content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def train_on(text): """ Return a dictionary whose keys are alle the tuple of len PREFIX of consecutive words inside text, and whose value is the list of every single word which follows that tuple inside the text. For ex: {('Happy', 'birthday'): ['to', 'dear'] ...} """ words = text.split() assert len(words) > PREFIX training = defaultdict(list) for i in range(0, len(words) - PREFIX): duo = tuple(words[i:i + PREFIX]) following = words[i + PREFIX] training[duo].append(following) return training
40230bbb346cb4c98d6694fb0d18652e7d6bd4e7
3,652,550
def learning_rate_decay(alpha, decay_rate, global_step, decay_step): """learning_rate_decay: updates the learning rate using inverse time decay in numpy Args: alpha : is the original learning rate decay_rate : is the weight used to determine the rate at which alpha will decay global_step : is the number of passes of gradient descent that have elapsed decay_step : is the number of passes of gradient descent that should occur before alpha is decayed further Returns: the updated value for alpha """ alpha = alpha / (1 + decay_rate * int(global_step / decay_step)) return alpha
a98f893acc7f14dafcf2dea551df4eb44da07bc4
3,652,551
def update_studio(request): """updates the studio """ studio_id = request.params.get('studio_id') studio = Studio.query.filter_by(id=studio_id).first() name = request.params.get('name', None) dwh = request.params.get('dwh', None) wh_mon_start = get_time(request, 'mon_start') wh_mon_end = get_time(request, 'mon_end') wh_tue_start = get_time(request, 'tue_start') wh_tue_end = get_time(request, 'tue_end') wh_wed_start = get_time(request, 'wed_start') wh_wed_end = get_time(request, 'wed_end') wh_thu_start = get_time(request, 'thu_start') wh_thu_end = get_time(request, 'thu_end') wh_fri_start = get_time(request, 'fri_start') wh_fri_end = get_time(request, 'fri_end') wh_sat_start = get_time(request, 'sat_start') wh_sat_end = get_time(request, 'sat_end') wh_sun_start = get_time(request, 'sun_start') wh_sun_end = get_time(request, 'sun_end') if studio and name and dwh: # update new studio studio.name = name studio.daily_working_hours = int(dwh) wh = WorkingHours() def set_wh_for_day(day, start, end): if start != end: wh[day] = [[start.seconds/60, end.seconds/60]] else: wh[day] = [] set_wh_for_day('mon', wh_mon_start, wh_mon_end) set_wh_for_day('tue', wh_tue_start, wh_tue_end) set_wh_for_day('wed', wh_wed_start, wh_wed_end) set_wh_for_day('thu', wh_thu_start, wh_thu_end) set_wh_for_day('fri', wh_fri_start, wh_fri_end) set_wh_for_day('sat', wh_sat_start, wh_sat_end) set_wh_for_day('sun', wh_sun_start, wh_sun_end) studio.working_hours = wh DBSession.add(studio) # Commit will be handled by the zope transaction extension return HTTPOk()
2fbdcbd04bb0ec7d0b2f5790e59e9211c831066f
3,652,552
def flip_coin(num_of_experiments = 1000, num_of_flips = 30): """ Flip the coin `num_of_flips` times and repeat this experiment `num_of_experiments` times. And return the number of heads grouped together in all the experiments. """ all_heads = [] for i in range(num_of_experiments): heads = tails = 0 for counter in range(num_of_flips): num = np.random.randint(0,2) if num == 0: heads += 1 else: tails += 1 all_heads.append(heads) # group the number of heads in all the experiments flip_heads = [] for flip in range(num_of_flips + 1): num_of_heads = 0 for h in all_heads: if h == flip: num_of_heads += 1 flip_heads.append(num_of_heads) return flip_heads
24ccd52693233f93f5c0bb7bb4f09220e86f320c
3,652,553
from pathlib import Path def get_questions( path: str, uid2idx: dict = None, path_data: Path = None, ) -> po.DataFrame: """ Identify correct answer text and filter out wrong distractors from question string Get tokens and lemmas Get explanation sentence ids and roles """ # Dropping questions without explanations hurts score df = po.read_csv(path, sep="\t") df = add_q_reformat(df) # Preprocess texts tokens, lemmas = preprocess_texts(df.q_reformat.tolist(), path_data) df["tokens"], df["lemmas"], df["embedding"] = tokens, lemmas, None # Get explanation uids and roles exp_uids = [] exp_roles = [] exp_idxs = [] for exp_string in df.explanation.values: _uids, _roles = extract_explanation(exp_string) uids = [] roles = [] idxs = [] assert len(_uids) == len(_roles) for i in range(len(_uids)): if _uids[i] not in uid2idx: continue uids.append(_uids[i]) roles.append(_roles[i]) idxs.append(uid2idx[_uids[i]]) exp_uids.append(uids) exp_roles.append(roles) exp_idxs.append(idxs) df["exp_uids"], df["exp_roles"], df[ "exp_idxs"] = exp_uids, exp_roles, exp_idxs print(df.shape) return df
877c75f20b7b766655ecda5dc4bc63ada7ee593c
3,652,554
def simple_command(device, cmd_id, data=None, receive=True): """ Raises: HIDException -> if reading/writing to the USB device failed: KBProtocolException -> if the packet is too large """ cmd_packet = bytearray(EP_VENDOR_SIZE) cmd_packet[0] = cmd_id # Optional data component if data != None: data = bytearray(data) if len(data) > (EP_VENDOR_SIZE-1): raise KBProtocolException("Data can't fit in one packet. Got {} " "bytes, max is {}".format(len(data), EP_VENDOR_SIZE)) for i, byte in enumerate(data): cmd_packet[i+1] = byte device.write(cmd_packet) if receive: response = device.read() packet_type = response[0] while packet_type != cmd_id and packet_type != CMD_ERROR_CODE: # ignore other packets response = device.read(timeout=2) if response == None: device.write(cmd_packet) else: packet_type = response[0] if response[0] == CMD_ERROR_CODE: raise_error_code(response[1]) elif response[0] != cmd_id: raise KBProtocolException("Unexpected packet with packet_id: {}" .format(response[0])) return response[1:] else: return None
57a5e237f2296fec1563c125cb934ce1914d8bac
3,652,555
def dbopen(dbname, perm = 'r'): """Open a Datascope database""" return Dbptr(dbname, perm)
08a083def4f792927232eff5d625ae4e6f3355fb
3,652,556
def to_nx(dsk): """ Code mainly identical to dask.dot.to_graphviz and kept compatible. """ collapse_outputs = False verbose = False data_attributes = {} function_attributes = {} g = nx.DiGraph() seen = set() connected = set() for k, v in dsk.items(): k_name = name(k) if istask(v): func_name = name((k, "function")) if not collapse_outputs else k_name if collapse_outputs or func_name not in seen: seen.add(func_name) attrs = function_attributes.get(k, {}).copy() attrs.setdefault("label", key_split(k)) attrs.setdefault("shape", "circle") g.add_node(func_name, **attrs) if not collapse_outputs: g.add_edge(func_name, k_name) connected.add(func_name) connected.add(k_name) for dep in get_dependencies(dsk, k): dep_name = name(dep) if dep_name not in seen: seen.add(dep_name) attrs = data_attributes.get(dep, {}).copy() attrs.setdefault("label", box_label(dep, verbose)) attrs.setdefault("shape", "box") g.add_node(dep_name, **attrs) g.add_edge(dep_name, func_name) connected.add(dep_name) connected.add(func_name) elif ishashable(v) and v in dsk: v_name = name(v) g.add_edge(v_name, k_name) connected.add(v_name) connected.add(k_name) if (not collapse_outputs or k_name in connected) and k_name not in seen: seen.add(k_name) attrs = data_attributes.get(k, {}).copy() attrs.setdefault("label", box_label(k, verbose)) attrs.setdefault("shape", "box") g.add_node(k_name, **attrs) assert nx.dag.is_directed_acyclic_graph(g) return g
140b6a74ce7e75ddbc906bc4b4c7330e7585e0d8
3,652,557
def predict(model, img_base64): """ Returns the prediction for a given image. Params: model: the neural network (classifier). """ return model.predict_disease(img_base64)
545a98dd682b81a1662878f91091615871562226
3,652,558
import hashlib def get_hash(x: str): """Generate a hash from a string.""" h = hashlib.md5(x.encode()) return h.hexdigest()
538c936c29867bb934776333fb2dcc73c06e23d0
3,652,559
def pair_force(r1, r2, par1, par2, sigma_c, box, r_cut, lj=True, coulomb=True): """Compute the sum of the Lennard Jones force and the short ranged part of the Coulomb force between two particles. Arguments: r1 (ndarray): A one dimensional numpy-array with d elements (position of the first particle) r2 (ndarray): A one dimensional numpy-array with d elements (position of the second particle) par1 (ndarray): A one dimensional numpy-array with 4 elements (charge, epsillon, sigma, mass) for the first particle par2 (ndarray): A one dimensional numpy-array with 4 elements (charge, epsillon, sigma, mass) for the second particle sigma_c (float): A positive float (width of the gaussian distribution used to shield the particle) box (ndarray): A one dimensional numpy-array with d elements (size of preriodic box) r_cut (float): A positive float (cutoff radius) lj (boolean): If True the Lannard Jones force is calculated coulomb (boolean): If True the Coulomb force is calculated Returns: force * direction (ndarray): A one dimensional numpy-array with d elements (force acting on the first particle) """ dist = pbc(r1 - r2, box) r12 = np.linalg.norm(dist) force = 0 if r12 <= r_cut: if lj: epsilon = calc_eps(par1[1], par2[1]) sigma_lj = calc_sig(par2[2], par2[2]) rs = sigma_lj / r12 force += 24 * epsilon / r12 * (2 * rs**12 - rs**6) if coulomb: q1 = par1[0] q2 = par2[0] f1 = erfc(r12 / (np.sqrt(2) * sigma_c)) / r12 f2 = np.sqrt(2 / np.pi) / sigma_c * np.exp(- r12**2 / (2 * sigma_c**2)) force += q1 * q2 / (4 * np.pi * eps * r12) * (f1 + f2) direction = dist / r12 return force * direction
10c6eee7547f94c06e650a0a738aace3380de454
3,652,560
def delete_network_acl_entry(client, network_acl_id, num=100, egress=False, dry=True): """ Delete a network acl entry https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.delete_network_acl_entry """ try: response = client.delete_network_acl_entry( Egress=egress, NetworkAclId=network_acl_id, RuleNumber=num, DryRun=dry) print('Deleted %s %s' % (network_acl_id, ('(dry)' if dry else ''))) return response except Exception as err: handle(err)
e27e476f2fe37e7e0150a97ebd4b5e3cb93e86b1
3,652,561
import time def mp_run(data, process_num, func, *args): """ run func with multi process """ level_start = time.time() partn = max(len(data) / process_num, 1) start = 0 p_idx = 0 ps = [] while start < len(data): local_data = data[start:start + partn] start += partn p = mp.Process(target=func, args=(local_data, p_idx) + args) ps.append(p) p.start() p_idx += 1 for p in ps: p.join() for p in ps: p.terminate() return p_idx
13576bb107eae5a49063bcba3d698eeb957dbb1e
3,652,562
def spell(corpus): """ Train a Spelling Normalizer Parameters ---------- corpus : list of strings. Prefer to feed with malaya.load_malay_dictionary(). Returns ------- SPELL_NORMALIZE: Trained malaya.normalizer._SPELL_NORMALIZE class """ if not isinstance(corpus, list): raise ValueError('corpus must be a list') if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') return _SPELL_NORMALIZE([unidecode(w) for w in corpus])
1aee5a941e1553f50540a5327ee0e3c4d1ce0bd3
3,652,563
def client_id_to_org_type_id(client_id): """ Client ID should be a string: "g:" + self._options['org'] + ":" + self._options['type'] + ":" + self._options['id'], """ split = client_id.split(':') if len(split) != 4: raise InvalidClientId() org = split[1] device_type = split[2] device_id = split[3] return (org, device_type, device_id)
475058962f81760dc65b19ddbdc1d74e0ec2f55e
3,652,565
def get_total_implements(): """Obtiene los implementos totales solicitados en prestamos.""" total_implements = 0 for i in Loans.objects.all(): total_implements += i.ammount_implements return total_implements
5b8e2b21f8c31e33c60518fd4fba20eded614f05
3,652,566
from typing import Optional from typing import Union def _parse_maybe_array( type_name: str, innermost_type: Optional[Union[ast_nodes.ValueType, ast_nodes.PointerType]] ) -> Union[ast_nodes.ValueType, ast_nodes.PointerType, ast_nodes.ArrayType]: """Internal-only helper that parses a type that may be an array type.""" array_match = ARRAY_EXTENTS_PATTERN.search(type_name) if array_match: extents = tuple( int(s.strip()) for s in ARRAY_N_PATTERN.findall(array_match.group(0))) inner_type_str = type_name[:array_match.start()] return ast_nodes.ArrayType( inner_type=_parse_maybe_pointer(inner_type_str.strip(), innermost_type), extents=extents) else: return _parse_maybe_pointer(type_name, innermost_type)
8a284083e604688c2a1eff8767b6cb31b493cb07
3,652,567
def ema_decay_schedule( base_rate: jnp.ndarray, step: jnp.ndarray, total_steps: jnp.ndarray, use_schedule: bool, ) -> jnp.ndarray: """Anneals decay rate to 1 with cosine schedule.""" if not use_schedule: return base_rate multiplier = _cosine_decay(step, total_steps, 1.) return 1. - (1. - base_rate) * multiplier
a6269162e1a93544031b241ff43e043971bec488
3,652,568
from typing import Callable def _kill_filter(mm: MergedMiningCoordinator, filter_fn: Callable[[MergedMiningStratumProtocol], bool]) -> int: """ Kill all workers that the filter `fltr` returns true for. """ count = 0 for protocol in filter(filter_fn, mm.miner_protocols.values()): count += 1 protocol.transport.abort() return count
8a73427e46a418bf1d3ba974f73992dce0f1ad8c
3,652,569
def get_node_layer_sort_preference(device_role): """Layer priority selection function Layer sort preference is designed as numeric value. This function identifies it by LAYERS_SORT_ORDER object position by default. With numeric values, the logic may be improved without changes on NeXt app side. 0(null) results undefined layer position in NeXt UI. Valid indexes start with 1. """ for i, role in enumerate(LAYERS_SORT_ORDER, start=1): if device_role == role: return i return 1
08fbdbcb272664498d3709ffc9f49dbb2042fef2
3,652,570
def is_anagram(s,t): """True if strings s and t are anagrams. """ # We can use sorted() on a string, which will give a list of characters # == will then compare two lists of characters, now sorted. return sorted(s)==sorted(t)
2b615f8180bcaa598e24c0772893c9a528bc5153
3,652,571
def f1_score(labels, predict, name=None): """ Streaming f1 score. """ predictions = tf.floor(predict + 0.5) with tf.variable_scope(name, 'f1', (labels, predictions)): epsilon = 1e-7 _, tp = tf.metrics.true_positives(labels, predictions) _, fn = tf.metrics.false_negatives(labels, predictions) _, fp = tf.metrics.false_positives(labels, predictions) precision = tf.div(tp, epsilon + tp + fp, name='precision') recall = tf.div(tp, epsilon + tp + fn, name='recall') f1 = 2.0 * precision * recall / (precision + recall + epsilon) return f1
243612cad4ca1a876ccfbccfe55fdeeed893d644
3,652,572
import requests def test_notify_matrix_plugin_fetch(mock_post, mock_get): """ API: NotifyMatrix() Server Fetch/API Tests """ # Disable Throttling to speed testing plugins.NotifyBase.request_rate_per_sec = 0 response_obj = { 'room_id': '!abc123:localhost', 'room_alias': '#abc123:localhost', 'joined_rooms': ['!abc123:localhost', '!def456:localhost'], # Login details 'access_token': 'abcd1234', 'user_id': '@apprise:localhost', 'home_server': 'localhost', } def fetch_failed(url, *args, **kwargs): # Default configuration request = mock.Mock() request.status_code = requests.codes.ok request.content = dumps(response_obj) if url.find('/rooms/') > -1: # over-ride on room query request.status_code = 403 request.content = dumps({ u'errcode': u'M_UNKNOWN', u'error': u'Internal server error', }) return request mock_get.side_effect = fetch_failed mock_post.side_effect = fetch_failed obj = plugins.NotifyMatrix( user='user', password='passwd', include_image=True) assert isinstance(obj, plugins.NotifyMatrix) is True # We would hve failed to send our image notification assert obj.send(user='test', password='passwd', body="test") is False # Do the same query with no images to fetch asset = AppriseAsset(image_path_mask=False, image_url_mask=False) obj = plugins.NotifyMatrix(user='user', password='passwd', asset=asset) assert isinstance(obj, plugins.NotifyMatrix) is True # We would hve failed to send our notification assert obj.send(user='test', password='passwd', body="test") is False # Disable Throttling to speed testing plugins.NotifyBase.request_rate_per_sec = 0 response_obj = { # Registration 'access_token': 'abcd1234', 'user_id': '@apprise:localhost', 'home_server': 'localhost', # For room joining 'room_id': '!abc123:localhost', } # Default configuration mock_get.side_effect = None mock_post.side_effect = None request = mock.Mock() request.status_code = requests.codes.ok request.content = dumps(response_obj) mock_post.return_value = request mock_get.return_value = request obj = plugins.NotifyMatrix(include_image=True) assert isinstance(obj, plugins.NotifyMatrix) is True assert obj.access_token is None assert obj._register() is True assert obj.access_token is not None # Cause retries request.status_code = 429 request.content = dumps({ 'retry_after_ms': 1, }) code, response = obj._fetch('/retry/apprise/unit/test') assert code is False request.content = dumps({ 'error': { 'retry_after_ms': 1, } }) code, response = obj._fetch('/retry/apprise/unit/test') assert code is False request.content = dumps({ 'error': {} }) code, response = obj._fetch('/retry/apprise/unit/test') assert code is False
27dde8766cdfd136104e647a5a97416a69982cb5
3,652,573
import copy def site_summary_data(query, notime=True, extra="(1=1)"): """ Summary of jobs in different states for errors page to indicate if the errors caused by massive site failures or not """ summary = [] summaryResources = [] # remove jobstatus from the query if 'jobstatus__in' in query: del query['jobstatus__in'] # remove the time window limit for active jobs table querynotime = copy.deepcopy(query) if notime: if 'modificationtime__castdate__range' in querynotime: del querynotime['modificationtime__castdate__range'] ejquery = {'jobstatus__in': ['failed', 'finished', 'closed', 'cancelled']} jvalues = ('cloud', 'computingsite', 'jobstatus', 'resourcetype', 'corecount') orderby = ('cloud', 'computingsite', 'jobstatus') summaryResources.extend( Jobsactive4.objects.filter(**querynotime).exclude(**ejquery).values(*jvalues).extra(where=[extra]).annotate(Count('jobstatus')).order_by(*orderby)) summaryResources.extend( Jobsactive4.objects.filter(**query).filter(**ejquery).values(*jvalues).extra(where=[extra]).annotate(Count('jobstatus')).order_by(*orderby)) summaryResources.extend( Jobsdefined4.objects.filter(**querynotime).values(*jvalues).extra(where=[extra]).annotate(Count('jobstatus')).order_by(*orderby)) summaryResources.extend( Jobswaiting4.objects.filter(**querynotime).values(*jvalues).extra(where=[extra]).annotate(Count('jobstatus')).order_by(*orderby)) summaryResources.extend( Jobsarchived4.objects.filter(**query).values(*jvalues).extra(where=[extra]).annotate(Count('jobstatus')).order_by(*orderby)) summaryResourcesDict = {} actualcorecount = 0 for sumS in summaryResources: if sumS['corecount'] is None: actualcorecount = 1 else: actualcorecount = sumS['corecount'] if sumS['cloud'] not in summaryResourcesDict: summaryResourcesDict[sumS['cloud']] = {} if sumS['computingsite'] not in summaryResourcesDict[sumS['cloud']]: summaryResourcesDict[sumS['cloud']][sumS['computingsite']] = {} if sumS['jobstatus'] not in summaryResourcesDict[sumS['cloud']][sumS['computingsite']]: summaryResourcesDict[sumS['cloud']][sumS['computingsite']][sumS['jobstatus']] = {} if sumS['resourcetype'] not in summaryResourcesDict[sumS['cloud']][sumS['computingsite']][sumS['jobstatus']]: summaryResourcesDict[sumS['cloud']][sumS['computingsite']][sumS['jobstatus']][sumS['resourcetype']] = { 'jobstatus__count': 0, 'corecount': actualcorecount } summaryResourcesDict[sumS['cloud']][sumS['computingsite']][sumS['jobstatus']][sumS['resourcetype']]['jobstatus__count'] += sumS['jobstatus__count'] summaryList = [] obj = {} for cloud in summaryResourcesDict.keys(): for site in summaryResourcesDict[cloud].keys(): for jobstatus in summaryResourcesDict[cloud][site].keys(): jobscount =0 obj['resource'] = {} for i, resource in enumerate(summaryResourcesDict[cloud][site][jobstatus]): if resource not in obj['resource']: obj['resource'][resource] = {} obj['resource'][resource]['jobstatus__count'] = {} if resource not in obj['resource']: obj['resource'][resource] = {} obj['resource'][resource]['corecount'] = {} obj['resource'][resource]['jobstatus__count'] = summaryResourcesDict[cloud][site][jobstatus][resource]['jobstatus__count'] obj['resource'][resource]['corecount'] = summaryResourcesDict[cloud][site][jobstatus][resource]['corecount'] jobscount += summaryResourcesDict[cloud][site][jobstatus][resource]['jobstatus__count'] if i == len(summaryResourcesDict[cloud][site][jobstatus]) - 1: obj['cloud'] = cloud obj['computingsite'] = site obj['jobstatus'] = jobstatus obj['jobstatus__count'] = jobscount summaryList.append(obj) obj = {} return summaryList
010ca33e4de15c74199fbf54c565119f493698cc
3,652,574
def Epsilon(u): """Vector symmetric gradient.""" return Sym(Grad(u.transpose()))
ed1d163ca031ada0d1645029690fa53c3d2acfa0
3,652,575
def at(seq, msg, cmd=None, *args, **kwargs): """Output the comwdg""" return translator(seq)(*COMWDG_CMD)()
dd98234261731c3048444ab7d99ec6ed34eb62f1
3,652,576
def get_directory(f): """Get a directory in the form of a list of entries.""" entries = [] while 1: line = f.readline() if not line: print '(Unexpected EOF from server)' break if line[-2:] == CRLF: line = line[:-2] elif line[-1:] in CRLF: line = line[:-1] if line == '.': break if not line: print '(Empty line from server)' continue gtype = line[0] parts = line[1:].split(TAB) if len(parts) < 4: print '(Bad line from server: %r)' % (line,) continue if len(parts) > 4: if parts[4:] != ['+']: print '(Extra info from server:', print parts[4:], ')' else: parts.append('') parts.insert(0, gtype) entries.append(parts) return entries
fdd83e040f23f5ab84e0eb7cef457dfd66159f78
3,652,577
def get_worker_status(worker): """Retrieve worker status by worker ID from redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # retrieve worker status r = StrictRedis(connection_pool=WORKER_STATUS_POOL) res = r.get(WORKER_STATUS_KEY_TMPL % worker) return res.decode() if hasattr(res, "decode") else res
886817f7995bc8259891b10699ec4d26587e0653
3,652,579
def lif_r_psc_aibs_converter(config, syn_tau=[5.5, 8.5, 2.8, 5.8]): """Creates a nest glif_lif_r_psc object""" coeffs = config['coeffs'] threshold_params = config['threshold_dynamics_method']['params'] reset_params = config['voltage_reset_method']['params'] params = {'V_th': coeffs['th_inf'] * config['th_inf'] * 1.0e03 + config['El_reference'] * 1.0e03, 'g': coeffs['G'] / config['R_input'] * 1.0e09, 'E_L': config['El'] * 1.0e03 + config['El_reference'] * 1.0e03, 'C_m': coeffs['C'] * config['C'] * 1.0e12, 't_ref': config['spike_cut_length'] * config['dt'] * 1.0e03, 'a_spike': threshold_params['a_spike'] * 1.0e03, 'b_spike': threshold_params['b_spike'] * 1.0e-03, 'a_reset': reset_params['a'], 'b_reset': reset_params['b'] * 1.0e03, 'tau_syn': syn_tau, # in ms 'V_dynamics_method': 'linear_exact'} return params
091e45f44f9c777dac6c2b35fd51459a7947e301
3,652,580
def get_bigwig_values(bigwig_path, chrom_name, chrom_end, chrom_start=0): """ Get the values for a genomic region of interest from a bigwig file. :param bigwig_path: Path to the bigwig file :param chrom_name: Chromosome name :param chrom_end: chromosome end :param chrom_start: chromosome start :return: Bigwig values from the region given """ with pyBigWig.open(bigwig_path) as input_bw: return np.nan_to_num(input_bw.values(chrom_name, chrom_start, chrom_end, numpy=True))
37fe5a40a5fde1ccaee7cac32d8b9beb68a65c51
3,652,581
def get_successors(state, maxwords): """Traverses state graph to find valid anagrams.""" terminal = len(state['chars']) == 0 # Check whether the state is invalid and should be pruned if not is_valid(state['anagram'], terminal, maxwords): return [] # If valid terminal state, stop search and return if terminal: return [state['anagram']] # Continue to recursively explore subsequent states next_states = [] for c in state['chars']: chars = state['chars'].copy() chars.subtract({c: 1}) if chars[c] == 0: del chars[c] next_states.append({ 'anagram': state['anagram'] + c, 'chars': chars, }) # Add an additional next state for word breaks if state['anagram'] != '' and state['anagram'][-1] != ' ': next_states.append({ 'anagram': state['anagram'] + ' ', 'chars': state['chars'], }) anagrams = [] for next_state in next_states: anagrams += get_successors(next_state, maxwords=maxwords) return anagrams
9c842edc378a781195ef41ed58c7952f216b642e
3,652,583
def read_and_parse_cdl_file(file_name): """ Reads relevant information from a "cdl" file """ if file_name is None: return None wl_map = {} bl_map = {} colclk_wl_map = {} # Parse line-by-line with open(file_name, "r") as fp: for line in fp: line = line.strip() if not line: continue if line.startswith("#"): continue fields = split_cdl_line(line) if not fields: continue # Row definition if fields[0] == "define_row": wl_idx = fields.index("-WL_range") row = 0 for pair in fields[wl_idx+1]: if isinstance(pair, list) and len(pair) == 2: wl_map[row] = (int(pair[0]), int(pair[1]),) row += 1 # Clock column definition elif fields[0] == "define_colclk_instances": wl_idx = fields.index("-WL_Port") row_idx = fields.index("-row") wl = int(fields[wl_idx+1]) row = int(fields[row_idx+1]) colclk_wl_map[row] = (wl, wl,) # Column definition elif fields[0] == "define_column": bl_idx = fields.index("-BL_range") col = 0 for pair in fields[bl_idx+1]: if isinstance(pair, list) and len(pair) == 2: bl_map[col] = (int(pair[0]), int(pair[1]),) col += 1 data = { "colclk_wl_map": colclk_wl_map, "wl_map": wl_map, "bl_map": bl_map, } return data
e1bfbb75f473932861bb2e804dd0609c62544cf3
3,652,584
def detect_outlier_at_index( srs: pd.Series, idx: int, n_samples: int, z_score_threshold: float, ) -> bool: """ Check if a value at index `idx` in a series is an outlier. The passed series is supposed to be ordered by increasing timestamps. This function - detects z-score window index boundaries with respeect to index order and number of samples - computes the z-score of the current element with respect to the z-score window values - compares the z-score to the threshold to declare the current element an outlier :param srs: input series :param idx: numerical index of a value to check :param n_samples: number of samples in z-score window :param z_score_threshold: threshold to mark a value as an outlier based on its z-score in the window :return: whether the element at index idx is an outlier """ # Set z-score window boundaries. window_first_index = max(0, idx - n_samples) # Get a series window to compute z-score for. window_srs = srs.iloc[window_first_index : idx + 1] # Compute z-score of a value at index. z_score = (srs.iloc[idx] - window_srs.mean()) / window_srs.std() # Return if a value at index is an outlier. # Done via `<=` since a series can contain None values that should be detected # as well but will result to NaN if compared to the threshold directly. is_outlier = not (abs(z_score) <= z_score_threshold) return is_outlier
65a4d7e661f6cf4641d9cd82d1bb31c5e2d21616
3,652,585
def _organize_parameter(parameter): """ Convert operation parameter message to its dict format. Args: parameter (OperationParameter): Operation parameter message. Returns: dict, operation parameter. """ parameter_result = dict() parameter_keys = [ 'mapStr', 'mapBool', 'mapInt', 'mapDouble', ] for parameter_key in parameter_keys: base_attr = getattr(parameter, parameter_key) parameter_value = dict(base_attr) # convert str 'None' to None for key, value in parameter_value.items(): if value == 'None': parameter_value[key] = None parameter_result.update(parameter_value) # drop `mapStrList` and `strValue` keys in result parameter str_list_para = dict(getattr(parameter, 'mapStrList')) result_str_list_para = dict() for key, value in str_list_para.items(): str_list_para_list = list() for str_ele in getattr(value, 'strValue'): str_list_para_list.append(str_ele) str_list_para_list = list(map(lambda x: None if x == '' else x, str_list_para_list)) result_str_list_para[key] = str_list_para_list parameter_result.update(result_str_list_para) return parameter_result
8cbd7c863bb244e71266a573ba756647d0ba13ea
3,652,586
def colorpicker(request): """ Controller for the app home page. """ my_param = MyParamColor() context = get_context(request, my_param) return render(request, 'tethys_django_form_tutorial/colorpicker.html', context)
071f587683a24c101a7963a3934c989570c0fa66
3,652,587
def translate_date(default=defaults.get('language')): """Parse/translate a date.""" d = request.args.get('date') if not d: raise RuntimeError(_('Date is mandatory.')) dest_lang = request.args.get('dest') if request.args.get('dest') else default variation = request.args.get('variation') if request.args.get('variation') else 'short' d_list = d.split('/') if request.args.get('src') == 'es': d = date(year=int(d_list[2]), month=int(d_list[1]), day=int(d_list[0])) else: d = date(*d_list) return render_template_string(source=get_date(d=d, f=variation, l=dest_lang))
ada6f4416e227414dfc6f32fc3387c8b38830e70
3,652,588
from typing import Any from typing import Union from typing import Optional def check_call( *command: Any, working_directory: Union[PathLike, str] = ".", verbose: bool = False, quoted: bool = False, **kwargs: Any, ) -> Optional[str]: """Proxy for subprocess.check_call""" return check_run( *command, working_directory=working_directory, verbose=verbose, quoted=quoted, **kwargs )
384cd78599355e694445a7c682613672bba374a1
3,652,589
from typing import Tuple def fit_client(client: Client, weights: Weights) -> Tuple[Weights, int]: """Refine weights on a single client.""" return client.fit(weights)
db8e6003f452a5147274ac6e83df7d216ca46c91
3,652,590
def _find_rpms_in_packages(koji_api, name_list, major_minor): """ Given a list of package names, look up the RPMs that are built in them. Of course, this is an inexact science to do generically; contents can vary from build to build, and multiple packages could build the same RPM name. We will first look for the latest build in the tags for the given major_minor version. If not there, we will look in brew for the package name and choose the latest build. :koji_api: existing brew connection :name_list: list of package names to search for :major_minor: minor version of OCP to search for builds in Returns: a map of package_name: set(rpm_names) """ rpms_for_package = {} tags = _tags_for_version(major_minor) for package in name_list: for tag in tags: for build in koji_api.getLatestBuilds(tag=tag, package=package): rpm_list = set(rpm["name"] for rpm in koji_api.listBuildRPMs(build["build_id"])) rpms_for_package.setdefault(package, set()).update(rpm_list) if package not in rpms_for_package: # it wasn't in our tags; look for it by name pkg_info = koji_api.getPackage(package) if not pkg_info: continue latest_builds = koji_api.listBuilds(packageID=pkg_info["id"], state=1, queryOpts=dict(limit=1)) if not latest_builds: continue rpm_list = set(rpm["name"] for rpm in koji_api.listBuildRPMs(latest_builds[0]["build_id"])) rpms_for_package[package] = set(rpm_list) return rpms_for_package
edfb55f0b6997d8f930c8d93c2ee1be1c111bcfc
3,652,591
def calculate_algorithm_tags(analyses): """ Calculate the algorithm tags (eg. "ip", True) that should be applied to a sample document based on a list of its associated analyses. :param analyses: the analyses to calculate tags for :type analyses: list :return: algorithm tags to apply to the sample document :rtype: dict """ pathoscope = False nuvs = False for analysis in analyses: if pathoscope is not True and analysis["algorithm"] in PATHOSCOPE_TASK_NAMES: pathoscope = analysis["ready"] or "ip" or pathoscope if nuvs is not True and analysis["algorithm"] == "nuvs": nuvs = analysis["ready"] or "ip" or nuvs if pathoscope is True and nuvs is True: break return { "pathoscope": pathoscope, "nuvs": nuvs }
b2b13e3a0ccd21f446c5406baa966b2c0c4c6be9
3,652,592
import json def open_json(filepath): """ Returns open .json file in python as a list. :param: .json file path :returns: list :rvalue: str """ with open(filepath) as f: notes = json.load(f) return notes
a7cae15880ee1caaaf7bfa8c1aec98f5f83debe7
3,652,593
import json def remove_user_list(): """ Endpoint to remove a specific list or a complete user --- tags: - User Methods parameters: - name: user type: string in: query required: true description: user you want to query - name: list type: string in: query required: false description: specific list that belong to a user responses: 400: description: Incorrect dbs used 200: description: Your list was deleted """ to_remove_user = request.args.get('user') if to_remove_user is not None: validation = data_validator.validate_json_for_user(to_remove_user) to_remove_list = request.args.get('list', default=None) if to_remove_list is not None: data_validator.validate_json_for_list(to_remove_list) return_object = logic_for_users_controller_delete.worker_for_delete(to_remove_user, to_remove_list) if return_object['status_code'] is 200: res = json.dumps(return_object['body'], indent=4) return res, 200 else: res = json.dumps(return_object['body'].__dict__, indent=4) return res, return_object['status_code']
b53660edd56fcf5bbe061331d5f2b8756f621dd8
3,652,594
import requests def upload(f, content_type, token, api_key): """Upload a file with the given content type to Climate This example supports files up to 5 MiB (5,242,880 bytes). Returns The upload id if the upload is successful, False otherwise. """ uri = '{}/v4/uploads'.format(api_uri) headers = { 'authorization': bearer_token(token), 'x-api-key': api_key } md5 = file.md5(f) length = file.length(f) data = { 'md5': md5, 'length': length, 'contentType': content_type } # initiate upload res = requests.post(uri, headers=headers, json=data) Logger().info(to_curl(res.request)) if res.status_code == 201: upload_id = res.json() Logger().info("Upload Id: %s" % upload_id) put_uri = '{}/{}'.format(uri, upload_id) # for this example, size is assumed to be small enough for a # single upload (less than or equal to 5 MiB) headers['content-range'] = 'bytes {}-{}/{}'.format(0, (length - 1), length) headers['content-type'] = binary_content_type f.seek(0) # send image for position in range(0, length, CHUNK_SIZE): buf = f.read(CHUNK_SIZE) headers['content-range'] = 'bytes {}-{}/{}'.format( position, position + len(buf) - 1, length) try: res = requests.put(put_uri, headers=headers, data=buf) Logger().info(headers) except Exception as e: Logger().error("Exception: %s" % e) if res.status_code == 204: return upload_id return False
d6ead1f029811ec5894848b71841fd008068cee0
3,652,595
def get_node_name_centres(nodeset: Nodeset, coordinates_field: Field, name_field: Field): """ Find mean locations of node coordinate with the same names. :param nodeset: Zinc Nodeset or NodesetGroup to search. :param coordinates_field: The coordinate field to evaluate. :param name_field: The name field to match. :return: Dict of names -> coordinates. """ components_count = coordinates_field.getNumberOfComponents() fieldmodule = nodeset.getFieldmodule() fieldcache = fieldmodule.createFieldcache() name_records = {} # name -> (coordinates, count) nodeiter = nodeset.createNodeiterator() node = nodeiter.next() while node.isValid(): fieldcache.setNode(node) name = name_field.evaluateString(fieldcache) coordinates_result, coordinates = coordinates_field.evaluateReal(fieldcache, components_count) if name and (coordinates_result == RESULT_OK): name_record = name_records.get(name) if name_record: name_centre = name_record[0] for c in range(components_count): name_centre[c] += coordinates[c] name_record[1] += 1 else: name_records[name] = [ coordinates, 1 ] node = nodeiter.next() # divide centre coordinates by count name_centres = {} for name in name_records: name_record = name_records[name] name_count = name_record[1] name_centre = name_record[0] if name_count > 1: scale = 1.0/name_count for c in range(components_count): name_centre[c] *= scale name_centres[name] = name_centre return name_centres
2dc1e670999d9491e52efce02e5d7ecd22b75226
3,652,596
from enum import Enum def pred(a): """ pred :: a -> a the predecessor of a value. For numeric types, pred subtracts 1. """ return Enum[a].pred(a)
070bf20e7b7ecd694806e78bd705e872b2fd8464
3,652,597
def pascal_to_snake(pascal_string): """Return a snake_string for a given PascalString.""" camel_string = _pascal_to_camel(pascal_string) snake_string = _camel_to_snake(camel_string) return "".join(snake_string)
69c54fd8600878af2a8d168659a781b8389419ce
3,652,599
def collect_targets_from_attrs(rule_attrs, attrs): """Returns a list of targets from the given attributes.""" result = [] for attr_name in attrs: _collect_target_from_attr(rule_attrs, attr_name, result) return [target for target in result if is_valid_aspect_target(target)]
6be1731049f6970004763f5e9ec7d0a3bde76189
3,652,600
from typing import Tuple def extract_codes(text: str) -> Tuple[str, ...]: """Extract names of warnings from full warning text.""" match = CODES_PAT.search(text) if not match: raise ValueError("No warning code found") return tuple(match.group(1).split(","))
6727049c195197ed2407f30093c362a2c6f35cd4
3,652,601
def task_list(request, pk): """ View to get task list based on user list for forms """ user_model = User.objects.filter(is_staff=False) task_model = Task.objects.filter(user=pk) user_detail = User.objects.get(pk=pk) query = request.GET.get('q') if query: task_model = task_model.filter( Q(title__icontains=query) ) return render(request, 'home.html', {"user_model": user_model, 'task_model': task_model, 'user_detail': user_detail})
dbb6545ca66a367b2b3e89a494ac8a9bbdbbb341
3,652,602
import json def load_credentials(): """ load_credentials :return: dict """ with open("credentials.json", "r", encoding="UTF-8") as stream: content = json.loads(stream.read()) return content
2f08fc4e897a7c7eb91de804158ee67cd91635d0
3,652,603
def get_utm_string_from_sr(spatialreference): """ return utm zone string from spatial reference instance """ zone_number = spatialreference.GetUTMZone() if zone_number > 0: return str(zone_number) + 'N' elif zone_number < 0: return str(abs(zone_number)) + 'S' else: return str(zone_number)
50f01758f7ee29f1b994d36cda34b6b36157fd9e
3,652,604
def messages_count(name): """ Get message count for queue curl -X GET -H 'Accept: application/json' http://localhost:8080/queues/C13470112/msgs/count curl -X GET -H 'Accept: application/json' 83.212.127.232:8080/queues/C13470112/msgs/count """ conn = get_conn() queue = conn.get_queue(name) count = queue.count() resp = "Queue "+name+" has "+str(count)+" messages\n" return Response(response=resp, mimetype="application/json")
86abcbc6a9bb81f0ce8a6a19941761c042f5a7e9
3,652,605
def return_intersect(cameraList): """ Calculates the intersection of the Camera objects in the *cameraList*. Function returns an empty Camera if there exists no intersection. Parameters: cameraList : *list* of *camera.Camera* objects A list of cameras from the camera.Camera class, each containing a *poly* and a *coordsList*. Returns: intersectCam : *camera.Camera* object An object from the camera.Camera class that is the intersection between all cameras in the cameraList. If there exists no intersection between any cameras in the camerList, an empty Camera will be returned. """ intersectCam = None for camera in cameraList: if intersectCam is None: # Initiates the intersectCam variable intersectCam = camera else: intersectCam = intersectCam.intersect(camera) return intersectCam
a47613b8d79c4a4535cd5e7e07aa3b26dea019a5
3,652,606
def import_measurements(task, subject, gsrn, session): """ Imports measurements for a single MeteringPoint, and starts a start_submit_measurement_pipeline() pipeline for each of the newly imported measurements. :param celery.Task task: :param str subject: :param str gsrn: :param sqlalchemy.orm.Session session: """ __log_extra = { 'gsrn': gsrn, 'subject': subject, 'pipeline': 'import_measurements', 'task': 'import_measurements', } @atomic def __import_measurements(session): """ Import and save to DB as an atomic operation """ return importer.import_measurements_for(meteringpoint, session) # Load MeteringPoint from DB try: meteringpoint = MeteringPointQuery(session) \ .is_active() \ .has_gsrn(gsrn) \ .one() except orm.exc.NoResultFound: raise except Exception as e: raise task.retry(exc=e) # Import measurements into DB try: measurements = __import_measurements() except Exception as e: logger.exception('Failed to import measurements from ElOverblik, retrying...', extra=__log_extra) raise task.retry(exc=e) # Submit each measurement to ledger in parallel for measurement in measurements: task = build_submit_measurement_pipeline( measurement, meteringpoint, session) task.apply_async() # if measurements: # tasks = [ # build_submit_measurement_pipeline(measurement, meteringpoint, session) # for measurement in measurements # ] # # group(*tasks).apply_async()
6f0fc4aec546c5cf7b23bf2471ac625639e9dbbb
3,652,609
import pandas from typing import List def add_agg_series_to_df( df: pandas.DataFrame, grouped_levels: List[str], bottom_levels: List[str] ) -> pandas.DataFrame: """ Add aggregate series columns to wide dataframe. Parameters ---------- df : pandas.DataFrame Wide dataframe containing bottom level series. grouped_levels : List[str] Grouped level, underscore delimited, column names. bottom_levels : List[str] Bottom level, underscore delimited, column names. Returns ------- pandas.DataFrame Wide dataframe with all series in hierarchy. """ component_cols = _get_bl(grouped_levels, bottom_levels) # Add series as specified grouping levels for i, cols in enumerate(component_cols): df[grouped_levels[i]] = df[cols].sum(axis=1) return df
7c3b7b526c394c8a24bf754365dbc809476b7336
3,652,610
def conv_relu_pool_forward(x, w, b, conv_param, pool_param): """ Convenience layer that performs a convolution, a ReLU, and a pool. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - pool_param: Parameters for the pooling layer Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ convOut, conv_cache = layers.conv_forward(x, w, b, conv_param) reluOut, relu_cache = layers.relu_forward(convOut) out, pool_cache = layers.max_pool_forward(reluOut, pool_param) cache = (conv_cache, relu_cache, pool_cache) return out, cache
d9a32950d1b56b4843938b339c7233e7fc87c5cc
3,652,611
def avg_pixelwise_var(images_seen: np.int16): """ Computes the variance for every pixel p across all images, resulting in a matrix holding the variance for eack pixel p, then calculates the average of that variance across all pixels. This allows us to compensate for different fov sizes. Note: images are normalized to [-1,1] before calculations Params ------ images_seen A numpy matrix holding numpy versions of all of our images Returns ------- The aaverage pixelwise variation across all images, as a float """ # Computes the variance images = (images_seen.astype(np.float32) - 127.5) / 127.5 # Normalize to [-1,1] variance_matrix = np.var(images, 0) # Returns the average of that variance return(np.sum(variance_matrix)/variance_matrix.size)
4b6196ddd25c0cd3ad0cd7cb1928b99772aa563f
3,652,612
def get_r2_matrix(ts): """ Returns the matrix for the specified tree sequence. This is computed via a straightforward Python algorithm. """ n = ts.get_sample_size() m = ts.get_num_mutations() A = np.zeros((m, m), dtype=float) for t1 in ts.trees(): for sA in t1.sites(): assert len(sA.mutations) == 1 mA = sA.mutations[0] A[sA.id, sA.id] = 1 fA = t1.get_num_samples(mA.node) / n samples = list(t1.samples(mA.node)) for t2 in ts.trees(tracked_samples=samples): for sB in t2.sites(): assert len(sB.mutations) == 1 mB = sB.mutations[0] if sB.position > sA.position: fB = t2.get_num_samples(mB.node) / n fAB = t2.get_num_tracked_samples(mB.node) / n D = fAB - fA * fB r2 = D * D / (fA * fB * (1 - fA) * (1 - fB)) A[sA.id, sB.id] = r2 A[sB.id, sA.id] = r2 return A
e6a3eca421c40c9b9bbe218e7f6179eda0e07a00
3,652,613
def omdb_title( api_key: str, id_imdb: str = None, media: str = None, title: str = None, season: int = None, episode: int = None, year: int = None, plot: str = None, cache: bool = True, ) -> dict: """ Looks up media by id using the Open Movie Database. Online docs: http://www.omdbapi.com/#parameters """ if (not title and not id_imdb) or (title and id_imdb): raise MnamerException("either id_imdb or title must be specified") elif plot and plot not in OMDB_PLOT_TYPES: raise MnamerException( "plot must be one of %s" % ",".join(OMDB_PLOT_TYPES) ) url = "http://www.omdbapi.com" parameters = { "apikey": api_key, "i": id_imdb, "t": title, "y": year, "season": season, "episode": episode, "type": media, "plot": plot, } parameters = clean_dict(parameters) status, content = request_json(url, parameters, cache=cache) error = content.get("Error") if isinstance(content, dict) else None if status == 401: raise MnamerException("invalid API key") elif status != 200 or not isinstance(content, dict): raise MnamerNetworkException("OMDb down or unavailable?") elif error: raise MnamerNotFoundException(error) return content
54efaba216b7de203fe6960f58a8ebb93b980c4c
3,652,615
def get_status(addr): """Get the current status of a minecraft server. addr -- server address Returns an mcstatus object. """ server = MinecraftServer.lookup(addr) try: return server.status() except Exception: return None
9e5a346d3cec803005ef0c65d24f929b56dfa68f
3,652,616
def calculate_losses(estimator, input_fn, labels): """Get predictions and losses for samples. The assumptions are 1) the loss is cross-entropy loss, and 2) user have specified prediction mode to return predictions, e.g., when mode == tf.estimator.ModeKeys.PREDICT, the model function returns tf.estimator.EstimatorSpec(mode=mode, predictions=tf.nn.softmax(logits)). Args: estimator: model to make prediction input_fn: input function to be used in estimator.predict labels: array of size (n_samples, ), true labels of samples (integer valued) Returns: preds: probability vector of each sample loss: cross entropy loss of each sample """ pred = np.array(list(estimator.predict(input_fn=input_fn))) loss = log_loss(labels, pred) return pred, loss
1a25519d661a6de185c39bb9c65a23a3eea71971
3,652,617
def text_cleaning(value, stopwords=None): """Applies the four cleaning funtions to a value. Turns value into string, makes lowercase, strips trailing and leading spaces, and removes digits, punctuation, and stopwords Args: value (str): string to be cleaned Returns: str_out (str): string after cleaning """ value = str_lower_strip(value) value = remove_digits(value) value = remove_punctuation(value) value = remove_stopwords(value, stopwords) str_out = value return str_out
291f4150601b7537cbb4d10cb53598dcb9a83829
3,652,618
def calc_pts_lag(npts=20): """ Returns Gauss-Laguerre quadrature points rescaled for line scan integration Parameters ---------- npts : {15, 20, 25}, optional The number of points to Notes ----- The scale is set internally as the best rescaling for a line scan integral; it was checked numerically for the allowed npts. Acceptable pts/scls/approximate line integral scan error: (pts, scl ) : ERR ------------------------------------ (15, 0.072144) : 0.002193 (20, 0.051532) : 0.001498 (25, 0.043266) : 0.001209 The previous HG(20) error was ~0.13ish """ scl = { 15:0.072144, 20:0.051532, 25:0.043266}[npts] pts0, wts0 = np.polynomial.laguerre.laggauss(npts) pts = np.sinh(pts0*scl) wts = scl*wts0*np.cosh(pts0*scl)*np.exp(pts0) return pts, wts
dc491bc8dd46f81809a0dc06da8c123357736622
3,652,619
def APPEND(*ext, **kw): """Decorator to call XDWAPI with trailing arguments *ext. N.B. Decorated function must be of the same name as XDWAPI's one. """ def deco(api): @wraps(api) def func(*args, **kw): args = list(args) if "codepage" in kw: args.append(kw["codepage"]) args.extend(ext) return TRY(getattr(DLL, api.__name__), *args) return func return deco
c73dc1b192835a0eefa53f660b1af4626a3ab75c
3,652,620
def stations_within_radius(stations, centre, r): """Returns a list of all stations (type MonitoringStation) within radius r of a geographic coordinate x.""" stations_inside_radius = [] for station, distance in stations_by_distance(stations, centre): # Check if distance is inside the requried radius if distance < r: stations_inside_radius.append(station) # Return the list return stations_inside_radius
8182bdfc0d46ee64e98358c06b3d4787a0f1fa52
3,652,621
def manage_topseller(request, template_name="manage/marketing/topseller.html"): """ """ inline = manage_topseller_inline(request, as_string=True) # amount options amount_options = [] for value in (10, 25, 50, 100): amount_options.append({ "value": value, "selected": value == request.session.get("topseller-amount") }) return render_to_string(template_name, request=request, context={ "topseller_inline": inline, "amount_options": amount_options, })
e9af634b66a7f7631a0bb7633cc445f05efb615a
3,652,622
from typing import Optional def embedded_services(request: FixtureRequest) -> Optional[str]: """ Enable parametrization for the same cli option """ return getattr(request, 'param', None) or request.config.getoption('embedded_services', None)
908a48d9fa8696e6970fe5884632f1b373063667
3,652,624
def vigenere(plaintext,cypher): """Implementation of vigenere cypher""" i = 0 cyphertext = "" for character in plaintext: n = ord(cypher[i%len(cypher)].lower())-97 new_char = rot_char(character, n) cyphertext += new_char if new_char != ' ': i += 1 return cyphertext
2b5cdd839bcfc0e55cdac65f9752cf88bd34c2e2
3,652,625
def get_local_unit_slip_vector_SS(strike, dip, rake): """ Compute the STRIKE SLIP components of a unit slip vector. Args: strike (float): Clockwise angle (deg) from north of the line at the intersection of the rupture plane and the horizontal plane. dip (float): Angle (degrees) between rupture plane and the horizontal plane normal to the strike (0-90 using right hand rule). rake (float): Direction of motion of the hanging wall relative to the foot wall, as measured by the angle (deg) from the strike vector. Returns: Vector: Unit slip vector in 'local' N-S, E-W, U-D coordinates. """ strike = np.radians(strike) dip = np.radians(dip) rake = np.radians(rake) sx = np.cos(rake) * np.sin(strike) sy = np.cos(rake) * np.cos(strike) sz = 0.0 return Vector(sx, sy, sz)
dddedaeaabe91137c38bbaa2ec2bb1d42a6629c7
3,652,626
def get_country_code(country_name): """Gets the code of the country given its name""" for code, name in COUNTRIES.items(): if name == country_name: return code
bb4a3eebae0b14fc8207ef4301812d3d305a8dfd
3,652,627
def build_model(cfg, train_cfg=None, test_cfg=None): """Build model.""" if train_cfg is None and test_cfg is None: return build(cfg, MODELS) else: return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
f47aa433bf2cbd637e9ea2e8e842bab9feb12ab1
3,652,628
def find_instruction_type(opcode: str) -> InstructionType: """Finds instruction type for object instruction Parameters ---------- opcode : str opcode of instruction in hex Returns ------- InstructionType type of instruction using InstructionType enum """ # R type instructions always have opcode = 00 if opcode == "00": i_type = InstructionType.R # I type instructions have opcode > 03 elif opcode > "03": i_type = InstructionType.I return i_type
a8f5002834f9e9e847ef4f848a13f6e8037948f6
3,652,629
import string def gen_tier_id(inst, id_base, tier_type=None, alignment=None, no_hyphenate=False): """ Unified method to generate a tier ID string. (See: https://github.com/goodmami/xigt/wiki/Conventions) """ # In order to number this item correctly, we need to decide how many tiers of the same type # there are. This is done by systematically adding filters to the list. filters = [] # First, do we align with another item? (Either segmentation, alignment, or head/dep) if alignment is not None: filters.append(lambda x: aln_match(alignment)(x) or seg_match(alignment)(x) or ref_match(x, alignment, DS_HEAD_ATTRIBUTE)) # Next, does the type match ours? if tier_type is not None: filters.append(type_match(tier_type)) # Get the number of tiers that match this. if not filters: prev_tiers = [] num_tiers = 0 else: prev_tiers = inst.findall(others=filters) num_tiers = len(prev_tiers) id_str = id_base # Now, if we have specified the alignment, we also want to prepend # that to the generated id string. if alignment is not None: if no_hyphenate: return '{}{}'.format(alignment, id_str) else: id_str = '{}-{}'.format(alignment, id_str) # Finally, if we have multiple tiers of the same type that annotate the # same item, we should append a letter for the different analyses. if num_tiers > 0 and inst.find(id=id_str) is not None: while True: letters = string.ascii_lowercase assert num_tiers < 26, "More than 26 alternative analyses not currently supported" potential_id = id_str + '_{}'.format(letters[num_tiers]) if inst.find(id=potential_id) is None: id_str = potential_id break else: num_tiers += 1 return id_str
f21b94677efe25e545d7efd99c68ed1722018c35
3,652,630
def create_temporary_file(filename, contents=""): """ Decorator for constructing a file which is available during a single test and is deleted afterwards. Example usage:: @grader.test @create_temporary_file('hello.txt', 'Hello world!') def hook_test(m): with open('hello.txt') as file: txt = file.read() """ def _inner(test_function): before_test(create_file(filename, contents))(test_function) after_test(delete_file(filename))(test_function) return test_function return _inner
b4ce96e0d239acc379d78b7c13042cea5c0a4fe0
3,652,631
def find_post_translational_modifications(filter=None, page=0, pageSize=100): # noqa: E501 """Find values for an specific property, for example possible taxonomy values for Organism property # noqa: E501 :param filter: Keyword to filter the list of possible values :type filter: str :param page: Number of the page with the possible values for the property :type page: int :param pageSize: Number of values with the possible values for the property :type pageSize: int :rtype: List[PostTranslationalModification] """ unimod_database = UnimodDatabase() l = unimod_database.search_mods_by_keyword(keyword=filter) list_found = l[(page * pageSize):(page * pageSize) + pageSize] return list_found
9c9d196a7d0d3e8c3b2725247504cecf822ac541
3,652,632
def random_vector(A, b): """ Generates a random vector satisfying Ax <= b through rejection sampling. """ dimension = A.shape[1] not_feasible = True while not_feasible == True: config.reject_counter = config.reject_counter + 1 if config.reject_counter == config.milestone: config.milestone = config.milestone * 10 print(config.reject_counter, 'random vectors have been generated so far') rand_vec = np.random.uniform(-0.5, 0.5, dimension) if np.all(np.dot(A, rand_vec) <= b) == True: not_feasible = False return rand_vec
e710ef0a3e49fc7834850465f11232df546b944d
3,652,633
from .transform import mapi from typing import Callable def mapi(mapper: Callable[[TSource, int], TResult]) -> Projection[TSource, TResult]: """Returns an observable sequence whose elements are the result of invoking the mapper function and incorporating the element's index on each element of the source.""" return mapi(mapper)
e640a1a4b68b9115ca2358502b675e4d6710ea83
3,652,634
def game_to_screen(position): """ Converts coordinates from game view into screen coordinates for mouse interaction """ return (GAME_LEFT + position[0], GAME_TOP + position[1])
2176d74a98db1e226dc960b14db35af303bfe9ec
3,652,635
def get_graph_params(filename, nsize=1): """Load and process graph adjacency matrix and upsampling/downsampling matrices.""" data = np.load(filename, encoding='latin1') A = data['A'] U = data['U'] D = data['D'] U, D = scipy_to_pytorch(A, U, D) A = [adjmat_sparse(a, nsize=nsize) for a in A] return A, U, D
5c0671dbe7cd2f56aace9319f78289b1e34defa4
3,652,636
from . import computers def _(dbmodel, backend): """ get_backend_entity for DummyModel DbComputer. DummyModel instances are created when QueryBuilder queries the Django backend. """ djcomputer_instance = djmodels.DbComputer( id=dbmodel.id, uuid=dbmodel.uuid, name=dbmodel.name, hostname=dbmodel.hostname, description=dbmodel.description, transport_type=dbmodel.transport_type, scheduler_type=dbmodel.scheduler_type, metadata=dbmodel.metadata ) return computers.DjangoComputer.from_dbmodel(djcomputer_instance, backend)
dd9dc5eeb0dcd54816675bd2dc19e5a0fc10a59a
3,652,637
import six def retrieve(filename, conf, return_format='dict', save_to_local=False, delete_remote=False, timeout=60): """Retrieving Processed Session File from server via sFTP 1. Get xml file string from server and return object 2. If save_to_local, save to local file system Args: filename: filename of file in outbound folder at remote server with '.asc' as extension. conf: An instance of utils.Configuration. return_format: Return format. The default is ‘dict’. Could be one of ‘dict’, ‘object’ or ‘xml’. save_to_local: whether save file to local. default is false. delete_remote: If delete the remote file after download. The default is False timeout: Timeout in second for ssh connection for sftp. Returns: response XML in desired format. Raises: Exception depends on when get it. """ if not isinstance(conf, utils.Configuration): raise utils.VantivException('conf must be an instance of utils.Configuration') if not isinstance(filename, six.string_types) or len(filename) < 4: raise utils.VantivException('filename must be a string, and at least 4 chars') if not isinstance(timeout, six.integer_types) or timeout < 0: raise utils.VantivException('timeout must be an positive int') response_xml = _get_file_str_from_sftp(filename, conf, delete_remote, timeout) if save_to_local: _save_str_file(response_xml, conf.batch_response_path, filename) return _generate_response(response_xml, return_format, conf)
1ebf550b8a9be3019ed851a5e4571ed9a72f3e44
3,652,638
def get_simulate_func_options( params, options, method="n_step_ahead_with_sampling", df=None, n_simulation_periods=None, ): """Rewrite respy's get_simulation_function such that options can be passed and therefore the seed be changed before any run. Documentation is adapted from :func:`respy.simulate.get_simulate_func()` Parameters ---------- params : pandas.DataFrame DataFrame containing the model parameters. options : dict Dictionary containing the model options. method : {"n_step_ahead_with_sampling", "n_step_ahead_with_data", "one_step_ahead"} The simulation method which can be one of three and is explained in more detail in :func:`respy.simulate.simulate()`. df : pandas.DataFrame or None, default None DataFrame containing one or multiple observations per individual. n_simulation_periods : int or None, default None Simulate data for a number of periods. This options does not affect ``options["n_periods"]`` which controls the number of periods for which decision rules are computed. Returns ------- simulate_function : :func:`simulate` Simulation function where all arguments except the parameter vector and the options are set. """ optim_paras, options = process_params_and_options(params, options) n_simulation_periods, options = _harmonize_simulation_arguments( method, df, n_simulation_periods, options, ) df = _process_input_df_for_simulation(df, method, options, optim_paras) solve = get_solve_func(params, options) n_observations = ( df.shape[0] if method == "one_step_ahead" else df.shape[0] * n_simulation_periods ) shape = (n_observations, len(optim_paras["choices"])) base_draws_sim = create_base_draws( shape, next(options["simulation_seed_startup"]), "random", ) base_draws_wage = create_base_draws( shape, next(options["simulation_seed_startup"]), "random", ) simulate_function = partial( simulate, base_draws_sim=base_draws_sim, base_draws_wage=base_draws_wage, df=df, method=method, n_simulation_periods=n_simulation_periods, solve=solve, ) return simulate_function
9d77730facb29d460c958033873bb2ce02f5a9ed
3,652,639
def get_host_user_and_ssh_key_path(instance_name, project, zone): """Return a tuple of (hostname, username and ssh_key_path).""" output = api.local( 'gcloud compute ssh --project "%s" --zone "%s" %s --dry-run' % (project, zone, instance_name), capture=True) print output m = re.match('/usr/bin/ssh .*-i ([^ ]+)(?: -o [^ ]+)* ([^ ]+)@([^ ]+)', output) return (m.group(3), m.group(2), m.group(1))
eabc88808fe0b73e9df507ea0397c3b9eb38a8de
3,652,641
def TDataStd_TreeNode_Find(*args): """ * class methods working on the node =================================== Returns true if the tree node T is found on the label L. Otherwise, false is returned. :param L: :type L: TDF_Label & :param T: :type T: Handle_TDataStd_TreeNode & :rtype: bool """ return _TDataStd.TDataStd_TreeNode_Find(*args)
6c37e5f05627287eab4c4c13a21d92aa6e4e6a1a
3,652,642
def make_group_corr_mat(df): """ This function reads in each subject's aal roi time series files and creates roi-roi correlation matrices for each subject and then sums them all together. The final output is a 3d matrix of all subjects roi-roi correlations, a mean roi-roi correlation matrix and a roi-roi covariance matrix. **NOTE WELL** This returns correlations transformed by the Fisher z, aka arctanh, function. """ # for each subject do the following for i, (sub, f_id) in enumerate(df[['SUB_ID', 'FILE_ID']].values): #read each subjects aal roi time series files ts_df = pd.read_table('DATA/{}_rois_aal.1D'.format(f_id)) #create a correlation matrix from the roi all time series files corr_mat_r = ts_df.corr() #the correlations need to be transformed to Fisher z, which is #equivalent to the arctanh function. corr_mat_z = np.arctanh(corr_mat_r) #for the first subject, add a correlation matrix of zeros that is the same dimensions as the aal roi-roi matrix if i == 0: all_corr_mat = np.zeros([corr_mat_z.shape[0], corr_mat_z.shape[1], len(df)]) #now add the correlation matrix you just created for each subject to the all_corr_mat matrix (3D) all_corr_mat[:, :, i] = corr_mat_z #create the mean correlation matrix (ignore nas - sometime there are some...) av_corr_mat = np.nanmean(all_corr_mat, axis=2) #create the group covariance matrix (ignore nas - sometime there are some...) var_corr_mat = np.nanvar(all_corr_mat, axis=2) return all_corr_mat, av_corr_mat, var_corr_mat
4d30136e8ce46e984c0039ddaca26efd04f231b9
3,652,643
def get_tradedate(begin, end): """ get tradedate between begin date and end date Params: begin: str,eg: '1999-01-01' end: str,eg: '2017-12-31' Return: pd.DataFrame """ try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_trade_day= 1 AND \ calendar_date>='" + begin + "' AND calendar_date<='" + end + "';" cursor.execute(query) date = pd.DataFrame(list(cursor.fetchall())) date.columns = ['date'] date = pd.DataFrame(pd.to_datetime(date['date'])) return date finally: if conn: conn.close()
9464caee65f12b9704e63068e159494baad25e6a
3,652,644
def collect_tweet(update: Update, context: CallbackContext) -> int: """Tweet caption collection for tweet without attachments""" logger.info("'{update.message.text}' tweet type selected") update.message.reply_text("Enter the tweet") return TWEET
6fc25efa4dc10f2316b70ff18f9a5c77b83c1e4a
3,652,645
from typing import Dict def get_unhandled_crictical_errors(req:HttpRequest, n:int): """ Preprocess errors before injection and gets `n` unhandled errors Typical Return Value if `n` errors were found... {"es":[ { "id": "192.168.1.51", "title":"hey there" } ] } """ errors:Dict = {} # define return object # get the neccessary errors errors_query = Error.objects.filter(isHandled=False, ecode__lt=2000, ecode__gt=1000)[:n] es_tmp:list = [] for error in errors_query: e_tmp:dict victim:object # e_tmp["id"] = error.victim code = error.ecode # if ecode > 1500, then it belongs to the child if code > 1500 and code < 2000: victim = Child.objects.get(ip=error.victim).first() e_tmp["id"] = victim.nickname | victim.ip # if not then belongs to smart task elif code > 1000 and code < 1500: e_tmp["id"] = STask.objects.get(sid=error.victim).first().name # rarely error record may be corrupted else: raise Exception(f"Given ecode{error.ecode} in the error{error.eid} obj is invalid") e_tmp["title"] = get_error_title(error.ecode) es_tmp.append(e_tmp) del e_tmp, victim # compile the return object errors["es"] = es_tmp del es_tmp return JsonResponse(errors)
ae2afdeda89f9a9d946fa60a8ba5e15277388e50
3,652,646
def ADO_mappings(N, K, level_cutoff): """ ADO (auxilary density operators) are indexed by a N by (K + 1) matrix consisting of non-negative integers. ADO_mappings calculates all possible matrices "ado_index" of size N by (K+1) where np.sum(m) < level_cutoff Parameters ---------- N : integer number of states K : integer number of exponentials to include in the spectral density correlation function level_cutoff : integer number of levels at which to terminate the heiarchy expansion Returns ------- ind_to_mat : list of matrices maps index to np.array mat_to_ind : function maps the np.array to the index --------------------------------------------------------------------------- Define S to be the set of all matrices of size N by (K + 1) with non-negative integer values. Define level L_i as: L_i = {m \in S | np.sum(m) == i} L_i can be found using the multichoose function. We will preserve the order that multichoose uses in ordering L_i L_i corresponds to the set of ADOs in the ith heiarchy. L_0 is a singleton set, corresponding to the RDO (reduced density matrix) """ bins = N * (K + 1) permutations = [] for c in range(level_cutoff): permutations.extend(multichoose(bins, c)) inverted_permutations = {tuple(v): i for i, v in enumerate(permutations)} def mat_to_ind(mat): """maps np.array to index""" vec = mat.flatten() try: return inverted_permutations[tuple(vec)] except KeyError: return None ind_to_mat = [np.array(vec).reshape((N, K + 1)) for vec in permutations] return ind_to_mat, mat_to_ind
a76da5569863ea8d17ec248eb09b2b6e5a300ad2
3,652,647
def f_beta(precision, recall, beta): """ Returns the F score for precision, recall and a beta parameter :param precision: a double with the precision value :param recall: a double with the recall value :param beta: a double with the beta parameter of the F measure, which gives more or less weight to precision vs. recall :return: a double value of the f(beta) measure. """ if np.isnan(precision) or np.isnan(recall) or (precision == 0 and recall == 0): return np.nan return ((1 + beta ** 2) * precision * recall) / (((beta ** 2) * precision) + recall)
be6c2b011c51d58d4b5f943671cd53b45632b48f
3,652,648
import ntpath, os, yaml def get_cfg(existing_cfg, _log): """ generates """ _sanity_check(existing_cfg, _log) with open(os.path.join(os.path.dirname(__file__), "{}.yml".format(ntpath.basename(__file__).split(".")[0])), 'r') as stream: try: ret = yaml.load(stream) except yaml.YAMLError as exc: assert "Default config yaml for '{}' not found!".format(os.path.splitext(__file__)[0]) return ret
3d69096ebc1b78ad52dcc5b35b225ccfea5ff189
3,652,650
import struct def readShort(f): """Read 2 bytes as BE integer in file f""" read_bytes = f.read(2) return struct.unpack(">h", read_bytes)[0]
1b31c2285d055df3c128e8158dcc67eb6c0a2b18
3,652,653
def get_color(thing): """Get color for thing. :param thing: Thing to get color for. :return: Color tuple if rule exists otherwise None. """ for rule in _COLOR_RULES: color = rule(thing) if color is not None: return color return None
79620c0ec8d5e9a153038b9b6a65f36158dce255
3,652,654
def build_table(infos): """ Builds markdown table. """ table_str = '| ' for key in infos[0].keys(): table_str += key + ' | ' table_str += '\n' table_str += '| ' for key in infos[0].keys(): table_str += '--- | ' table_str += '\n' for info in infos: table_str += '| ' for value in info.values(): table_str += str(value) + ' | ' table_str += '\n' return table_str
8d31e6abc9edd0014acbac3570e4a2bc711baa4a
3,652,655
import six import threading def notify_telegram(title, content, token=None, chat=None, mention_user=None, **kwargs): """ Sends a telegram notification and returns *True* on success. The communication with the telegram API might have some delays and is therefore handled by a thread. """ # test import cfg = Config.instance() # get default token and chat if not token: token = cfg.get_expanded("notifications", "telegram_token") if not chat: chat = cfg.get_expanded("notifications", "telegram_chat") if not token or not chat: logger.warning("cannot send Telegram notification, token ({}) or chat ({}) empty".format( token, chat)) return False # append the user to mention to the title # unless explicitly set to empty string mention_text = "" if mention_user is None: mention_user = cfg.get_expanded("notifications", "telegram_mention_user") if mention_user: mention_text = " (@{})".format(mention_user) # request data for the API call request = { "parse_mode": "Markdown", } # standard or attachment content? if isinstance(content, six.string_types): request["text"] = "{}{}\n\n{}".format(title, mention_text, content) else: # content is a dict, add some formatting request["text"] = "{}{}\n\n".format(title, mention_text) for key, value in content.items(): request["text"] += "_{}_: {}\n".format(key, value) # extend by arbitrary kwargs request.update(kwargs) # threaded, non-blocking API communication thread = threading.Thread(target=_notify_telegram, args=(token, chat, request)) thread.start() return True
a736025f5c6a6acff634f325ecbad0e591f30174
3,652,656
def convert_to_dapr_duration(td: timedelta) -> str: """Converts date.timedelta to Dapr duration format. Args: td (datetime.timedelta): python datetime object. Returns: str: dapr duration format string. """ total_minutes, secs = divmod(td.total_seconds(), 60.0) hours, mins = divmod(total_minutes, 60.0) return f'{hours:.0f}h{mins:.0f}m{secs:.0f}s'
729cde6d2dccea1c8fa36eec506ee8ee6ea34b6e
3,652,657
def get_slot(handler_input, slot_name): # type: (HandlerInput, AnyStr) -> Optional[Slot] """Return the slot information from intent request. The method retrieves the slot information :py:class:`ask_sdk_model.slot.Slot` from the input intent request for the given ``slot_name``. More information on the slots can be found here : https://developer.amazon.com/docs/custom-skills/request-types-reference.html#slot-object If there is no such slot, then a ``None`` is returned. If the input request is not an :py:class:`ask_sdk_model.intent_request.IntentRequest`, a :py:class:`TypeError` is raised. :param handler_input: The handler input instance that is generally passed in the sdk's request and exception components :type handler_input: ask_sdk_core.handler_input.HandlerInput :param slot_name: Name of the slot that needs to be retrieved :type slot_name: str :return: Slot information for the provided slot name if it exists, or a `None` value :rtype: Optional[ask_sdk_model.slot.Slot] :raises: TypeError if the input is not an IntentRequest """ request = handler_input.request_envelope.request if isinstance(request, IntentRequest): if request.intent.slots is not None: return request.intent.slots.get(slot_name, None) else: return None raise TypeError("The provided request is not an IntentRequest")
c564f3b82fb21c12b81d1fda0214c330e7355080
3,652,658
from typing import Callable def password_to_key( hash_implementation: Callable[[bytes], TDigestable], padding_length: int ) -> Callable[[bytes, bytes], bytes]: """ Create a helper function to convert passwords to SNMP compliant keys according to :rfc:`3414`. >>> hasher = password_to_key(hashlib.sha1, 20) >>> key = hasher(b"mypasswd", b"target-engine-id") >>> key.hex() '999ec23ca66b9d3f187ab5208840c30b0450b452' :param hash_implementation: A callable that creates an object with a ".digest()" method from a bytes-object. Usable examples are `hashlib.md5` and `hashlib.sha1` :param padding_length: The padding length to be used during hashing (as defined in the SNMP rfc) :returns: A callable which can be used to derive an SNMP compliant key from a password. """ @lru_cache(maxsize=None) def hasher(password: bytes, engine_id: bytes) -> bytes: """ Derive a key from a password and engine-id. :param password: The user password :param engine_id: The target engine ID :returns: The derived key """ # Repeat the password for a total of 1MB worth of data (as per SNMP rfc) hash_size = 1024 * 1024 num_words = hash_size // len(password) tmp = (password * (num_words + 1))[:hash_size] hash_instance = hash_implementation(tmp) key = hash_instance.digest() localised_buffer = ( key[:padding_length] + engine_id + key[:padding_length] ) final_key = hash_implementation(localised_buffer).digest() return final_key hasher.__name__ = f"<hasher:{hash_implementation}>" # type: ignore return hasher
3f638afaa5c950f70edf39ca699701ec1709729e
3,652,659
import re def categorize_tag_key_characters(OSM_FILE = "data\\round_rock.xml", category = 'Summary'): """Categorizes attributes into those with: all lower character, all lower after colon(:), containing special/problem characters and all all others that were not listed in above which includes uppercase characters and/or multiple colons. Keyword arguments: OSM_File -- .osm or .xml file (default "data\\round_rock.xml") category -- print specific keys of categories of characters from regex search (default 'Summary' ['All', 'lower', 'lower_colon', 'porblemchars', 'other']) """ if category == 'All': category = ('lower', 'lower_colon', 'porblemchars', 'other') category_list = list(category) lower = re.compile(r'^([a-z]|_)*$') lower_colon = re.compile(r'^([a-z]|_)*:([a-z]|_)*$') problemchars = re.compile(r'[=\+/&<>;\'"\?%#$@\,\. \t\r\n]') lower_set = set() lower_colon_set = set() problemchars_set = set() other_set = set() def key_type(element, keys): if element.tag == "tag": if lower.match(element.attrib['k']): lower_set.add(element.attrib['k']) keys["lower"] += 1 elif lower_colon.match(element.attrib['k']): lower_colon_set.add(element.attrib['k']) keys["lower_colon"] += 1 elif problemchars.match(element.attrib['k']): problemchars_set.add(element.attrib['k']) keys["problemchars"] += 1 else: other_set.add(element.attrib['k']) keys["other"] += 1 return keys def process_map(filename): keys = {"lower": 0, "lower_colon": 0, "problemchars": 0, "other": 0} for _, element in ET.iterparse(filename): keys = key_type(element, keys) print(keys) print( "\nThere are:\n\ {} unique keys in lower,\n\ {} unique keys in lower_colon,\n\ {} unique keys in problemchars and\n\ {} unique keys in other.\n" .format(len(lower_set), len(lower_colon_set), len(problemchars_set), len(other_set)) ) if 'lower' in category_list: print('\n\nlower set has {} items. The unique items are: \n\n{} \n\n' .format(keys["lower"], sorted(lower_set))) if 'lower_colon' in category_list: print('lower_colon set has {} items. The unique items are: \n\n{} \n\n' .format(keys["lower_colon"], sorted(lower_colon_set))) if 'problemchars' in category_list: print('problemchars set has {} items. The unique items are: \n\n{} \n\n' .format(keys["problemchars"], sorted(problemchars_set))) if 'other' in category_list: print('other set has {} items. The unique items are: \n\n{} \n\n' .format(keys["other"], sorted(other_set))) return keys keys_dicts = process_map(OSM_FILE) return keys_dicts
4e2f6c6a24a14114ce8f5c8d2855847859ad4d8f
3,652,660
def rotate_left(value, count, nbits, offset): """ Rotate a value to the left (or right) @param value: value to rotate @param count: number of times to rotate. negative counter means rotate to the right @param nbits: number of bits to rotate @param offset: offset of the first bit to rotate @return: the value with the specified field rotated all other bits are not modified """ assert offset >= 0, "offset must be >= 0" assert nbits > 0, "nbits must be > 0" mask = 2**(offset+nbits) - 2**offset tmp = value & mask if count > 0: for x in xrange(count): if (tmp >> (offset+nbits-1)) & 1: tmp = (tmp << 1) | (1 << offset) else: tmp = (tmp << 1) else: for x in xrange(-count): if (tmp >> offset) & 1: tmp = (tmp >> 1) | (1 << (offset+nbits-1)) else: tmp = (tmp >> 1) value = (value-(value&mask)) | (tmp & mask) return value
ed24a0a958bed1ab1a01c4a858bfba0fd163e2fd
3,652,661