content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def connect_registry_client(): """ connect the module client for the Registry implementation we're using return the client object """ client = adapters.RegistryClient() client.connect(environment.service_connection_string) return client
f2e2bccb4cfacd86af36e3924463541d9e3dcdcd
3,654,159
def get_group_average_score(gid=None, name=None): """ Get the average score of teams in a group. Args: gid: The group id name: The group name Returns: The total score of the group """ group_scores = get_group_scores(gid=gid, name=name) total_score = sum([entry['score'] for entry in group_scores]) return int(total_score / len(group_scores)) if len(group_scores) > 0 else 0
cdea61e388b47f399fbc8e228e313d6199164b2f
3,654,160
def solve_with_cdd_for_II(A, verbose=False): """This method finds II's minmax strategy for zero-sum game A""" m = A.shape[0] # number of rows n = A.shape[1] # number of columns A = np.column_stack([[0]*m,-A,[1]*m]) I = np.eye(n) nn = np.column_stack([[0]*n,I,[0]*n]) # non-negativity constraints n1 = [-1] * n n1.insert(0,1) n1.append(0) # n1 = 1,-1,-1,...,-1,0] n2 = [1] * n n2.insert(0,-1) n2.append(0) # n1 = 1,-1,-1,...,-1,0] d = np.vstack([A,nn,n1,n2]) mat = cdd.Matrix(d.tolist(), number_type='fraction') mat.obj_type = cdd.LPObjType.MIN d = [0] * (n+1) d.append(1) # [0,0,...0,1] mat.obj_func = d lp = cdd.LinProg(mat) lp.solve() lp.status == cdd.LPStatusType.OPTIMAL # lp.primal_solution uses fractions, and has value as last entry, so that # is dropped p = [float(val) for val in lp.primal_solution[:-1]] u = float(lp.obj_value) if verbose: print("------ Solved with cdd -------------") print("Optimal strategy:", p) print("Optimal payoff:", -u) print("------------------------------------") return p, -u
87ac90691fcbbe2f89bf9090c31f86c165c007ed
3,654,161
def build_none() -> KeySetNone: """Returns NONE.""" return KeySetNone()
8ba38204cd763597c66d51466f5d2ffa5c9a19bf
3,654,162
import csv import numpy def load_csv(file, shape=None, normalize=False): """ Load CSV file. :param file: CSV file. :type file: file like object :param shape : data array is reshape to this shape. :type shape: tuple of int :return: numpy array """ value_list = [] for row in csv.reader(file): value_list.append(map(float, row)) if shape is None: return numpy.array(value_list) else: return numpy.array(value_list).reshape(shape)
07f3b61bbdb6c9937f3cc4b0ae98fdfb7d8de48a
3,654,163
from typing import Tuple def flip_around_axis( coords: np.ndarray, axis: Tuple[float, float, float] = (0.2, 0.2, 0.2) ) -> np.ndarray: """Flips coordinates randomly w.r.t. each axis with its associated probability.""" for col in range(3): if np.random.binomial(1, axis[col]): coords[:, col] = np.negative(coords[:, col]) return coords
914834a8492998b4e1e0b93e5e9677ec9af2d736
3,654,164
import math def get_tc(name): """Determine the amount of tile columns to use.""" args = ["ffprobe", "-hide_banner", "-select_streams", "v", "-show_streams", name] proc = sp.run(args, text=True, stdout=sp.PIPE, stderr=sp.DEVNULL) lines = proc.stdout.splitlines() d = {} for ln in lines[1:-1]: key, value = ln.strip().split("=") d[key] = value width = d["width"] return math.floor(math.log2(math.ceil(float(width) / 64.0)))
ee917cd8cebfe7dc4ae718d883c657cf23bff1cf
3,654,165
def cmap_hex_color(cmap, i): """ Convert a Colormap to hex color. Parameters ---------- cmap : matplotlib.colors.ListedColormap Represents the Colormap. i : int List color index. Returns ------- String Represents corresponding hex string. """ return matplotlib.colors.rgb2hex(cmap(i))
9ac7753cde9470e3dd9fbd4a66373b25126635ca
3,654,167
def train_folds(X, y, fold_count, batch_size, get_model_func): """ K-Fold Cross-Validation for Keras Models Inspired by PavelOstyakov https://github.com/PavelOstyakov/toxic/blob/master/toxic/train_utils.py """ fold_size = len(X[0]) // fold_count models = [] for fold_id in range(0, fold_count): print('===== FOLD {} ====='.format(fold_id+1)) model = get_model_func() model.compile() RocAuc = RocAucEvaluation() RocAuc.set_model(model) model.fit( X, y, validation_split=max(1/fold_count, 0.15), batch_size=batch_size, epochs=20, shuffle=True, add_callbacks=[RocAuc], verbose=1 ) models.append(model) return models
51a38243925c76ac6179a90be46be31fcb685054
3,654,168
async def cancel(command: HALCommandType, script: str): """Cancels the execution of a script.""" try: await command.actor.helpers.scripts.cancel(script) except Exception as err: command.warning(text=f"Error found while trying to cancel {script}.") return command.fail(error=err) return command.finish(f"Script {script} has been scheduled for cancellation.")
438297845f5ba4ffc49b95a798adf61294371694
3,654,170
def get_nodes_by_betweenness_centrality(query_id, node_number): """Get a list of nodes with the top betweenness-centrality. --- tags: - query parameters: - name: query_id in: path description: The database query identifier required: true type: integer - name: node_number in: path description: The number of top between-nodes to return required: true type: integer """ graph = manager.cu_get_graph_from_query_id_or_404(query_id) if node_number > graph.number_of_nodes(): node_number = graph.number_of_nodes() bw_dict = nx.betweenness_centrality(graph) return jsonify([ node.md5 for node, score in sorted(bw_dict.items(), key=itemgetter(1), reverse=True)[:node_number] ])
44d97e443c6bef4d7048496674a2382a6c4f2ade
3,654,171
import sympy def preprocess(function): """ Converts a given function from type str to a Sympy object. Keyword arguments: function -- a string type representation of the user's math function """ expr = function while True: if '^' in expr: expr = expr[:expr.index('^')] + '**' + expr[expr.index('^')+1:] else: break expr = sympy.sympify(expr) return expr
001bd04d27db2afa4debbe776e5fe3cf1af1476d
3,654,172
import re def tot_changes(changes: str) -> int: """Add deletions and insertions.""" insertions_pat = re.compile(r"(\d+) insertion") deletions_pat = re.compile(r"(\d+) deletion") insertions = insertions_pat.search(changes) insertions = int(insertions.group(1)) if insertions else 0 deletions = deletions_pat.search(changes) deletions = int(deletions.group(1)) if deletions else 0 return insertions + deletions
74742baf63db51b5c59b332f0104008500f330b9
3,654,173
def update_from_mcd(full_table, update_table): # type: (pd.DataFrame, pd.DataFrame) -> pd.DataFrame """ Update the full table (aka the PDG extended-style table) with the up-to-date information from the PDG .mcd file. Example ------- >>> new_table = update_from_mcd('mass_width_2008.fwf', 'mass_width_2021.mcd') # doctest: +SKIP """ full_table = full_table.copy() full_table.update(update_table) update_table_neg = update_table.copy() update_table_neg.index = -update_table_neg.index full_table.update(update_table_neg) return full_table
c60daea5719445fb696ef21bbc0f233fea4e48cd
3,654,174
import socket def resolve_hostname(host): """Get IP address of hostname or URL.""" try: parsed = urlparse.urlparse(host) except AttributeError as err: error = "Hostname `%s`is unparseable. Error: %s" % (host, err) LOG.exception(error) raise errors.SatoriInvalidNetloc(error) # Domain names are in netloc, IP addresses fall into path hostname = parsed.netloc or parsed.path # socket.gaierror is not trapped here address = socket.gethostbyname(hostname) return address
1792d943e490661b4dd42608f2b025096810688f
3,654,175
import pandas as pd import numpy as np from .data_utils import keep_common_genes from .data_utils import df_normalization def DeconRNASeq_main(rna_df, sig_df, patient_IDs='ALL', args={}): """ This function does the following: - parses the dictionary 'args' for the arguments to pass on to the DeconRNASeq method. - eliminates genes from rna_df and sig_df that are not present in both data sets - Runs DeconRNASeq() for each patient specified in patient_IDs' argument - Combines the resulting frequencies into a pandas dataframe (num_celltypes x num_patients) Inputs: - rna_df: pandas df of rna gene expression data. Rows are genes (indexed by 'Hugo_Symbol') and columns are patients - sig_df: pandas df of Signature gene expression values for given cell types. Rows are genes (indexed by 'Hugo_Symbol') and columns are cell types - patient_IDs: list of patient IDs to run DeconRNASeq for. Alternatively, can use the string 'ALL' to run for all patients - args: dictionary containing any of the following: - check_sig: boolean, whether or not to check the condition number of the signature matrix - scaling: string, must be either 'None', 'zscore', or 'minmax'. Determines how to scale the signature matrix and mixture data before solving for optimal x - scaling_axis: 0 or 1. Whether to scale mixture data and signature matrix by normalizing each column (celltype/patient) separately (scaling_axis=0) or each row (gene) separately (scaling_axis=1). - formulation: see DeconRNASeq() - reg_constant: see DeconRNASeq() - print_result: see DeconRNASeq() Outputs: - cell_freqs: pandas df. Contains cell type frequencies for each patient in 'patient_IDs' list. Rows are indexed by cell type, columns are patient IDs """ # Read in optional arguments, or set them as default # Assert values are of the right data type when passed to DeconRNASeq() function. # formulation must be 'qp', 'ridge', or 'lasso' if 'formulation' in args.keys(): formulation = args['formulation'] if formulation not in ['qp','ridge','lasso']: raise ValueError("Formulation ({!r}) must be set to 'qp', 'ridge', or 'lasso'".format(formulation)) else: formulation = 'qp' # reg_constant must be a double if 'reg_constant' in args.keys(): reg_constant = args['reg_constant'] else: reg_constant = 1.0 if 'check_sig' in args.keys(): check_sig = args['check_sig'] if not isinstance(check_sig, bool): raise ValueError("check_sig ({!r}) must be a boolean variable".format(check_sig)) else: check_sig = False if 'scaling' in args.keys(): scaling = args['scaling'] if scaling not in ['None', 'none', 'zscore', 'minmax', 'r-zscore']: raise ValueError("scaling ({!r}) must be set to 'none', 'zscore' or 'minmax'".format(scaling)) else: scaling = 'minmax' if 'scaling_axis' in args.keys(): scaling_axis = args['scaling_axis'] if scaling_axis not in [0, 1]: raise ValueError("scaling_axis ({!r}) must be 0 or 1".format(scaling_axis)) else: scaling_axis = 0 if 'print_results' in args.keys(): print_results = args['print_results'] if not isinstance(print_results, bool): raise ValueError("print_results ({!r}) must be a boolean variable".format(print_results)) else: print_results = False # eliminate genes not present in both rna and sig dfs, and ensure they are in the same order: rna_df, sig_df = keep_common_genes(rna_df, sig_df) # Scale Data: if scaling in ['zscore', 'minmax', 'r-zscore']: # R implementation uses zscore scaling. sig_df = df_normalization(sig_df, scaling=scaling, axis=scaling_axis) rna_df = df_normalization(rna_df, scaling=scaling, axis=scaling_axis) # Convert signature to numpy array Sig = np.array(sig_df) # Check the condition number of the signature matrix: if check_sig: print("Condition number of signature matrix =", np.linalg.cond(Sig)) # Select a patient / list of patients to solve for their cell type frequencies: # Patient_ID must be 'ALL' or an array of specific patient IDs. if patient_IDs == 'ALL': patient_list = rna_df.columns elif not isinstance(patient_IDs, type([])): raise ValueError("patient_IDs should be either 'ALL', or an array of IDs (not a single ID)") else: patient_list = patient_IDs # For each patient, run DeconRNASeq to get cell type frequencies, and save results to pandas df: print("Running DeconRNASeq...") cell_freqs_df = pd.DataFrame() cell_freqs_df['Patient_ID'] = sig_df.columns cell_freqs_df = cell_freqs_df.set_index(['Patient_ID']) for patient in patient_list: if patient in rna_df.columns: Mix = np.array(rna_df[patient]) cell_freqs_df[patient] = DeconRNASeq(Sig, Mix, formulation=formulation, reg_constant=reg_constant, print_results=print_results, label=patient) else: raise ValueError("patient_ID ({!r}) not present in rna dataframe".format(patient)) cell_freqs_df = cell_freqs_df.transpose() return cell_freqs_df
44bf01b0d53110610d3219e3002cca0ab35720b5
3,654,176
import re from typing import OrderedDict def parse_c_interface(c_interface_file): """ @brief Parses a c-interface file and generates a dictionary of function names to parameter lists. Exported functions are expected to be preceded by 'DLL_EXPORT'. Python keywords should not be used as variable names for the function names in the cpp-interface file. If a Python wrapper function shall return the output buffer, the corresponding parameter has to be preceded by the _OUT_BUFFER_KEYWORD in the C++ file. In this case, we assume the parameter is a numpy array. The shape and the dtype will be taken from the first input parameter. """ _OUT_BUFFER_KEYWORD = "OUT" with open(c_interface_file, "r") as f: # read file and remove comments content = "\n".join([c.split("//")[0] for c in re.sub("/\*.*?\*/", "", f.read(), flags=re.DOTALL).split("\n")]) function_signatures = [x for x in re.findall("DLL_EXPORT.+?\)", content, flags=re.DOTALL)] function_dict = OrderedDict() for sig in function_signatures: params_regex = re.compile("\(.*?\)", flags=re.DOTALL) # find function name wo_params = re.sub(params_regex, "", sig) tokens = re.split("\s", wo_params) name = tokens[-1] function_dict[name] = dict() # find return type and initialize dict function_dict[name] = {"restype": " ".join(tokens[1:-1]), "params": [], "out_buffers": []} # find parameters, remove template specifiers, and split at commas param_fields = re.sub("<.*?>", "", re.search(params_regex, sig).group(0)[1:-1]).split(",") out_buffer_indices = [i for i, s in enumerate(param_fields) if _OUT_BUFFER_KEYWORD in [x.strip() for x in s.split(" ")]] name_position = -1 # last position in C++ should contain the name of the variable try: all_parameters = [re.search("[A-Za-z0-9_]+", x[name_position].strip()).group(0) for x in (re.split("\s", s) for s in param_fields)] for i, p in enumerate(all_parameters): if i in out_buffer_indices: function_dict[name]["out_buffers"].append(p) else: function_dict[name]["params"].append(p) except AttributeError: pass return function_dict
06a4edb40e12343cda688da82c9042d1342e6429
3,654,177
def con_minimize(fun, bounds, constr=(), x0=None, args=(), callback=None, options={}, workers=None): """Constrained minimization of `fun` using Genetic Algorithm. This function is a wrapper over modetga.minimize(). The constraints are defined as a tuple of functions (`fcon1(x, *args)`, `fcon2(x, *args)`, `...`). The algorithm searches for a solution minimizing `fun(x, *args)` and satisfying the conditions (`fcon1(x, *args) >= 0`, `fcon2(x, *args) >= 0`, `...`). `callback` arguments: `x`, `fx`, `ng`, `*args`. `fx` is the function value at the generation `ng`. Returns an optimization result object with the following attributes: - x - numpy 1D array, optimized parameters, - message - str, exit message, - ng - int, number of generations, - fx - float, final function value. :param fun: function to be minimized :param bounds: tuple, parameter bounds :param constr: tuple, functions defining constraints :param x0: numpy 1D array, initial parameters :param args: tuple, positional arguments to be passed to `fun` and to `fcon` :param callback: function, called after every generation :param options: dict, GA options :param workers: int, number of processes to use (will use all CPUs if None) :return: OptRes, optimization result """ # Wrap cost function with constraints def fun_soft_con(x, *augmented_args): # Unpack constraints and arguments fcore = augmented_args[0] # Function to be minimized fcons = augmented_args[1] # Constraints user_args = augmented_args[2:] # Arguments # Evaluate core function ycore = fcore(x, *user_args) # Initialize penalty penalty = 0. # Update penalty # (the more negative fcon() is, the higher penalty) for f in fcons: ycon = np.max([f(x, *user_args) * -1., 0.]) pscale = ycore / (ycon + 1e-6) penalty += ycon * pscale return ycore + penalty # Run minimization augmented_args = (fun, constr, *args) res = minimize( fun=fun_soft_con, bounds=bounds, x0=x0, args=augmented_args, callback=callback, options=options, workers=workers) # Extend result with contraint violation info res.constr = [fcon(res.x, *args) for fcon in constr] return res
46a7400953e54dfb9b2364832e6029a508acc9de
3,654,178
def unique_v2(lst): """ Returns a list of all unique elements in the input list "lst." This algorithm runs in o(n), as it only passes through the list "lst" twice """ dd = defaultdict(int) # avoids blank dictionary problem (KeyError when accessing nonexistent entries) unique_list = [] for val in lst: dd[val] += 1 for val in lst: if dd[val] == 1: unique_list.append(val) return unique_list
d7c5706908d569b3ee93ba1bebbd09bc6f335ad2
3,654,179
import ipaddress def is_ip_network(network, strict=False): """Returns True/False if a string is a valid network.""" network = str(network) try: ipaddress.ip_network(network, strict) return True except ValueError: return False
84206586412b76816fa845a75fc6c121bfdf0989
3,654,180
def assign_point_of_contact(point_of_contact): """ Assign a user to be the point of contact in emails/letters :param point_of_contact: A string containing the user_guid if point of contact has been set for a request :return: A User object to be designated as the point of contact for a request """ if point_of_contact: return Users.query.filter(Users.guid == point_of_contact).one_or_none() else: return current_user
99f2e7d036c4f7cf71be2bd6b82a313f26b3af41
3,654,181
def response_with_pagination(guests, previous, nex, count): """ Make a http response for GuestList get requests. :param count: Pagination Total :param nex: Next page Url if it exists :param previous: Previous page Url if it exists :param guests: Guest :return: Http Json response """ return make_response(jsonify({ 'status': 'success', 'previous': previous, 'next': nex, 'count': count, 'guests': guests })), 200
00373c866b6cc8384a88e62b63fcaa5950ccc1c1
3,654,182
def put_object(request, old_pid): """MNStorage.update(session, pid, object, newPid, sysmeta) โ†’ Identifier.""" if django.conf.settings.REQUIRE_WHITELIST_FOR_UPDATE: d1_gmn.app.auth.assert_create_update_delete_permission(request) d1_gmn.app.util.coerce_put_post(request) d1_gmn.app.views.assert_db.post_has_mime_parts( request, (("field", "newPid"), ("file", "object"), ("file", "sysmeta")) ) d1_gmn.app.views.assert_db.is_valid_pid_to_be_updated(old_pid) sysmeta_pyxb = d1_gmn.app.sysmeta.deserialize(request.FILES["sysmeta"]) new_pid = request.POST["newPid"] d1_gmn.app.views.assert_sysmeta.matches_url_pid(sysmeta_pyxb, new_pid) d1_gmn.app.views.assert_sysmeta.obsoletes_matches_pid_if_specified( sysmeta_pyxb, old_pid ) sysmeta_pyxb.obsoletes = old_pid sid = d1_common.xml.get_opt_val(sysmeta_pyxb, "seriesId") d1_gmn.app.views.assert_sysmeta.is_valid_sid_for_chain(old_pid, sid) d1_gmn.app.views.create.create_sciobj(request, sysmeta_pyxb) # The create event for the new object is added in create_sciobj(). The update # event on the old object is added here. d1_gmn.app.event_log.log_update_event( old_pid, request, timestamp=d1_common.date_time.normalize_datetime_to_utc( sysmeta_pyxb.dateUploaded ), ) d1_gmn.app.sysmeta.update_modified_timestamp(old_pid) return new_pid
192ed2a7efc35baf28605de9db594319370f294d
3,654,183
def _match_gelu_pattern(gf, entry_node): """ Return the nodes that form the subgraph of a GELU layer """ try: if not len(entry_node.outputs) == 3: return None pow_1, add_2, mul_3 = [gf[x] for x in entry_node.outputs] if not (pow_1.op == 'Pow' and add_2.op == 'Add' and mul_3.op == 'Mul'): return None const_4 = gf[pow_1.inputs[1]] if not (const_4.op == 'Const' and int(round(const_4.value.val)) == 3): return None mul_5 = gf[pow_1.outputs[0]] const_6 = gf[mul_5.inputs[0]] if not (const_6.op == 'Const' and \ abs(const_6.value.val - 0.0447) < 1e-3): return None if not (gf[add_2.inputs[0]] == entry_node and \ gf[add_2.inputs[1]] == mul_5): return None mul_7 = gf[add_2.outputs[0]] const_8 = gf[mul_7.inputs[0]] if not abs(const_8.value.val - np.sqrt(2 / np.pi)) < 1e-3: return None tanh_9 = gf[mul_7.outputs[0]] add_10 = gf[tanh_9.outputs[0]] const_11 = gf[add_10.inputs[0]] if not (tanh_9.op == 'Tanh' and add_10.op == 'Add' and \ const_11.op == 'Const' and int(round(const_11.value.val)) == 1): return None mul_12 = gf[add_10.outputs[0]] const_13 = gf[mul_12.inputs[0]] if not (mul_12.op == 'Mul' and const_13.op == 'Const' and \ abs(const_13.value.val - 0.5) < 1e-3): return None if not (gf[mul_3.inputs[0]] == entry_node and \ gf[mul_3.inputs[1]] == mul_12): return None gelu_nodes = [pow_1, add_2, mul_3, const_4, mul_5, const_6, mul_7, const_8, tanh_9, add_10, const_11, mul_12, const_13] return gelu_nodes except: return None
6e08578a9cb9bea96c939a4fbee31003d6c575d4
3,654,184
def assign_obs_error(param, truth_mag, band, run): """ Assign errors to Object catalog quantities Returns ------- obs_err : float or np.array The error values in units defined in get_astrometric_error(), get_photometric_error err_type : str Type of observational error """ if param in ['ra_offset', 'dec_offset', 'Ixx_sqrt', 'Iyy_sqrt', 'x', 'y_obs',]: obs_err = get_astrometric_error(truth_mag, band=band) err_type = 'astrometric' elif param in ['Ixy', 'IxxPSF', 'IxyPSF', 'IyyPSF',]: # \delta(x^2) = \delta(x) \times 2x obs_err = 2.0*param_val*get_astrometric_error(truth_mag, band=band) err_type = 'astrometric' elif 'Flux' in param: # flux columns obs_err = get_photometric_error(truth_mag, band=band, run=run) err_type = 'photometric' elif param == 'extendedness': obs_err = np.zeros_like(param_val) err_type = 'N/A' else: raise NotImplementedError return obs_err, err_type
9a90b80755941ac19cbf023f7ee63f4650518242
3,654,185
from typing import List from typing import Tuple import tokenize def dir_frequency(dirname: str, amount=50) -> List[Tuple[str, int]]: """Pipeline of word_frequency from a directory of raw input file.""" md_list = md.collect_md_text(dirname) return compute_frequency(tokenize(normalize(" ".join(md_list))), amount)
3daddb1930e80235887b51ed5918e9d7cb1fff71
3,654,186
def test_solver1(N, version='scalar'): """ Very simple test case. Store the solution at every N time level. """ def I(x): return sin(2*x*pi/L) def f(x,t): return 0 solutions = [] # Need time_level_counter as global variable since # it is assigned in the action function (that makes # a variable local to that block otherwise). # The manager class below provides a cleaner solution. global time_level_counter time_level_counter = 0 def action(u, t, x): global time_level_counter if time_level_counter % N == 0: solutions.append(u.copy()) time_level_counter += 1 n = 100; tstop = 6; L = 10 dt, x, cpu = solver(I, f, 1.0, lambda t: 0, lambda t: 0, L, n, 0, tstop, user_action=action, version=version) print 'CPU time:', cpu print 'Max value in final u:', arrmax(solutions[-1])
7c74b3f731c0aa613c7a9f8da82533c1239a574f
3,654,187
import requests def get_auth_data(): """ Create auth data. Returns: return: access token and token expiring time. """ payload = { 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, 'grant_type': 'client_credentials', } api_url = '{0}/oauth/access_token'.format(API_BASE_URL) response = requests.post(url=api_url, data=payload) response.raise_for_status() auth_data = response.json() return auth_data['access_token'], auth_data['expires_in']
ecd921c1ef3639c388111ec5952c887867076d99
3,654,188
def datatable(module, tag): """Mapping for DataTable.""" if tag == "DataTable": return module, tag
1eaa06771ecdd99dfa102ec249b23db3999b6fd7
3,654,189
def remove_prepending(seq): """ Method to remove prepending ASs from AS path. """ last_add = None new_seq = [] for x in seq: if last_add != x: last_add = x new_seq.append(x) is_loopy = False if len(set(seq)) != len(new_seq): is_loopy = True # raise Exception('Routing Loop: {}'.format(seq)) return new_seq, is_loopy
78bb1554678af0998e15ecf9ed8f4e379ac2e2ad
3,654,190
def github_handle_error(e): """ Handles an error from the Github API an error example: Error in API call [401] - Unauthorized {"message": "Bad credentials", "documentation_url": "https://docs.github.com/rest"} The error might contain error_code, error_reason and error_message The error_reason and error_message might be the same but usually, the error_reason adds more information that the error_message doesn't provide examples: error_code = 401 error_message = 'Bad credentials' error_reason = 'Unauthorized' :param e: the client object :return: error_code and error_message """ try: error_code = "" error_message = str(e) if e.__class__ is DemistoException and e.res is not None: error_res = e.res if isinstance(error_res, dict): error_code = str(error_res.get("status")) error_message = str(error_res.get("detail")) else: error_code = e.res.status_code if not e.res.ok: if e.res.json(): error_message = error_res.json().get("message", "") if not error_message: error_message = error_res.json().get("detail", "") error_reason = error_res.reason if error_reason and error_reason != error_message: error_message += f' {error_reason}' return error_code, error_message except Exception as e: error_code = "" error_message = str(e) return error_code, error_message
1b3d7ef6756c02d7bf1b8db506dbf926dd3e6abd
3,654,191
def netmask_to_bits(net_mask): """ Convert netmask to bits Args: net_mask ('str'): Net mask IP address ex.) net_mask = '255.255.255.255' Raise: None Returns: Net mask bits """ return IPAddress(net_mask).netmask_bits()
7ecc069e14242ebffd840b989331a431f6c2ecbc
3,654,192
def register_corrector(cls=None, *, name=None): """A decorator for registering corrector classes.""" def _register(cls): if name is None: local_name = cls.__name__ else: local_name = name if local_name in _CORRECTORS: raise ValueError(f'Already registered model with name: {local_name}') _CORRECTORS[local_name] = cls return cls if cls is None: return _register else: return _register(cls)
90795496caff7958af52bbe1518582a2a2ceea73
3,654,193
import numpy def _sample_perc_from_list(lst, perc=100, algorithm="cum_rand", random_state=None): """ Sample randomly a certain percentage of items from the given list. The original order of the items is kept. :param lst: list, shape = (n,), input items :param perc: scalar, percentage to sample :param algorithm: string, which algorithm should be used "random": Decide for each item to be chosen or not. This algorithm runs in linear time O(n), but the percentages might not match exactly. "cum_rand": O(n log(n) + perc) :return: list """ if perc >= 100: return lst if perc <= 0: return [] # Store old random state and set random state rs_old = numpy.random.get_state() numpy.random.seed(random_state) if algorithm == "random": lst_sub = [it for it in lst if numpy.random.uniform(high=100) <= perc] elif algorithm == "cum_rand": n = len(lst) n_perc = numpy.round(n * perc / 100.0) rank_its = numpy.argsort(numpy.random.uniform(size=n)) lst_sub = [] for idx, it in enumerate(lst): if rank_its[idx] < n_perc: lst_sub.append(it) if len(lst_sub) > n_perc: break else: raise ValueError("Invalid sampling algorithm: %s." % algorithm) # Restore old random stat numpy.random.set_state(rs_old) return lst_sub
4ec000e9bd8f5e10550040e49018e2a045659397
3,654,194
def irods_setacls(path, acl_list, verbose=False): """ This function will add the ACLs listed in 'acl_list' to the collection or data object at 'path'. 'acl_list' is a list where each element itself is a list consisting of the username in name#zone format, and the access level ('read', 'write', 'own', or 'null'). Access type 'null' removes all ACLs for that user/group. Note. On an error return, some of the ACLs might have been applied. The function does not "roll back" on error. Returns 0 on success, non-zero on error. """ if not path or not acl_list: return 1 for acl in acl_list: (rc, output) = shell_command(['ichmod', acl[1], acl[0], path]) if rc: if verbose: print("Error running 'ichmod %s %s %s': rc = %d:" % (acl[1], acl[0], path, rc)) print output[1] return rc return 0
5727d6ff96e2d693323d5d88ed81eafbd4de0435
3,654,195
from datetime import datetime def add_years(date_to_change, years): """ Return a date that's `years` years after the date (or datetime) object `date_to_change`. Return the same calendar date (month and day) in the destination year, if it exists, otherwise use the following day (thus changing February 29 to March 1). Args: date_to_change (date): The date that we're adding years to. years ([type]): The number of years to add. Returns: [date]: The provided date + one year. """ try: return date_to_change.replace(year=date_to_change.year + years) except ValueError: return date_to_change + ( datetime.date(date_to_change.year + years, 1, 1) - datetime.date(date_to_change.year, 1, 1) )
e9b71d190f7629a3edc0902d0582005a26a33956
3,654,196
def concurrency_update_done(client, function_name, qualifier): """wait fn for ProvisionedConcurrencyConfig 'Status'""" def _concurrency_update_done(): status = client.get_provisioned_concurrency_config( FunctionName=function_name, Qualifier=qualifier )["Status"] if status == "FAILED": raise ShortCircuitWaitException(f"Concurrency update failed: {status=}") else: return status == "READY" return _concurrency_update_done
4d168e4e9648c3a3d8cb149aad1e835362bd271a
3,654,197
def googleapis_email(url, params): """Loads user data from googleapis service, only email so far as it's described in http://sites.google.com/site/oauthgoog/Home/emaildisplayscope Parameters must be passed in queryset and Authorization header as described on Google OAuth documentation at: http://groups.google.com/group/oauth/browse_thread/thread/d15add9beb418ebc and: http://code.google.com/apis/accounts/docs/OAuth2.html#CallingAnAPI """ request = Request(url + '?' + params, headers={'Authorization': params}) try: return simplejson.loads(dsa_urlopen(request).read())['data'] except (ValueError, KeyError, IOError): return None
c6123e367f093a512ac17797da487e733503dc11
3,654,198
def max_pool_2x2(input_): """ Perform max pool with 2x2 kelner""" return tf.nn.max_pool(input_, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
b85ccfaafbdcf5d703dffab65e188ffab52ebce9
3,654,201
import tqdm def remove_numerals(df, remove_mixed_strings=True): """Removes rows from an ngram table with words that are numerals. This does not include 4-digit numbers which are interpreted as years. Arguments: df {Pandas dataframe} -- A dataframe of with columns 'word', 'count'. Keyword Arguments: remove_mixed_strings {bool} -- Whether to remove rows with words that are mixtures of numerals and letters. (default: {True}) """ no_numerals_df = df.copy().reset_index() for i, row in tqdm(no_numerals_df.iterrows(), desc="Removing numerals\n"): word = row['word'] if remove_mixed_strings: if any([c.isnumeric() for c in word]) and \ not is_year(word): no_numerals_df.drop(i, axis=0, inplace=True) else: if word.isnumeric() and len(word) != 4: no_numerals_df.drop(i, axis=0, inplace=True) return no_numerals_df
4c3d0468456e08b1a0579a8b73a21221cae17676
3,654,202
def b32_ntop(*args): """LDNS buffer.""" return _ldns.b32_ntop(*args)
b43bc9b1b112f7815ec3c280d055676e7255adcc
3,654,204
from typing import Callable from typing import Dict import torch def infer_feature_extraction_pytorch( model: PreTrainedModel, run_on_cuda: bool ) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]: """ Perform Pytorch inference for feature extraction task :param model: Pytorch model (sentence-transformers) :param run_on_cuda: True if should be ran on GPU :return: a function to perform inference """ def infer(inputs: Dict[str, torch.Tensor]) -> torch.Tensor: model_output = model(**inputs).detach() # noqa: F821 if run_on_cuda: torch.cuda.synchronize() return model_output return infer
18f935607c824c2122f68ea1ec9a7bcb50604ac8
3,654,206
def editRole(userSource, oldName, newName): """Renames a role in the specified user source. When altering the Gateway System User Source, the Allow User Admin setting must be enabled. Args: userSource (str): The user source in which the role is found. Blank will use the default user source. oldName (str): The role to edit. Role must not be blank and must exist. newName (str): The new name for the role. Must not be blank. Returns: UIResponse: An object with lists of warnings, errors, and info about the success or failure of the edit. """ print(userSource, oldName, newName) return UIResponse(Locale.ENGLISH)
f72796de14ff5f8c4314a5d31fe4fcf42cb883ec
3,654,207
def beam_hardening_correction(mat, q, n, opt=True): """ Correct the grayscale values of a normalized image using a non-linear function. Parameters ---------- mat : array_like Normalized projection image or sinogram image. q : float Positive number. Recommended range [0.005, 50]. n : float Positive number. Must larger than 1. opt : bool True: Curve towards 0.0. False: Curve towards 1.0. Returns ------- array_like Corrected image. """ if np.max(mat) >= 2.0: raise ValueError("!!! Input image must be normalized, i.e. gray-scales " "are in the range of [0.0, 1.0]) !!!") if n < 2.0: raise ValueError("!!! n must be larger than or equal to 2 !!!") return np.asarray([non_linear_function(x, q, n, opt) for x in mat])
d113ff33c2d688f460cf2bac62cdd8a26b890ce5
3,654,210
def cargar_recursos_vectores_transpuestos(): """ Se carga la informacion para poder calcular los vectores transpuestos """ # Se crea el df filename = 'csv/' + conf.data['env']['path'] + '/vectores_transpuestos.csv' recursos_v_transpuestos = pd.read_csv(filename) # Se cambia el nombre de los index al nombre de los vectores transpuestos # Se crea un MultiIndex para evitar agregar una columna a los vectores transpuestos # queda definida por tuples = [('Reg.1','H'), ('Reg.2', 'F'),('Reg.3', 'G'),('Reg.4', 'H'),...,('Reg.10', 'A')] tuples = [('Reg.' + str(i), vt) for i, vt in zip(recursos_v_transpuestos.pop('num_de_region'), recursos_v_transpuestos.pop('chr_vector_t'))] recursos_v_transpuestos.index = pd.MultiIndex.from_tuples(tuples) return recursos_v_transpuestos
f982fd22bbdfd2d7d389787bf7f923feb9abf66f
3,654,211
def read_pdb(file_name, exclude=('SOL',), ignh=False, modelidx=1): """ Parse a PDB file to create a molecule. Parameters ---------- filename: str The file to read. exclude: collections.abc.Container[str] Atoms that have one of these residue names will not be included. ignh: bool Whether hydrogen atoms should be ignored. model: int If the PDB file contains multiple models, which one to select. Returns ------- list[vermouth.molecule.Molecule] The parsed molecules. Will only contain edges if the PDB file has CONECT records. Either way, the molecules might be disconnected. Entries separated by TER, ENDMDL, and END records will result in separate molecules. """ parser = PDBParser(exclude, ignh, modelidx) with open(str(file_name)) as file_handle: mols = list(parser.parse(file_handle)) LOGGER.info('Read {} molecules from PDB file {}', len(mols), file_name) return mols
d7412b96adef5505676a80e5cdf3fe5e63a3b096
3,654,212
def sao_isomorficas(texto1: str, texto2: str) -> bool: """ >>> sao_isomorficas('egg', 'add') True >>> sao_isomorficas('foo', 'bar') False >>> sao_isomorficas('eggs', 'add') False """ # Algoritmo O(n) em tempo e memรณria letras_encontradas = {} if len(texto1) != len(texto2): return False for caractere_1, caractere_2 in zip(texto1, texto2): try: letra = letras_encontradas[caractere_1] except KeyError: letras_encontradas[caractere_1] = caractere_2 else: if letra is not caractere_2: return False return True
a1f2c00a50b69cb18c32a299d50cbd3a35dcbe5e
3,654,213
def _is_no_args(fn): """Check if function has no arguments. """ return getargspec(fn).args == []
29cb096323c69dd067bf4759a557734443a82ed5
3,654,214
def failure(parsed_args): """ :param :py:class:`argparse.Namespace` parsed_args: :return: Nowcast system message type :rtype: str """ logger.critical( f"{parsed_args.model_config} {parsed_args.run_type} FVCOM VH-FR run for " f'{parsed_args.run_date.format("YYYY-MM-DD")} ' f"on {parsed_args.host_name} failed" ) msg_type = f"failure {parsed_args.model_config} {parsed_args.run_type}" return msg_type
e6744bfd61458497b5a70d7d28712385a8488a98
3,654,215
def good_AP_finder(time,voltage): """ This function takes the following input: time - vector where each element is a time in seconds voltage - vector where each element is a voltage at a different time We are assuming that the two vectors are in correspondance (meaning that at a given index, the time in one corresponds to the voltage in the other). The vectors must be the same size or the code won't run This function returns the following output: APTimes - all the times where a spike (action potential) was detected """ APTimes = [] #Let's make sure the input looks at least reasonable if (len(voltage) != len(time)): print "Can't run - the vectors aren't the same length!" return APTimes ##Your Code Here! treshold = 0.5 * np.max(voltage) times_of_APs = time[voltage > treshold] APTimes =times_of_APs[np.diff(times_of_APs) > 0.0015] return APTimes
c13897b7bf5335cae20f65db853e7a214ec570c5
3,654,216
from typing import Dict from typing import Any import tqdm def parse(excel_sheets: Dict[Any, pd.DataFrame], dictionary: Dict[str, Any], verbose: bool = False) -> pd.DataFrame: """Parse sheets of an excel file according to instructions in `dictionary`. """ redux_dict = recursive_traverse(dictionary) column_tuples = redux_dict.keys() tuple_lengths = [len(tuple) for tuple in column_tuples] if len(set(tuple_lengths)) > 1: raise ValueError("Depth of provided JSON file is inconsistent. All " "entries must be located at the same depth.") multi_index = pd.MultiIndex.from_tuples(tuples=column_tuples) data_frame = pd.DataFrame(columns=multi_index) if verbose: sheets = tqdm( excel_sheets.items(), desc="Looping through sheets", ncols=100 ) else: sheets = excel_sheets.items() for sheet_name, sheet in sheets: new_row = {} for column, instr in redux_dict.items(): try: raw = sheet.iloc[instr["row"], instr["col"]].values except AttributeError: raw = sheet.iloc[instr["row"], instr["col"]] except ValueError: raw = None try: func = map_with_dict(instr["choices"]) except KeyError: func = FUNC_DICT[instr["func"]] try: new_row[column] = func(raw) except: new_row[column] = None data_frame = data_frame.append(new_row, ignore_index=True) return data_frame
88028fef19eda993680e89c58954c04a215a2fdd
3,654,217
def build_LAMP(prob,T,shrink,untied): """ Builds a LAMP network to infer x from prob.y_ = matmul(prob.A,x) + AWGN return a list of layer info (name,xhat_,newvars) name : description, e.g. 'LISTA T=1' xhat_ : that which approximates x_ at some point in the algorithm newvars : a tuple of layer-specific trainable variables """ eta,theta_init = shrinkage.get_shrinkage_function(shrink) print('theta_init='+repr(theta_init)) layers=[] A = prob.A M,N = A.shape B = A.T / (1.01 * la.norm(A,2)**2) B_ = tf.Variable(B,dtype=tf.float32,name='B_0') By_ = tf.matmul( B_ , prob.y_ ) layers.append( ('Linear',By_,None) ) if getattr(prob,'iid',True) == False: # set up individual parameters for every coordinate theta_init = theta_init*np.ones( (N,1),dtype=np.float32 ) theta_ = tf.Variable(theta_init,dtype=tf.float32,name='theta_0') OneOverM = tf.constant(float(1)/M,dtype=tf.float32) NOverM = tf.constant(float(N)/M,dtype=tf.float32) rvar_ = tf.reduce_sum(tf.square(prob.y_),0) * OneOverM (xhat_,dxdr_) = eta( By_,rvar_ , theta_ ) layers.append( ('LAMP-{0} T=1'.format(shrink),xhat_,(theta_,) ) ) vt_ = prob.y_ for t in range(1,T): if len(dxdr_.get_shape())==2: dxdr_ = tf.reduce_mean(dxdr_,axis=0) bt_ = dxdr_ * NOverM vt_ = prob.y_ - tf.matmul( prob.A_ , xhat_ ) + bt_ * vt_ rvar_ = tf.reduce_sum(tf.square(vt_),0) * OneOverM theta_ = tf.Variable(theta_init,name='theta_'+str(t)) if untied: B_ = tf.Variable(B,dtype=tf.float32,name='B_'+str(t)) rhat_ = xhat_ + tf.matmul(B_,vt_) layers.append( ('LAMP-{0} linear T={1}'.format(shrink,t+1),rhat_ ,(B_,) ) ) else: rhat_ = xhat_ + tf.matmul(B_,vt_) (xhat_,dxdr_) = eta( rhat_ ,rvar_ , theta_ ) layers.append( ('LAMP-{0} non-linear T={1}'.format(shrink,t+1),xhat_,(theta_,) ) ) return layers
392050992846aeb1a16e70fe6e43c386e11915e5
3,654,218
def coeffVar(X, precision=3): """ Coefficient of variation of the given data (population) Argument: X: data points, a list of int, do not mix negative and positive numbers precision (optional): digits precision after the comma, default=3 Returns: float, the cv (measure of dispersion) of the input sample or raise StatsError('mean is zero') if the mean = 0 """ try: return round(stdDev(X, precision) / mean(X, precision), precision) except ZeroDivisionError: raise StatsError('mean is zero')
e92505e79c4d10a5d56ec35cd2b543872f6be59c
3,654,219
def tostring(node): """ Generates a string representation of the tree, in a format determined by the user. @ In, node, InputNode or InputTree, item to turn into a string @ Out, tostring, string, full tree in string form """ if isinstance(node,InputNode) or isinstance(node,InputTree): return node.printXML() else: raise NotImplementedError('TreeStructure.tostring received "'+str(node)+'" but was expecting InputNode or InputTree.')
8e6cab92b898bd99b5c738b26fc9f8d79aef0750
3,654,220
from typing import Dict import random def pick_char_from_dict(char: str, dictionary: Dict[str, str]) -> str: """ Picks a random format for the givin letter in the dictionary """ return random.choice(dictionary[char])
c593166ef7cb8c960b8c4be8fa0f8a20ec616f00
3,654,221
from typing import List def bmeow_to_bilou(tags: List[str]) -> List[str]: """Convert BMEOW tags to the BILOU format. Args: tags: The BMEOW tags we are converting Raises: ValueError: If there were errors in the BMEOW formatting of the input. Returns: Tags that produce the same spans in the BILOU format. """ return convert_tags(tags, parse_spans_bmeow_with_errors, write_bilou_tags)
0081b7691a743fe3e28118cbb571708809fbd485
3,654,222
def site_sold_per_category(items): """For every category, a (site, count) pair with the number of items sold by the site in that category. """ return [(site, [(cat, total_sold(cat_items)) for cat, cat_items in categories]) for site, categories in category_items_per_site(items).iteritems()]
7b224f3e0a786aef497fad99359e525896eb8441
3,654,223
from typing import List import ctypes def swig_py_object_2_list_int(object, size : int) -> List[int]: """ Converts SwigPyObject to List[float] """ y = (ctypes.c_float * size).from_address(int(object)) new_object = [] for i in range(size): new_object += [int(y[i])] return new_object
064a9a1e43884a9f989bec0b31d6d19705764b64
3,654,224
from typing import Tuple from typing import Union async def reactionFromRaw(payload: RawReactionActionEvent) -> Tuple[Message, Union[User, Member], emojis.BasedEmoji]: """Retrieve complete Reaction and user info from a RawReactionActionEvent payload. :param RawReactionActionEvent payload: Payload describing the reaction action :return: The message whose reactions changed, the user who completed the action, and the emoji that changed. :rtype: Tuple[Message, Union[User, Member], BasedEmoji] """ emoji = None user = None message = None if payload.member is None: # Get the channel containing the reacted message if payload.guild_id is None: channel = botState.client.get_channel(payload.channel_id) else: guild = botState.client.get_guild(payload.guild_id) if guild is None: return None, None, None channel = guild.get_channel(payload.channel_id) # Individual handling for each channel type for efficiency if isinstance(channel, DMChannel): if channel.recipient.id == payload.user_id: user = channel.recipient else: user = channel.me elif isinstance(channel, GroupChannel): # Group channels should be small and far between, so iteration is fine here. for currentUser in channel.recipients: if currentUser.id == payload.user_id: user = currentUser if user is None: user = channel.me # Guild text channels elif isinstance(channel, TextChannel): user = channel.guild.get_member(payload.user_id) else: return None, None, None # Fetch the reacted message (api call) message = await channel.fetch_message(payload.message_id) # If a reacting member was given, the guild can be inferred from the member. else: user = payload.member message = await payload.member.guild.get_channel(payload.channel_id).fetch_message(payload.message_id) if message is None: return None, None, None # Convert reacted emoji to BasedEmoji try: emoji = emojis.BasedEmoji.fromPartial(payload.emoji, rejectInvalid=True) except exceptions.UnrecognisedCustomEmoji: return None, None, None return message, user, emoji
36ae16e2b1ffb3df1d5c68ae903b95556446138f
3,654,226
import array def poisson2d(N,dtype='d',format=None): """ Return a sparse matrix for the 2d poisson problem with standard 5-point finite difference stencil on a square N-by-N grid. """ if N == 1: diags = asarray( [[4]],dtype=dtype) return dia_matrix((diags,[0]), shape=(1,1)).asformat(format) offsets = array([0,-N,N,-1,1]) diags = empty((5,N**2),dtype=dtype) diags[0] = 4 #main diagonal diags[1:] = -1 #all offdiagonals diags[3,N-1::N] = 0 #first lower diagonal diags[4,N::N] = 0 #first upper diagonal return dia_matrix((diags,offsets),shape=(N**2,N**2)).asformat(format)
089088f468e84dce865bbb26707714617e16f3f6
3,654,227
import random def get_factory(): """้šๆœบ่Žทๅ–ไธ€ไธชๅทฅๅŽ‚็ฑป""" return random.choice([BasicCourseFactory, ProjectCourseFactory])()
c71401a2092618701966e5214f85c67a6520b1c9
3,654,228
def delay_class_factory(motor_class): """ Create a subclass of DelayBase that controls a motor of class motor_class. Used in delay_instace_factory (DelayMotor), may be useful for one-line declarations inside ophyd Devices. """ try: cls = delay_classes[motor_class] except KeyError: cls = type( 'Delay' + motor_class.__name__, (DelayBase,), {'motor': Cpt(motor_class, '')} ) delay_classes[motor_class] = cls return cls
264d68f7d3db164c5c133e68f943b789db52fc8b
3,654,229
def lonlat2px_gt(img, lon, lat, lon_min, lat_min, lon_max, lat_max): """ Converts a pair of lon and lat to its corresponding pixel value in an geotiff image file. Parameters ---------- img : Image File, e.g. PNG, TIFF Input image file lon : float Longitude lat : float Latitude lon_min, lat_min : float lower left coordinate of geotiff lon_max, lat_max : float upper right coordinate of geotiff Returns ------- Row : float corresponding pixel value Col : float corresponding pixel value """ w, h = img.size londiff = lon_max - lon_min latdiff = lat_max - lat_min mw = w / londiff mh = h / latdiff row = (-lat + lat_max) * mh col = (lon - lon_min) * mw return row, col
39c1aeb63d38fdac383c510913f50f177d274a04
3,654,232
import scipy def array_wishart_rvs(df, scale, **kwargs): """ Wrapper around scipy.stats.wishart to always return a np.array """ if np.size(scale) == 1: return np.array([[ scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs() ]]) else: return scipy.stats.wishart(df=df, scale=scale, **kwargs).rvs()
d14b26d8f1b05de1ac961499d96c604028fca379
3,654,234
async def async_setup_entry(hass, entry): """Set up Jenkins from a config entry.""" hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, "sensor") ) return True
c46912d11630c36effc07eed3273e42325c9b2b8
3,654,236
import math def signal_to_dataset(raw, fsamp, intvs, labels): """Segmentize raw data into list of epochs. returns dataset and label_array : a list of data, each block is 1 second, with fixed size. width is number of channels in certain standard order. Args: raw: EEG signals. Shape: (n_channel, n_sample). fsamp(int): sampling rate, i.e., window size of resulting epoch. Unit: Hz intvs: list of [start, end]. Unit: second labels: list of labels. Must be same len as INTVS Returns: tuple (dataset, labels): - dataset: list of data; (n_epochs, n_channels, n_sample_per_epoch) - labels: list of labels """ ds, lbl = [], [] for i, inv in enumerate(intvs): tstart, tend = inv chopped_sig = chop_signal( [ch[math.ceil(tstart*fsamp):math.floor(tend*fsamp)] for ch in raw], fsamp) ds.extend(chopped_sig) lbl.extend([labels[i]] * len(chopped_sig)) return ds, lbl
340bbb91bd6a36d1d3a20d0689e25c29e5b879c5
3,654,237
def project_dynamic_property_graph(graph, v_prop, e_prop, v_prop_type, e_prop_type): """Create project graph operation for nx graph. Args: graph (:class:`nx.Graph`): A nx graph. v_prop (str): The node attribute key to project. e_prop (str): The edge attribute key to project. v_prop_type (str): Type of the node attribute. e_prop_type (str): Type of the edge attribute. Returns: Operation to project a dynamic property graph. Results in a simple graph. """ check_argument(graph.graph_type == types_pb2.DYNAMIC_PROPERTY) config = { types_pb2.GRAPH_NAME: utils.s_to_attr(graph.key), types_pb2.GRAPH_TYPE: utils.graph_type_to_attr(types_pb2.DYNAMIC_PROJECTED), types_pb2.V_PROP_KEY: utils.s_to_attr(v_prop), types_pb2.E_PROP_KEY: utils.s_to_attr(e_prop), types_pb2.V_DATA_TYPE: utils.s_to_attr(utils.data_type_to_cpp(v_prop_type)), types_pb2.E_DATA_TYPE: utils.s_to_attr(utils.data_type_to_cpp(e_prop_type)), } op = Operation( graph._session_id, types_pb2.PROJECT_GRAPH, config=config, output_types=types_pb2.GRAPH, ) return op
6e54180a4ef257c50a02104cc3a4cbbae107d233
3,654,238
def eqfm_(a, b): """Helper for comparing floats AND style names.""" n1, v1 = a n2, v2 = b if type(v1) is not float: return eq_(a, b) eqf_(v1, v2) eq_(n1, n2)
1ee53203baa6c8772a4baf240f68bb5898a5d516
3,654,239
def flatten_comment(seq): """Flatten a sequence of comment tokens to a human-readable string.""" # "[CommentToken(value='# Extra settings placed in ``[app:main]`` section in generated production.ini.\\n'), CommentToken(value='# Example:\\n'), CommentToken(value='#\\n'), CommentToken(value='# extra_ini_settings: |\\n'), CommentToken(value='# mail.host = mymailserver.internal\\n'), CommentToken(value='# websauna.superusers =\\n'), CommentToken(value='# [email protected]\\n'), CommentToken(value='#\\n')] if not seq: return "" result = [] for item in seq: if not item: continue if isinstance(item, CommentToken): # Mangle away # comment start from the line s = item.value s = s.strip(" ") s = s.lstrip("#") s = s.rstrip("\n") if s.startswith(" "): s = s[1:] result.append(s) if result: raw_comment = "\n".join(result) else: return "" section_header = raw_comment.rfind("---") if section_header >= 0: raw_comment = raw_comment[section_header + 3:] return raw_comment
56104eb6e0109b6c677964cd1873244ff05f27fc
3,654,240
def get_community(community_id): """ Verify that a community with a given id exists. :param community_id: id of test community :return: Community instance :return: 404 error if doesn't exist """ try: return Community.objects.get(pk=community_id) except Community.DoesNotExist: return
33d16db86c53b7dd68dec8fe80639b560e41f457
3,654,241
import csv import pprint def load_labeled_info(csv4megan_excell, audio_dataset, ignore_files=None): """Read labeled info from spreat sheet and remove samples with no audio file, also files given in ignore_files """ if ignore_files is None: ignore_files = set() with open(csv4megan_excell) as csvfile: reader = csv.DictReader(csvfile) reader = list(reader) reader_strip = [] for row in reader: row = {r: row[r].strip() for r in row} reader_strip.append(row) reader = reader_strip.copy() missing_audio_files = [] for row in reader: if audio_dataset.get(row['File Name'], None) is None: missing_audio_files.append(row['File Name']) missing_audio_files = set(missing_audio_files) print((f'{len(missing_audio_files)} files are missing' + ' corresponding to excell entries')) megan_data_sheet = [] for row in reader: if row['File Name'] not in ignore_files: if row['File Name'] not in missing_audio_files: megan_data_sheet.append(row) deleted_files = set() deleted_files.update(ignore_files) deleted_files.update(missing_audio_files) pprint((f'-> {len(deleted_files)} number of samples are DELETED due to ' + 'ignore_files and missing_audio_files')) return megan_data_sheet, list(deleted_files)
f196b02c8667ebe5e8d2d89a79be78c6eb838afe
3,654,242
def de_dupe_list(input): """de-dupe a list, preserving order. """ sam_fh = [] for x in input: if x not in sam_fh: sam_fh.append(x) return sam_fh
bbf1936f21c19195369e41b635bf0f99704b3210
3,654,243
def donwload_l10ns(): """Download all l10ns in zip archive.""" url = API_PREFIX + 'download/' + FILENAME + KEY_SUFFIX l10ns_file = urllib2.urlopen(url) with open('all.zip','wb') as f: f.write(l10ns_file.read()) return True
26770dfc8f32947c1a32a287f811e95ffe314822
3,654,244
def _constant_velocity_heading_from_kinematics(kinematics_data: KinematicsData, sec_from_now: float, sampled_at: int) -> np.ndarray: """ Computes a constant velocity baseline for given kinematics data, time window and frequency. :param kinematics_data: KinematicsData for agent. :param sec_from_now: How many future seconds to use. :param sampled_at: Number of predictions to make per second. """ x, y, vx, vy, _, _, _, _, _, _ = kinematics_data preds = [] time_step = 1.0 / sampled_at for time in np.arange(time_step, sec_from_now + time_step, time_step): preds.append((x + time * vx, y + time * vy)) return np.array(preds)
2b6781ceb9e012486d3063b8f3cff29164ff8743
3,654,245
def arg_int(name, default=None): """ Fetch a query argument, as an integer. """ try: v = request.args.get(name) return int(v) except (ValueError, TypeError): return default
110088655bc81363e552f31d9bbd8f4fa45abd1b
3,654,246
def adapter_rest(request, api_module_rest, api_client_rest): """Pass.""" return { "adapter": request.param, "api_module": api_module_rest, "api_client": api_client_rest, }
8b96313cb190f6f8a97a853e24a5fcfade291d76
3,654,248
def remove_quotes(string): """Function to remove quotation marks surrounding a string""" string = string.strip() while len(string) >= 3 and string.startswith('\'') and string.endswith('\''): string = string[1:-1] string = quick_clean(string) string = quick_clean(string) return string
c6585c054abaef7248d30c1814fb13b6b9d01852
3,654,250
def compute_list_featuretypes( data, list_featuretypes, fourier_n_largest_frequencies, wavelet_depth, mother_wavelet, ): """ This function lets the user choose which combination of features they want to have computed. list_featuretypes: "Basic" - min, max, mean, kurt ,skew, std, sum. "FourierComplete" - all frequencies amplitudes and phases. "FourierNLargest" - n largest frequencies and their values. "WaveletComplete" - all approximation and details coefficients at each depth. "WaveletBasic" - takes "Basic" (min, max, etc) at each depth. Args: data (pd.DataFrame()) : one column from which to make features. list_featuretypes (list) : list of feature types to be computed. fourier_n_largest_frequencies (int) : amount of fourier features. wavelet_depth (int) : level of depth up to which the wavelet is computed. mother_wavelet (str) : type of wavelet used for the analysis. Returns: features (pd.DataFrame()) : row of features. """ if type(list_featuretypes) != list: raise AttributeError("'list_featuretypes' must be a list.") allowed_components = ["Basic", "FourierNLargest", "WaveletComplete", "WaveletBasic", "FourierComplete"] for argument in list_featuretypes: if argument not in allowed_components: raise ValueError(f"argument must be one of {allowed_components}") features_basic = pd.DataFrame() features_fourier = pd.DataFrame() features_wavelet = pd.DataFrame() features_wavelet_basic = pd.DataFrame() features_fft2 = pd.DataFrame() if "Basic" in list_featuretypes: features_basic = compute_basic(data) if "FourierNLargest" in list_featuretypes: features_fourier = compute_fourier_n_largest(data, fourier_n_largest_frequencies) if "FourierComplete" in list_featuretypes: features_fft2 = compute_fourier_complete(data) if "WaveletComplete" in list_featuretypes: features_wavelet = compute_wavelet_complete(data, wavelet_depth, mother_wavelet) if "WaveletBasic" in list_featuretypes: features_wavelet_basic = compute_wavelet_basic( data, wavelet_depth, mother_wavelet ) features = pd.concat( [features_basic, features_fourier, features_fft2, features_wavelet, features_wavelet_basic], axis=1, ) return features
f1c8fea04a01f6b7a3932434e27aba7ea2e17948
3,654,251
def select(locator): """ Returns an :class:`Expression` for finding selects matching the given locator. The query will match selects that meet at least one of the following criteria: * the element ``id`` exactly matches the locator * the element ``name`` exactly matches the locator * the element ``id`` exactly matches the ``for`` attribute of a corresponding ``label`` element whose text matches the locator * the element is nested within a ``label`` element whose text matches the locator Args: locator (str): A string that identifies the desired selects. Returns: Expression: An :class:`Expression` object matching the desired selects. """ field_expr = x.descendant("select") return _locate_field(field_expr, locator)
a3cd093a62d6c926fd9f782cdec35eadc34eba67
3,654,252
def send_image(filename): """Route to uploaded-by-client images Returns ------- file Image file on the server (see Flask documentation) """ return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
68b99ca59d6d4b443a77560d3eb1913422407764
3,654,253
def swissPairings(): """Returns a list of pairs of players for the next round of a match. Assuming that there are an even number of players registered, each player appears exactly once in the pairings. Each player is paired with another player with an equal or nearly-equal win record, that is, a player adjacent to him or her in the standings. Returns: A list of tuples, each of which contains (id1, name1, id2, name2) id1: the first player's unique id name1: the first player's name id2: the second player's unique id name2: the second player's name """ with get_cursor() as cursor: cursor.execute("SELECT * FROM pairings") pairings = cursor.fetchall() return pairings
f83a8a108f2d926c948999014f0dbb79a3b1c428
3,654,254
import torch def split(data, batch): """ PyG util code to create graph batches """ node_slice = torch.cumsum(torch.from_numpy(np.bincount(batch)), 0) node_slice = torch.cat([torch.tensor([0]), node_slice]) row, _ = data.edge_index edge_slice = torch.cumsum(torch.from_numpy(np.bincount(batch[row])), 0) edge_slice = torch.cat([torch.tensor([0]), edge_slice]) # Edge indices should start at zero for every graph. data.edge_index -= node_slice[batch[row]].unsqueeze(0) data.__num_nodes__ = torch.bincount(batch).tolist() slices = {'edge_index': edge_slice} if data.x is not None: slices['x'] = node_slice if data.edge_attr is not None: slices['edge_attr'] = edge_slice if data.y is not None: if data.y.size(0) == batch.size(0): slices['y'] = node_slice else: slices['y'] = torch.arange(0, batch[-1] + 2, dtype=torch.long) return data, slices
69af8b969d7f0da28a1f7fda951f64974c238da0
3,654,255
def _get_shadowprice_data(scenario_id): """Gets data necessary for plotting shadow price :param str/int scenario_id: scenario id :return: (*tuple*) -- interconnect as a str, bus data as a data frame, lmp data as a data frame, branch data as a data frame and congestion data as a data frame """ s = Scenario(scenario_id) interconnect = s.info["interconnect"] interconnect = " ".join(interconnect.split("_")) s_grid = s.state.get_grid() # Get bus and add location data bus_map = project_bus(s_grid.bus) # get branch and add location data branch_map = project_branch(s_grid.branch) # get congestion congu = s.state.get_congu() congl = s.state.get_congl() cong_abs = pd.DataFrame( np.maximum(congu.to_numpy(), congl.to_numpy()), columns=congu.columns, index=congu.index, ) return interconnect, bus_map, s.state.get_lmp(), branch_map, cong_abs
57488b7ff6984cc292dce3bf76d18d0b2585b7ff
3,654,256
import json def get_city_reviews(city): """ Given a city name, return the data for all reviews. Returns a pandas DataFrame. """ with open(f"{DATA_DIR}/{city}/review.json", "r") as f: review_list = [] for line in f: review = json.loads(line) review_list.append(review) # convert to pandas DataFrame reviews = to_pandas([city], {city: review_list}) # optimize memory usage reviews = optimize(reviews, {'city': 'category'}) return reviews
e0723ab90dafc53059677928fb553cf197abecc1
3,654,257
def extract_rows_from_table(dataset, col_names, fill_null=False): """ Extract rows from DB table. :param dataset: :param col_names: :return: """ trans_dataset = transpose_list(dataset) rows = [] if type(col_names).__name__ == 'str': col_names = [col_names] for col_name in col_names: if col_name in dataset[0]: idx = dataset[0].index(col_name) rows.append(trans_dataset[idx]) else: if fill_null: null_list = [''] * (len(trans_dataset[0])-1) null_list = [col_name] + null_list rows.append(null_list) else: pass if len(col_names) == 1: return rows[0] else: return transpose_list(rows)
91371215f38a88b93d08c467303ccbd45f57b369
3,654,258
def CalculateHydrogenNumber(mol): """ ################################################################# Calculation of Number of Hydrogen in a molecule ---->nhyd Usage: result=CalculateHydrogenNumber(mol) Input: mol is a molecule object. Output: result is a numeric value. ################################################################# """ i = 0 Hmol = Chem.AddHs(mol) for atom in Hmol.GetAtoms(): if atom.GetAtomicNum() == 1: i = i + 1 return i
0b9fbad14c8e9f46beab5208ab0f929fef1ab263
3,654,259
def check_update (): """Return the following values: (False, errmsg) - online version could not be determined (True, None) - user has newest version (True, (version, url string)) - update available (True, (version, None)) - current version is newer than online version """ version, value = get_online_version() if version is None: # value is an error message return False, value if version == CurrentVersion: # user has newest version return True, None if is_newer_version(version): # value is an URL linking to the update package return True, (version, value) # user is running a local or development version return True, (version, None)
8bba3e7fbe11ce6c242f965450628dc94b6c2c0b
3,654,260
import torch def count_regularization_baos_for_both(z, count_tokens, count_pieces, mask=None): """ Compute regularization loss, based on a given rationale sequence Use Yujia's formulation Inputs: z -- torch variable, "binary" rationale, (batch_size, sequence_length) percentage -- the percentage of words to keep Outputs: a loss value that contains two parts: continuity_loss -- \sum_{i} | z_{i-1} - z_{i} | sparsity_loss -- |mean(z_{i}) - percent| """ # (batch_size,) if mask is not None: mask_z = z * mask seq_lengths = torch.sum(mask, dim=1) else: mask_z = z seq_lengths = torch.sum(z - z + 1.0, dim=1) mask_z_ = torch.cat([mask_z[:, 1:], mask_z[:, -1:]], dim=-1) continuity_ratio = torch.sum(torch.abs(mask_z - mask_z_), dim=-1) / seq_lengths #(batch_size,) percentage = count_pieces * 2 / seq_lengths # continuity_loss = F.threshold(continuity_ratio - percentage, 0, 0, False) continuity_loss = torch.abs(continuity_ratio - percentage) sparsity_ratio = torch.sum(mask_z, dim=-1) / seq_lengths #(batch_size,) percentage = count_tokens / seq_lengths #(batch_size,) # sparsity_loss = F.threshold(sparsity_ratio - percentage, 0, 0, False) sparsity_loss = torch.abs(sparsity_ratio - percentage) return continuity_loss, sparsity_loss
7925c8621866a20f0c6130cd925afffe144e1c7c
3,654,261
def unsqueeze_samples(x, n): """ """ bn, d = x.shape x = x.reshape(bn//n, n, d) return x
0c7b95e97df07aea72e9c87996782081763664cf
3,654,262
def f_snr(seq): """compute signal to noise rate of a seq Args: seq: input array_like sequence paras: paras array, in this case should be "axis" """ seq = np.array(seq, dtype=np.float64) result = np.mean(seq)/float(np.std(seq)) if np.isinf(result): print "marker" result = 0 return result
b018b5e4c249cfafcc3ce8b485c917bfcdd19ce2
3,654,263
def _lorentzian_pink_beam(p, x): """ @author Saransh Singh, Lawrence Livermore National Lab @date 03/22/2021 SS 1.0 original @details the lorentzian component of the pink beam peak profile obtained by convolution of gaussian with normalized back to back exponentials. more details can be found in Von Dreele et. al., J. Appl. Cryst. (2021). 54, 3โ€“6 p has the following parameters p = [A,x0,alpha0,alpha1,beta0,beta1,fwhm_l] """ A,x0,alpha,beta,fwhm_l = p del_tth = x - x0 p = -alpha*del_tth + 1j*0.5*alpha*fwhm_l q = -beta*del_tth + 1j*0.5*beta*fwhm_l y = np.zeros(x.shape) f1 = exp1exp(p) f2 = exp1exp(q) y = -(alpha*beta)/(np.pi*(alpha+beta))*(f1+f2).imag mask = np.isnan(y) y[mask] = 0. y *= A return y
7de93743da63ab816133e771075a8e8f0386ad35
3,654,264
def get_q_HPU_ave(Q_HPU): """1ๆ™‚้–“ๅนณๅ‡ใฎใƒ’ใƒผใƒˆใƒใƒณใƒ—ใƒฆใƒ‹ใƒƒใƒˆใฎๅนณๅ‡ๆš–ๆˆฟๅ‡บๅŠ› (7) Args: Q_HPU(ndarray): 1ๆ™‚้–“ๅฝ“ใŸใ‚Šใฎใƒ’ใƒผใƒˆใƒใƒณใƒ—ใƒฆใƒ‹ใƒƒใƒˆใฎๆš–ๆˆฟๅ‡บๅŠ› (MJ/h) Returns: ndarray: 1ๆ™‚้–“ๅนณๅ‡ใฎใƒ’ใƒผใƒˆใƒใƒณใƒ—ใƒฆใƒ‹ใƒƒใƒˆใฎๅนณๅ‡ๆš–ๆˆฟๅ‡บๅŠ› (7) """ return Q_HPU * 10 ** 6 / 3600
fdf339d7f8524f69409711d4daefd1e2aaccbc76
3,654,265
def particles(t1cat): """Return a list of the particles in a T1 catalog DataFrame. Use it to find the individual particles involved in a group of events.""" return particles_fromlist(t1cat.particles.tolist())
38f9a077b7bab55b76a19f467f596ddb28e40c60
3,654,266
def prime_list(num): """ This function returns a list of prime numbers less than natural number entered. :param num: natural number :return result: List of primes less than natural number entered """ prime_table = [True for _ in range(num+1)] i = 2 while i ** 2 <= num: if prime_table[i]: j = i + i while j <= num: prime_table[j] = False j += i i += 1 result = [i for i in range(num) if prime_table[i] and i >= 2] return result
c8e05aae2a59c229cfafb997469dd8ccacdda0fc
3,654,268
import time def check_deadline_exceeded_and_store_partial_minimized_testcase( deadline, testcase_id, job_type, input_directory, file_list, file_to_run_data, main_file_path): """Store the partially minimized test and check the deadline.""" testcase = data_handler.get_testcase_by_id(testcase_id) store_minimized_testcase(testcase, input_directory, file_list, file_to_run_data, main_file_path) deadline_exceeded = time.time() > deadline if deadline_exceeded: attempts = testcase.get_metadata( 'minimization_deadline_exceeded_attempts', default=0) if attempts >= MAX_DEADLINE_EXCEEDED_ATTEMPTS: _skip_minimization(testcase, 'Exceeded minimization deadline too many times.') else: testcase.set_metadata('minimization_deadline_exceeded_attempts', attempts + 1) tasks.add_task('minimize', testcase_id, job_type) return deadline_exceeded
443c09a8b5bcd8141f721b8ea90348879bc3b8c5
3,654,269
import ipaddress def _item_to_python_repr(item, definitions): """Converts the given Capirca item into a typed Python object.""" # Capirca comments are just appended to item strings s = item.split("#")[0].strip() # A reference to another network if s in definitions.networks: return s # IPv4 address / network try: return ipaddress.IPv4Address(s) except ValueError: pass try: return ipaddress.IPv4Network(s, strict=False) except ValueError: pass # IPv6 address / network try: return ipaddress.IPv6Address(s) except ValueError: pass try: return ipaddress.IPv6Network(s, strict=False) except ValueError: pass raise ValueError("Unknown how to convert {s}".format(s=s))
9881e304e923eb2cea8223224273f4c9ef81696b
3,654,270
import numpy def floor_divide(x1, x2, out=None, where=True, **kwargs): """ Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python ``//`` operator and pairs with the Python ``%`` (`remainder`), function so that ``a = a % b + b * (a // b)`` up to roundoff. Args: x1 (numpoly.ndpoly): Numerator. x2 (numpoly.ndpoly): Denominator. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out (Optional[numpy.ndarray]): A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where (Optional[numpy.ndarray]): This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. kwargs: Keyword args passed to numpy.ufunc. Returns: (numpoly.ndpoly): This is a scalar if both `x1` and `x2` are scalars. Examples: >>> xyz = [1, 2, 4]*numpoly.symbols("x y z") >>> numpoly.floor_divide(xyz, 2.) polynomial([0.0, y, 2.0*z]) >>> numpoly.floor_divide(xyz, [1, 2, 4]) polynomial([x, y, z]) >>> numpoly.floor_divide([1, 2, 4], xyz) Traceback (most recent call last): ... ValueError: only constant polynomials can be converted to array. """ x1, x2 = numpoly.align_polynomials(x1, x2) x2 = x2.tonumpy() no_output = out is None if no_output: out = numpoly.ndpoly( exponents=x1.exponents, shape=x1.shape, names=x1.indeterminants, dtype=numpy.common_type(x1, numpy.array(1.)), ) for key in x1.keys: numpy.floor_divide(x1[key], x2, out=out[key], where=where, **kwargs) if no_output: out = numpoly.clean_attributes(out) return out
9269d088c0893b9b6b4c3b27e8dc83c4493ac2c9
3,654,271
from typing import Callable import click def node_args_argument(command: Callable[..., None]) -> Callable[..., None]: """ Decorate a function to allow choosing arguments to run on a node. """ function = click.argument( 'node_args', type=str, nargs=-1, required=True, )(command) # type: Callable[..., None] return function
89365a41b7665cf291f5c15852db81e89aeef9a7
3,654,272
import functools import unittest def _tag_error(func): """Decorates a unittest test function to add failure information to the TestCase.""" @functools.wraps(func) def decorator(self, *args, **kwargs): """Add failure information to `self` when `func` raises an exception.""" self.test_failed = False try: func(self, *args, **kwargs) except unittest.SkipTest: raise except Exception: # pylint: disable=broad-except self.test_failed = True raise # re-raise the error with the original traceback. return decorator
a2818c63647410abea3fde0b7f4fdae667b558bf
3,654,273
from datetime import datetime def get_submission_praw(n, sub, n_num): """ Returns a list of results for submission in past: 1st list: current result from n hours ago until now 2nd list: prev result from 2n hours ago until n hours ago """ mid_interval = datetime.today() - timedelta(hours=n) timestamp_mid = int(mid_interval.timestamp()) timestamp_start = int((mid_interval - timedelta(hours=n)).timestamp()) timestamp_end = int(datetime.today().timestamp()) recent = {} prev = {} subreddit = reddit.subreddit(sub) all_results = [] for post in subreddit.new(limit=n_num): all_results.append([post.title, post.link_flair_text, post.selftext, post.score, post.num_comments, post.created_utc]) # start --> mid --> end recent[sub] = [posts for posts in all_results if timestamp_mid <= posts[5] <= timestamp_end] prev[sub] = [posts for posts in all_results if timestamp_start <= posts[5] < timestamp_mid] return recent, prev
692af49736fac07a2de51d1cd0c4abcfe7bb8ee3
3,654,275