content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def check_credentials(username): """ Function that check if a Credentials exists with that username and return true or false """ return Credentials.if_credential_exist(username)
8515bbc39afd003fc193cbb80c97f5f718657fa6
3,656,629
def rpc_category_to_super_category(category_id, num_classes): """Map category to super-category id Args: category_id: list of category ids, 1-based num_classes: 1, 17, 200 Returns: super-category id, 0-based """ cat_id = -1 assert num_classes in RPC_SUPPORT_CATEGORIES, \ 'Not support {} density categories'.format(num_classes) if num_classes == 17: cat_id = _categories[category_id] elif num_classes == 1: cat_id = 0 elif num_classes == 200: cat_id = category_id - 1 assert 199 >= cat_id >= 0 return cat_id
8056aea308f66a65a4135a6fc7f061873d990624
3,656,630
def setup_integration(): """Set up a test resource.""" print('Setting up a test integration for an API') return Integration(name='myapi', base_url='https://jsonplaceholder.typicode.com')
d2720db6ae520e21edc555ad0c899652c6584406
3,656,631
def secondsToHMS(intervalInSeconds): """converts time in seconds to a string representing time in hours, minutes, and seconds :param intervalInSeconds: a time measured in seconds :returns: time in HH:MM:SS format """ interval = [0, 0, intervalInSeconds] interval[0] = (interval[2] / 3600) - ((interval[2] % 3600) / 3600) interval[1] = ((interval[2] % 3600) / 60) - ((interval[2] % 3600) % 60) / 60 interval[2] = interval[2] % 60 intervalString = '{0:02.0f}:{1:02.0f}:{2:02.0f}'.format(interval[0], interval[1], interval[2]) return intervalString
b38d4b886eaabd1361c162b6b7f55e11493dfb60
3,656,632
import itertools def build_rdn(coords, r, **kwargs): """ Reconstruct edges between nodes by radial distance neighbors (rdn) method. An edge is drawn between each node and the nodes closer than a threshold distance (within a radius). Parameters ---------- coords : ndarray Coordinates of points where each column corresponds to an axis (x, y, ...) r : float, optional Radius in which nodes are connected. Examples -------- >>> coords = make_simple_coords() >>> pairs = build_rdn(coords, r=60) Returns ------- pairs : ndarray The (n_pairs x 2) matrix of neighbors indices. """ tree = BallTree(coords, **kwargs) ind = tree.query_radius(coords, r=r) # clean arrays of neighbors from self referencing neighbors # and aggregate at the same time source_nodes = [] target_nodes = [] for i, arr in enumerate(ind): neigh = arr[arr != i] source_nodes.append([i]*(neigh.size)) target_nodes.append(neigh) # flatten arrays of arrays source_nodes = np.fromiter(itertools.chain.from_iterable(source_nodes), int).reshape(-1,1) target_nodes = np.fromiter(itertools.chain.from_iterable(target_nodes), int).reshape(-1,1) # remove duplicate pairs pairs = np.hstack((source_nodes, target_nodes)) pairs = np.sort(pairs, axis=1) pairs = np.unique(pairs, axis=0) return pairs
83f2d68fbb854e2ef25e03f5d58d6c96c02c0127
3,656,633
def find_layer(model, type, order=0): """ Given a model, find the Nth layer of the specified type. :param model: the model that will be searched :param type: the lowercase type, as it is automatically saved by keras in the layer's name (e.g. conv2d, dense) :param order: 0 by default (the first matching layer will be returned) :return: The index of the matching layer or None if it was not found. """ num_found = 0 for layer in model.layers: if type + '_' in layer.get_config()['name']: if order == num_found: return layer num_found += 1 return None
6d4e08c181900774b9e5666a11df9767f68a10ca
3,656,634
def _interpretable(model): # type: (Union[str, h2o.model.ModelBase]) -> bool """ Returns True if model_id is easily interpretable. :param model: model or a string containing a model_id :returns: bool """ return _get_algorithm(model) in ["glm", "gam", "rulefit"]
4ae73e5b7ed98b61b56920985128212e3051c789
3,656,635
def apply_pb_correction(obs, pb_sensitivity_curve, cutoff_radius): """ Updates the primary beam response maps for cleaned images in an ObsInfo object. Args: obs (ObsInfo): Observation to generate maps for. pb_sensitivity_curve: Primary beam sensitivity as a function of radius in units of image pixels. (Should be 1.0 at the exact centre). cutoff_radius: Radius at which to mask the output image (avoids extremely high corrected values for noise fluctuations at large radii). Units: image pixels. """ assert isinstance(obs, ObsInfo) def update_pb_map_for_img(flux_map_path): pbmap = generate_primary_beam_response_map(flux_map_path, pb_sensitivity_curve, cutoff_radius) return pbmap def process_clean_maps(clean_maps): pbmap = update_pb_map_for_img(clean_maps.flux) img_path = clean_maps.image pb_img_path = img_path+'.pbcor' generate_pb_corrected_image(img_path, pb_img_path, pbmap) clean_maps.pbcor = pb_img_path if obs.maps_masked.ms.image: process_clean_maps(obs.maps_masked.ms) if obs.maps_open.ms.image: process_clean_maps(obs.maps_open.ms) if obs.maps_hybrid.ms.image: process_clean_maps(obs.maps_hybrid.ms)
02ee2913ce781f4a02e85910c69cfe5b534e62f4
3,656,636
def makeLoadParams(args): """ Create load parameters for start load request out of command line arguments. Args: args (dict): Parsed command line arguments. """ load_params = {'target': {}, 'format': {'date_time': {}, 'boolean': {}}, 'load_options': {}, 'advanced_options': {}} add_param(load_params['target'], 'database', args.target_database) add_param(load_params['target'], 'schema', args.target_schema) add_param(load_params['target'], 'table', args.target_table) if len(load_params['target']) == 0: del load_params['target'] add_param(load_params['format'], 'type', args.type) add_param(load_params['format'], 'field_separator', args.field_separator) add_param(load_params['format'], 'trailing_field_separator', args.trailing_field_separator, False) add_param(load_params['format'], 'enclosing_character', args.enclosing_character) add_param(load_params['format'], 'escape_character', args.escape_character) add_param(load_params['format'], 'null_value', args.null_value) add_param(load_params['format'], 'has_header_row', args.has_header_row, False) add_param(load_params['format'], 'flexible', args.flexible, False) add_param(load_params['format']['date_time'], 'converted_to_epoch', args.date_converted_to_epoch, False) add_param(load_params['format']['date_time'], 'date_format', args.date_format) add_param(load_params['format']['date_time'], 'time_format', args.time_format) add_param(load_params['format']['date_time'], 'date_time_format', args.date_time_format) add_param(load_params['format']['date_time'], 'second_fraction_start', args.second_fraction_start) add_param(load_params['format']['date_time'], 'skip_second_fraction', args.skip_second_fraction, False) if len(load_params['format']['date_time']) == 0: del load_params['format']['date_time'] add_param(load_params['format']['boolean'], 'use_bit_values', args.use_bit_boolean_values, False) add_param(load_params['format']['boolean'], 'true_format', args.true_format) add_param(load_params['format']['boolean'], 'false_format', args.false_format) if len(load_params['format']['boolean']) == 0: del load_params['format']['boolean'] if len(load_params['format']) == 0: del load_params['format'] add_param(load_params['load_options'], 'empty_target', args.empty_target, False) add_param(load_params['load_options'], 'max_ignored_rows', args.max_ignored_rows) if len(load_params['load_options']) == 0: del load_params['load_options'] add_param(load_params['advanced_options'], 'validate_only', args.validate_only, False) add_param(load_params['advanced_options'], 'file_target_dir', args.file_target_dir) if len(load_params['advanced_options']) == 0: del load_params['advanced_options'] print('Created load params: ', load_params) return load_params
f1c0e9297775305c36acbb950bfc05e785bde87c
3,656,637
from hash import HashTable def empty_hash(): """Initialize empty hash table.""" test_hash = HashTable() return test_hash
02700169c89427af4d2db123e110ec383d9332eb
3,656,638
def denoise_sim(image, std, denoiser): """Simulate denoising problem Args: image (torch.Tensor): image tensor with shape (C, H, W). std (float): standard deviation of additive Gaussian noise on the scale [0., 1.]. denoiser: a denoiser instance (as in algorithms.denoiser). The std argument for this denoiser is already specified if applicable. Returns: denoised_image (torch.Tensor): tensor of denoised image noisy_image (torch.Tensor): tensor of noisy image """ print('deploy.sim.denoise_sim: Simulating noisy image...') noisy_image = gutil.add_noise(image, std) print('deploy.sim.denoise_sim: Begin image denoising...') denoised_image = denoiser(noisy_image, std=std) return denoised_image, noisy_image
216944b26c3ca0e04b8b5801766321fe60ee7e02
3,656,639
def _find_weektime(datetime, time_type='min'): """ Finds the minutes/seconds aways from midnight between Sunday and Monday. Parameters ---------- datetime : datetime The date and time that needs to be converted. time_type : 'min' or 'sec' States whether the time difference should be specified in seconds or minutes. """ if time_type == 'sec': return datetime.weekday() * 24 * 60 * 60 + datetime.hour * 60 * 60 + datetime.minute * 60 + datetime.second elif time_type == 'min': return datetime.weekday() * 24 * 60 + datetime.hour * 60 + datetime.minute else: raise ValueError("Invalid time type specified.")
2ed28166d239dabdc9f8811812e472810b10c7d7
3,656,640
from typing import List from typing import Tuple def linear_to_image_array(pixels:List[List[int]], size:Tuple[int,int]) -> np.ndarray: """\ Converts a linear array ( shape=(width*height, channels) ) into an array usable by PIL ( shape=(height, width, channels) ).""" a = np.array(pixels, dtype=np.uint8) split = np.split(pixels, [i*size[0] for i in range(1,size[1])]) return np.array(split, dtype=np.uint8)
431170c71a3d6464be5dd5b9d248b2866ba3ac6a
3,656,641
def stop_processes(hosts, pattern, verbose=True, timeout=60): """Stop the processes on each hosts that match the pattern. Args: hosts (list): hosts on which to stop the processes pattern (str): regular expression used to find process names to stop verbose (bool, optional): display command output. Defaults to True. timeout (int, optional): command timeout in seconds. Defaults to 60 seconds. Returns: dict: a dictionary of return codes keys and accompanying NodeSet values indicating which hosts yielded the return code. Return code keys: 0 No processes matched the criteria / No processes killed. 1 One or more processes matched the criteria and a kill was attempted. """ result = {} log = getLogger() log.info("Killing any processes on %s that match: %s", hosts, pattern) if hosts is not None: commands = [ "rc=0", "if pgrep --list-full {}".format(pattern), "then rc=1", "sudo pkill {}".format(pattern), "if pgrep --list-full {}".format(pattern), "then sleep 5", "pkill --signal KILL {}".format(pattern), "fi", "fi", "exit $rc", ] result = pcmd(hosts, "; ".join(commands), verbose, timeout, None) return result
898a358b5e61952d72be15eecb10b00ce8bd2efd
3,656,642
def field_as_table_row(field): """Prints a newforms field as a table row. This function actually does very little, simply passing the supplied form field instance in a simple context used by the _field_as_table_row.html template (which is actually doing all of the work). See soc/templates/soc/templatetags/_field_as_table_row.html for the CSS styles used by this template tag. Usage: {% load forms_helpers %} ... <table> {% field_as_table_row form.fieldname %} ... </table> Args: field: a Django newforms field instance Returns: a simple context containing the supplied newforms field instance: { 'field': field } """ return {'field': field}
74d120e2a46ae8465832d98ddf02848b5b2cc936
3,656,643
def get_samples(select_samples: list, avail_samples: list) -> list: """Get while checking the validity of the requested samples :param select_samples: The selected samples :param avail_samples: The list of all available samples based on the range :return: The selected samples, verified """ # Sample number has to be positive if True in [_ < 0 for _ in select_samples]: raise ValueError( "Number of samples with -ns has to be strictly positive!") # Sample number has to be within the available sample elif False in [_ in avail_samples for _ in select_samples]: raise ValueError( "Some or all selected samples are not available in the design") return select_samples
e1c0c98697d2c504d315064cbdfbad379165d317
3,656,644
def createMemoLayer(type="", crs=4326, name="", fields={"id":"integer"}, index="no"): """ Créer une couche en mémoire en fonction des paramètres :param type (string): c'est le type de geometrie "point", "linestring", "polygon", "multipoint","multilinestring","multipolygon" :param crs (int): systeme de projection CRS :param fields (dict): {nom_champ : type_champ(longueur)} field=name : type(length,precision) types : "integer", "double", "string(length)" :param name (string): C'est le nom de la couche qui apparaitra dans la légende :param index (string): indique si on créer un indice spatial :return (QgsVectorLayer): on retourene un objet QgsVectorLayer """ # on créer l'uri et on ajoute tous les champs uri="%s?crs=epsg:%s"%(type,crs) for key, value in fields.items(): uri="%s&field=%s:%s"%(uri,key, value) uri="%s&index=%s"%(uri,index) # on créer l'objet QgsVectorLayer memLayer = QgsVectorLayer(uri, name, "memory") return memLayer
713823d9b59b7c4ccf7bdd938a720d385629e02f
3,656,645
import json def load_templates(package): """ Returns a dictionary {name: template} for the given instrument. Templates are defined as JSON objects, with stored in a file named "<instrument>.<name>.json". All templates for an instrument should be stored in a templates subdirectory, made into a package by inclusion of an empty __init__.py file. They can then be loaded using:: from dataflow import core as df from . import templates ... instrument = df.Instrument( ... templates=df.load_templates(templates), ) """ templates = {} for filename in resources.contents(package): if filename.endswith('.json'): name = filename.split('.')[-2] template = json.loads(resources.read_text(package, filename)) templates[name] = template return templates
6213eb6e8b7be0bb7057da49d02fe495d7db6660
3,656,646
def get_count_matrix(args): """首先获取数据库中全部文档的id,然后遍历id获取文档内容,再逐文档 进行分词,生成计数矩阵。""" global DOC2IDX with DocDB(args.db_path) as doc_db: doc_ids = doc_db.get_doc_ids() DOC2IDX = {doc_id: i for i, doc_id in enumerate(doc_ids)} row, col, data = [], [], [] _count = partial(count, args) for i in doc_ids: b_row, b_col, b_data = _count(i) row.extend(b_row) col.extend(b_col) data.extend(b_data) # 创建稀疏矩阵,这里用的是按行压缩的方法(Compressed Sparse Row, csr) # 关于什么是csr_matrix,参考: # https://www.pianshen.com/article/7967656077/ # https://zhuanlan.zhihu.com/p/342942385 count_matrix = sp.csr_matrix((data, (row, col)), shape=(args.hash_size, len(doc_ids))) count_matrix.sum_duplicates() return count_matrix, (DOC2IDX, doc_ids)
6279666c6dfdf66dba13edfe57e55525de15d894
3,656,647
def communication_round(model, clients, train_data, train_labels, train_people, val_data, val_labels, val_people, val_all_labels, local_epochs, weights_accountant, individual_validation, local_operation): """ One round of communication between a 'server' and the 'clients'. Each client 'downloads' a global model and trains a local model, updating its weights locally. When all clients have updated their weights, they are 'uploaded' to the server and averaged. :param model: Tensorflow Graph :param clients: numpy array, array of unique client IDs :param train_data: numpy array :param train_labels: numpy array :param train_people: numpy array :param val_data: numpy array :param val_labels: numpy array :param val_people: numpy array :param val_all_labels: numpy array :param local_epochs: int, local epochs to be trained :param weights_accountant: WeightsAccountant object :param individual_validation: bool, if true, validation history for every local epoch in a federated setting is stored (typically not necessary) :param local_operation: string, valid arguments are "global_averaging", "localized_learning", and "local_models" :return: Pandas DataFrame, training history """ # Split train and validation data into clients train_data, train_labels = dL.split_data_into_clients_dict(train_people, train_data, train_labels) if val_data is not None: val_data, val_labels, val_people, val_all_labels = \ dL.split_data_into_clients_dict(val_people, val_data, val_labels, val_people, val_all_labels) # Train each client history = {} for client in clients: Output.print_client_id(client) results = client_learning(model, client, local_epochs, train_data, train_labels, val_data, val_labels, val_people, val_all_labels, weights_accountant, individual_validation) # Append each client's results to the history dictionary for key, val in results.items(): history.setdefault(key, []).extend(val) # Pop general metrics from history as these are duplicated with client metrics, e.g. 'loss' == 'subject_43_loss' for metric in model.metrics_names: history.pop(metric, None) history.pop("val_" + metric, None) # If there is localization (e.g. the last layer of the model is not being averaged, indicated by less "shared # weights" compared to total "default weights"), then we adapt local models to the new shared layers if local_operation == 'localized_learning': # Average all updates marked as "global" weights_accountant.federated_averaging(layer_type='global') # Decrease the learning rate for local adaptation only K.set_value(model.optimizer.lr, K.get_value(model.optimizer.lr) / LR_FACTOR) # Freeze the global layers change_layer_status(model, 'global', 'freeze') # Reconnect the Convolutional layers for client in clients: Output.print_client_id(client) client_learning(model, client, local_epochs, train_data, train_labels, val_data, val_labels, val_people, val_all_labels, weights_accountant, individual_validation) # Unfreeze the global layers change_layer_status(model, 'global', 'unfreeze') # Increase the learning rate again K.set_value(model.optimizer.lr, K.get_value(model.optimizer.lr) * LR_FACTOR) elif local_operation == 'local_models': print("No federated averaging.") pass elif local_operation == 'global_averaging': weights_accountant.federated_averaging() else: raise ValueError('local_operation only accepts "global_averaging", "localized_learning", and "local_models"' ' as arguments. "{}" was given.'.format(local_operation)) return history
f8a8ef93845e09394cea6a2f6077a0ae2dfaed18
3,656,648
import collections def _find_stop_area_mode(query_result, ref): """ Finds the mode of references for each stop area. The query results must have 3 columns: primary key, foreign key reference and number of stop points within each area matching that reference, in that order. :param ref: Name of the reference column. :returns: Two lists; one to be to be used with `bulk_update_mappings` and the other strings for invalid areas. """ # Group by stop area and reference stop_areas = collections.defaultdict(dict) for row in query_result: stop_areas[row[0]][row[1]] = row[2] # Check each area and find mode matching reference update_areas = [] invalid_areas = {} for sa, count in stop_areas.items(): max_count = [k for k, v in count.items() if v == max(count.values())] if len(max_count) == 1: update_areas.append({"code": sa, ref: max_count[0]}) else: invalid_areas[sa] = max_count return update_areas, invalid_areas
e4677638b272e67d2ae21ee97f71f1f1700fd072
3,656,649
def get_all_funds_ranking(fund_type: str = 'all', start_date: str = '-1y', end_date: str = arrow.now(), sort: str = 'desc', subopts: str = '', available: str = 1): """Get all funds ranking from 'fund.eastmoney.com'. (基金排行) :param fund_type: (optional) fund type, default is `all`. value: ct场内 gp股票 hh混合 zq债券 zs指数 bb保本 qdii lof fof :param start_date: (optional) start date of the custom return, default is `-1y`. value: -nd -nw -nm -ny cyear or YYYY-MM-DD :param end_date: (optional) the end date of the results, default is `now`. :param sort: (optional) results order, default is `desc`. :param subopts: (optional) some suboptions. format is a list of options(`first,second`). Suboptions for bonds(有关债券的子选项): - first option is bonds type(债券类型). value: cz长债 dz短债 hz混债 dkz定开债 kzz可转债 - second option is leverage ratio(杠杆比例). value: 0-100 100-150 150-200 200+ Suboptions for stock index(有关指数的子选项): - first option is index type(标的). value: hs沪深 hy行业 dp大盘 zxp中小盘 gz股指 zz债指 - second option is stock index operation(运作方式). value: bd被动 zq增强 Suboptions for QDII fonds. - first option is fond type(基金类型). vaule: qqgp全球股票 ytgp亚太股票 dzh大中华区 xxsc新兴市场 jzgj金砖国家 cssc成熟市场 us美国股票 qqidx全球指数 etf hh股债混合 zq债券 sp商品 :param available: (optional) `1` can buy, `0` including both, default is `1`. :return: a list of the funds. :rtype: `pd.DataFrame`. """ dtype = fund_type == 'ct' and 'fb' or 'kf' begin = str2date(start_date).format('YYYY-MM-DD') end = arrow.get(end_date).format('YYYY-MM-DD') opt1, opt2 = _funds_ranking_subopts(fund_type, subopts) params = dict(op='ph',dt=dtype,ft=fund_type,rs='',gs=0,sc='zzf',st=sort,pi=1,pn=10000) # 场内基金 fund_type != 'ct' and params.update(dict(sd=begin,ed=end,qdii=opt1,tabSubtype=opt2,dx=available)) resp = sess.get(api.all_funds_rank, params=params) obj = js2obj(resp.text, 'rankData') # dataframe if fund_type == 'ct': # 场内基金 cols = 'code,name,1,date,nav,cnav,-1week,-1month,-3month,-6month,-1year,-2year,'\ '-3year,current_year,since_create,issue_date,,,,,,type' newcols = cols.replace('1','type,issue_date',1).split(',issue_date,,')[0] else: # 基金排行 cols = 'code,name,1,date,nav,cnav,percent,-1week,-1month,-3month,-6month,-1year,-2year,'\ '-3year,current_year,since_create,issue_date,,custom,2,,,,' newcols = cols.replace('1','issue_date',1).replace('issue_date,,','').split(',2')[0] df = pd.DataFrame([i.split(',')[:-1] for i in obj['datas']], columns=cols.split(',')).ffill(None)[newcols.split(',')] df['date'] = pd.to_datetime(df['date']) df['issue_date'] = pd.to_datetime(df['issue_date']) df[['nav','cnav']] = df[['nav','cnav']].applymap(lambda x:x and float(x) or None) colnum = fund_type == 'ct'\ and range(df.columns.get_loc('-1week'), len(df.columns))\ or range(df.columns.get_loc('percent'), len(df.columns)) df.iloc[:,colnum] = df.iloc[:,colnum].applymap(lambda x:x and float(x)/100 or None) return df
55dd84c8f8830d6c60411de858a9aec1f14a30be
3,656,650
from typing import List from typing import Any from re import T def _conform_list(li: List[Any]) -> List[T]: """ Ensures that every element in *li* can conform to one type :param li: list to conform :return: conformed list """ conform_type = li[0].__class__ for i in li: if isinstance(i, StrictType): conform_type = i.__class__ break base_type = ( conform_type.__base__ if conform_type.__base__ != object else None ) # do not let base_type be 'object' if not all(type(i) == conform_type or type(i) == base_type for i in li): raise Exception(f"{li} can not be conformed to the {conform_type}") return [i if isinstance(i, conform_type) else conform_type(i) for i in li]
29131a9f5979318e0fc50408b67938ffbd56fa5a
3,656,651
def _255_to_tanh(x): """ range [0, 255] to range [-1, 1] :param x: :return: """ return (x - 127.5) / 127.5
a60a67ee489093292fc58136a8f01387482fb162
3,656,652
import torch def train_one_epoch(train_loader, model, criterion, optimizer, epoch, opt, num_train_samples, no_acc_eval=False): """ model training :param train_loader: train dataset loader :param model: model :param criterion: loss criterion :param optimizer: :param epoch: current epoch :param num_train_samples: total number of samples in train_loader :param no_acc_eval (bool): accuray eval in model training :return: """ info = {} losses = AverageMeter('Loss ', ':6.4g') top1 = AverageMeter('Acc@1 ', ':6.2f') top5 = AverageMeter('Acc@5 ', ':6.2f') # switch to train mode model.train() lr_scheduler = global_utils.LearningRateScheduler(mode=opt.lr_mode, lr=opt.lr, num_training_instances=num_train_samples, target_lr=opt.target_lr, stop_epoch=opt.epochs, warmup_epoch=opt.warmup, stage_list=opt.lr_stage_list, stage_decay=opt.lr_stage_decay) lr_scheduler.update_lr(batch_size=epoch * num_train_samples) optimizer.zero_grad() batches_per_allreduce_count = 0 for i, (input_, target) in enumerate(train_loader): if not opt.independent_training: lr_scheduler.update_lr(batch_size=input_.shape[0] * opt.world_size) else: lr_scheduler.update_lr(batch_size=input_.shape[0]) current_lr = lr_scheduler.get_lr() for param_group in optimizer.param_groups: param_group['lr'] = current_lr * opt.batches_per_allreduce bool_label_smoothing = False bool_mixup = False if not opt.dist_mode == 'cpu': input_ = input_.cuda(opt.gpu, non_blocking=True) target = target.cuda(opt.gpu, non_blocking=True) transformed_target = target with torch.no_grad(): if hasattr(opt, 'label_smoothing') and opt.label_smoothing: bool_label_smoothing = True if hasattr(opt, 'mixup') and opt.mixup: bool_mixup = True if bool_label_smoothing and not bool_mixup: transformed_target = one_hot(target, num_classes=opt.num_classes, smoothing_eps=0.1) if not bool_label_smoothing and bool_mixup: transformed_target = one_hot(target, num_classes=opt.num_classes) input_, transformed_target = mixup(input_, transformed_target) if bool_label_smoothing and bool_mixup: transformed_target = one_hot(target, num_classes=opt.num_classes, smoothing_eps=0.1) input_, transformed_target = mixup(input_, transformed_target) # compute output output = model(input_) model_saved = model.module if hasattr(model, 'module') else model logit_loss = criterion(output, transformed_target) ts_feature_loss, ts_logit_loss = model_saved.compute_ts_distill_loss() loss = logit_loss + opt.teacher_feature_weight * ts_feature_loss + opt.teacher_logit_weight * ts_logit_loss # measure accuracy and record loss input_size = int(input_.size(0)) if not no_acc_eval: # pylint: disable=unbalanced-tuple-unpacking acc1, acc5 = accuracy(output.data, target, topk=(1, 5)) top1.update(float(acc1[0]), input_size) top5.update(float(acc5[0]), input_size) else: acc1 = [0] acc5 = [0] losses.update(float(loss), input_size) if opt.apex: if opt.dist_mode == 'horovod': if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.zero_grad() batches_per_allreduce_count = 0 with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() batches_per_allreduce_count += 1 if opt.grad_clip is not None: torch.nn.utils.clip_grad_value_(model_saved.parameters(), opt.grad_clip) if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.synchronize() with optimizer.skip_synchronize(): optimizer.step() else: # if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.zero_grad() batches_per_allreduce_count = 0 with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() if opt.grad_clip is not None: torch.nn.utils.clip_grad_value_(model_saved.parameters(), opt.grad_clip) # if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.step() else: if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.zero_grad() batches_per_allreduce_count = 0 loss.backward() batches_per_allreduce_count += 1 if opt.grad_clip is not None: torch.nn.utils.clip_grad_value_(model_saved.parameters(), opt.grad_clip) if batches_per_allreduce_count >= opt.batches_per_allreduce: optimizer.step() if i % opt.print_freq == 0: print( f'<rank {opt.rank}> Train epoch={epoch}, i={i}, loss={float(loss):4g}, \ logit_loss={float(logit_loss):4g}, ts_feature_loss={float(ts_feature_loss):4g}, \ ts_logit_loss={float(ts_logit_loss):4g}, \ acc1={float(acc1[0]):4g}%, acc5={float(acc5[0]):4g}%, lr={current_lr:4g}') top1_acc_avg = top1.avg top5_acc_avg = top5.avg losses_acc_avg = losses.avg # if distributed, sync if opt.dist_mode == 'horovod' and (not opt.independent_training): sync_tensor = torch.tensor([top1.sum, top1.count, top5.sum, top5.count, losses.sum, losses.count], dtype=torch.float32) hvd.allreduce(sync_tensor, name='sync_tensor_topk_acc') top1_acc_avg = (sync_tensor[0] / sync_tensor[1]).item() top5_acc_avg = (sync_tensor[2] / sync_tensor[3]).item() losses_acc_avg = (sync_tensor[4] / sync_tensor[5]).item() elif opt.dist_mode == 'apex' and opt.distributed: sync_tensor = torch.tensor([top1.sum, top1.count, top5.sum, top5.count, losses.sum, losses.count], dtype=torch.float32).cuda() dist.all_reduce(sync_tensor, op=dist.ReduceOp.SUM) top1_acc_avg = (sync_tensor[0] / sync_tensor[1]).item() top5_acc_avg = (sync_tensor[2] / sync_tensor[3]).item() losses_acc_avg = (sync_tensor[4] / sync_tensor[5]).item() else: pass info['losses_acc'] = losses_acc_avg info['top1_acc'] = top1_acc_avg info['top5_acc'] = top5_acc_avg return info
5b5efd1292322090abcb795fc633638f478f0afa
3,656,654
import datetime def Write(Variable, f): """Function to Convert None Strings to Strings and Format to write to file with ,""" if isinstance(Variable, str) == False: if isinstance(Variable, datetime.datetime) == True: return f.write(f"{Variable.strftime('%Y-%m-%d')},") else: Variable = round(Variable, 2) return f.write(f"{str(Variable)},") elif isinstance(Variable, str) == True: return f.write(f"{(Variable)},")
9963c4117c7cc3f19d91331ed6c36e5733cffb56
3,656,655
def graphs_infos(): """ Build and return a JSON file containing some information on all the graphs. The json file is built with the following format: [ For each graph in the database : { 'graph_id': the id of the graph, 'name': the name of the graph, 'iso': the string 'true' or 'false' depending if the graph belongs to J or not } ] :return: a JSON file containing some information on all the graphs. """ return jsonify(gdb.get_graph_infos())
ab6fee49188ad422e1e3a5e2763510ae791a840b
3,656,656
def collect_compare(left, right): """ returns a tuple of four lists describing the file paths that have been (in order) added, removed, altered, or left the same """ return collect_compare_into(left, right, [], [], [], [])
2a29d7b896fb037a8784e7c82794d9b67eb2924a
3,656,657
def _get_smallest_vectors(supercell, primitive, symprec): """ shortest_vectors: Shortest vectors from an atom in primitive cell to an atom in supercell in the fractional coordinates. If an atom in supercell is on the border centered at an atom in primitive and there are multiple vectors that have the same distance and different directions, several shortest vectors are stored. The multiplicity is stored in another array, "multiplicity". [atom_super, atom_primitive, multiple-vectors, 3] multiplicity: Number of multiple shortest vectors (third index of "shortest_vectors") [atom_super, atom_primitive] """ p2s_map = primitive.get_primitive_to_supercell_map() size_super = supercell.get_number_of_atoms() size_prim = primitive.get_number_of_atoms() shortest_vectors = np.zeros((size_super, size_prim, 27, 3), dtype='double') multiplicity = np.zeros((size_super, size_prim), dtype='intc') reduced_bases = get_reduced_bases(supercell.get_cell(), symprec) reduced_bases_inv = np.linalg.inv(reduced_bases) primitive_lattice = primitive.get_cell() primitive_lattice_inv = np.linalg.inv(primitive_lattice) # matrix that converts fractional positions in the reduced bases into # fractional positions in the primitive lattice supercell_to_primitive_frac = reduced_bases.dot(primitive_lattice_inv) # all positions are reduced into the cell formed by the reduced bases supercell_fracs = np.dot(supercell.get_positions(), reduced_bases_inv) supercell_fracs -= np.rint(supercell_fracs) for s_index, s_pos in enumerate(supercell_fracs): # run in supercell for j, p_index in enumerate(p2s_map): # run in primitive p_pos = supercell_fracs[p_index] # find smallest vectors equivalent under the supercell lattice vectors = _get_equivalent_smallest_vectors_simple(s_pos - p_pos, reduced_bases, symprec) # return primitive-cell-fractional vectors rather than supercell-fractional vectors = [np.dot(v, supercell_to_primitive_frac) for v in vectors] multiplicity[s_index][j] = len(vectors) for k, elem in enumerate(vectors): shortest_vectors[s_index][j][k] = elem return shortest_vectors, multiplicity
352d4e7ba9552fa4fe5abdb9eb45c4555dff603d
3,656,658
def root(): """Root endpoint that only checks if the server is running.""" return 'Server is running...'
ea9ecd1c736e9379795f361462ed54f464a4008b
3,656,659
def clone_model(model, **new_values): """Clones the entity, adding or overriding constructor attributes. The cloned entity will have exactly the same property values as the original entity, except where overridden. By default, it will have no parent entity or key name, unless supplied. Args: model: datastore_services.Model. Model to clone. **new_values: dict(str: *). Keyword arguments to override when invoking the cloned entity's constructor. Returns: datastore_services.Model. A cloned, and possibly modified, copy of self. Subclasses of BaseModel will return a clone with the same type. """ # Reference implementation: https://stackoverflow.com/a/2712401/4859885. cls = model.__class__ model_id = new_values.pop('id', model.id) props = {k: v.__get__(model, cls) for k, v in cls._properties.items()} # pylint: disable=protected-access props.update(new_values) return cls(id=model_id, **props)
ed668632c8917ad685b86fb5c71146be7c9b3b96
3,656,660
def learn_laterals(frcs, bu_msg, perturb_factor, use_adjaceny_graph=False): """Given the sparse representation of each training example, learn perturbation laterals. See train_image for parameters and returns. """ if use_adjaceny_graph: graph = make_adjacency_graph(frcs, bu_msg) graph = adjust_edge_perturb_radii(frcs, graph, perturb_factor=perturb_factor) else: graph = nx.Graph() graph.add_nodes_from(range(frcs.shape[0])) graph = add_underconstraint_edges(frcs, graph, perturb_factor=perturb_factor) graph = adjust_edge_perturb_radii(frcs, graph, perturb_factor=perturb_factor) edge_factors = np.array( [(edge_source, edge_target, edge_attrs['perturb_radius']) for edge_source, edge_target, edge_attrs in graph.edges_iter(data=True)]) return graph, edge_factors
68333bca0fc3231470268ece6478b372767a6648
3,656,661
def get_info(ingest_ldd_src_dir): """Get LDD version and namespace id.""" # look in src directory for ingest LDD ingest_ldd = find_primary_ingest_ldd(ingest_ldd_src_dir) # get ingest ldd version tree = ETree.parse(ingest_ldd[0]) root = tree.getroot() ldd_version = root.findall(f'.//{{{PDS_NS}}}ldd_version_id')[0].text ns_id = root.findall(f'.//{{{PDS_NS}}}namespace_id')[0].text return ingest_ldd, ns_id, ldd_version
92c4d6f8f18c4204d2a8483584b6f1409d9ee243
3,656,662
def generate_tfidf(corpus_df, dictionary): """Generates TFIDF matrix for the given corpus. Parameters ---------- corpus_df : pd.DataFrame The corpus dataframe. dictionary : gensim.corpora.dictionary.Dictionary Dictionary defining the vocabulary of the TFIDF. Returns ------- X : np.ndarray TFIDF matrix with documents as rows and vocabulary as the columns. """ tfidf_model = TfidfModel( corpus_df.bag_of_words.apply(lambda x: dictionary.doc2bow(x))) model = tfidf_model[ corpus_df.bag_of_words.apply(lambda x: dictionary.doc2bow(x))] X = corpus2csc(model, len(dictionary)).T return X
6c5cd6b569010c69b446223a099cfd745d51ce6c
3,656,663
from typing import Tuple from typing import Optional import torch def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True return mask
8ecd84ca805112312d43bd8ba3f4c0aa3918800d
3,656,665
from typing import Optional from typing import List from typing import Dict from typing import Any def fetch_data( property: Property, start_date: dt.date, *, end_date: Optional[dt.date] = None, dimensions: Optional[List[Dimension]] = None, ) -> List[Dict[str, Any]]: """Query Google Search Console API for data. Args: property (Property): Property to request data for. start_date (dt.date): Earliest day to request information for. end_date (Optional[dt.date]): Latest day to request information for. Default to ``None``. Will be set to ``start_date`` if ``None``. dimensions (Optional[List[Dimension]], optional): Dimensions to request from API. Defaults to ``None``. Will be set to ``["page", "device"]`` if ``None``. Returns: List[Dict[str, Any]]: Response from API. """ if end_date is None: end_date = start_date if dimensions is None: dimensions = ["page", "device"] results = [] start_row = 0 ROW_LIMIT = 25000 while True: request = { "startDate": start_date.isoformat(), "endDate": end_date.isoformat(), "dimensions": dimensions, "rowLimit": ROW_LIMIT, "startRow": start_row, "dataState": "all", } response = ( searchconsole_service.searchanalytics() .query(siteUrl=property.url, body=request) .execute() ) start_row += ROW_LIMIT result = response.get("rows", []) results.extend(result) if len(result) == 0: break return results
cb871f6e269005db9a338c4bf75949b8ba9ea04a
3,656,667
def inport(port_type, disconnected_value): """Marks this field as an inport""" assert port_type in port_types, \ "Got %r, expected one of %s" % (port_type, port_types) tag = "inport:%s:%s" % (port_type, disconnected_value) return tag
a9335d99b65a4944ef58f06b90f8978e7478ec13
3,656,669
def _empty_aggregate(*args: npt.ArrayLike, **kwargs) -> npt.ArrayLike: """Return unchaged array.""" return args[0]
c7f6ebc345517b10a3b65c5ac0f0bf060cdf7634
3,656,671
def kfpartial(fun, *args, **kwargs): """ Allows to create partial functions with arbitrary arguments/keywords """ return partial(keywords_first(fun), *args, **kwargs)
7f7dbbdf484e36c2734e47b448f081812cb8a326
3,656,672
def power_state_update(system_id, state): """Report to the region about a node's power state. :param system_id: The system ID for the node. :param state: Typically "on", "off", or "error". """ client = getRegionClient() return client( UpdateNodePowerState, system_id=system_id, power_state=state)
b05730fe9e45b3ee81adb7e8047b0b87e3bf7556
3,656,673
from typing import Any def build_post307_request(*, json: Any = None, content: Any = None, **kwargs: Any) -> HttpRequest: """Post redirected with 307, resulting in a 200 after redirect. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword json: Pass in a JSON-serializable object (usually a dictionary). See the template in our example to find the input shape. Simple boolean value true. :paramtype json: any :keyword content: Pass in binary content you want in the body of the request (typically bytes, a byte iterator, or stream input). Simple boolean value true. :paramtype content: any :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest Example: .. code-block:: python # JSON input template you can fill out and use as your body input. json = True # Optional. Default value is True. """ content_type = kwargs.pop("content_type", None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", "/http/redirect/307") # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="POST", url=url, headers=header_parameters, json=json, content=content, **kwargs)
2c26cfed95a33fe700b83d7e1fa4eb93ef312721
3,656,674
def rm_ssp_storage(ssp_wrap, lus, del_unused_images=True): """Remove some number of LogicalUnits from a SharedStoragePool. The changes are flushed back to the REST server. :param ssp_wrap: SSP EntryWrapper representing the SharedStoragePool to modify. :param lus: Iterable of LU ElementWrappers or LUEnt EntryWrappers representing the LogicalUnits to delete. :param del_unused_images: If True, and a removed Disk LU was the last one linked to its backing Image LU, the backing Image LU is also removed. :return: The (possibly) modified SSP wrapper. """ if _rm_lus(ssp_wrap.logical_units, lus, del_unused_images=del_unused_images): # Flush changes ssp_wrap = ssp_wrap.update() return ssp_wrap
0c61becd8f9e23ac269ef0546abb0857facd89de
3,656,675
def urp_detail_view(request, pk): """Renders the URP detail page """ urp = get_object_or_404(URP, pk=pk) ctx = { 'urp': urp, } # if user is logged in as a student, check if user has already applied if request.user.is_authenticated: if request.user.uapuser.is_student: ctx['applied'] = Application.objects.filter(applicant=request.user, urp=urp).exists() else: ctx['applied'] = True return render(request, 'post/urp_detail.html', context=ctx)
15e7e86cf2e47bccda52682bdf205e43d8a03f5f
3,656,676
import functools def squeeze_excite(input_name, squeeze_factor): """Returns a squeeze-excite block.""" ops = [] append = functools.partial(append_op, ops) append(op_name="se/pool0", op_type=OpType.AVG_POOL, input_kwargs={"window_shape": 0}, input_names=[input_name]) append(op_name="se/dense1", op_type=OpType.DENSE, op_kwargs={"features": f"S:-1%{squeeze_factor}"}) append(op_name="se/swish2", op_type=OpType.SWISH) append(op_name="se/dense3", op_type=OpType.DENSE, op_kwargs={"features": f"S:-1*{squeeze_factor}"}) append(op_name="se/sigmoid4", op_type=OpType.SIGMOID) append(op_name="se/mul5", op_type=OpType.MUL, input_names=[input_name, ops[-1].name]) return ops
907acc7f31db9ab4d70f976320fdd779b66b7160
3,656,677
def get_code_v2(fl = r'C:\Users\bogdan\code_seurat\WholeGenome_MERFISH\Coordinates_code_1000region.csv'): """ Given a .csv file with header this returns 2 dictionaries: tad_to_PR,PR_to_tad """ lst = [(ln[:-1].split(',')[0].replace('__','_'),['R'+R for R in ln[:-1].split(',')[3].split('--')]) for ln in open(fl,'r')][1:] tad_to_PR = dict(lst) PR_to_tad = {Rs_to_Rnm(Rs):nm for nm,Rs in lst} return tad_to_PR,PR_to_tad
f5a9e1bbd1f404819a700ee43cff826333ce736c
3,656,678
from funcs.modeling_funcs import modeling_settings, generate_observation_ensemble def run_source_lsq(vars, vs_list=vs_list): """ Script used to run_source and return the output file. The function is called by AdaptiveLejaPCE. """ print('Read Parameters') parameters = pd.read_csv('../data/Parameters-PCE.csv', index_col='Index') # Define objective functions # Use annual or monthly loads def timeseries_sum(df, temp_scale = 'annual'): """ Obtain the sum of timeseries of different temporal scale. temp_scale: str, default is 'Y', monthly using 'M' """ assert temp_scale in ['monthly', 'annual'], 'The temporal scale given is not supported.' if temp_scale == 'monthly': sum_126001A = df.resample('M').sum() else: month_126001A = df.resample('M').sum() sum_126001A = pd.DataFrame(index = np.arange(df.index[0].year, df.index[-1].year), columns=df.columns) for i in range(sum_126001A.shape[0]): sum_126001A.iloc[i, :] = month_126001A.iloc[i*12: (i+1)*12, :].sum() return sum_126001A # End timeseries_sum() # import observation if the output.txt requires the use of obs. date_range = pd.to_datetime(['2017/07/01', '2018/06/30']) observed_din = pd.read_csv(f'{file_settings()[1]}126001A.csv', index_col='Date') observed_din.index = pd.to_datetime(observed_din.index) observed_din = observed_din.loc[date_range[0]:date_range[1], :].filter(items=[observed_din.columns[0]]).apply(lambda x: 1000 * x) # loop over the vars and try to use parallel parameter_df = pd.DataFrame(index=np.arange(vars.shape[1]), columns=parameters.Name_short) for i in range(vars.shape[1]): parameter_df.iloc[i] = vars[:, i] # set the time period of the results retrieve_time = [pd.Timestamp('2017-07-01'), pd.Timestamp('2018-06-30')] # define the modeling period and the recording variables _, _, criteria, start_date, end_date = modeling_settings() din = generate_observation_ensemble(vs_list, criteria, start_date, end_date, parameter_df, retrieve_time) # obtain the sum at a given temporal scale # din_pbias = sp.objectivefunctions.pbias(observed_din[observed_din.columns[0]], din[column_names[0]]) din_126001A = timeseries_sum(din, temp_scale = 'annual') obs_din = timeseries_sum(observed_din, temp_scale = 'annual') din_126001A = pd.DataFrame(din_126001A,dtype='float') obs_din = pd.DataFrame(obs_din,dtype='float') resid = (obs_din - din_126001A).values lsq = np.sum(resid ** 2, axis=0) lsq = lsq.reshape(lsq.shape[0], 1) print(f'Finish {lsq.shape[0]} run') return lsq
e43679a0808108560714e32def9399ce45a6bd8e
3,656,679
def finnegans_wake_unicode_chars(): """Data fixture that returns a string of all unicode characters in Finnegan's Wake.""" return '¤·àáãéìóôþŒŠŸˆ–—‘’‚“”‡…‹'
78205c9181545544a61ef1eab6c2f51d212dac13
3,656,680
def kit(): # simpler version """Open communication with the dev-kit once for all tests.""" return usp.Devkit()
3001cbfeaf212e9a09e512c102eae6bffa263375
3,656,682
def givens_rotation(A): """Perform QR decomposition of matrix A using Givens rotation.""" (num_rows, num_cols) = np.shape(A) # Initialize orthogonal matrix Q and upper triangular matrix R. Q = np.identity(num_rows) R = np.copy(A) # Iterate over lower triangular matrix. (rows, cols) = np.tril_indices(num_rows, -1, num_cols) for (row, col) in zip(rows, cols): # Compute Givens rotation matrix and # zero-out lower triangular matrix entries. if R[row, col] != 0: (c, s) = _givens_rotation_matrix_entries(R[col, col], R[row, col]) G = np.identity(num_rows) G[[col, row], [col, row]] = c G[row, col] = s G[col, row] = -s R = np.dot(G, R) Q = np.dot(Q, G.T) return (Q, R)
207cadc90c7c4aab76c7422d314b5470ce17251a
3,656,683
from typing import Union from pathlib import Path from typing import Optional import json def lex_from_str( *, in_str: Union[str, Path], grammar: str = "standard", ir_file: Optional[Union[str, Path]] = None, ) -> JSONDict: """Run grammar of choice on input string. Parameters ---------- in_str : Union[str, Path] The string to be parsed. grammar : str Grammar to be used. Defaults to "standard". ir_file : Optional[Union[str, Path]] File to write intermediate representation to (JSON format). None by default, which means file is not written out. Returns ------- The contents of the input string as a dictionary. Raises ------ :exc:`ParselglossyError` """ try: lexer = dispatch_grammar(grammar) except KeyError: raise ParselglossyError(f"Grammar {grammar} not available.") ir = parse_string_to_dict(lexer, in_str) if ir_file is not None: ir_file = path_resolver(ir_file) with ir_file.open("w") as out: json.dump(ir, out, cls=ComplexEncoder, indent=4) return ir
5416bd56426012c56050a0dba2835385fa4177e5
3,656,684
def e() -> ProcessBuilder: """ Euler's number (e) :return: The numerical value of Euler's number. """ return process('e', )
f984b5de5a0b95109c9ec2fe5a2b30c880226b28
3,656,685
def get_or_create_anonymous_cart_from_token(token, cart_queryset=Cart.objects.all()): """Returns open anonymous cart with given token or creates new. :type cart_queryset: saleor.cart.models.CartQueryset :type token: string :rtype: Cart """ return cart_queryset.open().filter(token=token, user=None).get_or_create( defaults={'user': None})[0]
8ffb1f64b77c97b260502f1d4c689e3a4edc4f36
3,656,686
from typing import Any def accept_data(x: Any) -> Any: """Accept any types of data and return it as convenient type. Args: x: Any type of data. Returns: Any: Accepted data. """ if isinstance(x, str): return x elif isinstance(x, list): return x elif isinstance(x, dict): return x elif isinstance(x, tuple): return x elif isinstance(x, set): return x elif isinstance(x, float): return x elif isinstance(x, int): return x elif isinstance(x, bool): return x elif isinstance(x, type(None)): return x else: return x
9862995eafb7015fc446466e2dbb7774be39f54b
3,656,688
def custom_model_template(model_type: str, target: str, result0: str, result1: str) -> str: """Template for feature behaviour reason generated from DICE Returns: str: behaviour """ if model_type == 'classifier': tipo = 'category' elif model_type == 'regressor': tipo = 'continuous' behaviour = get_behaviour(tipo = tipo, result0 = result0, result1 = result1) phrase = generic_type_template(tipo = tipo, name = target, behaviour = behaviour, result0 = result0, result1 = result1) result = color.BLUE + f" the output of the model {phrase}." + color.END return result
bbd43a462f6d9d65984dbd242c7fe8a5d2be5e39
3,656,689
def merge_dict_list(merged, x): """ merge x into merged recursively. x is either a dict or a list """ if type(x) is list: return merged + x for key in x.keys(): if key not in merged.keys(): merged[key] = x[key] elif x[key] is not None: merged[key] = merge_dict_list(merged[key], x[key]) return merged
00685be39a0b1447c81ecd8de777ebab38aa9bfe
3,656,690
def is_ref(variant, exclude_alleles=None): """Returns true if variant is a reference record. Variant protos can encode sites that aren't actually mutations in the sample. For example, the record ref='A', alt='.' indicates that there is no mutation present (i.e., alt is the missing value). Args: variant: nucleus.genomics.v1.Variant. exclude_alleles: list(str). The alleles in this list will be ignored. Returns: True if there are no actual alternate alleles. """ relevant_alts = _non_excluded_alts(variant.alternate_bases, exclude_alleles) return not relevant_alts
2c762bbf070f375b546f0902e3567ca5542cc774
3,656,691
def gomc_sim_completed_properly(job, control_filename_str): """General check to see if the gomc simulation was completed properly.""" job_run_properly_bool = False output_log_file = "out_{}.dat".format(control_filename_str) if job.isfile(output_log_file): # with open(f"workspace/{job.id}/{output_log_file}", "r") as fp: with open(f"{output_log_file}", "r") as fp: out_gomc = fp.readlines() for i, line in enumerate(out_gomc): if "Move" in line: split_move_line = line.split() if ( split_move_line[0] == "Move" and split_move_line[1] == "Type" and split_move_line[2] == "Mol." and split_move_line[3] == "Kind" ): job_run_properly_bool = True else: job_run_properly_bool = False return job_run_properly_bool
20635ba94b5176298216ad5807e6428a5fb957c2
3,656,692
from typing import Union from typing import Optional def rv_precision( wavelength: Union[Quantity, ndarray], flux: Union[Quantity, ndarray], mask: Optional[ndarray] = None, **kwargs, ) -> Quantity: """Calculate the theoretical RV precision achievable on a spectrum. Parameters ---------- wavelength: array-like or Quantity Wavelength of spectrum. flux: array-like or Quantity Flux of spectrum. mask: array-like, Quantity or None Masking function array to apply to the pixel weights. kwargs: Kwargs for sqrt_sum_wis Returns ------- RVrms: astropy.Quantity Radial velocity precision of spectra in m/s. """ return c / sqrt_sum_wis(wavelength, flux, mask=mask, **kwargs)
91d6a741d992bd915549becd371d29b6634b92ef
3,656,693
def changenonetoNone(s): """Convert str 'None' to Nonetype """ if s=='None': return None else: return s
9f6af1580d8b47d2a7852e433f7ba8bbd5c7044d
3,656,694
def quaternion_2_rotation_matrix(q): """ 四元数转化为旋转矩阵 :param q: :return: 旋转矩阵 """ rotation_matrix = np.array([[np.square(q[0]) + np.square(q[1]) - np.square(q[2]) - np.square(q[3]), 2 * (q[1] * q[2] - q[0] * q[3]), 2 * (q[1] * q[3] + q[0] * q[2])], [2 * (q[1] * q[2] + q[0] * q[3]), np.square(q[0]) - np.square(q[1]) + np.square(q[2]) - np.square(q[3]), 2 * (q[2] * q[3] - q[0] * q[1])], [2 * (q[1] * q[3] - q[0] * q[2]), 2 * (q[2] * q[3] + q[0] * q[1]), np.square(q[0]) - np.square(q[1]) - np.square(q[2]) + np.square(q[3])]], dtype=np.float32) return rotation_matrix
f2e420a1e0b6838fb2ce5f9288842e1ae39134c9
3,656,695
def sum(mat, axis, target=None): """ Sum the matrix along the given dimension, where 0 represents the leading dimension and 1 represents the non-leading dimension. If a target is not prvided, a new vector is created for storing the result. """ m = _eigenmat.get_leading_dimension(mat.p_mat) n = _eigenmat.get_nonleading_dimension(mat.p_mat) if axis == 0: # sum along leading dimension if not target: target = empty((1, n)) elif axis == 1: # sum along non-leading dimension if not target: target = empty((m, 1)) err_code = _eigenmat.sum_by_axis(mat.p_mat, target.p_mat, ct.c_int(axis)) if err_code: raise generate_exception(err_code) return target
426ba7b2673a52663e04d3c6f07fb2f4e001244b
3,656,696
from datetime import datetime def convert_created_time_to_datetime(datestring): """ Args: datestring (str): a string object either as a date or a unix timestamp Returns: a pandas datetime object """ if len(datestring) == 30: return pd.to_datetime(datestring) else: return pd.to_datetime(datetime.fromtimestamp(int(datestring[:10])))
2559d079b5b7174d192e3a5d9178701ae7080d3b
3,656,697
def identify_word_classes(tokens, word_classes): """ Match word classes to the token list :param list tokens: List of tokens :param dict word_classes: Dictionary of word lists to find and tag with the respective dictionary key :return: Matched word classes :rtype: list """ if word_classes is None: word_classes = [] classes = set() for key in word_classes: for token in tokens: if token.lower() in word_classes[key]: classes.add(key) return classes
ca7aa602d19ac196321af19c42a60df415c7d115
3,656,698
from typing import List from typing import Tuple def find_connecting_stops(routes) -> List[Tuple[Stop, List[Route]]]: """ Find all stops that connect more than one route. Return [Stop, [Route]] """ stops = {} for route in sorted(routes, key=Route.name): for stop in route.stops(): id_ = stop.id() if id_ not in stops: stops[id_] = (stop, []) last(stops[id_]).append(route) return list(filter(lambda p: length(last(p)) > 1, stops.values()))
599e9e5d3fc0a6d0de84a58f1549da9423f35af3
3,656,699
def freeze_loop(src, start, end, loopStart, loopEnd=None): """ Freezes a range of frames form start to end using the frames comprended between loopStart and loopEnd. If no end frames are provided for the range or the loop, start frames will be used instead. """ core = vs.get_core() if loopEnd is None: loopEnd = loopStart if start < 0 or start > src.num_frames - 1: raise ValueError('start frame out of bounds: {}.'.format(start)) if loopStart < 0 or loopStart > src.num_frames - 1: raise ValueError('loop start frame out of bounds: {}.'.format(loopStart)) if end < start or end > src.num_frames - 1: raise ValueError('end frame out of bounds: {}.'.format(end)) if loopEnd < loopStart or loopEnd > src.num_frames - 1: raise ValueError('loop end out of bounds: {}.'.format(loopEnd)) loop = core.std.Loop(src[loopStart:loopEnd + 1], 0) span = end - start + 1 if start != 0: final = src[:start] + loop[:span] else: final = loop[:span] if end < src.num_frames - 1: final = final + src[end + 1:] if src.num_frames != final.num_frames: raise ValueError( 'input / output framecount missmatch (got: {}; expected: {}).'.format( final.num_frames, src.num_frames)) return final
67284a264ada601dbd01c30c1bf32f48ad9eb9d8
3,656,700
def timevalue(cflo, prate, base_date=0, utility=None): """ Computes the equivalent net value of a generic cashflow at time `base_date` using the periodic interest rate `prate`. If `base_date` is 0, `timevalue` computes the net present value of the cashflow. If `base_date` is the index of the last element of `cflo`, this function computes the equivalent future value. Args: cflo (pandas.Series, list of pandas.Series): Generic cashflow. prate (pandas.Series): Periodic interest rate. base_date (int, tuple): Time. utility (function): Utility function. Returns: Float or list of floats. **Examples.** >>> cflo = cashflow([-732.54] + [100]*8, start='2000Q1', freq='Q') >>> prate = interest_rate([2]*9, start='2000Q1', freq='Q') >>> timevalue(cflo, prate) # doctest: +ELLIPSIS 0.00... >>> prate = interest_rate([12]*5, start='2000Q1', freq='Q') >>> cflo = cashflow([-200]+[100]*4, start='2000Q1', freq='Q') >>> timevalue(cflo, prate) # doctest: +ELLIPSIS 103.73... >>> timevalue(cflo, prate, 4) # doctest: +ELLIPSIS 163.22... >>> prate = interest_rate([12]*5, start='2000Q1', freq='Q') >>> cflo = cashflow([-200] + [100]*4, start='2000Q1', freq='Q') >>> timevalue(cflo=cflo, prate=prate) # doctest: +ELLIPSIS 103.73... >>> timevalue(cflo=[cflo, cflo], prate=prate) # doctest: +ELLIPSIS 0 103.734935 1 103.734935 dtype: float64 """ if isinstance(cflo, pd.Series): cflo = [cflo] if not isinstance(prate, pd.Series): raise TypeError("`prate` must be a pandas.Series") verify_period_range(cflo + [prate]) retval = pd.Series([0] * len(cflo), dtype=np.float64) factor = to_discount_factor(prate=prate, base_date=base_date) for index, xcflo in enumerate(cflo): netval = 0 for time, _ in enumerate(xcflo): netval += xcflo[time] * factor[time] retval[index] = netval if len(retval) == 1: return retval[0] return retval
704f6988d1995a8602314df08d1dcfbed549f1ed
3,656,701
def munge(examples, multiplier, prob, loc_var, data_t, seed=0): """ Generates a dataset from the original one :param examples: Training examples :type examples: 2d numpy array :param multiplier: size multiplier :type multiplier: int k :param prob: probability of swapping values :type prob: flt (0 to 1) :param loc_var: local variance parameter :type loc_var: flt :param data_t: Identifies whether or not the attribute is continuous or nominal :type data_t: Numpy array of strs """ np.random.seed(seed) new_dataset = None continuous = [True if x == FeatureType.CONTINUOUS else False for x in data_t] nominal = np.logical_not(continuous) data_c = examples[:, continuous].astype(float) # Scales data linearly from 0 to 1 norm_data_c = normalize(data_c - np.min(data_c, axis=0), axis=0, norm='max') data_n = examples[:, nominal] indicies = nn(norm_data_c, data_n) for i in range(multiplier): T_prime = np.copy(examples) # Runs through all the examples in the dataset for j in range(examples.shape[0]): index = indicies[j, 1] if indicies[j, 0] == j else indicies[j, 0] pt1 = T_prime[j, :] pt2 = T_prime[index, :] # Runs through all features for an example and its nn for k in range(len(data_t)): # Swaps the two fields with probability prob if np.random.ranf() < prob: if data_t[k] == FeatureType.CONTINUOUS: std = abs(float(pt1[k]) - float(pt2[k])) / loc_var temp = float(pt1[k]) pt1[k] = np.random.normal(float(pt2[k]), std) pt2[k] = np.random.normal(temp, std) else: temp = pt1[k] pt1[k] = pt2[k] pt2[k] = temp # Combines the dataset to the final one if new_dataset is None: new_dataset = np.copy(T_prime) else: new_dataset = np.vstack((new_dataset, T_prime)) return new_dataset
339d5cafedb8abd6094cde81004c5056a3830d26
3,656,702
def is_interested_source_code_file(afile): """ If a file is the source code file that we are interested. """ tokens = afile.split(".") if len(tokens) > 1 and tokens[-1] in ("c", "cpp", "pl", "tmpl", "py", "s", "S"): # we care about C/C++/perl/template/python/assembly source code files return True return False
9bd77dc3b530262cc2bf8a32c0d050ea30077030
3,656,703
def recursively_extract(node, exfun, maxdepth=2): """ Transform a html ul/ol tree into a python list tree. Converts a html node containing ordered and unordered lists and list items into an object of lists with tree-like structure. Leaves are retrieved by applying `exfun` function to the html nodes not containing any ul/ol list. Args: node: BeautifulSoup HTML node to traverse exfun: function to apply to every string node found maxdepth: maximal depth of lists to go in the node Returns: A tree-like python object composed of lists. Examples: >>> node_content = \ ''' <ol> <li>Hase</li> <li>Nase<ol><li>Eins</li><li>Zwei</li></ol></li> </ol>''' >>> node = BeautifulSoup(node_content, "lxml") >>> recursively_extract(node, lambda x: x) [<li>Hase</li>, [<li>Eins</li>, <li>Zwei</li>]] >>> recursively_extract(node, lambda x: x.get_text()) ['Hase', ['Eins', 'Zwei']] """ if node.name in ['ol', 'ul']: lilist = node else: lilist = node.ol or node.ul if lilist and maxdepth: # apply 'recursively_extract' to every 'li' node found under this node return [recursively_extract(li, exfun, maxdepth=(maxdepth - 1)) for li in lilist.find_all('li', recursive=False)] # if this node doesn't contain 'ol' or 'ul' node, return the transformed # leaf (using the 'exfun' function) return exfun(node)
cc5732a786579172dda31958ad2bd468a4feef81
3,656,705
import math def group_v2_deconv_decoder(latent_tensor, output_shape, hy_ncut=1, group_feats_size=gin.REQUIRED, lie_alg_init_scale=gin.REQUIRED, lie_alg_init_type=gin.REQUIRED, n_act_points=gin.REQUIRED, is_training=True): """Convolutional decoder used in beta-VAE paper for the chairs data. Based on row 3 of Table 1 on page 13 of "beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework" (https://openreview.net/forum?id=Sy2fzU9gl) Here we add an extra linear mapping for group features extraction. Args: latent_tensor: Input tensor of shape (batch_size,) to connect decoder to. output_shape: Shape of the data. group_feats_size: The dimension of group features. is_training: Whether or not the graph is built for training (UNUSED). Returns: Output tensor of shape (batch_size, 64, 64, num_channels) with the [0,1] pixel intensities. group_feats: Group features. """ # del is_training lie_alg_basis_ls = [] latent_dim = latent_tensor.get_shape().as_list()[-1] latents_in_cut_ls = split_latents(latent_tensor, hy_ncut=hy_ncut) # [x0, x1] mat_dim = int(math.sqrt(group_feats_size)) for i in range(latent_dim): init = tf.initializers.random_normal(0, lie_alg_init_scale) lie_alg_tmp = tf.get_variable('lie_alg_' + str(i), shape=[1, mat_dim, mat_dim], initializer=init) if lie_alg_init_type == 'oth': lie_alg_tmp = tf.matrix_band_part(lie_alg_tmp, 0, -1) lie_alg_tmp = lie_alg_tmp - tf.transpose(lie_alg_tmp, perm=[0, 2, 1]) lie_alg_basis_ls.append(lie_alg_tmp) lie_alg_basis = tf.concat(lie_alg_basis_ls, axis=0)[tf.newaxis, ...] # [1, lat_dim, mat_dim, mat_dim] lie_alg = 0 lie_group = tf.eye(mat_dim, dtype=lie_alg_basis_ls[0].dtype)[tf.newaxis, ...] for i, lie_alg_basis_i in enumerate(lie_alg_basis_ls): lie_alg_tmp = lie_alg_basis_i * latent_tensor[:, i][..., tf.newaxis, tf.newaxis] lie_alg = lie_alg + lie_alg_tmp lie_group_tmp = tf.linalg.expm( lie_alg_tmp) # [b, mat_dim, mat_dim] lie_group = tf.matmul(lie_group_tmp, lie_group) # if not is_training: # lie_alg_mul = latent_tensor[ # ..., tf.newaxis, tf. # newaxis] * lie_alg_basis # [b, lat_dim, mat_dim, mat_dim] # lie_alg = tf.reduce_sum(lie_alg_mul, axis=1) # [b, mat_dim, mat_dim] # lie_group = tf.linalg.expm(lie_alg) # [b, mat_dim, mat_dim] # else: # lie_group = tf.eye( # mat_dim, # dtype=latents_in_cut_ls[0].dtype)[tf.newaxis, ...] # lie_alg = 0 # for latents_in_cut_i in latents_in_cut_ls: # lie_alg_mul_tmp = latents_in_cut_i[ # ..., tf.newaxis, tf.newaxis] * lie_alg_basis # [b, lat_dim, mat_dim, mat_dim] # lie_alg_tmp = tf.reduce_sum( # lie_alg_mul_tmp, # axis=1) # [b, mat_dim, mat_dim] # lie_alg = lie_alg + lie_alg_tmp # lie_group_tmp = tf.linalg.expm( # lie_alg_tmp) # [b, mat_dim, mat_dim] # lie_group = tf.matmul(lie_group, # lie_group_tmp) transed_act_points_tensor = tf.reshape(lie_group, [-1, mat_dim * mat_dim]) # lie_alg_mul = latent_tensor[ # ..., tf.newaxis, tf. # newaxis] * lie_alg_basis # [b, lat_dim, mat_dim, mat_dim] # lie_alg = tf.reduce_sum(lie_alg_mul, axis=1) # [b, mat_dim, mat_dim] # lie_group = tf.linalg.expm(lie_alg) # [b, mat_dim, mat_dim] # act_init = tf.initializers.random_normal(0, 0.01) # act_points = tf.get_variable('act_points', # shape=[1, mat_dim, n_act_points], # initializer=act_init) # transed_act_points = tf.matmul(lie_group, act_points) # transed_act_points_tensor = tf.reshape(transed_act_points, # [-1, mat_dim * n_act_points]) d1 = tf.layers.dense(transed_act_points_tensor, 256, activation=tf.nn.relu) d2 = tf.layers.dense(d1, 1024, activation=tf.nn.relu) d2_reshaped = tf.reshape(d2, shape=[-1, 4, 4, 64]) d3 = tf.layers.conv2d_transpose( inputs=d2_reshaped, filters=64, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", ) d4 = tf.layers.conv2d_transpose( inputs=d3, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", ) d5 = tf.layers.conv2d_transpose( inputs=d4, filters=32, kernel_size=4, strides=2, activation=tf.nn.relu, padding="same", ) d6 = tf.layers.conv2d_transpose( inputs=d5, filters=output_shape[2], kernel_size=4, strides=2, padding="same", ) return tf.reshape(d6, [-1] + output_shape), lie_group, lie_alg_basis
c098852a7d3e85be944494de74810e021d7fd106
3,656,706
def UncertaintyLossNet(): """Creates Uncertainty weighted loss model https://arxiv.org/abs/1705.07115 """ l1 = layers.Input(shape=()) l2 = layers.Input(shape=()) loss = UncertaintyWeightedLoss()([l1, l2]) model = Model(inputs=[l1, l2], outputs=loss) return model
5a6553edc321a6e307848e261692541cedea4ebb
3,656,708
from typing import Iterable import logging from pathlib import Path def inject_signals( frame_files: Iterable[str], channels: [str], ifos: [str], prior_file: str, n_samples: int, outdir: str, fmin: float = 20, waveform_duration: float = 8, snr_range: Iterable[float] = [25, 50], ): """Injects simulated BBH signals into a frame, or set of corresponding frames from different interferometers. Frames should have the same start/stop time and the same sample rate Args: frame_files: list of paths to frames to be injected channels: channel names of the strain data in each frame ifos: list of interferometers corresponding to frames, e.g., H1, L1 prior_file: prior file for bilby to sample from n_samples: number of signal to inject outdir: output directory to which injected frames will be written fmin: Minimum frequency for highpass filter waveform_duration: length of injected waveforms snr_range: desired signal SNR range Returns: Paths to the injected frames and the parameter file """ strains = [ TimeSeries.read(frame, ch) for frame, ch in zip(frame_files, channels) ] logging.info("Read strain from frame files") span = set([strain.span for strain in strains]) if len(span) != 1: raise ValueError( "Frame files {} and {} have different durations".format( *frame_files ) ) frame_start, frame_stop = next(iter(span)) frame_duration = frame_stop - frame_start sample_rate = set([int(strain.sample_rate.value) for strain in strains]) if len(sample_rate) != 1: raise ValueError( "Frame files {} and {} have different sample rates".format( *frame_files ) ) sample_rate = next(iter(sample_rate)) fftlength = int(max(2, np.ceil(2048 / sample_rate))) # set the non-overlapping times of the signals in the frames randomly # leaves buffer at either end of the series so edge effects aren't an issue signal_times = sorted( np.random.choice( np.arange( waveform_duration, frame_duration - waveform_duration, waveform_duration, ), size=n_samples, replace=False, ) ) # log and print out some simulation parameters logging.info("Simulation parameters") logging.info("Number of samples : {}".format(n_samples)) logging.info("Sample rate [Hz] : {}".format(sample_rate)) logging.info("High pass filter [Hz] : {}".format(fmin)) logging.info("Prior file : {}".format(prior_file)) # define a Bilby waveform generator waveform_generator = bilby.gw.WaveformGenerator( duration=waveform_duration, sampling_frequency=sample_rate, frequency_domain_source_model=lal_binary_black_hole, parameter_conversion=convert_to_lal_binary_black_hole_parameters, waveform_arguments={ "waveform_approximant": "IMRPhenomPv2", "reference_frequency": 50, "minimum_frequency": 20, }, ) # sample GW parameters from prior distribution priors = bilby.gw.prior.BBHPriorDict(prior_file) sample_params = priors.sample(n_samples) sample_params["geocent_time"] = signal_times signals_list = [] snr_list = [] for strain, channel, ifo in zip(strains, channels, ifos): # calculate the PSD strain_psd = strain.psd(fftlength) # generate GW waveforms raw_signals = generate_gw( sample_params, waveform_generator=waveform_generator, ) signals, snr = project_raw_gw( raw_signals, sample_params, waveform_generator, ifo, get_snr=True, noise_psd=strain_psd, ) signals_list.append(signals) snr_list.append(snr) old_snr = np.sqrt(np.sum(np.square(snr_list), axis=0)) new_snr = np.random.uniform(snr_range[0], snr_range[1], len(snr_list[0])) signals_list = [ signals * (new_snr / old_snr)[:, None] for signals in signals_list ] sample_params["luminosity_distance"] = ( sample_params["luminosity_distance"] * old_snr / new_snr ) snr_list = [snr * new_snr / old_snr for snr in snr_list] outdir = Path(outdir) frame_out_paths = [outdir / f.name for f in map(Path, frame_files)] for strain, signals, frame_path in zip( strains, signals_list, frame_out_paths ): for i in range(n_samples): idx1 = int( (signal_times[i] - waveform_duration / 2.0) * sample_rate ) idx2 = idx1 + waveform_duration * sample_rate strain[idx1:idx2] += signals[i] strain.write(frame_path) # Write params and similar to output file param_file = outdir / f"param_file_{frame_start}-{frame_stop}.h5" with h5py.File(param_file, "w") as f: # write signals attributes, snr, and signal parameters params_gr = f.create_group("signal_params") for k, v in sample_params.items(): params_gr.create_dataset(k, data=v) # Save signal times as actual GPS times f.create_dataset("GPS-start", data=signal_times + frame_start) for i, ifo in enumerate(ifos): ifo_gr = f.create_group(ifo) ifo_gr.create_dataset("signal", data=signals_list[i]) ifo_gr.create_dataset("snr", data=snr_list[i]) # write frame attributes f.attrs.update( { "size": n_samples, "frame_start": frame_start, "frame_stop": frame_stop, "sample_rate": sample_rate, "psd_fftlength": fftlength, } ) # Update signal attributes f.attrs["waveform_duration"] = waveform_duration f.attrs["flag"] = "GW" return frame_out_paths, param_file
204aca5dee78e885191907890fc064503ff61f57
3,656,709
async def lyric(id: int, endpoint: NeteaseEndpoint = Depends(requestClient)): """ ## Name: `lyric` > 歌词 --- ### Required: - ***int*** **`id`** - Description: 单曲ID """ return await endpoint.lyric(id=id)
331c0bced7bbd2523426522286a85f3cc6a3a29f
3,656,710
def get_body(m): """extract the plain text body. return the body""" if m.is_multipart(): body = m.get_body(preferencelist=('plain',)).get_payload(decode=True) else: body = m.get_payload(decode=True) if isinstance(body, bytes): return body.decode() else: return body
7980c1471a0a09c793cb8124066a97caac21ae0d
3,656,711
def density(mass, volume): """ Calculate density. """ return mass / volume * 1
53b1f76ba66695a9cd72be9186bcc374ee11f53b
3,656,713
from typing import Union from typing import Callable import torch def get_augmenter(augmenter_type: str, image_size: ImageSizeType, dataset_mean: DatasetStatType, dataset_std: DatasetStatType, padding: PaddingInputType = 1. / 8., pad_if_needed: bool = False, subset_size: int = 2) -> Union[Module, Callable]: """ Args: augmenter_type: augmenter type image_size: (height, width) image size dataset_mean: dataset mean value in CHW dataset_std: dataset standard deviation in CHW padding: percent of image size to pad on each border of the image. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. If a sequence of length 2 is provided, it is used to pad left/right, top/bottom borders, respectively. pad_if_needed: bool flag for RandomCrop "pad_if_needed" option subset_size: number of augmentations used in subset Returns: nn.Module for Kornia augmentation or Callable for torchvision transform """ if not isinstance(padding, tuple): assert isinstance(padding, float) padding = (padding, padding, padding, padding) assert len(padding) == 2 or len(padding) == 4 if len(padding) == 2: # padding of length 2 is used to pad left/right, top/bottom borders, respectively # padding of length 4 is used to pad left, top, right, bottom borders respectively padding = (padding[0], padding[1], padding[0], padding[1]) # image_size is of shape (h,w); padding values is [left, top, right, bottom] borders padding = ( int(image_size[1] * padding[0]), int(image_size[0] * padding[1]), int(image_size[1] * padding[2]), int(image_size[0] * padding[3]) ) augmenter_type = augmenter_type.strip().lower() if augmenter_type == "simple": return nn.Sequential( K.RandomCrop(size=image_size, padding=padding, pad_if_needed=pad_if_needed, padding_mode='reflect'), K.RandomHorizontalFlip(p=0.5), K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) elif augmenter_type == "fixed": return nn.Sequential( K.RandomHorizontalFlip(p=0.5), # K.RandomVerticalFlip(p=0.2), K.RandomResizedCrop(size=image_size, scale=(0.8, 1.0), ratio=(1., 1.)), RandomAugmentation( p=0.5, augmentation=F.GaussianBlur2d( kernel_size=(3, 3), sigma=(1.5, 1.5), border_type='constant' ) ), K.ColorJitter(contrast=(0.75, 1.5)), # additive Gaussian noise K.RandomErasing(p=0.1), # Multiply K.RandomAffine( degrees=(-25., 25.), translate=(0.2, 0.2), scale=(0.8, 1.2), shear=(-8., 8.) ), K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) elif augmenter_type in ["validation", "test"]: return nn.Sequential( K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) elif augmenter_type == "randaugment": return nn.Sequential( K.RandomCrop(size=image_size, padding=padding, pad_if_needed=pad_if_needed, padding_mode='reflect'), K.RandomHorizontalFlip(p=0.5), RandAugmentNS(n=subset_size, m=10), K.Normalize(mean=torch.tensor(dataset_mean, dtype=torch.float32), std=torch.tensor(dataset_std, dtype=torch.float32)), ) else: raise NotImplementedError(f"\"{augmenter_type}\" is not a supported augmenter type")
7b065d9bd7c9bc2cf3c0aa2fdf105c714df24705
3,656,715
def query(limit=None, username=None, ids=None, user=None): """# Retrieve Workspaces Receive a generator of Workspace objects previously created in the Stark Bank API. If no filters are passed and the user is an Organization, all of the Organization Workspaces will be retrieved. ## Parameters (optional): - limit [integer, default None]: maximum number of objects to be retrieved. Unlimited if None. ex: 35 - username [string, default None]: query by the simplified name that defines the workspace URL. This name is always unique across all Stark Bank Workspaces. Ex: "starkbankworkspace" - ids [list of strings, default None]: list of ids to filter retrieved objects. ex: ["5656565656565656", "4545454545454545"] - user [Organization/Project object, default None]: Organization or Project object. Not necessary if starkbank.user was set before function call ## Return: - generator of Workspace objects with updated attributes """ return rest.get_stream(resource=_resource, limit=limit, username=username, ids=ids, user=user)
bc22336c7c76d549144e43b6d6c46793b1feedf9
3,656,716
def _add_output_tensor_nodes(net, preprocess_tensors, output_collection_name='inferece_op'): """ Adds output nodes for all preprocess_tensors. :param preprocess_tensors: a dictionary containing the all predictions; :param output_collection_name: Name of collection to add output tensors to. :return: A tensor dict containing the added output tensor nodes. """ outputs = {} outputs['roi_scores'] = tf.identity(net.all_rois_scores, name='rois_scores') outputs['rois'] = tf.identity(net.all_rois, name='rois') for output_key in outputs.keys(): tf.add_to_collection(output_collection_name, outputs[output_key]) return outputs
cdbb2b69a795bcc74925cce138e9d73bc4737276
3,656,717
def f_prob(times, lats, lons, members): """Probabilistic forecast containing also a member dimension.""" data = np.random.rand(len(members), len(times), len(lats), len(lons)) return xr.DataArray( data, coords=[members, times, lats, lons], dims=["member", "time", "lat", "lon"], attrs={"source": "test"}, )
43fe73abb5667b0d29f36a4ee73e8d8ec1943ad0
3,656,718
def dunning_total_by_corpus(m_corpus, f_corpus): """ Goes through two corpora, e.g. corpus of male authors and corpus of female authors runs dunning_individual on all words that are in BOTH corpora returns sorted dictionary of words and their dunning scores shows top 10 and lowest 10 words :param m_corpus: Corpus object :param f_corpus: Corpus object :return: list of tuples (common word, (dunning value, m_corpus_count, f_corpus_count)) >>> from gender_analysis.analysis.dunning import dunning_total_by_corpus >>> from gender_analysis.corpus import Corpus >>> from gender_analysis.common import TEST_DATA_PATH >>> path = TEST_DATA_PATH / 'sample_novels' / 'texts' >>> csv_path = TEST_DATA_PATH / 'sample_novels' / 'sample_novels.csv' >>> c = Corpus(path, csv_path=csv_path) >>> m_corpus = c.filter_by_gender('male') >>> f_corpus = c.filter_by_gender('female') >>> result = dunning_total_by_corpus(m_corpus, f_corpus) >>> print(result[0]) ('she', (-12374.391057010947, 29382, 45907)) """ wordcounter_male = m_corpus.get_wordcount_counter() wordcounter_female = f_corpus.get_wordcount_counter() totalmale_words = 0 totalfemale_words = 0 for male_word in wordcounter_male: totalmale_words += wordcounter_male[male_word] for female_word in wordcounter_female: totalfemale_words += wordcounter_female[female_word] dunning_result = {} for word in wordcounter_male: wordcount_male = wordcounter_male[word] if word in wordcounter_female: wordcount_female = wordcounter_female[word] dunning_word = dunn_individual_word(totalmale_words, totalfemale_words, wordcount_male, wordcount_female) dunning_result[word] = (dunning_word, wordcount_male, wordcount_female) dunning_result = sorted(dunning_result.items(), key=itemgetter(1)) return dunning_result
324b0bb5e5f83451ca47cefed908cdd6dbc47c33
3,656,719
from typing import Optional from typing import Callable def get_int(prompt: Optional[str] = None, min_value: Optional[int] = None, max_value: Optional[int] = None, condition: Optional[Callable[[int], bool]] = None, default: Optional[int] = None) -> int: """Gets an int from the command line. :param prompt: Input prompt. :param min_value: Minimum value of the parsed int. :param max_value: Maximum value of the parsed int. :param condition: Condition the int must match. :param default: Default value used if no characters are typed. :return: Input int. """ input_int = None input_str = None while input_int is None: try: input_str = input(_prompt_from_message(prompt, default=default)).strip() if default is not None and len(input_str) == 0: input_str = default input_int = int(input_str) if (min_value is not None and input_int < min_value) or \ (max_value is not None and input_int > max_value) or \ (condition is not None and not condition(input_int)): input_int = None raise ValueError() except ValueError: _print_invalid_value(input_str) return input_int
c6ea07b495330c74bd36523cf12dd3e208926ea5
3,656,723
def make_stream_callback(observer, raw, frame_size, start, stop): """ Builds a callback function for stream plying. The observer is an object which implements methods 'observer.set_playing_region(b,e)' and 'observer.set_playing_end(e)'. raw is the wave data in a str object. frame_size is the number of bytes times number of channels per frame. start and stop indicate which slice of raw would be played. """ start_ref = [ start ] def callback(in_data, frame_count, time_info, status): start = start_ref[0] last = min(stop, start + frame_count*frame_size) data = raw[start:last] start_ref[0] = last if last == stop: observer.set_playing_end(last) else: observer.set_playing_region(start, last) return (data, pyaudio.paContinue) return callback
c29f7998f848c51af57e42c92a62f80c7a0c2e70
3,656,724
import torch def predictCNN(segments, artifacts, device:torch.device = torch.device("cpu")): """ Perform model predictions on unseen data :param segments: list of segments (paragraphs) :param artifacts: run artifacts to evaluate :param device: torch device :return category predictions """ # Retrieve artifacts params = artifacts["params"] label_encoder = artifacts["label_encoder"] tokenizer = artifacts["tokenizer"] model = artifacts["model"] # Prepare dataset into model readable format preprocessed_segments = [preprocess.cleanText(segment, lower=params.lower, stem=params.stem) for segment in segments] X = np.array(tokenizer.texts_to_sequences(preprocessed_segments), dtype="object") y_blank = np.zeros((len(X), len(label_encoder))) dataset = CNNDataset(X=X, y=y_blank, max_filter_size=int(params.max_filter_size)) dataloader = dataset.create_dataloader(batch_size=int(params.batch_size)) # Get model predictions trainer = Trainer(model=model, device=device) _, y_prob = trainer.predict_step(dataloader) y_pred = [np.where(prob >= float(params.threshold), 1, 0) for prob in y_prob] categories = label_encoder.decode(y_pred) predictions = [{"input_text": segments[i], "preprocessed_text": preprocessed_segments[i], "predicted_tags": categories[i]} for i in range(len(categories))] return predictions
27ebdccaecd675104c670c1839daf634c142c640
3,656,725
import re def transform_url(url): """Normalizes url to '[email protected]:{username}/{repo}' and also returns username and repository's name.""" username, repo = re.search(r'[/:](?P<username>[A-Za-z0-9-]+)/(?P<repo>[^/]*)', url).groups() if url.startswith('git@'): return url, username, repo return '[email protected]:{username}/{repo}'.format(**locals()), username, repo
8d6e7d903d7c68d2f4fb3927bd7a02128cc09caf
3,656,726
from typing import Optional def prettyprint(data: dict, command: str, modifier: Optional[str] = '') -> str: """ Prettyprint the JSON data we get back from the API """ output = '' # A few commands need a little special treatment if command == 'job': command = 'jobs' if 'data' in data and 'jobs' in data['data']: output = prettyprint_jobs(data, command) elif 'data' in data and 'files' in data['data']: output = prettyprint_firmware(data, command) elif 'job_id' in data: output = prettyprint_job(data, command) elif 'data' in data and 'groups' in data['data']: output = prettyprint_groups(data, 'groups') elif 'data' in data and 'version' in data['data']: output = prettyprint_version(data, 'version') elif 'data' in data and command == 'device': output = prettyprint_device(data) elif 'data' in data and command in data['data']: output = prettyprint_command(data, command) elif 'status' in data and data['status'] == 'error': output = prettyprint_error(data) else: output = prettyprint_other(data) if modifier != '': output = prettyprint_modifier(output, modifier) return output
727a59b22b2624fec56e685cc3b84f065bbfeffd
3,656,727
def kmor(X: np.array, k: int, y: float = 3, nc0: float = 0.1, max_iteration: int = 100, gamma: float = 10 ** -6): """K-means clustering with outlier removal Parameters ---------- X Your data. k Number of clusters. y Parameter for outlier detection. Increase this to make outlier removal subtle. nc0 Maximum percentage of your data that can be assigned to outlier cluster. max_iteration Maximum number of iterations. gamma Used to check the convergence. Returns ------- numpy.array Numpy array that contains the assigned cluster of each data point (0 to k, the cluster k is the outlier cluster) """ n = X.shape[0] n0 = int(nc0 * X.shape[0]) Z = X[np.random.choice(n, k)] def calculate_dd(U, Z): return np.linalg.norm(X - Z[U], axis=1) ** 2 def calculate_D(outliers, dd): factor = y / (n - outliers.size) return factor * np.sum(np.delete(dd, outliers)) def calculate_U(X): def closest(p): return np.argmin(np.linalg.norm(Z - p, axis=1)) return np.apply_along_axis(closest, 1, X) outliers = np.array([]) U = calculate_U(X) s = 0 p = 0 while True: # Update U (Theorem 1) dd = calculate_dd(U, Z) D = calculate_D(outliers, dd) dd2 = dd[dd > D] outliers = np.arange(n)[dd > D][dd2.argsort()[::-1]] outliers = outliers[:n0] U = calculate_U(X) # Update Z (Theorem 3) is_outlier = np.isin(U, outliers) def mean_group(i): x = X[np.logical_and(U == i, ~is_outlier)] # Empty group if x.size == 0: x = X[np.random.choice(n, 1)] return x.mean(axis=0) Z = np.array([mean_group(i) for i in range(k)]) # Update P dd = calculate_dd(U, Z) D = calculate_D(outliers, dd) if outliers.size == 0: p1 = np.sum(dd) else: p1 = np.sum(dd[~outliers]) + D * outliers.size # Exit condition s += 1 if abs(p1 - p) < gamma or s > max_iteration: break p = p1 print("s:", s, "p:", p) U[outliers] = k return U
5ffa55d45d615586971b1ec502981f1a7ab27cbe
3,656,728
def turnout_div(turnout_main, servo, gpo_provider): """Create a turnout set to the diverging route""" turnout_main.set_route(True) # Check that the route was set to the diverging route assert(servo.get_angle() == ANGLE_DIV) assert(gpo_provider.is_enabled()) return turnout_main
542a747cc7f4cdc78b7ad046b0c4ce4a0a3cd33d
3,656,730
def num_jewels(J: str, S: str) -> int: """ Time complexity: O(n + m) Space complexity: O(n) """ jewels = set(J) return sum(stone in jewels for stone in S)
f1a9632a791e3ef94699b566da61e27d9dc46b07
3,656,731
import socket def internet(host="8.8.8.8", port=53, timeout=3): """ Host: 8.8.8.8 (google-public-dns-a.google.com) OpenPort: 53/tcp Service: domain (DNS/TCP) """ try: socket.setdefaulttimeout(timeout) socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port)) logger.info('Internet is there!!') return True except Exception as ex: logger.warning('Internet is gone!!') return False
773f490baec40bf548ed2f13d1d1094c78b33366
3,656,732
import logging def map_family_situation(code): """Maps French family situation""" status = FamilySituation mapping = { "M": status.MARRIED.value, "C": status.SINGLE.value, "V": status.WIDOWED.value, "D": status.DIVORCED.value, "O": status.PACSED.value, } if code in mapping.keys(): return mapping[code] else: logging.warning("In {}, args {} not recognised".format("family_situation", code)) return code
ae5ac0c9ffadb31d25825e65fcb81d6ea9b0115f
3,656,733
def transform(x, channels, img_shape, kernel_size=7, threshold=1e-4): """ ---------- X : WRITEME data with axis [b, 0, 1, c] """ for i in channels: assert isinstance(i, int) assert i >= 0 and i <= x.shape[3] x[:, :, :, i] = lecun_lcn(x[:, :, :, i], img_shape, kernel_size, threshold) return x
c66725795585ea26dc9622ce42133a4a2f1445a8
3,656,734
import functools def delete_files(files=[]): """This decorator deletes files before and after a function. This is very useful for installation procedures. """ def my_decorator(func): @functools.wraps(func) def function_that_runs_func(self, *args, **kwargs): # Inside the decorator # Delete the files - prob don't exist yet delete_paths(files) # Run the function stuff = func(self, *args, **kwargs) # Delete the files if they do exist delete_paths(files) return stuff return function_that_runs_func return my_decorator
09652e9dd527b6ae43cf47deb2eaf460de51552e
3,656,735
def add_note(front, back, tag, model, deck, note_id=None): """ Add note with `front` and `back` to `deck` using `model`. If `deck` doesn't exist, it is created. If `model` doesn't exist, nothing is done. If `note_id` is passed, it is used as the note_id """ model = mw.col.models.byName(model) if model: mw.col.decks.current()['mid'] = model['id'] else: return None # Creates or reuses deck with name passed using `deck` did = mw.col.decks.id(deck) deck = mw.col.decks.get(did) note = mw.col.newNote() note.model()['did'] = did note.fields[0] = front note.fields[1] = back if note_id: note.id = note_id note.addTag(tag) mw.col.addNote(note) mw.col.save() return note.id
e45528705dbd658dcb708259043f4a4b590e884b
3,656,737
def indices_to_one_hot(data, nb_classes): #separate: embedding """Convert an iterable of indices to one-hot encoded labels.""" targets = np.array(data).reshape(-1) return np.eye(nb_classes)[targets]
36fdf0dbad51ae6d64c1a6bf783f083013686e40
3,656,738
from rdkit.Chem import rdMolTransforms def translateToceroZcoord(moleculeRDkit): """ Translate the molecule to put the first atom in the origin of the coordinates Parameters ---------- moleculeRDkit : RDkit molecule An RDkit molecule Returns ------- List List with the shift value applied to X, Y, Z """ conf = moleculeRDkit.GetConformer() # avoid first atom overlap with dummy 3 if abs(conf.GetAtomPosition(0).x-1.0)<1e-3 and abs(conf.GetAtomPosition(0).y-1.0)<1e-3 and abs(conf.GetAtomPosition(0).z-0.0)<1e-3: shiftX = conf.GetAtomPosition(0).x - 1.0 shiftY = conf.GetAtomPosition(0).y - 1.0 shiftZ = conf.GetAtomPosition(0).z translationMatrix = np.array( [[1, 0, 0, -shiftX], [0, 1, 0, -shiftY], [0, 0, 1, -shiftZ], [0, 0, 0, 1]], dtype=np.double) rdMolTransforms.TransformConformer(conf, translationMatrix) else: shiftX = 0.0 shiftY = 0.0 shiftZ = 0.0 return [shiftX, shiftY, shiftZ]
cbe17cf023791517c01b0e52c11dde65532ab6d0
3,656,739
def standardize(mri): """ Standardize mean and standard deviation of each channel and z_dimension slice to mean 0 and standard deviation 1. Note: setting the type of the input mri to np.float16 beforehand causes issues, set it afterwards. Args: mri (np.array): input mri, shape (dim_x, dim_y, dim_z, num_channels) Returns: standardized_mri (np.array): standardized version of input mri """ standardized_mri = np.zeros(mri.shape) # Iterate over channels for c in range(mri.shape[3]): # Iterate over the `z` depth dimension for z in range(mri.shape[2]): # Get a slice of the mri at channel c and z-th dimension mri_slice = mri[:, :, z, c] # Subtract the mean from mri_slice centered = mri_slice - np.mean(mri_slice) # Divide by the standard deviation (only if it is different from zero) if np.std(centered) != 0: centered_scaled = centered / np.std(centered) # Update the slice of standardized mri with the centered and scaled mri standardized_mri[:, :, z, c] = centered_scaled return standardized_mri
9c0847d1618023d83cdec48a1c43aae6efc1116f
3,656,740
def current_floquet_kets(eigensystem, time): """ Get the Floquet basis kets at a given time. These are the |psi_j(t)> = exp(-i energy[j] t) |phi_j(t)>, using the notation in Marcel's thesis, equation (1.13). """ weights = np.exp(time * eigensystem.abstract_ket_coefficients) weights = weights.reshape((1, -1, 1)) return np.sum(weights * eigensystem.k_eigenvectors, axis=1)
60fdb845fc026bf3a109f05945b251a224b12092
3,656,741
def summary(): """ DB summary stats """ cur = get_cur() res = [] try: cur.execute('select count(study_id) as num_studies from study') res = cur.fetchone() except: dbh.rollback() finally: cur.close() if res: return Summary(num_studies=res['num_studies']) else: return []
e0159452df1909626d523896f1c2735fb4fc3e75
3,656,742
def rotate_affine(img, rot=None): """Rewrite the affine of a spatial image.""" if rot is None: return img img = nb.as_closest_canonical(img) affine = np.eye(4) affine[:3] = rot @ img.affine[:3] return img.__class__(img.dataobj, affine, img.header)
4a06c286dcfc0832558c74f2cbce54d6e8d7a2d4
3,656,744
import math def validate_ttl(options): """ Check with Vault if the ttl is valid. :param options: Lemur option dictionary :return: 1. Boolean if the ttl is valid or not. 2. the ttl in hours. """ if 'validity_end' in options and 'validity_start' in options: ttl = math.floor(abs(options['validity_end'] - options['validity_start']).total_seconds() / 3600) elif 'validity_years' in options: ttl = options['validity_years'] * 365 * 24 else: ttl = 0 headers = {'X-Vault-Token': vault_auth.get_token()} url = '{}/roles/{}'.format(current_app.config.get('VAULT_PKI_URL'), options['authority'].name) res, resp = vault_read_request(url, headers) if res: max_ttl = resp.json()['data']['max_ttl'] text_file = open("max_ttl.txt", "wt") n = text_file.write(str(max_ttl)) text_file.close() if int(max_ttl) < ttl: current_app.logger.info('Certificate TTL is above max ttl - ' + max_ttl) return True, ttl else: return True, ttl else: current_app.logger.info('Vault: Failed to get Vault max TTL') raise Exception('Vault: ' + resp)
83d7d323ae4b3db28f41879f630982d24515fcb1
3,656,745