ) if similar_cmd: if " " in an_input: candidate_input = ( f"{similar_cmd[0]} {' '.join(an_input.split(' ')[1:])}" ) if candidate_input == an_input: an_input = "" fred_controller.queue = [] print("\n") continue an_input = candidate_input else: an_input = similar_cmd[0] print(f" Replacing by '{an_input}'.") fred_controller.queue.insert(0, an_input) else: print("\n")
b8133dd748f0a48099359b6503edee6c9f875fb6
3,651,146
def generic_repr(name, obj, deferred): """ Generic pretty printer for NDTable and NDArray. Output is of the form:: Array(3, int32) values := [Numpy(ptr=60597776, dtype=int64, shape=(3,))]; metadata := [contigious] layout := Identity; [1 2 3] """ if deferred: if _show_details: header = "%s\n" % (name) header += " datashape := %s \n" % str(obj._datashape) header += " metadata := %s \n" % obj._metadata else: header = '' else: if _show_details: header = "%s\n" % (name) header += " datashape := %s \n" % str(obj._datashape) header += " values := %s \n" % list(obj.space) header += " metadata := %s \n" % obj._metadata header += " layout := %s \n" % obj._layout.desc else: header = '' # Show the data below fullrepr = header + generic_str(obj, deferred) return fullrepr
c9de29b792d943420b02455752f01a9c12fcf66c
3,651,147
def build_model(X, y, ann_hidden_dim, num_passes=20000): """ :param ann_hidden_dim: Number of nodes in the hidden layer :param num_passes: Number of passes through the training data for gradient descent :return: returns the parameters of artificial neural network for prediction using forward propagation of the parameters """ model = {} # Initialize the parameters to random values. np.random.seed(0) w1 = np.random.randn(ann_input_dim, ann_hidden_dim) / np.sqrt(ann_input_dim) c1 = np.zeros((1, ann_hidden_dim)) w2 = np.random.randn(ann_hidden_dim, ann_output_dim) / np.sqrt(ann_hidden_dim) c2 = np.zeros((1, ann_output_dim)) # Batch gradient descent for i in range(0, num_passes): # Forward propagation z1 = X.dot(w1) + c1 a1 = np.tanh(z1) z2 = a1.dot(w2) + c2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Back propagation delta3 = probs delta3[range(len(X)), y] -= 1 dw2 = (a1.T).dot(delta3) dc2 = np.sum(delta3, axis=0, keepdims=True) delta2 = delta3.dot(w2.T) * (1 - np.power(a1, 2)) dw1 = np.dot(X.T, delta2) dc1 = np.sum(delta2, axis=0) # Add regularization terms (c1 and c2 don't have regularization terms) dw2 += REG_LAMBDA * w2 dw1 += REG_LAMBDA * w1 # Gradient descent parameter update w1 += -EPSILON * dw1 c1 += -EPSILON * dc1 w2 += -EPSILON * dw2 c2 += -EPSILON * dc2 # Assign new parameters to the model model = {'w1': w1, 'c1': c1, 'w2': w2, 'c2': c2} return model
bccdf828050af8a6ff5943eb84b574756f9f54ab
3,651,148
def g_square_dis(dm, x, y, s): """G square test for discrete data. Args: dm: the data matrix to be used (as a numpy.ndarray). x: the first node (as an integer). y: the second node (as an integer). s: the set of neibouring nodes of x and y (as a set()). levels: levels of each column in the data matrix (as a list()). Returns: p_val: the p-value of conditional independence. """ levels = np.amax(dm, axis=0) + 1 def _calculate_tlog(x, y, s, dof, levels, dm): prod_levels = np.prod(list(map(lambda x: levels[x], s))) nijk = np.zeros((levels[x], levels[y], prod_levels)) s_size = len(s) z = [] for z_index in range(s_size): z.append(s.pop()) pass for row_index in range(dm.shape[0]): i = dm[row_index, x] j = dm[row_index, y] k = [] k_index = 0 for s_index in range(s_size): if s_index == 0: k_index += dm[row_index, z[s_index]] else: lprod = np.prod(list(map(lambda x: levels[x], z[:s_index]))) k_index += (dm[row_index, z[s_index]] * lprod) pass pass nijk[i, j, k_index] += 1 pass nik = np.ndarray((levels[x], prod_levels)) njk = np.ndarray((levels[y], prod_levels)) for k_index in range(prod_levels): nik[:, k_index] = nijk[:, :, k_index].sum(axis = 1) njk[:, k_index] = nijk[:, :, k_index].sum(axis = 0) pass nk = njk.sum(axis = 0) tlog = np.zeros((levels[x], levels[y], prod_levels)) tlog.fill(np.nan) for k in range(prod_levels): tx = np.array([nik[:, k]]).T ty = np.array([njk[:, k]]) tdijk = tx.dot(ty) tlog[:, :, k] = nijk[:, :, k] * nk[k] / tdijk pass return (nijk, tlog) row_size = dm.shape[0] s_size = len(s) dof = ((levels[x] - 1) * (levels[y] - 1) * np.prod(list(map(lambda x: levels[x], s)))) row_size_required = 10 * dof nijk = None if s_size < 5: if s_size == 0: nijk = np.zeros((levels[x], levels[y])) for row_index in range(row_size): i = dm[row_index, x] j = dm[row_index, y] nijk[i, j] += 1 pass tx = np.array([nijk.sum(axis = 1)]).T ty = np.array([nijk.sum(axis = 0)]) tdij = tx.dot(ty) tlog = nijk * row_size / tdij pass if s_size > 0: nijk, tlog = _calculate_tlog(x, y, s, dof, levels, dm) pass pass else: nijk = np.zeros((levels[x], levels[y], 1)) i = dm[0, x] j = dm[0, y] k = [] for z in s: k.append(dm[:, z]) pass k = np.array(k).T parents_count = 1 parents_val = np.array([k[0, :]]) nijk[i, j, parents_count - 1] = 1 for it_sample in range(1, row_size): is_new = True i = dm[it_sample, x] j = dm[it_sample, y] tcomp = parents_val[:parents_count, :] == k[it_sample, :] for it_parents in range(parents_count): if np.all(tcomp[it_parents, :]): nijk[i, j, it_parents] += 1 is_new = False break pass if is_new is True: parents_count += 1 parents_val = np.r_[parents_val, [k[it_sample, :]]] nnijk = np.zeros((levels[x], levels[y], parents_count)) for p in range(parents_count - 1): nnijk[:, :, p] = nijk[:, :, p] pass nnijk[i, j, parents_count - 1] = 1 nijk = nnijk pass pass nik = np.ndarray((levels[x], parents_count)) njk = np.ndarray((levels[y], parents_count)) for k_index in range(parents_count): nik[:, k_index] = nijk[:, :, k_index].sum(axis = 1) njk[:, k_index] = nijk[:, :, k_index].sum(axis = 0) pass nk = njk.sum(axis = 0) tlog = np.zeros((levels[x], levels[y], parents_count)) tlog.fill(np.nan) for k in range(parents_count): tx = np.array([nik[:, k]]).T ty = np.array([njk[:, k]]) tdijk = tx.dot(ty) tlog[:, :, k] = nijk[:, :, k] * nk[k] / tdijk pass pass log_tlog = np.log(tlog) G2 = np.nansum(2 * nijk * log_tlog) if dof == 0: p_val = 1 else: p_val = chi2.sf(G2, dof) if s_size == 0: nijk = nijk.reshape((nijk.shape[0], nijk.shape[1], 1)) log_tlog = log_tlog.reshape((log_tlog.shape[0], log_tlog.shape[1], 1)) return G2, p_val, nijk, log_tlog
2f0f0b44a919177c0f5775a34e0493c62720a21d
3,651,149
def start(name): """ Start the specified service CLI Example: .. code-block:: bash salt '*' service.start <service name> """ cmd = "/usr/sbin/svcadm enable -s -t {0}".format(name) retcode = __salt__["cmd.retcode"](cmd, python_shell=False) if not retcode: return True if retcode == 3: # Return code 3 means there was a problem with the service # A common case is being in the 'maintenance' state # Attempt a clear and try one more time clear_cmd = "/usr/sbin/svcadm clear {0}".format(name) __salt__["cmd.retcode"](clear_cmd, python_shell=False) return not __salt__["cmd.retcode"](cmd, python_shell=False) return False
607b559281c6b13002d7237b8c4409533074d0bc
3,651,150
from typing import Dict def line_coloring(num_vertices) -> Dict: """ Creates an edge coloring of the line graph, corresponding to the optimal line swap strategy, given as a dictionary where the keys correspond to the different colors and the values are lists of edges (where edges are specified as tuples). The graph coloring consists of one color for all even-numbered edges and one color for all odd-numbered edges. Args: num_vertices: The number of vertices in the line graph Returns: Graph coloring as a dictionary of edge lists """ line_coloring = {} for i in range(num_vertices - 1): line_coloring[(i, i + 1)] = i % 2 line_coloring[(i + 1, i)] = i % 2 return line_coloring
423e626ecbf4f48e0a192241375484a077fbe0b2
3,651,151
def flatten_outputs(predictions, number_of_classes): """Flatten the prediction batch except the prediction dimensions""" logits_permuted = predictions.permute(0, 2, 3, 1) logits_permuted_cont = logits_permuted.contiguous() outputs_flatten = logits_permuted_cont.view(-1, number_of_classes) return outputs_flatten # outputs_flatten = torch.tensor(predictions
c58fb965443a5402e9bec32afaebe9376c74653f
3,651,152
def get_r_vals(cell_obj): """Get radial distances for inner and outer membranes for the cell object""" r_i = cell_obj.coords.calc_rc(cell_obj.data.data_dict['storm_inner']['x'], cell_obj.data.data_dict['storm_inner']['y']) r_o = cell_obj.coords.calc_rc(cell_obj.data.data_dict['storm_outer']['x'], cell_obj.data.data_dict['storm_outer']['y']) return r_i, r_o
d51c926791845006dfe9a97cbd9c82c041ea701b
3,651,153